WO2000072964A1 - Catalyst for methacrylic acid production and process for producing methacrylic acid - Google Patents

Catalyst for methacrylic acid production and process for producing methacrylic acid Download PDF

Info

Publication number
WO2000072964A1
WO2000072964A1 PCT/JP2000/003311 JP0003311W WO0072964A1 WO 2000072964 A1 WO2000072964 A1 WO 2000072964A1 JP 0003311 W JP0003311 W JP 0003311W WO 0072964 A1 WO0072964 A1 WO 0072964A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
methacrylic acid
methacrolein
group
raw material
Prior art date
Application number
PCT/JP2000/003311
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Naito
Motomu Oh-Kita
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Publication of WO2000072964A1 publication Critical patent/WO2000072964A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum

Definitions

  • the present invention provides a catalyst for producing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen, a method for producing the catalyst, a method for producing methacrylic acid using the catalyst, and a method for producing methacrylic acid using the catalyst. It relates to the method used for manufacturing.
  • the present invention provides a catalyst capable of producing methacrylic acid in high yield by gas phase catalytic oxidation of methacrolein with molecular oxygen, a method for producing the catalyst, a method for producing methacrylic acid using the catalyst, and a method for producing the same.
  • the purpose is to provide a method for using the catalyst for the production of methacrylic acid.
  • the present invention provides the following formula (1):
  • a methacrylic acid production catalyst having a composition represented by the formula: and having an ammonia adsorption amount at 0 ° C of 1 000 // mo 1 / g-catalyst or more;
  • a method for producing the catalyst for producing methacrylic acid comprising: mixing raw materials of the constituent elements of the catalyst, drying the obtained mixture, and calcining the obtained dried product.
  • a method for producing methacrylic acid using the catalyst a method for producing methacrylic acid, and a method for using the catalyst for producing methacrylic acid.
  • the present invention relates to a catalyst for producing methacrylic acid having a composition represented by the above formula (1), which is used in the gas-phase catalytic oxidation of methacrolein with molecular oxygen, and comprises an ammonia adsorption amount at 0 ° C. Is greater than 100 OO i mo 1 Zg—catalyst.
  • the ammonia adsorption amount at 0 ° C. is preferably at least 1,500 ⁇ 1 Zg—catalyst, particularly preferably 2,000 to 10,000 zmol / g—catalyst.
  • methacrylic acid can be obtained in high yield, but an ammonia adsorption of 1 000 // mo 1 / g— If the amount is less than the catalyst, the yield of methacrylic acid tends to decrease.
  • methacrylic acid can be obtained in high yield by using a catalyst having an ammonia adsorption amount at 0 ° C of 1 000 mo 1 / g or more is that the ammonia adsorption amount of 1 000/1 It is speculated that the adsorption and desorption of the reactant (methacrolein) and the product (methacrylic acid) on the active site of the catalyst are performed more smoothly than when the catalyst is less than mo 1 Zg—catalyst.
  • the ammonia adsorption amount in the present invention refers to the ammonia adsorbed on 1 g of the catalyst at 0 ° C.
  • Amount refers to the total amount of chemical adsorption and physical adsorption. The larger the amount of adsorbed ammonia, the larger the number of acid sites per g of catalyst.
  • the inside of the vessel filled with the catalyst was evacuated in advance, and ammonia was adsorbed at 0 ° C for 30 minutes, and then the temperature was raised to 600 ° C. From the amount of ammonia desorbed from the catalyst.
  • the amount of ammonia adsorbed thus determined is the amount of adsorption obtained by combining the amount of chemical adsorption and the amount of physical adsorption at o ° c.
  • the catalyst of the present invention is not particularly limited as long as it satisfies the composition of the above formula (1).
  • the X element is potassium, rubidium and cesium
  • the Y element is zirconium, silver, iron, zinc, palladium, titanium.
  • tin, and the Z elements are antimony, arsenic, germanium, tellurium, silicon and tantalum. More preferably, element X is potassium and cesium, element Y is zirconium, silver, iron, zinc, titanium and tin, and element Z is antimony, arsenic, germanium, tellurium and tantalum.
  • the method for producing the catalyst of the present invention is not particularly limited.
  • a raw material containing a catalyst constituent element is mixed to prepare a mixed solution or an aqueous slurry containing the catalyst constituent element, and the mixed solution or the aqueous slurry is dried. Then, a solvent such as water is removed, and the obtained dried catalyst precursor is calcined to produce the catalyst of the present invention.
  • a method for preparing a mixed solution or an aqueous slurry containing the catalyst constituent elements does not need to be limited to a special method, and it is well known to the art unless a significant uneven distribution of components is involved.
  • Various methods such as a precipitation method and an oxide mixing method can be used.
  • Preparation conditions such as mixing means, temperature, pressure, and atmosphere for preparing this mixed solution or aqueous slurry are not particularly limited.
  • an oxide, a nitrate, a carbonate, a bicarbonate, an ammonium salt, an acid compound or the like of each element can be appropriately selected and used.
  • Various types of ammonium molybdate such as ammonium paramolybdate, ammonium dimolybdate, ammonium tetramolybdate, molybdenum trioxide, molybdic acid, and the like can be used as raw materials for molybdenum.
  • Phosphorus oxide, ammonium phosphate and the like can be used, and as a raw material of vanadium, ammonium metavanadate, vanadium pentoxide and the like can be used.
  • a heteropoly acid such as phosphomolybdic acid, molybdovanadophosphoric acid, and ammonium phosphomolybdate can also be used.
  • a raw material for copper the X component, the Y component, and the z component, oxides, nitrates, carbonates, bicarbonates, ammonium salts, acid compounds, and the like of each element can be appropriately selected and used.
  • a raw material of molybdenum ammonium paramolybdate and molybdenum trioxide
  • a phosphorus raw material orthophosphoric acid can be used
  • a raw material of vanadium, ammonium metavanadate and vanadium pentoxide can be used.
  • Copper nitrate and copper oxide can be used as copper raw materials
  • nitrate, bicarbonate and acid compounds can be used as X component raw materials
  • nitrate and oxide compounds can be used as Y component raw materials
  • Oxides and acid compounds can be used as raw materials for the Z component. The ratio of these raw materials used is appropriately changed according to the composition ratio of each element in the obtained final catalyst.
  • various methods can be used as a method for drying the mixed solution or the aqueous slurry containing the constituent elements of the catalyst, for example, an evaporative drying method, a spray drying method, and a drum drying method. And a flash drying method.
  • the type of dryer used for drying, the temperature, pressure, atmosphere, etc., and the presence or absence of stirring during drying are not particularly limited, and a dried product of the catalyst precursor according to the purpose can be obtained by appropriately changing the drying conditions. be able to.
  • the molding method is not particularly limited, and various known dry and wet molding methods can be applied, but a method of molding only with the catalyst component without including a carrier or the like is preferable.
  • the molding conditions such as temperature, pressure, atmosphere and the like during molding are not particularly limited. Specific molding methods include, for example, tablet molding, press molding, extrusion molding, granulation molding, and the like.
  • the shape of the molded article is not particularly limited, either. It can be formed into a desired shape such as a ring or a sphere. At the time of molding, a small amount of a known additive such as graphite or talc may be added.
  • the dried product of the catalyst precursor or the molded product obtained in this way is calcined to obtain a catalyst.
  • the firing method and firing conditions are not particularly limited, and known methods and conditions can be applied.
  • the optimum conditions for the calcination vary depending on the type of the catalyst raw material to be used, the catalyst composition, and the method for preparing the catalyst precursor. At 500-500 ° C., more preferably at 300-450 ° C., most preferably at 350-400 ° C., preferably at least 0.5 hour, more preferably at 1-500 ° C. Performed for 40 hours.
  • the amount of ammonia adsorbed at o ° c specified in the present invention is 1 OOO / mo 1 Z g—a catalyst higher than the catalyst. May not be obtained.
  • the inert gas refers to a gas that does not decrease the catalytic activity, and examples thereof include nitrogen, carbon dioxide, helium, and argon.
  • a raw material gas containing at least methacrolein and molecular oxygen it is preferable to contact a raw material gas containing at least methacrolein and molecular oxygen with the above-mentioned catalyst of the present invention.
  • the catalyst can be used in both fluidized and fixed beds.
  • the concentration of methacrolein in the raw material gas can be varied in a wide range, but is suitably 1 to 20% by volume, and particularly preferably 3 to 10% by volume.
  • the source gas may contain a small amount of impurities such as lower saturated aldehydes such as formaldehyde diacetaldehyde, but it is preferable that the amount is as small as possible.
  • air air enriched with pure oxygen can be used if necessary.
  • the molecular oxygen concentration in the source gas is preferably from 0.4 to 4 mol, particularly preferably from 0.5 to 3 mol, per mol of methacrolein.
  • the source gas may be diluted by adding an inert gas such as nitrogen or carbon dioxide, and steam may be added to the source gas.
  • the reaction pressure is preferably from normal pressure to several atmospheres.
  • the reaction temperature can be selected in the range of 230 to 450 ° C, but is preferably 250 to 400 ° C.
  • Parts in Examples and Comparative Examples are weights. Means part.
  • the composition ratios of the constituent elements of the catalyst (P, Mo, V, Cu, X component, Y component, and ⁇ component) in the obtained catalyst were obtained from the charged amounts of the raw materials used for preparing the catalyst.
  • the ammonia adsorption amount of the catalyst at 0 ° C was measured by the following method using a BET type adsorption measuring device.
  • ammonia is adsorbed at 0 ° C for 30 minutes, and then the amount of ammonia released from the catalyst when the temperature is raised to 600 ° C is determined by gas chromatography.
  • the amount of ammonia adsorbed at 0 ° C of the catalyst was calculated by dividing the amount of ammonia by the weight of the catalyst.
  • A is the number of moles of supplied methacrolein
  • B is the number of moles of reacted methacrolein
  • C is the number of moles of methacrylic acid generated.
  • This catalyst was filled in a reaction tube, and methacrolein 5%, oxygen 10%, steam 30%, When a source gas of 55% nitrogen (volume / Q) was passed at a reaction temperature of 285 ° C and a contact time of 3.6 seconds, the conversion of methacrolein was 82.9% and the selectivity of methacrylic acid was 84.8%, and the single flow yield of methacrylic acid was 70.3%.
  • a catalyst was prepared in the same manner as in Example 1, except that antimony trioxide was not used, and instead, 0.80 part of silver nitrate and 4.47 parts of a 60% by weight aqueous arsenic acid solution were used. The amount of ammonia adsorbed at 0 ° C of the obtained catalyst was measured, and the reaction was carried out under the same conditions as in Example 1. Table 1 shows the obtained results.
  • Example 4 Same procedure as in Example 1 except that antimony trioxide was not used and instead, zirconium nitrate 12.16 parts, tellurium dioxide 1.51 parts, and potassium nitrate 1.43 parts were used. To prepare a catalyst. The amount of ammonia adsorbed at 0 ° C. on the obtained catalyst was measured, and the reaction was carried out under the same conditions as in Example 1. Table 1 shows the obtained results.
  • Example 4
  • a catalyst was prepared in the same manner as in Example 1, except that antimony trioxide was not used, and instead, 9.53 parts of iron nitrate and 2.09 parts of tantalum oxide were used. The amount of ammonia adsorbed at 0 ° C of the obtained catalyst was measured, and the reaction was carried out under the same conditions as in Example 1. Table 1 shows the obtained results.
  • a catalyst was prepared in the same manner as in Example 1 except that antimony trioxide was not used, and instead, 0.85 parts of silicon dioxide, 3.26 parts of palladium nitrate, and 2.09 parts of rubidium nitrate were used. Was prepared. The amount of ammonia adsorbed at 0 ° C. of the obtained catalyst was measured, and the reaction was carried out under the same conditions as in Example 1. Table 1 shows the obtained results.
  • Example 6
  • Example 1 No antimony trioxide was used, instead 1.42 parts tin oxide, 0.38 parts titanium dioxide, and 60 weight parts. /.
  • a catalyst was prepared in the same manner as in Example 1, except that 1.12 parts of an arsenic acid aqueous solution was used. The amount of ammonia adsorbed at 0 ° C. of the obtained catalyst was measured, and the reaction was carried out under the same conditions as in Example 1. Table 1 shows the obtained results. Molybdenum trioxide 100 parts, pure water 400 parts, 85 weight. /. 9.35 parts of phosphoric acid, 3.16 parts of vanadium pentoxide, 3.63 parts of germanium dioxide and 0.46 parts of copper oxide were added and mixed under reflux for 5 hours.
  • Example 7 Same as Example 7 except that germanium dioxide and potassium nitrate were not used, and instead of iron nitrate 11.70 parts, antimony trioxide 4.22 parts, and zinc nitrate 3.44 parts.
  • the catalyst was prepared according to the procedure described above. The amount of ammonia adsorbed at 0 ° C of the obtained catalyst was measured, and the reaction was carried out under the same conditions as in Example 1. Table 1 shows the obtained results.
  • a catalyst was prepared in the same manner as in Comparative Example 1, except that 13.2 parts of ammonium latungstate were used. The amount of ammonia adsorbed at 0 ° C of the obtained catalyst was measured, and the reaction was carried out under the same conditions as in Example 1. Table 1 shows the obtained results.
  • a catalyst was prepared in the same manner as in Comparative Example 1, except that ammonium paramolybdate, copper nitrate, boric acid and cesium nitrate were not used, and instead 7.28 parts of cadmium nitrate was used. The amount of ammonia adsorbed at 0 ° C. on the obtained catalyst was measured, and the reaction was carried out under the same conditions as in Example 1. Table 1 shows the obtained results.
  • Catalyst was prepared in the same manner as in Comparative Example 1, except that phosphoric acid, copper nitrate, boric acid and cesium nitrate were not used, and instead 4.72 parts of chromium oxide and 3.34 parts of calcium nitrate were used. Was prepared. The amount of ammonia adsorbed at 0 ° C of the obtained catalyst was measured, and the reaction was carried out under the same conditions as in Example 1. Table 1 shows the obtained results.
  • a catalyst was prepared in the same manner as in Example 1 except that the pressed compact was fired at 430 ° C. for 12 hours under flowing air.
  • Table 1 shows the ammonia adsorption amount of this catalyst at 0 ° C and the result of a reaction performed under the same conditions as in Example 1.
  • a catalyst for producing methacrylic acid having a composition represented by the above formula (1) according to the present invention which comprises a catalyst having an amount of adsorbed ammonia at 0 ° C. of at least 1,000 ⁇ 1 / g—catalyst.
  • Methacrylic acid could be produced in high yield by gaseous catalytic oxidation of rhein with molecular oxygen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A catalyst with which methacrylic acid can be produced in high yield by catalytically oxidizing methacrolein with molecular oxygen in a vapor phase; a process for producing the catalyst; a process for producing methacrylic acid with the catalyst; and a method of using the catalyst in methacrylic acid production. The catalyst, which is for use in methacrylic acid production through the vapor-phase catalytic oxydation of methacrolein with molecular oxygen, has a composition represented by PaMobVcCudXeYfZgOh and has an ammonia adsorption at 0°C of at least 1,000 νmol per g of the catalyst.

