JPS6324945B2 - - Google Patents

Info

Publication number
JPS6324945B2
JPS6324945B2 JP54050071A JP5007179A JPS6324945B2 JP S6324945 B2 JPS6324945 B2 JP S6324945B2 JP 54050071 A JP54050071 A JP 54050071A JP 5007179 A JP5007179 A JP 5007179A JP S6324945 B2 JPS6324945 B2 JP S6324945B2
Authority
JP
Japan
Prior art keywords
weight
carbon
refractory
sliding
refractories
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54050071A
Other languages
Japanese (ja)
Other versions
JPS55144467A (en
Inventor
Kazuo Oki
Shoichi Takahashi
Jugo Ito
Toshio Kawamura
Yoshiro Aiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP5007179A priority Critical patent/JPS55144467A/en
Publication of JPS55144467A publication Critical patent/JPS55144467A/en
Publication of JPS6324945B2 publication Critical patent/JPS6324945B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はスライデイングノズル用プレート耐火
物の改良に関するものである。 鋼の鋳造に際しその排出口の開閉はスライデイ
ングノズル方式が広く採用されているが、こゝに
使用されるプレート耐火物は一般には高アルミナ
質のものが使用されている。近年、製鋼法におけ
る耐火物に対する要求が次第にきびしくなり、よ
り高温でより長時間耐えるものが求められるよう
になつて来た。 このようなことからその対策として浸漬ノズル
等に使用されているアルミナ―炭素質のものを採
用したり、タールを含浸させたりして長寿命化を
はかつていた。 しかしながらアルミナ―炭素質耐火物は浸漬ノ
ズルとしてはすぐれた特性を発揮するものの、ス
ライデイング用耐火物としては上下プレート耐火
物ともより高強度で緻密なものでなければなら
ず、浸漬ノズル用アルミナ―炭素質耐火物と同等
のものをそのまま転用することはできない。即
ち、ノズル孔内を溶鋼が流下する際、必ずしも層
流とはならず偏つた応力がかゝり従つて溶損も偏
つたものとなり易く寿命を著しく短縮せしめるた
めである。又プレート耐火物は摺動面からの溶鋼
の漏洩を防ぐための締付力がかけられており、し
かも摺動時の耐火物同志の応力等によつて割れた
りしないようなものでなければならないためであ
る。 これに対し本発明者等は上記欠点を解消するた
めに鋭意研究を重ねた結果、耐火原料を骨材とし
て含み、これに所定量の炭素、炭化硼素及び金属
シリコンを添加し、必要に応じてその焼成体に炭
素分を含浸させることによつて、炭素と他の耐火
材との結合強度が炭化硼素と金属シリコンの相互
作用により著しく高められ特に炭素の耐酸化性あ
るいは耐溶損性が改善されて、高強度の緻密なス
ライデイングノズル用プレート耐火物が得られる
ことを見い出したものである。 本発明におけるスライデイングノズル用プレー
ト耐火物はアルミナ、ムライト、ジルコニア、ジ
ルコンおよびマグネシアの1種又は2種以上の耐
火原料を骨材として含み、これに炭素3〜20重量
%、炭化硼素0.5〜20重量%及び金属シリコン1
〜20重量%を含有させた混合粉を成形焼成して成
り、必要に応じて更にタール、有機樹脂等の炭素
含有物資を含浸させることによつてより高強度で
緻密な耐蝕、耐酸化性のあるものである。 本発明に使用する耐火原料にはアルミナ、ムラ
イト、ジルコニア、ジルコンおよびマグネシアの
1種又は2種以上を骨材として含有させ、一方炭
化珪素、シリカ、窒化珪素、フエロシリコンは密
度を高める為に添加剤として数%加えても使用し
得る。 又、焼成プレート耐火物に含浸する組成物は炭
素含有成分で液化し得うるものであればよく、タ
ールピツチ類、有機樹脂類等が使用可能なもので
ある。 本発明において炭素粉の添加量を3重量%未満
にするとスライデイングノズルとして必要な摺動
性、耐スポーリング性が活用できず、一方20重量
%を越えると酸化消耗が激しくスライデイングノ
ズルとして期待されている耐用度が著しい低下を
招くからである。 また、炭化硼素の添加量を0.5重量%未満にす
ると炭素と他の耐火材との結合力が低下し圧縮強
さが1200Kg/cm2以下となりスライデイングノズル
用プレート耐火物としての強度が充分得られず、
又20重量%を超えると溶鋼及びスラグに対する耐
蝕性が低下する。又、粒度は結合強度を充分機能
させるためには32メツシユ以下のものを使用する
ことが好ましい。 金属シリコンの添加量を限定した理由は1重量
%以下では添加効果がほとんど認められず20重量
%以上では金属シリコンが溶融して結合強度が低
下し、あるいは耐溶損性が低下する。又その粒径
は相対的に均一に分散させるためにも32メツシユ
以下であることが好ましい。 実施例 1 アルミナ75重量%、ムライト10重量%、20メツ
シユ以下の炭素粉10重量%、200メツシユ以下の
金属シリコン5重量%、200メツシユ以下の炭化
硼素5重量%からなる原料粉100重量部に対し、
タールピツチ15重量部を加えて混練し、この成形
体を1200℃でブリーズ中で焼成した(a)。 実施例 2 マグネシア83重量%、150メツシユ以下の天然
黒鉛10重量%、150メツシユ以下の金属シリコン
5重量%、150メツシユ以下の炭化硼素2重量%
よりなる原料粉にパルプ廃液7重量%を添加混練
し、成形後、非酸化雰囲気下で1400℃焼成した
(b)。 この実施例1および2によつて得られたプレー
ト耐火物(a)、(b)およびこれらのタール含浸コーキ
ング処理したもの(c)、(d)とを従来のアルミナ―炭
素質プレート(アルミナ75重量%、炭素10重量
%、シリカ10重量%、金属シリコン5重量%より
成る原料を混練、成形、焼成したもの)のタール
含浸コーキング処理品(e)と比較して第2表に示
す。 実施例 3 実施例2と同様にして、ジルコニアを主成分と
する第1表(f)の組成にて、成形後、非酸化性雰囲
気下で、1400℃で焼成した。また、比較例とし
て、第1表(g)、(h)の組成について比較を行なつ
た。 実施例 4 実施例2と同様にして、ジルコンを主成分とす
る第1表(i)の組成にて、成形後、非酸化性雰囲気
下で、1400℃で焼成した。また、比較例として、
第1表(j)の組成について比較を行なつた。 実施例 5 実施例2と同様にムライトを主成分とする第1
表(k)の組成にて、成形後、非酸化性雰囲気下で、
1400℃で焼成した。また、比較例として、第1表
(1)の組成にて比較を行なつた。 その結果、第2表の通り、金属シリコン、炭化
硼素を所定量加えることにより、圧縮強さ、脱炭
素重量減、耐溶損性ともに、良好な結果が得ら
れ、スライデイングノズルとして非常にすぐれた
材質であることが確認された。 なお、炭化硼素を20重量%以上添加したもの
は、いずれも耐食性に劣り、また、金属シリコン
20重量%以上添加したものも、いずれも、溶鋼中
で溶損が著しく、スライデイングノズルとして
は、使用できないものであつた。
