WO2000049368A1 - Dispositif de detection de mouvement d'activation pour gyrolaser - Google Patents

Dispositif de detection de mouvement d'activation pour gyrolaser Download PDF

Info

Publication number
WO2000049368A1
WO2000049368A1 PCT/FR2000/000416 FR0000416W WO0049368A1 WO 2000049368 A1 WO2000049368 A1 WO 2000049368A1 FR 0000416 W FR0000416 W FR 0000416W WO 0049368 A1 WO0049368 A1 WO 0049368A1
Authority
WO
WIPO (PCT)
Prior art keywords
activation
electrodes
fixing ring
response
flexible
Prior art date
Application number
PCT/FR2000/000416
Other languages
English (en)
Inventor
Eric Loil
Original Assignee
Thomson-Csf Sextant
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US09/647,936 priority Critical patent/US6498651B1/en
Application filed by Thomson-Csf Sextant filed Critical Thomson-Csf Sextant
Priority to EP00906431A priority patent/EP1073879A1/fr
Publication of WO2000049368A1 publication Critical patent/WO2000049368A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/66Ring laser gyrometers
    • G01C19/68Lock-in prevention
    • G01C19/70Lock-in prevention by mechanical means

Definitions

  • the present invention relates to mechanically activated laser gyrometers used in inertial units to measure rotational speeds.
  • the principle of a single-axis laser gyrometer is based on the use of two monochromatic light beams propagating in opposite directions in a plane along the same closed loop path.
  • the plane of the path of the two counterpropagating monochromatic light beams is rotated relative to its axis, the effective lengths of the paths traveled by the two beams change resulting in a frequency difference between the two beams since the frequency of Oscillation of a laser is dependent on the length of the path traveled by its beam.
  • This difference in frequency which can be measured by making the two beams interfere on a photodetector then gives a measurement of the speed of rotation of the path of the two light beams around its axis which is the sensitive axis of the gyrometer.
  • the mechanical vibratory activation movement is generally obtained by mounting a single-axis laser gyrometer in a hollow cylindrical jacket by means of two coaxial fixing rings with its sensitive axis having a certain flexibility in torsional rotation.
  • These fixing rings are fixed by their hub or inner periphery to the body of the gyroscope and by their rim or outer periphery to the hollow cylindrical jacket which is itself mounted in a housing by means of several elastic damping pads regularly distributed around its periphery.
  • One of the fixing rings is equipped with a piezoelectric oscillating motor enabling the activation oscillations to be generated and maintained.
  • Triaxial laser gyrometers consist of a rigid assembly of three single-axis laser gyrometers having their sensitive axes oriented along the three axes of a three-directional trihedron and, possibly, common elements. They are activated to compensate for their lack of sensitivity to low speeds of rotation by a single vibratory mechanical movement of oscillation around an axis which is oriented differently from their sensitive axes, in a direction such that this movement has oscillatory components of same amplitudes around the three sensitive axes of the three single-axis laser gyros.
  • the three single-axis laser gyrometers constituting a triaxial laser gyrometer block are mounted, like a single-axis laser gyrometer, inside a hollow cylindrical jacket by means of two coaxial fixing rings with its activation axis.
  • these rings have a certain flexibility in torsional rotation. They are fixed by their inner hub or periphery to the triaxial laser gyrometer block and by their rim or outer periphery to the hollow cylindrical jacket which is in turn fixed in a housing by means of several elastic damping pads regularly distributed around its periphery.
  • One of the fixing rings is provided with a piezoelectric oscillating motor enabling the activation oscillations to be generated and maintained.
  • a monoaxial or triaxial laser gyrometer is subjected to mechanical activation oscillations, it is necessary to make the part due to these activation oscillations in the measurement (s) of rotation speed delivered to eliminate it and not conserve than the part corresponding to the measurements of the true rotational speeds of the wearer of the gyrometer.
  • the fixing crowns of a mechanically activated gyrometer usually have the shape of a spoke wheel with a hub held in the center of a rim by flexible flexible radial lamellae, arranged in transverse planes and regularly distributed around the hub, which act as springs.
  • the piezoelectric motor consists of piezoelectric ceramic plates provided on their sides with excitation electrodes and bonded to several of the radial lamellae securing the hub to the rim of the motorized fixing crown. These piezoelectric plates, when they are suitably excited by an electrical voltage, cause a bimetallic strip effect on the radial lamellae which, when it is repetitive, is responsible for rotational oscillations between the hub and the rim of the motorized fixing crown.
  • the activation motion detector usually used consists of a torsion detector consisting of a simple piezoelectric plate polarized transversely by a remanent magnetic field, coated on its sides with two electrodes and glued to one of the radial lamellae of the crown. motorized attachment without piezoelectric drive plates.
  • the piezoelectric plate of the torsion detector is not electrically excited and supplies between its electrodes electrical charges, in the manner of a capacitor, the number and polarization of which depend on the deformations undergone by the radial lamella which carries it. It has the disadvantage of being sensitive not only to mechanical activation vibrations but also to parasitic mechanical vibrations originating from external mechanical disturbances.
  • a shock or vibrations applied to the gyrometer housing impose on the suspended part of the gyrometer an acceleration which deforms the flexible strips of the fixing rings.
  • These deformations are detected by the piezoelectric ceramic plate of the torsion detector in the same way as those due to activation vibrations. They are the source of noise in the torsion detector output signal which is added to the useful component due to the activation vibrations and which is difficult to eliminate by signal processing because it occupies a wide frequency range covering that of the activation vibrations.
  • the object of the present invention is to provide an activation movement detector for a laser gyro having a lower sensitivity to external mechanical disturbances.
  • an activation movement detection device for a mechanically activated gyrolaser and equipped with at least one fixing ring which is coaxial with its activation axis and comprises a hub held in the center of a rim by strips radial, flexible, arranged in transverse planes and regularly distributed around the hub, which act as springs and enter into vibration under the effect of the activation movement.
  • This activation movement detection device is remarkable in that it comprises several torsion detectors with a piezoelectric plate with a remanent magnetic field coated on its sides with two electrodes, which are positioned differently on the flexible lamellae of the fixing crown and whose electrodes are connected in parallel or in antiparallel to a common output so as to generate, in response to deformations of the lamellae due to rotational movements along the activation axis, electric charges of the same polarity which accumulate on the common output, and, in response to deformations of the lamellae originating from other movements, electric charges of opposite polarities which annihilate on the common output, this so as to favor the response to the deformations due to rotational movements according to the activation axis in relation to the response to any other deformation.
  • the activation movement detection device comprises at least a pair of torsion detectors with piezoelectric plates with a remanent magnetic field coated on their sides with two electrodes, which are arranged opposite one and the same flexible lamella of the fixing ring with their remanent magnetic fields in opposite directions and their electrodes connected in antiparallel to the common output.
  • the activation movement detection device comprises several torsion detectors with a piezoelectric plate with a remanent magnetic field coated on its flanks with two electrodes, which are distributed over the flexible lamellae of the fixing crown while respecting a symmetry of revolution by relative to the activation axis and whose electrodes are connected in parallel to the common output.
  • the activation movement detection device comprises several pairs of torsion detectors with a piezoelectric plate with a remanent magnetic field coated on its sides with two electrodes, each pair of torsion detectors having their two piezoelectric plates arranged in opposite on the same flexible strip of the fixing ring with their electrodes connected in antiparallel on intermediate output terminals and the different pairs of torsion detectors being distributed on the flexible strips of the fixing ring while respecting a symmetry of revolution relative to the activation axis and having their intermediate output terminals connected in parallel.
  • FIG. 1 represents, in perspective, a fixing ring for a laser gyrometer designed to allow and possibly generate the oscillations of rotation of an activation movement
  • FIGS 2, 3 and 4 show schematically the different deformations that a flexible strip can undergo a fixing ring such as that illustrated in Figure 1, under the action of an external mechanical disturbance transmitted by the wearer of the laser gyrometer .
  • FIG. 5 illustrates, schematically, a first embodiment of the invention in which a pair of piezoelectric plates with a remanent magnetic field coated on their sides with two electrodes are arranged opposite on a flexible strip d a fixing ring such as that illustrated in FIG. 1, with their electrodes connected in antiparallel to a common output, and
  • FIG. 6 illustrates, also schematically, a second embodiment of the invention, which can be combined with the first, in which several piezoelectric plates with remanent magnetic field coated on their sides with two electrodes are distributed over the flexible strips of a fixing ring such as that illustrated in FIG. 1, respecting a symmetry of revolution, their electrodes being connected in parallel to a common output.