Description

明 細 書 メタクリル酸製造用触媒およびメタクリル酸の製造方法 技術分野  Description Catalyst for producing methacrylic acid and method for producing methacrylic acid
本発明は、 メタクロレインを分子状酸素により気相接触酸化してメタクリル酸 を製造するための触媒、 その触媒の製造方法、 その触媒を使用したメタクリル酸 の製造方法、 及びその触媒をメタクリル酸の製造に使用する方法に関するもので ある。  The present invention provides a catalyst for producing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen, a method for producing the catalyst, a method for producing methacrylic acid using the catalyst, and a method for producing methacrylic acid using the catalyst. It relates to the method used for manufacturing.
背景技術 Background art
従来、 メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製 造する際に用いられる触媒については、 モリブデンを主成分とする固体酸触媒を 中心に数多くの提案がなされている (特開平 8— 47643号公報など) 。  Conventionally, many proposals have been made on catalysts used for producing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen, mainly on solid acid catalysts containing molybdenum as a main component. Kaihei 8—47643, etc.).
しかしながら、 このような従来から提案されている触媒は、 工業用触媒として 必ずしも充分な性能 (高収率など) を有さず、 更に改良が望まれているのが現状 である。  However, such conventionally proposed catalysts do not always have sufficient performance (such as high yield) as industrial catalysts, and further improvement is desired at present.
発明の開示 Disclosure of the invention
従って、 本発明はメタクロレインを分子状酸素により気相接触酸化してメタク リル酸を高収率で製造できる触媒、 その触媒の製造方法、 その触媒を使用したメ タクリル酸の製造方法、 及びその触媒をメタクリル酸の製造に使用する方法を提 供することを目的とする。  Therefore, the present invention provides a catalyst capable of producing methacrylic acid in high yield by gas phase catalytic oxidation of methacrolein with molecular oxygen, a method for producing the catalyst, a method for producing methacrylic acid using the catalyst, and a method for producing the same. The purpose is to provide a method for using the catalyst for the production of methacrylic acid.
本発明は、 下記の式 (1) 、  The present invention provides the following formula (1):
PaMobVcCu dXeYf ZgOh (1) (式中、 P、 Mo、 V、 C uおよび Oはそれぞれリン、 モリブデン、 バナジウム、 銅および酸素を示し、 Xはカリウム、 ルビジウム、 セシウムおよびタリウムから なる群より選ばれた少なくとも 1種類の元素を示し、 Yはビスマス、 ジルコニゥ ム、 銀、 鉄、 亜鉛、 クロム、 マグネシウム、 コバルト、 マンガン、 バリウム、 ノ、。 ラジウム、 チタン、 セリウム、 ランタンおよびスズからなる群より選ばれた少な くとも 1種類の元素を示し、 Zはアンチモン、 砒素、 ゲルマニウム、 テルル、 セ レン、 ケィ素、 タングステン、 ホウ素、 タンタルおよびガリウムからなる群より 選ばれた少なくとも 1種類の元素を示す。 a、 b、 c、 d、 e、 f 、 gおよび h は各元素の原子比率を表し、 b = 1 2のとき a = 0. :!〜 3、 c = 0. 0 1〜3、 d = 0. 0 1〜2、 e = 0. 0 1〜3、 f =0〜3、 g = 0〜3であり、 hは前 記各成分の原子価を満足するのに必要な酸素の原子比率である。 ) で表される組 成を有し、 0°Cにおけるアンモニア吸着量が 1 000 // mo 1 /g—触媒以上で ある、 メタクリル酸製造用触媒、 P a Mo b V c Cu d X e Y f Z g O h (1) (where P, Mo, V, Cu and O represent phosphorus, molybdenum, vanadium, copper and oxygen, respectively, and X is potassium , Rubidium, cesium, and thallium, at least one element selected from the group consisting of: bismuth, zirconium, silver, iron, zinc, chromium, magnesium, cobalt, manganese, barium, titanium, radium, titanium Z represents at least one element selected from the group consisting of cerium, lanthanum and tin, and Z represents antimony, arsenic, germanium, tellurium, Indicates at least one element selected from the group consisting of len, silicon, tungsten, boron, tantalum and gallium. a, b, c, d, e, f, g, and h represent the atomic ratio of each element, and when b = 12, a = 0.:! ~ 3, c = 0.01 ~ 3, d = 0.0 1-2, e = 0.0 1-3, f = 0-3, g = 0-3, and h is the atomic ratio of oxygen necessary to satisfy the valence of each component described above. It is. A methacrylic acid production catalyst having a composition represented by the formula: and having an ammonia adsorption amount at 0 ° C of 1 000 // mo 1 / g-catalyst or more;
上記メタクリル酸製造用触媒の製造方法であって、 上記触媒の構成元素の原料を 混合し、 得られた混合物を乾燥し、 得られた乾燥物を焼成する、 ことを含む、 製 造方法、 A method for producing the catalyst for producing methacrylic acid, comprising: mixing raw materials of the constituent elements of the catalyst, drying the obtained mixture, and calcining the obtained dried product.
上記触媒を用いてメタクリル酸を製造する、 メタクリル酸の製造方法、 及び 上記触媒をメタクリル酸の製造に使用する方法、 を提供する。 A method for producing methacrylic acid using the catalyst, a method for producing methacrylic acid, and a method for using the catalyst for producing methacrylic acid.
ここで、 f =0の時は Y成分が含まれず、 g = 0の時は Z成分が含まれないこと を意味するものとする。 Here, when f = 0, it means that the Y component is not included, and when g = 0, it means that the Z component is not included.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 メタクロレインを分子状酸素により気相接触酸化する際に用いられ る前記の式 (1) で表される組成を有するメタクリル酸製造用触媒であって、 0 °Cにおけるアンモニア吸着量が 1 0 O O i mo 1 Zg—触媒以上であるものであ る。 0°Cにおけるアンモニア吸着量は、 好ましくは 1 500 μιτιο 1 Zg—触媒 以上であり、 特に好ましくは 2000〜1 0000 zmo l / g—触媒である。 アンモニア吸着量が 1 000 /i mo 1ノ g—触媒以上の触媒を用いた場合には、 メタクリル酸を高収率で得ることができるが、 アンモニア吸着量が 1 000 //m o 1 /g—触媒より少ない場合には、 メタクリル酸の収率が低下する傾向にある。  The present invention relates to a catalyst for producing methacrylic acid having a composition represented by the above formula (1), which is used in the gas-phase catalytic oxidation of methacrolein with molecular oxygen, and comprises an ammonia adsorption amount at 0 ° C. Is greater than 100 OO i mo 1 Zg—catalyst. The ammonia adsorption amount at 0 ° C. is preferably at least 1,500 μιτιο 1 Zg—catalyst, particularly preferably 2,000 to 10,000 zmol / g—catalyst. When a catalyst with an ammonia adsorption of 1 000 / i mo 1 nog—catalyst or more is used, methacrylic acid can be obtained in high yield, but an ammonia adsorption of 1 000 // mo 1 / g— If the amount is less than the catalyst, the yield of methacrylic acid tends to decrease.
0°Cにおけるアンモニア吸着量が 1 000 mo 1 /g—触媒以上である触媒 を用いることによりメタクリル酸が高い収率で得られるのは、 そのような触媒で は、 アンモニア吸着量が 1 000 / m o 1 Zg—触媒未満の触媒に比べて、 触媒 の活性点上での反応物質 (メタクロレイン) および生成物質 (メタクリル酸) の 吸脱着がより円滑に行われるためと推測している。  The reason why methacrylic acid can be obtained in high yield by using a catalyst having an ammonia adsorption amount at 0 ° C of 1 000 mo 1 / g or more is that the ammonia adsorption amount of 1 000/1 It is speculated that the adsorption and desorption of the reactant (methacrolein) and the product (methacrylic acid) on the active site of the catalyst are performed more smoothly than when the catalyst is less than mo 1 Zg—catalyst.
本発明におけるアンモニア吸着量とは、 0°Cで触媒 1 gに吸着するアンモニア 量を指し、 化学吸着量と物理吸着量の合計量を意味する。 アンモニア吸着量が大 きいほど触媒 1 gあたりの酸点の量が多いことを示す。 アンモニア吸着量は一般 に市販されている吸脱着装置を用いて、 触媒を充填した容器内を予め真空排気し た後、 0°Cで 30分間アンモニアを吸着させ、 その後 600°Cまで昇温させた際 に触媒から脱離したアンモニア量から求める。 このようにして求められるアンモ ニァ吸着量は、 o°cにおける化学吸着量と物理吸着量を合わせた吸着量である。 本発明の触媒は前記の式 (1) の組成を満たすものであれば特に限定されない 力 好ましくは X元素がカリウム、 ルビジウムおよびセシウムであり、 Y元素が ジルコニウム、 銀、 鉄、 亜鉛、 パラジウム、 チタンおよびスズであり、 Z元素が アンチモン、 砒素、 ゲルマニウム、 テルル、 ケィ素およびタンタルである。 より 好ましくは、 X元素がカリウム及びセシウムであり、 Y元素がジルコニウム、 銀、 鉄、 亜鉛、 チタンおよびスズであり、 Z元素がアンチモン、 砒素、 ゲルマニウム、 テルルおよびタンタルである。 The ammonia adsorption amount in the present invention refers to the ammonia adsorbed on 1 g of the catalyst at 0 ° C. Amount refers to the total amount of chemical adsorption and physical adsorption. The larger the amount of adsorbed ammonia, the larger the number of acid sites per g of catalyst. Using a commercially available adsorption / desorption device, the inside of the vessel filled with the catalyst was evacuated in advance, and ammonia was adsorbed at 0 ° C for 30 minutes, and then the temperature was raised to 600 ° C. From the amount of ammonia desorbed from the catalyst. The amount of ammonia adsorbed thus determined is the amount of adsorption obtained by combining the amount of chemical adsorption and the amount of physical adsorption at o ° c. The catalyst of the present invention is not particularly limited as long as it satisfies the composition of the above formula (1). Preferably, the X element is potassium, rubidium and cesium, and the Y element is zirconium, silver, iron, zinc, palladium, titanium. And tin, and the Z elements are antimony, arsenic, germanium, tellurium, silicon and tantalum. More preferably, element X is potassium and cesium, element Y is zirconium, silver, iron, zinc, titanium and tin, and element Z is antimony, arsenic, germanium, tellurium and tantalum.
