WO2000041884A1 - Composite film - Google Patents

Composite film Download PDF

Info

Publication number
WO2000041884A1
WO2000041884A1 PCT/JP1999/000409 JP9900409W WO0041884A1 WO 2000041884 A1 WO2000041884 A1 WO 2000041884A1 JP 9900409 W JP9900409 W JP 9900409W WO 0041884 A1 WO0041884 A1 WO 0041884A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
film
composite film
mmol
film according
Prior art date
Application number
PCT/JP1999/000409
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Itatani
Shunichi Matsumoto
Original Assignee
Pi R & D Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pi R & D Co., Ltd. filed Critical Pi R & D Co., Ltd.
Priority to US09/806,452 priority Critical patent/US6589662B1/en
Priority to EP99901928A priority patent/EP1145845B1/en
Priority to DE69942234T priority patent/DE69942234D1/en
Priority to AT99901928T priority patent/ATE463345T1/en
Publication of WO2000041884A1 publication Critical patent/WO2000041884A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31515As intermediate layer
    • Y10T428/31522Next to metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31529Next to metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide

Definitions

  • the present invention relates to a composite film, and more particularly to a composite film having a surface coated with a polyimide film and having excellent heat resistance.
  • films made of polyester resin are easy to mold, have excellent mechanical properties, chemical properties, etc. It is widely used in various industrial fields.
  • films made of the above-mentioned polyester resin and polyphenylene disulfide resin have a problem that heat resistance is inferior in industrial use at a high temperature due to the low glass transition point of the resin. It could not be used for the part that was removed.
  • Japanese Patent Publication No. 57-1677256 discloses that a fluororesin film is immersed in a solution prepared by mixing a polyamic acid with an N-methyl-2-pyrrolidone solvent, and the surface of the film is coated with a polyamic acid resin. It has been proposed that a heat-resistant resin film is obtained by applying the resin and drying by heating.
  • An object of the present invention is to provide a composite film having excellent heat resistance and excellent surface layer adhesion.
  • the inventors of the present invention have applied a solution of a solvent-soluble polyimide containing a specific compound as an acid component or a diamine component onto the surface of a base film and dried to form a polyimide film. By doing so, it was found that a composite film having excellent heat resistance and excellent adhesion of the polyimide film to a substrate film could be obtained, and thus completed the present invention.
  • the present invention applies a solution of a solvent-soluble polyimide in which the molecular main chain is formed by polycondensation of tetracarboxylic dianhydride and diamine on at least one surface of the base film, A composite film formed by drying to form a polyimide film on the surface, wherein the solvent-soluble polyimide is a molecular main chain, and is at least a part of the tetracarboxylic dianhydride.
  • Bicyclo (2,2,2) oct-7-ene-1,2,3,5,6-tetracarboxylic dianhydride and Z or 3,5-diaminobenzoic acid and diamine as at least part of the diamine Provided is a composite film containing at least one of an aminosiloxane derivative.
  • the composite film of the present invention is excellent in heat resistance, chemical resistance and insulation since a polyimide film having excellent heat resistance, chemical resistance and insulation is formed on the surface of the base film. Also, the adhesiveness between the base film and the polyimide film is excellent. Therefore, the composite film of the present invention can be applied to various applications that require heat resistance, chemical resistance, and heat resistance or insulation. According to the present invention, polyimide can be directly formed into a film form even on a base film having a low melting point, and the advantages of the base film and polyimide can be synergistically exhibited. It has excellent effects such as easy manufacturing and low manufacturing cost.
  • the composite film of the present invention includes a base film and a polyimide film formed on at least one surface of the base film.
  • a film made of a thermoplastic resin which has low heat resistance and cannot form a polyimide film on its surface conventionally, can be suitably used.
  • thermoplastic resins include polyethylene terephthalate and polyethylene naphthalene. Examples thereof include polyester and polyphenylene sulfide.
  • the thickness of the base film is not particularly limited, and is usually about 10 to 200 m.
  • various commercially available films can be used.
  • the composite film of the present invention is obtained by coating a solution of a solvent-soluble polyimide having a molecular main chain formed by polycondensation of tetracarboxylic dianhydride and diamine on at least one surface of the base film, It is obtained by drying to form a polyimide film on the surface.
  • the polyimide used in the present invention is a solvent-soluble polyimide.
  • Solvents include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethylsulfoxide (DMSO), N-methylpyrrolidone (NMP), tetramethylurea, and sulfolane Are used.
  • DMF N-dimethylformamide
  • DMAc N, N-dimethylacetamide
  • DMSO dimethylsulfoxide
  • NMP N-methylpyrrolidone
  • tetramethylurea sulfolane
  • sulfolane sulfolane
  • DMF or NMP is used.
  • solvent-soluble means that it is dissolved in N-methyl-1-pyrrolidone (NMP) at a concentration of 5% by weight or more, preferably 10% by weight or more. I do.
  • Dianhydride bis (dicarboxyphenyl) propane dianhydride, bis (dicarboxyphenyl) sulfone dianhydride, bis (dicarboxyphenyl) ether dianhydride, thiophenetetracarboxylic dianhydride , Pyromellitic dianhydride, aromatic dianhydrides such as naphthalene dianhydride, "!, 2,3,4-butanetetracarboxylic dianhydride, bicyclo (2,2,2) -octane 7-ene 2,3,5,6-tetracarboxylic dianhydride, 4,4 '- ⁇ 2,2,2-trifluoro-1- (trifluoromethyl) ethylidene ⁇ bis (1,2_ Benzenedicarbon And di anhydride) dianhydride such as. They may be used by mixing two or more kinds in combination.
  • the diamines used to form the molecular main chain of the solvent-soluble polyimide include 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 4, 4'-diaminodihue Nyl sulfide, 4, 4 'diamino diphenyl sulfone, 3, 3' diamino diphenyl sulfone, 3, 4 '-diamino diphenyl sulfone, 4, 4'-diamino diphenyl ether, 3, 4 '-diamino Diphenyl ether, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 2,2'-bis (4-aminophenyl) propane, benzidine, 3,3'-diaminobiphenyl,
  • the polyimide used in the present invention may be a bicyclo (2,2,2) octane as a tetracarboxylic dianhydride among the above tetracarboxylic dianhydrides and diamines, in order to enhance the adhesion to the base film.
  • 7-ene 1,2,3,5,6-tetracarboxylic acid At least one member selected from the group consisting of dicarboxylic dianhydrides, 3,5-diaminobenzoic acid as diamine and diaminosiloxane derivatives is tetracarboxylic acid It is contained as a dianhydride component and a di- or diamine component.
  • the ratio of bicyclo (2,2,2) oct-1-ene-2,3,5,6-tetracarboxylic dianhydride to total tetracarboxylic dianhydride is It is preferably about 20 to 50 mol%, more preferably about 30 to 50 mol%, and the ratio of the total amount of the 3,5-diaminobenzoic acid and diaminosiloxane derivative to the total diamine is preferably 1 to 1. It is about 0 to 65 mol%, and more preferably about 35 to 60 mol 0 / o.
  • an amine value (the molecular weight divided by the number of amino group of the compound) is preferably of about 200 to 1 000, particularly bis (three to amino-( ⁇ -C 6) (Alkyl) monopolydimethylsiloxanes are preferred.
  • a diaminosiloxane derivative having such an amine value can be easily obtained by removing low boiling components of a commercially available diaminopolysiloxane derivative (generally, a mixture of polysiloxanes having different degrees of polymerization).
  • diaminosiloxane derivatives 1,4-bis (3-aminophenoxy) benzene, bis- ⁇ 4 (3-aminophenoxy) phenyl
  • diamines selected from the group consisting of sulfone and 3,5-diaminobenzoic acid.
  • the content of the diaminosiloxane derivative in the polyimide is preferably about 15 to 60% by weight, particularly preferably about 20 to 50% by weight, and 3,4 ′ diaminodiphenyl ether, 1,4 ⁇ 1
  • At least one diamine selected from the group consisting of bis (3-aminophenoxy) benzene, bis- ⁇ 4 (3-aminophenoxy) phenyl ⁇ sulfone, and 3,5-diaminobenzoic acid has a total amount of polyimiamine. The amount is preferably about 10 to 50% by weight 0 / o, and more preferably about 13 to 40% by weight.
  • the weight average molecular weight measured by gel filtration chromatography is preferably 15,000 to 100,000 in terms of polystyrene, and Preferably 200 It is about 00 to 700,000.
  • GPC method using an ultraviolet detector
  • the polyimide in the composition of the present invention can be produced by a direct imidization reaction between the above-described tetracarboxylic dianhydride and diamine.
  • polyamic acid is usually used to mold polyimide. This polyamic acid decomposes easily in air and has poor storage stability. Further, in order to convert the polyamic acid into a polyimide, it is necessary to heat the polyamic acid to 250 to 350 ° C. to perform an imidization reaction.
  • the polyimide used in the present invention is directly produced by an imidization reaction between a dicarboxylic acid dianhydride and diamine without going through a polyamic acid. It is very different from polyimide molded products.
  • the direct imidization reaction between tetracarboxylic dianhydride and diamine can be carried out using a catalyst system utilizing the following equilibrium reaction between lactone, a base and water.
  • a polar organic solvent is used in addition to the above toluene.
  • organic solvents include N-methyl-1-pyrrolidone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane, tetramethylurea and the like.
  • r-valerolactone is preferable as the lactone
  • pyridin and / or methylmorpholin is preferable as the base.
  • Mixing ratio of tetracarboxylic dianhydride and diamine used in the above imidation reaction is preferably in a molar ratio of about 1.05 to 0.95.
  • the concentration of lactone at the start of the reaction is 5 to 30 mol%, preferably about 5 to 20 mol%, based on the concentration of acid dianhydride, and the concentration of base is 100 to 100 mol% of lactone. It is preferably about 200 mol%.
  • the reaction time is not particularly limited, and varies depending on the molecular weight of the polyimide to be produced and the like, but is usually about 2 to 10 hours.
  • the reaction is preferably carried out with stirring under a nitrogen atmosphere.
  • a method for producing polyimide using a two-component catalyst comprising a lactone and a base is known per se, and is described, for example, in US Pat. No. 5,502,143.
  • the block copolymerization polyimide can be produced by sequentially performing the above-mentioned imidization reaction in two stages using different acid dianhydrides and / or different diamines. According to a conventional method for producing a polyimide via a polyamic acid, only a random copolymer could be produced as a copolymer.
  • the block copolymer polyimide can be manufactured by selecting an arbitrary acid and / or diamine component, so that any desired properties such as adhesion and dimensional stability, low dielectric constant, conductivity, and insulation can be obtained. Properties or functions can be added to the polyimide. In the composite film of the present invention, such a copolymerized polyimide can be preferably employed.
  • a preferred method for producing a block copolymer polyimide is to use an acid catalyst generated by the above lactone and base to increase the content of either diamine or tetracarboxylic dianhydride to obtain a polyimide oligomer. Then, diamine and di- or tetracarboxylic dianhydride are added (the molar ratio of wholly aromatic diamine to total tetracarboxylic dianhydride is 1.05-0.95). Examples of the method include condensation.
  • the polyimide produced by the above method can be obtained in the form of a solution dissolved in a solvent, this solution can be used as it is or, if desired, in toluene, dioxane, dioxolan, anisol or a polar organic compound as described above.
  • the solution further diluted with the solvent is applied to one or both sides of the base film.
  • the polyimide solution to be applied is a solution of polyimide which has already undergone the imidization reaction, unlike the conventional production of polyimide molded products via polyamic acid, the polyimide solution is heated after application. There is no need to perform an imidization reaction.
  • the solution is a polyimide solution (Polyamide). (It is not a solution of citric acid.) Therefore, it has the advantage that storage stability is good and it does not decompose even when it comes in contact with water.
  • the above-mentioned polyimide solution is applied to the surface of the cleaned base film, and the thickness of the polyimide solution on the film surface is made uniform using an ablicator or the like.
  • the base film coated with the polyimide solution uniformly on its surface is placed in a dryer at a temperature at which the base film does not deform, that is, the base film is made of a polyester film or a polyphenylene sulfide film.
  • the solvent of the polyimide solution is removed at a temperature of 80 to 200 ° C., preferably 90 to 150 ° C.
  • a generally known coating method by screen printing is used.
  • the thickness of the polyimide film after drying is not particularly limited, it is usually about 0.1 to 30 A ⁇ m, preferably about 0.2 to 10 ⁇ m.
  • the polyimide thus formed particularly the block copolymerized polyimide film, typically has the following physical properties.
  • a component to be subjected to block copolymerization it is possible to produce a block copolymerized polyimide having physical properties other than those described below.
  • volume resistivity 1 0 1 7 ohm or more
  • heat resistant temperature on mechanical used is 1 60 ° C Power, polyimide
  • the heat resistance temperature for mechanical use was improved to 210 ° C.
  • the volume resistance value is 10 (X I 0 (e
  • the composite film of the present invention can be used for various applications utilizing its heat resistance, chemical resistance and / or insulation properties, for example, for various applications such as wallpaper, surface protective films of various articles, insulating films, circuit boards, resistors, etc. It can be used for applications.
  • a two-liter three-necked flask was equipped with a stainless steel anchor stirrer, a nitrogen inlet tube, and a trap equipped with a stopcock, and a reflux condenser equipped with a cooling tube with balls.
  • the molecular weight of the block copolymer polyimide thus produced in terms of polystyrene was measured by the GPC method using an ultraviolet detector (using Tosoichi HLC820).
  • the number average molecular weight was 29,800 and the weight average was Molecular weight: 55,000, Z-average molecular weight: 99,300.
  • This block copolymerized polyimide solution was diluted with dioxolane to form a varnish with a polyimide concentration of 20%, and a gravure coating machine was used to form a film, which was used as polyethylene terephthalate (ZG-2Z50 micron product, Teijin Limited thickness: Film)
  • ZG-2Z50 micron product Teijin Limited thickness: Film
  • Heat-free heat treatment 150 ° C, 10 minutes was performed in the air, and the adhesion to the substrate film was checked by a grid test (2 mm intervals).
  • the grid test was performed as follows according to J IS-K-5400.
  • the number of the remaining coating film pieces stripped off together with the cellophane tape at that time is shown in terms of the number per 100 pieces before peeling. For example, 100/100 means that the number of peeled pieces per 100 pieces is zero.
  • the adhesion ratio was 100,100, and it was confirmed that the composite film A of the present invention had excellent adhesion to the base film.
  • Example 2 The same operation as in Example 1 was performed. 29.42 g (100 mmol) of biphenyltetracarboxylic dianhydride, 80 g (50 mmol) of bis (3-aminopropyl) -polydimethylsiloxane (ammine value 800), and 1.0 gamma-valero lactone g (10 mmol), 1.6 g (20 mmol) of pyridine, 150 g of N-methylpyrrolidone and 100 g of toluene were added to the flask and heated at 180 ° for 1 hour.
  • the molecular weight of the block copolymer polyimide thus produced was measured in the same manner as in Example 1. As a result, the number average molecular weight was 17700, the weight average molecular weight was 29900, and the Z average molecular weight was 46800.
  • the block copolymer polyimide solution was diluted with dilute quinolane to obtain a varnish having a concentration of 20% polyimide, a coating film was formed with a gravure coating machine, and dried at 130 ° C. for 5 minutes.
  • Polyethylene terephthalate Teijin Co., Ltd. ZG-2/50 micron thickness: base film
  • Foilm B Polyphenylene Sulfide Id Film (Toray Co., Ltd. product Z Torelina Z 75 micron thickness: base film)
  • a composite film B-2.5 and a composite film C-2.5 with a 2.5 micron polyimide film formed on both surfaces of film C) were prepared. Perform no-load heat treatment in the air in a high-temperature constant temperature oven at 210 ° 1 for 10 minutes, and check the adhesion with the base film by a grid test (1 mm interval) as in Example 1. did.
  • the adhesion rate of each of the films was 100%, and it was confirmed that the composite films B and C of the present invention had excellent adhesion to the base film.
  • Example 2 The same operation as in Example 1 was performed. 29.42 g (100 mmol) of biphenyltetracarboxylic dianhydride, bis (3-aminopropyl) polydiene Methylsiloxane (amine value 439) 175.6 g (200 mmol), gamma-valerolactone 2.0 g (20 mmol), pyridine 3.2 g (40 mmol), N-methylpyrrolidone 200 g, toluene 60 g was added to the flask and heated at 180 ° C for 1 hour.
  • the molecular weight of the block copolymer polyimide thus produced was measured in the same manner as in Example 1. As a result, the number average molecular weight was 16500, the weight average molecular weight was 26000, and the Z average molecular weight was 36800.
  • Neotone // 5 micron thickness: base film
  • the adhesion between the base film and the base film was measured by a grid test (1 mm intervals). confirmed.
  • each of the composite films are also adhesion rate 1 00 1 00 der Li, composite films D, E of the present invention, that the adhesion to the substrate film is excellent observed.
  • the molecular weight of the block copolymer polyimide thus produced was measured in the same manner as in Example 1. As a result, the number average molecular weight was 27200, the weight average molecular weight was 47200, and the Z average molecular weight was 75600.
  • the block copolymerized polyimide solution was diluted with dioxolane to form a varnish having a polyimide concentration of 20%, a coating film was formed, and dried at 130 ° C. for 5 minutes to obtain polyphenylene sulfide (Toray Co., Ltd.).
  • the adhesion ratio was 100Z100, and it was confirmed that the composite film F of the present invention had excellent adhesion to the base film.
  • Example 2 The same operation as in Example 1 was performed. That is, bicyclo (2,2,2) oct-1-ene-2,3,5,6-tetracarboxylic dianhydride 19.86 g (80 mmol), 3'4-diaminobiphenyl ether 24 .02 g (120 mmol), gamma-valerolactone 2.4 g (24 mmol), pyridine 3.3 g ( (40 mmol), N-methylpyrrolidone (200 g) and toluene (30 g) were added to the flask and heated at 180 ° C for 1 hour.
  • the block copolymer polyimide solution was diluted with dioxolane to form a varnish having a polyimide concentration of 20%, a coating film was formed, and dried at 130 ° C. for 10 minutes to obtain polyethylene terephthalate (Teijin Co., Ltd.).
  • Composite film G-2.5 with 2.5 micron block copolymerized polyimide film formed on both sides of (Film A) In a thermostat at 150 ° C, a no-load heat treatment in air (150 ° C for 10 minutes) was performed, and the adhesion to the substrate film was checked by a grid test (1 mm interval). .
  • the adhesion was 100Z100, and it was confirmed that the composite film G of the present invention had excellent adhesion to the base film.
  • the block copolymer polyimide solution was diluted with dioxolane to form a varnish having a concentration of 200/0 polyimide, formed into a coating film, and dried at 130 ° C. for 8 minutes to obtain polyethylene terephthalate (Teijin). Co., Ltd.-0 micron Thickness: base film)
  • the adhesion ratio was 1 O OZ100, and it was confirmed that the composite film G of the present invention had excellent adhesion to the base film.
  • Example 2 The same operation as in Example 1 was performed. That is, 3,4,3 ', 4'-biphenyltetracarboxylic dianhydride was obtained by adding 11.76 g (400 mmol) of bis (3-aminopropyl) -polydimethylsiloxane (amine equivalent: 416). , Shin-Etsu Chemical Co., Ltd. products) 166.4 g (200 mmol), gamma-valerolactone 4.0 g (40 mmol), pyridine 4.8 g (60 mmol), N-methylbi-lidone 200 g and 100 g of toluene were added to the flask and heated at 180 ° C for 1 hour.
  • the number average molecular weight of the polyimide thus produced was measured in the same manner as in Example 1, the number average molecular weight was 21,500 and the weight average molecular weight was 34,800.
  • the polyimide solution is diluted with dioxolane to make a varnish with a polyimide concentration of 20%, coated with a gravure coating machine, and dried at 130 ° C for 5 minutes to obtain a polyethylene naphthalate film (Teijin stock A composite film 1 and a composite film 2 each having a 1 micron or 2.5 micron polyimide film formed on both surfaces of the company product / Theonex Z 75 micron thickness (base film).
  • No-load heat treatment was performed in the air in a high-temperature constant temperature oven at 20 ° C for 10 minutes, and the adhesion to the substrate film was checked by a grid test (1 mm intervals).
  • Example 2 The same operation as in Example 1 was performed. That is, 44.67 g (180 mmol) of bicyclo (2,2,2) -octa-7-ene-2,3,5,6-tetracarboxylic dianhydride and 3,5-diaminobenzoic acid 1 Add 3.69 g (90 mmol), 3.6 g (36 mmol) of gamma-valerolactone, 4.75 g (60 mmol) of pyridine, 240 g of N-methylpyrrolidone and 90 g of toluene to a flask. Heated at 180 ° C for 1 hour.
  • the molecular weight of the polyimide thus produced was measured in the same manner as in Example 1. As a result, the number average molecular weight was 35,500, and the weight average molecular weight was 57,400.
  • the glass transition temperature of this polyimide was 193—215 ° C, and the onset of thermal decomposition was 422 ° C.
  • the polyimide solution was applied onto both surfaces of a polyethylene naphthalate film (Noteonex Z50 micron thickness: Teijin Limited: base film) and dried at 130 ° C for 8 minutes.
  • a composite film 1 and a composite film 2 each having a 1 micron or 2.5 micron polyimide film were prepared. No-load heat treatment was performed in the air in a high-temperature thermostat at 200 ° ⁇ for 10 minutes, and the adhesion to the substrate film was checked by a grid test (1 mm intervals).
  • Example 2 The same operation as in Example 1 was performed. That is, 29.78 g (120 mmol) of bicyclo (2,2,2) oct-2-ene-2,3,5,6-tetracarboxylic dianhydride and 36.34 g of 3,4 ′ diaminodiphenyl ether 0.4 g (180 mmol), 3.0 g (30 mmol) of gamma-valerolactone, 4.0 g (50 mmol) of pyridine, 200 g of N-methylpyrrolidone and 50 g of toluene were added to the flask, and 1 Heat at 80 ° C for 1 hour.
  • the molecular weight of the polyimide thus produced was measured in the same manner as in Example 1. At this time, the number average molecular weight was 31,900, and the weight average molecular weight was 54,500.
  • the above polyimide solution was applied to both surfaces of a polyethylene naphthalate film (Teonex Co., Ltd. product, Teonex 25 micron thickness: base film), and dried at 130 ° C for 5 minutes.
  • a composite film 1 having a 1 micron or 2.5 micron polyimide film and a composite film 2 were prepared. Perform no-load heat treatment in the air in a high-temperature constant temperature oven at 200 ° ⁇ ⁇ for 10 minutes, perform no-load heat treatment in the air, and check the adhesion between the base film and the base film (1 mm ).
  • Example 2 The same operation as in Example 1 was performed. That is, bicyclo (2,2,2) oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 14.89 g (60 mmol), 4,4 'diaminodiphenyls 6.49 g (30 mmol) of sulfide, 1.2 g (12 mmol) of gamma-valerolactone, 1.6 g (20 mmol) of pyridine, 80 g of N-methylpyrrolidone and 30 g of toluene are placed in a flask. In addition, it was heated at 180 ° C for 1 hour.
  • polyimide solution was applied to both surfaces of polyf: c dilensulfide (Toray Industries, Inc., product Torelina 50 micron thickness: base film), By drying at 30 ° C. for 10 minutes, composite films 1 and 2 each having a 1 ⁇ m or 2.5 ⁇ m polyimide film were prepared. Under an environment of 200 ° C for 10 minutes, heat treatment without load was performed, and the adhesion to the substrate film was checked by a grid test (1 mm interval).
  • the adhesion rate was 100,100 for all of the composite films, and it was confirmed that these composite films of the present invention had excellent adhesion to the base film.
  • Bicyclo (2,2,2) -octane-4,3,5,6-tetracarboxylic dianhydride was obtained in an amount of 14.89 g (60 mmol), 3,5-diaminobenzoic acid 4.56 g (30 mmol), 1.2 g (12 mmol) of gamma valerolactone, 1.6 g (20 mmol) of pyridine, 80 g of N-methylpyrrolidone and 30 g of toluene in a flask In addition, the mixture was heated at 180 ° C for 1 hour.
  • the molecular weight of the polyimide thus produced was measured in the same manner as in Example 1, the number average molecular weight was 28,000 and the weight average molecular weight was 51,000.
  • the polyimide solution is applied to both surfaces of a polyphenylene sulfide (Toray Industries, Inc., Torelinan 75 micron thickness: base film) and dried at 130 ° C for 10 minutes.
  • a composite film 1 and a composite film 2 each having a 1 ⁇ m or 2.5 ⁇ m polyimide film were prepared. Perform heat treatment with no load in an environment of 210 ° C for 10 minutes to check the adhesion to the base film. It was confirmed by eye test (1 mm interval).
  • the adhesion rate any of the composite film is 1 00Z1 00, c Example 1 3 composite fill ⁇ is recognized that the adhesion to the substrate fill ⁇ is better these inventive
  • a 1-liter three-necked flask was equipped with a stainless steel anchor stirrer, a nitrogen inlet tube and a trap equipped with a stopcock, and a reflux condenser equipped with a cooling tube with balls.
  • 3,4,3 ', 4'-Diphenyltetracarboxylic dianhydride 35.3 g (120 mmol), bis (3-aminopropyl) -polydimethylsiloxane (amine number 458, Shin-Etsu Chemical Co., Ltd.) 27. 48 g (30 mmol), 5.17 g (60 mmol) of crotonic acid, 5 g (60 mmol) of pyridine, 150 g of N-methylpyrrolidone and 40 g of toluene were added to the flask. The mixture was heated and stirred at 160 ° C for 1 hour.
  • the molecular weight of the block copolymer polyimide thus produced in terms of polystyrene was measured by the GPC method using an ultraviolet detector (using Tosoichi HLC 820).
  • the weight average molecular weight was 17400 and the Z average molecular weight was 26400.
  • the glass transition temperature was 205 ° C and the thermal decomposition onset temperature was 444 ° C.
  • Example 14 The resulting polyimide solution is applied to both sides of a polyethylene terephthalate film (Type G-2: thickness 38 m) manufactured by Teijin Limited, dried at 130 ° C for 5 minutes, and then applied to both sides of the polyethylene terephthalate film. A composite film with a 1 micron thick polyimide film laminated was obtained.
  • a polyethylene terephthalate film Type G-2: thickness 38 m
  • Teijin Limited thickness 38 m
  • the molecular weight of the polyimide thus produced was measured in the same manner as in Example 1, the number average molecular weight was 35,500 and the weight average molecular weight was 57,400. Further, the glass transition temperature was 193 to 21.5 ° C, and the thermal decomposition onset temperature was 422 ° C.
  • the obtained polyimide solution was applied to both sides of a polyethylene terephthalate film (Type G-2: thickness 38 m) manufactured by Teijin Limited, dried at 130 ° C for 10 minutes, and then treated with polyethylene terephthalate.
  • a composite film having a 2.5 micron thick polyimide film laminated on both sides of the film was obtained.
  • the base film polyethylene terephthalate filem
  • the composite film is heated to 180 ° C, which exceeds its melting point. Then, the composite film is deformed into an unmeasurable shape, but it can be seen that the composite film of the present invention hardly undergoes heat shrinkage. In addition, even when heated at 150 ° C., the heat shrinkage of the composite film of the present invention is significantly smaller than that of the base film.
  • the composite film of the present invention can be used for various applications utilizing its heat resistance, chemical resistance and Z or insulating properties, for example, for various applications such as wallpaper, surface protective films of various articles, insulating films, circuit boards, resistors and the like. Can be used for applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Glass Compositions (AREA)