  • a laser gyrometer is in the form of an optical unit comprising one or more resonant optical cavities (one per detection axis). This optical unit is placed in a cylindrical jacket with the same axis as its mechanical activation axis. It is fixed inside this shirt which serves as a frame by means of two flexible fixing rings in torsional rotation which allow the rotary oscillatory activation movement. These two fixing rings are mounted on either side of the optical unit of the laser gyrometer coaxially with its mechanical activation axis. They are attached by their inner hub or periphery to the optical unit of the laser gyrometer and by their rim or outer periphery to the cylindrical jacket.
  • Each fixing ring designed to have a certain flexibility in torsional rotation is usually present in the form of a spoke wheel, the flexibility in torsional rotation coming from the elasticity of the spokes.
  • An example of a fixing ring for a laser gyrometer is shown in Figure 1.
  • the radial strips 3 to 1 1 have, due to their thinness, a certain flexibility making it possible to have oscillations in rotation of the hub 1 relative to the rim 2.
  • One of the fixing rings is provided with a piezoelectric motor making it possible to generate and maintain a rotational oscillation movement of its hub relative to its rim which constitutes the activation movement of the laser gyrometer.
  • This piezoelectric motor consists of one or more piezoelectric ceramic plates coated on each of their sides with excitation electrodes. Each piezoelectric plate of the motor is bonded to a strip, so as to cause, when it is excited by a transverse electric field due to the application of an electric excitation between its electrodes, by bimetallic strip effect, a twist of the lamella in the plane of the crown.
  • the motor does not have piezoelectric plates on all the slats but only on one or more of them regularly distributed around the hub, for example six piezoelectric plates placed on the slats 4, 5, 7, 8, 10 and 1 1.
  • the motorized fixing ring is fitted with a movement detector.
  • This motion detector has so far consisted of a simple piezoelectric plate transversely polarized by a remanent magnetic field, coated on its sides with two electrodes, glued to one of the flexible radial strips of the motorized fixing crown devoid of couple of piezoelectric drive plates and used in torsion sensor.
  • the piezoelectric plate of the torsion sensor is not electrically excited and supplies electrical charges between its electrodes, like a capacitor.
  • the number of these charges and their polarization is a function of the deformations undergone by the radial lamella which carries it.
  • Such a motion detector has the disadvantage of being sensitive to all the deformations of the lamella which it equips, whether these deformations are caused by the oscillatory activation movement or whether they originate from parasitic mechanical vibrations due to external mechanical disturbances.
  • a shock or vibrations applied to the gyrometer housing impose on the suspended part of the gyrometer an acceleration which deforms the flexible strips of the fixing rings.
  • These deformations are detected by the residual magnetic piezoelectric ceramic plate of the torsion sensor of the motion detector, whether or not they contribute to the rotary oscillatory activation movement.
  • the response of the motion detector to the deformations due to rotational movements along the activation axis is favored by accumulation of the partial responses of its various torsion sensors, while at the same time reducing its response to any other deformation by compensation between the partial responses of its various voltage sensors.
  • External mechanical disturbances can only cause noise in the measurement of activation oscillations when they cause deformations of the radial lamellae different from those caused by the oscillatory activation movement.
  • the only troublesome mechanical disturbances for the measurement of the oscillations activation are those which cause, on the radial lamellae, either deformations in their plane, in the longitudinal direction as shown in FIG. 2 or in the vertical direction as shown in FIG. 3, or transverse deformations as shown in FIG. 4.
  • Figure 2 shows schematically the effect, on a fixing ring, of a mechanical disturbance in a radial direction, along the plane of a flexible strip.
  • the mechanical disturbance is identified by an acceleration vector ⁇ placed in the plane of the flexible strip, outside the fixing ring and oriented perpendicular to the activation axis. It causes traction / compression ⁇ of the flexible strip with bending ⁇ in its plane. This effect leads to a decentering of the hub in the radial direction of the flexible strip coupled with an offset.
  • Figure 3 shows schematically the effect, on a fixing ring, of a mechanical disturbance in the direction of the activation axis.
  • the mechanical disturbance is identified by an acceleration vector ⁇ placed outside the flexible ring, along its axis. It causes bending and shearing effects of the flexible lamellae with a displacement of the hub which undergoes translation along the activation axis, towards the outside of the flexible ring.
  • Figure 4 shows schematically the effect, on a fixing ring, of a mechanical disturbance in the radial direction, according to the normal to the plane of a flexible strip.
  • the mechanical disturbance is identified by an acceleration vector ⁇ placed outside the fixing ring, according to the normal to a flexible strip. It causes the flexible strip ⁇ to bend with torsion ⁇ in a plane perpendicular thereto. This effect leads to a decentering of the hub in a normal direction coupled with an offset.
  • FIG. 5 gives a first example of an activation movement detector favoring the detection of lateral bending deformations of the same magnitude affecting all the radial lamellae to the detriment of the deformations of the radial lamellae in their plane, both in the longitudinal and vertical direction.
  • This activation movement detector is constructed from a pair of piezoelectric torsion sensors 1 5 and 1 6 bonded on either side of the same flexible radial strip of a fixing ring.
  • Each torsion sensor 1 5, 1 6 consists of a piezoelectric plate transversely polarized by a remanent magnetic field and coated on its sides with two electrodes E a , E b differentiated by the direction of the remanent magnetic field, the electrode E a being placed on the upstream side and the electrode E b being placed on the downstream side with respect to the remanent magnetic field.
  • the two piezoelectric sensors are bonded by their electrodes of the same nature, E a in the case shown but it could also be E b , on the opposite faces of the same flexible radial strip of a fixing ring, preferably , the motorized one. Their electrodes are connected in antiparallel, the electrode E a of one being connected to the electrode E b of the other and vice versa.
  • the motion detector remains sensitive to bending of the radial strip in the plane of the fixing ring which corresponds to the oscillatory activation movement.
  • one of the piezoelectric plates is subjected to a longitudinal mechanical compression stress while the other is subjected to a longitudinal extension stress.
  • the two piezoelectric plates generate electric charges of opposite signs. But as their electrodes are connected in antiparallel, these charges accumulate at the output of the motion detector.
  • the two piezoelectric plates are subjected to stresses identical longitudinal traction or compression and generate electrical charges of the same sign which are eliminated mutually due to the antiparallel assembly.
  • a motion detector which is always sensitive to rotational oscillations around the activation axis of the laser gyrometer but with a very reduced sensitivity to parasitic movements causing deformations, in its plane, of the radial lamella which supports it. It is therefore much less affected by external mechanical disturbances than the motion detectors of the prior art described above. However, it still has a certain residual sensitivity to external mechanical disturbances due to the fact that it always reacts to transverse deformations of the lamella which supports it even if these do not come from the activation rotation oscillations.
  • This activation movement detector favoring the detection of lateral bending deformations of the same magnitude affecting all the radial lamellae to the detriment of transverse deformation of the radial lamellae.
  • This activation movement detector is constructed from several piezoelectric torsion sensors 1 7, 18, 19 which are distributed over the flexible radial lamellae of a fixing ring while respecting a symmetry of revolution about their axis which is confused with the activation axis.
  • each piezoelectric torsion sensor 1 7, 1 8, 19 consists of a piezoelectric plate polarized transversely by a remanent magnetic field and coated on its sides with two electrodes E a , E b differentiated by the direction of the remanent magnetic field.
  • the different piezoelectric plates of the torsion sensors are bonded by the same face on the same face of the different radial lamellae of the same laser gyrometer fixing ring with their electrodes of the same type E a or E b connected together to the same output terminal of the motion detector.
  • the motion detector remains sensitive to bending of the radial strip in the plane of the fixing ring which corresponds to the oscillatory activation movement. Indeed, during such bending, the various piezoelectric plates are subjected to mechanical stresses of the same type, traction or compression and generate electrical charges of the same sign which add up at the output of the motion detector due to the parallel connection of their electrodes of the same type.
  • a combination of the two activation movement detectors proposed in relation to FIGS. 5 and 6 makes it possible to remedy the faults of both and to obtain an activation movement detector which is particularly insensitive to external mechanical disturbances.
  • This combination simply consists in distributing several activation movement detectors according to FIG. 5 on different radial lamellae of a fixing ring while respecting a symmetry of revolution with respect to the activation axis, and to connect in parallel the output terminals of these different detectors.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

