WO2000068598A1 - Appareil d'accouplement hydrocinetique - Google Patents

Appareil d'accouplement hydrocinetique Download PDF

Info

Publication number
WO2000068598A1
WO2000068598A1 PCT/FR2000/001151 FR0001151W WO0068598A1 WO 2000068598 A1 WO2000068598 A1 WO 2000068598A1 FR 0001151 W FR0001151 W FR 0001151W WO 0068598 A1 WO0068598 A1 WO 0068598A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrokinetic coupling
coupling apparatus
core
axis
impeller
Prior art date
Application number
PCT/FR2000/001151
Other languages
English (en)
Inventor
Gustave Chasseguet
Philippe Cossonniere
Daniel Satonnet
Frédéric Sauvage
Original Assignee
Valeo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo filed Critical Valeo
Priority to JP2000617349A priority Critical patent/JP2002544447A/ja
Priority to DE10081340T priority patent/DE10081340B4/de
Publication of WO2000068598A1 publication Critical patent/WO2000068598A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/24Details
    • F16H41/26Shape of runner blades or channels with respect to function
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0273Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch
    • F16H2045/0278Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch comprising only two co-acting friction surfaces

Definitions

  • the invention relates to a hydrokinetic coupling device of the type comprising a rotating casing internally forming a paddle wheel capable of hydrokinetically driving a paddle wheel impeller housed in this casing.
  • a known hydrokinetic coupling device comprises a casing comprising, of revolution about an axis, on the one hand, an envelope provided with a transverse wall suitable for being linked in rotation to a driving shaft and, on the other hand, an impeller or impeller, capable of hydrokinetically driving a impeller of an impeller, secured to a hub capable of being linked in rotation to a driven shaft.
  • Such hydrokinetic coupling devices can be applied in particular to motor vehicles, whether they are for tourism, leisure or industrial use, and as is known in such applications a reduction in axial dimensions is very much sought after.
  • the impeller and the turbine being made up of shells having vanes integral with the internal face of the shells, if L is designated the maximum width measured axially of the internal circuit available for hydraulic fluid contained in the device, and by H height, measured radially said internal circuit, there has already been proposed, in particular in document US-A-5,241,820, a hydrokinetic coupling device with reduced axial bulk in which the IJH ratio is between 0.55 and 0.65; according to this document, when this ratio is less than 0.55, vortices appear and the performance of the device is degraded.
  • the Applicant has found that it is possible to lower the value of the ratio IJH below 0.55 insofar as, if I designates the width measured axially in line with the portion of said circuit closest to the axis of the part furthest from the axis, the value of the W / H ratio is at most equal to 0.35.
  • a hydrokinetic coupling device comprising a casing comprising, of revolution about an axis, on the one hand, an envelope provided with a transverse wall suitable for being linked in rotation to a driving shaft and , on the other hand, an impeller or impeller, capable of hydrokinetically driving a impeller of an impeller, secured to a hub capable of being linked in rotation to a driven shaft, the impeller and the turbine wheel being constituted of shells having vanes integral with the internal face of the shells, in which L is the maximum width measured axially of the internal circuit at the disposal of the hydraulic fluid contained in the apparatus, I the width measured axially in line with the portion of said circuit most close to the axis of the part furthest from the axis, and H the height measured radially of said internal circuit, characterized in that the value of the ratio IJH is less than 0.55 and the value of the ratio rt l / H is at most equal to 0.35.
  • the ratio R (m) / R (L) is between 0.6 and 0.8.
  • the width I of the circuit being at a distance R (l) from the axis, the ratio l / L is between 0.6 and 0.7 and the ratio R (l) / R (m) between 2 , 27 and 2.41.
  • the width I of the circuit being at a distance R (l) from the axis, the ratio R (L) / R (l) is between 0.55 and 0.75.
  • the ratio R (m) / R (M) is between 0.35 and 0.45.
  • the internal profile of the circuit is, in axial section, symmetrical with respect to a transverse plane, perpendicular to the axis.
  • the internal profile of the circuit is, in axial section, slightly inclined on the axis so that the external wall of the shell of the impeller is generally perpendicular to the axis.
  • the impeller and the turbine are associated with a reactor for constituting a torque converter.
  • the torque converter has a central guide core for the fluid.
  • the core is in three parts carried respectively by the impeller, the turbine and the reactor.
  • the core is in two parts, one of which is carried by the impeller and the other by the reactor.
  • the core is in one piece carried by the impeller or the turbine; the core is in the form of a ring folded circumferentially in accordion.
  • the core is in one piece carried by the reactor; the core is toroidal, hollow or solid; the core is of planar shape, being produced directly from a conformation of the reactor; the core is generally of planar shape and comprises an axial orientation foot by which it is secured to the blades of the reactor, for example by force fitting or by overmolding; the core is in the form of a ring folded circumferentially in accordion.
  • a locking clutch intervening between the turbine and the envelope, said clutch comprising a torsion damper, a piston mounted axially movable and at least one friction lining suitable for being tightened between said piston and the internal face of the transverse wall;
  • the torsion damper comprises springs with circumferential action interposed between two parts, guide washer and web, one of these parts being integral in rotation with the friction lining and the other with the turbine.
  • the presence of the locking clutch makes the coupling device particularly suitable for application to motor vehicles.
  • the turbine wheel inside the casing is driven by the so-called impeller, thanks to the coupling created by the fluid circulating in the casing and, after starting the vehicle, the locking clutch intervenes to avoid the phenomena of sliding between the two wheels, securing in rotation the driven shaft with the driving shaft.
  • the hydrokinetic coupling device comprises a sub-assembly, advantageously preassembled, essentially comprising the turbine wheel, the web, the guide washer and the circumferential springs.
  • the guide washer is coupled to the web with circumferential play corresponding to the range of action of the springs.
  • a friction disc carrying the friction lining is interposed between the internal wall of the casing and the piston movable axially therein, actuated by the oil pressure at the time of locking.
  • the friction disc is rotatably coupled to the web.
  • the friction disc is rotatably coupled to the guide washer.
  • FIG. 1 is a half section of a hydrokinetic coupling device according to the invention.
  • FIG. 2 is a view similar to Figure 1, illustrating a variant
  • FIG. 3 is a view similar to Figure 1, illustrating another variant
  • Figures 4 to 6 are partial sectional views similar to Figure 2 showing variants of the inner core carried by the impeller, Figure 6 being a view along arrow VI of Figure 5;
  • Figures 7 to 12 are partial sectional views similar to Figure 2 showing variants of the inner core carried by the reactor, Figure 11 being a view along arrow XI of Figure 10;
  • FIG. 13 is a partial sectional view similar to Figure 2 showing a variant of the inner core carried by the impeller and the reactor;
  • FIGs 14 and 15 are partial views similar to Figure 3 and each show another variant of apparatus according to the invention.
  • the hydrokinetic coupling device shown in FIG. 1 comprises, arranged in the same sealed casing forming an oil pan 11, a torque converter 12 and a locking clutch 13.
  • the casing 11 forms a driving element and is suitable for be linked in rotation to the crankshaft of an internal combustion engine of a motor vehicle.
  • This annular casing comprises an envelope composed of a first shell 15 comprising an annular transverse wall 16 and of a second shell 18 facing the first and shaped so as to define an impeller wheel 20, with vanes 21.
  • the blades of this wheel are integral with the internal face 19 of the second shell 18.
  • the shells 15, 18 are connected, here by welding; alternatively, they can both be welded to the same annular part, not shown, constituting a starter ring intended to be driven by the starter of the vehicle.
  • the annular part has a toothing at its outer periphery.
  • the torque converter 12 also includes a turbine wheel 28 provided with blades 29 facing the blades 21 of the impeller and a reactor wheel 30.
  • the turbine wheel 28 is linked in rotation to a driven shaft 32 by being secured by rivets 33 to an annular flange 34 carrying a hub 35 toothed coupled to the driven shaft 32.