Abstract

A composite film having excellent heat resistance. The film is obtained by applying a solution of a solvent-soluble polyimide having a backbone formed by the polycondensation of one or more tetracarboxylic dianhydrides with one or more diamines to at least one surface of a base film and drying the solution to form a polyimide film on the surface. The backbone of the solvent-soluble polyimide comprises units of bicyclo(2,2,2)oct-7-ene-2,3,5,6-tetracarboxylic dianhydride as at least part of the tetracarboxylic dianhydrides and/or units of at least either of 3,5-diaminobenzoic acid and a diaminosiloxane derivative as at least part of the diamines.

Description

明細書  Specification
複合フィルム  Composite film
技術分野  Technical field
本発明は複合フィルムに関し、 特に、 ポリイミ ド膜で表面が被覆された、 耐熱 性に優れた複合フィルムに関する。  The present invention relates to a composite film, and more particularly to a composite film having a surface coated with a polyimide film and having excellent heat resistance.
背景技術  Background art
一般に、 ポリエステル樹脂、 特にポリエチレンテレフタレ一ト樹脂、 ポリエ チレンナフタレート樹脂、 及び、 ポリフ: L二レンサルファイド樹脂を素材とした フィルムは、 その成型容易性、 優れた機械的特性、 化学的特性等を保有すること から各種の産業分野において広〈利用されている。  In general, films made of polyester resin, especially polyethylene terephthalate resin, polyethylene naphthalate resin, and polyph: L-dylene sulfide resin, are easy to mold, have excellent mechanical properties, chemical properties, etc. It is widely used in various industrial fields.
しかしながら、 上記のポリエステル樹脂及びポリフ I二レンサルフアイ ド樹脂 を素材としたフィルムは、 樹脂のガラス転移点が低いため、 高温での工業的利用 において耐熱性に劣るという問題点があリ、 高温にさらされる部分には使用でき ないものであった。  However, films made of the above-mentioned polyester resin and polyphenylene disulfide resin have a problem that heat resistance is inferior in industrial use at a high temperature due to the low glass transition point of the resin. It could not be used for the part that was removed.
そこで、 従来から樹脂を素材とするフイルムの表面に、 樹脂の欠点を補う性質 を有する素材の膜を形成した各種の複合フイルムが提案されている。 例えば、 特 開昭 5 7—1 6 7 2 5 6号公報には、 ポリアミック酸を N—メチルー 2—ピロリ ドン溶媒で調製した溶液にフッ素樹脂フィルムを浸潰して、 フィルム表面にポリ ァミック酸樹脂を塗布し、 加熱乾燥して耐熱性の樹脂フィルムを得ることが提案 されている。  In view of the above, various composite films in which a film of a material having a property to compensate for the defect of the resin is formed on the surface of a film made of the resin have been proposed. For example, Japanese Patent Publication No. 57-1677256 discloses that a fluororesin film is immersed in a solution prepared by mixing a polyamic acid with an N-methyl-2-pyrrolidone solvent, and the surface of the film is coated with a polyamic acid resin. It has been proposed that a heat-resistant resin film is obtained by applying the resin and drying by heating.
しかしながら、 このポリアミック酸をポリイミ ド樹脂に変換するためには、 脱 水、 ィミ ド化反応を必要とし、 このために 3 0 0 °Cの高温度の熱処理が必要であ る。  However, in order to convert this polyamic acid into a polyimide resin, a dehydration and imidization reaction is required, and a heat treatment at a high temperature of 300 ° C. is required.
このポリアミック酸を、 融点の低いポリエステル樹脂及びポリフエ二レンサル ファイド樹脂を素材としたフィルムに塗布した場合、 基材フイルム自身が溶解し てしまうので、 採用することができないものであった。 一方、 通常のポリイミ ド は溶剤に対して難溶であるためフィルムの表面に薄い膜を形成することができな かった。  When this polyamic acid is applied to a film made of a polyester resin or a polyphenylene sulfide resin having a low melting point, the base film itself dissolves, and thus cannot be used. On the other hand, ordinary polyimides were hardly soluble in solvents, so that a thin film could not be formed on the surface of the film.
発明の開示 本発明の目的は、 耐熱性に優れ、 かつ、 表層の接着性に優れた複合フィルムを 提供することである。 Disclosure of the invention An object of the present invention is to provide a composite film having excellent heat resistance and excellent surface layer adhesion.
本願発明者らは、 鋭意研究の結果、 酸成分又はジァミン成分として特定の化合 物を含む溶剤可溶型ポリイミドの溶液を基材フィルムの表面上に塗布し、 乾燥さ せてポリイミ ド膜を形成することにより、 耐熱性に優れ、 かつ、 該ポリイミ ド膜 の基材フィル厶に対する接着性に優れた複合フィルムを得ることができることを 見出し、 本発明を完成した。  As a result of earnest research, the inventors of the present invention have applied a solution of a solvent-soluble polyimide containing a specific compound as an acid component or a diamine component onto the surface of a base film and dried to form a polyimide film. By doing so, it was found that a composite film having excellent heat resistance and excellent adhesion of the polyimide film to a substrate film could be obtained, and thus completed the present invention.
すなわち、 本発明は、 基材フイルムの少なくとも一方の表面に、 分子主鎖がテ トラカルボン酸ジ無水物とジァミンとの重縮合により形成される溶剤可溶型ポリ イミ ドの溶液を塗布し、 乾燥させて該表面上にポリイミ ド膜を形成して成る複合 フィルムであって、 前記溶剤可溶型ポリイミ ドは、 分子主鎖を構成する、 前記テ トラカルボン酸ジ無水物の少なくとも一部としてビシクロ (2, 2 , 2 ) ォクト —7—ェン一 2, 3 , 5, 6—テトラカルボン酸ジ無水物並びに Z又は前記ジァ ミンの少なくとも一部として 3, 5—ジァミノ安息香酸及びジァミノシロキサン 誘導体の少なくともいずれかを含む、 複合フィルムを提供する。  That is, the present invention applies a solution of a solvent-soluble polyimide in which the molecular main chain is formed by polycondensation of tetracarboxylic dianhydride and diamine on at least one surface of the base film, A composite film formed by drying to form a polyimide film on the surface, wherein the solvent-soluble polyimide is a molecular main chain, and is at least a part of the tetracarboxylic dianhydride. Bicyclo (2,2,2) oct-7-ene-1,2,3,5,6-tetracarboxylic dianhydride and Z or 3,5-diaminobenzoic acid and diamine as at least part of the diamine Provided is a composite film containing at least one of an aminosiloxane derivative.
本発明の複合フイルムは、 耐熱性、 耐薬品性、 絶縁性に優れたポリイミ ド膜が 基材フイルム表面上に形成されているので、 耐熱性、 耐薬品性、 絶縁性が優れる。 また、 基材フィルムとポリイミ ド膜との接着性が優れている。 従って、 本発明の 複合フィルムは、 耐熱性、 耐薬品性及びノ又は絶縁性が要求される各種用途に適 用することができる。 本発明によれば、 融点の低い基材フィルムに対してもポリ イミ ドを直接膜状に形成することができ、 基材フィルムとポリイミ ドの有する利 点を相乗的に発揮することができ、 製造も容易で、 製造コストも低廉なものとな る等の優れた効果を奏するものである。  The composite film of the present invention is excellent in heat resistance, chemical resistance and insulation since a polyimide film having excellent heat resistance, chemical resistance and insulation is formed on the surface of the base film. Also, the adhesiveness between the base film and the polyimide film is excellent. Therefore, the composite film of the present invention can be applied to various applications that require heat resistance, chemical resistance, and heat resistance or insulation. According to the present invention, polyimide can be directly formed into a film form even on a base film having a low melting point, and the advantages of the base film and polyimide can be synergistically exhibited. It has excellent effects such as easy manufacturing and low manufacturing cost.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
上記のように、 本発明の複合フイルムは、 基材フィルムと、 該基材フイルムの 少なくとも一方の表面上に形成されたポリイミド膜を含む。 該基材フィルムとし ては、 耐熱性が低くて従来その表面上にポリイミ ド膜を形成することができなか つた熱可塑性樹脂から成るフィルムを好適に用いることができる。 このような熱 可塑性樹脂の例として、 ポリエチレンテレフタレート及びポリエチレンナフタレ 一卜のようなポリエステル及びポリフエ二レンスルフィ ド等を挙げることができ る。 基材フィルムの厚さは何ら限定されるものではなく、 通常、 1 0〜200 m程度である。 基材フィルムとしては、 市販されている各種のフィルムを用いる ことができる。 As described above, the composite film of the present invention includes a base film and a polyimide film formed on at least one surface of the base film. As the base film, a film made of a thermoplastic resin, which has low heat resistance and cannot form a polyimide film on its surface conventionally, can be suitably used. Examples of such thermoplastic resins include polyethylene terephthalate and polyethylene naphthalene. Examples thereof include polyester and polyphenylene sulfide. The thickness of the base film is not particularly limited, and is usually about 10 to 200 m. As the base film, various commercially available films can be used.
本発明の複合フイルムは、 上記基材フイルムの少なくとも 1表面上に、 分子主 鎖がテトラカルボン酸ジ無水物とジァミンとの重縮合により形成される溶剤可溶 型ポリイミ ドの溶液を塗布し、 乾燥させて該表面上にポリイミ ド膜を形成するこ とにより得られる。  The composite film of the present invention is obtained by coating a solution of a solvent-soluble polyimide having a molecular main chain formed by polycondensation of tetracarboxylic dianhydride and diamine on at least one surface of the base film, It is obtained by drying to form a polyimide film on the surface.
本発明に用いられるポリイミ ドは、 溶剤可溶型のポリイミ ドである。 溶剤とし ては、 N, N—ジメチルホルムアミド (DM F) 、 N, N—ジメチルァセトアミ ド (DMA c) 、 ジメチルスルホキシド (DM SO) 、 N—メチルピロリ ドン ( NMP) 、 テトラメチル尿素、 スルホラン等が用いられる。 好ましくは、 DMF や N MPが用いられる。 また、 本明細書において、 「溶剤可溶」 とは、 N—メチ ル一2—ピロリ ドン (NMP)中に、 5重量%以上、 好ましくは 1 0重量%以上 の濃度で溶解することを意味する。  The polyimide used in the present invention is a solvent-soluble polyimide. Solvents include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethylsulfoxide (DMSO), N-methylpyrrolidone (NMP), tetramethylurea, and sulfolane Are used. Preferably, DMF or NMP is used. In this specification, “solvent-soluble” means that it is dissolved in N-methyl-1-pyrrolidone (NMP) at a concentration of 5% by weight or more, preferably 10% by weight or more. I do.
該溶剤可溶型ポリイミ ドの分子主鎖を形成するために用いられるテトラカルボ ン酸ジ無水物としては、 特に限定されないが、 ビフエニルテトラカルボン酸酸ジ 無水物、 ベンゾフヱノンテトラカルボン酸酸ジ無水物、 ビス (ジカルボキシフエ ニル) プロパン二無水物、 ビス (ジカルボキシフエニル) スルホン二無水物、 ビ ス (ジカルボキシフエニル) エーテル二無水物、 チォフエンテトラカルボン酸酸 ジ無水物、 ピロメリット酸ニ無水物、 ナフタレン酸ジ無水物等の芳香族酸ジ無水 物、 "!, 2, 3, 4一ブタンテ卜ラカルボン酸ジ無水物、 ビシクロ (2, 2, 2 ) —ォクト一 7—ェン 2, 3, 5, 6—亍トラカルボン酸ジ無水物、 4, 4' ― {2, 2, 2—トリフルオロー 1— (トリフルォロメチル) ェチリデン} ビス ( 1 , 2 _ベンゼンジカルボン酸ジ無水物) 等の酸ジ無水物を挙げることができる。 これらは単独でも 2種類以上混合しても用いることができる。  Examples of the tetracarboxylic dianhydride used for forming the molecular main chain of the solvent-soluble polyimide include, but are not particularly limited to, biphenyltetracarboxylic dianhydride and benzophenonetetracarboxylic acid. Dianhydride, bis (dicarboxyphenyl) propane dianhydride, bis (dicarboxyphenyl) sulfone dianhydride, bis (dicarboxyphenyl) ether dianhydride, thiophenetetracarboxylic dianhydride , Pyromellitic dianhydride, aromatic dianhydrides such as naphthalene dianhydride, "!, 2,3,4-butanetetracarboxylic dianhydride, bicyclo (2,2,2) -octane 7-ene 2,3,5,6-tetracarboxylic dianhydride, 4,4 '-{2,2,2-trifluoro-1- (trifluoromethyl) ethylidene} bis (1,2_ Benzenedicarbon And di anhydride) dianhydride such as. They may be used by mixing two or more kinds in combination.
また、 溶剤可溶型ポリイミドの分子主鎖を形成するために用いられるジァミン としては、 4, 4 ' —ジアミノジフエニルプロパン、 4, 4 ' —ジアミノジフエ ニルメタン、 3, 3 ' —ジアミノジフエニルメタン、 4, 4 ' —ジアミノジフエ ニルスルフイ ド、 4, 4 ' ージアミノジフエニルスルホン、 3, 3 ' ージァミノ ジフエニルスルホン、 3, 4 ' —ジアミノジフエニルスルホン、 4, 4 ' —ジァ ミノジフエニルエーテル、 3, 4 ' —ジアミノジフエニルェ一テル、 4, 4 ' 一 ジァミノべンゾフエノン、 3, 3 ' —ジァミノべンゾフエノン、 2, 2 ' —ビス (4ーァミノフエニル) プロパン、 ベンジジン、 3, 3 ' —ジアミノビフエニル、The diamines used to form the molecular main chain of the solvent-soluble polyimide include 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 4, 4'-diaminodihue Nyl sulfide, 4, 4 'diamino diphenyl sulfone, 3, 3' diamino diphenyl sulfone, 3, 4 '-diamino diphenyl sulfone, 4, 4'-diamino diphenyl ether, 3, 4 '-diamino Diphenyl ether, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 2,2'-bis (4-aminophenyl) propane, benzidine, 3,3'-diaminobiphenyl,
2, 6—ジァミノピリジン、 ビス {4_ (4—アミノフエノキシ) フエニル } ス ルホン、 ビス {4一 (3—アミノフエノキシ) フエニル } スルホン、 ビス {4— (4一アミノフエノキシ) フエニル } エーテル、 ビス {4— (3—アミノフエノ キシ) フエ二ル} エーテル、 2, 2 ' —ビス {4— (4一アミノフエノキシ) フ ェニル } プロパン、 2, 2 ' —ビス {4_ (3—アミノフエノキシ) フエ二ル} プロパン、 4, 4 ' —ビス (4—アミノフエノキシ) ビフエ二ル、 2, 2 ' —ビ ス {4一 (3—アミノフエノキシ) フエ二ル} へキサフロロプロパン、 1, 5— ジァミノナフタレン、 2, 2 ' —ビス {4— (4—アミノフエノキシ) フエニル } へキサフロロプロパン、 1, 4_ビス (4一アミノフエノキシ) ベンゼン、 1, 3—ビス (4—アミノフエノキシ) ベンゼン、 3, 5—ジァミノ安息香酸、 ジァ ミノシロキサン誘導体、 1, 4—ベンゼンジァミン、 1, 3—ベンゼンジァミン、 6—メチルー 1, 3—ベンゼンジァミン、 4, 4 ' —ジアミノー 3, 3 ' —ジメ チルー 1 , 1 ' ビフエニル、 4, 4 ' ージアミノー 3, 3 ' ージヒドロキシ一 1, 1 ' ビフエニル、 4, 4 ' —ジァミノ一 3, 3 ' —ジメ トキシー 1 , 1 ' ビフエ ニル、 4, 4 ' —ォキシビス (ベンゼンァミン) 、 3, 4' 一ォキシビス (ベン ゼンァミン) 、 4, 4 ' —メチレンビス (ベンゼンァミン) 、 3— 3 ' —カルボ キシビス (ベンゼンァミン) 等を挙げることができるがこれらに限定されるもの ではない。 これらのジァミン成分は 1種又は 2種以上を組み合わせて用いること ができる。 2,6-diaminopyridine, bis {4_ (4-aminophenoxy) phenyl} sulfone, bis {4- (3-aminophenoxy) phenyl} sulfone, bis {4- (4-aminophenoxy) phenyl} ether, bis {4— ( 3-aminophenoxy) phenyl} ether, 2, 2'-bis {4- (4-aminophenyl) phenyl} propane, 2, 2'-bis {4_ (3-aminophenoxy) phenyl} propane, 4 , 4'-bis (4-aminophenoxy) biphenyl, 2,2'-bis {4- (3-aminophenoxy) phenyl} hexafluoropropane, 1,5-diaminonaphthalene, 2, 2 '—Bis {4- (4-aminophenoxy) phenyl} hexafluoropropane, 1,4_bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 3,5-diamino Benzoic acid, diaminosiloxane derivative, 1,4-benzenediamine, 1,3-benzenediamine, 6-methyl-1,3-benzenediamine, 4,4'-diamino-3,3'-dimethyl-1,1, 'biphenyl, 4,4 'diamino-3,3' dihydroxy-1,1'biphenyl, 4,4'-diamino-1,3'-dimethoxy-1,1'biphenyl, 4,4'-oxybis (benzenamine), 3,4 Examples thereof include, but are not limited to, 4'-mono-oxybis (benzenamine), 4,4'-methylenebis (benzeneamine), and 3-3'-carboxybis (benzeneamine). These diamine components can be used alone or in combination of two or more.