The present invention relates to improvements in plate refractories for sliding nozzles. When casting steel, a sliding nozzle system is widely used to open and close the discharge port, and the plate refractories used here are generally made of high alumina. In recent years, the requirements for refractories in steel manufacturing processes have become increasingly strict, and there has been a demand for refractories that can withstand higher temperatures and longer periods of time. As a countermeasure to this problem, alumina-carbon materials, which are used in immersion nozzles, etc., have been adopted, or they have been impregnated with tar to extend the life of the nozzle. However, although alumina-carbonaceous refractories exhibit excellent properties for immersion nozzles, for sliding refractories, both upper and lower plate refractories must be of higher strength and density. It is not possible to reuse materials equivalent to carbonaceous refractories as they are. That is, when the molten steel flows down inside the nozzle hole, the flow is not necessarily laminar, and uneven stress tends to occur, resulting in uneven melting loss, which significantly shortens the service life. In addition, the plate refractories must be tightened to prevent leakage of molten steel from the sliding surfaces, and must not crack due to stress between the refractories during sliding. It's for a reason. On the other hand, the inventors of the present invention have conducted extensive research in order to eliminate the above-mentioned drawbacks, and as a result, they have included refractory raw materials as aggregates, added a predetermined amount of carbon, boron carbide, and metallic silicon, and added carbon, boron carbide, and metallic silicon as needed. By impregnating the fired body with carbon, the bond strength between carbon and other refractory materials is significantly increased through the interaction between boron carbide and metal silicon, and the oxidation resistance or erosion resistance of carbon is improved. It has been discovered that a high-strength and dense plate refractory for sliding nozzles can be obtained. The plate refractory for sliding nozzles in the present invention contains one or more refractory raw materials of alumina, mullite, zirconia, zircon, and magnesia as aggregate, and contains 3 to 20% by weight of carbon and 0.5 to 20% by weight of boron carbide. Weight % and metal silicon 1
It is made by molding and firing a mixed powder containing ~20% by weight, and if necessary, it is further impregnated with carbon-containing materials such as tar and organic resin to create a material with higher strength, fineness, corrosion resistance, and oxidation resistance. It is something. The refractory raw material used in the present invention contains one or more of alumina, mullite, zirconia, zircon, and magnesia as aggregates, while silicon carbide, silica, silicon nitride, and ferrosilicon are used to increase density. It can also be used in an amount of several percent as an additive. Further, the composition to be impregnated into the fired plate refractory may be any carbon-containing component that can be liquefied, and tar pits, organic resins, etc. can be used. In the present invention, if the amount of carbon powder added is less than 3% by weight, the sliding properties and spalling resistance necessary for a sliding nozzle cannot be utilized, while if it exceeds 20% by weight, oxidation consumption is severe and is expected as a sliding nozzle. This is because the durability of the product will be significantly reduced. In addition, if the amount of boron carbide added is less than 0.5% by weight, the bonding strength between carbon and other refractory materials will decrease, resulting in a compressive strength of 1200 kg/cm 2 or less, which will provide sufficient strength as a plate refractory for sliding nozzles. Unable to do so.