また、 前記の式 (1) において各元素の好ましい原子比は、 b = 12のとき a =0. 3〜2、 c =0. 03〜2、 d = 0. 03〜: 1、 e = 0. 03〜2、 f = 0〜2、 g = 0. 03〜2である。 より好ましい原子比は、 b = 1 2のとき a = 0. 6〜1. 8、 c = 0. 1 ~ 1. 5、 d = 0. 06〜0. 6、 e = 0. 1 ~ 1. 7、 f =0〜: . 4、 g = 0. 06〜: I. 5である。  Further, in the above formula (1), the preferred atomic ratio of each element is a = 0.3 to 2, c = 0.03 to 2, d = 0.03 to: 1, e = 0 when b = 12. 03-2, f = 0-2, g = 0.03-2. More preferable atomic ratios are as follows: a = 0.6 to 1.8, c = 0.1 to 1.5, d = 0.06 to 0.6, e = 0.1 to 1. 7, f = 0 ~: .4, g = 0.06 ~: I.5.
本発明の触媒の製造方法は、 特に限定されないが、 例えば、 触媒構成元素を含 む原料を混合して触媒構成元素を含む混合溶液または水性スラリーを調製し、 こ の混合溶液または水性スラリーを乾燥して水などの溶媒を除去し、 得られた触媒 前駆体の乾燥物を焼成することにより、 本発明の触媒を製造することができる。 本発明の触媒の製造において、 触媒構成元素を含む混合溶液または水性スラリ 一を調製する方法としては特殊な方法に限定する必要はなく、 成分の著しい偏在 を伴わない限り、 従来からよく知られている沈殿法、 酸化物混合法等の種々の方 法を用いることができる。 この混合溶液または水性スラリーを調製する際の混合 手段、 温度、 圧力、 及び雰囲気などの調製条件は特に限定されない。  The method for producing the catalyst of the present invention is not particularly limited.For example, a raw material containing a catalyst constituent element is mixed to prepare a mixed solution or an aqueous slurry containing the catalyst constituent element, and the mixed solution or the aqueous slurry is dried. Then, a solvent such as water is removed, and the obtained dried catalyst precursor is calcined to produce the catalyst of the present invention. In the production of the catalyst of the present invention, a method for preparing a mixed solution or an aqueous slurry containing the catalyst constituent elements does not need to be limited to a special method, and it is well known to the art unless a significant uneven distribution of components is involved. Various methods such as a precipitation method and an oxide mixing method can be used. Preparation conditions such as mixing means, temperature, pressure, and atmosphere for preparing this mixed solution or aqueous slurry are not particularly limited.
触媒構成元素の原料としては、 各元素の酸化物、 硝酸塩、 炭酸塩、 重炭酸塩、 アンモニゥム塩、 酸化合物等を適宜選択して使用することができる。 例えば、 モ リブデンの原料としてはパラモリブデン酸アンモニゥム、 ジモリブデン酸アンモ 二ゥム、 テトラモリブデン酸アンモニゥム等の各種モリブデン酸アンモニゥムゃ 三酸化モリブデン、 モリブデン酸等が使用でき、 リン原料としては、 正リン酸、 五酸化リン、 リン酸アンモニゥム等が使用でき、 バナジウムの原料としては、 メ タバナジン酸アンモニゥム、 五酸化バナジウム等が使用できる。 また、 モリブデ ンとリンおよびバナジゥムの原料としてリンモリブデン酸、 モリブドバナドリン 酸、 リンモリブデン酸アンモニゥム等のへテロポリ酸を使用することもできる。 また、 銅、 X成分、 Y成分及び z成分の原料としても、 各元素の酸化物、 硝酸塩、 炭酸塩、 重炭酸塩、 アンモニゥム塩、 酸化合物等を適宜選択して使用することが できる。 好ましくは、 モリブデンの原料としてはパラモリブデン酸アンモ-ゥム 及び三酸化モリブデンが使用でき、 リン原料としては正リン酸が使用でき、 バナ ジゥムの原料としてはメタバナジン酸アンモニゥム及び五酸化バナジウムが使用 でき、 銅の原料としては硝酸銅及び酸化銅が使用でき、 X成分の原料としては硝 酸塩、 重炭酸塩及び酸化合物が使用でき、 Y成分の原料としては硝酸塩及び酸化 合物が使用でき、 Z成分の原料としては酸化物及び酸化合物が使用できる。 これ らの原料の使用量比は、 得られる最終触媒中の各元素の組成比に応じて適宜変更 される。 As a raw material of the catalyst constituent element, an oxide, a nitrate, a carbonate, a bicarbonate, an ammonium salt, an acid compound or the like of each element can be appropriately selected and used. For example, Various types of ammonium molybdate such as ammonium paramolybdate, ammonium dimolybdate, ammonium tetramolybdate, molybdenum trioxide, molybdic acid, and the like can be used as raw materials for molybdenum. Phosphorus oxide, ammonium phosphate and the like can be used, and as a raw material of vanadium, ammonium metavanadate, vanadium pentoxide and the like can be used. Further, as a raw material of molybdenum, phosphorus and vanadium, a heteropoly acid such as phosphomolybdic acid, molybdovanadophosphoric acid, and ammonium phosphomolybdate can also be used. In addition, as a raw material for copper, the X component, the Y component, and the z component, oxides, nitrates, carbonates, bicarbonates, ammonium salts, acid compounds, and the like of each element can be appropriately selected and used. Preferably, as a raw material of molybdenum, ammonium paramolybdate and molybdenum trioxide can be used, as a phosphorus raw material, orthophosphoric acid can be used, and as a raw material of vanadium, ammonium metavanadate and vanadium pentoxide can be used. , Copper nitrate and copper oxide can be used as copper raw materials, nitrate, bicarbonate and acid compounds can be used as X component raw materials, nitrate and oxide compounds can be used as Y component raw materials, Oxides and acid compounds can be used as raw materials for the Z component. The ratio of these raw materials used is appropriately changed according to the composition ratio of each element in the obtained final catalyst.
本発明の触媒の製造において、 触媒構成元素を含む混合溶液または水性スラリ 一の乾燥方法としては、 種々の方法を用いることが可能であり、 例えば、 蒸発乾 固法、 噴霧乾燥法、 ドラム乾燥法、 気流乾燥法等が挙げられる。 乾燥に使用する 乾燥機の機種や乾燥時の温度、 圧力、 雰囲気等、 及び攪拌の有無等は特に限定さ れず、 乾燥条件を適宜変えることによって目的に応じた触媒前駆体の乾燥物を得 ることができる。  In the production of the catalyst of the present invention, various methods can be used as a method for drying the mixed solution or the aqueous slurry containing the constituent elements of the catalyst, for example, an evaporative drying method, a spray drying method, and a drum drying method. And a flash drying method. The type of dryer used for drying, the temperature, pressure, atmosphere, etc., and the presence or absence of stirring during drying are not particularly limited, and a dried product of the catalyst precursor according to the purpose can be obtained by appropriately changing the drying conditions. be able to.
この触媒前駆体の乾燥物は、 そのまま次の焼成を行ってもよいが、 成形してか ら焼成を行うのが好ましい。 成形方法は特に限定されず、 公知の乾式および湿式 の種々の成形法が適用できるが、 担体等を含めず触媒成分のみで成形する方法が 好ましい。 成形の際の温度、 圧力、 雰囲気などの成形条件は特に限定されない。 具体的な成形方法としては、 例えば、 打錠成形、 プレス成形、 押出成形、 造粒成 形等が挙げられる。 成形品の形状についても特に限定されず、 例えば、 円柱状、 リング状、 球状等の所望の形状に成形することができる。 なお、 成形に際しては、 公知の添加剤、 例えば、 グラフアイ ト、 タルク等を少量添加しても差し支えない。 このようにして得られた触媒前駆体の乾燥物またはその成形品を焼成して触媒 とする。 焼成する方法や焼成条件は特に限定されず、 公知の方法および条件を適 用することができる。 焼成の最適条件は、 用いる触媒原料の種類、 触媒組成、 触 媒前駆体の調製法によって異なるが、 例えば、 空気等の酸素含有ガス流通下およ び/または不活性ガス流通下で好ましくは 2 0 0〜5 0 0 °C、 より好ましくは 3 0 0〜4 5 0 °C、 最も好ましくは 3 5 0〜4 0 0 °Cで、 好ましくは 0 . 5時間以 上、 より好ましくは 1〜4 0時間行われる。 焼成温度が極端に低い場合や高い場 合、 時間が極端に短い場合や長い場合には、 本発明で規定する o °cにおけるアン モニァ吸着量が 1 O O O / m o 1 Z g—触媒以上の触媒が得られないことがある。 ここで不活性ガスとは触媒活性を低下させないような気体を指し、 例えば、 窒素、 炭酸ガス、 ヘリウム、 アルゴン等が挙げられる。 Although the dried product of the catalyst precursor may be directly subjected to the subsequent calcination, it is preferable to perform the calcination after the molding. The molding method is not particularly limited, and various known dry and wet molding methods can be applied, but a method of molding only with the catalyst component without including a carrier or the like is preferable. The molding conditions such as temperature, pressure, atmosphere and the like during molding are not particularly limited. Specific molding methods include, for example, tablet molding, press molding, extrusion molding, granulation molding, and the like. The shape of the molded article is not particularly limited, either. It can be formed into a desired shape such as a ring or a sphere. At the time of molding, a small amount of a known additive such as graphite or talc may be added. The dried product of the catalyst precursor or the molded product obtained in this way is calcined to obtain a catalyst. The firing method and firing conditions are not particularly limited, and known methods and conditions can be applied. The optimum conditions for the calcination vary depending on the type of the catalyst raw material to be used, the catalyst composition, and the method for preparing the catalyst precursor. At 500-500 ° C., more preferably at 300-450 ° C., most preferably at 350-400 ° C., preferably at least 0.5 hour, more preferably at 1-500 ° C. Performed for 40 hours. If the calcination temperature is extremely low or high, or if the time is extremely short or long, the amount of ammonia adsorbed at o ° c specified in the present invention is 1 OOO / mo 1 Z g—a catalyst higher than the catalyst. May not be obtained. Here, the inert gas refers to a gas that does not decrease the catalytic activity, and examples thereof include nitrogen, carbon dioxide, helium, and argon.
