WO2000059657A1 - Continuous casting nozzle - Google Patents

Continuous casting nozzle

Info

Publication number
WO2000059657A1
WO2000059657A1 PCT/JP1999/001787 JP9901787W WO0059657A1 WO 2000059657 A1 WO2000059657 A1 WO 2000059657A1 JP 9901787 W JP9901787 W JP 9901787W WO 0059657 A1 WO0059657 A1 WO 0059657A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
molten steel
continuous
alumina
stone
Prior art date
Application number
PCT/JP1999/001787
Other languages
French (fr)
Japanese (ja)
Inventor
Mituru Ando
Kazumi Oguri
Toshiyuki Muroi
Toshikazu Takasu
Original Assignee
Akechi Ceramics Kabushiki Kaisha
Tokyo Yogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP09290520A external-priority patent/JP3101650B2/en
Priority to JP09290520A priority Critical patent/JP3101650B2/en
Priority to AT99912101T priority patent/ATE277704T1/en
Priority to US09/719,022 priority patent/US6533146B1/en
Priority to EP99912101A priority patent/EP1097763B1/en
Priority to PCT/JP1999/001787 priority patent/WO2000059657A1/en
Application filed by Akechi Ceramics Kabushiki Kaisha, Tokyo Yogyo Kabushiki Kaisha filed Critical Akechi Ceramics Kabushiki Kaisha
Priority to CA002312482A priority patent/CA2312482C/en
Priority to BR9910943-3A priority patent/BR9910943A/en
Priority to AU30558/99A priority patent/AU746450B2/en
Priority to DE69920709T priority patent/DE69920709T2/en
Priority to KR10-2000-7006549A priority patent/KR100367647B1/en
Publication of WO2000059657A1 publication Critical patent/WO2000059657A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/52Manufacturing or repairing thereof
    • B22D41/54Manufacturing or repairing thereof characterised by the materials used therefor

