WO2000072429A1 - Moteur pas-a-pas a double bobine dans un plan - Google Patents

Moteur pas-a-pas a double bobine dans un plan Download PDF

Info

Publication number
WO2000072429A1
WO2000072429A1 PCT/FR2000/001317 FR0001317W WO0072429A1 WO 2000072429 A1 WO2000072429 A1 WO 2000072429A1 FR 0001317 W FR0001317 W FR 0001317W WO 0072429 A1 WO0072429 A1 WO 0072429A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
teeth
plates
spacers
plate
Prior art date
Application number
PCT/FR2000/001317
Other languages
English (en)
Inventor
Aimé Goubely
Jean Armiroli
Original Assignee
Eaton
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eaton filed Critical Eaton
Priority to EP00927349A priority Critical patent/EP1183770B1/fr
Priority to CA002374535A priority patent/CA2374535A1/fr
Priority to DE60002459T priority patent/DE60002459T2/de
Priority to JP2000620720A priority patent/JP2003500998A/ja
Priority to KR1020017014842A priority patent/KR20020018664A/ko
Priority to US09/979,278 priority patent/US6703728B1/en
Priority to MXPA01011881A priority patent/MXPA01011881A/es
Publication of WO2000072429A1 publication Critical patent/WO2000072429A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/10Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type
    • H02K37/12Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets
    • H02K37/14Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to the field of stepping motors. It applies more precisely to motors with two induction coils and a rotor consisting of a permanent magnet. Secondly, the invention also relates to associations of such motors.
  • the invention proposes a stepping motor having a generally planar shape configuration, in which the coils no longer act, as in the aforementioned prior art, at different axial levels from the permanent magnet constituting the rotor. On the contrary, they are arranged at the same level, and therefore act on the same radial peripheral zone of the rotor.
  • the engine of the invention is characterized in that the magnetic yoke consists of two parallel flat plates connected by two spacers around which said coils are arranged, two coaxial orifices made in said plates delimiting a space of cylindrical shape in which the rotor is placed.
  • the spacers taking the form of cylindrical columns, also provide the mechanical connection between the parallel flat plates.
  • the magnetic circuit of each coil therefore consists of two main parts (flat plates) and two connecting parts (spacers). There is therefore no internal stator, and the relative positioning precision of these parts is easy to obtain. This characteristic obviously has a favorable impact on the manufacturing cost of the engines of the invention. This cost is further lowered by the small number of parts to assemble, much less than in the motors with superimposed coils mentioned.
  • each plate has teeth oriented substantially perpendicular to its plane, in the direction of the other plate, disposed at the periphery of the orifices for passage of the rotor, the teeth coming from the two plates s interpenetrating to form a cage in which the rotor is housed.
  • the distance between the periphery of each orifice for passage of the rotor and the free edge of the plate in which it is made is minimum at the diameter of the orifice perpendicular to the right connecting the axis of the spacers or coils, so that the magnetic fluxes of the two coils are not disturbed and are channeled, via the teeth, on each side of the plane formed by the aforementioned diameters of the two orifices.
  • Each phase or coil is therefore schematically associated with a magnetic circuit comprising the spacer, two portions of plates ending at the place of minimum width on either side of the passage opening of the rotor, said circuit being " closed “by the teeth associated with said portions of plates, which interpenetrate and are separated by an air gap.
  • the coils are identical and said diameter is the perpendicular bisector of the segment joining the axes of the spacers.
  • the teeth forming the cage surrounding the rotor have an angular width substantially equal to that of the poles of the rotor, at least in the zone of connection to the plate from which they originate.
  • the teeth arranged on either side of the diameter of the orifice for the passage of the rotor perpendicular to the right connecting the axes of the spacers are arranged at a periodicity equal to twice the angular width of each tooth in its area of connection to the plate, and are trapezoidal in shape, their angular width reducing towards their free end.
  • the trapezoidal shape results in particular from the need to establish a substantially constant air gap between the adjoining teeth.
  • the periodicity there is no continuity over the entire periphery of the cage, in particular to be able to achieve a number of steps per revolution equivalent to that of the motors of the prior art, and in order to allow electronic phase switching.
  • the groups of teeth arranged on either side of the plane intersecting the diameters of the orifices for passage of the rotor perpendicular to the line joining the axes of the spacers are offset by a quarter of angular period.
  • the stepping motor of the invention is such that the plates have a central portion of rectangular shape and semi-circular ends, the orifice for passage of the rotor being centered in the central portion and the axes spacers, which are cylindrical in shape, containing the centers of the semi-circular arcs of said ends.
  • the realization of a motor according to the invention is then of a simplicity without common measure with the existing motors, since it suffices to assemble the spacers to a plate, then to add the coils, and to close the magnetic circuit by mounting the second plate.