Moreover, if it exceeds 20% by weight, the corrosion resistance against molten steel and slag will decrease. In addition, it is preferable to use a particle size of 32 mesh or less in order to achieve sufficient bonding strength. The reason for limiting the amount of metal silicon added is that if it is less than 1% by weight, almost no effect will be observed, and if it is more than 20% by weight, the metal silicon will melt and the bonding strength will decrease, or the erosion resistance will decrease. Further, the particle size is preferably 32 mesh or less in order to achieve relatively uniform dispersion. Example 1 100 parts by weight of raw material powder consisting of 75% by weight of alumina, 10% by weight of mullite, 10% by weight of carbon powder of 20 mesh or less, 5% by weight of metallic silicon of 200 mesh or less, and 5% by weight of boron carbide of 200 mesh or less On the other hand,
15 parts by weight of tar pitch was added and kneaded, and the molded product was fired at 1200°C in a breeze (a). Example 2 83% by weight of magnesia, 10% by weight of natural graphite below 150 meshes, 5% by weight of metallic silicon below 150 meshes, 2% by weight of boron carbide below 150 meshes
7% by weight of pulp waste liquid was added to the raw material powder and kneaded, and after molding, it was baked at 1400℃ in a non-oxidizing atmosphere.
(b). The plate refractories (a) and (b) obtained in Examples 1 and 2 and their tar-impregnated and caulked products (c) and (d) were mixed with conventional alumina-carbonaceous plates (alumina 75 Table 2 shows a comparison with the tar-impregnated caulked product (e) obtained by kneading, molding, and firing raw materials consisting of 10% by weight of carbon, 10% by weight of silica, and 5% by weight of metallic silicon. Example 3 In the same manner as in Example 2, the composition of Table 1 (f) containing zirconia as the main component was molded and then fired at 1400° C. in a non-oxidizing atmosphere. Further, as a comparative example, the compositions shown in Table 1 (g) and (h) were compared. Example 4 In the same manner as in Example 2, the composition of Table 1 (i) containing zircon as a main component was molded and then fired at 1400° C. in a non-oxidizing atmosphere. Also, as a comparative example,
A comparison was made regarding the compositions shown in Table 1 (j). Example 5 Similar to Example 2, the first material containing mullite as the main component
With the composition shown in Table (k), after molding, under a non-oxidizing atmosphere,
It was fired at 1400℃. In addition, as a comparative example, Table 1
A comparison was made using the composition (1). As a result, as shown in Table 2, by adding a specified amount of metallic silicon and boron carbide, good results were obtained in terms of compressive strength, decarbonized weight reduction, and erosion resistance, making it an excellent sliding nozzle. The material was confirmed. In addition, any products containing 20% by weight or more of boron carbide have poor corrosion resistance, and metal silicon
All of those containing 20% by weight or more suffered from significant melting loss in molten steel and could not be used as sliding nozzles.