  • the shell 18 has a sleeve 38 mounted to rotate in a housing nose 24.
  • a centering hub 40 is welded centrally to the first shell 15; it has a cylindrical surface forming a sliding bearing 41 for an actuating piston 44 of the locking clutch 13.
  • the latter has a friction disc 46 suitable for being clamped between the internal face of the annular transverse wall 16 and a surface plane of said piston 44 when the latter is urged, under the effect of the oil pressure, towards said annular transverse wall 16.
  • the friction disc 46 is coupled in rotation to an annular piece of pressed sheet metal hereafter called veil 52
  • the disc 46 comprises a metal support coated on each of its faces with friction linings suitable for being clamped in the above manner between the wall 16 and the piston 44.
  • another annular part of the torsion damper hereinafter called guide washer 50, is fixed to the turbine wheel 28.
  • Said guide washer 50 and said web 52 are shaped to constitute stops circumferential against which bear the corresponding ends of helical springs 54.
  • the guide washer 50 is coupled to the web 52 with circumferential play allowing the springs 54 to play the role of torsional damper and absorb the torque peaks.
  • the turbine wheel 28 comprises an annular shell 55 on the internal face 56 of which are fixed its blades 29; likewise, the vanes 19 of the impeller 20 are fixed on the internal face 19 of the shell 18.
  • the internal circuit available to the hydraulic fluid is defined between the internal faces 19 and 56, the shells 18 and 55, and, of course, by the bottom 31 of the reactor 30; as known per se, centrally the fluid is guided by a core 60, here in three parts 61, 62, 63 carried respectively by the free edge of the blades 21, 29 and 36, of the impeller 20, of the turbine 28, and of reactor 30.
  • L designates the maximum width of this circuit, measured axially and corresponding to the maximum axial distance separating the internal faces 19 and 56 of the impeller 20 and of the turbine 28, and, d on the other hand, H its height, measured radially, corresponding to the maximum radial distance separating the lowest part of the bottom 31 of the reactor 30 and the highest root of the blades 21 and 29 of the impeller 20 and of the turbine 28 facing each other, the value of the IJH ratio is less than 0.55.
  • the value of the w / h ratio is at most equal to 0 , 35.
  • the portion closest to the axis, from the part farthest from the axis, from the circuit, that is to say defined between the external parts, here transverse, of the blades 21 of the impeller 20 and blades 29 of the turbine 20, is in line with the external part of the core 60. Thanks to these arrangements, the device, whose axial section of the circuit is in the shape of an egg, can be narrower than those of the prior art, with equal performance. Of course, as is known in the art, it is arranged so that the section of the passage of the fluid, defined between the shells and the core 60, is substantially constant whatever the radius where it is measured.
  • the ratio R (m) / R (L) is advantageously between 0.6 and 0.8.
  • the ratio l / L is advantageously between 0.6 and 0.7, and for the ratio R (l) / R (m) to be between 2.27 and 2, 41, in which I denotes the width of the circuit at a distance R (l) from the axis.
  • the ratio l / L is between 0.6 and 0.7, and that the ratio R (L) / R (l) is between 0.55 and 0.75.
  • R (M) designates the distance to the axis of the point of the hydraulic circuit furthest from the axis, that is to say the distance to the largest axis of the foot of the blades 21 and 29 of the impeller 20 and the turbine 28, arrangements are made so that the ratio R (m) / R (M) is between 0.35 and 0.45.
  • the internal profile of the circuit is in axial section symmetrical with respect to a transverse plane, perpendicular to the axis, as visible in FIG. 1.
  • the egg shape of the circuit allows the implantation of the locking clutch 13 by leading to a 12-clutch 13 converter assembly of small axial size.
  • the web 52 integral with the friction disc 46, has the right of the springs 54 of the legs of axial orientation for support thereof;
  • the guide washer 50 in the form of a ring secured to the external part of the shell 55 of the turbine 28 has locally a U-shaped section whose wings frame the axial tabs of the web 52.
  • the guide washer 50 is formed at the outer periphery of a plate 58 secured at its inner periphery by the rivets 33 to the flange 34 of the hub 25; it is to this plate 58 that the turbine 28 is fixed at 59.
  • the structures can be reversed; so according to the figure
  • the core 60 is in three parts 61, 62, 63 each of which is carried by the blades of the impeller 20, of the turbine 28 and of the reactor 30.
  • the core 70 is in one piece, toroidal in shape and carried by the vanes 21 of the impeller 20 to which it is electrically welded or brazed; thanks to this arrangement, the turbine 28 in particular, with its shell 55 and its blades 29, can be obtained in one piece by molding, for example being made of plastic.
  • the core 80 is also in one piece, carried by the vanes 21 of the impeller 20, but here the core 80 is a ring folded circumferentially in accordion; thus, it can be made of stamped steel and fixed to the impeller 20 for example by welding, brazing or otherwise.
  • the core can be carried by the reactor 30 instead of being carried by the turbine 20;
  • Figures 7 to 12 show examples of such a core.
  • the core 90 is toroidal in shape secured to the reactor
  • the 30-core reactor assembly 90 being a part of the bi-material type.
  • the core 91 is of planar shape, being produced directly from a one-piece conformation of the reactor 30 itself.
  • the core 92 is generally of planar shape and comprises an axial orientation foot by which it is secured to the blades 36 of the reactor 30, at the outer edge thereof; this joining is obtained by any suitable means such as press fitting, bonding or other.
  • the core 93 is of the same kind as that of the core 80 of FIGS. 5 and 6, folded circumferentially in an accordion, but here it is carried by the reactor 30.
  • the core 94 is of the kind of that of the core 90 of FIG. 7 but here it is of solid form instead of being of hollow form as in FIG. 7; moreover, here the core 94 and the reactor 30 are in one piece while in FIG. 7 the core 90 is overmolded.
  • FIG. 13 illustrates such a possibility; according to this figure, the core consists of a part 95 of the conventional type carried by the turbine 20 and a part 96, of the kind of that of the core 91 of FIG. 8, of generally planar shape, carried by the reactor 30 .
  • the core is of the kind described in FIGS. 5 and 6, or 10 and 11, but is carried by the turbine 28.
  • the shape of the blades, in particular their free edge, of the pump or turbine or reactor member devoid of core element is adapted to that of the core which they follow at best.
  • the internal profile of the circuit of the torque converter 12 is symmetrical with respect to a transverse plane, perpendicular to the axis.
  • the egg shape of the circuit is slightly inclined on the axis until the outer wall of the shell 18 supporting the impeller 20 is generally perpendicular to the axis.
  • This arrangement allows, with equivalent axial dimensions of the coupling device, to reserve more space for the locking clutch 13 at the outer periphery, or, for the same clutch, to reduce the axial size of the device.
  • the outer wall of the shell 18 supporting the turbine 20 is also perpendicular to the axis; here, the shell 55 of the turbine 28 has moreover been deformed in line with the clutch 13 by creating a recess therein 57 to increase the space available for the clutch 13; in parallel, the part 62 of the core 60 carried by the turbine 28 carries a boss 67 oriented towards the inside of the core 60, the shape of the boss 67 matching that of the subsidence 57 by extending along the latter while respecting the constant passage section regardless of its diameter.
  • a preassembled subassembly is produced essentially comprising the turbine wheel 28, the guide washer 50, the web 52, and the circumferential springs 54.
  • said guide washer 50 is coupled to the web with a circumferential clearance allowing the action of the springs 54 and for this purpose it comprises legs directed radially inwards, engaged in circumferential grooves obtained by folding said veil.
  • the operation is similar to that of a conventional hydrokinetic coupling device.
  • the turbine wheel 28 is driven by the impeller wheel thanks to the fluid contained in the housing and that, after starting the vehicle, the locking clutch 13 allows, to avoid the phenomena of sliding between the wheels 20 and 28, a connection of the driven shaft with the driving shaft, by tightening the friction disc 46, under the effect of the axial displacement of the piston 44.
  • the locking which results therefrom allows direct drive of the driven shaft 32, typically the input shaft of a gearbox, by the casing 11 linked in rotation to the crankshaft of the vehicle engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • Control Of Fluid Gearings (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