  • the plates arranged on each side of the spacers are in one piece.
  • the possible geometrical configurations are multiple: according to one possibility, the axes of the coils are coplanar.
  • the axes of the coils of which arranged in two intersecting planes along the axis of the common coil: this then results in parallel flat plates in V, the connection surface between the two branches of the V as defined above having of course the same thickness as the ends of said branches, due to the uniqueness of the part.
  • This configuration saves space compared to the use of two flat motors according to the invention. It also allows a cost saving, since in particular a coil, a spacer, a connector, an electronic circuit, a housing, etc. are saved. However, the control of the two motors remains independent. By mechanically connecting the rotors of the two motors, their motor torques are added, which gives the power / size ratio a very attractive value. The vibrations on the output pinion are finally reduced, because there are two points of contact: the noise at the output is consequently reduced.
  • a combination of two motors can also be used with a single powered motor: the rotation of the rotor of the second motor, driven by the output pinion then creates a signal in the uncommon coil of this second motor. This signal can in turn be used to test the state of the system: existence of a stop, etc.
  • FIG. 1 is a perspective view of an engine according to the present invention
  • FIG. 2 shows a front view of the motor of Figure 1;
  • FIG. 3 shows a perspective view of one of the flat plates
  • FIG. 4 is a perspective view of the other flat plate
  • FIG. 5 is a top view of a portion of the plate of Figure 4; - Figure 6 is an exploded perspective view of the engine of the invention;
  • FIG. 7 shows a schematic top view of such a motor placed in the housing of an actuator
  • FIG. 8 is a perspective view of the association of two motors according to the invention.
  • the permanent magnet (1) constituting the rotor comprises for example twelve poles alternately north (N) and south (S), and this data conditions as we will see the number of teeth protruding from flat plates (2, 3).
  • the rotor has an output shaft (4) which can be mechanically connected to a pinion (see FIG. 6), and it rotates in the cage made up of the teeth (5, 6) developing respectively from the plates (2, 3), perpendicularly and in the direction of the parallel homologous plate (3, 2).
  • planar plates (2, 3) are kept parallel by means of spacers (7, 8) of which only the ends are visible, around which the coils (9, 10) are arranged, these elements appearing more clearly in FIG. 2 .
  • This planar structure includes a central cage delimited by the descending (5) and rising (6) teeth, around which the coils (9, 10) of magnetic induction are arranged.
  • each flat plate (2, 3) The following figures (3, 4) specify the configuration of each flat plate (2, 3).
  • the plate (2) has two end holes (11, 12) whose center is coincident with that of the semi-circular ends of your plate (2).
  • the axis of the spacers (7, 8), and therefore of the coils (9, 10) passes through this point since the mechanical connection between the spacers (7, 8) and the plate (2) is made at this location.
  • the plate (3), shown in FIG. 4, has end holes (11 ',
  • the flat plate (2) is seen from the outside while the flat plate (3) is shown from the inside.
  • the central orifices (13, 14) allowing the passage of the rotor (1) are coaxial.
  • This perpendicular (T) in fact delimits the two magnetic circuits associated with the two coils (9, 10).
  • the teeth arranged in zone A and those which are arranged in zone B belong to two magnetic circuits which one can consider as different.
  • the short distance (e) in fact prevents, also due to the small thickness of the plates (2, 3), reciprocal disturbances due to the fluxes induced by the two coils (9, 10). In any event, it reduces them to an acceptable level.
  • the teeth of sector A and those of sector B also have a 15 ° offset which explains in particular the asymmetry of the angular differences between the teeth located on either side of the line (T), near the two longitudinal edges of the plate (3).
  • the plate (2) can only have five teeth (5), while the plate (3) has six (6).
  • the number of steps per revolution is therefore equal to 24.
  • a rotor with n poles will cooperate with a plate (2) with n / 2- 1 teeth and a plate (3) with n / 2 teeth. The latter will have n / 4 teeth on either side of the line (T), while on the plate (2), there will be n / 4 teeth on one side and n / 4-1 on the other .
  • Figure 6 specifies the shape of the spacers (7, 8) provided with two shoulders implying in this case a diameter of the orifices (11 ', 12') greater than that of the orifices (11, 12).
  • the rotor output shaft (not visible) is also provided with a pinion (15) for driving a downstream mechanism (reduction gear, etc.).
  • FIG. 7 very schematically represents a housing (16), for example of an actuator, in which a motor according to the invention is arranged in contact with the bottom (17).
  • a connector (18) is used to connect the actuator (16) to an electronic central unit.
  • FIG. 8 shows a double V-shaped motor, in which the motors described above can easily be identified.
  • V-shaped plates (2 ', 3') replace the previous plates (2, 3), and the coil (10 ') is common to the two motors, as well as its spacer (8').
  • the second rotor (101) is located between the spacers (8 ') and (108). The minimum distance zones are located, inside the V, near the junction of the two branches.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Control Of Stepping Motors (AREA)
  • Motor Or Generator Frames (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