本発明に用いられるポリイミドは、 基材フイルムとの接着性を高めるために、 上記テトラカルボン酸ジ無水物及びジァミンのうち、 テトラカルボン酸ジ無水物 としてのビシクロ (2, 2, 2) ォクト一 7—ェン一 2, 3, 5, 6—テトラ力 ルボン酸ジ無水物並びにジァミンとしての 3, 5—ジァミノ安息香酸及びジァミ ノシロキサン誘導体から成る群より選ばれる少なくとも 1種をテトラカルボン酸 ジ無水物成分及びノ又はジァミン成分として含有する。 十分な接着性を達成する ために、 ビシクロ (2, 2, 2) ォクト一 7—ェンー 2, 3, 5, 6—テトラ力 ルボン酸ジ無水物の全テトラカルボン酸ジ無水物中の割合は好ましくは 20~5 0モル%、 さらに好ましくは 30〜50モル%程度であり、 前記 3, 5—ジアミ ノ安息香酸及びジァミノシロキサン誘導体の合計量の全ジァミン中の割合は好ま しくは 1 0〜65モル%、 さらに好ましくは 35〜60モル0 /o程度である。 The polyimide used in the present invention may be a bicyclo (2,2,2) octane as a tetracarboxylic dianhydride among the above tetracarboxylic dianhydrides and diamines, in order to enhance the adhesion to the base film. 7-ene 1,2,3,5,6-tetracarboxylic acid At least one member selected from the group consisting of dicarboxylic dianhydrides, 3,5-diaminobenzoic acid as diamine and diaminosiloxane derivatives is tetracarboxylic acid It is contained as a dianhydride component and a di- or diamine component. In order to achieve sufficient adhesion, the ratio of bicyclo (2,2,2) oct-1-ene-2,3,5,6-tetracarboxylic dianhydride to total tetracarboxylic dianhydride is It is preferably about 20 to 50 mol%, more preferably about 30 to 50 mol%, and the ratio of the total amount of the 3,5-diaminobenzoic acid and diaminosiloxane derivative to the total diamine is preferably 1 to 1. It is about 0 to 65 mol%, and more preferably about 35 to 60 mol 0 / o.
なお、 ジァミノシロキサン誘導体としては、 アミン価 (化合物の分子量をアミ ノ基の数で除した値) が 200〜 1 000程度のものが好ましく、 特にビス (3 一アミノー ( ^—C6)アルキル)一ポリジメチルシロキサンが好ましい。 この ようなアミン価を有するジァミノシロキサン誘導体は、 市販のジァミノポリシ口 キサン誘導体 (通常、 重合度が異なるポリシロキサンの混合物) の低沸点成分を 除去することにより容易に得ることができる。 As the di § amino siloxane derivative, an amine value (the molecular weight divided by the number of amino group of the compound) is preferably of about 200 to 1 000, particularly bis (three to amino-(^ -C 6) (Alkyl) monopolydimethylsiloxanes are preferred. A diaminosiloxane derivative having such an amine value can be easily obtained by removing low boiling components of a commercially available diaminopolysiloxane derivative (generally, a mixture of polysiloxanes having different degrees of polymerization).
基材フィルムとの接着性を特に高めるために、 ジァミンとして、 上記アミン価 In order to particularly enhance the adhesion to the base film, the amine value
200〜 1 000のジァミノシロキサン誘導体に加え、 さらに、 3, 4 ' —ジァ ミノジフエ二ルェ一テル、 1, 4一ビス (3—アミノフエノキシ) ベンゼン、 ビ スー {4 (3—アミノフエノキシ) フエ二ル} スルフォン及び 3, 5—ジァミノ 安息香酸から成る群から選ばれる少なくとも 1種のジァミンを含むことが好まし し、。 これらのジァミンを用いることにより、 基材フィルムとの接着性が特に優れ、 かつ、 これらのジァミンは、 工業的に安定的かつ安価に入手できるので、 工業的 量産に特に向いている。 この場合、 ポリイミ ド中のジァミノシロキサン誘導体の 含量は 1 5〜60重量%程度、 特には 20~50重量%程度が好ましく、 また、 3, 4 ' ージアミノジフエニルエーテル、 1, 4一ビス (3—アミノフエノキシ ) ベンゼン、 ビス一 {4 (3—アミノフエノキシ) フエ二ル} スルフォン及び 3, 5—ジァミノ安息香酸から成る群から選ばれる少なくとも 1種のジァミンは、 そ の合計量が、 ポリイミ ド中の 1 0〜 50重量0 /o程度、 特には 1 3 ~ 40重量%程 度が好ましい。 In addition to 200-1 000 diaminosiloxane derivatives, 3,4'-diaminodiphenyl ether, 1,4-bis (3-aminophenoxy) benzene, bis- {4 (3-aminophenoxy) phenyl And at least one diamine selected from the group consisting of sulfone and 3,5-diaminobenzoic acid. By using these diamines, the adhesiveness to the substrate film is particularly excellent, and these diamines are industrially stable and inexpensively available, so they are particularly suitable for industrial mass production. In this case, the content of the diaminosiloxane derivative in the polyimide is preferably about 15 to 60% by weight, particularly preferably about 20 to 50% by weight, and 3,4 ′ diaminodiphenyl ether, 1,4−1 At least one diamine selected from the group consisting of bis (3-aminophenoxy) benzene, bis- {4 (3-aminophenoxy) phenyl} sulfone, and 3,5-diaminobenzoic acid has a total amount of polyimiamine. The amount is preferably about 10 to 50% by weight 0 / o, and more preferably about 13 to 40% by weight.
本発明に用いられるポリイミ ドの分子量は、 ゲルろ過クロマトグラフィー法( G PC法、 紫外線検出器を使用) により測定される重量平均分子量がポリスチレ ン換算で好ましくは 1 5000〜 1 00000であり、 さらに好ましくは 200 0 0〜7 0 0 0 0程度である。 分子量がこの範囲内にあると、 ポリイミ ド膜と基 材フイルムとの密着性が優れ、 耐熱性、 耐薬品性及び絶縁性に優れた複合フィル ムが得られる。 As for the molecular weight of the polyimide used in the present invention, the weight average molecular weight measured by gel filtration chromatography (GPC method, using an ultraviolet detector) is preferably 15,000 to 100,000 in terms of polystyrene, and Preferably 200 It is about 00 to 700,000. When the molecular weight is within this range, a composite film having excellent adhesion between the polyimide film and the base film and having excellent heat resistance, chemical resistance and insulation properties can be obtained.
本発明の組成物中のポリイミ ドは、 上記したテトラカルボン酸ジ無水物とジァ ミンとの直接イミ ド化反応によって製造することができる。 従来から、 ポリイミ ドを成形するためには、 通常、 ポリアミック酸を使用する。 このポリアミック酸 は、 空気中で容易に分解し、 貯蔵安定性が悪い。 更に、 このポリアミック酸をポ リイミ ドにするためには、 2 5 0 ~ 3 5 0 °Cに加熱してイミ ド化反応を行なう必 要がある。 これに対し、 本発明で用いられるポリイミ ドは、 ポリアミック酸を経 由せずに亍トラカルボン酸ジ無水物とジァミンとのイミ ド化反応により直接製造 されるものであり、 この点で従来のポリイミ ド成形品とは大きく異なる。  The polyimide in the composition of the present invention can be produced by a direct imidization reaction between the above-described tetracarboxylic dianhydride and diamine. Conventionally, polyamic acid is usually used to mold polyimide. This polyamic acid decomposes easily in air and has poor storage stability. Further, in order to convert the polyamic acid into a polyimide, it is necessary to heat the polyamic acid to 250 to 350 ° C. to perform an imidization reaction. On the other hand, the polyimide used in the present invention is directly produced by an imidization reaction between a dicarboxylic acid dianhydride and diamine without going through a polyamic acid. It is very different from polyimide molded products.
テトラカルボン酸ジ無水物とジァミンとの直接イミド化反応は、 ラク トンと塩 基と水との次の平衡反応を利用した触媒系を用いて行なうことができる。  The direct imidization reaction between tetracarboxylic dianhydride and diamine can be carried out using a catalyst system utilizing the following equilibrium reaction between lactone, a base and water.
ίラク トン } + {塩基 } + {水} = {酸基 } + {塩基)— この {酸基 } + {塩基 }—系を触媒として、 1 4 0〜1 8 0 °Cに加熱してポリイ ミ ド溶液を得ることができる。 イミ ド化反応により生成する水は、 反応溶媒であ るトルエンと共沸させて反応系外へ除く。 反応系のイミ ド化が終了した時点で、 {酸基 } + {塩基广はラクトンと塩基になり、 触媒作用を失うと同時にトルエン と共に反応系外へ除かれる。 この方法によるポリイミ ド溶液は、 上記触媒物質が、 反応後のポリィミ ド溶液に含まれないため高純度のポリィミ ド溶液として、 その まま基材フィルム上に塗布することができる。  ίlactone} + {base} + {water} = {acid group} + {base) — Using the {acid group} + {base} — system as a catalyst, heat it to 140-180 ° C. A polyimide solution can be obtained. Water generated by the imidization reaction is removed from the reaction system by azeotropic distillation with toluene as a reaction solvent. At the end of the imidization of the reaction system, the {acid group} + {base square} becomes a lactone and a base, loses catalytic activity and is simultaneously removed from the reaction system with toluene. Since the above-mentioned catalyst substance is not contained in the polyimide solution after the reaction, the polyimide solution according to this method can be applied as it is to the substrate film as a high-purity polyimide solution.
上記イミ ド化反応に使われる反応溶媒は、 上記したトルエンに加え、 極性の有 機溶媒が使用される。 これらの有機溶媒としては、 N—メチル一2—ピロリ ドン、 ジメチルホルムアミド、 ジメチルァセ卜アミ ド、 ジメチルスルホキシド、 スルホ ラン、 テトラメチル尿素等があげられる。  As the reaction solvent used in the above imidization reaction, a polar organic solvent is used in addition to the above toluene. These organic solvents include N-methyl-1-pyrrolidone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane, tetramethylurea and the like.
また、 ラクトンとしては r—バレロラクトンが好ましく、 塩基としてはピリジ ン及び/又はメチルモルフオリンが好ましい。  Also, r-valerolactone is preferable as the lactone, and pyridin and / or methylmorpholin is preferable as the base.
なお、 ラク トンに代えてクロトン酸を用いることも可能である。  It is also possible to use crotonic acid instead of lactone.
上記イミ ド化反応に供するテトラカルボン酸ジ無水物とジァミンとの混合比率 (酸/ジァミン) は、 モル比で 1. 05~0. 95程度が好ましい。 また、 反応開始時に おけるラクトンの濃度は酸ジ無水物の濃度に対して 5〜3 0モル%、 好ましくは 5〜2 0モル%程度であり、 塩基の濃度はラク トンに対して 1 0 0 ~ 2 0 0モル %程度が好ましい。 反応時間は特に限定されず、 製造しょうとするポリイミ ドの 分子量等により異なるが、 通常 2〜1 0時間程度である。 また、 反応は窒素雰囲 気下に撹拌して行なうことが好ましい。 Mixing ratio of tetracarboxylic dianhydride and diamine used in the above imidation reaction (Acid / diamine) is preferably in a molar ratio of about 1.05 to 0.95. The concentration of lactone at the start of the reaction is 5 to 30 mol%, preferably about 5 to 20 mol%, based on the concentration of acid dianhydride, and the concentration of base is 100 to 100 mol% of lactone. It is preferably about 200 mol%. The reaction time is not particularly limited, and varies depending on the molecular weight of the polyimide to be produced and the like, but is usually about 2 to 10 hours. The reaction is preferably carried out with stirring under a nitrogen atmosphere.
なお、 ラク トン及び塩基から成る 2成分系触媒を用いたポリイミ ドの製造方法 自体は公知であり、 例えば米国特許第 5, 502, 143に記載されている。  A method for producing polyimide using a two-component catalyst comprising a lactone and a base is known per se, and is described, for example, in US Pat. No. 5,502,143.
上記のイミ ド化反応を、 異なる酸ジ無水物及び 又は異なるジァミンを用いて 逐次的に 2段階行なうことにより、 ブロック共重合ポリイミ ドを製造することが できる。 従来のポリアミック酸を経由するポリイミ ドの製造方法によれば、 共重 合体はランダム共重合体しか製造できなかった。 任意の酸及び 又はジァミン成 分を選択してブロック共重合ポリイミ ドを製造することができるので、 接着性や 寸法安定性の付与、 低誘電率化、 導電性、 絶縁性等の任意の所望の性質又は機能 をポリイミ ドに付与することができる。 本発明の複合フィルムでは、 このような 共重合ポリイミ ドを好ましく採用することもできる。  The block copolymerization polyimide can be produced by sequentially performing the above-mentioned imidization reaction in two stages using different acid dianhydrides and / or different diamines. According to a conventional method for producing a polyimide via a polyamic acid, only a random copolymer could be produced as a copolymer. The block copolymer polyimide can be manufactured by selecting an arbitrary acid and / or diamine component, so that any desired properties such as adhesion and dimensional stability, low dielectric constant, conductivity, and insulation can be obtained. Properties or functions can be added to the polyimide. In the composite film of the present invention, such a copolymerized polyimide can be preferably employed.
ブロック共重合ポリイミ ドを製造する場合の好ましい方法として、 上記のラク トンと塩基により生成した酸触媒を用いて、 ジァミンとテトラカルボン酸ジ無水 物のいずれかの成分を多量にして、 ポリイミ ドオリゴマーとし、 ついでジァミン 及びノ又はテトラカルボン酸ジ無水物を加えて (全芳香族ジァミンと全テトラ力 ルボン酸ジ無水物のモル比は、 1 . 0 5— 0 . 9 5である) 2段階重縮合する方法 を挙げることができる。  A preferred method for producing a block copolymer polyimide is to use an acid catalyst generated by the above lactone and base to increase the content of either diamine or tetracarboxylic dianhydride to obtain a polyimide oligomer. Then, diamine and di- or tetracarboxylic dianhydride are added (the molar ratio of wholly aromatic diamine to total tetracarboxylic dianhydride is 1.05-0.95). Examples of the method include condensation.
上記の方法によリ製造されるポリィミ ドは、 溶媒に溶けた溶液の形態で得られ るので、 この溶液をそのまま、 あるいは、 所望により トルエン、 ジォキサン、 ジ ォキソラン、 ァニソール又は上記したような極性有機溶媒でさらに希釈した溶液 を基材フイルムの片面又は両面に塗布する。 なお、 塗布に供されるポリイミ ド溶 液は、 既にイミ ド化反応が終了したポリイミ ドの溶液であるので、 従来のポリア ミック酸を経由するポリイミ ド成形物の製造とは異なり、 塗布後に加熱によるィ ミ ド化反応を行なう必要がない。 また、 溶液は、 ポリイミ ドの溶液 (ポリアミツ ク酸の溶液ではない) であるので、 保存安定性が良好であり、 水と接触しても分 解しないという利点を有する。 Since the polyimide produced by the above method can be obtained in the form of a solution dissolved in a solvent, this solution can be used as it is or, if desired, in toluene, dioxane, dioxolan, anisol or a polar organic compound as described above. The solution further diluted with the solvent is applied to one or both sides of the base film. Since the polyimide solution to be applied is a solution of polyimide which has already undergone the imidization reaction, unlike the conventional production of polyimide molded products via polyamic acid, the polyimide solution is heated after application. There is no need to perform an imidization reaction. The solution is a polyimide solution (Polyamide). (It is not a solution of citric acid.) Therefore, it has the advantage that storage stability is good and it does not decompose even when it comes in contact with water.
上記ポリイミ ド溶液の塗布に先立ち、 基材フィルムの表面の汚れを水洗処理や、 アセトン、 メタノール等の溶剤で洗浄し、 その後溶剤を乾燥除去することによつ て、 基材フイルムの表面を清浄な表面とする。 基材フィルムの表面が清浄であれ ば、 この工程を省略することが可能である。  Prior to the application of the polyimide solution, dirt on the surface of the base film is washed with water, or washed with a solvent such as acetone or methanol, and then the solvent is removed by drying to clean the surface of the base film. Surface. This step can be omitted if the surface of the base film is clean.