Definitions

  • the present invention relates to a continuous manufacturing nozzle capable of effectively suppressing the clogging of a nozzle inner hole through which molten steel passes in a continuous manufacturing of aluminum-killed steel containing aluminum and the like, and further effectively preventing clogging. It is.
  • Conventional technology
  • the nozzle for continuous production of molten steel is used for the following purposes.
  • the nozzle for continuous production has the function of injecting molten steel from the tundish into the mold.At this time, oxidation of the molten steel due to contact with air is prevented, and scattering of the molten steel is prevented.
  • it is used for the purpose of rectifying pouring of molten metal to prevent the inclusion of nonmetallic inclusions and suspended matters on the mold surface into the pieces.
  • the material of continuous steel nozzles for continuous production is mainly composed of graphite, alumina, silica, silicon carbide, etc.However, when producing aluminum-killed steel, the following problems are encountered. Have.
  • non-metallic inclusions such as heat-alumina.
  • the molten steel passes through the nozzle, it reacts with oxygen in the atmosphere, generating more alumina. Therefore, when manufacturing aluminum-killed steel, etc., non-metallic inclusions such as the above-mentioned alumina adhere to the surface of the inner hole of the nozzle for continuous manufacturing. This causes the inner hole to be narrowed. Blockage makes stable construction difficult.
  • non-metallic inclusions such as aluminum alumina adhered and deposited in this manner may peel or fall off and get caught in the piece, which may cause a deterioration in the quality of the piece.
  • Narrowing and clogging of the inner hole by non-metallic inclusions such as the above-mentioned alumina In order to prevent this, an inert gas is injected from the inner surface of the continuous production nozzle that forms the inner hole toward the molten steel flowing through the inner hole, and non-metallic materials such as alumina that exist in the molten steel are interposed.
  • a method is widely used to prevent substances from adhering and accumulating on the inner surface of the nozzle for continuous production (for example, Japanese Patent Publication No. 6-59553).
  • Aluminum in steel is oxidized by the entrainment of air passing through the refractory joint and refractory structure, and is generated by reduction of the silicide force in the refractory containing carbon. Sio supplies oxygen and alumina is produced.
  • the alumina diffuses and agglomerates to form alumina inclusions.
  • the non-oxide material (S i C reactivity from low Ikoto of aluminum oxide, S i 3 N 3, BN , Z r B 2, rhinoceros No. 1) is added to alumina-graphite, or a nozzle composed of itself is proposed (for example, Japanese Patent Publication No. Sho 61-38152).
  • oxides containing C A_ ⁇ material (C a O 'Z r 0 2, C a 0 ⁇ S I_ ⁇ 2, 2 C a 0 ⁇ S i 0 2 , etc.), C a O and A l 2 0 3 so to produce a low melting point material tends to separate from by Ri ⁇ steel reaction, graphite-C a 0 nozzle consisting of containing oxide material have also been proposed (e.g., Japanese Patent Publication 6 2 - 5 6 1 0 1 No. Gazette).
  • the present invention forms a glass layer on the inner surface of the nozzle during use, prevents the entrainment of air passing through the refractory, prevents the formation of alumina, and smoothes the structure of the inner surface of the nozzle.
  • a continuous production nozzle that suppresses the deposition and adhesion of alumina inclusions on the inner surface of the nozzle, prevents the inner hole from being narrowed, and further prevents clogging, and enables stable production To provide.
  • the first invention the inner hole surface portion in contact with molten steel nozzle for continuous ⁇ is, the A 1 2 0 3 or A l 2 0 3 as a main component, its melting point is 1 8 0 0 ° C or more It is a nozzle for continuous production of molten steel, characterized in that the composition is composed of 15 to 60% by weight of aggregate and the balance is monolith.
  • the second invention the inner hole surface portion in contact with molten steel nozzle for continuous ⁇ is the ⁇ alumina (A l 2 ⁇ 3) or alumina (A l 2 ⁇ 3) as a main component, the melting point of its 1 A binder composed of 15 to 60% by weight of aggregate at 800 ° C or higher, and the remainder composed of rock stone, added with a binder, kneaded, molded, and fired in a non-oxidizing atmosphere.
  • This is a nozzle for continuous production of molten steel.
  • a third invention is a nozzle for continuous production of molten steel, characterized in that the mouth stone has a particle diameter of 250 / zm or less, and the weight ratio of the mouth stone is 60% by weight or less of the total mouth stone mixing ratio. .
  • the opening one stone is pi Rofui Lai preparative (A l 2 0 3 - 4 S i ⁇ 2 ⁇ H 2 0) molten steel continuous ⁇ for Roh nozzle, characterized in that a main component It is.
  • a fifth invention is a nozzle for continuous production of molten steel, characterized in that the raw stone is calcined at 800 ° C. or higher to eliminate water of crystallization.
  • a sixth invention is a nozzle for continuous production of molten steel, wherein the binder is a thermosetting resin.
  • FIG. 1 is a longitudinal sectional view of a nozzle provided with the refractory according to the present invention on the surface of the inner hole of the nozzle in contact with molten steel.
  • FIG. 2 is a cross-sectional view of a nozzle provided with a refractory material according to the present invention on the surface of the inner hole of the nozzle and the lower part of the nozzle (the part immersed in molten steel).
  • FIG. 3 is a table showing the composition and physical properties of the present invention and comparative examples as Table 1.
  • Siri force is decomposed S i 0 (g) and C 0 (g) is generated by the above reaction, it becomes the source of oxygen into the steel, to produce a A l 2 0 3 reacts with the steel A 1 .
  • the mouth - decomposition of stone particles is the main mineral of the mouth one stone not pie Rofi Lai preparative (A 1 2 ⁇ 3 - 4 S i 0 2 ⁇ S i 0 2 such as ⁇ 2 ⁇ ) is stable. This point is due to the fact that a pre-packet made of mouth-stone, resin powder and carbon fine powder was created and buried in the please. found.
  • the material to which graphite of the present invention is not added is 2. 4 (kca 1 / m / hr / ° C) and low and excellent thermal insulation, bare metal adhesion and carry one a 1 2 0 nonmetallic inclusions such as 3 is hardly precipitated.
  • the graphite is oxidized in the nozzle including a conventional graphite, reduces the smoothness of the inner bore surface, since the molten steel flowing nozzle hole is turbulent, shed one A 1 2 0 3 or the like non-metallic inclusions Things will accumulate. However, it does not decrease smoothness when not adding the graphite, thus unevenness is not generated in the nozzle hole surface, - A 1 2 0 nonmetallic inclusions such as 3 is not deposited.
  • the semi-molten temperature of rock is around 150 ° C, and it melts on the working surface that comes into contact with molten steel and forms a glass film, making the structure of the working surface smooth and fire-resistant by the glass film. Suppresses air entrapment through tissue.
  • the mixing weight ratio of the ore is preferably at least 40% by weight. If the content is 86% by weight or more, the softening deformation increases, and the corrosion resistance to molten steel is inferior. This amount is the balance of other components.
  • Nozzle of the present invention is mainly composed of A 1 2 0 3 or A l 2 0 3 as the aggregate, its melting point is blended 1 8 0 0 ° C or more aggregate 1 5-6 0% .
  • a 1 2 ⁇ 3 M g 0 ⁇ A 1 2 0 3 as the aggregate as a main component is a spinel, A 1 2 0 3, 4 S i 0 2 is impart strength and corrosion resistance of the nozzle is a molded body Has the effect of doing.
  • lozenges There are three types of lozenges: pyrophyllite monolith, kaolinite lowstone, and sericite raw stone, but the inner surface that comes into contact with molten steel becomes semi-melted when used, and glass Considering the formation of the layer and the erosion resistance of the molten steel, the pyrophyllite with a fire resistance of SK29-32 is good.
  • Kaolinite has a high fire resistance of SK 33 to 36
  • sericite lithite has a low fire resistance of SK 26 to 29, which is undesirable.
  • calcite which has been calcined at 800 ° C or higher to eliminate the water of crystallization, is to mix it with non-calcined mouth stones, and to fire a molded nozzle, This is because water of crystallization is released at 500 to 800 ° C, and at this time, the coefficient of thermal expansion becomes abnormally large and cracks are formed in the compact.
  • the average particle size of the mouth stone is 250 / m or less and the weight ratio of the mouth stone is 60% or more, structural defects such as lamination during molding are likely to occur, and the nozzle is used for continuous fabrication.
  • the content be 60% or less, since softening deformation of the monolith is likely to occur.
  • Pie Roff Lee Lai preparative (A l 2 ⁇ 3 - 4 S i 0 2 ⁇ ⁇ 2 0) the main component to that roseki 6 5-9 0% by weight of the remainder, A l 2 ⁇ 3 or A l 2 0 3 refractory composition consisting aggregate 1 5-6 0% by weight of a main component, the decomposition of the raw stone grain rather, not a source of oxygen to the S i 0 2 of such steel.
  • the semi-molten temperature of the rock is about 150 ° C, which is close to the forging temperature of molten steel. entrainment effect of suppressing the adhesion of a 1 2 0 3 ⁇ beauty metal from suppressing the air.
  • thermosetting resin for example, a phenol resin, a furan resin, or the like is blended as a binder in an amount of 5 to 15% by weight. It is shaped into a nozzle and fired.
  • This molding method is desirable in that CIP (Cold Isostatic Pressing) uniformly compresses the compact.
  • the firing temperature is desirably about 100 to 1300 ° C.
  • the firing atmosphere is more desirably a reducing atmosphere than an oxidizing atmosphere, that is, a non-oxidizing atmosphere, since it does not oxidize the compounded resin.
  • FIG. 1 shows an example of a vertical cross section of a continuous production immersion nozzle according to the present invention.
  • the continuous production nozzle 10 is disposed between the tundish and the mold, and is used as an immersion nozzle for injecting molten steel from the evening dish into the mold.
  • the surface layer 2 of the inner hole 1 through which the molten steel of the continuous production nozzle 10 flows is formed of a refractory having the above-described chemical composition.
  • the part 3 other than the surface layer is conventional alumina-graphite.
  • the dimensions of the continuous structure nozzle are, for example, about 1 m in total length, about 6 cm in diameter of the inner hole, 16 cm in outer diameter, and about 5 cm in wall thickness.
  • the thickness of the refractory according to the present invention is about 2 to 15 mm. Note that these dimensions are merely an example, and do not limit the present invention, and vary depending on the dimensions of the gun piece to be manufactured.
  • Fig. 2 shows that the entire part immersed in the molten steel in the type III is made of the refractory of the present invention.
  • the mode of the nozzle made is shown. In either case, the alumina that normally closes the nozzle bore accumulates in the bore below the nozzle.
  • the immersion nozzle of the present invention suppresses non-metallic inclusions such as alumina present in the molten steel from adhering to and depositing on the inner surface layer 2.
  • a powder and a solution of phenolic resin in the range of 5 to 10% by weight are added to 9 mixtures having different component compositions, and the resulting mixture is mixed and kneaded to obtain a composition of 100 to 100%. It was fired at 1200 ° C.
  • the following molded articles were prepared from the nine compositions.
  • the first compact (hereinafter referred to as compact 1) is a compact having dimensions of 30 mm x 30 mm x 230 mm for testing the amount of nonmetallic inclusions such as alumina and corrosion resistance to molten steel. It is.
  • the second molded body (hereinafter referred to as molded body 2) is a molded body having a size of 50 ⁇ mm X 20 mm in order to measure the air permeability, and the third molded body (hereinafter referred to as molded body 3) is resistant. It is a molded article having dimensions of an outer diameter of 100 mm, an inner diameter of 60 mm, and a length of 250 mm for testing the sportiness. Samples 1 to 9 were prepared by subjecting each of the obtained molded bodies to reduction firing at a temperature in the range of 1000 ° C. to 1200 ° C.
  • Table 1 shows the physical property values (porosity and bulk specific gravity) of each of Samples 1 to 5 (hereinafter, referred to as a sample of the present invention) and Samples 6 to 9 (hereinafter, referred to as a sample for comparison).
  • the above-mentioned samples 1 to 5 of the molded article 3 of the present invention and samples 6 to 9 for comparison were heated in an electric furnace at 150 ° C. for 30 minutes, and quenched with water. The sporting resistance was investigated.
  • Table 1 shows the results as shown in Fig. 3.
  • Samples 1 to 5 of the molded body 2 of the present invention and Comparative Samples 6 to 9 were heated in an electric furnace at a temperature of 150 ° C. for 60 minutes, and the air permeability was measured after cooling. .
  • Table 1 shows the test results as shown in Fig. 1.
  • the sample of the present invention has excellent spalling resistance, and despite the low erosion rate, nonmetallic inclusions such as alumina do not adhere. The inner hole is narrower, and the clogging can be effectively suppressed.
  • the sample of the present invention has a low air permeability, it is possible to suppress the entrapment of air through the refractory during actual use.
  • Comparative Sample 6 Although the amount of adhered alumina was small due to the high content of lipstick, the sponging resistance was extremely poor, and the corrosion resistance to molten steel was extremely poor. Is evident.
  • the oxygen to supply in the steel decomposes S i 0 2 is because it contains a single A l 2 0 3 and S i 0 2 instead of the mouth one stone The amount of alumina attached is remarkably large.
  • the inner hole of aluminum-killed steel is narrowed by non-metallic inclusions such as alumina without deteriorating the structure of the refractory, and the clogging is further suppressed. And it can be manufactured stably.
  • a low charge carbon steel of 300 tons per charge was produced by a continuous slab production machine of 2 strands, and 5 to 7 charges were produced without nozzle closure. I was able to. If a conventional nozzle was used to make a 2- to 4-chamber structure, the nozzle was closed and the structure was interrupted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Led Devices (AREA)

Abstract

A continuous casting nozzle for molten steel, wherein a nozzle inner hole surface layer, in contact with the molten steel, of the continuous casting nozzle is obtained by adding, before kneading and molding, a binder to Al2O3 or a composition consisting of Al2O3 as a main component, 15 to 60 wt. % of an aggregate having a melting temperature of not lower than 1800 °C and agalmatolite as the remaining part, and firing the molded product in a non-oxidizing atmosphere.