Moteur pas à pas à deux bobines d'induction (9, 10) magnétique et un rotor (1) constitué d'un aimant permanent à n pôles, la culasse magnétique étant constituée de deux plaques planes parallèles (2, 3) reliées par deux entretoises (7, 8) autour desquelles sont disposées lesdites bobines (9, 10), deux orifices coaxiaux (13, 14) pratiqués dans lesdites plaques (2, 3) délimitant un espace d'allures cylindriques dans lequel est placé le rotor (1), chaque plaque (2, 3) comportant des dents (5, 6) orientées sensiblement perpendiculairement à son plan, en direction de l'autre plaque (3, 2), disposées en prériphérie des orifices (13, 14) de passage du rotor (1), les dents (5, 6) issues des deux plaques (2, 3) s'interpénétrant pour former une cage dans laquelle est logé le rotor (1), caractérisé en ce que l'une des plaques (3) comporte n/2 dents, alors que la seconde (2) n'en comporte que n/2-1, les circuits magnétiques associés à chaque bobine (9, 10) comportant également respectivement n/2 et n/2-1 dents.

Description

MOTEUR PAS-A-PAS A DOUBLE BOBINE DANS UN PLAN
La présente invention concerne le domaine des moteurs pas à pas. Elle s'applique plus précisément à des moteurs à deux bobines d'induction et un rotor constitué d'un aimant permanent. Secondairement, l'invention concerne également des associations de tels moteurs.
Le problème visé à titre principal est celui de l'encombrement : les moteurs pas à pas actuels, lorsqu'ils comportent deux bobines correspondant à deux phases d'excitation distinctes, occupent un espace relativement important car les bobines sont disposées l'une à la suite de l'autre dans la direction de l'axe central de rotation.
Cette configuration n'est pas adaptée à toutes les utilisations des moteurs pas à pas, car le choix d'un moyen moteur dans une application dépend bien souvent de l'espace disponible pour disposer ledit moyen. Dans l'automobile, par exemple, les actionneurs rotatifs basés sur des moteurs pas à pas investissent de plus en plus massivement les véhicules, dans des applications dans lesquelles une miniaturisation croissante est requise. La miniaturisation n'est cependant pas suffisante : par endroits, il convient également de disposer d'éléments de configuration géométrique particulière, aptes à s'adapter à l'espace disponible.
L'invention propose à cet effet un moteur pas à pas ayant une configuration d'allure globalement plane, dans laquelle les bobines n'agissent plus, comme dans l'art antérieur précité, à des niveaux axiaux différents de l'aimant permanent constituant le rotor. Elles sont au contraire disposées au même niveau, et agissent par conséquent sur la même zone périphérique radiale du rotor.
A cet effet, le moteur de l'invention est caractérisé en ce que la culasse magnétique est constituée de deux plaques planes parallèles reliées par deux entretoises autour desquelles sont disposées lesdites bobines, deux orifices coaxiaux pratiqués dans lesdites plaques délimitant un espace d'allure cylindrique dans lequel est placé le rotor.
Les entretoises, prenant la forme de colonnes d'allure cylindrique, réalisent de plus la liaison mécanique entre les plaques planes parallèles. Le circuit magnétique de chaque bobine est donc constitué de deux pièces principales (les plaques planes) et de deux pièces de liaison (les entretoises). II n'y a par conséquent pas de stator interne, et la précision de positionnement relatif de ces pièces est facile à obtenir. Cette caractéristique a évidemment une incidence favorable sur le coût de fabrication des moteurs de l'invention. Ce coût est encore abaissé par le faible nombre des pièces à assembler, bien moindre que dans les moteurs à bobines superposées évoqués.
De manière générale, la réalisation d'un moteur plat est avantageuse car la faible épaisseur facilite l'intégration du moteur dans nombre de systèmes. Pour compléter la description de la structure, il est à noter que chaque plaque comporte des dents orientées sensiblement perpendiculairement à son plan, en direction de l'autre plaque, disposées en périphérie des orifices de passage du rotor, les dents issues des deux plaques s'interpénétrant pour former une cage dans laquelle est logé le rotor. La distance entre la périphérie de chaque orifice de passage du rotor et le bord libre de la plaque dans laquelle il est pratiqué est minimale au niveau du diamètre de l'orifice perpendiculaire à la droite reliant l'axe des entretoises ou des bobines, de sorte que les flux magnétiques des deux bobines ne se perturbent pas et sont canalisés, via les dents, de chaque côté du plan formé par les diamètres précités des deux orifices.
Chaque phase ou bobine est donc schématiquement associée à un circuit magnétique comprenant l'entretoise, deux portions de plaques s'achevant à l'endroit de largeur minimale de part et d'autre de l'orifice de passage du rotor, ledit circuit étant "fermé" par les dents associées auxdites portions de plaques, qui s'interpénétrent et sont séparées par un entrefer.
De préférence, les bobines sont identiques et ledit diamètre est la médiatrice du segment joignant les axes des entretoises.