この清浄化された基材フィルムの表面に、 上記ポリイミ ド溶液を塗布し、 アブ リケーター等の器具によって、 フィルム表面のポリイミ ド溶液の厚さを均一とす る。  The above-mentioned polyimide solution is applied to the surface of the cleaned base film, and the thickness of the polyimide solution on the film surface is made uniform using an ablicator or the like.
このポリイミ ド溶液を表面上に均一に塗布された基材フィルムを、 乾燥機の中 に入れ、 基材フィルムが変形を起こさない温度、 すなわち、 基材フィルムがポリ エステルフイルムやポリフエ二レンスルフィ ドフイルムの場合には 8 0〜2 0 0 °C、 好ましくは 9 0〜1 5 0 °Cの温度で、 ポリイミ ド溶液の溶媒を除去する。 基材フィルムの両面にポリイミ ド膜を形成する場合には、 上記ポリイミ ド塗布、 乾燥の工程を、 フィルム表面の表裏でそれぞれ繰り返すことによって、 基材フィ ルムの両面にポリイミ ド膜を形成することができる。  The base film coated with the polyimide solution uniformly on its surface is placed in a dryer at a temperature at which the base film does not deform, that is, the base film is made of a polyester film or a polyphenylene sulfide film. In some cases, the solvent of the polyimide solution is removed at a temperature of 80 to 200 ° C., preferably 90 to 150 ° C. When a polyimide film is formed on both sides of the base film, the above-described polyimide coating and drying steps are repeated on both sides of the film surface to form the polyimide film on both sides of the base film. Can be.
このポリイミ ド溶液のフィルム表面への塗布方法については、 上記の様なアブ リケーターを使用する以外に、 連続的に複合フィルムを形成する方法として、 一 般的に知られているスクリーン印刷による塗布法や、 グラビア塗布機を使用した 方法、 スプレー塗布する方法等がある。  Regarding the method of applying the polyimide solution to the film surface, besides using the above-described ablator, as a method of continuously forming a composite film, a generally known coating method by screen printing is used. , A method using a gravure coater, a method of spray coating, and the like.
乾燥後のポリイミ ド膜の膜厚は特に限定されないが、 通常 0 . 1 ~ 3 0 A< m程 度、 特に 0 . 2〜1 0 u m程度が好ましい。  Although the thickness of the polyimide film after drying is not particularly limited, it is usually about 0.1 to 30 A <m, preferably about 0.2 to 10 μm.
このようにして形成されたポリイミド、 特にブロック共重合ポリイミ ド膜は、 典型的には以下の物理的性質を有する。 なお、 ブロック共重合に供する成分を選 択することにより、 下記以外の物理的性質を有するブロック共重合ポリイミ ドを 製造することも可能である。  The polyimide thus formed, particularly the block copolymerized polyimide film, typically has the following physical properties. By selecting a component to be subjected to block copolymerization, it is possible to produce a block copolymerized polyimide having physical properties other than those described below.
1 ) 熱的性質  1) Thermal properties
ガラス転移温度: 1 8 0— 3 5 0 °C  Glass transition temperature: 180-350 ° C
熱分解開始温度: 4 0 0— 5 5 0 °C 2) 電気的性質 Thermal decomposition onset temperature: 400-550 ° C 2) Electrical properties
体積抵抗値: 1 01 7オーム 以上 Volume resistivity: 1 0 1 7 ohm or more
誘電率: 2. 5— 3. 5  Dielectric constant: 2.5—3.5
3) 機械的性質  3) Mechanical properties
引張り強さ : 1 0— 25 k g f Zmm2 Tensile strength: 10-25 kgf Zmm 2
引張り伸び: 20—200%  Tensile elongation: 20-200%
引張り弾性率: 200— 350 k f /m2 Tensile modulus: 200—350 kf / m 2
吸水率: 1 . 0— 2. 0%  Water absorption: 1.0—2.0%
次に、 上記特性を利用した、 本発明の複合フィルムの用途を説明する。  Next, applications of the composite film of the present invention utilizing the above characteristics will be described.
熱的性質の改善による特性を利用したものとして、 耐熱性複合フィルムがある c 基材フイルムがポリエチレンナフタレ一トフイルムの場合、 機械的使用上の耐熱 温度は 1 60°Cである力、 ポリイミ ド溶液をフイルム両面に各 3ミクロン厚さで 塗布した本発明の複合フィルムの場合、 機械的使用上の耐熱温度は、 210°Cま で改善された。 As those utilizing characteristics by improving thermal properties, when c substrate film having heat resistant composite film of polyethylene naphthalate one Tofuirumu, heat resistant temperature on mechanical used is 1 60 ° C Power, polyimide In the case of the composite film of the present invention in which the solution was applied to both sides of the film at a thickness of 3 microns, the heat resistance temperature for mechanical use was improved to 210 ° C.
さらに電気的特性としては、 体積抵抗値が、 基材フィルムの 1 0 (X I 0 (e Further, as an electrical property, the volume resistance value is 10 (X I 0 (e
X p 1 フ) ) オーム ' cmから、 複合フィルムの 45 (X 1 0 (e x p 1 7) ) オーム ' cmに改善された。 Xp1f)) Ohm'cm was improved to 45 (X10 (exp17)) Ohm'cm for the composite film.
従って、 本発明の複合フィルムは、 その耐熱性、 耐薬品性及び 又は絶縁性を 利用した各種の用途、 例えば、 壁紙、 各種物品の表面保護膜、 絶縁性フィルム、 回路基板、 抵抗体等の種々の用途に用いることができる。  Therefore, the composite film of the present invention can be used for various applications utilizing its heat resistance, chemical resistance and / or insulation properties, for example, for various applications such as wallpaper, surface protective films of various articles, insulating films, circuit boards, resistors, etc. It can be used for applications.
実施例 Example
以下、 本発明を実施例に基づきより具体的に説明する。 もっとも、 下記実施例 は例示のためにのみ記載したものであり、 いかなる意味においても限定的に解釈 してはならない。  Hereinafter, the present invention will be described more specifically based on examples. However, the following examples are described for illustrative purposes only, and should not be interpreted in any limited manner.
実施例 1 Example 1
2リットル容量の三つ口フラスコに、 ステンレス製の碇型攪拌棒、 窒素導入管 とストップコックのついたトラップ上に、 玉付冷却管を取り付けた還流冷却器を 取り付けた。  A two-liter three-necked flask was equipped with a stainless steel anchor stirrer, a nitrogen inlet tube, and a trap equipped with a stopcock, and a reflux condenser equipped with a cooling tube with balls.
3, 4, 3 ' , 4 ' —ビフエニルテトラカルボン酸ジ無水物 29. 42 g ( 1 00ミリモル) 、 ビス (3—ァミノプロピル)一ポリジメチルシロキサン (アミ ン価 41 6、 信越化学工業株式会社製品) 43. 9 (50ミリモル) 、 ガンマ 一バレロラク トン 1. 5 g ( 1 5ミリモル) 、 ピリジン 2. 4 g (30ミリモル ) 、 N—メチルピロリ ドン 1 50 g、 トルエン 60 gをフラスコに加え、 1 80 °Cで 1時間加熱した。 3,4,3 ', 4'-Biphenyltetracarboxylic dianhydride 29.42 g (1 Bis (3-aminopropyl) -polydimethylsiloxane (amine value 416, Shin-Etsu Chemical Co., Ltd. product) 43.9 (50 mmol), gamma-valerolactone 1.5 g (15 mmol), 2.4 g (30 mmol) of pyridine, 150 g of N-methylpyrrolidone and 60 g of toluene were added to the flask and heated at 180 ° C for 1 hour.
次いで、 空冷して、 ベンゾフエノンテトラカルボン酸酸ジ無水物 1 6. 1 1 g (50ミリモル) 、 2, 2—ビス {4— (4—アミノフエノキシ) フエ二ル} プ 口パン 20. 53 g (50ミリモル) 、 ビス (4— (3—アミノフエノキシ) フ ェニル } スルホン 2 1. 63 g (50ミリモル) 、 N—メチルピロリ ドン 229 gを加え、 室温で 1時間、 1 80°Cで 4. 25時間加熱した。 反応還流物を除い たブロック共重合ポリイミ ド溶液は、 25 %のポリイミ ド濃度であつた。  Then, the mixture was air-cooled, and benzophenonetetracarboxylic dianhydride 16.1 g (50 mmol), 2,2-bis {4- (4-aminophenoxy) phenyl} pulp bread 20.53 g (50 mmol), bis (4- (3-aminophenoxy) phenyl) sulfone 21.63 g (50 mmol) and N-methylpyrrolidone 229 g were added, and the mixture was added at room temperature for 1 hour at 180 ° C. The mixture was heated for 25 hours, and the block copolymer polyimide solution excluding the reaction reflux had a polyimide concentration of 25%.
このようにして製造されたブロック共重合ポリイミ ドのポリスチレン換算分子 量を紫外線検出器を用いた G PC法により測定したところ (東ソ一 H LC 820 を使用)、 数平均分子量: 29800、 重量平均分子量: 55000、 Z平均分 子量: 99300であった。 このブロック共重合ポリイミ ド溶液をジォキソラン で希釈し、 20%ポリイミ ド濃度のワニスとし、 グラビア塗膜機で塗膜形成する ことによって、 ポリエチレンテレフタレート (帝人株式会社製品 ZG— 2Z50 ミクロン厚さ :基材フィルム) (フィルム A) の両側表面上に、 1 ミクロンのポ リイミ ド膜を形成した複合フィルムを作成し、 80〜 1 50°Cの恒温器中でプロ ック共重合ポリイミ ド溶液を乾燥させた。 大気中の無荷重熱処理 (1 50°C、 1 0分) を行い、 基材フィルムとの間の密着性を碁盤目テスト (2mm間隔) で確 認した。 なお、 碁盤目テストは J IS-K- 5400に従い、 次のように行なった。 塗布 面に切り目を入れて一辺 2 mmの正方形の小片に細分し、 その表面にセロハンテ ープを貼り付けて直ちにはがした。 そのときセロハンテープとともに剥ぎ取られ た残りの塗膜小片の数を剥がす前の 1 00個当たりの数で表した個数を示す。 例 えば、 100/100は、 1 00個当たり剥がれた数が零である。  The molecular weight of the block copolymer polyimide thus produced in terms of polystyrene was measured by the GPC method using an ultraviolet detector (using Tosoichi HLC820). The number average molecular weight was 29,800 and the weight average was Molecular weight: 55,000, Z-average molecular weight: 99,300. This block copolymerized polyimide solution was diluted with dioxolane to form a varnish with a polyimide concentration of 20%, and a gravure coating machine was used to form a film, which was used as polyethylene terephthalate (ZG-2Z50 micron product, Teijin Limited thickness: Film) Create a composite film with a 1 micron polyimide film formed on both surfaces of (Film A), and dry the block copolymer polyimide solution in a thermostat at 80 to 150 ° C. Was. Heat-free heat treatment (150 ° C, 10 minutes) was performed in the air, and the adhesion to the substrate film was checked by a grid test (2 mm intervals). The grid test was performed as follows according to J IS-K-5400. A cut was made on the surface to be applied, and it was subdivided into small square pieces of 2 mm on a side, and cellophane tape was attached to the surface and immediately peeled off. The number of the remaining coating film pieces stripped off together with the cellophane tape at that time is shown in terms of the number per 100 pieces before peeling. For example, 100/100 means that the number of peeled pieces per 100 pieces is zero.
その結果、 密着率は 1 00 1 00であり、 本発明の複合フィルム Aは、 基材 フィルムとの密着性が優れていることが認められた。  As a result, the adhesion ratio was 100,100, and it was confirmed that the composite film A of the present invention had excellent adhesion to the base film.
実施例 2 実施例 1 と同様な操作を行なった。 すなわち、 ビフエニルテトラカルボン酸ジ 無水物 29. 42 g (1 00ミリモル) 、 ビス (3—ァミノプロピル)一ポリジ メチルシロキサン (ァミン価 800) 80 g (50ミリモル) 、 ガンマ一バレロ ラク トン 1 · 0 g (1 0ミリモル) 、 ピリジン 1. 6 g (20ミリモル) 、 N— メチルピロリ ドン 1 50 g、 トルエン 1 00 gをフラスコに加え、 1 80°〇で1 時間加熱した。 Example 2 The same operation as in Example 1 was performed. 29.42 g (100 mmol) of biphenyltetracarboxylic dianhydride, 80 g (50 mmol) of bis (3-aminopropyl) -polydimethylsiloxane (ammine value 800), and 1.0 gamma-valero lactone g (10 mmol), 1.6 g (20 mmol) of pyridine, 150 g of N-methylpyrrolidone and 100 g of toluene were added to the flask and heated at 180 ° for 1 hour.
次いで、 空冷して、 ベンゾフエノンテトラカルボン酸ジ無水物 1 6. 1 1 g ( 50ミリモル) 、 ビス一 {4— (3—アミノフエノキシ) フエ二ル} スルホン 4 3. 25 g (1 00ミリモル) 、 N—メチルピロリ ドン 1 25 gを加え、 1 80 °C、 1 80回転 毎分の攪拌を行いながら 1. 5時間加熱、 ついで 1 60°Cで 1 時間加熱した。 反応還流物を除いたブロック共重合ポリイミ ド溶液は、 40%の ポリイミ ド濃度であった。  Then, the mixture was air-cooled to obtain 16.11 g of benzophenonetetracarboxylic dianhydride (50 mmol), bis- {4- (3-aminophenoxy) phenyl} sulfone 4 3.25 g (100 mmol) ) And N-methylpyrrolidone (125 g) were added, and the mixture was heated at 180 ° C for 180 hours while stirring at 180 rpm for 1 hour, and then heated at 160 ° C for 1 hour. The block copolymer polyimide solution from which the reaction reflux was removed had a polyimide concentration of 40%.
このようにして製造されたブロック共重合ポリイミ ドの分子量を実施例 1 と同 様に測定したところ、 数平均分子量: 1 7700、 重量平均分子量: 29900、 Z平均分子量: 46800であった。  The molecular weight of the block copolymer polyimide thus produced was measured in the same manner as in Example 1. As a result, the number average molecular weight was 17700, the weight average molecular weight was 29900, and the Z average molecular weight was 46800.
次に、 前記のブロック共重合ポリイミ ド溶液をジ才キソランで希釈し、 20 % ポリイミ ド濃度のワニスとし、 グラビア塗膜機で塗膜形成し、 1 30°Cで 5分間 乾燥させることにより、 ポリエチレンテレフタレート (帝人株式会社製品 ZG— 2/50ミクロン厚さ :基材フィルム) (フィルム B) 、 ポリフエ二レンサルフ アイ ドフィルム (東レ株式会社製品 Zトレリナ Z 75ミクロン厚さ :基材フィル ム) (フィルム C) の両側表面上に、 2. 5ミクロンのポリイミ ド膜を形成した 複合フィルム B— 2. 5、 複合フィルム C— 2. 5を作成した。 210°〇で1 0 分間高温度恒温器の中で、 大気中の無荷重熱処理を行い、 基材フィルムとの間の 密着性を実施例 1 と同様な碁盤目テスト (1 mm間隔) で確認した。  Next, the block copolymer polyimide solution was diluted with dilute quinolane to obtain a varnish having a concentration of 20% polyimide, a coating film was formed with a gravure coating machine, and dried at 130 ° C. for 5 minutes. Polyethylene terephthalate (Teijin Co., Ltd. ZG-2/50 micron thickness: base film) (Film B), Polyphenylene Sulfide Id Film (Toray Co., Ltd. product Z Torelina Z 75 micron thickness: base film) ( A composite film B-2.5 and a composite film C-2.5 with a 2.5 micron polyimide film formed on both surfaces of film C) were prepared. Perform no-load heat treatment in the air in a high-temperature constant temperature oven at 210 ° 1 for 10 minutes, and check the adhesion with the base film by a grid test (1 mm interval) as in Example 1. did.
その結果、 いずれのフイルムも密着率は 1 00%であり、 本発明の複合フィル 厶 B, 及び Cは、 基材フイルムとの密着性が優れていることが認められた。  As a result, the adhesion rate of each of the films was 100%, and it was confirmed that the composite films B and C of the present invention had excellent adhesion to the base film.
実施例 3 Example 3