本発明においてメタクリル酸を製造する際には、 少なくともメタクロレインと 分子状酸素を含む原料ガスを、 前述した本発明の触媒と接触させるのが好ましい。 触媒は、 流動床でも固定床でも使用できる。 原料ガス中のメタクロレイン濃度は 広い範囲で変えることができるが、 1〜2 0容量%が適当であり、 特に 3〜1 0 容量%が好ましい。 原料ガス中には、 ホルムアルデヒ ドゃァセトアルデヒ ドなど の低級飽和アルデヒ ド等の不純物を少量含んでいてもよいが、 できるだけ少ない ことが好ましい。 分子状酸素源としては空気を用いるのが経済的であるが、 必要 ならば純酸素で富化した空気も用いることができる。 原料ガス中の分子状酸素濃 度はメタクロレイン 1モルに対して 0 . 4〜4モル、 特に 0 . 5〜 3モルが好ま しい。 原料ガスは窒素、 炭酸ガス等の不活性ガスを加えて希釈してもよく、 また 原料ガスには水蒸気を加えてもよい。  In the production of methacrylic acid in the present invention, it is preferable to contact a raw material gas containing at least methacrolein and molecular oxygen with the above-mentioned catalyst of the present invention. The catalyst can be used in both fluidized and fixed beds. The concentration of methacrolein in the raw material gas can be varied in a wide range, but is suitably 1 to 20% by volume, and particularly preferably 3 to 10% by volume. The source gas may contain a small amount of impurities such as lower saturated aldehydes such as formaldehyde diacetaldehyde, but it is preferable that the amount is as small as possible. Although it is economical to use air as the molecular oxygen source, air enriched with pure oxygen can be used if necessary. The molecular oxygen concentration in the source gas is preferably from 0.4 to 4 mol, particularly preferably from 0.5 to 3 mol, per mol of methacrolein. The source gas may be diluted by adding an inert gas such as nitrogen or carbon dioxide, and steam may be added to the source gas.
反応圧力は常圧から数気圧までが好ましい。 反応温度は 2 3 0〜4 5 0 °Cの範 囲で選ぶことができるが、 特に 2 5 0〜4 0 0 °Cが好ましい。  The reaction pressure is preferably from normal pressure to several atmospheres. The reaction temperature can be selected in the range of 230 to 450 ° C, but is preferably 250 to 400 ° C.
実施例 Example
以下に実施例および比較例により本発明をさらに詳細に説明するが、 本発明は これら実施例に限定されるものではない。 実施例および比較例中の 「部」 は重量 部を意味する。 得られた触媒中の触媒構成元素 (P, Mo, V, Cu, X成分, Y成分, 及び Ζ成分) の組成比は、 触媒調製に使用した原料の仕込量から求めた。 触媒の 0°Cにおけるアンモニア吸着量は、 BET型の吸着測定装置を用いて以 下の方法で測定した。 すなわち、 触媒を充填した容器内を予め真空排気した後、 0°Cで 30分間アンモニアを吸着させ、 その後 600°Cまで昇温させた際に触媒 から脱離するアンモニア量をガスクロマトグラフィーを用いて定量分析し、 この アンモニァ量を触媒の重量で除すことにより触媒の 0 °cにおけるアンモニア吸着 量を算出した。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. "Parts" in Examples and Comparative Examples are weights. Means part. The composition ratios of the constituent elements of the catalyst (P, Mo, V, Cu, X component, Y component, and Ζ component) in the obtained catalyst were obtained from the charged amounts of the raw materials used for preparing the catalyst. The ammonia adsorption amount of the catalyst at 0 ° C was measured by the following method using a BET type adsorption measuring device. That is, after evacuation of the inside of the container filled with the catalyst in advance, ammonia is adsorbed at 0 ° C for 30 minutes, and then the amount of ammonia released from the catalyst when the temperature is raised to 600 ° C is determined by gas chromatography. The amount of ammonia adsorbed at 0 ° C of the catalyst was calculated by dividing the amount of ammonia by the weight of the catalyst.
また、 反応試験時の反応原料および生成物の分析はガスクロマトグラフィ一に より行った。 なお、 メタクロレインの反応率、 生成されるメタクリル酸の選択率、 メタクリル酸の単流収率は次式により算出した。  The analysis of the reaction raw materials and products during the reaction test was performed by gas chromatography. The conversion of methacrolein, the selectivity of methacrylic acid produced, and the single-stream yield of methacrylic acid were calculated by the following equations.
メタクロレインの反応率 (<½) = (B/A) X I 00  Methacrolein conversion (<½) = (B / A) X I 00
メタクリル酸の選択率 (%) = (C/B) X I 00  Methacrylic acid selectivity (%) = (C / B) X I 00
メタクリル酸の単流収率 (%) = (C/A) X I 00  Single-stream yield of methacrylic acid (%) = (C / A) X I 00
ここで、 Aは供給したメタクロレインのモル数、 Bは反応したメタクロレインの モル数、 Cは生成したメタクリル酸のモル数である。 Here, A is the number of moles of supplied methacrolein, B is the number of moles of reacted methacrolein, and C is the number of moles of methacrylic acid generated.
実施例 1 Example 1
パラモリブデン酸アンモニゥム 1 00部、 メタバナジン酸アンモニゥム 4. 4 2部および硝酸セシウム 9. 20部を純水 300部に加熱溶解した。 これに 8 5 重量。 /。リン酸 8. 7 1部を純水 1 0部に溶解した溶液、 次いで三酸化アンチモン 5. 50部を加え、 攪拌しながら 9 5°Cに昇温した後、 硝酸銅 1. 1 4部を純水 1 0部に溶解した溶液を加えた。 更にこの混合液を 9 5°Cで 1 5分間攪拌した。 得られた触媒成分を含有するスラリーを 1 0 1°Cまで加熱し、 攪拌しながら蒸発 乾固した。 得られた固形物を 1 30°Cで 1 6時間乾燥後、 加圧成形し、 空気流通 下 3 80°Cにて 6時間焼成して、 6MO 1 2 V 0. 8 C U 0. x S b 0. 8 C s !. 0Oh (hは原子価を満足するのに必要な数である) なる組成の触媒を得 た。 (尚、 Ohは以下の記述において省略する。 ) また、 この触媒の 0°Cにおけ るアンモニア吸着量は 28 90 μ mo 1 Zg—触媒であった。 100 parts of ammonium paramolybdate, 4.42 parts of ammonium metavanadate and 9.20 parts of cesium nitrate were dissolved by heating in 300 parts of pure water. This has 85 weight. /. A solution prepared by dissolving 8.7 parts of phosphoric acid in 10 parts of pure water, and then 5.50 parts of antimony trioxide were added. The mixture was heated to 95 ° C with stirring, and 1.14 parts of copper nitrate was added. A solution dissolved in 10 parts of pure water was added. The mixture was further stirred at 95 ° C. for 15 minutes. The resulting slurry containing the catalyst component was heated to 101 ° C. and evaporated to dryness with stirring. The solid obtained 1 6 hours after drying at 1 30 ° C, pressurized to pressure molding, and calcined for 6 hours at the air flow below 3 80 ° C, 6 MO 1 2 V 0. 8 CU 0. X S b 0. 8 C s! 0.0 O h (h is the number required to satisfy the valence) was obtained. (Note, O h is omitted. In the following description) also adsorbed ammonia amount that put in 0 ° C for this catalyst was 28 90 μ mo 1 Zg- catalyst.
この触媒を反応管に充填し、 メタクロレイン 5%、 酸素 1 0%、 水蒸気 30%、 窒素 5 5 % (容量。/ Q) の原料ガスを反応温度 28 5 °C、 接触時間 3. 6秒で通じ たところ、 メタクロレインの反応率は 8 2. 9%、 メタクリル酸の選択率は 84. 8 %、 メタクリル酸の単流収率は 70. 3 %であった。 This catalyst was filled in a reaction tube, and methacrolein 5%, oxygen 10%, steam 30%, When a source gas of 55% nitrogen (volume / Q) was passed at a reaction temperature of 285 ° C and a contact time of 3.6 seconds, the conversion of methacrolein was 82.9% and the selectivity of methacrylic acid was 84.8%, and the single flow yield of methacrylic acid was 70.3%.
実施例 2 Example 2
三酸化アンチモンを使用せず、 その代わりに硝酸銀 0. 80部及び 60重量% 砒酸水溶液 4. 4 7部を使用した以外は、 実施例 1と同様の手順で触媒を調製し た。 得られた触媒の 0°Cにおけるアンモニア吸着量を測定し、 実施例 1と同じ条 件で反応を行った。 得られた結果を表 1に示す。  A catalyst was prepared in the same manner as in Example 1, except that antimony trioxide was not used, and instead, 0.80 part of silver nitrate and 4.47 parts of a 60% by weight aqueous arsenic acid solution were used. The amount of ammonia adsorbed at 0 ° C of the obtained catalyst was measured, and the reaction was carried out under the same conditions as in Example 1. Table 1 shows the obtained results.
実施例 3 Example 3
三酸化アンチモンを使用せず、 その代わりに硝酸ジルコニウム 1 2. 1 6部、 二酸化テルル 1. 5 1部、 及び硝酸力リウム 1. 4 3部を使用した以外は、 実施 例 1と同様の手順で触媒を調製した。 得られた触媒の 0°Cにおけるアンモニア吸 着量を測定し、 実施例 1と同じ条件で反応を行った。 得られた結果を表 1に示す。 実施例 4  Same procedure as in Example 1 except that antimony trioxide was not used and instead, zirconium nitrate 12.16 parts, tellurium dioxide 1.51 parts, and potassium nitrate 1.43 parts were used. To prepare a catalyst. The amount of ammonia adsorbed at 0 ° C. on the obtained catalyst was measured, and the reaction was carried out under the same conditions as in Example 1. Table 1 shows the obtained results. Example 4
三酸化アンチモンを使用せず、 その代わりに硝酸鉄 9. 53部及び酸化タンタ ル 2. 0 9部を使用した以外は、 実施例 1と同様の手順で触媒を調製した。 得ら れた触媒の 0°Cにおけるアンモニア吸着量を測定し、 実施例 1と同じ条件で反応 を行った。 得られた結果を表 1に示す。  A catalyst was prepared in the same manner as in Example 1, except that antimony trioxide was not used, and instead, 9.53 parts of iron nitrate and 2.09 parts of tantalum oxide were used. The amount of ammonia adsorbed at 0 ° C of the obtained catalyst was measured, and the reaction was carried out under the same conditions as in Example 1. Table 1 shows the obtained results.