Il y a alors symétrie des deux circuits magnétiques correspondant aux deux phases, lesdits circuits pouvant être vus comme étant disposés de part et d'autre du rotor, et séparés par lui.
En fait, les dents formant la cage entourant le rotor ont une largeur angulaire sensiblement égale à celle des pôles du rotor, au moins dans la zone de liaison à la plaque dont elles sont issues.
De plus, les dents disposées de part et d'autre dia diamètre de l'orifice de passage du rotor perpendiculaire à la droite reliant les axes des entretoises sont disposées selon une périodicité égale au double de la largeur angulaire de chaque dent dans sa zone de liaison à la plaque, et sont de forme trapézoïdale, leur largeur angulaire se réduisant vers leur extrémité libre.
La forme trapézoïdale résulte notamment de la nécessité d'établir un entrefer sensiblement constant entre les dents contiguës. Pour ce qui concerne la périodicité, il n'y a pas de continuité sur la totalité de la périphérie de la cage, notamment pour pouvoir aboutir à un nombre de pas par tour équivalent à celui des moteurs de l'art antérieur, et afin de permettre la commutation électronique des phases. Dans l'invention, les groupes de dents disposés de part et d'autre du plan coupant les diamètres des orifices de passage du rotor perpendiculairement à la ligne joignant les axes des entretoises sont décalés d'un quart de période angulaire. II résulte des caractéristiques précédentes, concernant la géométrie des dents aussi bien que leur périodicité ou le décalage précité, que l'une des plaques comporte n/2 dents, alors que la seconde n'en comporte que n/2-1 , les circuits magnétiques associés à chaque bobine comportant également respectivement n/2 et n/2-1 dents. Selon une configuration possible, le moteur pas à pas de l'invention est tel que les plaques ont une portion centrale d'allure rectangulaire et des extrémités semi-circulaires, l'orifice de passage du rotor étant centré dans la portion centrale et les axes des entretoises, qui sont d'allure cylindrique, contenant les centres des arcs semi-circulaires desdites extrémités. La réalisation d'un moteur selon l'invention est alors d'une simplicité sans commune mesure avec les moteurs existants, puisqu'il suffit d'assembler les entretoises à une plaque, puis d'ajouter les bobines, et de fermer le circuit magnétique par montage de la seconde plaque.
Selon l'invention, c'est à dire en conservant les caractéristiques mises en exergue ci-dessus, il est également possible de réaliser l'association d'au moins deux moteurs pas à pas, ladite association se caractérisant en ce que les plaques desdits moteurs sont solidarisées au niveau d'une entretoise, les moteurs contigus ayant par conséquent une entretoise et une bobine commune.
De préférence, les plaques disposées de chaque côté des entretoises sont d'une seule pièce. Les configurations géométriques possibles sont multiples : selon une possibilité, les axes des bobines sont coplanaires.
Selon une autre configuration, les axes des bobines dont disposés dans deux pians sécants selon l'axe de la bobine commune : on aboutit alors à des plaques planes parallèles en V, la surface de raccordement entre les deux branches du V telles que précédemment défini ayant bien entendu la même épaisseur que les extrémités desdites branches, du fait de l'unicité de la pièce.
Dans le cas de l'association de deux moteurs, trois bobines encadrent deux rotors, la bobine de la base du V étant commune auxdits rotors.
Cette configuration procure un gain de place par rapport à l'utilisation de deux moteurs plats selon l'invention. Elle permet de surcroît un gain de coût, puisqu'on économise notamment une bobine, une entretoise, un connecteur, un circuit électronique, un boîtier etc.. La commande des deux moteurs reste cependant indépendante. En reliant mécaniquement les rotors des deux moteurs, on ajoute de plus leurs couples moteurs, ce qui confère au ratio puissance / encombrement une valeur très intéressante. Les vibrations sur le pignon de sortie sont enfin réduites, car il y a deux points de contact : le bruit en sortie s'en trouve corollairement diminué.
Une association de deux moteurs peut également être utilisée avec un seul moteur alimenté : la rotation du rotor du second moteur, entraîné par le pignon de sortie crée alors un signal dans la bobine non commune de ce second moteur. Ce signal peut être à son tour utilisé pour tester l'état du système : existence d'une butée, etc ...
L'invention va à présent être décrite en détail, notamment en référence aux dessins annexés, pour lesquels :
- la figure 1 est une vue en perspective d'un moteur selon la présente invention ; - la figure 2 montre une vue de face du moteur de la figure 1 ;
- la figure 3 représente une vue en perspective de l'une des plaques planes ;
- la figure 4 est une vue en perspective de l'autre plaque plane ;
- la figure 5 est une vue de dessus d'une portion de la plaque de la figure 4 ; - la figure 6 est une vue en perspective éclatée du moteur de l'invention ;
- la figure 7 représente une vue schématique de dessus d'un tel moteur placé dans le boîtier d'un actionneur ; et
- la figure 8 est une vue en perspective de l'association de deux moteurs selon l'invention.