Appareil d'accouplement hydrocinétique comportant un carter (11) comprenant, de révolution autour d'un axe, d'une part, une enveloppe (15-18) munie d'une paroie transversale (16) propre à être liée en rotation à un arbre menant et, d'autre part, une roue à aubes ou impulseur (20), propre à entraîner hydrocinétiquement une roue de turbine (28) à aubes, solidaire d'un moyeu (35) propre à être lié en rotation à un arbre mené (32), l'impulseur (20) et la roue de turbine (28) étant constitués de coquilles (18-55) ayant des aubes (21-29) solidaires de la face interne (19-56) des coquilles (18-55): la valeur du rapport L/H est inférieure à 0,55 et la valeur du rapport l/H est au plus égale à 0,35.

Description

"Appareil d'accouplement hydrocinétique"
L'invention se rapporte à un appareil d'accouplement hydrocinétique du genre comportant un carter tournant formant intérieurement une roue à aubes propre à entraîner hydrocinétiquement une roue de turbine à aubes logée dans ce carter. Un appareil d'accouplement hydrocinétique connu comporte un carter comprenant, de révolution autour d'un axe, d'une part, une enveloppe munie d'une paroi transversale propre à être liée en rotation à un arbre menant et, d'autre part, une roue à aubes ou impulseur, propre à entraîner hydrocinétiquement une roue de turbine à aubes, solidaire d'un moyeu propre à être lié en rotation à un arbre mené.
On a toujours cherché à réduire l'encombrement axial de tels appareils d'accouplement hydrocinétique, dans le but d'obtenir, d'une part, une facilité d'implantation dans une transmission et, d'autre part, des gains de poids, dus non seulement à la taille de l'appareil mais également au volume du fluide qu'il contient, lesquels peuvent s'ajouter à ceux déjà obtenus par l'emploi de matériaux tels que thermoplastiques et/ou thermodurcissables, alliages de matériaux synthétiques, composites, assemblés par soudage ultra-sons, bouterollage, collage ou tout autre moyen, ces gains de poids étant accompagnés d'une réduction du coût. Bien entendu cette réduction de l'encombrement axial ne doit pas être accompagnée de baisses de performances qui pourraient être occasionnées par l'apparition de pertes énergétiques dans l'écoulement du fluide dues à des décollements, des recirculations, ou à l'apparition du phénomène de cavitation.
De tels appareils d'accouplement hydrocinétique peuvent être appliqués notamment aux véhicules automobiles, qu'ils soient de tourisme, de loisirs ou industriels, et comme on le sait dans de telles applications une réduction de l'encombrement axial est très recherchée.
L'impulseur et la turbine étant constitués de coquilles ayant des aubes solidaires de la face interne des coquilles, si l'on désigne par L la largeur maximale mesurée axialement du circuit interne à disposition de fluide hydraulique que contient l'appareil, et par H la hauteur, mesurée radialement dudit circuit interne, on a déjà proposé, notamment dans le document US-A-5 241 820, un appareil d'accouplement hydrocinétique à encombrement axial réduit dans lequel le rapport IJH est compris entre 0,55 et 0,65 ; selon ce document, lorsque ce rapport est inférieur à 0,55, des tourbillons apparaissent et les performances de l'appareil sont dégradées.
La Demanderesse a constaté qu'il était possible de descendre la valeur du rapport IJH au-dessous de 0,55 dans la mesure où, si I désigne la largeur mesurée axialement au droit de la portion dudit circuit la plus proche de l'axe de la partie la plus éloignée de l'axe, la valeur du rapport l/H est au plus égale à 0,35.
Ainsi, selon l'invention, un appareil d'accouplement hydrocinétique comportant un carter comprenant, de révolution autour d'un axe, d'une part, une enveloppe munie d'une paroi transversale propre à être liée en rotation à un arbre menant et, d'autre part, une roue à aubes ou impulseur, propre à entraîner hydrocinétiquement une roue de turbine à aubes, solidaire d'un moyeu propre à être lié en rotation à un arbre mené, l'impulseur et la roue de turbine étant constitués de coquilles ayant des aubes solidaires de la face interne des coquilles, dans lequel L est la largeur maximaie mesurée axialement du circuit interne à disposition du fluide hydraulique que contient l'appareil, I la largeur mesurée axialement au droit de la portion dudit circuit la plus proche de l'axe de la partie la plus éloignée de l'axe, et H la hauteur mesurée radialement dudit circuit interne, caractérisé par le fait que la valeur du rapport IJH est inférieure à 0,55 et la valeur du rapport l/H est au plus égale à 0,35.
Avantageusement, si R(m) désigne la distance à l'axe du point du circuit hydraulique le plus proche de l'axe et R(L) le rayon du cercle sur lequel est placée la largeur maximale L, le rapport R(m) / R(L) est compris entre 0,6 et 0,8.
De préférence, la largeur I du circuit étant à une distance R(l) de l'axe, le rapport l/L est compris entre 0,6 et 0,7 et le rapport R(l) / R(m) entre 2,27 et 2,41.
Avantageusement, la largeur I du circuit étant à une distance R(l) de l'axe, le rapport R(L) / R(l) est compris entre 0,55 et 0,75.
De préférence, si R(M) désigne la distance à l'axe du point du circuit hydraulique le plus éloigné de l'axe, le rapport R(m) / R(M) est compris entre 0,35 et 0,45. Avantageusement, le profil interne du circuit est, en coupe axiale, symétrique par rapport à un plan transversal, perpendiculaire à l'axe.
En variante, le profil interne du circuit est, en coupe axiale, légèrement incliné sur l'axe en sorte que la paroi externe de la coquille de l'impulseur est globalement perpendiculaire à l'axe.
Avantageusement, l'impulseur et la turbine sont associés à un réacteur pour constitution d'un convertisseur de couple.