実施例 5 Example 5
三酸化アンチモンを使用せず、 その代わりに二酸化ケイ素 0. 8 5部、 硝酸パ ラジウム 3. 26部、 及び硝酸ルビジウム 2. 0 9部を使用した以外は、 実施例 1と同様の手順で触媒を調製した。 得られた触媒の 0°Cにおけるアンモニア吸着 量を測定し、 実施例 1と同じ条件で反応を行った。 得られた結果を表 1に示す。 実施例 6  A catalyst was prepared in the same manner as in Example 1 except that antimony trioxide was not used, and instead, 0.85 parts of silicon dioxide, 3.26 parts of palladium nitrate, and 2.09 parts of rubidium nitrate were used. Was prepared. The amount of ammonia adsorbed at 0 ° C. of the obtained catalyst was measured, and the reaction was carried out under the same conditions as in Example 1. Table 1 shows the obtained results. Example 6
三酸化アンチモンを使用せず、 その代わりに酸化スズ 1. 4 2部、 二酸化チタ ン 0. 3 8部、 及び 60重量。/。砒酸水溶液 1. 1 2部を使用した以外は、 実施例 1と同様の手順で触媒を調製した。 得られた触媒の 0°Cにおけるアンモニア吸着 量を測定し、 実施例 1と同じ条件で反応を行った。 得られた結果を表 1に示す。 純水 4 0 0部に三酸化モリブデン 1 0 0部、 8 5重量。/。リン酸 9. 3 5部、 五 酸化バナジウム 3. 1 6部、 二酸化ゲルマニウム 3. 6 3部および酸化銅 0. 4 6部を加え、 還流下で 5時間攪拌混合した。 この混合溶液を 5 0°Cまで冷却した 後、 重炭酸セシウム 6. 7 4部および硝酸カリウム 1. 7 6部を純水 3 0部に溶 解した溶液を滴下し、 1 5分間攪拌した。 さらに、 このスラリーに硝酸アンモニ ゥム 1 1 . 5 9部を純水 3 0部に溶解した溶液を滴下し 1 5分間攪拌した。 得ら れた触媒成分を含有するスラリーを 1 0 1 °Cまで加熱し、 攪拌しながら蒸発乾固 した。 得られた固形物を 1 3 0°Cで 1 6時間乾燥後、 加圧成形し、 空気流通下、 3 7 にて 1 0時間焼成して、 4M O 1 2 V 0. 6 C u o. i G e o. 6 C s o. 6 K0. 3なる組成の触媒を得た。 この触媒の 0°Cにおけるアンモニア吸着 量と実施例 1と同じ条件で反応を行った結果を表 1に示した。 No antimony trioxide was used, instead 1.42 parts tin oxide, 0.38 parts titanium dioxide, and 60 weight parts. /. A catalyst was prepared in the same manner as in Example 1, except that 1.12 parts of an arsenic acid aqueous solution was used. The amount of ammonia adsorbed at 0 ° C. of the obtained catalyst was measured, and the reaction was carried out under the same conditions as in Example 1. Table 1 shows the obtained results. Molybdenum trioxide 100 parts, pure water 400 parts, 85 weight. /. 9.35 parts of phosphoric acid, 3.16 parts of vanadium pentoxide, 3.63 parts of germanium dioxide and 0.46 parts of copper oxide were added and mixed under reflux for 5 hours. After cooling this mixed solution to 50 ° C., a solution obtained by dissolving 6.74 parts of cesium bicarbonate and 1.76 parts of potassium nitrate in 30 parts of pure water was added dropwise and stirred for 15 minutes. Further, a solution obtained by dissolving 11.959 parts of ammonium nitrate in 30 parts of pure water was added dropwise to the slurry, and the mixture was stirred for 15 minutes. The resulting slurry containing the catalyst component was heated to 101 ° C. and evaporated to dryness with stirring. The solid obtained 1 6 hours after drying at 1 3 0 ° C, pressurized to pressure molding, an air stream, and then calcined 1 0 hour at 3 7, 4 MO 1 2 V 0. 6 C u o. i G e o. to give the 6 C s o. 6 K 0 . 3 catalyst having a composition of. Table 1 shows the ammonia adsorption amount of this catalyst at 0 ° C and the result of a reaction performed under the same conditions as in Example 1.
実施例 8 Example 8
二酸化ゲルマニウム及び硝酸カリウムを使用せず、 その代わりに硝酸鉄 1 1. 7 0部、 及び三酸化アンチモン 4. 2 2部、 及び硝酸亜鉛 3. 4 4部を使用した 以外は、 実施例 7と同様の手順で触媒を調製した。 得られた触媒の 0°Cにおける アンモニア吸着量を測定し、 実施例 1と同じ条件で反応を行った。 得られた結果 を表 1に示す。  Same as Example 7 except that germanium dioxide and potassium nitrate were not used, and instead of iron nitrate 11.70 parts, antimony trioxide 4.22 parts, and zinc nitrate 3.44 parts. The catalyst was prepared according to the procedure described above. The amount of ammonia adsorbed at 0 ° C of the obtained catalyst was measured, and the reaction was carried out under the same conditions as in Example 1. Table 1 shows the obtained results.
比較例 1 Comparative Example 1
パラモリブデン酸アンモニゥム 1 0 0部を純水 3 0 0部に溶解し、 ここにメタ バナジン酸アンモニゥム 4. 4 2部、 8 5重量%リン酸 8. 1 6部、 硝酸銅 1 . 1 4部を純水 1 0部に溶解した溶液、 ホウ酸 0. 8 8部を純水 1 0部に溶解した 溶液および硝酸セシウム 2 3. 0部を純水 1 0 0部に溶解した溶液を順次加え、 得られた触媒成分を含有するスラリーを 1 0 1 °Cまで加熱し、 攪拌しながら蒸発 乾固した。 得られた固形物を 1 3 0°Cで 1 6時間乾燥後、 加圧成形し、 空気流通 下 3 5 0°Cにて 6時間焼成して、 5MO 1 2 V 0. 8 C U 0. X B 0. 3 C S 2. 5なる組成の触媒を得た。 この触媒の 0 °Cにおけるァンモニァ吸着量を測定し、 実施例 1と同じ条件で反応を行った。 得られた結果を表 1に示す。 Dissolve 100 parts of ammonium paramolybdate in 300 parts of pure water, and add 4.42 parts of ammonium metavanadate, 8.16 parts of 85% by weight phosphoric acid, and 1.14 parts of copper nitrate. , A solution of 0.88 part of boric acid in 10 parts of pure water and a solution of 23.0 parts of cesium nitrate in 100 parts of pure water. The resulting slurry containing the catalyst component was heated to 101 ° C. and evaporated to dryness with stirring. The solid obtained 1 6 hours after drying at 1 3 0 ° C, pressurized to pressure molding, and calcined for 6 hours at the air flow below 3 5 0 ° C, 5 MO 1 2 V 0. 8 CU 0. X B 0. 3 CS 2. to give the 5 catalyst having a composition of. The amount of ammonia adsorbed on this catalyst at 0 ° C. was measured, and the reaction was carried out under the same conditions as in Example 1. Table 1 shows the obtained results.
比較例 2 Comparative Example 2
硝酸銅及びホウ酸を使用せず、 その代わりに硝酸力ドミゥム 2. 9 1部及びパ ラタングステン酸アンモニゥム 1 2 . 3 2部を使用した以外は、 比較例 1と同様 の手順で触媒を調製した。 得られた触媒の 0 °Cにおけるアンモニア吸着量を測定 し、 実施例 1と同じ条件で反応を行った。 得られた結果を表 1に示す。 Do not use copper nitrate and boric acid; A catalyst was prepared in the same manner as in Comparative Example 1, except that 13.2 parts of ammonium latungstate were used. The amount of ammonia adsorbed at 0 ° C of the obtained catalyst was measured, and the reaction was carried out under the same conditions as in Example 1. Table 1 shows the obtained results.
比較例 3 Comparative Example 3
パラモリブデン酸アンモニゥム、 硝酸銅、 ホウ酸及び硝酸セシウムを使用せず、 その代わりに硝酸カドミウム 7 . 2 8部を使用した以外は、 比較例 1と同様の手 順で触媒を調製した。 得られた触媒の 0 °Cにおけるアンモニア吸着量を測定し、 実施例 1と同じ条件で反応を行った。 得られた結果を表 1に示す。  A catalyst was prepared in the same manner as in Comparative Example 1, except that ammonium paramolybdate, copper nitrate, boric acid and cesium nitrate were not used, and instead 7.28 parts of cadmium nitrate was used. The amount of ammonia adsorbed at 0 ° C. on the obtained catalyst was measured, and the reaction was carried out under the same conditions as in Example 1. Table 1 shows the obtained results.
比較例 4 Comparative Example 4
リン酸、 硝酸銅、 ホウ酸及び硝酸セシウムを使用せず、 その代わりに酸化クロ ム 4 . 7 2部及び硝酸カルシウム 3 . 3 4部を使用した以外は、 比較例 1と同様 の手順で触媒を調製した。 得られた触媒の 0 °Cにおけるアンモニア吸着量を測定 し、 実施例 1と同じ条件で反応を行った。 得られた結果を表 1に示す。  Catalyst was prepared in the same manner as in Comparative Example 1, except that phosphoric acid, copper nitrate, boric acid and cesium nitrate were not used, and instead 4.72 parts of chromium oxide and 3.34 parts of calcium nitrate were used. Was prepared. The amount of ammonia adsorbed at 0 ° C of the obtained catalyst was measured, and the reaction was carried out under the same conditions as in Example 1. Table 1 shows the obtained results.
比較例 5 Comparative Example 5
実施例 1において、 加圧成形体を空気流通下 4 3 0 °Cにて 1 2時間焼成した点 以外は実施例 1と同様にして触媒を調製した。 この触媒の 0 °Cにおけるアンモニ ァ吸着量と実施例 1と同じ条件で反応を行った結果を表 1に示した。 A catalyst was prepared in the same manner as in Example 1 except that the pressed compact was fired at 430 ° C. for 12 hours under flowing air. Table 1 shows the ammonia adsorption amount of this catalyst at 0 ° C and the result of a reaction performed under the same conditions as in Example 1.
Figure imgf000011_0001
産業上の利用可能性
Figure imgf000011_0001
Industrial applicability
本発明の前記式 (1) で表される組成を有するメタクリル酸製造用触媒であつ て、 0°Cにおけるアンモニア吸着量が 1 000 μιτιο 1 /g—触媒以上である触 媒を用いてメタク口レインを分子状酸素により気相接触酸化すると、 メタクリル 酸を高収率で製造することができた。  A catalyst for producing methacrylic acid having a composition represented by the above formula (1) according to the present invention, which comprises a catalyst having an amount of adsorbed ammonia at 0 ° C. of at least 1,000 μιτιο 1 / g—catalyst. Methacrylic acid could be produced in high yield by gaseous catalytic oxidation of rhein with molecular oxygen.