Description

明細書  Specification
連続錡造用ノズル 技術分野 Technical field for continuous production nozzle
本発明は、 アルミニウムを含有するアルミキル ド鋼等の連続銪造にお いて溶鋼が通過するノズル内孔の狭さ く、 さらには閉塞を効果的に抑制 することができる連続錄造用ノズルに関するものである。 従来の技術  The present invention relates to a continuous manufacturing nozzle capable of effectively suppressing the clogging of a nozzle inner hole through which molten steel passes in a continuous manufacturing of aluminum-killed steel containing aluminum and the like, and further effectively preventing clogging. It is. Conventional technology
溶鋼の連続錶造用ノズルは、 次のような目的のために使用される。 溶鋼の連続錡造において連続錡造用ノズルはタンディ ッシュからモー ルドへ溶鋼を注入する機能を有するが、 この際溶鋼の空気との接触によ る酸化を防ぎ、 又溶鋼の飛散防止を図り、 さらには非金属介在物及びモ ールド面浮遊物の錡片内への卷込み防止のために注湯を整流化するなど の目的で使用されている。  The nozzle for continuous production of molten steel is used for the following purposes. In the continuous production of molten steel, the nozzle for continuous production has the function of injecting molten steel from the tundish into the mold.At this time, oxidation of the molten steel due to contact with air is prevented, and scattering of the molten steel is prevented. In addition, it is used for the purpose of rectifying pouring of molten metal to prevent the inclusion of nonmetallic inclusions and suspended matters on the mold surface into the pieces.
従来溶鋼の連続錡造用ノズルの材質は、 主として黒鉛、 アルミナ、 シ リカ、 シリコンカーバイ ド等で構成されているが、 しかしながらアルミ キルド鋼等を銪造する場合は次のような問題点を有している。  Conventionally, the material of continuous steel nozzles for continuous production is mainly composed of graphite, alumina, silica, silicon carbide, etc.However, when producing aluminum-killed steel, the following problems are encountered. Have.
アルミキル ド鋼等においては、 脱酸剤として添加されるアルミニウム が溶鋼中に存在する酸素と反応してひ—アルミナ等の非金属介在物が生 成する。 また、 溶鋼がノズルを通過するに際して大気中の酸素と反応し、 アルミナがさらに発生する。 そのためアルミキル ド鋼等を铸造する際、 連続錡造用ノズルの内孔表面に上記アルミナ等の非金属介在物が付着し. 堆積してその結果内孔が狭さく し、 最悪の場合、 内孔を閉塞して安定的 な錡造を困難にする。 あるいはこのようにして付着し堆積したひ一アル ミナ等の非金属介在物が剥離或いは脱落して錡片に巻込まれ銪片の品質 低下を招く ことがある。  In aluminum-killed steel and the like, aluminum added as a deoxidizing agent reacts with oxygen present in the molten steel to generate non-metallic inclusions such as heat-alumina. As the molten steel passes through the nozzle, it reacts with oxygen in the atmosphere, generating more alumina. Therefore, when manufacturing aluminum-killed steel, etc., non-metallic inclusions such as the above-mentioned alumina adhere to the surface of the inner hole of the nozzle for continuous manufacturing. This causes the inner hole to be narrowed. Blockage makes stable construction difficult. Alternatively, non-metallic inclusions such as aluminum alumina adhered and deposited in this manner may peel or fall off and get caught in the piece, which may cause a deterioration in the quality of the piece.
上述したひ一アルミナ等の非金属介在物による内孔の狭さく及び閉塞 を防止するため、 内孔を形成する連続錡造用ノズルの内面から前記内孔 を通って流れる溶鋼に向かって不活性ガスを噴射させ、 溶鋼中に存在す るひ一アルミナ等の非金属介在物が連続銪造用ノズル内孔面に付着し堆 積することを防止する方法が広く用いられている( 例えば特公平 6— 5 9 5 3 3号公報)。 Narrowing and clogging of the inner hole by non-metallic inclusions such as the above-mentioned alumina In order to prevent this, an inert gas is injected from the inner surface of the continuous production nozzle that forms the inner hole toward the molten steel flowing through the inner hole, and non-metallic materials such as alumina that exist in the molten steel are interposed. A method is widely used to prevent substances from adhering and accumulating on the inner surface of the nozzle for continuous production (for example, Japanese Patent Publication No. 6-59553).
しかしながら上述した溶鋼連続錡造用ノズルの内面から不活性ガスを 噴出させる方法には次のような問題点がある。  However, the above-described method of injecting an inert gas from the inner surface of the continuous steelmaking nozzle has the following problems.
即ち、 噴出させる不活性ガス量が多いと不活性ガスによってできた気 泡が錡片のなかに卷き込まれピンホールに基づく欠陥が生じる。 逆に噴 出させる不活性ガス量が少ないと ひ—アルミナ等の非金属介在物が連続 鍀造用ノズルの内孔面に付着し、 堆積して内孔が狭さ く し、 さらには最 悪の場合ノズルを閉塞する。  In other words, if the amount of the inert gas to be ejected is large, bubbles formed by the inert gas are entrapped in a piece and a defect based on a pinhole occurs. Conversely, if the amount of the inert gas to be ejected is small, non-metallic inclusions such as alumina will adhere to the inner hole surface of the continuous manufacturing nozzle, accumulate and narrow the inner hole, and in the worst case. In the case of, close the nozzle.
また、 連続鎵造用ノズルの内面から前記内孔を通って流れる溶鋼に向 かって不活性ガスを均一に吹き込むことは構造的に困難であり、 また長 時間铸造する際は連続錶造用ノズル材質の組織劣化及び構造劣化するに 伴い、 噴出させる不活性ガスのコン 卜ロールが不安定となる。 その結果、 ひ一アルミナ等の非金属介在物が連続錡造用ノズルの内孔面に付着し、 そして堆積して内孔を狭さ く し、 さらには閉塞してしまう。  In addition, it is structurally difficult to blow an inert gas uniformly from the inner surface of the nozzle for continuous production toward the molten steel flowing through the inner hole. With the deterioration of the structure and the structure, the control of the ejected inert gas becomes unstable. As a result, non-metallic inclusions such as mono-alumina adhere to and accumulate on the inner hole surface of the continuous manufacturing nozzle, thereby narrowing and even closing the inner hole.
非金属介在物によるノズル閉塞、 と く にアルミナ (A l 2 0 3 ) 介在 物によるノズル閉塞は次のようにして生じると考えられる。 即ち、Nozzle blockage by nonmetallic inclusions, the nozzle clogging due to alumina (A l 2 0 3) inclusions Ku is believed to occur as follows. That is,
( 1 ) 鋼中のアルミ二ゥムは耐火物の接合部及び耐火物組織を通過する 空気の巻き込みによ り酸化し、 また、 カーボンを含んだ耐火物中のシリ 力が還元して発生する S i 0が酸素を供給し、 アルミナが生成される。(1) Aluminum in steel is oxidized by the entrainment of air passing through the refractory joint and refractory structure, and is generated by reduction of the silicide force in the refractory containing carbon. Sio supplies oxygen and alumina is produced.
( 2 ) このアルミナが拡散、 凝集しアルミナ介在物が形成される。 (2) The alumina diffuses and agglomerates to form alumina inclusions.
( 3 ) また、 ノズルの内孔面では黒鉛、 カーボンが消失し、 内孔表面が 凹凸状になり、 アルミナ介在物が堆積しやすくなる。  (3) In addition, graphite and carbon disappear on the inner hole surface of the nozzle, the inner hole surface becomes uneven, and alumina inclusions tend to be deposited.