実施例 1 と同様な操作を行なった。 すなわち、 ビフヱニルテトラカルボン酸ジ 無水物 29. 42 g (1 00ミリモル) 、 ビス (3—ァミノプロピル)一ポリジ メチルシロキサン (ァミン価 439) 1 75. 6 g (200ミリモル) 、 ガンマ 一バレロラク トンを 2. 0 g (20ミリモル) 、 ピリジン 3. 2 g (40ミリモ ル) 、 N—メチルピロリ ドン 200 g、 トルエン 60 gをフラスコに加え、 1 8 0°Cで 1時間加熱した。 The same operation as in Example 1 was performed. 29.42 g (100 mmol) of biphenyltetracarboxylic dianhydride, bis (3-aminopropyl) polydiene Methylsiloxane (amine value 439) 175.6 g (200 mmol), gamma-valerolactone 2.0 g (20 mmol), pyridine 3.2 g (40 mmol), N-methylpyrrolidone 200 g, toluene 60 g was added to the flask and heated at 180 ° C for 1 hour.
次いで、 空冷して、 ベンゾフエノンテトラカルボン酸ジ無水物 64. 45 g ( Then, air-cooled and benzophenone tetracarboxylic dianhydride 64.45 g (
200ミリモル) 、 ビス {4一 (3—アミノフエノキシ) フエ二ル} スルホン 4 3. 25 g (1 00ミリモル) 、 N—メチルピロリ ドン 253 gを加え、 1 80 度 Cで 4時間加熱した。 反応還流物を除いたブロック共重合ポリイミド溶液は、 40 %のポリイミ ド濃度であった。 200 mmol), 43.25 g (100 mmol) of bis {4- (3-aminophenoxy) phenyl} sulfone and 253 g of N-methylpyrrolidone were added, and the mixture was heated at 180 ° C. for 4 hours. The block copolymerized polyimide solution excluding the reaction reflux had a polyimide concentration of 40%.
このようにして製造されたブロック共重合ポリイミ ドの分子量を実施例 1 と同 様に測定したところ、 数平均分子量: 1 6500、 重量平均分子量: 26000、 Z平均分子量: 36800であった。  The molecular weight of the block copolymer polyimide thus produced was measured in the same manner as in Example 1. As a result, the number average molecular weight was 16500, the weight average molecular weight was 26000, and the Z average molecular weight was 36800.
次に、 前記のブロック共重合ポリイミ ド溶液をジォキソランで希釈し、 20% ポリイミ ド濃度のワニスとし、 塗膜形成し、 1 30DCで 5分間乾燥させることに より、 ポリエチレンテレフタレ一ト (帝人株式会社製品 — 2Z50ミクロン 厚さ :基材フィルム) (フイルム D) 、 ポリエチレンナフタレートフイルム (帝 人株式会社製品ノテオネックス/ /フ 5ミクロン厚さ :基材フイルム) (フィルム E) の両側表面上に、 各 1 ミクロン、 2. 0ミクロンのブロック共重合ポリイミ ド膜を形成した複合フィルム D— 1 . 0、 複合フィルム D— 2. 0、 複合フィル ム E— 1. 0, 複合フイルム E— 2. 0を作成し、 210°Cで 1 0分間高温度恒 温器の中で、 大気中の無荷重熱処理を行い、 基材フィルムとの間の密着性を碁盤 目テスト (1 mm間隔) で確認した。 Then diluting the block copolymer polyimide solution Jiokisoran, 20% and polyimide concentration of the varnish, a coating film is formed, more drying 5 minutes at 1 30 D C, polyethylene terephthalate Ichito ( Teijin Limited product — 2Z50 micron Thickness: base film) (Film D), Polyethylene naphthalate film (Teijin Co., Ltd. product, Neotone // 5 micron thickness: base film) (Film E) on both sides In addition, composite film D-1.0, composite film D-2.0, composite film E-1.0, composite film E-2 with a 1 micron and 2.0 micron block copolymer polyimide film After performing a no-load heat treatment in the air in a high temperature incubator at 210 ° C for 10 minutes, the adhesion between the base film and the base film was measured by a grid test (1 mm intervals). confirmed.
その結果、 いずれの複合フィルムも、 密着率は1 00 1 00であリ、 本発明 の複合フイルム D, Eは、 基材フィルムとの密着性が優れていることが認められ た。 As a result, each of the composite films are also adhesion rate 1 00 1 00 der Li, composite films D, E of the present invention, that the adhesion to the substrate film is excellent observed.
実施例 4 Example 4
実施例 1 と同様な操作を行なった。 すなわち、 ビシクロ (2, 2, 2) —ォク トー 7—ェン一 2, 3, 5, 6—テトラカルボン酸ジ無水物 1 4. 89 g (60 ミリモル) 、 4, 4 ' —ジアミノジフエニルスルフィ ド 6. 49 g (30ミリモ ル) 、 ガンマ一バレロラクトン 1. 2 g (1 2ミリモル) 、 ピリジン 1 . 6 g ( 20ミリモル) 、 N—メチルピロリ ドン 80 g、 トルエン 30 gをフラスコに加 え、 1 80°Cで 1時間加熱した。 The same operation as in Example 1 was performed. Bicyclo (2,2,2) -octane-7-ene 2,3,5,6-tetracarboxylic dianhydride 14.89 g (60 mmol), 4,4'-diaminodiamine Phenyl sulfide 6.49 g (30 mm ), 1.2 g (12 mmol) of gamma-valerolactone, 1.6 g (20 mmol) of pyridine, 80 g of N-methylpyrrolidone and 30 g of toluene are added to the flask, and the mixture is heated at 180 ° C for 1 hour. Heated.
次いで、 空冷して、 ベンゾフエノンテトラカルボン酸ジ無水物 1 9. 33 g ( 60ミリモル) 、 ビス (3—ァミノプロピル)一ポリジメチルシロキサン (アミ ン価 445、 信越化学工業株式会社製品) 53. 4 g (60ミリモル) 、 ビス一 [4一 (3—アミノフエノキシ) フエニルスルホン 1 4. 2フ g (33ミリモル ) , 5—ノルボルネン一 2、 3—ジカルボン酸無水物 0. 98 g (6ミリモル) 、 N—メチルピロリ ドンフ 7 g、 トルエン 30 gを加え、 1 80°C、 1 80回転 毎分の攪拌で 4時間加熱した。 ついで、 1 80°C、 1 00回転 毎分の攪拌で 3 5分間加熱した。 反応還流物を除いたブロック共重合ポリイミ ド溶液は、 40 % のポリイミ ド濃度であった。  Then, air-cooled, 19.33 g (60 mmol) of benzophenonetetracarboxylic dianhydride, bis (3-aminopropyl) -polydimethylsiloxane (amine number 445, Shin-Etsu Chemical Co., Ltd.) 53. 4 g (60 mmol), bis- [4- (3-aminophenoxy) phenylsulfone 14.2 f g (33 mmol), 5-norbornene-1,2,3-dicarboxylic anhydride 0.98 g (6 mmol) ), 7 g of N-methylpyrrolidone and 30 g of toluene were added, and the mixture was heated at 180 ° C and stirring at 180 rpm for 4 hours. Then, the mixture was heated at 180 ° C. and 100 rpm for 35 minutes with stirring per minute. The block copolymer polyimide solution excluding the reaction reflux had a polyimide concentration of 40%.
このようにして製造されたブロック共重合ポリイミ ドの分子量を実施例 1 と同 様に測定したところ、 数平均分子量: 27200、 重量平均分子量: 47200、 Z平均分子量: 75600であった。  The molecular weight of the block copolymer polyimide thus produced was measured in the same manner as in Example 1. As a result, the number average molecular weight was 27200, the weight average molecular weight was 47200, and the Z average molecular weight was 75600.
次に、 前記のブロック共重合ポリイミド溶液をジォキソランで希釈し、 20% ポリイミ ド濃度のワニスとし、 塗膜形成し、 1 30°Cで 5分間乾燥させることに より、 ポリフエ二レンサルファイド (東レ株式会社製品 トレリナ Z50ミクロ ン厚さ :基材フィルム) の両側表面上に、 ◦. 5ミクロンブロック共重合ポリィ ミ ド膜を形成した複合フィルム F— 0. 5を作成した。 210°Cで 1 0分間高温 度恒温器の中で、 大気中の無荷重熱処理を行い、 基材フィルムとの間の密着性を 碁盤目テスト (1 mm間隔) で確認した。  Next, the block copolymerized polyimide solution was diluted with dioxolane to form a varnish having a polyimide concentration of 20%, a coating film was formed, and dried at 130 ° C. for 5 minutes to obtain polyphenylene sulfide (Toray Co., Ltd.). Torayna Z50 micron (thickness: base film): A composite film F-0.5 with a 5 micron block copolymerized polyimide film formed on both surfaces. No-load heat treatment was performed in the air in a high-temperature constant temperature oven at 210 ° C for 10 minutes, and the adhesion to the base film was checked by a grid test (1 mm intervals).
その結果、 密着率は 1 00Z1 00であリ、 本発明の複合フィルム Fは、 基材 フィルムとの密着性が優れていることが認められた。  As a result, the adhesion ratio was 100Z100, and it was confirmed that the composite film F of the present invention had excellent adhesion to the base film.
実施例 5 Example 5
実施例 1 と同様な操作を行なった。 すなわち、 ビシクロ (2, 2, 2) ーォク 卜一7—ェンー 2, 3, 5, 6—テトラカルボン酸ジ無水物 1 9. 86 g (80 ミリモル) 、 3' 4—ジアミノビフエ二ルェ一テル 24. 02 g (1 20ミリモ ル) 、 ガンマ一バレロラク トン 2. 4 g (24ミリモル) 、 ピリジン 3. 3 g ( 40ミリモル) 、 N—メチルピロリ ドン 200 g、 トルエン 30 gをフラスコに 加え、 1 80°Cで 1時間加熱した。 The same operation as in Example 1 was performed. That is, bicyclo (2,2,2) oct-1-ene-2,3,5,6-tetracarboxylic dianhydride 19.86 g (80 mmol), 3'4-diaminobiphenyl ether 24 .02 g (120 mmol), gamma-valerolactone 2.4 g (24 mmol), pyridine 3.3 g ( (40 mmol), N-methylpyrrolidone (200 g) and toluene (30 g) were added to the flask and heated at 180 ° C for 1 hour.
次いで、 空冷して、 ビフエ二ルテトラカルボン酸ジ無水物 47. 08 g (80 ミリモル) 、 ビス (3—ァミノプロピル)一ポリジメチルシロキサン (ァミン価 445、 信越化学工業株式会社製品) 35. 6 g (40ミリモル) 、 ビス {4一 (3—アミノフエノキシ) フエ二ル} スルホン 36. 50 g (84. 4ミリモル ) . 5—ノルボルネンー 2、 3—ジカルボン酸無水物 1. 46 g (8. 9ミリモ ル) 、 N—メチルピロリ ドン 26フ g、 トルエン 70 gを加え、 1 80°C、 1 8 0回転ノ毎分の攪拌で 6時間加熱した。 反応還流物を除いたブロック共重合ポリ イミ ド溶液は、 25 %のポリイミ ド濃度であつた。  Then, the mixture was air-cooled to obtain 47.08 g (80 mmol) of biphenyltetracarboxylic dianhydride and 35.6 g of bis (3-aminopropyl) -polydimethylsiloxane (amine number 445, Shin-Etsu Chemical Co., Ltd.) (40 mmol), bis {4- (3-aminophenoxy) phenyl} sulfone 36.50 g (84.4 mmol) .5-norbornene-2,3-dicarboxylic anhydride 1.46 g (8.9 mmol) ), 26 g of N-methylpyrrolidone and 70 g of toluene were added, and the mixture was heated at 180 ° C and stirring at 180 rpm for 6 hours. The block copolymer polyimide solution excluding the reaction reflux had a polyimide concentration of 25%.
このようにして製造されたブロック共重合ポリイミ ドの分子量を実施例 1 と同 様に測定したところ、 数平均分子量: 32 1 00、 重量平均分子量: 5 1 700、 Z平均分子量: 73700であった。  When the molecular weight of the block copolymer polyimide thus produced was measured in the same manner as in Example 1, the number average molecular weight was 32100, the weight average molecular weight was 51700, and the Z average molecular weight was 73700. .
次に、 前記のブロック共重合ポリイミ ド溶液をジォキソランで希釈し、 20% ポリイミ ド濃度のワニスとし、 塗膜形成し、 1 30°Cで 1 0分間乾燥させること により、 ポリエチレンテレフタレート (帝人株式会社製品 ZG— 2Z50ミクロ ン厚さ :基材フィルム) (フィルム A) の両側表面上に、 2. 5ミクロンブロッ ク共重合ポリイミ ド膜を形成した複合フィルム G— 2. 5を作成し、 80— 1 5 0°C恒温器の中で、 大気中の無荷重熱処理(1 50°Cx 1 0分間) を行い、 基材 フィルムとの間の密着性を碁盤目テスト (1 mm間隔) で確認した。  Next, the block copolymer polyimide solution was diluted with dioxolane to form a varnish having a polyimide concentration of 20%, a coating film was formed, and dried at 130 ° C. for 10 minutes to obtain polyethylene terephthalate (Teijin Co., Ltd.). Product ZG-2Z50 micron Thickness: base film) Composite film G-2.5 with 2.5 micron block copolymerized polyimide film formed on both sides of (Film A) In a thermostat at 150 ° C, a no-load heat treatment in air (150 ° C for 10 minutes) was performed, and the adhesion to the substrate film was checked by a grid test (1 mm interval). .
その結果、 密着率は 1 00Z1 00であり、 本発明の複合フィルム Gは、 基材 フィルムとの密着性が優れていることが認められた。  As a result, the adhesion was 100Z100, and it was confirmed that the composite film G of the present invention had excellent adhesion to the base film.
実施例 6 Example 6
実施例 1 と同様な操作を行なった。 すなわち、 ビシクロ (2, 2, 2) ーォク 卜一 7—ェンー 2, 3, 5, 6—テトラカルボン酸ジ無水物 22. 34 g (1 2 0ミリモル) 、 ベンゾフエノンテ卜ラカルボン酸ジ無水物 29. 0 g (90ミリ モル) 、 ビス (3—ァミノプロピル)一ポリジメチルシロキサン (ァミン価 22 4、 信越化学工業株式会社製品) 76. 32 g (90ミリモル) 、 ガンマ一バレ ロラク トン 1. 8 g f 1 8ミリモル) 、 ピリジン 2. 4 g (30ミリモル) 、 N —メチルピロリ ドン 1 5 7 g、 トルエン 50 gをフラスコに加え、 1 80°C、 1 80回転ノ毎分の攪拌で 1時間加熱した。 The same operation as in Example 1 was performed. Bicyclo (2,2,2) oct-1-ene-2,3,5,6-tetracarboxylic dianhydride 22.34 g (120 mmol), benzophenonetetracarboxylic dianhydride 29. 0 g (90 mmol), bis (3-aminopropyl) -polydimethylsiloxane (amine value 224, product of Shin-Etsu Chemical Co., Ltd.) 76.32 g (90 mmol), gamma-valerolactone 1.8 gf 1 8 mmol), pyridine 2.4 g (30 mmol), N —157 g of methylpyrrolidone and 50 g of toluene were added to the flask, and the mixture was heated at 180 ° C. with stirring at 180 rpm for 1 hour.
次いで、 空冷して、 3, 5—ジァミノ安息香酸 6. 8 5 g (45ミリモル) 、 ビス {4一 (3—アミノフエノキシ) フエニル } スルホン 2 1 . 4 1 g (49. 5ミリモル) 、 5—ノルボルネン一 2、 3—ジカルボン酸無水物 1 . 30 g ( 9. 0ミリモル) 、 N—メチルピロリ ドン 6 5 g、 トルエン 1 5 gを加え、 1 80°C、 1 80回転ノ毎分の攪拌で 3時間加熱する。 反応還流物を除いたブロック共重合 ポリイミ ド溶液は、 40 %のポリイミド濃度であつた。  Then, the mixture was air-cooled, and 6,5-gaminobenzoic acid (6.85 g, 45 mmol), bis {4- (3-aminophenoxy) phenyl} sulfone, 21.41 g (49.5 mmol), and 5- 1.30 g (9.0 mmol) of norbornene 1,3-dicarboxylic anhydride, 65 g of N-methylpyrrolidone and 15 g of toluene were added, and the mixture was stirred at 180 ° C. and 180 rpm. Heat for 3 hours. The block copolymer solution except the reaction reflux had a polyimide concentration of 40%.
このようにして製造されたブロック共重合ポリイミ ドの分子量を実施例 1 と同 様にして測定したところ、 数平均分子量: 1 8 900、 重量平均分子量: 3 2 3 00、 Z平均分子量: 506 00であった。  When the molecular weight of the block copolymer polyimide thus produced was measured in the same manner as in Example 1, the number average molecular weight was 18900, the weight average molecular weight was 32300, and the Z average molecular weight was 50600. Met.
次に、 前記のブロック共重合ポリイミ ド溶液をジォキソランで希釈し、 2 00/0 ポリイミ ド濃度のワニスとし、 塗膜形成し、 1 30°Cで 8分間乾燥させることに より、 ポリエチレンテレフタレート (帝人株式会社製品 — 0ミクロン 厚さ :基材フィルム) (フィルム A) の両側表面上に、 3. 0ミクロンブロック 共重合ポリイミ ド膜を形成した複合フィルム H— 3. 0を作成した。 80— 1 5 0°C恒温器の中で、 大気中の無荷重熱処理(1 50 °C X 1 0分間) を行い、 基材 フィルムとの間の密着性を碁盤目テスト (1 mm間隔) で確認した。  Next, the block copolymer polyimide solution was diluted with dioxolane to form a varnish having a concentration of 200/0 polyimide, formed into a coating film, and dried at 130 ° C. for 8 minutes to obtain polyethylene terephthalate (Teijin). Co., Ltd.-0 micron Thickness: base film) A composite film H-3.0 with a 3.0 micron block copolymerized polyimide film formed on both surfaces of (Film A). Perform an air-free heat treatment (150 ° C for 10 minutes) in an 80-150 ° C thermostat and check the adhesion between the substrate and the film by a grid test (1mm interval). confirmed.
その結果、 密着率は 1 O OZ1 00であり、 本発明の複合フィルム Gは、 基材 フィルムとの密着性が優れていることが認められた。  As a result, the adhesion ratio was 1 O OZ100, and it was confirmed that the composite film G of the present invention had excellent adhesion to the base film.
実施例 7 Example 7