De préférence, le convertisseur de couple comporte un noyau central de guidage pour le fluide. Avantageusement, le noyau est en trois parties portées respectivement par l'impulseur, la turbine et le réacteur.
En variante, le noyau est en deux pièces dont l'une est portée par l'impulseur et l'autre par le réacteur.
Selon une autre variante, le noyau est en une seule pièce portée par l'impulseur ou la turbine ; le noyau est en forme d'anneau plié circonférentiellement en accordéon.
Selon encore une autre variante, le noyau est en une seule pièce portée par le réacteur ; le noyau est de forme torique, creux ou plein ; le noyau est de forme plane en étant issu directement d'une conformation du réacteur ; le noyau est globalement de forme plane et comporte un pied d'orientation axiale par lequel il est solidarisé aux aubes du réacteur, par exemple par emmanchement à force ou par surmoulage ; le noyau est en forme d'anneau plié circonférentiellement en accordéon.
Avantageusement, à l'intérieur de l'enveloppe est placé un embrayage de verrouillage intervenant entre la turbine et l'enveloppe, ledit embrayage comprenant un amortisseur de torsion, un piston monté mobile axialement et au moins une garniture de frottement propre à être serrée entre ledit piston et la face interne de la paroi transversale ; l'amortisseur de torsion comprend des ressorts à action circonférentielle intercalés entre deux pièces, rondelle de guidage et voile, l'une de ces pièces étant solidaire en rotation de la garniture de frottement et l'autre de la turbine.
La présence de l'embrayage de verrouillage, usuellement dénommé "LOCK-UP", rend l'appareil d'accouplement particulièrement adapté à une application aux véhicules automobiles. La roue de turbine à l'intérieur du carter est entraînée par la roue dite impulseur, grâce au couplage créé par le fluide en circulation dans le carter et, après démarrage du véhicule, l'embrayage de verrouillage intervient pour éviter les phénomènes de glissement entre les deux roues, en solidarisant en rotation l'arbre mené avec l'arbre menant.
Selon un mode de réalisation préféré, l'appareil d'accouplement hydrocinétique comporte un sous-ensemble, avantageusement préassemblé, comprenant essentiellement la roue de turbine, le voile, la rondelle de guidage et les ressorts à action circonférentielle. La rondelle de guidage est couplée au voile avec jeu circonférentiel correspondant à la plage d'action des ressorts. Avec un tel agencement, un disque de friction portant la garniture de frottement est intercalé entre la paroi interne du carter et le piston mobile axialement dans celui-ci, actionné par la pression d'huile au moment du verrouillage. Le disque de friction est couplé en rotation au voile. En variante, le disque de friction est couplé en rotation à la rondelle de guidage.
Pour mieux faire comprendre l'objet de l'invention, on va en décrire maintenant, à titre d'exemple, purement illustratif et non limitatif, un mode de réalisation représenté sur les dessins annexés. Sur ces dessins :
- La figure 1 est une demi-coupe d'un appareil d'accouplement hydrocinétique conforme à l'invention ;
- la figure 2 est une vue analogue à la figure 1 , illustrant une variante ;
- la figure 3 est une vue analogue à la figure 1 , illustrant une autre variante ;
- les figures 4 à 6 sont des vues en coupe partielle analogues à la figure 2 montrant des variantes de noyau intérieur porté par l'impulseur, la figure 6 étant une vue selon la flèche VI de la figure 5 ;
- les figures 7 à 12 sont des vues en coupe partielle analogues à la figure 2 montrant des variantes de noyau intérieur porté par le réacteur, la figure 11 étant une vue selon la flèche XI de la figure 10 ;
- la figure 13 est une vue en coupe partielle analogue à la figure 2 montrant une variante de noyau intérieur porté par l'impulseur et le réacteur ; - les figures 14 et 15 sont des vues partielles analogues à la figure 3 et représentent chacune une autre variante d'appareil selon l'invention.
L'appareil d'accouplement hydrocinétique représenté sur la figure 1 comporte, agencés dans un même boîtier étanche formant carter d'huile 11 , un convertisseur de couple 12 et un embrayage de verrouillage 13. Le carter 11 forme un élément menant et est propre à être lié en rotation au vilebrequin d'un moteur à combustion interne de véhicule automobile. Ce carter, annulaire, comprend une enveloppe composée d'une première coquille 15 comportant une paroi transversale annulaire 16 et d'une deuxième coquille 18 faisant face à la première et conformée de façon à définir une roue d'impulseur 20, à aubes 21.
Les aubes de cette roue sont solidaires de la face interne 19 de la deuxième coquille 18. Les coquilles 15, 18 sont raccordées, ici par soudage ; en variante, elles peuvent toutes deux être soudées à une même pièce annulaire non représentée constituant une couronne de démarreur destinée à être entraînée par le démarreur du véhicule. Pour ce faire, la pièce annulaire comporte une denture à sa périphérie externe. Le convertisseur de couple 12 comprend aussi une roue de turbine 28 munie d'aubes 29 faisant face aux aubes 21 de l'impulseur et une roue de réacteur 30.
La roue de turbine 28 est liée en rotation à un arbre mené 32 en étant solidarisée par des rivets 33 à un flasque annulaire 34 portant un moyeu 35 accouplé par denture à l'arbre mené 32.
La coquille 18 présente un manchon 38 monté tournant dans un nez 24 de boîtier.