他方、 材質面からの対策として、 アルミニウム酸化物との反応性が低 いことから非酸化物原料 ( S i C、 S i 3 N 3 、 B N、 Z r B 2 、 サイ ァロン等) をアルミナ—黒鉛質に添加、 も しくはそれ自体からなるノズ ルが提案されている( 例えば特公昭 6 1 - 38 1 5 2号公報)。 On the other hand, as a countermeasure for a material surface, the non-oxide material (S i C reactivity from low Ikoto of aluminum oxide, S i 3 N 3, BN , Z r B 2, rhinoceros No. 1) is added to alumina-graphite, or a nozzle composed of itself is proposed (for example, Japanese Patent Publication No. Sho 61-38152).
しかしながら、 通常使用されているアルミナー黒鉛質に上記原料を添 加する場合は、 多量に添加しなければ、 付着防止効果が認められず、 耐 食性も劣化することから実用的ではない。  However, when the above raw materials are added to commonly used alumina-graphite materials, unless they are added in large amounts, the adhesion preventing effect is not recognized and the corrosion resistance is deteriorated, so that it is not practical.
また、 非酸化物系の原料のみでノズルを作成する場合も、 その効果が 期待できる反面、 原料、 製造面のコス トが高く、 実用化には不向きであ る。  In addition, when a nozzle is made only from non-oxide-based materials, the effect can be expected, but the cost of the materials and production is high, and it is not suitable for practical use.
更に、 C a〇を含有する酸化物原料 (C a O ' Z r 02 、 C a 0 · S i〇2 、 2 C a 0 · S i 02 等) は、 C a Oと A l2 03 反応によ り溶 鋼から分離し易い低融点物質を生成させるので、 黒鉛一 C a 0含有酸化 物原料からなるノズルも提案されている (例えば特公昭 6 2 - 5 6 1 0 1号公報)。 Additionally, oxides containing C A_〇 material (C a O 'Z r 0 2, C a 0 · S I_〇 2, 2 C a 0 · S i 0 2 , etc.), C a O and A l 2 0 3 so to produce a low melting point material tends to separate from by Ri溶steel reaction, graphite-C a 0 nozzle consisting of containing oxide material have also been proposed (e.g., Japanese Patent Publication 6 2 - 5 6 1 0 1 No. Gazette).
しかしながら、 錶造時の溶鋼温度条件によ り、 C aOと A l2 03 反 応性は影響を受けやすいので、 低融点物質が生成されず、 また鋼中に多 量の A l2 03 介在物が含まれる場合は、 耐スポーリ ング性及び耐食性 等の面で C a 0量を十分に確保できない場合がある。 また、 耐火物から 溶鋼に流出した骨材の内 Z r 02 は比重が高いため溶鋼中において浮上 しにく く、 溶鋼から浮上分離されにくい。 発明の開示 However, Ri by the molten steel temperature at the time of錶造, C since aO and A l 2 0 3 easy reactivity is influenced, low melting point material is not generated, and the multi-volume in steel A l 2 0 3 When inclusions are included, it may not be possible to secure a sufficient amount of C a 0 in terms of spalling resistance and corrosion resistance. The inner Z r 0 2 of the aggregate flowing out into the molten steel from the refractory rather difficulty surfaced in the molten steel due to their high specific gravity, difficult to flotation from the molten steel. Disclosure of the invention
本発明は、 使用中にノズル内孔面にガラス層を形成し、 耐火物を通過 する空気の卷込みを防止して、 アルミナの生成を防止し、 また、 ノズル 内孔面の組織を平滑化することによ り、 ノズル内孔面にアルミナ介在物 の堆積と付着を抑制し、 内孔の狭さ く、 更には閉塞を防止し、 安定した 錡造を可能とする連続鎵造用ノズルを提供することにある。  The present invention forms a glass layer on the inner surface of the nozzle during use, prevents the entrainment of air passing through the refractory, prevents the formation of alumina, and smoothes the structure of the inner surface of the nozzle. By doing so, a continuous production nozzle that suppresses the deposition and adhesion of alumina inclusions on the inner surface of the nozzle, prevents the inner hole from being narrowed, and further prevents clogging, and enables stable production To provide.
第 1の発明は、 連続錡造用ノズルの溶鋼と接触する内孔表層部が、 A 12 03 または A l2 03 を主成分と し、 その融点が 1 8 0 0 °C以上の 骨材が 1 5〜 6 0重量%、 残部が口一石からなる組成物であることを特 徴とする溶鋼の連続铸造用ノズルである。 The first invention, the inner hole surface portion in contact with molten steel nozzle for continuous錡造is, the A 1 2 0 3 or A l 2 0 3 as a main component, its melting point is 1 8 0 0 ° C or more It is a nozzle for continuous production of molten steel, characterized in that the composition is composed of 15 to 60% by weight of aggregate and the balance is monolith.
第 2の発明は、 連続铸造用ノズルの溶鋼と接触する内孔表層部が、 ァ ルミナ (A l 23 ) またはアルミナ (A l 23 ) を主成分と し、 そ の融点が 1 8 0 0 °C以上の骨材が 1 5〜 6 0重量%、 残部がロー石から なる組成物に、 結合材を添加 · 混練して成形し、 非酸化雰囲気にて焼成 したことを特徴とする溶鋼の連続鎵造用ノズルである。 The second invention, the inner hole surface portion in contact with molten steel nozzle for continuous铸造is the § alumina (A l 23) or alumina (A l 23) as a main component, the melting point of its 1 A binder composed of 15 to 60% by weight of aggregate at 800 ° C or higher, and the remainder composed of rock stone, added with a binder, kneaded, molded, and fired in a non-oxidizing atmosphere. This is a nozzle for continuous production of molten steel.
第 3の発明は、 前記口一石は粒径 2 5 0 /z m以下を全口一石配合比量 の 6 0重量%以下としたものであることを特徴とする溶鋼の連続鎵造用 ノズルである。  A third invention is a nozzle for continuous production of molten steel, characterized in that the mouth stone has a particle diameter of 250 / zm or less, and the weight ratio of the mouth stone is 60% by weight or less of the total mouth stone mixing ratio. .
第 4の発明は、 前記口一石が、 パイ ロフイ ライ ト (A l 2 0 3 - 4 S i 〇2 · H 2 0 ) を主成分とすることを特徴とする溶鋼の連続銪造用ノ ズルである。 A fourth invention, the opening one stone is pi Rofui Lai preparative (A l 2 0 3 - 4 S i 〇 2 · H 2 0) molten steel continuous銪造for Roh nozzle, characterized in that a main component It is.
第 5の発明は、 前記ロー石は、 8 0 0 °C以上で仮焼して結晶水を消失 させたことを特徴とする溶鋼の連続錡造用ノズルである。  A fifth invention is a nozzle for continuous production of molten steel, characterized in that the raw stone is calcined at 800 ° C. or higher to eliminate water of crystallization.
第 6の発明は、 前記結合材が、 熱硬化性樹脂であることを特徴とする 溶鋼の連続錡造用ノズルである。 図面の簡単な説明  A sixth invention is a nozzle for continuous production of molten steel, wherein the binder is a thermosetting resin. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 溶鋼に接触するノズル内孔表層部に本発明に係る耐火物を備 えたノズルの縦断面図である。  FIG. 1 is a longitudinal sectional view of a nozzle provided with the refractory according to the present invention on the surface of the inner hole of the nozzle in contact with molten steel.
図 2はノズル内孔表層部及びノズル下部 (溶鋼に浸漬する部分) に本 発明に係る耐火物を備えたノズルの断面図である。  FIG. 2 is a cross-sectional view of a nozzle provided with a refractory material according to the present invention on the surface of the inner hole of the nozzle and the lower part of the nozzle (the part immersed in molten steel).