Ce dispositif est destiné à la mesure des amplitudes du mouvement rotatif oscillatoir, d'activation imposé à un gyrolasere ce mouvement étant permis par un montage du gyrolaser, au moyen de couronnes de fixation centrées sur l'axe d'activation et conformées en roue à rayons flexibles. Il consiste en plusieurs détecteurs de torsion (15 à 19) à plaquette piézo-électrique qui sont positionnés différemment sur les rayons d'une couronne de fixation et dont les électrodes de sortie (Ea, Eb) sont connectées en parallèle ou en antiparallèle à une sortie commune de manière à engendrer, en réponse à des déformations des rayons (3 à 11) dues à des mouvements de rotation selon l'axe d'activation, des charges électriques de même polarité qui se cumulent sur la sortie commune, et , en réponse à des déformations des rayons (3 à 11) provenant d'autres mouvements, des charges électriques de polarités opposées qui s'annihilent sur la sortie commune.

Description

DISPOSITIF DE DETECTION DE MOUVEMENT D'ACTIVATION POUR GYROLASER.
La présente invention concerne les gyromètres laser à activation mécanique utilisés dans les centrales inertielles pour mesurer des vitesses de rotation.
Le principe d'un gyromètre laser monoaxe est basé sur l'utilisation de deux faisceaux lumineux monochromatiques se propageant en sens contraires dans un plan selon un même cheminement en boucle fermée. Lorsque le plan du cheminement des deux faisceaux lumineux monochromatiques contrapropagatifs est animé d'un mouvement de rotation par rapport à son axe, les longueurs effectives des trajets parcourus par les deux faisceaux changent entraînant une différence de fréquence entre les deux faisceaux puisque la fréquence d'oscillation d'un laser est dépendante de la longueur du trajet parcouru par son faisceau. Cette différence de fréquence qui peut être mesurée en faisant interférer les deux faisceaux sur un photodétecteur donne alors une mesure de la vitesse de rotation du plan de cheminement des deux faisceaux lumineux autour de son axe qui est l'axe sensible du gyromètre. Cependant, lorsque la différence des trajets des deux faisceaux est faible, les deux faisceaux lumineux ont tendance à se coupler et à osciller sur une même fréquence, si bien qu'il est difficile de mesurer les faibles vitesses de rotation. Pour pallier à ce manque de sensibilité des gyromètres laser monoaxes aux faibles vitesses de rotation, il est connu de les animer d'un mouvement mécanique vibratoire d'oscillation autour de leur axe sensible afin d'augmenter leur vitesse de rotation apparente et de permettre la mesure des faibles vitesses de rotation. Ce mouvement mécanique d'oscillations est dit activation. Le décalage qu'il produit sur la mesure de rotation délivrée par le gyromètre est éliminé ultérieurement par un traitement approprié lors de l'exploitation du signal du gyromètre.
Le mouvement mécanique vibratoire d'activation est obtenu, en général, en montant un gyromètre laser monoaxe dans une chemise cylindrique creuse par l'intermédiaire de deux couronnes de fixation coaxiales avec son axe sensible présentant une certaine flexibilité en torsion de rotation. Ces couronnes de fixation sont fixées par leur moyeu ou périphérie intérieure au corps du gyromètre et par leur jante ou périphérie extérieure à la chemise cylindrique creuse qui est elle-même montée dans un boîtier par l'intermédiaire de plusieurs plots élastiques amortisseurs régulièrement répartis sur son pourtour. L'une des couronnes de fixation est équipée d'un moteur oscillatoire piézoélectrique permettant d'engendrer et d'entretenir les oscillations d'activation.
Les gyromètres laser triaxes sont constitués d'un assemblage rigide de trois gyromètres laser monoaxes ayant leurs axes sensibles orientés selon les trois axes d'un trièdre trirectangie et, éventuellement, des éléments communs. Ils sont activés pour pallier à leur manque de sensibilité aux faibles vitesses de rotation par un seul mouvement mécanique vibratoire d'oscillation autour d'un axe qui est orienté différemment de leurs axes sensibles, dans une direction telle que ce mouvement présente des composantes oscillatoires de mêmes amplitudes autour des trois axes sensibles des trois gyromètres laser monoaxes. Pour obtenir ce mouvement d'activation, les trois gyromètres laser monoaxes constituant un bloc gyromètre laser triaxe sont montés, comme un gyromètre laser monoaxe, à l'intérieur d'une chemise cylindrique creuse par l'intermédiaire de deux couronnes de fixation coaxiales avec son axe d'activation. Comme précédemment pour un gyromètre monoaxe, ces couronnes présentent une certaine flexibilité en torsion de rotation. Elles sont fixées par leur moyeu ou périphérie intérieure au bloc gyromètre laser triaxe et par leur jante ou périphérie extérieure à la chemise cylindrique creuse qui est à son tour fixée dans un boîtier par l'entremise de plusieurs plots élastiques amortisseurs régulièrement répartis sur son pourtour. L'une des couronnes de fixation est pourvue d'un moteur oscillatoire piézo-électrique permettant d'engendrer et d'entretenir les oscillations d'activation. Lorsque l'on soumet un gyromètre laser monoaxe ou triaxe à des oscillations mécaniques d'activation, il est nécessaire de faire la part due à ces oscillations d'activation dans la ou les mesures de vitesses de rotation délivrées pour l'éliminer et ne conserver que la part correspondant aux mesures des vitesses de rotation vraies du porteur du gyromètre. Pour y parvenir et également pour ajuster l'excitation du moteur piézo-électrique, il est utile de connaître l'amplitude effective des vibrations d'activation. Cela se fait, de manière connue, en équipant la couronne motorisée d'un détecteur de mouvement d'activation.
Les couronnes de fixation d'un gyromètre activé mécaniquement ont habituellement, la forme d'une roue à rayons avec un moyeu maintenu au centre d'une jante par des lamelles radiales, flexibles, disposées dans des plans transversaux et régulièrement réparties autour du moyeu, qui font office de ressorts.
Le moteur piézo-électrique consiste en des plaquettes de céramique piézo-électrique pourvues sur leurs flancs d'électrodes d'excitation et collées sur plusieurs des lamelles radiales solidarisant le moyeu à la jante de la couronne de fixation motorisée. Ces plaquettes piézo-électriques, lorsqu'elles sont excitées de manière convenable par une tension électrique, provoquent un effet de bilame sur les lamelles radiales qui, lorsqu'il est répétitif, est à l'origine d'oscillations de rotation entre le moyeu et la jante de la couronne de fixation motorisée.