Un moyeu 40 de centrage est soudé centralement à la première coquille 15 ; il présente une surface cylindrique formant palier de coulissement 41 pour un piston d'actionnement 44 de l'embrayage de verrouillage 13. Ce dernier comporte un disque de friction 46 propre à être serré entre la face interne de la paroi transversale annulaire 16 et une surface plane dudit piston 44 lorsque ce dernier est sollicité, sous l'effet de la pression d'huile, vers ladite paroi transversale annulaire 16. Le disque de friction 46 est couplé en rotation à une pièce annulaire en tôle emboutie ci-après appelée voile 52. Le disque 46 comporte un support métallique revêtu sur chacune de ses faces de garnitures de friction propres à être serrées de manière précitée entre la paroi 16 et le piston 44. Par ailleurs, une autre pièce annulaire de l'amortisseur de torsion, ci- après appelée rondelle de guidage 50, est fixée à la roue de turbine 28. Ladite rondelle de guidage 50 et ledit voile 52 sont conformés pour constituer des butées circonférentielles contre lesquelles prennent appui les extrémités correspondantes de ressorts hélicoïdaux 54. La rondelle de guidage 50 est couplée au voile 52 avec jeu circonférentiel permettant aux ressorts 54 de jouer le rôle d'amortisseur de torsion et d'absorber les pointes de couple.
La roue de turbine 28 comporte une coquille annulaire 55 sur la face interne 56 de laquelle sont fixées ses aubes 29 ; de même, les aubes 19 de l'impulseur 20 sont fixées sur la face interne 19 de la coquille 18.
Le circuit interne à disposition du fluide hydraulique est défini entre les faces internes 19 et 56, des coquilles 18 et 55, et, bien entendu, par le fond 31 du réacteur 30 ; comme connu en soi, centralement le fluide est guidé par un noyau 60, ici en trois parties 61 , 62, 63 portées respectivement par le bord libre des aubes 21 , 29 et 36, de l'impulseur 20, de la turbine 28, et du réacteur 30.
Si l'on désigne par, d'une part, L la largeur maximale de ce circuit, mesurée axialement et correspondant à la distance maximale axiale séparant les faces internes 19 et 56 de l'impulseur 20 et de la turbine 28, et, d'autre part, H sa hauteur, mesurée radialement, correspondant à la distance maximale radiale séparant la partie la plus basse du fond 31 du réacteur 30 et la racine la plus haute des aubes 21 et 29 de l'impulseur 20 et de la turbine 28 qui se font face, la valeur du rapport IJH est inférieure à 0,55.
Par ailleurs, si l'on désigne par I la largeur dudit circuit mesurée axialement au droit de la portion, la plus proche de l'axe, de la partie la plus éloignée, la valeur du rapport l/H est au plus égale à 0,35.
Ici, la portion la plus proche de l'axe, de la partie la plus éloignée de l'axe, du circuit, c'est-à-dire définie entre les parties externes, ici transversales, des aubes 21 de l'impulseur 20 et des aubes 29 de la turbine 20, est au droit de la partie externe du noyau 60. Grâce à ces dispositions, l'appareil, dont la coupe axiale du circuit est en forme d'œuf, peut être plus étroit que ceux de l'art antérieur, à performances égales. Bien entendu, comme cela est connu en la matière, on s'arrange pour que la section du passage du fluide, définie entre les coquilles et le noyau 60, soit substantiellement constante quel que soit le rayon où elle est mesurée.
Selon une première application de l'invention, si l'on désigne par R(m) le rayon sur lequel se situe le point du circuit le plus proche de l'axe, plus précisément la distance à l'axe la plus courte du fond 31 du réacteur 30, et par R(L) le rayon sur lequel est placée la largeur maximale L, dans un tel profil en forme d'œuf le rapport R(m) / R(L) est avantageusement compris entre 0,6 et 0,8. De plus, il est bon de s'arranger pour que le rapport l/L soit compris entre 0,6 et 0,7, et que le rapport R(l) / R(m) soit compris entre 2,27 et 2,41 , dans lesquels I désigne la largeur du circuit à une distance R(l) de l'axe.
Selon une autre application de l'invention, on s'arrange pour que le rapport l/L soit compris entre 0,6 et 0,7, et que le rapport R(L) / R(l) soit compris entre 0,55 et 0,75. Selon une autre application, si R(M) désigne la distance à l'axe du point du circuit hydraulique le plus éloigné de l'axe, c'est-à-dire la distance à l'axe la plus grande du pied des pales 21 et 29 de l'impulseur 20 et de la turbine 28, on s'arrange pour que le rapport R(m) / R(M) soit compris entre 0,35 et 0,45.
D'excellents résultats sont obtenus lorsque toutes les conditions ci-dessus sont réunies.
Ainsi, selon un premier exemple de réalisation qui a donné satisfaction, IJH = 0,52, l/H = 0,34, R(m) / R(L) = 0,71 , l/L = 0,65, R(l) / R(m) = 2,36, R(L) / R(l) = 0,60 et R(m) / R(M) = 0,38.
Selon un deuxième exemple, IJH = 0,54, l/H = 0,34, R(m) / R(L) = 0,59, l/L = 0,62, R(l) / R(m) = 2,27, R(L) / R(l) = 0,74 et R(m) / R(M)= 0,38.
Selon un troisième exemple, IJH = 0,52, l/H = 0,34, R(m) / R(L) = 0,8, l/L = 0,65, R(l) / R(m) = 2,41 , R(L) / R(l) = 0,52 et R(m) / R(M) = 0,38.
Dans ces exemples, le profil interne du circuit est en coupe axiale symétrique par rapport à un plan transversal, perpendiculaire à l'axe, comme visible sur la figure 1.
Grâce à l'invention, comme on le voit, la forme en œuf du circuit permet l'implantation de l'embrayage de verrouillage 13 en conduisant à un ensemble convertisseur 12-embrayage 13 de faible encombrement axial. Sur la figure 1 , le voile 52, solidaire du disque de friction 46, a au droit des ressorts 54 des pattes d'orientation axiale pour appui de ceux-ci ; la rondelle de guidage 50 en forme d'anneau solidaire de la partie externe de la coquille 55 de la turbine 28 a localement une section en U dont les ailes encadrent les pattes axiales du voile 52.
Selon la figure 2, la rondelle de guidage 50 est constituée à la périphérie externe d'une plaque 58 solidarisée à sa périphérie interne par les rivets 33 au flasque 34 du moyeu 25 ; c'est à cette plaque 58 qu'est solidarisée en 59 la turbine 28. Bien entendu, les structures peuvent être inversées ; ainsi, selon la figure