実施例 1 と同様な操作を行なった。 すなわち、 3, 4, 3 ' , 4 ' —ビフエ二 ルテトラカルボン酸ジ無水物を 1 1 7. 6 8 g (400ミリモル) 、 ビス (3— ァミノプロピル)一ポリジメチルシロキサン (ァミン当量 4 1 6、 信越化学工業 株式会社製品) を 1 66. 4 g (200ミリモル) 、 ガンマ一バレロラクトンを 4. 0 g (40ミリモル) 、 ピリジン 4. 8 g (60ミリモル) 、 N—メチルビ 口リ ドン 200 g、 トルエン 1 00 gをフラスコに加え、 1 80°Cで 1時間加熱 した。  The same operation as in Example 1 was performed. That is, 3,4,3 ', 4'-biphenyltetracarboxylic dianhydride was obtained by adding 11.76 g (400 mmol) of bis (3-aminopropyl) -polydimethylsiloxane (amine equivalent: 416). , Shin-Etsu Chemical Co., Ltd. products) 166.4 g (200 mmol), gamma-valerolactone 4.0 g (40 mmol), pyridine 4.8 g (60 mmol), N-methylbi-lidone 200 g and 100 g of toluene were added to the flask and heated at 180 ° C for 1 hour.
次いで、 空冷して、 3, 4 ' ジアミノジフエ二ルェ一テルを 20. 02 g ( 1 00ミリモル) 、 2, 2—ビス {4— (4—アミノフエノキシ) フエ二ル} プロ パンを 41 . 06 g (1 00ミリモル) 、 N—メチルピロリ ドン 1 88 g、 トル ェン 50 gを加え、 室温で 1時間、 1 80°Cで 3時間加熱した。 反応還流物を除 いたポリイミ ド溶液は、 35 %のポリイミ ド濃度であつた。 Then, air-cool and add 3,4 'diaminodiphenyl ether to 20.02 g (1 ), 2,2-bis {4- (4-aminophenoxy) phenyl} propane (41.06 g, 100 mmol), N-methylpyrrolidone (188 g) and toluene (50 g) were added. Heated for 1 hour at room temperature and 3 hours at 180 ° C. The polyimide solution from which the reaction reflux was removed had a polyimide concentration of 35%.
このようにして製造されたポリイミ ドの分子量を実施例 1 と同様に測定したと ころ、 数平均分子量: 2 1、 500、 重量平均分子量: 34、 800であった。 このポリイミ ド溶液をジォキソランで希釈し、 20 %ポリイミ ド濃度のワニスと し、 グラビア塗膜機で塗膜形成し、 1 30°Cで 5分間乾燥させることにより、 ポ リエチレンナフタレートフイルム (帝人株式会社製品/テオネックス Z 75ミク ロン厚さ :基材フィルム) の両側表面上に、 各 1 ミクロン又は 2. 5ミクロンの ポリイミ ド膜を形成した複合フィルム 1、 及び複合フイルム 2を作成した。 2ュ 0°Cで 1 0分間高温度恒温器の中で、 大気中の無荷重熱処理を行い、 基材フィル ムとの間の密着性を碁盤目テスト (1 mm間隔) で確認した。  When the molecular weight of the polyimide thus produced was measured in the same manner as in Example 1, the number average molecular weight was 21,500 and the weight average molecular weight was 34,800. The polyimide solution is diluted with dioxolane to make a varnish with a polyimide concentration of 20%, coated with a gravure coating machine, and dried at 130 ° C for 5 minutes to obtain a polyethylene naphthalate film (Teijin stock A composite film 1 and a composite film 2 each having a 1 micron or 2.5 micron polyimide film formed on both surfaces of the company product / Theonex Z 75 micron thickness (base film). No-load heat treatment was performed in the air in a high-temperature constant temperature oven at 20 ° C for 10 minutes, and the adhesion to the substrate film was checked by a grid test (1 mm intervals).
その結果、 いずれの複合フィルムも密着率が 1 00ノ 1 00であり、 これらの 本発明の複合フイルムは、 基材フイルムとの密着性が優れていることが認められ た。  As a result, all the composite films had an adhesion ratio of 100 to 100, and it was confirmed that these composite films of the present invention had excellent adhesion to the base film.
実施例 8 Example 8
実施例 1 と同様な操作を行なった。 すなわち、 ビシクロ (2, 2, 2) —ォク トー 7—ェンー 2, 3, 5, 6—テトラカルボン酸ジ無水物を 44. 67 g (1 80ミリモル) 、 3, 5—ジァミノ安息香酸を 1 3. 69 g (90ミリモル) 、 ガンマ一バレロラクトンを 3. 6 g (36ミリモル) 、 ピリジン 4. 75 g (6 0ミリモル) 、 N—メチルピロリ ドン 240 g、 トルエン 90 gをフラスコに加 え、 1 80°Cで 1時間加熱した。  The same operation as in Example 1 was performed. That is, 44.67 g (180 mmol) of bicyclo (2,2,2) -octa-7-ene-2,3,5,6-tetracarboxylic dianhydride and 3,5-diaminobenzoic acid 1 Add 3.69 g (90 mmol), 3.6 g (36 mmol) of gamma-valerolactone, 4.75 g (60 mmol) of pyridine, 240 g of N-methylpyrrolidone and 90 g of toluene to a flask. Heated at 180 ° C for 1 hour.
次いで、 空冷して、 3, 4, 3 ' , 4 ' ージフエニルテトラカルボン酸ジ無水 物を 58. O g (1 80ミリモル) 、 ビス (3—ァミノプロピル)一ポリジメチ ルシロキサン (ァミン当量 41 6、 信越化学工業株式会社製品) を 1 49. 76 g (1 80ミリモル) 、 ビス一 4 (3—アミノフエノキシ) フエニルスルホンを 42. 82 g (99ミリモル) 、 5—ノルボルネン一 2、 3—ジカルボン酸無水 物 2. 95 (1 8ミリモル) 、 N—メチルピロリ ドン 204 g、 トルエン 90 gを加え、 1 80°Cで 5. 5時間加熱した。 反応還流物を除いたポリイミ ド溶液 は、 40 %のポリイミ ド濃度であった。 Then, the mixture was air-cooled, and 3,4,3 ', 4'diphenyltetracarboxylic dianhydride was added to 58.Og (180 mmol), bis (3-aminopropyl) -polydimethylsiloxane (amine equivalent 416). , Shin-Etsu Chemical Co., Ltd.) 1 49.76 g (180 mmol), bis-4 (3-aminophenoxy) phenyl sulfone 42.82 g (99 mmol), 5-norbornene 1, 2, 3-dicarboxylic Acid anhydride 2.95 (18 mmol), N-methylpyrrolidone 204 g , toluene 90 g was added and heated at 180 ° C for 5.5 hours. The polyimide solution excluding the reaction reflux had a polyimide concentration of 40%.
このようにして製造されたポリイミ ドの分子量を実施例 1 と同様にして測定し たところ、 数平均分子量: 35、 500、 重量平均分子量: 57、 400であつ た。 このポリイミ ドのガラス転移温度は 1 93— 2 1 5°C、 熱分解開始温度は 4 22 °Cであった。  The molecular weight of the polyimide thus produced was measured in the same manner as in Example 1. As a result, the number average molecular weight was 35,500, and the weight average molecular weight was 57,400. The glass transition temperature of this polyimide was 193—215 ° C, and the onset of thermal decomposition was 422 ° C.
次に、 前記のポリイミ ド溶液をポリエチレンナフタレ一卜フィルム (帝人株式 会社製品ノテオネックス Z50ミクロン厚さ :基材フィルム) の両側表面上に、 塗布し、 1 30°Cで 8分間乾燥させることにより、 各 1 ミクロン又は 2. 5ミク ロンのポリイミ ド膜を形成した複合フイルム 1、 及び複合フイルム 2を作成した。 200°〇で1 0分間高温度恒温器の中で、 大気中の無荷重熱処理を行い、 基材フ イルムとの間の密着性を碁盤目テスト (1 mm間隔) で確認した。  Next, the polyimide solution was applied onto both surfaces of a polyethylene naphthalate film (Noteonex Z50 micron thickness: Teijin Limited: base film) and dried at 130 ° C for 8 minutes. A composite film 1 and a composite film 2 each having a 1 micron or 2.5 micron polyimide film were prepared. No-load heat treatment was performed in the air in a high-temperature thermostat at 200 ° 〇 for 10 minutes, and the adhesion to the substrate film was checked by a grid test (1 mm intervals).
その結果、 密着率は両者とも 1 00 1 00であり、 これらの本発明の複合フ イルムは、 基材フィルムとの密着性が優れていることが認められた。  As a result, both of the adhesion ratios were 100 and 100, and it was confirmed that these composite films of the present invention had excellent adhesion to the base film.
実施例 9 Example 9
実施例 1 と同様の操作を行なった。 すなわち、 ビシクロ (2, 2, 2) ーォク ト一フーェンー 2, 3, 5, 6—テトラカルボン酸ジ無水物を 29. 78 g (1 20ミリモル) 、 3, 4 ' ージアミノジフエニルエーテルを 36. 04 g (1 8 0ミリモル) 、 ガンマ一バレロラクトンを 3. 0 g (30ミリモル) 、 ピリジン 4. 0 g (50ミリモル) 、 N—メチルピロリ ドン 200 g、 トルエン 50 gを フラスコに加え、 1 80°Cで 1時間加熱する。 The same operation as in Example 1 was performed. That is, 29.78 g (120 mmol) of bicyclo (2,2,2) oct-2-ene-2,3,5,6-tetracarboxylic dianhydride and 36.34 g of 3,4 ′ diaminodiphenyl ether 0.4 g (180 mmol), 3.0 g (30 mmol) of gamma-valerolactone, 4.0 g (50 mmol) of pyridine, 200 g of N-methylpyrrolidone and 50 g of toluene were added to the flask, and 1 Heat at 80 ° C for 1 hour.
次いで、 空冷して、 3, 4, 3 ' , 4 ' ージフエニルテトラカルボン酸ジ無水 物を 44. 1 3 g ( 1 50ミリモル) 、 ビス {4— (3—アミノフエノキシ) フ ェニル } スルホンを 25. 90 g (60ミリモル) 、 ビス (3—ァミノプロピル )一ポリジメチルシロキサン (ァミン当量 41 6、 信越化学工業株式会社製品) を 26· 7 g (30ミリモル) 、 N—メチルピロリ ドン 2フ 3 g、 トルエン 50 gを加え、 1 80 °Cで 5 · 5時間加熱した。 反応還流物を除いたポリイミ ド溶液 は、 20 %のポリイミ ド濃度であった。  Then, the mixture was air-cooled to obtain 4,4,13 g (150 mmol) of 3,4,3 ', 4'diphenyltetracarboxylic dianhydride and bis {4- (3-aminophenoxy) phenyl} sulfone. 25. 90 g (60 mmol), bis (3-aminopropyl) -polydimethylsiloxane (amine equivalent 416, Shin-Etsu Chemical Co., Ltd. product) 26.7 g (30 mmol), N-methylpyrrolidone 2 g 3 g Then, 50 g of toluene was added, and the mixture was heated at 180 ° C for 5.5 hours. The polyimide solution excluding the reaction reflux had a polyimide concentration of 20%.
このようにして製造されたポリイミ ドの分子量を実施例1 と同様に測定したと ころ、 数平均分子量: 3 1、 900、 重量平均分子量: 54、 500であった。 次に、 前記のポリイミ ド溶液をポリエチレンナフタレートフィルム (帝人株式 会社製品 テオネックス 25ミクロン厚さ :基材フィルム) の両側表面上に、 塗布し、 1 30°Cで 5分間乾燥させることにより、 各 1 ミクロン又は 2. 5ミク ロンのポリイミ ド膜を形成した複合フィルム 1、 及び複合フイルム 2を作成した。 200°〇で1 0分間高温度恒温器の中で、 大気中の無荷重熱処理を行い、 大気中 の無荷重熱処理を行い、 基材フィルムとの間の密着性を碁盤目テスト (1 mm間 隔) で確認した。 The molecular weight of the polyimide thus produced was measured in the same manner as in Example 1. At this time, the number average molecular weight was 31,900, and the weight average molecular weight was 54,500. Next, the above polyimide solution was applied to both surfaces of a polyethylene naphthalate film (Teonex Co., Ltd. product, Teonex 25 micron thickness: base film), and dried at 130 ° C for 5 minutes. A composite film 1 having a 1 micron or 2.5 micron polyimide film and a composite film 2 were prepared. Perform no-load heat treatment in the air in a high-temperature constant temperature oven at 200 ° 分 間 for 10 minutes, perform no-load heat treatment in the air, and check the adhesion between the base film and the base film (1 mm ).
その結果、 いずれのフイルムも密着率が 1 00ノ 1 00であリ、 これらの本発 明の複合フイルムは、 基材フィルムとの密着性が優れていることが認められた。 実施例 1 0  As a result, all the films had an adhesion ratio of 100 to 100, and it was confirmed that the composite films of the present invention had excellent adhesion to the base film. Example 10
実施例 1 と同様の操作を行なった。 すなわち、 ビシクロ (2, 2, 2) ーォク トー 7—ェンー 2, 3, 5, 6—テトラカルボン酸ジ無水物を 1 4. 89 g (6 0ミリモル) 、 4, 4 ' ージアミノジフエニルスルフイ ド 6. 49 g (30ミリ モル) 、 ガンマ一バレロラク トンを 1 . 2 g (1 2ミリモル) 、 ピリジン 1 . 6 g (20ミリモル) 、 N—メチルピロリ ドン 80 g、 トルエン 30 gをフラスコ に加え、 1 80°Cで 1時間加熱した。  The same operation as in Example 1 was performed. That is, bicyclo (2,2,2) oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 14.89 g (60 mmol), 4,4 'diaminodiphenyls 6.49 g (30 mmol) of sulfide, 1.2 g (12 mmol) of gamma-valerolactone, 1.6 g (20 mmol) of pyridine, 80 g of N-methylpyrrolidone and 30 g of toluene are placed in a flask. In addition, it was heated at 180 ° C for 1 hour.
次いで、 空冷して、 3, 4, 3 ' , 4 ' —ベンゾフエノン亍トラカルボン酸ジ 無水物を 1 9. 3 g (60ミリモル) 、 ビス (3—ァミノプロピル)一ポリジメ チルシロキサン (ァミン当量 41 6、 信越化学工業株式会社製品) を 53. 4 g (60ミリモル) 、 ビス一 4— (3—アミノフエノキシ) フエニルスルホンを 1 4. 27 g (33ミリモル) 、 N—メチルピロリ ドン 57 g、 トルエン 30 gを 加え室温で 1時間攪拌した。  Then, the mixture was air-cooled, and 19.3 g (60 mmol) of 3,4,3 ', 4'-benzophenonetetracarboxylic dianhydride, bis (3-aminopropyl) -polydimethylsiloxane (amine equivalent: 416) , Shin-Etsu Chemical Co., Ltd.), 53.4 g (60 mmol), bis-4- (3-aminophenoxy) phenylsulfone, 14.27 g (33 mmol), N-methylpyrrolidone 57 g, toluene 30 g was added and stirred at room temperature for 1 hour.
ついで、 5—ノルボルネンー 2、 3—ジカルボン酸無水物 0. 98 g (6ミリ モル) 、 N—メチルピロリ ドン 2◦ gを加え、 室温で 0. 5時間攪拌し、 ついで 1 80 °Cで 4時間加熱した。 反応還流物を除いたポリイミ ド溶液は、 40 ·¼のポ リイミ ド濃度であった。  Then, 0.98 g (6 mmol) of 5-norbornene-2,3-dicarboxylic anhydride and 2 ° g of N-methylpyrrolidone were added, and the mixture was stirred at room temperature for 0.5 hour, and then at 180 ° C for 4 hours. Heated. The polyimide solution excluding the reaction reflux had a polyimide concentration of 40 · ¼.
次に、 前記のポリイミ ド溶液を、 ポリフ: c二レンサルフアイド (東レ株式会社 製品 トレリナ 50ミクロン厚さ :基材フィルム) の両側表面上に塗布し、 1 30°Cで 1 0分間乾燥させることにより、 各 1 ミクロン又は 2. 5ミクロンのポ リイミ ド膜を形成した複合フィルム 1、 及び複合フィルム 2を作成した。 200 °C1 0分間の環境下で、 無荷重の加熱処理を行い、 基材フィルムとの密着性を碁 盤目テスト (1 mm間隔) で確認した。 Next, the polyimide solution was applied to both surfaces of polyf: c dilensulfide (Toray Industries, Inc., product Torelina 50 micron thickness: base film), By drying at 30 ° C. for 10 minutes, composite films 1 and 2 each having a 1 μm or 2.5 μm polyimide film were prepared. Under an environment of 200 ° C for 10 minutes, heat treatment without load was performed, and the adhesion to the substrate film was checked by a grid test (1 mm interval).
その結果、 いずれの複合フィルムとも密着率が 1 00 1 00であり、 これら の本発明の複合フィルムは基材フィルムとの密着性が優れていることが認められ た。  As a result, the adhesion rate was 100,100 for all of the composite films, and it was confirmed that these composite films of the present invention had excellent adhesion to the base film.
実施例 1 1 Example 1 1
実施例 1 と同様の操作を行なった。 すなわち、 ビシクロ (2, 2, 2) 一才ク トー 7—ェンー 2, 3, 5, 6—亍トラカルボン酸ジ無水物を 44. 67 g ( 1 80ミリモル) 、 3, 5—ジァミノ安息香酸を 1 3. 6 9 g ( 90ミリモル) 、 ガンマ一バレロラク トンを 3. 6 g (36ミリモル) 、 ピリジン 4. 75 g (6 0ミリモル) 、 N—メチルピロリ ドン 240 g、 トルエン 90 gをフラスコに加 え、 1 80°Cで 1時間加熱した。  The same operation as in Example 1 was performed. Bicyclo (2,2,2) 1-year-old 7-ene-2,3,5,6-tetracarboxylic dianhydride 44.67 g (180 mmol), 3,5-diaminobenzoic acid 13.69 g (90 mmol), gamma-valerolactone 3.6 g (36 mmol), pyridine 4.75 g (60 mmol), N-methylpyrrolidone 240 g, toluene 90 g in a flask In addition, it was heated at 180 ° C for 1 hour.
次いで、 空冷して、 3、 4、 3 '、 4 ' —ジフエニルテトラカルボン酸ジ無水 物を 58. O g (1 80ミリモル) 、 ビス (3—ァミノプロピル)一ポリジメチ ルシロキサン (ァミン当量 41 6、 信越化学工業株式会社製品) を 1 49. 76 g (1 80ミリモル) 、 ビス一 4一 (3—アミノフエノキシ) フエニルスルホン を 42. 82 g (99ミリモル) 、 5—ノルボルネンー2、 3—ジカルボン酸無 水物 2. 95 g (1 8ミリモル) 、 N—メチルピロリ ドン 204 g、 トルエン 9 O gを加え、 1 80°Cで 5. 5時間加熱する。 反応還流物を除いたポリイミ ド溶 液は、 40 %のポリイミ ド濃度であつた。  Then, the mixture was air-cooled to give 3,4,3 ', 4'-diphenyltetracarboxylic dianhydride at 58.O g (180 mmol), bis (3-aminopropyl) -polydimethylsiloxane (amine equivalent 416). , Shin-Etsu Chemical Co., Ltd.) 1 49.76 g (180 mmol), bis-41- (3-aminophenoxy) phenylsulfone 42.82 g (99 mmol), 5-norbornene-2,3-dicarboxylic 2.95 g (18 mmol) of acid anhydride, 204 g of N-methylpyrrolidone and 9 Og of toluene are added, and the mixture is heated at 180 ° C for 5.5 hours. The polyimide solution excluding the reaction reflux had a polyimide concentration of 40%.