Le détecteur de mouvement d'activation habituellement employé consiste en un détecteur de torsion constitué d'une simple plaquette piézo-électrique polarisée transversalement par un champ magnétique rémanent, revêtue sur ses flancs de deux électrodes et collée sur une des lamelles radiales de la couronne de fixation motorisée dépourvue de plaquettes piézo-électriques motrice. La plaquette piézoélectrique du détecteur de torsion n'est pas excitée électriquement et fournit entre ses électrodes des charges électriques, à la manière d'un condensateur, dont le nombre et la polarisation sont fonction des déformations subies par la lamelle radiale qui la porte. Elle a l'inconvénient d'être sensible non seulement aux vibrations mécaniques d'activation mais également à des vibrations mécaniques parasites ayant pour origine des perturbations mécaniques externes. En effet, un choc ou des vibrations appliqués au boîtier du gyromètre imposent à la partie suspendue du gyromètre une accélération qui déforme les lamelles flexibles des couronnes de fixation. Ces déformations sont détectées par la plaquette de céramique piézo-électrique du détecteur de torsion au même titre que celles dues aux vibrations d'activation. Elles sont à l'origine d'un bruit dans le signal de sortie du détecteur de torsion qui s'ajoute à la composante utile due aux vibrations d'activation et qu'il est difficile d'éliminer par un traitement de signal car il occupe une large plage de fréquence recouvrant celle des vibrations d'activation.
La présente invention a pour but un détecteur de mouvement d'activation pour gyrolaser ayant une moindre sensibilité aux perturbations mécaniques externes.
Elle a pour objet un dispositif de détection de mouvement d'activation pour gyrolaser activé mécaniquement et équipé d'au moins une couronne de fixation qui est coaxiale avec son axe d'activation et comporte un moyeu maintenu au centre d'une jante par des lamelles radiales, flexibles, disposées dans des plans transversaux et régulièrement réparties autour du moyeu, qui font office de ressorts et entrent en vibration sous l'effet du mouvement d'activation. Ce dispositif de détection de mouvement d'activation est remarquable en ce qu'il comporte plusieurs détecteurs de torsion à plaquette piézoélectrique à champ magnétique rémanent revêtue sur ses flancs de deux électrodes, qui sont positionnés différemment sur les lamelles flexibles de la couronne de fixation et dont les électrodes sont connectées en parallèle où en antiparallèle à une sortie commune de manière à engendrer, en réponse à des déformations des lamelles dues à des mouvements de rotation selon l'axe d'activation, des charges électriques de même polarité qui se cumulent sur la sortie commune, et, en réponse à des déformations des lamelles provenant d'autres mouvements, des charges électriques de polarités opposées qui s'annihilent sur la sortie commune, cela de manière à favoriser la réponse aux déformations dues à des mouvements de rotation selon l'axe d'activation par rapport à la réponse à toute autre déformation.
Avantageusement, le dispositif de détection de mouvement d'activation comporte au moins un couple de détecteurs de torsion à plaquettes piézo-électriques à champ magnétique rémanent revêtues sur leurs flancs de deux électrodes, qui sont disposés en vis à vis sur une même lamelle flexible de la couronne de fixation avec leurs champs magnétiques rémanents en sens opposés et leurs électrodes connectées en antiparallèle à la sortie commune. Avantageusement, le dispositif de détection de mouvement d'activation comporte plusieurs détecteurs de torsion à plaquette piézoélectrique à champ magnétique rémanent revêtue sur ses flancs de deux électrodes, qui sont répartis sur les lamelles flexibles de la couronne de fixation en respectant une symétrie de révolution par rapport à l'axe d'activation et dont les électrodes sont connectées en parallèle à la sortie commune.
Avantageusement, le dispositif de détection de mouvement d'activation comporte plusieurs couples de détecteurs de torsion à plaquette piézo-électrique à champ magnétique rémanent revêtue sur ses flancs de deux électrodes, chaque couple de détecteurs de torsion ayant leur deux plaquettes piézo-électriques disposées en vis à vis sur une même lamelle flexible de la couronne de fixation avec leurs électrodes connectées en antiparallèle sur des bornes de sortie intermédiaire et les différents couples de détecteurs de torsion étant répartis sur les lamelles flexibles de la couronne de fixation en respectant une symétrie de révolution par rapport à l'axe d'activation et en ayant leurs bornes de sortie intermédiaire connectées en parallèle.
D'autres caractéristiques et avantages de l'invention ressortiront de la description ci-après d'un mode de réalisation donné à titre d'exemple. Cette description sera faite en regard du dessin dans lequel :
- une figure 1 représente, en perspective, une couronne de fixation pour gyromètre laser prévue pour permettre et éventuellement engendrer les oscillations de rotation d'un mouvement d'activation,
- des figures 2, 3 et 4 schématisent les différentes déformations que peut subir une lamelle flexible d'une couronne de fixation telle que celle illustrée sur la figure 1 , sous l'action d'une perturbation mécanique externe transmise par le porteur du gyromètre laser.
- une figure 5 illustre, de manière schématique, un premier mode de réalisation de l'invention dans lequel un couple de plaquettes piézo-électriques à champ magnétique rémanent revêtues sur leurs flancs de deux électrodes sont disposés en vis à vis sur une lamelle flexible d'une couronne de fixation telle que celle illustrée à la figure 1 , avec leurs électrodes connectées en antiparallèle à une sortie commune, et
- une figure 6 illustre, également de manière schématique, un deuxième mode de réalisation de l'invention, qui peut se combiner avec le premier, dans lequel plusieurs plaquettes piézo-électriques à champ magnétique rémanent revêtues sur leurs flancs de deux électrodes sont réparties sur les lamelles flexibles d'une couronne de fixation telle que celle illustrée à la figure 1 , en respectant une symétrie de révolution, leurs électrodes étant connectées en parallèle à une sortie commune.
Un gyromètre laser se présente sous la forme d'un bloc optique comprenant une ou plusieurs cavités optiques résonnantes (une par axe de détection). Ce bloc optique est placé dans une chemise cylindrique de même axe que son axe d'activation mécanique. Il est fixé à l'intérieur de cette chemise qui lui sert de châssis au moyen de deux couronnes de fixation flexible en torsion de rotation qui autorisent le mouvement rotatif oscillatoire d'activation . Ces deux couronnes de fixation sont montées de part et d'autre du bloc optique du gyromètre laser coaxialement à son axe d'activation mécanique. Elles sont attachées par leur moyeu ou périphérie intérieure au bloc optique du gyromètre laser et par leur jante ou périphérie extérieure à la chemise cylindrique.
Chaque couronne de fixation, conçue pour avoir une certaine flexibilité en torsion de rotation se présente, de manière habituelle, sous la forme d'une roue à rayons, la flexibilité en torsion de rotation provenant de l'élasticité des rayons. Un exemple de couronne de fixation pour gyromètre laser est représenté à la figure 1 . On y distingue deux parties rigides : un moyeu 1 maintenu au centre d'une jante 2 au moyen de lamelles radiales 3 à 1 1 disposées dans des plans transversaux radiaux et régulièrement réparties autour du moyeu 1 . Les lamelles radiales 3 à 1 1 ont, de part leur minceur, une certaine flexibilité rendant possible des oscillations de rotation du moyeu 1 par rapport à la jante 2.