Dans la perspective de la figure 1 , ainsi que dans les figures suivantes, l'aimant permanent (1 ) constituant le rotor comporte par exemple douze pôles alternativement nord (N) et sud (S), et cette donnée conditionne comme on le verra le nombre de dents dépassant des plaques planes (2, 3). Le rotor est doté d'un arbre de sortie (4) pouvant être mécaniquement relié à un pignon (voir figure 6), et il tourne dans la cage constituée des dents (5, 6) se développant respectivement à partir des plaques (2, 3), perpendiculairement et en direction de la plaque (3, 2) homologue parallèle.
Lesdites plaques (2, 3) planes sont maintenues parallèles à l'aide d'entretoises (7, 8) dont seules les extrémités sont visibles, autour desquelles sont disposées les bobines (9, 10), ces éléments apparaissant plus clairement en figure 2. Cette structure d'allure plane comporte une cage centrale délimitée par les dents descendantes (5) et montantes (6), autour de laquelle sont disposées les bobines (9, 10) d'induction magnétique.
Les figures suivantes (3, 4) précisent la configuration de chaque plaque plane (2, 3). En figure 3, la plaque (2) comporte deux orifices d'extrémité (11 , 12) dont le centre est confondu avec celui des extrémités semi-circulaires de ta plaque (2). L'axe des entretoises (7, 8), et par conséquent des bobines (9, 10), passe par ce point puisque la liaison mécanique entre les entretoises (7, 8) et la plaque (2) se fait à cet emplacement. La plaque (3), montrée en figure 4, comporte des orifices d'extrémité (11 ',
12') ayant exactement les mêmes caractéristiques et fonctions. Leur diamètre peut cependant, selon la forme des entretoises (7, 8), être différent.
La plaque plane (2) est vue de l'extérieur alors que la plaque plane (3) est représentée de l'intérieur. Lorsqu'elles sont fixées l'une à l'autre au moyen des entretoises (7, 8), les orifices centraux (13, 14) permettant le passage du rotor (l) sont coaxiaux.
Ces figures montrent également très clairement les zones latérales de distance minimale entre lesdits orifices (13, 14) et les chants latéraux des plaques (2, 3). Cette caractéristique apparaît également en figure 5, dans laquelle on a tracé la perpendiculaire (T) à la droite (D) reliant les deux centres des orifices (11') et (12') de la plaque (3).
Cette perpendiculaire (T) délimite en fait les deux circuits magnétiques associés aux deux bobines (9, 10). Les dents disposées en zone A et celles qui sont disposées en zone B appartiennent à deux circuits magnétiques que l'on peut considérer comme différents. La faible distance (e) empêche en effet, également du fait de la faible épaisseur des plaques (2, 3), des perturbations réciproques dues aux flux induits par les deux bobines (9, 10). Elle les réduit en tout état de cause à un niveau acceptable.
Le dessin ne montre que la configuration de la plaque (3). Il en va cependant exactement de même en plaque (2). De part et d'autre de la ligne
(T), les dents sont espacées entre elles de 60°, et ont une largeur angulaire de
30° correspondant à la largeur des pôles de l'aimant permanent constituant le rotor (12 pôles, d'où un secteur angulaire par pôle de 360/12 = 30°).
Les dents du secteur A et celles du secteur B présentent en outre un décalage de 15° qui explique notamment la dissymétrie des écarts angulaires entre les dents situées de part et d'autre de la ligne (T), à proximité des deux chants longitudinaux de la plaque (3). L'un de ces écarts étant très faible, la plaque (2) ne pourra comporter que cinq dents (5), alors que la plaque (3) en comporte six (6). Le nombre de pas par tour est par conséquent égal à 24. Plus généralement, un rotor à n pôles coopérera avec une plaque (2) à n/2- 1 dents et une plaque (3) à n/2 dents. Cette dernière aura n/4 dents de part et d'autre de la ligne (T), alors que sur la plaque (2), il y aura n/4 dents d'un côté et n/4-1 de l'autre. Le nombre de pas disponible par tour se monte alors à 2n. La figure 6 précise la forme des entretoises (7, 8) munies de deux épaulements impliquant dans ce cas un diamètre des orifices (11 ', 12') supérieur à celui des orifices (11 , 12). L'arbre de sortie du rotor (non visible) est en outre muni d'un pignon (15) d'entraînement d'un mécanisme aval (réducteur...).
La figure 7 représente très schématiquement un boîtier (16), par exemple d'actionneur, dans lequel un moteur selon l'invention est disposé au contact du fond (17). Un connecteur (18) permet de relier l'actionneur (16) à une unité centrale électronique.
La figure 8 montre un double moteur en V, dans lequel on peut aisément individualiser les moteurs décrits précédemment. Des plaques en V (2', 3') remplacent les plaques précédentes (2, 3), et la bobine (10') est commune aux deux moteurs, ainsi que son entretoise (8'). Le second rotor (101 ) est localisé entre les entretoises (8') et (108). Les zones de distance minimale sont situées, à l'intérieur du V, à proximité de la jonction des deux branches.
Une structure à plus de deux moteurs pourrait bien entendu être envisagée. Plus généralement, la description ci-dessus n'est pas limitative de l'invention, mais n'en constitue qu'un exemple. L'invention englobe au contraire les variantes qui sont à la portée de l'homme de l'art.