3, c'est la rondelle de guidage 50 qui est solidaire du disque de friction 46 tandis que le voile 52 est solidaire de la coquille 55 de la turbine 28.
Selon les figures 1 à 3, le noyau 60 est en trois parties 61 , 62, 63 dont chacune est portée par les aubes de l'impulseur 20, de la turbine 28 et du réacteur 30.
Des variantes sont possibles.
Selon la figure 4, le noyau 70 est d'une seule pièce, de forme torique et porté par les aubes 21 de l'impulseur 20 auquel il est soudé électriquement ou brasé ; grâce à cette disposition, la turbine 28 notamment, avec sa coquille 55 et ses aubes 29, peut être obtenue d'une seule pièce par moulage, en étant par exemple en matière plastique.
Selon les figures 5 et 6, le noyau 80 est également d'une seule pièce, portée par les aubes 21 de l'impulseur 20, mais ici le noyau 80 est un anneau plié circonférentiellement en accordéon ; ainsi, il peut être réalisé en acier embouti et fixé sur l'impulseur 20 par exemple par soudure, brasage ou autrement.
Tout en étant d'une seule pièce, le noyau peut être porté par le réacteur 30 au lieu d'être porté par la turbine 20 ; les figures 7 à 12 montrent des exemples d'un tel noyau. Selon la figure 7, le noyau 90 est de forme torique solidarisé au réacteur
30 par exemple par surmoulage, l'ensemble réacteur 30-noyau 90 étant une pièce du type bi-matière. Selon la figure 8, le noyau 91 est de forme plane en étant issu directement d'une conformation d'une seule pièce du réacteur 30 lui-même.
Selon la figure 9, le noyau 92 est globalement de forme plane et comporte un pied d'orientation axiale par lequel il est solidarisé aux aubes 36 du réacteur 30, au bord externe de celles-ci ; cette solidarisation est obtenue par tout moyen approprié tel qu'emmanchement à force, collage ou autre.
Selon la variante des figures 10 et 11 , le noyau 93 est du même genre que celui du noyau 80 des figures 5 et 6, plié circonférentiellement en accordéon, mais ici il est porté par le réacteur 30. Selon la figure 12, le noyau 94 est du genre de celui du noyau 90 de la figure 7 mais ici il est de forme pleine au lieu d'être de forme creuse comme à la figure 7; par ailleurs, ici le noyau 94 et le réacteur 30 sont d'une seule pièce alors qu'à la figure 7 le noyau 90 est surmoulé.
Il est possible également de constituer le noyau en deux parties, dont l'une est portée par la turbine 20 et l'autre par le réacteur 30. La figure 13 illustre une telle possibilité ; selon cette figure, le noyau est constitué d'une partie 95 du type classique portée par la turbine 20 et d'une partie 96, du genre de celui du noyau 91 de la figure 8, de forme générale plane, portée par le réacteur 30.
Selon une variante non représentée, le noyau est du genre de celui décrit à propos des figures 5 et 6, ou 10 et 11 , mais est porté par la turbine 28.
Bien entendu, comme le montrent les figures, la forme des aubes, notamment leur bord libre, de l'organe pompe ou turbine ou réacteur dépourvu d'élément de noyau est adaptée à celle du noyau qu'elles suivent au mieux.
Dans les variantes décrites jusqu'ici, le profil interne du circuit du convertisseur de couple 12 est symétrique par rapport à un plan transversal, perpendiculaire à l'axe.
Tout en restant dans le cadre de l'invention, il est possible de donner à ce profil une forme dissymétrique.
Selon la variante de la figure 14, la forme en œuf du circuit est légèrement inclinée sur l'axe jusqu'à rendre la paroi externe de la coquille 18 supportant l'impulseur 20 globalement perpendiculaire à l'axe. Cette disposition permet, à encombrement axial équivalent de l'appareil d'accouplement, de réserver plus de place pour l'embrayage de verrouillage 13 à la périphérie externe, ou, pour un même embrayage, de diminuer l'encombrement axial de l'appareil.
Selon la figure 15, la paroi externe de la coquille 18 supportant la turbine 20 est également perpendiculaire à l'axe ; ici, on a par ailleurs déformé la coquille 55 de la turbine 28 au droit de l'embrayage 13 en y créant un affaissement en creux 57 pour augmenter l'espace disponible pour l'embrayage 13 ; parallèlement, la partie 62 du noyau 60 portée par la turbine 28 porte un bossage 67 orienté vers l'intérieur du noyau 60, la forme du bossage 67 épousant celle de l'affaissement 57 en s'étendant le long de celui-ci en respectant la section de passage constante quel que soit son diamètre.
Avantageusement, on réalise un sous-ensemble préassemblé comprenant essentiellement la roue de turbine 28, la rondelle de guidage 50, le voile 52, et les ressorts à action circonférentielle 54. Pour ce faire, ladite rondelle de guidage 50 est couplée au voile avec un jeu circonférentiel permettant l'action des ressorts 54 et elle comporte à cet effet des pattes dirigées radialement vers l'intérieur, engagées dans des gorges circonférentielles obtenues par pliage dudit voile.
Le fonctionnement est analogue à celui d'un appareil d'accouplement hydrocinétique classique. Pour mémoire, on rappellera que la roue de turbine 28 est entraînée par la roue de l'impulseur grâce au fluide contenu dans le boîtier et que, après démarrage du véhicule, l'embrayage de verrouillage 13 permet, pour éviter les phénomènes de glissement entre les roues 20 et 28, une solidarisation de l'arbre mené avec l'arbre menant, par serrage du disque de friction 46, sous l'effet du déplacement axial du piston 44. Le verrouillage qui en résulte permet un entraînement direct de l'arbre mené 32, typiquement l'arbre d'entrée d'une boîte de vitesses, par le carter 11 lié en rotation au vilebrequin du moteur du véhicule.