Claims

請求の範囲 The scope of the claims
1. 下記の式 (1) 、 1. Equation (1) below,
PaMo bVcCu dXeY f Z gOh (1) (式中、 P、 Mo、 V、 C uおよび Oはそれぞれリン、 モリブデン、 バナジウム、 銅および酸素を示し、 Xはカリウム、 ルビジウム、 セシウムおよびタリウムから なる群より選ばれた少なくとも 1種類の元素を示し、 Yはビスマス、 ジルコニゥ ム、 銀、 鉄、 亜鉛、 クロム、 マグネシウム、 コバルト、 マンガン、 バリウム、 ノ、。 ラジウム、 チタン、 セリウム、 ランタンおよびスズからなる群より選ばれた少な くとも 1種類の元素を示し、 Zはアンチモン、 砒素、 ゲルマニウム、 テルル、 セ レン、 ケィ素、 タングステン、 ホウ素、 タンタルおよびガリウムからなる群より 選ばれた少なくとも 1種類の元素を示す。 a、 b、 c、 d、 e、 f 、 gおよび h は各元素の原子比率を表し、 b = 1 2のとき a = 0. :!〜 3、 c = 0. 01〜3、 d = 0. 01〜 2、 e = 0. 01〜3、 f =0〜3、 g = 0〜3であり、 hは前 記各成分の原子価を満足するのに必要な酸素の原子比率である。 ) で表される組 成を有し、 0°Cにおけるアンモニア吸着量が 1000 zmo l Zg—触媒以上で ある、 メタクリル酸製造用触媒。 P a Mo b V c Cu d X e Y f Z g O h (1) (where P, Mo, V, Cu and O represent phosphorus, molybdenum, vanadium, copper and oxygen, respectively, and X is potassium , Rubidium, cesium, and thallium, at least one element selected from the group consisting of: bismuth, zirconium, silver, iron, zinc, chromium, magnesium, cobalt, manganese, barium, titanium, radium, titanium , Cerium, lanthanum and tin denote at least one element selected from the group consisting of: antimony, arsenic, germanium, tellurium, selenium, silicon, tungsten, boron, tantalum and gallium Shows at least one selected element: a, b, c, d, e, f, g, and h represent the atomic ratio of each element, and when b = 12, a = 0. c = 0.01 to 3, d = 0.011 to 2, e = 0.01 to 3, f = 0 to 3, g = 0 to 3, and h satisfies the valence of each component described above. A methacrylic acid production catalyst having a composition represented by the following formula, and having an ammonia adsorption amount at 0 ° C of not less than 1000 zmol Zg—catalyst.
2. メタクロレインを分子状酸素により気相接触酸化する際に用いられる、 請 求項 1に記載の触媒。  2. The catalyst according to claim 1, wherein the catalyst is used for gas-phase catalytic oxidation of methacrolein with molecular oxygen.
3. 0°Cにおけるアンモニア吸着量が 1 500 μπιο 1 Zg—触媒以上である、 請求項 1に記載の触媒。  3. The catalyst according to claim 1, wherein the amount of ammonia adsorbed at 3.0 ° C. is not less than 1,500 μπι1 Zg—catalyst.
4. 0°Cにおけるアンモニア吸着量が 1 500 μπιο lZg—触媒以上である、 請求項 2に記載の触媒。  4. The catalyst according to claim 2, wherein the ammonia adsorption amount at 0 ° C is not less than 1,500 μπιο lZg—catalyst.
5. 0°Cにおけるアンモニア吸着量が 2000〜: l O O O O /zmo l Zg—触 媒である、 請求項 1に記載の触媒。  5. The catalyst according to claim 1, wherein the ammonia adsorption amount at 0 ° C is 2000 or more: l O O O O / zmol Zg—catalyst.
6. 0°Cにおけるアンモニア吸着量が 2000〜: l O O O O /zmo l Zg—触 媒である、 請求項 2に記載の触媒。  6. The catalyst according to claim 2, wherein the ammonia adsorption amount at 0 ° C is 2000 or more: l O O O O / zmol Zg—catalyst.
7. Xがカリウムおよびセシウムからなる群より選ばれた少なくとも 1種類の 元素を示し、 Yがジルコニウム、 銀、 鉄、 亜鉛、 チタンおよびスズからなる群よ り選ばれた少なくとも 1種類の元素を示し、 Zがアンチモン、 砒素、 ゲルマニウ ム、 テルル及びタンタルからなる群より選ばれた少なくとも 1種類の元素を示し、 b = 1 2のとき a = 0. 6〜1. 8、 c = 0. ;!〜 1. 5、 d = 0. 06〜0. 6、 e = 0. 1〜: I, 7、 f =0〜l. 4、 g = 0. 06〜: 1. 5である、 請求 項 1〜6のいずれか 1項に記載の触媒。 7. X represents at least one element selected from the group consisting of potassium and cesium, and Y represents the group consisting of zirconium, silver, iron, zinc, titanium and tin. Z represents at least one element selected from the group consisting of antimony, arsenic, germanium, tellurium, and tantalum; b = 12 when a = 0.6 ~ 1.8, c = 0 .;! ~ 1.5, d = 0.06 ~ 0.6, e = 0.1 ~: I, 7, f = 0 ~ l.4, g = 0.06 ~: The catalyst according to any one of claims 1 to 6, which is 1.5.
8. PaMo bVcCudXeYf ZgOh (1) 8. P a Mo b V c Cu d X e Y f Z g O h (1)
(式中、 P、 Mo、 V、 C uおよび Oはそれぞれリン、 モリブデン、 バナジウム、 銅および酸素を示し、 Xはカリウム、 ルビジウム、 セシウムおよびタリウムから なる群より選ばれた少なくとも 1種類の元素を示し、 Yはビスマス、 ジルコニゥ ム、 銀、 鉄、 亜鉛、 クロム、 マグネシウム、 コバルト、 マンガン、 ノくリウム、 パ ラジウム、 チタン、 セリウム、 ランタンおよびスズからなる群より選ばれた少な くとも 1種類の元素を示し、 Zはアンチモン、 砒素、 ゲルマニウム、 テルル、 セ レン、 ケィ素、 タングステン、 ホウ素、 タンタルおよびガリウムからなる群より 選ばれた少なくとも 1種類の元素を示す。 a、 b、 c、 d、 e、 f 、 gおよび h は各元素の原子比率を表し、 b = 1 2のとき a =0. :!〜 3、 c =0. 01〜3、 d = 0. 01〜2、 e = 0. 01〜3、 f =0〜3、 g = 0〜3であり、 hは前 記各成分の原子価を満足するのに必要な酸素の原子比率である。 ) で表される組 成を有し 0°Cにおけるアンモニア吸着量が 1000 μπιο 1 /g—触媒以上であ るメタクリル酸製造用触媒の製造方法であって、 上記触媒の構成元素を含む原料 を混合し、 得られた混合物を乾燥し、 得られた乾燥物を焼成する、 ことを含む、 上記製造方法。  (Where P, Mo, V, Cu and O represent phosphorus, molybdenum, vanadium, copper and oxygen, respectively, and X represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium. Where Y is at least one member selected from the group consisting of bismuth, zirconium, silver, iron, zinc, chromium, magnesium, cobalt, manganese, potassium, palladium, titanium, cerium, lanthanum and tin. Z represents at least one element selected from the group consisting of antimony, arsenic, germanium, tellurium, selenium, silicon, tungsten, boron, tantalum, and gallium. A, b, c, d, e, f, g, and h represent the atomic ratio of each element, and when b = 12, a = 0:! -3, c = 0.01-1, d = 0.01-1, e = 0 . 01 3, f = 0 to 3, g = 0 to 3, and h is the atomic ratio of oxygen necessary to satisfy the valence of each component described above.) A method for producing a catalyst for producing methacrylic acid, wherein the amount of ammonia adsorbed at ° C of 1000 μπιο 1 / g—catalyst or more is provided. Firing the obtained dried product.
9. 触媒の構成元素を含む原料として各元素の酸化物、 硝酸塩、 炭酸塩、 重炭 酸塩、 アンモニゥム塩及び酸化合物からなる群より選ばれた少なくとも 1種類の 成分を混合して混合溶液または水性スラリーを調製し、 この混合溶液または水性 スラリーを乾燥させて溶媒を除去することにより乾燥物を得、 得られた乾燥物を 成形し、 得られた成形物を焼成する、 請求項 8に記載の製造方法。  9. Mixing at least one component selected from the group consisting of oxides, nitrates, carbonates, bicarbonates, ammonium salts, and acid compounds of each element as raw materials containing the constituent elements of the catalyst, or a mixed solution or An aqueous slurry is prepared, a dried product is obtained by drying the mixed solution or the aqueous slurry to remove the solvent, the obtained dried product is molded, and the obtained molded product is fired. Manufacturing method.
10. メタクリル酸製造用触媒が、 メタクロレインを分子状酸素により気相接触 酸化する際に用いられる、 請求項 8に記載の製造方法。  10. The production method according to claim 8, wherein the catalyst for producing methacrylic acid is used in gas-phase catalytic oxidation of methacrolein with molecular oxygen.
11. メタクリル酸製造用触媒が、 メタクロレインを分子状酸素により気相接触 酸化する際に用いられる、 請求項 9に記載の製造方法。 11. Catalyst for methacrylic acid production, gas phase contact of methacrolein with molecular oxygen 10. The production method according to claim 9, which is used when oxidizing.