このようにして製造されたポリイミ ドの分子量を実施例 1 と同様に測定したと ころ、 数平均分子量: 35500、 重量平均分子量: 57400であった。 この ポリイミ ドのガラス転移温度は、 1 93— 2 1 5°C、 熱分解開始温度は、 422 °Cであった。  When the molecular weight of the polyimide thus produced was measured in the same manner as in Example 1, the number average molecular weight was 35,500 and the weight average molecular weight was 57,400. The glass transition temperature of this polyimide was 193-215 ° C, and the thermal decomposition onset temperature was 422 ° C.
次に、 前記のポリイミ ド溶液を、 ポリフ I二レンサルフアイ ド (東レ株式会社 製品 トレリナ/ /25ミクロン厚さ :基材フィルム) の両側表面上に塗布し、 1 30°Cで 1 0分間乾燥させることにより、 各 1 ミクロン又は 2. 5ミクロンのポ リイミ ド膜を形成した複合フィルム 1、 及び複合フィルム 2を作成した。 2 1 0 °C1 0分間の環境下で、 無荷重の加熱処理を行い、 基材フィルムとの密着性を碁 盤目テスト (1 mm間隔) で確認した。 Next, the above polyimide solution is applied to both surfaces of Polyolefin I Nylene Sulfide (product of Toray Industries, Inc., TORELINA // 25 micron thickness: base film), and dried at 130 ° C for 10 minutes. Depending on the size of each 1 micron or 2.5 micron Composite film 1 and composite film 2 on which a limit film was formed were prepared. Under an environment of 210 ° C for 10 minutes, heat treatment was performed without load, and the adhesion to the substrate film was checked by a grid test (1 mm interval).
その結果、 いずれの複合フィルムも密着率は 1 00 1 00であり、 これらの 本発明の複合フィルムは基材フィルムとの密着性が優れていることが認められた。 実施例 1 2  As a result, the adhesion ratio of each composite film was 100,100, and it was confirmed that these composite films of the present invention had excellent adhesion to the base film. Example 1 2
実施例 1 と同様の操作を行なった。 すなわち、 ビシクロ (2, 2, 2) —ォク 卜一フーェンー 2, 3, 5, 6—テトラカルボン酸ジ無水物を 1 4. 8 9 g (6 0ミリモル) 、 3, 5—ジァミノ安息香酸を 4. 56 g (30ミリモル) 、 ガン マ一バレロラク トンを 1. 2 g (1 2ミリモル) 、 ピリジン 1. 6 g (20ミリ モル) 、 N—メチルピロリ ドン 80 g、 トルエン 30 gをフラスコに加え、 1 8 0°Cで 1時間加熱した。  The same operation as in Example 1 was performed. Bicyclo (2,2,2) -octane-4,3,5,6-tetracarboxylic dianhydride was obtained in an amount of 14.89 g (60 mmol), 3,5-diaminobenzoic acid 4.56 g (30 mmol), 1.2 g (12 mmol) of gamma valerolactone, 1.6 g (20 mmol) of pyridine, 80 g of N-methylpyrrolidone and 30 g of toluene in a flask In addition, the mixture was heated at 180 ° C for 1 hour.
次いで、 空冷して、 3, 4, 3 ' , 4' ージフエニルテトラカルボン酸ジ無水 物を 1 9. 33 g (600ミリモル) 、 ビス (3—ァミノプロピル)一ポリジメ チルシロキサン (ァミン当量 41 6、 信越化学工業株式会社製品) を 53. 4 g (60ミリモル) 、 ビス一 4— (3—アミノフエノキシ) フエニルスルホンを 1 4. 27 g (33ミリモル) 、 N—メチルピロリ ドン 53 g、 トルエン 30 gを 加え室温で 1時間攪拌した。  Then, the mixture was air-cooled, and 19.33 g (600 mmol) of 3,4,3 ', 4'-diphenyltetracarboxylic dianhydride was added to bis (3-aminopropyl) -polydimethylsiloxane (amine equivalent 416). 53.4 g (60 mmol), bis-4- (3-aminophenoxy) phenylsulfone 14.27 g (33 mmol), N-methylpyrrolidone 53 g, toluene 30 g was added and stirred at room temperature for 1 hour.
ついで、 室温にして、 5—ノルボルネンー 2、 3—ジカルボン酸無水物 0. 9 8 g (6ミリモル) 、 N—メチルピロリ ドン 20 gを加え、 室温で 0. 5時間攪 拌後、 1 80°Cで 4時間加熱した。 反応還流物を除いたポリイミ ド溶液は、 40 %のポリイミ ド濃度であつた。  Then, the mixture was brought to room temperature, 0.98 g (6 mmol) of 5-norbornene-2,3-dicarboxylic anhydride and 20 g of N-methylpyrrolidone were added, and the mixture was stirred at room temperature for 0.5 hour, and then stirred at 180 ° C. For 4 hours. The polyimide solution from which the reaction reflux was removed had a polyimide concentration of 40%.
このようにして製造されたポリイミドの分子量を実施例 1 と同様に測定したと ころ、 数平均分子量: 28、 000、 重量平均分子量: 5 1、 000であった。 次に、 前記のポリイミ ド溶液をポリフエ二レンサルフアイド (東レ株式会社製 品 トレリナノ 75ミクロン厚さ :基材フイルム) の両側表面上に塗布し、 1 3 0°Cで 1 0分間乾燥させることにより、 各 1 ミクロン又は 2. 5ミクロンのポリ イミ ド膜を形成した複合フィルム 1、 及び複合フィルム 2を作成した。 2 1 0°C 1 0分間の環境下で、 無荷重の加熱処理を行い、 基材フィルムとの密着性を碁盤 目テス卜 (1 mm間隔) で確認した。 When the molecular weight of the polyimide thus produced was measured in the same manner as in Example 1, the number average molecular weight was 28,000 and the weight average molecular weight was 51,000. Next, the polyimide solution is applied to both surfaces of a polyphenylene sulfide (Toray Industries, Inc., Torelinan 75 micron thickness: base film) and dried at 130 ° C for 10 minutes. As a result, a composite film 1 and a composite film 2 each having a 1 μm or 2.5 μm polyimide film were prepared. Perform heat treatment with no load in an environment of 210 ° C for 10 minutes to check the adhesion to the base film. It was confirmed by eye test (1 mm interval).
その結果、 いずれの複合フイルムも密着率は 1 00Z1 00であり、 これらの 本発明の複合フィル厶は基材フィル厶との密着性が優れていることが認められた c 実施例 1 3 As a result, the adhesion rate any of the composite film is 1 00Z1 00, c Example 1 3 composite fill厶is recognized that the adhesion to the substrate fill厶is better these inventive
1 リットル容量の三つ口フラスコに、 ステンレス製の碇型攪拌棒、 窒素導入管 とストップコックのついたトラップ上に、 玉付冷却管を取り付けた還流冷却器を 取り付けた。  A 1-liter three-necked flask was equipped with a stainless steel anchor stirrer, a nitrogen inlet tube and a trap equipped with a stopcock, and a reflux condenser equipped with a cooling tube with balls.
3, 4, 3 ' , 4 ' —ジフエニルテトラカルボン酸ジ無水物 35. 3 g (1 2 0ミリモル) 、 ビス (3—ァミノプロピル)一ポリジメチルシロキサン (ァミン 価 458、 信越化学工業株式会社製品) 27. 48 g (30ミリモル) 、 クロ ト ン酸 5. 1 7 g (60ミリモル) 、 ピリジン 4. フ 5 g (60ミリモル) 、 N— メチルピロリ ドン 1 50 g、 トルエン 40 gをフラスコに加え、 1 60°0で1時 間加熱撹拌した。  3,4,3 ', 4'-Diphenyltetracarboxylic dianhydride 35.3 g (120 mmol), bis (3-aminopropyl) -polydimethylsiloxane (amine number 458, Shin-Etsu Chemical Co., Ltd.) 27. 48 g (30 mmol), 5.17 g (60 mmol) of crotonic acid, 5 g (60 mmol) of pyridine, 150 g of N-methylpyrrolidone and 40 g of toluene were added to the flask. The mixture was heated and stirred at 160 ° C for 1 hour.
次いで、 空冷して、 ビシクロ (2, 2, 2) 一才クトーフーェン一 2, 3, 5, 6—テトラカルボン酸ジ無水物を 29. 78 g (1 20ミリモル) 、 1, 3—ビ ス一 (4—アミノフエノキシ) ベンゼンを 62. 85 g (2 1 5ミリモル) 、 フ タル酸無水物を"! . 484 g (1 0. 02ミリモル) 、 N—メチルピロリ ドンを 1 44 g加え、 室温で 1時間、 1 40°Cで 30分間、 昇温して 1 80°Cで 4. 5 時間加熱撹拌した。 1 80DCで 1時間を経過した以降から、 反応還流物を系外に 除いたポリィミ ド溶液は、 35 %のポリィミ ド濃度であった。 Then, air-cooled, 29.78 g (120 mmol) of 2,3,5,6-tetracarboxylic dianhydride of bicyclo (2,2,2) 1-year-old (4-aminophenoxy) 62.85 g (2 15 mmol) of benzene, 484 g (10.02 mmol) of phthalic anhydride and 144 g of N-methylpyrrolidone were added. time, was removed from 1 40 ° C for 30 minutes, warmed to and 4. stirred heated 5 hours at 1 80 ° C. 1 80 after a lapse of 1 hour at D C, the reaction reflux from the system Poryimi The solution had a polyimide concentration of 35%.
このようにして製造されたブロック共重合ポリイミ ドのポリスチレン換算分子 量を紫外線検出器を用いた G PC法 (東ソ一 H LC 820を使用)により測定し たところ、 数平均分子量: 7 1 20、 重量平均分子量: 1 7400、 Z平均分子 量: 26400であった。 また、 ガラス転移温度は 205°C、 熱分解開始温度は 444°Cであった。  The molecular weight of the block copolymer polyimide thus produced in terms of polystyrene was measured by the GPC method using an ultraviolet detector (using Tosoichi HLC 820). The weight average molecular weight was 17400 and the Z average molecular weight was 26400. The glass transition temperature was 205 ° C and the thermal decomposition onset temperature was 444 ° C.
得られたポリイミ ド溶液を、 帝人株式会社製のポリエチレンテレフタレートフ イルム (タイプ G— 2 :厚さ 38 m) の両面に塗布し、 1 30°Cで 5分間乾燥 させ、 ポリエチレンテレフタレートフィルムの両面に厚さ 1 ミクロンのポリイミ ド膜が積層された複合フィルムを得た。 実施例 1 4 The resulting polyimide solution is applied to both sides of a polyethylene terephthalate film (Type G-2: thickness 38 m) manufactured by Teijin Limited, dried at 130 ° C for 5 minutes, and then applied to both sides of the polyethylene terephthalate film. A composite film with a 1 micron thick polyimide film laminated was obtained. Example 14
実施例 1 3と同様な操作を行なった。 すなわち、 ビシクロ (2, 2, 2) —ォ ク ト一フ一ェンー 2, 3, 5, 6—テトラカルボン酸ジ無水物 44. 67 g (1 80ミリモル) 、 3, 5—ジァミノ安息香酸 1 3. 69 g (90ミリモル) 、 ガ ンマ一バレロラク トン 3. 6 g (36ミリモル) 、 ピリジン 4. 7 g (60ミリ モル) 、 N—メチルピロリ ドン 240 g、 トルエン 90 gをフラスコに加え、 1 80°C、 1 80 r pmの回転数で撹拌しながら 1時間反応させた。  The same operation as in Example 13 was performed. Bicyclo (2,2,2) -octane-2,3,5,6-tetracarboxylic dianhydride 44.67 g (180 mmol), 3,5-diaminobenzoic acid 1 3.69 g (90 mmol), gamma-valerolactone 3.6 g (36 mmol), pyridine 4.7 g (60 mmol), N-methylpyrrolidone 240 g, and toluene 90 g were added to the flask. The reaction was carried out for 1 hour while stirring at 80 ° C. and a rotation speed of 180 rpm.
次いで、 空冷して 3, 4, 3 ' , 4 ' —ベンゾフエノンテトラカルボン酸ジ無 水物 58. 0 g (1 80ミリモル) 、 ビス (3—ァミノプロピル)一ポリジメチ ルシロキサン (ァミン当量 41 6、 信越化学工業株式会社製品) 1 49. 76 g (1 80ミリモル)、 ビス [4— (3—アミノフエノキシ) フエニル] スルホン 4 2. 82 g (99ミリモル) 、 5—ノルボルネン一 2, 3—ジカルボン酸無水物 2. 95 g ( 1 8ミリモル) 、 N—メチルピロリ ドン 204 g、 トルエン 90 g を加え、 1 80°Cで 5時間 25分間反応させた。 これにより、 40%濃度のポリ イミ ド溶液を得た。  Then, the mixture was air-cooled, and 5,4 g (1,80 mmol) of 3,4,3 ', 4'-benzophenonetetracarboxylic dianhydride, bis (3-aminopropyl) -polydimethylsiloxane (amine equivalent 416) , Shin-Etsu Chemical Co., Ltd.) 1 49.76 g (180 mmol), bis [4- (3-aminophenoxy) phenyl] sulfone 4 2.82 g (99 mmol), 5-norbornene-1,2,3-dicarboxylic 2.95 g (18 mmol) of acid anhydride, 204 g of N-methylpyrrolidone and 90 g of toluene were added, and reacted at 180 ° C. for 5 hours and 25 minutes. As a result, a polyimide solution having a concentration of 40% was obtained.
このようにして製造されたポリイミ ドの分子量を実施例 1 と同様に測定したと ころ、 数平均分子量 35500、 重量平均分子量 57400であった。 また、 ガ ラス転移温度は 1 93~2 1 5°C、 熱分解開始温度は 422 °Cであった。  When the molecular weight of the polyimide thus produced was measured in the same manner as in Example 1, the number average molecular weight was 35,500 and the weight average molecular weight was 57,400. Further, the glass transition temperature was 193 to 21.5 ° C, and the thermal decomposition onset temperature was 422 ° C.
得られたポリイミ ド溶液を、 帝人株式会社製のポリエチレンテレフタレ一トフ イルム(タイプ G— 2 :厚さ 38 m) の両面に塗布し、 1 30°Cで 1 0分間乾 燥させ、 ポリエチレンテレフタレートフィルムの両面に厚さ 2. 5ミクロンのポ リイミ ド膜が積層された複合フィルムを得た。  The obtained polyimide solution was applied to both sides of a polyethylene terephthalate film (Type G-2: thickness 38 m) manufactured by Teijin Limited, dried at 130 ° C for 10 minutes, and then treated with polyethylene terephthalate. A composite film having a 2.5 micron thick polyimide film laminated on both sides of the film was obtained.
実施例 1 5 Example 15
実施例 1 3及び 1 4で製造した複合フィルムの縦方向及び横方向の熱収縮率を 測定した。 また、 比較のため、 用いた基材フィルムの熱収縮率も測定した。 結果 を下記表 1に示す。 熱収縮率 (%) The heat shrinkage in the longitudinal and transverse directions of the composite films produced in Examples 13 and 14 was measured. For comparison, the heat shrinkage of the base film used was also measured. The results are shown in Table 1 below. Heat shrinkage (%)
熱処理条件 基材フィルム 実施例 1 3 実施例 1 4  Heat treatment conditions Base film Example 1 3 Example 1 4
縦方向 横方向 縦方向 横方向 縦方向 横方向 Vertical direction Horizontal direction Vertical direction Horizontal direction Vertical direction Horizontal direction
150。C、 30分 0. 9 0. 06 0. 008 0. 002 0. 009 0. 002150. C, 30 minutes 0.90 0.06 0.008 0.002 0.009 0.002
180°C、 10分 測定不能 測定不能 0. 016 0. 001 0. 016 0. 001 表 1に示すように、 基材フィルムであるポリエチレンテレフタレートフイリレム は、 融点を超える 1 8 0 °Cに加熱されると測定不可能な形状に変形してしまうが、 本発明の複合フィルムではほとんど熱収縮することもないことがわかる。 また、 1 5 0 °Cの加熱においても、 本発明の複合フィルムの熱収縮率は、 基材フィルム の熱収縮率に比較して桁違いに小さい。 これらの結果から、 本発明の複合フィル ムは、 用いた基材フィルムに比べてはるかに優れた耐熱性を有することがわかる 180 ° C, 10 minutes Unmeasurable Unmeasurable 0.016 0.001 0.016 0.001 As shown in Table 1, the base film, polyethylene terephthalate filem, is heated to 180 ° C, which exceeds its melting point. Then, the composite film is deformed into an unmeasurable shape, but it can be seen that the composite film of the present invention hardly undergoes heat shrinkage. In addition, even when heated at 150 ° C., the heat shrinkage of the composite film of the present invention is significantly smaller than that of the base film. These results show that the composite film of the present invention has much better heat resistance than the base film used.
産業上の利用可能性  Industrial applicability
本発明の複合フイルムは、 その耐熱性、 耐薬品性及び Z又は絶縁性を利用した 各種の用途、 例えば、 壁紙、 各種物品の表面保護膜、 絶縁性フイルム、 回路基板、 抵抗体等の種々の用途に用いることができる。  The composite film of the present invention can be used for various applications utilizing its heat resistance, chemical resistance and Z or insulating properties, for example, for various applications such as wallpaper, surface protective films of various articles, insulating films, circuit boards, resistors and the like. Can be used for applications.