Claims

REVENDICATIONS
1. Appareil d'accouplement hydrocinétique comportant un carter (11) comprenant, de révolution autour d'un axe, d'une part, une enveloppe (15-18) munie d'une paroi transversale (16) propre à être liée en rotation à un arbre menant et, d'autre part, une roue à aubes ou impulseur (20), propre à entraîner hydrocinétiquement une roue de turbine (28) à aubes, solidaire d'un moyeu (35) propre à être lié en rotation à un arbre mené (32), l'impulseur (20) et la roue de turbine (28) étant constitués de coquilles (18-55) ayant des aubes (21-29) solidaires de la face interne (19-56) des coquilles (18-55), dans lequel L est la largeur maximale mesurée axialement du circuit interne à disposition du fluide hydraulique que contient l'appareil, I la largeur mesurée axialement au droit de la portion dudit circuit la plus proche de l'axe de la partie la plus éloignée de l'axe, et H la hauteur mesurée radialement dudit circuit interne, caractérisé par le fait que la valeur du rapport IJH est inférieure à 0,55 et la valeur du rapport l/H est au plus égale à 0,35.
2. Appareil d'accouplement hydrocinétique selon la revendication 1 , dans lequel R(m) désigne la distance à l'axe du point du circuit hydraulique le plus proche de l'axe et R(L) le rayon du cercle sur lequel est placée la largeur maximale L, caractérisé par le fait que le rapport R(m) / R(L) est compris entre 0,6 et 0,8.
3. Appareil d'accouplement hydrocinétique selon la revendication 2, dans lequel la largeur I du circuit est à une distance R(l) de l'axe, caractérisé par le fait que le rapport l/L est compris entre 0,6 et 0,7 et le rapport R(l) / R(m) entre 2,27 et 2,41.
4. Appareil d'accouplement hydrocinétique selon la revendication 2, dans lequel la largeur I du circuit est à une distance R(l) de l'axe, caractérisé par le fait que le rapport R(L) / R(l) est compris entre 0,55 et 0,75.
5. Appareil d'accouplement hydrocinétique selon la revendication 2, dans lequel R(M) désigne la distance à l'axe du point du circuit hydraulique le plus éloigné de l'axe, caractérisé par le fait que le rapport R(m) / R(M) est compris entre 0,35 et 0,45.
6. Appareil d'accouplement hydrocinétique selon l'une des revendications 1 à 5, caractérisé par le fait que le profil interne du circuit est, en coupe axiale, symétrique par rapport à un plan transversal, perpendiculaire à l'axe.
7. Appareil d'accouplement hydrocinétique selon l'une des revendications 1 à 5, caractérisé par le fait que le profil interne du circuit est, en coupe axiale, légèrement incliné sur l'axe en sorte que la paroi externe de la coquille (18) de l'impulseur (20) est globalement perpendiculaire à l'axe.
8. Appareil d'accouplement hydrocinétique selon l'une des revendications 1 à 5, caractérisé par le fait que l'impulseur (20) et la turbine (28) sont associés à un réacteur (30) pour constitution d'un convertisseur de couple (12).
9. Appareil d'accouplement hydrocinétique selon la revendication 8, caractérisé par le fait que le convertisseur de couple (12) comporte un noyau (60,70,80,90,91-95) central de guidage pour le fluide.
10. Appareil d'accouplement hydrocinétique selon la revendication 9, caractérisé par le fait que le noyau est en trois parties (61 ,62,63) portées respectivement par l'impulseur (20), la turbine (28) et le réacteur (30).
11. Appareil d'accouplement hydrocinétique selon la revendication 9, caractérisé par le fait que le noyau est en deux pièces dont l'une (95) est portée par l'impulseur (20) et l'autre (96) par le réacteur (30).
12. Appareil d'accouplement hydrocinétique selon la revendication 9, caractérisé par le fait que le noyau est en une seule pièce (70,80) portée par l'impulseur (20) ou la turbine (28).
13. Appareil d'accouplement hydrocinétique selon la revendication 12, caractérisé par le fait que le noyau (80) est en forme d'anneau plié circonférentiellement en accordéon.
14. Appareil d'accouplement hydrocinétique selon la revendication 9, caractérisé par le noyau est en une seule pièce (90-94) portée par le réacteur (30).
15. Appareil d'accouplement hydrocinétique selon la revendication 14, caractérisé par le fait que le noyau est de forme torique, creux (90) ou plein (94).
16. Appareil d'accouplement hydrocinétique selon la revendication 14, caractérisé par le fait que le noyau (91) est de forme plane en étant issu directement d'une conformation du réacteur (30).
17. Appareil d'accouplement hydrocinétique selon la revendication 14, caractérisé par le fait que le noyau (92) est globalement de forme plane et comporte un pied d'orientation axiale par lequel il est solidarisé aux aubes (36) du réacteur (30), par exemple par emmanchement à force ou par surmoulage.
18. Appareil d'accouplement hydrocinétique selon la revendication 14, caractérisé par le fait que le noyau (93) est en forme d'anneau plié circonférentiellement en accordéon.
19. Appareil d'accouplement hydrocinétique selon l'une des revendications 1 à 18, caractérisé par le fait qu'à l'intérieur de l'enveloppe (15- 18) est placé un embrayage de verrouillage (13) intervenant entre la turbine (28) et l'enveloppe (15-18), ledit embrayage comprenant un amortisseur de torsion, un piston (44) monté mobile axialement et au moins une garniture de frottement propre à être serrée entre ledit piston (44) et la face interne de la paroi transversale (16).
20. Appareil d'accouplement hydrocinétique selon la revendication 19, caractérisé par le fait que l'amortisseur de torsion comprend des ressorts (54) à action circonférentielle intercalés entre deux pièces, rondelle de guidage (50) et voile (52), l'une de ces pièces étant solidaire en rotation de la garniture de frottement et l'autre de la turbine (28).
21. Appareil d'accouplement hydrocinétique selon l'une des revendications 18 ou 19, prise conjointement avec les revendications 7 et 8, caractérisé par le fait que la coquille (55) de la turbine (28) est déformée au droit de l'embrayage (13) en y créant un affaissement en creux (57) et le noyau (60) porte un bossage (67) dont la forme épouse celle de l'affaissement (57) en s'étendant le long de celui-ci en respectant la section de passage constante quel que soit son diamètre.
PCT/FR2000/001151 1999-05-05 2000-04-28 Appareil d'accouplement hydrocinetique WO2000068598A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000617349A JP2002544447A (ja) 1999-05-05 2000-04-28 流体力学的結合装置
DE10081340T DE10081340B4 (de) 1999-05-05 2000-04-28 Vorrichtung zur hydrokinetischen Kraftübertragung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9905707A FR2793292B1 (fr) 1999-05-05 1999-05-05 Appareil d'accouplement hydrocinetique
FR99/05707 1999-05-05

Publications (1)

Publication Number Publication Date
WO2000068598A1 true WO2000068598A1 (fr) 2000-11-16

Family

ID=9545238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/001151 WO2000068598A1 (fr) 1999-05-05 2000-04-28 Appareil d'accouplement hydrocinetique

Country Status (4)

Country Link
JP (1) JP2002544447A (fr)
DE (1) DE10081340B4 (fr)
FR (1) FR2793292B1 (fr)
WO (1) WO2000068598A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7401688B2 (en) * 2005-02-24 2008-07-22 Exedy Corporation Torque converter
US7621122B2 (en) * 2006-04-13 2009-11-24 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Torus shapes for torque converters
US7634910B2 (en) * 2006-04-13 2009-12-22 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Torus shapes for torque converters
US7673449B2 (en) * 2006-04-13 2010-03-09 Luk Lamellen Und Kapplungsbau Beteiligungs Kg Torus shapes for torque converters
DE10131768B4 (de) * 2001-06-30 2011-07-07 ZF Sachs AG, 97424 Hydrodynamische Kopplungseinrichtung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537625B2 (ja) * 2001-07-09 2010-09-01 株式会社ユタカ技研 ロックアップクラッチ付き流体伝動装置
WO2007118445A2 (fr) 2006-04-13 2007-10-25 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Formes de tores pour convertisseur de couple
JP5766149B2 (ja) * 2012-05-27 2015-08-19 ジヤトコ株式会社 トルクコンバータにおけるステータ構造
US11326678B2 (en) 2020-06-17 2022-05-10 Valeo Kapec Co., Ltd. Friction disc apparatus and related torque converter assemblies for use with vehicles