図 3は本発明例と比較例における配合組成 · 物理特性を表 1 として示 した図である。 発明を実施するための最良の形態  FIG. 3 is a table showing the composition and physical properties of the present invention and comparative examples as Table 1. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において最も注目すべき点はノズル耐火物の主成分としてロー 石を使用し、 同時に、 従来のノズルに多くの場合配合されている黒鉛を 配合しない点である。 黒鉛はノズルの使用時において、 耐火物に含まれ ているシリカと次のように反応する。 The most remarkable point in the present invention is that low Stone is used, and at the same time, graphite, which is often blended with conventional nozzles, is not blended. Graphite reacts with silica contained in refractories when the nozzle is used as follows.
S i 〇2 ( S ) + C ( S ) = S i O ( g) + C O ( g) 3 S i 〇 ( g ) + 2 A 1 = A 123 ( S ) + 3 S i 3 C〇 ( g ) + 2 A 1 = A 123 ( S ) + 3 C S i 〇 2 (S) + C (S) = S i O (g) + CO (g) 3 S i 〇 (g) + 2 A 1 = A 1 23 (S) + 3 S i 3 C 〇 (g) + 2 A 1 = A 1 23 (S) + 3 C
以上の反応によりシリ力が分解し S i 0 ( g) 及び C 0 ( g) が生成 し、 鋼中への酸素供給源となり、 鋼中 A 1 と反応して A l 2 03 を生成 する。 しかし、 ロー石の場合、 溶鋼中の炭素との共存下においても、 口 —石の粒子の分解はなく 口一石の主鉱物であるパイ ロフィ ライ ト (A 1 23 - 4 S i 02 · Η2 〇) 等の S i 02 は安定である。 この点は、 口 —石とレジン粉末と炭素微粉からなるプリケッ トを作成し、 プリーズ内 に埋め込み 1 5 0 0 °Cx 2 4 h r熱処理後の顕微鏡観察で粒子の崩壊、 気泡発生がないことから判明した。 Siri force is decomposed S i 0 (g) and C 0 (g) is generated by the above reaction, it becomes the source of oxygen into the steel, to produce a A l 2 0 3 reacts with the steel A 1 . However, if the roseki, even in the presence of carbon in the molten steel, the mouth - decomposition of stone particles is the main mineral of the mouth one stone not pie Rofi Lai preparative (A 1 23 - 4 S i 0 2 · S i 0 2 such as Η 2 〇) is stable. This point is due to the fact that a pre-packet made of mouth-stone, resin powder and carbon fine powder was created and buried in the please. found.
また、従来の黒鉛を 1 0重量%添加した材質では熱伝導率が 9. 8 ( k c a 1/m/h r /°C) であるのに対し、 本発明の黒鉛を添加しない材 質では 2. 4 ( k c a 1 / m/h r /°C) と低く、 断熱性に優れており、 地金付着及びひ一 A 12 03 等の非金属介在物が析出しにくい。 In addition, while the conventional material to which 10% by weight of graphite is added has a thermal conductivity of 9.8 (kca 1 / m / hr / ° C), the material to which graphite of the present invention is not added is 2. 4 (kca 1 / m / hr / ° C) and low and excellent thermal insulation, bare metal adhesion and carry one a 1 2 0 nonmetallic inclusions such as 3 is hardly precipitated.
更に、 従来の黒鉛を含むノズルでは黒鉛が酸化した場合、 内孔表面の 平滑度が低下し、 ノズル内孔を流れる溶鋼は乱流であるため、 ひ一 A 1 2 03 等の非金属介在物が堆積することになる。 しかし、 黒鉛を添加し ない場合には平滑度が低下せず、従ってノズル内孔面に凹凸が発生せず、 — A 12 03 等の非金属介在物が堆積しない。 Furthermore, if the graphite is oxidized in the nozzle including a conventional graphite, reduces the smoothness of the inner bore surface, since the molten steel flowing nozzle hole is turbulent, shed one A 1 2 0 3 or the like non-metallic inclusions Things will accumulate. However, it does not decrease smoothness when not adding the graphite, thus unevenness is not generated in the nozzle hole surface, - A 1 2 0 nonmetallic inclusions such as 3 is not deposited.
ロー石の半溶融温度は 1 5 0 0 °C前後であり、 溶鋼と接触する稼動面 においては溶融し、 ガラス皮膜を成形することから、 稼動面の組織を平 滑にし、 またガラス皮膜により耐火物組織を通しての空気の巻き込みを 抑制する。  The semi-molten temperature of rock is around 150 ° C, and it melts on the working surface that comes into contact with molten steel and forms a glass film, making the structure of the working surface smooth and fire-resistant by the glass film. Suppresses air entrapment through tissue.
この点は、 酸化雰囲気において 1 5 0 0 °Cx 1 h r熱処理後の黒鉛を 添加した材質の通気率が 6 . 5 x 1 0— 4 d a r c yなのに対し、 他の 条件は同一で黒鉛を添加しない材質では 1 5 0 0 °Cx 1 h rで熱処理後 の通気率が、 1 . 0 x 1 0 d a r c yと小さ く なり、 通気率が低下 していることからも判断できる。 This is because graphite after heat treatment at 150 ° C for 1 hr in an oxidizing atmosphere The material of the ventilation rate 6 added. To 5 x 1 0- 4 darcy of the, in the material other conditions without the addition of graphite in identical 1 5 0 0 ° Cx 1 hr heat treatment after the aeration rate, 1.0 It can also be determined from the fact that the air permeability has decreased as x10 darcy has become smaller.
連続錶造用ノズルとして使用時において、 内孔面にガラス皮膜を積極 的に生成させ、 かつ、 耐スポーリ ング性を維持するためには、 口一石の 配合重量比率は 4 0重量%以上が望ましく、 また 8 6重量%以上では軟 化変形が大き く なり、 また溶鋼に対する耐蝕性が劣ることから 8 5重 量%以下が望ましい。 なお、 この配合量は、 その他の成分の残部である。 本発明のノズルは、 骨材と して A 12 03 または A l 2 03 を主成分 とし、 その融点が 1 8 0 0 °C以上の骨材を 1 5〜 6 0重量%配合する。 A 123 を主成分とする骨材としてはスピネルである M g 0 · A 12 0 3 、 A 12 03 , 4 S i 02 は成形体であるノズルの強度と耐食性を付与 する作用がある。 When used as a nozzle for continuous production, in order to positively generate a glass film on the inner surface of the hole and to maintain the resistance to spalling, the mixing weight ratio of the ore is preferably at least 40% by weight. If the content is 86% by weight or more, the softening deformation increases, and the corrosion resistance to molten steel is inferior. This amount is the balance of other components. Nozzle of the present invention is mainly composed of A 1 2 0 3 or A l 2 0 3 as the aggregate, its melting point is blended 1 8 0 0 ° C or more aggregate 1 5-6 0% . A 1 2 3 M g 0 · A 1 2 0 3 as the aggregate as a main component is a spinel, A 1 2 0 3, 4 S i 0 2 is impart strength and corrosion resistance of the nozzle is a molded body Has the effect of doing.
ロー石の種類としてはパイ ロフィ ライ ト質口一石、カオリ ン質ロー石、 セリサイ ト質ロー石の三種類いずれも使用できるが、 使用時に溶鋼と接 触する内孔面が半溶融化し、 ガラス層の形成と溶鋼との耐溶損性を考え ると耐火度 S K 2 9〜 3 2のパイ ロフィライ ト質口一石が良好である。 カオリ ン質口一石では耐火度が S K 3 3〜 3 6 と高く、 逆にセ リサイ ト 質ロー石では耐火度 S K 2 6〜 2 9 と低いので、いずれも望ましくない。  There are three types of lozenges: pyrophyllite monolith, kaolinite lowstone, and sericite raw stone, but the inner surface that comes into contact with molten steel becomes semi-melted when used, and glass Considering the formation of the layer and the erosion resistance of the molten steel, the pyrophyllite with a fire resistance of SK29-32 is good. Kaolinite has a high fire resistance of SK 33 to 36, while sericite lithite has a low fire resistance of SK 26 to 29, which is undesirable.