Claims

REVENDICATIONS
1. Moteur pas à pas à deux bobines d'induction (9, 10) magnétique et un rotor (1) constitué d'un aimant permanent à n pôles, la culasse magnétique étant constituée de deux plaques planes parallèles (2, 3) reliées par deux entretoises (7, 8) autour desquelles sont disposées lesdites bobines (9, 10), deux orifices coaxiaux (13, 14) pratiqués dans lesdites plaques (2, 3) délimitant un espace d'allure cylindrique dans lequel est placé le rotor (1), chaque plaque (2, 3) comportant des dents (5, 6) orientées sensiblement perpendiculairement à son plan, en direction de l'autre plaque (3, 2), disposées en périphérie des orifices (13, 14) de passage du rotor (1), les dents (5, 6) issues des deux plaques (2, 3) s'interpénétrant pour former une cage dans laquelle est logé le rotor (1), caractérisé en ce que l'une des plaques (3) comporte n/2 dents, alors que la seconde (2) n'en comporte que n/2-1 , les circuits magnétiques associés à chaque bobine (9, 10) comportant également respectivement n/2 et n/2-1 dents.
2. Moteur pas à pas selon la revendication précédente, caractérisé en ce que les plaques (2, 3) ont une portion centrale d'allure rectangulaire et des extrémités semi-circulaires, l'orifice de passage (13, 14) du rotor (1) étant centré dans la portion centrale, et en ce que les axes des entretoises (7, 8), qui sont d'allure cylindrique, contiennent les centres des arcs semi-circulaires desdites extrémités.
3. Moteur pas à pas selon la revendication précédente, caractérisé en ce que la distance (e) entre la périphérie de chaque orifice (13, 14) de passage du rotor (1 ) et le bord libre de la plaque (2, 3) dans laquelle il est pratiqué est minimale au niveau du diamètre de l'orifice (13, 14) perpendiculaire à la droite (D) reliant l'axe des entretoises (7, 8), de sorte que les flux magnétiques des deux bobines (9, 10) ne se perturbent pas et sont canalisés, via lesdites dents (5, 6), de chaque côté d'un plan formé par les diamètres des deux orifices (13, 14) coaxiaux.
4. Moteur pas à pas selon la revendication précédente, caractérisé en ce que les bobines (9, 10) sont identiques et ledit diamètre est la médiatrice du segment joignant les axes des entretoises (7, 8).
5. Moteur pas à pas selon l'une quelconque des revendications précédentes, caractérisé en ce que les dents (5, 6) formant la cage entourant le rotor (1) ont une largeur angulaire sensiblement égale à celle des pôles du rotor (1), au moins dans la zone de liaison à la plaque (2, 3) dont elles sont issues.
6. Moteur pas à pas selon l'une quelconque des revendications précédentes, caractérisé en ce que les dents (5, 6) disposées de part et d'autre du diamètre de l'orifice (13, 14) de passage du rotor (1) perpendiculaire à la droite (D) reliant les axes des entretoises sont disposées selon une périodicité égale au double de la largeur angulaire de chaque dent (5, 6) dans sa zone de liaison à la plaque, et sont de forme trapézoïdale, leur largeur angulaire se réduisant vers leur extrémité libre.
7. Moteur pas à pas selon la revendication précédente, caractérisé en ce que les groupes de dents (5, 6) disposés de part et d'autre du plan coupant les diamètres des orifices (13, 14) de passage du rotor (1) perpendiculairement à la ligne (D) joignant les axes des entretoises (7, 8) sont décalés d'un quart de période angulaire.
8. Association d'au moins deux moteurs selon les revendications précédentes, caractérisée en ce que les plaques (2', 3') desdits moteurs sont solidarisées au niveau d'une entretoise (8'), les moteurs contigus ayant par conséquent une entretoise (8') et une bobine (10') commune.
9. Association d'au moins deux moteurs selon la revendication précédente, caractérisée en ce que les plaques (2', 3') disposées de chaque côté des entretoises (7', 8', 108) sont d'une seule pièce.
PCT/FR2000/001317 1999-05-21 2000-05-17 Moteur pas-a-pas a double bobine dans un plan WO2000072429A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP00927349A EP1183770B1 (fr) 1999-05-21 2000-05-17 Moteur pas-a-pas a double bobine dans un plan
CA002374535A CA2374535A1 (fr) 1999-05-21 2000-05-17 Moteur pas-a-pas a double bobine dans un plan
DE60002459T DE60002459T2 (de) 1999-05-21 2000-05-17 Schrittmotor mit doppelspule in einer ebene
JP2000620720A JP2003500998A (ja) 1999-05-21 2000-05-17 同一平面上にダブルコイルを備えたステッピングモータ
KR1020017014842A KR20020018664A (ko) 1999-05-21 2000-05-17 평판형 이중 코일을 갖는 스텝 모터
US09/979,278 US6703728B1 (en) 1999-05-21 2000-05-17 Step motor with double coil in a plane
MXPA01011881A MXPA01011881A (es) 1999-05-21 2000-05-17 Motor de paso con doble bobina en un plano.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/06606 1999-05-21
FR9906606A FR2793966B1 (fr) 1999-05-21 1999-05-21 Moteur pas-a-pas a double bobine dans un plan