【表】【table】

【表】 (*は、本発明の実施例である)
上表からも明らかなように本願発明の耐火物は
従来のアルミナ―炭素質耐火物等に比較して耐溶
損性があり、又湯洩れ等の原因になるレンガの割
れの現象がほとんど見られず高強度の緻密な耐火
物が得られた。 尚、タール含浸することによつて強度が向上
し、又摺動面の耐摩耗性もよりすぐれたものが得
られることが明らかとなつた。
[Table] (* indicates an example of the present invention)
As is clear from the above table, the refractory of the present invention has better corrosion resistance than conventional alumina-carbon refractories, etc., and is almost free from the phenomenon of brick cracking that causes hot water leakage. A dense refractory with high strength was obtained. It has been found that by impregnating with tar, the strength is improved and the wear resistance of the sliding surface is also improved.

Claims (1)

【特許請求の範囲】 1 アルミナ、ムライト、ジルコニア、ジルコン
およびマグネシアの1種又は2種以上の耐火原料
を骨材として含み、これに炭素粉を3〜20重量
%、炭化硼素を0.5〜20重量%、金属シリコンを
1〜20重量%とを含有する混合物を成形焼成して
成るスライデイングノズル用プレート耐火物。 2 炭素含有物質を含浸させた特許請求の範囲第
1項記載のスライデイングノズル用プレート耐火
物。
[Claims] 1. Contains one or more refractory raw materials of alumina, mullite, zirconia, zircon, and magnesia as an aggregate, and contains 3 to 20% by weight of carbon powder and 0.5 to 20% by weight of boron carbide. A plate refractory for a sliding nozzle, which is formed by molding and firing a mixture containing 1% to 20% by weight of metallic silicon. 2. A plate refractory for a sliding nozzle according to claim 1, which is impregnated with a carbon-containing substance.
JP5007179A 1979-04-23 1979-04-23 Plate refractories for sliding nozzle Granted JPS55144467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5007179A JPS55144467A (en) 1979-04-23 1979-04-23 Plate refractories for sliding nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5007179A JPS55144467A (en) 1979-04-23 1979-04-23 Plate refractories for sliding nozzle

Publications (2)

Publication Number Publication Date
JPS55144467A JPS55144467A (en) 1980-11-11
JPS6324945B2 true JPS6324945B2 (en) 1988-05-23

Family

ID=12848761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5007179A Granted JPS55144467A (en) 1979-04-23 1979-04-23 Plate refractories for sliding nozzle

Country Status (1)

Country Link
JP (1) JPS55144467A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892036U (en) * 1981-12-15 1983-06-22 ニユ−ロング株式会社 bag making machine
JPS62182156A (en) * 1986-02-05 1987-08-10 品川白煉瓦株式会社 Refractory composition for sliding nozzle and formation thereof

Also Published As

Publication number Publication date
JPS55144467A (en) 1980-11-11

Similar Documents

Publication Publication Date Title
CN106699206B (en) Large and medium-sized blast furnace anhydrous stemming and preparation method thereof
US4585485A (en) Refractory sliding nozzle plate
CN105198457A (en) Converter slag-stopping inner nozzle brick and preparation method thereof
CN109574689A (en) One kind, which is not burnt, does not soak corundum slide plate and preparation method thereof
CN85109111A (en) The refractory materials that contains aluminium oxynitride, slide gate nozzle refractory materials and the continuous casting steel machine mouth of a river
CN100519005C (en) Aluminium carbon zirconium sliding gate brick produced by unburning process
JPS583992B2 (en) Lenzokuchiyuzoyoushinseki nozzle
JPH0421627B2 (en)
JPS6348828B2 (en)
CN115536410A (en) Low-carbon magnesia carbon brick and preparation method thereof
CN101402527A (en) Compact aluminum silicon carbide composite material and method of manufacturing the same
JPS6324945B2 (en)
JP2617086B2 (en) Silicon carbide casting material
JP3351998B2 (en) Sliding nozzle plate and method of manufacturing the same
JPH0578180A (en) Carbon fiber-containing refractory
JPH0737343B2 (en) Irregular refractory for hot metal pretreatment container
KR100299459B1 (en) Mlagnesia-Carbon Based Castable Having Superior Anti-Oxidation
JPS5842144B2 (en) graphite casting nozzle
JPH0319183B2 (en)
JPS59146975A (en) Plate refractories for sliding nozzle
JPS5864260A (en) Nozzle for high anticorrosion continuous casting
JPH0556306B2 (en)
JPH0925160A (en) Production of carbon-containing refractory
JPS63157746A (en) Submerged nozzle for continuous casting
JP3035858B2 (en) Graphite-containing refractory and method for producing the same