L'une des couronnes de fixation est pourvue d'un moteur piézo-électrique permettant d'engendrer et d'entretenir un mouvement d'oscillation de rotation de son moyeu par rapport à sa jante qui constitue le mouvement d'activation du gyromètre laser. Ce moteur pièzo-électrique est constitué d'une ou plusieurs plaquettes de céramique piézo-électrique revêtues sur chacun de leurs flancs d'électrodes d'excitation. Chaque plaquette pièzo-électrique du moteur est collée sur une lamelle, de manière à provoquer, lorsqu'elle est excitée par un champ électrique transversal dû à l'application d'une excitation électrique entre ses électrodes, par effet bilame, une torsion de la lamelle dans le plan de la couronne. Le moteur n'a pas de plaquettes pièzo-électriques sur toutes les lamelles mais seulement sur l'une ou plusieurs d'entre elles régulièrement réparties autour du moyeu, par exemple six plaquettes pièzo-électriques placées sur les lamelles 4, 5, 7, 8, 10 et 1 1 .
Pour tenir compte, dans le signal de mesure d'un gyromètre laser, de la part due à son activation mécanique, il est nécessaire de connaître avec précision, l'amplitude et la fréquence des oscillations de rotation auxquelles il est effectivement soumis. Or ces grandeurs ne sont pas constantes et dépendent des conditions ambiantes, notamment de la température, de sorte que l'on a intérêt à mesurer ces oscillations. Cette mesure présente également l'avantage de permettre une régulation du mouvement d'activation par une rétroaction sur l'excitation électrique fournies aux couples de plaquettes piézo-électriques du moteur afin de maintenir le gyromètre laser dans les conditions où il présente sa meilleure sensibilité.
Pour effectuer la mesure du mouvement d'oscillations d'activation effectivement imprimé à un gyromètre laser, on équipe la couronne de fixation motorisée d'un détecteur de mouvement. Ce détecteur de mouvement est constitué jusqu'à présent, d'une simple plaquette piézo-électrique polarisée transversalement par un champ magnétique rémanent, revêtue sur ses flancs de deux électrodes, collée sur une des lamelles radiales flexibles de la couronne de fixation motorisée dépourvue de couple de plaquettes piézo-électriques motrices et utilisée en capteur de torsion.
La plaquette piézo-électrique du capteur de torsion n'est pas excitée électriquement et fournit entre ses électrodes des charges électriques, à la manière d'un condensateur. Le nombre de ces charges et leurs polarisation sont fonction des déformations subies par la lamelle radiale qui la porte.
Un tel détecteur de mouvement a l'inconvénient d'être sensible à toutes les déformations de la lamelle qu'il équipe, que ces déformations soient provoquées par le mouvement oscillatoire d'activation ou qu'elles aient pour origine des vibrations mécaniques parasites dues à des perturbations mécaniques externes. En effet, un choc ou des vibrations appliqués au boîtier du gyromètre imposent à la partie suspendue du gyromètre une accélération qui déforme les lamelles flexibles des couronnes de fixation. Ces déformations sont détectées par la plaquette de céramique piézo-électrique à champ magnétique rémanent du capteur de torsion du détecteur de mouvement, qu'elles concourent ou non au mouvement oscillatoire rotatif d'activation. Lorsqu'elles ne concourent pas au mouvement d'activation, elles sont à l'origine d'un bruit dans le signal de sortie du détecteur de mouvement qui s'ajoute à la composante utile due aux vibrations d'activation et qu'il est difficile d'éliminer par un traitement de signal car il occupe une large plage de fréquence recouvrant celle des vibrations d'activation.
On propose de rendre le détecteur de mouvement plus sensible aux oscillations d'activation qu'à tout autre mouvement de la partie suspendue d'un gyromètre laser en le composant à l'aide de plusieurs capteurs de torsion qui sont positionnés différemment sur les lamelles radiales flexibles d'une couronne de fixation et dont les électrodes sont connectées en parallèle ou en antiparallèle à une sortie commune, de manière à engendrer, en réponse à des déformations des lamelles dues à des mouvements de rotation selon l'axe d'activation, des charges électriques de même polarité qui se cumulent sur la sortie commune, et, en réponse à des déformations des lamelles provenant d'autres mouvements, des charges électriques de polarités opposées qui s'annihilent sur la sortie commune. Grâce à cette composition, on favorise la réponse du détecteur de mouvement aux déformations dues à des mouvements de rotation selon l'axe d'activation par accumulation des réponses partielles de ses divers capteurs de torsion, tout en amoindrissant sa réponse à tout autre déformation par compensation entre les réponses partielles de ses divers capteurs de tension. Les perturbations mécaniques externes ne peuvent occasionner un bruit dans la mesure des oscillations d'activation que lorsqu'elles entraînent des déformations des lamelles radiales différentes de celles occasionnées par le mouvement oscillatoire d'activation. Comme les déformations provoquées sur les lamelles radiales d'une couronne de fixation par le mouvement oscillatoire d'activation sont exclusivement, des déformations de flexion latérales identiques et de même sens pour toutes les lamelles radiales, les seules perturbations mécaniques gênantes pour la mesure des oscillation d'activation sont celles qui provoquent sur les lamelles radiales, soit des déformations dans leur plan, en direction longitudinale comme représenté à la figure 2 ou en direction verticale comme représenté à la figure 3, soit des déformations transverses comme représenté à la figure 4.
La figure 2 schématise l'effet, sur une couronne de fixation, d'une perturbation mécanique dans une direction radiale, selon le plan d'une lamelle flexible. La perturbation mécanique est repérée par un vecteur d'accélération γ placé dans le plan de la lamelle flexible, à l'extérieur de la couronne de fixation et orienté perpendiculairement à l'axe d'activation. Elle entraîne une traction/compression © de la lamelle flexible avec flexion © dans son plan . Cet effet conduit à un décentrement du moyeu dans la direction radiale de la lamelle flexible doublé d'un désaxement.
La figure 3 schématise l'effet, sur une couronne de fixation, d'une perturbation mécanique en direction de l'axe d'activation. La perturbation mécanique est repérée par un vecteur d'accélération γ placé à l'extérieur de la couronne flexible, selon son axe. Elle entraîne des effets de flexion et de cisaillement ® des lamelles flexibles avec un déplacement du moyeu qui subit une translation selon l'axe d'activation, en direction de l'extérieur de la couronne flexible. La figure 4 schématise l'effet, sur une couronne de fixation, d'une perturbation mécanique en direction radiale, selon la normale au plan d'une lamelle flexible. La perturbation mécanique est repérée par un vecteur d'accélération γ placé à l'extérieur de la couronne de fixation, selon la normale à une lamelle flexible. Elle entraîne une flexion de la lamelle flexible © avec torsion © dans un plan perpendiculaire à celle-ci. Cet effet conduit à un décentrement du moyeu dans une direction normale doublé d'un désaxement.