ロー石として、 8 0 0 °C以上で仮焼し、 結晶水を消失させたロー石を 使用する理由は、 仮焼しない口一石を配合すると、 成形したノズルを焼 成すると、 口一石中の結晶水が 5 0 0 ~ 8 0 0 °Cで放出され、 この時、 熱膨張率が異常に大きくなり、 成形体に亀裂が入るためである。  The reason for using calcite, which has been calcined at 800 ° C or higher to eliminate the water of crystallization, is to mix it with non-calcined mouth stones, and to fire a molded nozzle, This is because water of crystallization is released at 500 to 800 ° C, and at this time, the coefficient of thermal expansion becomes abnormally large and cracks are formed in the compact.
口一石の粒度は平均粒径 2 5 0 /m以下を口一石配合重量比の 6 0 % 以上の場合、 成形時のラミネ一シヨ ン等の組織欠陥を生じやすく、 また 連続鎵造用ノズルとしての使用時においては、 口一石粒子の軟化変形が 生じやすいため 6 0 %以下が望ましい。 パイ ロフ イ ライ ト (A l 23 - 4 S i 02 · Η2 0) を主成分とす るロー石 6 5〜 9 0重量%の残部、 A l23 または A l2 03 を主成分 とする骨材 1 5〜 6 0重量%からなる耐火物組成は、 ロー石粒の分解は なく、 S i 02 の様な鋼中への酸素供給源とはならない。 またロー石の 半溶融温度は 1 5 0 0 °C前後で溶鋼の铸造温度に近く、 溶鋼と接触する 稼働面においてガラス皮膜層を形成し、 稼働面組織を平滑にし、 かつ、 耐火物組織を通しての空気の巻き込みを抑制することから A 12 03 及 びメタルの付着を抑制する効果がある。 When the average particle size of the mouth stone is 250 / m or less and the weight ratio of the mouth stone is 60% or more, structural defects such as lamination during molding are likely to occur, and the nozzle is used for continuous fabrication. When used, it is desirable that the content be 60% or less, since softening deformation of the monolith is likely to occur. Pie Roff Lee Lai preparative (A l 2 3 - 4 S i 0 2 · Η 2 0) the main component to that roseki 6 5-9 0% by weight of the remainder, A l 23 or A l 2 0 3 refractory composition consisting aggregate 1 5-6 0% by weight of a main component, the decomposition of the raw stone grain rather, not a source of oxygen to the S i 0 2 of such steel. In addition, the semi-molten temperature of the rock is about 150 ° C, which is close to the forging temperature of molten steel. entrainment effect of suppressing the adhesion of a 1 2 0 3及beauty metal from suppressing the air.
上記口一石と、 骨材を配合した組成物をノズルに成形するためには、 結合材として、 熱硬化性樹脂、 例えばフエ一ノル樹脂、 フラ ン樹脂等を 5から 1 5重量%配合し、 ノズルの形状に成形し、 焼成する。 この成形 方法は、 C I P (Cold isostatic pressing )が均一に成形体を圧縮す る点で望ましい。 また、 焼成温度は 1 0 0 0から 1 3 0 0 °C程度が望ま しい。 また、 焼成雰囲気としては酸化性雰囲気よりも還元性雰囲気、 即 ち非酸化性雰囲気が、 配合した樹脂を酸化させない点から望ましい。 次に本発明の溶鋼連続錶造用ノズル図面を参照しながら説明する。 図 1は、 本発明に係る連続銪造用浸漬ノズルの垂直断面の一例を示す。 この連続錡造用ノズル 1 0は、 タンディ ッシュとモールドとの間に配置 され、 溶鋼を夕ンディ ッシュからモールドへ注入する浸漬ノズルとして 使用される。 図 1に示すように、 連続錡造用ノズル 1 0の溶鋼が流れる 内孔 1の表層部 2が、 上述した化学成分組成を有する耐火物によって形 成されている。 表層部以外の部分 3は従来のアルミナ—黒鉛質である。 なお、 この連続錄造ノズルの寸法は、 例えば全長が約 l m、 内孔の直 径が約 6 c m、 外直径が 1 6 c mであり、 肉厚が約 5 c mである。 そし て、 本発明に係る耐火物の厚みは 2から 1 5 mm程度である。 なお、 こ の寸法は 1例であって、 本発明を限定するものではなく、 錄造される銃 片の寸法により変化する。  In order to form a composition containing the above-mentioned mouth stone and aggregate into a nozzle, a thermosetting resin, for example, a phenol resin, a furan resin, or the like is blended as a binder in an amount of 5 to 15% by weight. It is shaped into a nozzle and fired. This molding method is desirable in that CIP (Cold Isostatic Pressing) uniformly compresses the compact. Further, the firing temperature is desirably about 100 to 1300 ° C. Further, the firing atmosphere is more desirably a reducing atmosphere than an oxidizing atmosphere, that is, a non-oxidizing atmosphere, since it does not oxidize the compounded resin. Next, the nozzle for continuous production of molten steel of the present invention will be described with reference to the drawings. FIG. 1 shows an example of a vertical cross section of a continuous production immersion nozzle according to the present invention. The continuous production nozzle 10 is disposed between the tundish and the mold, and is used as an immersion nozzle for injecting molten steel from the evening dish into the mold. As shown in FIG. 1, the surface layer 2 of the inner hole 1 through which the molten steel of the continuous production nozzle 10 flows is formed of a refractory having the above-described chemical composition. The part 3 other than the surface layer is conventional alumina-graphite. The dimensions of the continuous structure nozzle are, for example, about 1 m in total length, about 6 cm in diameter of the inner hole, 16 cm in outer diameter, and about 5 cm in wall thickness. The thickness of the refractory according to the present invention is about 2 to 15 mm. Note that these dimensions are merely an example, and do not limit the present invention, and vary depending on the dimensions of the gun piece to be manufactured.
また、 図 2は銬型内溶鋼に浸潰される部分全体を本発明の耐火物で製 作したノズルの態様を示す。 いずれの場合も、 通常ノズル内孔を閉鎖す るアルミナはノズル下部の内孔に集積する。 本発明の浸漬ノズルは、 内 孔表層部 2に溶鋼中に存在するアルミナ等の非金属介在物が付着 · 堆積 することを抑制する。 次に実施例により本発明を説明する。 実施例 Fig. 2 shows that the entire part immersed in the molten steel in the type III is made of the refractory of the present invention. The mode of the nozzle made is shown. In either case, the alumina that normally closes the nozzle bore accumulates in the bore below the nozzle. The immersion nozzle of the present invention suppresses non-metallic inclusions such as alumina present in the molten steel from adhering to and depositing on the inner surface layer 2. Next, the present invention will be described with reference to examples. Example
実施例 1 Example 1
成分組成の異なる 9個の混合物に 5から 1 0重量%の範囲内の粉末及 び溶液のフエノ一ル樹脂を添加し、 それらを混合及び混練して得られた 組成物を 1 0 0 0から 1 2 0 0 °Cで焼成した。 この 9個の組成物から次 のような成形体を調製した。  A powder and a solution of phenolic resin in the range of 5 to 10% by weight are added to 9 mixtures having different component compositions, and the resulting mixture is mixed and kneaded to obtain a composition of 100 to 100%. It was fired at 1200 ° C. The following molded articles were prepared from the nine compositions.
実施例 2 Example 2
第 1の成形体 (以下成形体 1 という) は、 アルミナ等の非金属介在物 の付着量及び溶鋼に対する耐蝕性を試験するための 3 0 m m x 3 0 m m x 2 3 0 m mの寸法を有する成形体である。  The first compact (hereinafter referred to as compact 1) is a compact having dimensions of 30 mm x 30 mm x 230 mm for testing the amount of nonmetallic inclusions such as alumina and corrosion resistance to molten steel. It is.