Publications (1)

Publication Number Publication Date
WO2000072429A1 true WO2000072429A1 (fr) 2000-11-30

Family

ID=9545983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/001317 WO2000072429A1 (fr) 1999-05-21 2000-05-17 Moteur pas-a-pas a double bobine dans un plan

Country Status (9)

Country Link
US (1) US6703728B1 (fr)
EP (1) EP1183770B1 (fr)
JP (1) JP2003500998A (fr)
KR (1) KR20020018664A (fr)
CA (1) CA2374535A1 (fr)
DE (1) DE60002459T2 (fr)
FR (1) FR2793966B1 (fr)
MX (1) MXPA01011881A (fr)
WO (1) WO2000072429A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6909209B2 (en) 2003-04-24 2005-06-21 Minebea Co., Ltd. Low-profile stepping motor having coils wound rectangularly
DE102007034347B4 (de) * 2006-07-26 2015-04-02 Johnson Electric Switzerland Ag Elektromotor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3798354B2 (ja) * 2002-09-27 2006-07-19 ミネベア株式会社 扁平型ステッピングモータ
JP3798364B2 (ja) * 2002-10-24 2006-07-19 ミネベア株式会社 扁平型ステッピングモータ
JP3746265B2 (ja) 2002-10-24 2006-02-15 ミネベア株式会社 扁平型ステッピングモータ
JP3768952B2 (ja) 2002-11-28 2006-04-19 ミネベア株式会社 扁平型ステッピングモータ
EP1601080A1 (fr) 2004-05-26 2005-11-30 Saia-Burgess Murten AG Moteur electrique sans balais
JP2007325488A (ja) * 2006-05-01 2007-12-13 Nidec Sankyo Corp ステッピングモータ
JP5034069B2 (ja) * 2006-12-22 2012-09-26 ミネベア株式会社 ステッピングモータ
KR101261084B1 (ko) * 2007-05-31 2013-05-06 니혼 덴산 산쿄 가부시키가이샤 모터
JP5223071B2 (ja) * 2007-12-21 2013-06-26 多摩川精機株式会社 一体成形モータ
US20100066201A1 (en) * 2008-09-16 2010-03-18 Saia-Burgess Murten Ag Electric motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140727A (ja) * 1988-11-21 1990-05-30 Canon Inc 電磁駆動絞り調節装置
JPH0847236A (ja) * 1994-07-29 1996-02-16 Canon Inc 電磁駆動装置
JPH08130865A (ja) * 1994-11-02 1996-05-21 Canon Inc モータ
DE19616798A1 (de) * 1995-04-27 1996-10-31 Nippon Denso Co Schrittmotor mit verkürzter Axiallänge
JPH1094237A (ja) * 1996-09-13 1998-04-10 Denso Corp ステップモータ及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088909A (en) * 1977-02-18 1978-05-09 Kanto Seiki Company, Limited Stepping motor for timekeeping mechanism
JPS5543953A (en) * 1978-09-20 1980-03-28 Rhythm Watch Co Ltd Miniature motor for watch
JPH02228242A (ja) * 1989-02-28 1990-09-11 Jeco Co Ltd 時計用ステップモータ
JP3458344B2 (ja) * 1997-02-03 2003-10-20 ミネベア株式会社 モータ構造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140727A (ja) * 1988-11-21 1990-05-30 Canon Inc 電磁駆動絞り調節装置
JPH0847236A (ja) * 1994-07-29 1996-02-16 Canon Inc 電磁駆動装置
JPH08130865A (ja) * 1994-11-02 1996-05-21 Canon Inc モータ
DE19616798A1 (de) * 1995-04-27 1996-10-31 Nippon Denso Co Schrittmotor mit verkürzter Axiallänge
JPH1094237A (ja) * 1996-09-13 1998-04-10 Denso Corp ステップモータ及びその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 014, no. 376 (P - 1092) 14 August 1990 (1990-08-14) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 06 28 June 1996 (1996-06-28) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 09 30 September 1996 (1996-09-30) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 09 31 July 1998 (1998-07-31) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6909209B2 (en) 2003-04-24 2005-06-21 Minebea Co., Ltd. Low-profile stepping motor having coils wound rectangularly
EP1471620A3 (fr) * 2003-04-24 2006-02-15 Minebea Co., Ltd. Moteur pas à pas plat avec bobines enroulées de forme rectangulaire
DE102007034347B4 (de) * 2006-07-26 2015-04-02 Johnson Electric Switzerland Ag Elektromotor