Dans un détecteur de mouvement d'activation, Il faut favoriser la détection des déformations de flexion latérale de même ampleur affectant toutes les lamelles radiales au détriment de la détection de toutes les autres déformations possibles des lamelles radiales qui viennent d'être passées en revue en regard des figures 2 à 4.
La figure 5 donne un premier exemple de détecteur de mouvement d'activation favorisant la détection des déformations de flexion latérale de même ampleur affectant toutes les lamelles radiales au détriment des déformations des lamelles radiales dans leur plan, aussi bien en direction longitudinale que verticale. Ce détecteur de mouvement d'activation est construit à partir d'un couple de capteurs piézoélectriques de torsion 1 5 et 1 6 collés de part et d'autre d'une même lamelle radiale flexible d'une couronne de fixation. Chaque capteur de torsion 1 5, 1 6 est constitué d'une plaquette piézo-électrique polarisée transversalement par un champ magnétique rémanent et revêtue sur ses flancs de deux électrodes Ea, Eb différentiées par le sens du champ magnétique rémanent, l'électrode Ea étant disposée côté amont et l'électrode Eb étant placée côté aval par rapport au champ magnétique rémanent. Les deux capteurs piézo-électriques sont collés par leurs électrodes de même nature, Ea dans le cas représenté mais ce pourrait être aussi bien Eb, sur les faces opposées d'une même lamelle radiale flexible d'une couronne de fixation, de préférence, celle motorisée. Leurs électrodes sont connectées en antiparallèle, l'électrode Ea de l'un étant connectée à l'électrode Eb de l'autre et réciproquement.
Avec cette disposition, le détecteur de mouvement reste sensible aux flexions de la lamelle radiale dans le plan de la couronne de fixation qui correspondent au mouvement oscillatoire d'activation. En effet, lors de telles flexions, l'une des plaquettes pièzo-électriques est soumise à une contrainte mécanique longitudinale de compression tandis que l'autre est soumise à une contrainte longitudinale d'extension. Sous l'action de ces deux contraintes longitudinales de sens opposés, les deux plaquettes piézo-électriques engendrent des charges électriques de signes opposées. Mais comme leurs électrodes sont connectées en antiparallèle, ces charges s'accumulent en sortie du détecteur de mouvement. Par contre, pour les déformations de la lamelle radiale dans son plan, que ce soit dans le sens longitudinal comme représenté à la figure 2 ou dans le sens vertical comme représenté à la figure 3, les deux plaquettes pièzo-électriques sont soumises à des contraintes longitudinales identiques de traction ou de compression et engendrent des charges électriques de même signe qui s'éliminent mutuellement du fait du montage en antiparallèle.
Grâce à ce montage, on obtient un détecteur de mouvement toujours sensible aux oscillations de rotation autour de l'axe d'activation du gyromètre laser mais avec une sensibilité très amoindrie aux mouvements parasites entraînant des déformations, dans son plan, de la lamelle radiale qui le supporte. Il est donc nettement moins affecté par les perturbations mécaniques externes que les détecteurs de mouvement de la technique antérieure décrits précédemment. Cependant, il présente toujours une certaine sensibilité résiduelle aux perturbations mécaniques externes due fait qu'il réagit toujours aux déformations transverses de la lamelle qui le supporte même si celles-ci ne proviennent pas des oscillations de rotation d'activation. La figure 6 donne un deuxième exemple de détecteur de mouvement d'activation favorisant la détection des déformations de flexion latérale de même ampleur affectant toutes les lamelles radiales au détriment des déformations transverses des lamelles radiales. Ce détecteur de mouvement d'activation est construit à partir de plusieurs capteurs piézo-électriques de torsion 1 7, 18, 19 qui sont répartis sur les lamelles radiales flexibles d'une couronne de fixation en respectant une symétrie de révolution autour de leur axe qui est confondu avec l'axe d'activation. Comme précédemment, chaque capteur piézo-électrique de torsion 1 7, 1 8, 19 est constitué d'une plaquette piézo-électrique polarisée transversalement par un champ magnétique rémanent et revêtue sur ses flancs de deux électrodes Ea, Eb différentiées par le sens du champ magnétique rémanent. Ici, les différentes plaquettes piézoélectriques des capteurs de torsion sont collées par une même face sur une même face des différentes lamelles radiales d'une même couronne de fixation de gyromètre laser avec leurs électrodes de même type Ea ou Eb raccordées ensemble à une même borne de sortie du détecteur de mouvement.
Avec cette disposition, le détecteur de mouvement reste sensible aux flexions de la lamelle radiale dans le plan de la couronne de fixation qui correspondent au mouvement oscillatoire d'activation. En effet, lors d'une telle flexion, les différentes plaquettes pièzo-électriques sont soumises à des contraintes mécaniques de même type, traction ou compression et engendrent des charges électriques de même signe qui s'additionnent en sortie du détecteur de mouvement du fait de la connexion en parallèle de leurs électrodes de même type. Par contre, il est peu sensible à un mouvement entraînant une déformation d'une lamelle radiale transverse à son pian car alors le_ capteur de torsion équipant ladite lamelle radiale n'est pas excité du fait de l'absence de torsion alors que les capteurs de torsion disposés sur les deux autres lamelles radiales placées à 120° sont excités en sens opposés, l'un voyant une contrainte longitudinale de compression et l'autre une contrainte longitudinale d'extension et ont leurs contributions qui s'annulent dans le signal du détecteur de mouvement du fait de leur raccordement en parallèle. Grâce à ce montage, on obtient un détecteur de mouvement toujours sensible aux oscillations de rotation autour de l'axe d'activation du gyromètre laser mais avec une sensibilité très amoindrie aux mouvements parasites entraînant des déformations transverses des lamelles radiales. Il est donc moins affecté par les perturbations mécaniques externes que les détecteurs de mouvement de la technique antérieure décrits précédemment. Cependant, il présente toujours une certaine sensibilité résiduelle aux perturbations mécaniques externes due fait qu'il réagit toujours aux déformations des lamelles radiales dans leur plan alors que celles-ci ne peuvent provenir des oscillations de rotation d'activation.
Une combinaison des deux détecteurs de mouvements d'activation proposés relativement aux figures 5 et 6 permet de remédier aux défauts de l'un et de l'autre et d'obtenir un détecteur de mouvement d'activation particulièrement peu sensible aux perturbations mécaniques externes. Cette combinaison consiste simplement, à répartir plusieurs détecteurs de mouvement d'activation selon la figure 5 sur différentes lamelles radiales d'une couronne de fixation en respectant une symétrie de révolution par rapport à l'axe d'activation, et à raccorder en parallèle les bornes de sortie de ces différents détecteurs.