Claims

請求の範囲 The scope of the claims
1 . 基材フィルムの少なくとも一方の表面に、 分子主鎖がテトラカルボン酸ジ 無水物とジァミンとの重縮合によリ形成される溶剤可溶性ポリィミ ドの溶液を塗 布し、 乾燥させて該表面上にポリイミ ド膜を形成して成る複合フィルムであって、 前記溶剤可溶性ポリイミ ドは、 分子主鎖を構成する、 前記テトラカルボン酸 無 水物の少なくとも一部としてビシクロ (2, 2 , 2 ) ォク トー 7—ェン一 2, 3, 5 , 6—テトラカルボン酸ジ無水物並びに 又は前記ジァミンの少なくとも一部 として 3, 5—ジァミノ安息香酸及びジァミノシロキサン誘導体の少なくともい ずれかを含む、 複合フィルム。  1. A solution of a solvent-soluble polyimide whose molecular main chain is formed by polycondensation of tetracarboxylic dianhydride and diamine is applied to at least one surface of the base film, and the solution is dried. A composite film comprising a polyimide film formed thereon, wherein the solvent-soluble polyimide comprises a molecular main chain, and bicyclo (2,2,2) as at least a part of the tetracarboxylic acid anhydride. Octane 7-ene-1,2,3,5,6-tetracarboxylic dianhydride and / or at least one of 3,5-diaminobenzoic acid and a diaminosiloxane derivative as at least a part of the diamine. Including, composite films.
2 . 前記ビシクロ (2, 2, 2 ) ォクトーフ一ェンー2, 3, 5, 6—テ卜ラ カルボン酸ジ無水物の全テトラカルボン酸ジ無水物中の割合は 2 0〜5 0モル% であり、 前記 3, 5—ジァミノ安息香酸及びジァミノシロキサン誘導体の合計量 の全ジァミン中の割合は 3 5 ~ 6 0モル%である請求項 1記載の複合フィルム。2. The proportion of the bicyclo (2,2,2) octene-2,3,5,6-tetracarboxylic dianhydride in the total tetracarboxylic dianhydride is 20 to 50 mol%. The composite film according to claim 1, wherein the ratio of the total amount of the 3,5-diaminobenzoic acid and the diaminosiloxane derivative to the total diamine is 35 to 60 mol%.
3 . 前記ポリイミ ドは、 分子主鎖中にアミン価が 2 0 0〜 1 0 0 0のジァミノ シロキサン誘導体を含み、 かつ、 該ジァミノシロキサン誘導体の前記ポリイミ ド 中の含量が 1 5〜6 0重量%でぁる、 請求項 1記載の複合フィルム。 3. The polyimide contains a diaminosiloxane derivative having an amine value of 200 to 1000 in the molecular main chain, and has a content of the diaminosiloxane derivative of 15 to 6 in the polyimide. The composite film according to claim 1, wherein the amount is 0% by weight.
4 . 前記ポリイミ ドは、 ジァミンとして、 3, 4 ' —ジアミノジフエ二ルェ一 テル、 1, 4一ビス (3—アミノフエノキシ) ベンゼン、 ビス一 { 4 ( 3—アミ ノフエノキシ) フエ二ル} スルフォン及び 3, 5—ジァミノ安息香酸から成る群 から選ばれる少なくとも 1種のジァミンをさらに含む請求項 3記載の複合フィル ム。  4. The polyimide is a diamine such as 3,4'-diaminodiphenyl ether, 1,4-bis (3-aminophenoxy) benzene, bis- {4 (3-amino-phenoxy) phenyl} sulfone and 3 4. The composite film according to claim 3, further comprising at least one diamine selected from the group consisting of, 5-diaminobenzoic acid.
5 . 前記ジァミノポリシロキサン誘導体は、 ビス (3—アミノー (じ ーじ アルキル)一ポリジメチルシロキサンである請求項 1ないし 4のいずれか 1項に 記載の複合フィルム。  5. The composite film according to any one of claims 1 to 4, wherein the diaminopolysiloxane derivative is bis (3-amino- (dialkyl) -polydimethylsiloxane.
6 . 前記ポリイミ ドは、 ラク トンと塩基の混合物を触媒として前記重縮合を行 なうことにより形成されたものである請求項 1ないし 5のいずれか 1項に記載の 複合フィルム。 6. The composite film according to any one of claims 1 to 5, wherein the polyimide is formed by performing the polycondensation using a mixture of lactone and a base as a catalyst.
フ. 前記ラク トンは r一バレロラクトンであり、 前記塩基はピリジン及びノ又 はメチルモルフオリンである請求項 7記載の複合フィルム。 8. The composite film according to claim 7, wherein the lactone is r-valerolactone, and the base is pyridine and / or methylmorpholin.
8. 前記ポリイミ ドは、 テトラカルボン酸ジ無水物とジァミンのいずれかの成 分を多量にして、 ポリイミ ドオリゴマーとし、 ついでテトラカルボン酸ジ無水物 及び Z又はジァミンを加えて二段階重縮合して得られた、 全ジァミンと全テトラ カルボン酸ジ無水物のモル比が 1. 05— 0. 95であるポリイミ ドブロック共 重合体である請求項 6又は 7記載の複合フィルム。 8. The polyimide is obtained by enriching either the component of tetracarboxylic dianhydride and diamine to obtain a polyimide oligomer, and then adding the tetracarboxylic dianhydride and Z or diamine to carry out two-stage polycondensation. The composite film according to claim 6 or 7, which is a polyimide block copolymer obtained by the above, wherein the molar ratio of all diamines to all tetracarboxylic dianhydrides is 1.05 to 0.95.
9. 前記ポリイミドは、 ゲルクロマトグラフィー法により測定される重量平均 分子量がポリスチレン換算で 1 5000〜1 00000である請求項 1ないし 8 のいずれか 1項に記載の複合フィルム。  9. The composite film according to any one of claims 1 to 8, wherein the polyimide has a weight-average molecular weight measured by gel chromatography of 15,000 to 100,000 in terms of polystyrene.
1 0. 前記ポリイミ ド膜の厚さが 0. 2〜1 0 mである請求項 1〜9のいず れか 1項に記載の複合フィルム。  10. The composite film according to any one of claims 1 to 9, wherein the polyimide film has a thickness of 0.2 to 10 m.
1 1 · 前記基材フィルムは、 ポリエステルフィルム又はポリフエ二レンスルフ ィ ドフィルムである請求項 1ないし 1 0のいずれか 1項に記載の複合フィルム。 11. The composite film according to any one of claims 1 to 10, wherein the base film is a polyester film or a polyphenylene sulfide film.
1 2. 前記ポリエステルは、 ポリエチレンテレフタレート又はポリエチレンナ フタレートである請求項 1 1記載の複合フィルム。 12. The composite film according to claim 11, wherein the polyester is polyethylene terephthalate or polyethylene naphthalate.
1 3. 前記乾燥は 80~200°Cの温度下で行なわれる請求項 1ないし 1 2の いずれか 1項に記載の複合フィルム。  13. The composite film according to any one of claims 1 to 12, wherein the drying is performed at a temperature of 80 to 200 ° C.
PCT/JP1999/000409 1999-01-13 1999-02-01 Composite film WO2000041884A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/806,452 US6589662B1 (en) 1999-01-13 1999-02-01 Composite film
EP99901928A EP1145845B1 (en) 1999-01-13 1999-02-01 Composite film
DE69942234T DE69942234D1 (en) 1999-01-13 1999-02-01 COMPOSITE FILM
AT99901928T ATE463345T1 (en) 1999-01-13 1999-02-01 COMPOSITE FILM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/43648 1999-01-13
JP11043648A JP2000202970A (en) 1999-01-13 1999-01-13 Polyimide-coated film

Publications (1)

Publication Number Publication Date
WO2000041884A1 true WO2000041884A1 (en) 2000-07-20

Family

ID=12669696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000409 WO2000041884A1 (en) 1999-01-13 1999-02-01 Composite film

Country Status (6)

Country Link
US (1) US6589662B1 (en)
EP (1) EP1145845B1 (en)
JP (1) JP2000202970A (en)
AT (1) ATE463345T1 (en)
DE (1) DE69942234D1 (en)
WO (1) WO2000041884A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060010A1 (en) * 2002-01-15 2003-07-24 Pi R & D Co., Ltd. Solvent-soluble block copolyimide composition and process for producing the same
US6727970B2 (en) 2001-06-25 2004-04-27 Avery Dennison Corporation Method of making a hybrid display device having a rigid substrate and a flexible substrate
US6856086B2 (en) 2001-06-25 2005-02-15 Avery Dennison Corporation Hybrid display device
USRE41694E1 (en) 2002-06-14 2010-09-14 Xiao-Ming He Method for roll-to-roll deposition of optically transparent and high conductivity metallic thin films
DE102011012242A1 (en) 2010-02-26 2011-09-01 Mitsubishi Electric Corporation Polyimide resin composition for semiconductor devices, method of forming film in semiconductor devices using the same and semiconductor devices
WO2012039384A1 (en) 2010-09-21 2012-03-29 株式会社ピーアイ技術研究所 Polyimide resin composition for use in forming insulation film in photovoltaic cell and method of forming insulation film in photovoltaic cell used therewith
WO2012039388A1 (en) 2010-09-21 2012-03-29 株式会社ピーアイ技術研究所 Polyimide resin composition for use in forming reverse reflecting layer in photovoltaic cell and method of forming reverse reflecting layer in photovoltaic cell used therewith

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100369708B1 (en) * 2001-02-07 2003-02-05 한국화학연구원 Poly imide / poly ethylene terephthalate hybrid films with good ahdesion, and method for preparing them
US7094492B2 (en) 2001-10-11 2006-08-22 Honda Giken Kogyo Kabushiki Kaisha Electrode for polymer electrolyte fuel cell
JP3978012B2 (en) * 2001-11-01 2007-09-19 株式会社クレハ Multilayer container and manufacturing method thereof
US7452610B2 (en) * 2005-06-29 2008-11-18 Du Pont Toray Company Limited Multi-layer polyimide films and flexible circuit substrates therefrom
US8771496B2 (en) * 2006-05-17 2014-07-08 Pi R&D Co., Ltd. Process for producing metal composite film
JP2008205974A (en) 2007-02-21 2008-09-04 Sony Corp Speaker diaphragm
CN101651234B (en) * 2008-08-13 2012-10-17 比亚迪股份有限公司 Lithium-ion secondary battery
CN102714192A (en) * 2009-11-20 2012-10-03 E.I.内穆尔杜邦公司 Interposer films useful in semiconductor packaging applications, and methods relating thereto
JP2010045863A (en) * 2009-11-24 2010-02-25 Sony Corp Speaker diaphragm and speaker system with the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366194A (en) * 1991-06-12 1992-12-18 Shin Etsu Chem Co Ltd Primer composition and semiconductor device
JPH05112760A (en) * 1991-10-21 1993-05-07 Sumitomo Bakelite Co Ltd Filmy adhesive for use in electronics
JPH07157560A (en) * 1993-12-02 1995-06-20 P I Zairyo Kenkyusho:Kk Production of polyimide block copolymer and its solution composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816173B2 (en) 1988-12-12 1996-02-21 帝人株式会社 Flexible circuit board and its base film
EP0604319B1 (en) 1992-12-25 1999-04-28 Hiroshi Itatani Polyimide solution compositions and process for preparing same
US5502143A (en) * 1992-12-25 1996-03-26 Pi Material Research Laboratory Process for preparing polyimide resins
JP3952560B2 (en) * 1997-10-31 2007-08-01 日本ゼオン株式会社 Composite film
DE10008121B4 (en) * 2000-02-22 2006-03-09 Saehan Micronics Inc. Process for the preparation of polyamic acid and polyimide and adhesive or adhesive consisting of the polyamic acid or polyimide thus prepared

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366194A (en) * 1991-06-12 1992-12-18 Shin Etsu Chem Co Ltd Primer composition and semiconductor device
JPH05112760A (en) * 1991-10-21 1993-05-07 Sumitomo Bakelite Co Ltd Filmy adhesive for use in electronics
JPH07157560A (en) * 1993-12-02 1995-06-20 P I Zairyo Kenkyusho:Kk Production of polyimide block copolymer and its solution composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727970B2 (en) 2001-06-25 2004-04-27 Avery Dennison Corporation Method of making a hybrid display device having a rigid substrate and a flexible substrate
US6856086B2 (en) 2001-06-25 2005-02-15 Avery Dennison Corporation Hybrid display device
WO2003060010A1 (en) * 2002-01-15 2003-07-24 Pi R & D Co., Ltd. Solvent-soluble block copolyimide composition and process for producing the same
CN1307260C (en) * 2002-01-15 2007-03-28 株式会社Pi技术研究所 Solvent-soluble block copolyimide composition and process for producing the same
USRE41694E1 (en) 2002-06-14 2010-09-14 Xiao-Ming He Method for roll-to-roll deposition of optically transparent and high conductivity metallic thin films
DE102011012242A1 (en) 2010-02-26 2011-09-01 Mitsubishi Electric Corporation Polyimide resin composition for semiconductor devices, method of forming film in semiconductor devices using the same and semiconductor devices
US8987376B2 (en) 2010-02-26 2015-03-24 Pi R&D Co., Ltd. Polyimide resin composition for semiconductor devices, method of forming film in semiconductor devices using the same and semiconductor devices
WO2012039384A1 (en) 2010-09-21 2012-03-29 株式会社ピーアイ技術研究所 Polyimide resin composition for use in forming insulation film in photovoltaic cell and method of forming insulation film in photovoltaic cell used therewith
WO2012039388A1 (en) 2010-09-21 2012-03-29 株式会社ピーアイ技術研究所 Polyimide resin composition for use in forming reverse reflecting layer in photovoltaic cell and method of forming reverse reflecting layer in photovoltaic cell used therewith
US9287424B2 (en) 2010-09-21 2016-03-15 Pi R&D Co., Ltd. Polyimide resin composition for use in forming reverse reflecting layer in photovoltaic cell and method of forming reverse reflecting layer in photovoltaic cell used therewith

Also Published As

Publication number Publication date
EP1145845A1 (en) 2001-10-17
EP1145845A4 (en) 2003-03-19
EP1145845B1 (en) 2010-04-07
JP2000202970A (en) 2000-07-25
US6589662B1 (en) 2003-07-08
DE69942234D1 (en) 2010-05-20
ATE463345T1 (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP6936239B2 (en) Polyimide film, copper-clad laminate and circuit board
EP0459809B1 (en) Polyimidosiloxane resin and composition thereof and method of applying same
KR101277602B1 (en) Metal composite film and process for producing the same
JP6767759B2 (en) Polyimide, resin film and metal-clad laminate
WO2000041884A1 (en) Composite film
EP1448669A2 (en) Polyimide copolymer and methods for preparing the same
JPH04262593A (en) Multilayer interconnection structure and multilayers laminating method therefor
WO2005084088A1 (en) Laminate for wiring board
JPS63221126A (en) Polyimide resin of excellent water absorption characteristic
KR20190038383A (en) Polyimide film, metal-clad laminate and circuit board
JPH02115265A (en) Heat-resistant film and its laminate
JPH04207094A (en) Flexible printed-circuit board and its manufacture
JP7230148B2 (en) Metal-clad laminates and circuit boards
KR20230004322A (en) Polyamide acid, polyimide, polyimide film, metal-clad laminate and circuit
JP2007099842A (en) Novel polyimide resin
JP3528236B2 (en) Roughened polyimide film and method for producing the same
JPH04266082A (en) Manufacture of flexible wiring substrate
KR100738909B1 (en) Polyimide copolymer and methods for preparing the same
JP7231931B2 (en) polyimide film
JPH07292103A (en) Polyimide copolymer and method for producing the same
JP2007099843A (en) Novel polyimide resin
JP4361423B2 (en) Resin sheet structure and method for producing multilayer wiring board using the same
JP2680816B2 (en) Flexible printed circuit board
JP2000255013A (en) Conductor laminate using solvent-soluble polyimide and its manufacture
JP2022047880A (en) Manufacturing method of polyimide film and manufacturing method of metal-clad laminate board

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09806452

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999901928

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999901928

Country of ref document: EP