Also Published As

Publication number Publication date
DE60002459D1 (de) 2003-06-05
US6703728B1 (en) 2004-03-09
FR2793966A1 (fr) 2000-11-24
DE60002459T2 (de) 2004-04-01
CA2374535A1 (fr) 2000-11-30
MXPA01011881A (es) 2003-09-04
EP1183770A1 (fr) 2002-03-06
KR20020018664A (ko) 2002-03-08
EP1183770B1 (fr) 2003-05-02
JP2003500998A (ja) 2003-01-07
FR2793966B1 (fr) 2002-03-15

Similar Documents

Publication Publication Date Title
EP3326263B1 (fr) Motoreducteur compact
EP0811269B1 (fr) Moteur diphase, notamment un moteur d'horlogerie ou un moteur pour l'entrainement d'une aiguille d'un afficheur
FR2754953A1 (fr) Moteur polyphase, notamment pour l'entrainement d'une aiguille d'un afficheur
EP1183770B1 (fr) Moteur pas-a-pas a double bobine dans un plan
EP2686940B1 (fr) Moteur electrique et installation de fermeture ou protection solaire d'un fenetre comprenant un tel moteur
EP0151159A1 (fr) Moteur polyphase a rotor aimante presentant n/2 paires de poles par face
CH653189A5 (fr) Moteur pas a pas electrique.
FR2604833A1 (fr) Machine tournante electrique du type moteur pas a pas
EP0151158A1 (fr) Moteur polyphase a rotor aimante presentant n paires de poles a aimantation axiale.
EP0641061A2 (fr) Dispositif à palier magnétique pour le basculement d'un corps tournant par rapport à un corps statorique
EP0509351A1 (fr) Moteur électromagnétique à deux sens de rotation, notamment pour pièce d'horlogerie
WO2024100366A1 (fr) Reducteur comprenant un axe central et des elements de transmission superpose et centres par l'axe
WO2020234532A1 (fr) Motoreducteur faible bruit a moteur electrique dissymetrique
CH690632A5 (fr) Moteur électromagnétique à deux rotors coaxiaux.
EP0356396B1 (fr) Moteur pas à pas multipolaire
FR2481019A1 (fr) Moteur pas a pas notamment pour montre electronique
EP1571749A1 (fr) Moteur biphasé symétrique avec un rotor à aimant permanent bipolaire
EP0165257A1 (fr) Moteur electrique a rotor aimante en forme de disque
CH663300A5 (en) Electric motor with disc-shaped magnetised rotor
FR2972872A1 (fr) Moteur electrique et installation de fermeture ou de protection solaire comprenant un tel moteur
EP0845850B1 (fr) Moteur électromagnétique à deux rotors coaxiaux
WO2009016023A1 (fr) Moteur biphase avec un rotor a aimant multipolaire, en particulier pour l'entraînement de l'indicateur d'un affichage analogique
EP0718960B1 (fr) Moteur pas à pas multipolaire polyphasé
FR3141014A1 (fr) Flasque pour une machine électrique tournante
FR3089587A1 (fr) Reducteur pour un demarreur de moteur thermique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2374535

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2374535

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2000 620720

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/011881

Country of ref document: MX

Ref document number: 1020017014842

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2000927349

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000927349

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017014842

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09979278

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2000927349

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020017014842

Country of ref document: KR