12. 0°Cにおけるアンモニア吸着量が 1 500 /zmo lZg—触媒以上である、 請求項 8に記載の製造方法。  9. The production method according to claim 8, wherein the ammonia adsorption amount at 0 ° C is not less than 1500 / zmolZg-catalyst.
13. 0°Cにおけるアンモニア吸着量が 1 500 /zmo lZg—触媒以上である、 請求項 9に記載の製造方法。  13. The production method according to claim 9, wherein the ammonia adsorption amount at 13.degree. C. is not less than 1500 / zmolZg-catalyst.
14. 0°Cにおけるアンモニア吸着量が 2 O 00〜10000 /imo 1 Zg—触 媒である、 請求項 8に記載の製造方法。  14. The production method according to claim 8, wherein the ammonia adsorption amount at 0 ° C is 2O00 to 10,000 / imo1Zg—catalyst.
15. 0°Cにおけるアンモニア吸着量が 2000〜10000/zmo 1 Zg—触 媒である、 請求項 9に記載の製造方法。  The production method according to claim 9, wherein the ammonia adsorption amount at 15. 0 C is 2000 to 10,000 / zmo1Zg-catalyst.
16. モリブデンの原料としてパラモリブデン酸アンモニゥム及び三酸化モリブ デンからなる群より選ばれた少なくとも 1種類の成分を使用し、 リンの原料とし て正リン酸を使用し、 バナジウムの原料としてメタバナジン酸アンモニゥム及び 五酸化バナジウムからなる群より選ばれた少なくとも 1種類の成分を使用し、 銅 成分の原料として硝自及び酸化銅からなる群より選ばれた少なくとも 1種類の 成分を使用し、 X成分の原料としてその硝酸塩、 重炭酸塩及び酸化合物からなる 群より選ばれた少なくとも 1種類の成分を使用し、 Y成分の原料としてその硝酸 塩及び酸化合物からなる群より選ばれた少なくとも 1種類の成分を使用し、 z成 分の原料としてその酸化物及び酸化合物からなる群より選ばれた少なくとも 1種 類の成分を使用する、 請求項 8〜1 5のいずれか 1項に記載の製造方法。  16. Use at least one component selected from the group consisting of ammonium paramolybdate and molybdenum trioxide as a raw material for molybdenum, use orthophosphoric acid as a raw material for phosphorus, and use ammonium metavanadate as a raw material for vanadium. And at least one component selected from the group consisting of vanadium pentoxide and at least one component selected from the group consisting of nitrite and copper oxide as a raw material for the copper component, and a raw material for the X component At least one component selected from the group consisting of nitrates, bicarbonates and acid compounds is used as the raw material of the Y component, and at least one component selected from the group consisting of nitrates and acid compounds is used as the raw material for the Y component. Using at least one component selected from the group consisting of oxides and acid compounds as the raw material for the z component; The process according to any one of Motomeko 8-1 5.
17. 酸素含有ガスおよび または不活性ガス流通下で 200〜 500°Cの温度 で焼成を行なう、 請求項 8〜1 5のいずれか 1項に記載の製造方法。  17. The production method according to any one of claims 8 to 15, wherein the calcination is performed at a temperature of 200 to 500 ° C under a flow of an oxygen-containing gas and / or an inert gas.
18. 酸素含有ガスが空気であり、 不活性ガスが窒素、 炭酸ガス、 ヘリウム及び アルゴンからなる群より選ばれた少なくとも 1種類のガスであり、 300〜45 18. The oxygen-containing gas is air, and the inert gas is at least one gas selected from the group consisting of nitrogen, carbon dioxide, helium, and argon;
0 °Cの温度で焼成を行なう、 請求項 1 7に記載の製造方法。 The method according to claim 17, wherein the firing is performed at a temperature of 0 ° C.
19. 空気流通下で 350〜 400 °Cの温度で焼成を行なう、 請求項 18に記載 の製造方法。  19. The production method according to claim 18, wherein the calcination is performed at a temperature of 350 to 400 ° C under a flow of air.
20. 請求項 1〜6のいずれか 1項に記載の触媒を用いてメタクリル酸を製造す る、 メタクリル酸の製造方法。  20. A method for producing methacrylic acid, comprising producing methacrylic acid using the catalyst according to any one of claims 1 to 6.
21. 請求項 7に記載の触媒を用いてメタクリル酸を製造する、 メタクリル酸の 製造方法。 21. Producing methacrylic acid using the catalyst according to claim 7, Production method.
22. 少なくともメタクロレインと分子状酸素とを含む原料ガスを、 前記触媒と 接触させてメタクリル酸を製造する、 請求項 2 0に記載のメタクリル酸の製造方 法。  22. The method for producing methacrylic acid according to claim 20, wherein a raw material gas containing at least methacrolein and molecular oxygen is brought into contact with the catalyst to produce methacrylic acid.
23. 少なくともメタクロレインと分子状酸素とを含む原料ガスを、 前記触媒と 接触させてメタクリル酸を製造する、 請求項 2 1に記載のメタクリル酸の製造方 法。  23. The method for producing methacrylic acid according to claim 21, wherein a source gas containing at least methacrolein and molecular oxygen is brought into contact with the catalyst to produce methacrylic acid.
24. 原料ガス中のメタクロレインの濃度が 1〜2 0容量%であり、 分子状酸素 の濃度がメタクロレイン 1モルに対して 0 · 4〜4モルである、 請求項 2 2に記 載のメタクリル酸の製造方法。  24. The method according to claim 22, wherein the concentration of methacrolein in the raw material gas is 1 to 20% by volume, and the concentration of molecular oxygen is 0.4 to 4 mol per 1 mol of methacrolein. A method for producing methacrylic acid.
25. 原料ガス中のメタクロレインの濃度が 1〜2 0容量。 /0であり、 分子状酸素 の濃度がメタクロレイン 1モルに対して 0 . 4〜4モルである、 請求項 2 3に記 載のメタクリル酸の製造方法。 25. The concentration of methacrolein in the source gas is 1 to 20 volumes. / 0, the concentration of molecular oxygen is from 0.4 to 4 mol relative to methacrolein 1 mole, method for producing methacrylic acid placing serial to claim 2 3.
26. 原料ガス中のメタクロレインの濃度が 3〜1 0容量%であり、 分子状酸素 の濃度がメタクロレイン 1モルに対して 0 . 5〜 3モルである、 請求項 2 2に記 載のメタクリル酸の製造方法。  26. The method according to claim 22, wherein the concentration of methacrolein in the raw material gas is 3 to 10% by volume, and the concentration of molecular oxygen is 0.5 to 3 mol per 1 mol of methacrolein. A method for producing methacrylic acid.
27. 原料ガス中のメタクロレインの濃度が 3〜1 0容量0 /0であり、 分子状酸素 の濃度がメタクロレイン 1モルに対して 0 . 5〜 3モルである、 請求項 2 3に記 載のメタクリル酸の製造方法。 27. The concentration of methacrolein in the material gas is 3 to 0 volume 0/0, the concentration of molecular oxygen is from 0.5 to 3 mol with respect to methacrolein 1 mole, serial to claim 2 3 The method for producing methacrylic acid described above.
28. 請求項 1〜 6のいずれか 1項に記載の触媒をメタクリル酸の製造に使用す る方法。  28. A method of using the catalyst according to any one of claims 1 to 6 for producing methacrylic acid.
29. 請求項 7に記載の触媒をメタクリル酸の製造に使用する方法。  29. Use of the catalyst according to claim 7 for the production of methacrylic acid.
30. 少なくともメタクロレインと分子状酸素とを含む原料ガスを、 前記触媒と 接触させる、 請求項 2 8に記載の方法。  30. The method according to claim 28, wherein a source gas containing at least methacrolein and molecular oxygen is brought into contact with said catalyst.
31. 少なくともメタクロレインと分子状酸素とを含む原料ガスを、 前記触媒と 接触させる、 請求項 2 9に記載の方法。  31. The method according to claim 29, wherein a source gas containing at least methacrolein and molecular oxygen is brought into contact with said catalyst.
PCT/JP2000/003311 1999-05-27 2000-05-24 Catalyst for methacrylic acid production and process for producing methacrylic acid WO2000072964A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/148314 1999-05-27
JP14831499 1999-05-27