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2357338A (en) * 1943-08-07 1944-09-05 Jarvis C Marble Hydraulic coupling
US2457692A (en) * 1941-12-10 1948-12-28 Chrysler Corp Hydrodynamic transmission
US3212264A (en) * 1962-11-02 1965-10-19 Porsche Kg Hydrodynamic transmission
GB1215623A (en) * 1967-01-12 1970-12-16 Aluminium Francais A method of making a torque converter and converters obtained by this method
US3828554A (en) * 1971-11-26 1974-08-13 Ustav Pro Vyzkum Motorovych Vo Torque converter
US4080786A (en) * 1975-12-31 1978-03-28 S.R.M. Hydromekanik Hydrodynamic torque converters
US4129000A (en) * 1976-05-20 1978-12-12 Kabushiki Kaisha Komatsu Seisakusho Hydraulic torque converter
JPH03144152A (ja) * 1989-10-27 1991-06-19 Nissan Motor Co Ltd トルクコンバータ
US5241820A (en) * 1991-02-05 1993-09-07 Daikin Clutch Corporation Torque convertor
JPH07127708A (ja) * 1993-09-08 1995-05-16 Nissan Motor Co Ltd コアレストルクコンバータ
FR2712368A1 (fr) * 1991-05-02 1995-05-19 Luk Lamellen & Kupplungsbau Dispositif de transmission de force.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569352A (en) * 1978-11-16 1980-05-24 Srm Hydromekanik Ab One and a half stage type hydrodynamic torque convertor
JPH0256958U (fr) * 1988-10-19 1990-04-24
DE19910049B4 (de) * 1998-03-13 2019-06-27 Schaeffler Technologies AG & Co. KG Antriebssystem

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2457692A (en) * 1941-12-10 1948-12-28 Chrysler Corp Hydrodynamic transmission
US2357338A (en) * 1943-08-07 1944-09-05 Jarvis C Marble Hydraulic coupling
US3212264A (en) * 1962-11-02 1965-10-19 Porsche Kg Hydrodynamic transmission
GB1215623A (en) * 1967-01-12 1970-12-16 Aluminium Francais A method of making a torque converter and converters obtained by this method
US3828554A (en) * 1971-11-26 1974-08-13 Ustav Pro Vyzkum Motorovych Vo Torque converter
US4080786A (en) * 1975-12-31 1978-03-28 S.R.M. Hydromekanik Hydrodynamic torque converters
US4129000A (en) * 1976-05-20 1978-12-12 Kabushiki Kaisha Komatsu Seisakusho Hydraulic torque converter
JPH03144152A (ja) * 1989-10-27 1991-06-19 Nissan Motor Co Ltd トルクコンバータ
US5241820A (en) * 1991-02-05 1993-09-07 Daikin Clutch Corporation Torque convertor
FR2712368A1 (fr) * 1991-05-02 1995-05-19 Luk Lamellen & Kupplungsbau Dispositif de transmission de force.
JPH07127708A (ja) * 1993-09-08 1995-05-16 Nissan Motor Co Ltd コアレストルクコンバータ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 366 (M - 1158) 13 September 1991 (1991-09-13) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 08 29 September 1995 (1995-09-29) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10131768B4 (de) * 2001-06-30 2011-07-07 ZF Sachs AG, 97424 Hydrodynamische Kopplungseinrichtung
US7401688B2 (en) * 2005-02-24 2008-07-22 Exedy Corporation Torque converter
US7621122B2 (en) * 2006-04-13 2009-11-24 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Torus shapes for torque converters
US7634910B2 (en) * 2006-04-13 2009-12-22 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Torus shapes for torque converters
US7673449B2 (en) * 2006-04-13 2010-03-09 Luk Lamellen Und Kapplungsbau Beteiligungs Kg Torus shapes for torque converters

Also Published As

Publication number Publication date
JP2002544447A (ja) 2002-12-24
DE10081340B4 (de) 2010-04-01
DE10081340T1 (de) 2001-08-02
FR2793292B1 (fr) 2001-07-20
FR2793292A1 (fr) 2000-11-10

Similar Documents

Publication Publication Date Title
FR2782362A1 (fr) Appareil d'accouplement hydrocinetique, notamment pour vehicule automobile
WO2001007800A1 (fr) Appareil d'accouplement hydrocinetique
WO1995033937A1 (fr) Embrayage de verrouillage, notamment pour vehicules automobiles
WO1996035890A1 (fr) Appareil d'accouplement hydrocinetique, notamment pour vehicule automobile
FR2738891A1 (fr) Appareil d'accouplement hydrocinetique
FR2738890A1 (fr) Amortisseur de torsion pour embrayage de verrouillage et embrayage de verrouillage comportant un tel amortisseur de torsion
WO2000068598A1 (fr) Appareil d'accouplement hydrocinetique
WO2000019126A1 (fr) Embrayage de verrouillage pour appareil d'accouplement hydrocinetique
FR2706968A1 (fr)
WO2002001092A1 (fr) Appareil d'accouplement hydrocinetique, notamment pour vehicule automobile, comportant des moyens perfectionnes de liaison du piston au couvercle
WO1997042432A1 (fr) Appareil d'accouplement hydrocinetique a piece d'entrainement de languettes, notamment pour vehicule automobile
WO2002038980A1 (fr) Dispositif d'amortissement de vibration en torsion pour embrayage de vehicule automobile
WO1997042433A1 (fr) Appareil d'accouplement hydrocinetique a piece d'entrainement de languettes, notamment pour vehicule automobile
WO1999001682A1 (fr) Appareil d'accouplement hydrocinetique a embrayage de verrouillage, pour vehicule automobile
FR2788320A1 (fr) Appareil d'accouplement hydrocinetique compact, notamment pour vehicule automobile
EP0697077B1 (fr) Appareil d'accouplement hydrocinetique, notamment pour vehicules automobiles
FR2695975A1 (fr) Embrayage de verrouillage pour appareil d'acouplement hydrocinétique.
WO1997001048A1 (fr) Appareil d'accouplement hydrocinetique, notamment pour une transmission de vehicule automobile
WO1997047901A1 (fr) Appareil d'accouplement hydrocinetique, notamment pour vehicule automobile
WO2001081792A1 (fr) Appareil d'accouplement hydrocinetique, notamment pour vehicule automobile
WO2000068599A1 (fr) Appareil d'accouplement hydrocinetique a turbine deformee
FR2793293A1 (fr) Appareil d'accouplement hydrocinetique a noyau de guidage en une ou deux parties
FR2816019A1 (fr) Appareil d'accouplement hydrocinetique, notamment pour vehicule automobile
FR3053092A1 (fr) Dispositif de transmission de couple, notamment pour vehicule automobile
WO1996035891A1 (fr) Appareil d'accouplement hydrocinetique, notamment pour vehicule automobile

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP

ENP Entry into the national phase

Ref document number: 2000 617349

Country of ref document: JP

Kind code of ref document: A

RET De translation (de og part 6b)

Ref document number: 10081340

Country of ref document: DE

Date of ref document: 20010802

WWE Wipo information: entry into national phase

Ref document number: 10081340

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607