第 2の成形体 (以下成形体 2 という) は通気率を測定するため 5 0 Φ m m X 2 0 m mの寸法を有する成形体であり、 第 3の成形体 (以下成形 体 3 という) は耐スポーリ ング性を試験するための外径 1 0 0 m m、 内 径 6 0 m m及び長さ 2 5 0 m mの寸法を有する成形体である。 得られた 成形体の各々を 1 0 0 0 °Cから 1 2 0 0 °Cの範囲内の温度で還元焼成し てサンプル 1から 9 を調整した。  The second molded body (hereinafter referred to as molded body 2) is a molded body having a size of 50 Φ mm X 20 mm in order to measure the air permeability, and the third molded body (hereinafter referred to as molded body 3) is resistant. It is a molded article having dimensions of an outer diameter of 100 mm, an inner diameter of 60 mm, and a length of 250 mm for testing the sportiness. Samples 1 to 9 were prepared by subjecting each of the obtained molded bodies to reduction firing at a temperature in the range of 1000 ° C. to 1200 ° C.
実施例 3 Example 3
上述したサンプル 1から 5 (以下本発明のサンプルという) 及びサン プル 6から 9 ( 以下比較用サンブルという) のそれそれにおける物理特 性値 (気孔率及び嵩比重) を表 1 に示す。 上述した本発明の成形体 3の サンプル 1から 5及び比較用サンプル 6から 9のそれそれを電気炉にお いて 1 5 0 0 °Cの温度で 3 0分間加熱し、 そして水によって急冷して耐 スポーリ ング性を調査した。 その結果を図 3 として表す表 1 に示す。 実施例 4 Table 1 shows the physical property values (porosity and bulk specific gravity) of each of Samples 1 to 5 (hereinafter, referred to as a sample of the present invention) and Samples 6 to 9 (hereinafter, referred to as a sample for comparison). The above-mentioned samples 1 to 5 of the molded article 3 of the present invention and samples 6 to 9 for comparison were heated in an electric furnace at 150 ° C. for 30 minutes, and quenched with water. The sporting resistance was investigated. Table 1 shows the results as shown in Fig. 3. Example 4
上述した本発明の成形体 1のサンプル 1から 5及び比較用サンプル 6 〜 9を、 それそれ 0 . 0 2から 0 . 0 5重量%の範囲内のアルミニウム を含有する 1 5 2 0 °Cの温度の溶鋼中に 1 8 0分間侵潰して溶損率 ( % ) およびアルミナ等の非金属介在物の付着量を調査した。 その結果 を図 3 として表す表 1 に示す。  The above-mentioned samples 1 to 5 of the molded article 1 of the present invention and comparative samples 6 to 9 were prepared at a temperature of 152 ° C. containing aluminum in the range of 0.02 to 0.05% by weight. The steel was immersed in molten steel at a temperature for 180 minutes to investigate the erosion rate (%) and the amount of nonmetallic inclusions such as alumina. Table 1 shows the results as shown in Fig. 3.
実施例 5 Example 5
また、 本発明の成形体 2のサンプル 1から 5及び比較用サンプル 6〜 9、 それそれを電気炉において 1 5 0 0 °Cの温度で 6 0分間加熱し、 冷 却後通気率を測定した。 上記の試験結果を図 1 として示す表 1 に示す。 表 1からも明らかなように本発明のサンプルは耐スポーリング性に優れ ており、 溶損率の低いにもかかわらずアルミナ等の非金属介在物が付着 せず、 従って溶鋼連続錶造用ノズルの内孔狭さく、 さらには閉塞を効果 的に抑制できる。  Further, Samples 1 to 5 of the molded body 2 of the present invention and Comparative Samples 6 to 9 were heated in an electric furnace at a temperature of 150 ° C. for 60 minutes, and the air permeability was measured after cooling. . Table 1 shows the test results as shown in Fig. 1. As is clear from Table 1, the sample of the present invention has excellent spalling resistance, and despite the low erosion rate, nonmetallic inclusions such as alumina do not adhere. The inner hole is narrower, and the clogging can be effectively suppressed.
実施例 6 Example 6
また、 本発明サンプルは通気率が小さいことから実使用時において耐 火物を通しての空気の巻き込みが抑制できる。  Further, since the sample of the present invention has a low air permeability, it is possible to suppress the entrapment of air through the refractory during actual use.
一方、 比較用のサンプル 6に於いては口一石の含有量が多いことに起 因してアルミナ付着量は小さいが、 耐スポ一リ ング性は著しく劣り、 ま た溶鋼に対する耐食性が著しく劣ることが明らかである。  On the other hand, in Comparative Sample 6, although the amount of adhered alumina was small due to the high content of lipstick, the sponging resistance was extremely poor, and the corrosion resistance to molten steel was extremely poor. Is evident.
実施例 Ί Example Ί
また、 比較用サンプル 7に於いては、 口一石の替りに A l 2 0 3 と S i 0 2 の単体を含有しているため S i 0 2 が分解して鋼中に酸素を供給 するためアルミナの付着量が著しく多い。 また、 比較用サンプル 8に於 いては、 口一石の替りに S i 0 2 を含まず、 A l 2 0 3 のみの含有であ り、 鋼中に酸素を供給する鉱物を除去したにもかかわらず、 耐スポーリ ング性は著しく劣り、 通気率が高く、 アルミナ等の非金属介在物の付着 が多い。 実施例 8 Also, at the comparative sample 7, the oxygen to supply in the steel decomposes S i 0 2 is because it contains a single A l 2 0 3 and S i 0 2 instead of the mouth one stone The amount of alumina attached is remarkably large. Though also at the comparative sample 8 information, free of S i 0 2 instead of the mouth one stone state, and are contained only A l 2 0 3, in oxygen to remove minerals supplied in steel It has extremely poor spoiling resistance, high air permeability, and a lot of nonmetallic inclusions such as alumina. Example 8
また比較サンプル 9においては、 黒鉛、 ロー石と A l 2 0 3 から成つ ているが、 黒鉛を含有しているため、 溶鋼温度が 1 5 2 0 ± 1 0 °Cと低 い場合、 アルミナ付着量がやや多く、 また、 地金付着量も多かった。 In Comparative Sample 9, graphite, although the roseki and A l 2 0 3 Narutsu, because it contains graphite, when the molten steel temperature is 1 5 2 0 ± 1 0 ° C and have low alumina The amount of adhesion was somewhat large, and the amount of ingot adhesion was also large.
産業上の利用可能性 Industrial applicability
以上説明した通り、 本発明の溶鋼連続鎵造用ノズルによると耐火物の 組織を劣化を生じることなく、 アルミキルド鋼をアルミナ等の非金属介 在物による内孔の狭さ く、 さらに閉塞を抑制し、 安定して铸造すること が出来る。  As described above, according to the nozzle for continuous production of molten steel of the present invention, the inner hole of aluminum-killed steel is narrowed by non-metallic inclusions such as alumina without deteriorating the structure of the refractory, and the clogging is further suppressed. And it can be manufactured stably.
また、 本発明のノズルを使用して、 1チャージ 3 0 0 トンの低炭素ァ ルミキル ド鋼を 2ス トラン ドのスラブ連続铸造機で錡造したところ 5か ら 7チャージをノズル閉鎖なく铸造することができた。 なお、 従来のノ ズルにより錡造すると 2から 4チヤ一ジ錶造するとノズル閉鎖が生じて 铸造を中断していた。  In addition, using the nozzle of the present invention, a low charge carbon steel of 300 tons per charge was produced by a continuous slab production machine of 2 strands, and 5 to 7 charges were produced without nozzle closure. I was able to. If a conventional nozzle was used to make a 2- to 4-chamber structure, the nozzle was closed and the structure was interrupted.