Publications (1)

Publication Number Publication Date
WO2000072964A1 true WO2000072964A1 (en) 2000-12-07

Family

ID=15450030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003311 WO2000072964A1 (en) 1999-05-27 2000-05-24 Catalyst for methacrylic acid production and process for producing methacrylic acid

Country Status (1)

Country Link
WO (1) WO2000072964A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005039760A1 (en) * 2003-10-27 2005-05-06 Mitsubishi Rayon Co., Ltd. Process for producing catalyst for methacrylic acid production, catalyst for methacrylic acid production, and process for producing methacrylic acid
JP2006000814A (en) * 2004-06-21 2006-01-05 Mitsubishi Rayon Co Ltd Palladium-containing supported catalyst and its production method and production method for alpha, beta-unsaturated carboxylic acid using it
JP2009050749A (en) * 2007-08-23 2009-03-12 Mitsubishi Rayon Co Ltd PALLADIUM-CONTAINING CATALYST, METHOD FOR PREPARING THE SAME, AND METHOD FOR PREPARING alpha-beta UNSATURATED CARBOXYLIC ACID
KR20210002576A (en) * 2018-04-26 2021-01-08 미쯔비시 케미컬 주식회사 Method for producing a catalyst for producing methacrylic acid, and a method for producing methacrylic acid and methacrylic acid ester

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176436A (en) * 1984-09-20 1986-04-18 Mitsubishi Rayon Co Ltd Production of unsaturated carboxylic acid
JPS62175435A (en) * 1986-01-28 1987-08-01 Mitsubishi Rayon Co Ltd Production of methacrylic acid
EP0253896A1 (en) * 1986-01-08 1988-01-27 Mitsubishi Rayon Co., Ltd. Process for producing methacrylic acid and catalysts for the process
EP0265733A1 (en) * 1986-10-27 1988-05-04 Mitsubishi Rayon Co., Ltd. Process for producing methacrylic acid
EP0424900A2 (en) * 1989-10-25 1991-05-02 Mitsubishi Rayon Co., Ltd. Process for preparing catalysts for producing methacrylic acid
JPH05279291A (en) * 1992-04-02 1993-10-26 Mitsubishi Rayon Co Ltd Production of methacrylic acid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176436A (en) * 1984-09-20 1986-04-18 Mitsubishi Rayon Co Ltd Production of unsaturated carboxylic acid
EP0253896A1 (en) * 1986-01-08 1988-01-27 Mitsubishi Rayon Co., Ltd. Process for producing methacrylic acid and catalysts for the process
JPS62175435A (en) * 1986-01-28 1987-08-01 Mitsubishi Rayon Co Ltd Production of methacrylic acid
EP0265733A1 (en) * 1986-10-27 1988-05-04 Mitsubishi Rayon Co., Ltd. Process for producing methacrylic acid
EP0424900A2 (en) * 1989-10-25 1991-05-02 Mitsubishi Rayon Co., Ltd. Process for preparing catalysts for producing methacrylic acid
JPH05279291A (en) * 1992-04-02 1993-10-26 Mitsubishi Rayon Co Ltd Production of methacrylic acid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005039760A1 (en) * 2003-10-27 2005-05-06 Mitsubishi Rayon Co., Ltd. Process for producing catalyst for methacrylic acid production, catalyst for methacrylic acid production, and process for producing methacrylic acid
US7662742B2 (en) 2003-10-27 2010-02-16 Mitsubishi Rayon Co., Ltd. Process for producing catalyst for methacrylic acid production, catalyst for methacrylic acid production, and process for producing methacrylic acid
JP4922614B2 (en) * 2003-10-27 2012-04-25 三菱レイヨン株式会社 Method for producing a catalyst for methacrylic acid production
JP2006000814A (en) * 2004-06-21 2006-01-05 Mitsubishi Rayon Co Ltd Palladium-containing supported catalyst and its production method and production method for alpha, beta-unsaturated carboxylic acid using it
JP2009050749A (en) * 2007-08-23 2009-03-12 Mitsubishi Rayon Co Ltd PALLADIUM-CONTAINING CATALYST, METHOD FOR PREPARING THE SAME, AND METHOD FOR PREPARING alpha-beta UNSATURATED CARBOXYLIC ACID
KR20210002576A (en) * 2018-04-26 2021-01-08 미쯔비시 케미컬 주식회사 Method for producing a catalyst for producing methacrylic acid, and a method for producing methacrylic acid and methacrylic acid ester
KR102463952B1 (en) 2018-04-26 2022-11-04 미쯔비시 케미컬 주식회사 Method for producing catalyst for methacrylic acid production, and method for producing methacrylic acid and methacrylic acid ester

Similar Documents

Publication Publication Date Title
JP5192495B2 (en) Catalysts for the oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acids and methods for their production and use
US7625834B2 (en) Process for producing catalysts for the production of methacrylic acid
JPH0523596A (en) Preparation of catalyst forproducing metacrolein and methacrylic acid
JP4922614B2 (en) Method for producing a catalyst for methacrylic acid production
JPS5826329B2 (en) Seizouhou
JP2004008834A (en) Method for producing catalyst for use in manufacturing methacrylic acid
JP3995381B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid
WO2000072964A1 (en) Catalyst for methacrylic acid production and process for producing methacrylic acid
JP2008229515A (en) Method for manufacturing catalyst for producing methacrylic acid
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
JP5069152B2 (en) Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for producing unsaturated carboxylic acid using the catalyst
JP4811977B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JP3772389B2 (en) Method for producing oxidation catalyst and method for producing methacrylic acid
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP5885019B2 (en) Method for producing a catalyst for methacrylic acid production
JP3316880B2 (en) Method for producing catalyst for producing methacrylic acid
JP4207531B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2003154273A (en) Method for manufacturing catalyst for manufacture of methacrylic acid, catalyst for manufacture of methacrylic acid and method for manufacturing methacrylic acid
JP4017864B2 (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP4564317B2 (en) Method for producing a catalyst for methacrylic acid production
JP2005230720A (en) Method for preparing catalyst for producing methacrylic acid and catalyst for producing methacrylic acid prepared using the same
JPWO2018110126A1 (en) Method for producing catalyst precursor for producing α, β-unsaturated carboxylic acid, method for producing catalyst for producing α, β-unsaturated carboxylic acid, method for producing α, β-unsaturated carboxylic acid, and α, β-unsaturated Method for producing carboxylic acid ester
JP4895303B2 (en) Method for producing catalyst for producing methacrylic acid, catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP2003251187A (en) Catalyst for manufacturing metacrolein and/or methacrylic acid, manufacturing method therefor and manufacturing method for metacrolein and/or methacrylic acid
JP2008149262A (en) Method for producing catalyst for unsaturated carboxylic acid synthesis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 621067

Kind code of ref document: A

Format of ref document f/p: F