Claims

R E V E N D I C A T I O N S
1 . Dispositif de détection de mouvement d'activation pour gyrolaser activé mécaniquement et équipé d'au moins une couronne de fixation qui est coaxiale avec son axe d'activation et comporte un moyeu (1 ) maintenu au centre d'une jante (2) par des lamelles (3 à 1 1 ) radiales, flexibles, disposées dans des plans transversaux et régulièrement réparties autour du moyeu (1 ), qui font office de ressorts et entrent en vibration sous l'effet du mouvement d'activation, caractérisé en ce qu'il comporte plusieurs détecteurs de torsion (1 5 à 19) à plaquette piézo-électrique à champ magnétique rémanent revêtue sur ses flancs de deux électrodes (Ea, Eb), qui sont positionnés différemment sur les lamelles flexibles (3 à1 1 ) de la couronne de fixation et dont les électrodes (Ea, Eb) sont connectées en parallèle ou en antiparallèle à une sortie commune de manière à engendrer, en réponse à des déformations des lamelles (3 à 1 1 ) dues à des mouvements de rotation selon l'axe d'activation, des charges électriques de même polarité qui se cumulent sur la sortie commune, et, en réponse à des déformations des lamelles (3 à 1 1 ) provenant d'autres mouvements, des charges électriques de polarités opposées qui s'annihilent sur la sortie commune, cela de manière à favoriser la réponse aux déformations dues à des mouvements de rotation selon l'axe d'activation par rapport à la réponse à toute autre déformation.
2. Dispositif selon la revendication 1 , caractérisé en ce qu'il comporte au moins un couple de détecteurs de torsion ( 1 5, 1 6) à plaquettes piézo-électriques à champ magnétique rémanent revêtues sur leurs flancs de deux électrodes (Ea, Eb), qui sont disposés en vis à vis sur une même lamelle flexible de la couronne de fixation avec leurs champs magnétiques rémanents en sens opposés et leurs électrodes (Ea, Eb) connectées en antiparallèle à la sortie commune.
3. Dispositif selon la revendication 1 , caractérisé en ce qu'il comporte plusieurs détecteurs de torsion ( 17 à 1 9) à plaquette piézo- électrique à champ magnétique rémanent revêtue sur ses flancs de deux électrodes (Ea, Eb), qui sont répartis sur les lamelles flexibles de la couronne de fixation en respectant une symétrie de révolution par rapport à l'axe d'activation et dont les électrodes (Ea, Eb) sont connectées en parallèle à la sortie commune.
4. Dispositif selon la revendication 1 , caractérisé en ce qu'il comporte plusieurs couples de détecteurs de torsion (1 5, 16) à plaquette piézo-électrique à champ magnétique rémanent revêtue sur ses flancs de deux électrodes (Ea, Eb), chaque couple de détecteurs de torsion ayant leur deux plaquettes piézo-électriques disposées en vis à vis sur une même lamelle flexible de la couronne de fixation avec leurs électrodes (Ea, Eb) connectées en antiparallèle sur des bornes de sortie intermédiaire et les différents couples de détecteurs de torsion étant répartis sur les lamelles flexibles de la couronne de fixation en respectant une symétrie de révolution par rapport à l'axe d'activation et en ayant leurs bornes de sortie intermédiaire connectées en parallèle.
PCT/FR2000/000416 1999-02-19 2000-02-18 Dispositif de detection de mouvement d'activation pour gyrolaser WO2000049368A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/647,936 US6498651B1 (en) 1999-02-19 1999-02-18 Device for detecting activation movement for laser gyroscope
EP00906431A EP1073879A1 (fr) 1999-02-19 2000-02-18 Dispositif de detection de mouvement d'activation pour gyrolaser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9902106A FR2790082B1 (fr) 1999-02-19 1999-02-19 Dispositif de detection de mouvement d'activation pour gyrolaser
FR99/02106 1999-02-19

Publications (1)