Claims

請求の範囲 The scope of the claims
1 . 連続銪造用ノズルの溶鋼と接触する内孔表層部が、 A l 2 0 3 また は A 1 2 0 3 を主成分とし、 その融点が 1 8 0 0 °C以上の骨材が 1 5〜1. Bore surface portion in contact with molten steel nozzle for continuous銪造is, or A l 2 0 3 as a main component A 1 2 0 3, a melting point 1 8 0 0 ° C or more aggregates 1 Five~
6 0重量%、 残部がロー石からなる組成物であることを特徴とする溶鋼 の連続铸造用ノズル。 A nozzle for continuous production of molten steel, characterized in that it is a composition comprising 60% by weight, the balance being loasite.
2 . 連続錡造用ノズルの溶鋼と接触する内孔表層部が、 アルミナ (A 1 23 ) またはアルミナ ( A 1 23 ) を主成分と し、 その融点が 1 8 0 0 °C以上の骨材が 1 5〜 6 0重量%、残部がロー石からなる組成物に、 結合材を添加 · 混練して成形し、 非酸化雰囲気にて焼成したことを特徴 とする溶鋼の連続錶造用ノズル。 2. Continuous bore surface portion in contact with molten steel錡造nozzles are alumina (A 1 23) or alumina (A 1 23) as the main component, its melting point is 1 8 0 0 ° C A continuous molten steel characterized in that a binder consisting of 15 to 60% by weight of the above aggregates and the remainder composed of rubble stones was added with a binder, kneaded, molded and fired in a non-oxidizing atmosphere. Manufacturing nozzle.
3 . 前記口一石は粒径 2 5 0 m以下を全ロー石配合比量の 6 0重量% 以下としたものであることを特徴とする請求項 1又は 2記載の溶鋼の連 続錶造用ノズル。  3. The continuous casting of molten steel according to claim 1 or 2, wherein the ore stone has a particle size of 250 m or less and a weight ratio of 60% by weight or less based on the total composition ratio of the raw stone. nozzle.
4 . 前記口一石が、 パイ ロフィライ ト (A l 2 03 · 4 S i 02 · H 2 0 ) を主成分とすることを特徴とする請求項 1から 3記載の溶鋼の連続铸造 用ノズル。 4. The mouth one stone is pi Rofirai Doo (A l 2 0 3 · 4 S i 0 2 · H 2 0)铸造nozzle continuous molten steel according to claim 1 to 3, wherein the mainly containing .
5 . 前記ロー石は、 8 0 0 °C以上で仮焼して結晶水を消失させたことを 特徴とする請求項 1から 4のいずれかに記載の溶鋼の連続鍊造用ノズル < 6 . 前記結合材が、 熱硬化性樹脂であることを特徴とする請求項 2から 5記載の溶鋼の連続錡造用ノズル。  5. The nozzle for continuous production of molten steel according to any one of claims 1 to 4, wherein the raw stone is calcined at 800 ° C or higher to eliminate water of crystallization. The nozzle for continuous production of molten steel according to claim 2, wherein the binder is a thermosetting resin.
PCT/JP1999/001787 1997-10-08 1999-04-05 Continuous casting nozzle WO2000059657A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP09290520A JP3101650B2 (en) 1997-10-08 1997-10-08 Nozzle for continuous casting
KR10-2000-7006549A KR100367647B1 (en) 1999-04-05 1999-04-05 A continuous casting nozzle for molten steel and manufacturing method thereof
US09/719,022 US6533146B1 (en) 1997-10-08 1999-04-05 Continuous casting nozzle for molten steel
EP99912101A EP1097763B1 (en) 1999-04-05 1999-04-05 Continuous casting nozzle
PCT/JP1999/001787 WO2000059657A1 (en) 1997-10-08 1999-04-05 Continuous casting nozzle
AT99912101T ATE277704T1 (en) 1999-04-05 1999-04-05 CONTINUOUS CASTING NOZZLE
CA002312482A CA2312482C (en) 1999-04-05 1999-04-05 A continuous casting nozzle for molten steel
BR9910943-3A BR9910943A (en) 1999-04-05 1999-04-05 Continuous casting nozzle for cast steel
AU30558/99A AU746450B2 (en) 1999-04-05 1999-04-05 Continuous casting nozzle
DE69920709T DE69920709T2 (en) 1999-04-05 1999-04-05 continuous casting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP09290520A JP3101650B2 (en) 1997-10-08 1997-10-08 Nozzle for continuous casting
PCT/JP1999/001787 WO2000059657A1 (en) 1997-10-08 1999-04-05 Continuous casting nozzle

Publications (1)

Publication Number Publication Date
WO2000059657A1 true WO2000059657A1 (en) 2000-10-12

Family

ID=14235397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001787 WO2000059657A1 (en) 1997-10-08 1999-04-05 Continuous casting nozzle

Country Status (7)

Country Link
EP (1) EP1097763B1 (en)
KR (1) KR100367647B1 (en)
AT (1) ATE277704T1 (en)
AU (1) AU746450B2 (en)
CA (1) CA2312482C (en)
DE (1) DE69920709T2 (en)
WO (1) WO2000059657A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035249A1 (en) * 2002-10-16 2004-04-29 Vesuvius Crucible Company Permeable refractory material for a gas purged nozzle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121146A (en) * 1982-12-28 1984-07-13 新日本製鐵株式会社 Hollow alumina-containing refractories
JPS63303666A (en) * 1987-06-01 1988-12-12 Nkk Corp Submerged nozzle for continuous casting
JPH10146655A (en) * 1996-11-18 1998-06-02 Shinagawa Refract Co Ltd Nozzle for continuously casting steel
JPH10166117A (en) * 1996-12-05 1998-06-23 Akechi Ceramics Kk Nozzle for continuous casting

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1239458A (en) * 1968-07-31 1971-07-14
GB2202218B (en) * 1987-02-19 1991-02-06 De Beers Ind Diamond Method of making an article from pyrophyllite
JPH07115912B2 (en) * 1988-12-26 1995-12-13 東芝セラミックス株式会社 Casting nozzle
AU725529B2 (en) * 1996-10-16 2000-10-12 Akechi Ceramics Kabushiki Kaisha A continuous casting nozzle for casting molten steel
JPH10166116A (en) * 1996-12-05 1998-06-23 Akechi Ceramics Kk Nozzle for continuous casting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121146A (en) * 1982-12-28 1984-07-13 新日本製鐵株式会社 Hollow alumina-containing refractories
JPS63303666A (en) * 1987-06-01 1988-12-12 Nkk Corp Submerged nozzle for continuous casting
JPH10146655A (en) * 1996-11-18 1998-06-02 Shinagawa Refract Co Ltd Nozzle for continuously casting steel
JPH10166117A (en) * 1996-12-05 1998-06-23 Akechi Ceramics Kk Nozzle for continuous casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035249A1 (en) * 2002-10-16 2004-04-29 Vesuvius Crucible Company Permeable refractory material for a gas purged nozzle

Also Published As

Publication number Publication date
EP1097763B1 (en) 2004-09-29
AU746450B2 (en) 2002-05-02
KR100367647B1 (en) 2003-01-10
EP1097763A1 (en) 2001-05-09
AU3055899A (en) 2000-10-23
KR20010040299A (en) 2001-05-15
ATE277704T1 (en) 2004-10-15
CA2312482A1 (en) 2000-10-05
DE69920709D1 (en) 2004-11-04
CA2312482C (en) 2006-11-21
DE69920709T2 (en) 2006-02-09
EP1097763A4 (en) 2001-11-14

Similar Documents

Publication Publication Date Title
KR920005724B1 (en) Molten steel pouring nozzle
JPS62297264A (en) Carbon-bonded refractories
JPH07214259A (en) Nozzle for continuous casting of molten steel
JPH0747197B2 (en) Nozzle for continuous casting of molten steel
JP3101650B2 (en) Nozzle for continuous casting
WO2000059657A1 (en) Continuous casting nozzle
WO2000061321A1 (en) Continuous casting nozzle
JP3101651B2 (en) Nozzle for continuous casting
JP6021667B2 (en) Refractory, refractory manufacturing method, and immersion nozzle for continuous casting
JP2959632B1 (en) Nozzle for continuous casting
WO2004082868A1 (en) Continuous casting nozzle
JP3164342B2 (en) Nozzle for continuous casting
JPH10166116A (en) Nozzle for continuous casting
US5858261A (en) Continuous casting nozzle for casting molten steel
JPH10202349A (en) Nozzle for continuous casting
JP2940668B2 (en) Nozzle for continuous casting
KR950008603B1 (en) Composition of refractories
JP2003145265A (en) Immersion nozzle for casting
JPH10166115A (en) Nozzle for continuous casting
JP2805449B2 (en) Nozzle for continuous casting of molten steel
JP2023135248A (en) Hardly adhesive refractory and nozzle for continuous casting
JPH11246265A (en) High corrosion resistant fused silica-containing refractory
JPH0747198B2 (en) Nozzle for continuous casting of molten steel
JPH02172862A (en) Production of immersion nozzle for continuous casting
JPS6324945B2 (en)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2312482

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1999912101

Country of ref document: EP

Ref document number: 1020007006549

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA IN KR US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 30558/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 09719022

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999912101

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007006549

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 30558/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020007006549

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999912101

Country of ref document: EP