Publication Number Publication Date
WO2000049368A1 true WO2000049368A1 (fr) 2000-08-24

Family

ID=9542303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/000416 WO2000049368A1 (fr) 1999-02-19 2000-02-18 Dispositif de detection de mouvement d'activation pour gyrolaser

Country Status (4)

Country Link
US (1) US6498651B1 (fr)
EP (1) EP1073879A1 (fr)
FR (1) FR2790082B1 (fr)
WO (1) WO2000049368A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839057B2 (en) * 2007-08-02 2010-11-23 Brother Kogyo Kabushiki Kaisha Movement detector

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2510156A1 (fr) * 2002-12-20 2004-07-15 Dow Global Technologies Inc. Compositions nanocomposites d'oligomeres macrocycliques polymerises
BR0317203A (pt) * 2002-12-23 2005-11-01 Dow Global Technologies Inc Método de moldagem de compostos de moldagem em folha
FR2859527B1 (fr) * 2003-09-09 2005-11-18 Thales Sa Gyrometre micro-usine a double diapason et a detection dans le plan de la plaque usinee
US7221813B2 (en) * 2004-03-10 2007-05-22 Tektronix, Inc. Signal acquisition probing and voltage measurement systems using an electro-optical cavity
US8641203B2 (en) 2008-06-17 2014-02-04 The Invention Science Fund I, Llc Methods and systems for receiving and transmitting signals between server and projector apparatuses
US8308304B2 (en) 2008-06-17 2012-11-13 The Invention Science Fund I, Llc Systems associated with receiving and transmitting information related to projection
US8944608B2 (en) 2008-06-17 2015-02-03 The Invention Science Fund I, Llc Systems and methods associated with projecting in response to conformation
US8955984B2 (en) 2008-06-17 2015-02-17 The Invention Science Fund I, Llc Projection associated methods and systems
US8936367B2 (en) 2008-06-17 2015-01-20 The Invention Science Fund I, Llc Systems and methods associated with projecting in response to conformation
US8723787B2 (en) 2008-06-17 2014-05-13 The Invention Science Fund I, Llc Methods and systems related to an image capture projection surface
US8733952B2 (en) 2008-06-17 2014-05-27 The Invention Science Fund I, Llc Methods and systems for coordinated use of two or more user responsive projectors
US8376558B2 (en) 2008-06-17 2013-02-19 The Invention Science Fund I, Llc Systems and methods for projecting in response to position change of a projection surface
US8602564B2 (en) 2008-06-17 2013-12-10 The Invention Science Fund I, Llc Methods and systems for projecting in response to position
US8267526B2 (en) 2008-06-17 2012-09-18 The Invention Science Fund I, Llc Methods associated with receiving and transmitting information related to projection
US8608321B2 (en) 2008-06-17 2013-12-17 The Invention Science Fund I, Llc Systems and methods for projecting in response to conformation
US20090309826A1 (en) 2008-06-17 2009-12-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems and devices
US8540381B2 (en) 2008-06-17 2013-09-24 The Invention Science Fund I, Llc Systems and methods for receiving information associated with projecting
US8384005B2 (en) 2008-06-17 2013-02-26 The Invention Science Fund I, Llc Systems and methods for selectively projecting information in response to at least one specified motion associated with pressure applied to at least one projection surface
JP2011004035A (ja) * 2009-06-17 2011-01-06 Seiko Epson Corp 屈曲振動片および屈曲振動片の製造方法
CN115406428A (zh) * 2022-11-01 2022-11-29 天津集智航宇科技有限公司 加速度环境下激光陀螺敏感轴向偏差开环控制装置及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4856901A (en) * 1988-05-04 1989-08-15 Kearfott Guidance & Navigation Corporation Velocity control system using piezoelectric transducers
US4988908A (en) * 1989-05-31 1991-01-29 Honeywell Inc. Piezoelectric transducers for a ring laser gyroscope dither motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406965A (en) * 1981-05-12 1983-09-27 The Singer Company Dither pick-off transducer for ring laser gyroscope
JPH0422630Y2 (fr) * 1985-09-20 1992-05-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4856901A (en) * 1988-05-04 1989-08-15 Kearfott Guidance & Navigation Corporation Velocity control system using piezoelectric transducers
US4988908A (en) * 1989-05-31 1991-01-29 Honeywell Inc. Piezoelectric transducers for a ring laser gyroscope dither motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839057B2 (en) * 2007-08-02 2010-11-23 Brother Kogyo Kabushiki Kaisha Movement detector

Also Published As

Publication number Publication date
US6498651B1 (en) 2002-12-24
FR2790082B1 (fr) 2001-05-18
FR2790082A1 (fr) 2000-08-25
EP1073879A1 (fr) 2001-02-07

Similar Documents

Publication Publication Date Title
WO2000049368A1 (fr) Dispositif de detection de mouvement d'activation pour gyrolaser
EP1960736B1 (fr) Gyrometre vibrant equilibre par un dispositif electrostatique
EP1515119B1 (fr) Gyromètre micro-usiné à double diapason
EP2960625B1 (fr) Capteur inertiel angulaire mems fonctionnant en mode diapason
EP1899681B1 (fr) Capteur gyrometrique micro-usine realisant une mesure differentielle du mouvement des masses vibrantes
EP1558896B1 (fr) Capteur gyrometrique micro-usine, a detection dans le plan de la plaque usinee
FR2564203A1 (fr) Capteur de vitesse angulaire
EP1912075A1 (fr) Acceleromètre resonant comportant un resonateur en forme de diapason équipé de balourds
EP0852726B1 (fr) Transducteur monolithique d'acceleration
EP1058818B1 (fr) Suspension elastique antivibratoire pour unite de mesure inertielle
EP0121483B1 (fr) Appareil gyroscopique ou gyrométrique, notamment gyroaccélérométre à suspension souple et sustentation électrostatique
EP0773429B1 (fr) Gyromètre à résonateur mécanique
CA2993477C (fr) Dispositif de mesure inertielle a double suspension
EP2414774B1 (fr) Elément vibrant sur deux modes découplés et application à un gyromètre vibrant
EP0307321B1 (fr) Dispositif gyrométrique piézoélectrique
CA2478892A1 (fr) Gyrometre micro-usine a double diapason et a detection dans le plan de la plaque usinee
FR2515073A1 (fr) Mecanisme d'entrainement par oscillations, notamment gyroscope equipe d'un laser a anneau
FR2548357A1 (fr) Gyroscope a laser en anneau pour fond de sondage
FR2692349A1 (fr) Gyromètre à poutre vibrante, à excitation piézo-électrique.
EP3707522B1 (fr) Capteur de gradient de champ magnétique a sensibilité aux vibrations réduite
FR3097044A1 (fr) Capteur de vitesse de rotation
FR3113730A1 (fr) Dispositif de couplage destiné à coupler deux éléments en mouvement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09647936

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000906431

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000906431

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000906431

Country of ref document: EP