WO2000040514A1 - Method for abating the content of undesirable organic compounds in industrial waste effluents for recycling - Google Patents

Method for abating the content of undesirable organic compounds in industrial waste effluents for recycling Download PDF

Info

Publication number
WO2000040514A1
WO2000040514A1 PCT/FR2000/000019 FR0000019W WO0040514A1 WO 2000040514 A1 WO2000040514 A1 WO 2000040514A1 FR 0000019 W FR0000019 W FR 0000019W WO 0040514 A1 WO0040514 A1 WO 0040514A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
water
alumina
toc
ozone
Prior art date
Application number
PCT/FR2000/000019
Other languages
French (fr)
Inventor
Francis Luck
Malik Djafer
Nathalie Karpel Vel Leitner
Bernard Legube
Marcello Marella
Michele Tomaselli
Original Assignee
Anjou Recherche
Venezia Tecnologie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anjou Recherche, Venezia Tecnologie filed Critical Anjou Recherche
Priority to AU19869/00A priority Critical patent/AU1986900A/en
Publication of WO2000040514A1 publication Critical patent/WO2000040514A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/392Metal surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/04Aerobic processes using trickle filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the field of the invention is that of water treatment such as rinsing water from various industrial processes, lightly contaminated with dissolved organic compounds, in order to allow their recycling in these processes, in sectors such as surface treatment , electronics, automotive paint, food, laundry, etc.
  • - surfactants ethoxylated fatty alcohols, alkylsulfonates, ethoxylated alkylphenols;
  • - brighteners thiourea, pyridine, resorcin, butynediol
  • - complexing agents sodium gluconate, EDTA, NTA
  • - corrosion inhibitors thiourea, triethanolamine, trisopropylamine.
  • microprocessors and semiconductors require, on the one hand, ultra-pure water in large quantities, 2 cubic meters for a 200 mm diameter silicon wafer, and on the other hand, a variety of organic compounds: isopropanol, acetic acid. , ethyl lactate, ethylene glycol, organic amines, tetramethyl ammonium hydroxide (TMA), etc.
  • TMA tetramethyl ammonium hydroxide
  • each bath is separated from the next bath by water rinsing stations, the purpose of which is to ensure thorough cleaning of the parts in order to avoid pollution of the active baths by the bath. previous.
  • a large part of this rinsing water is slightly polluted and recyclable (final rinses), provided that the organic compounds can be removed therefrom extensively.
  • a treatment chain adapted to this objective consists of a combination of adsorption on granular activated carbon (CAG), ion exchange on several types of resins to remove ions, organic acids and TMA, d '' an oxidation by a medium pressure UV lamp in the presence of hydrogen peroxide to mineralize the organic compounds which were not retained during the 2 preceding stages, of elimination of the excess of peroxide on a second bed of AGC , and a final reverse osmosis treatment to remove residual traces of organic compounds, as well as particles and bacteria.
  • CAG granular activated carbon
  • the object of the invention is to provide a process for treating water such as industrial rinsing water which makes it possible to remove the dissolved organic compounds while overcoming the drawbacks of the prior art.
  • the objective of the present invention is to provide a process for treating industrial rinsing water lightly loaded with organic matter dissolved and in suspension, which allows a significant elimination of Total Organic Carbon (TOC) as well as, simultaneously, a complete elimination of the dissolved organic compounds originally present in said rinsing waters.
  • TOC Total Organic Carbon
  • Another objective of the invention is to propose a process and an installation allowing the use without disadvantage of heterogeneous catalysts within the framework of the processes of oxidation in aqueous phase.
  • Yet another objective of the invention is to improve the efficiency of the processes for treating rinsing water with a view to recycling it, and to reduce the cost generated by their implementation.
  • Such a process makes it possible to remove more than 95% of the TOC from said rinsing waters and more than 99% of the chemical reagents which they contain before treatment.
  • the use of a heterogeneous catalyst during the ozonization stage makes it possible to significantly increase the overall yield for eliminating TOC, to regulate the concentration of
  • said additional refining step is a filtration step by reverse osmosis.
  • said adsorbent material used is granular activated carbon.
  • said heterogeneous catalyst is a metal belonging to the group comprising vanadium, niobium, chromium, molybdenum, tungsten, manganese, iron, cobalt, nickel, copper, cerium, platinum, rhodium , ruthenium and iridium and mixtures and compounds of one or more of them.
  • copper will be used.
  • the catalyst can advantageously be deposited on an inorganic support consisting for example of an oxide such as alumina, silica, alumino silicates, titanium dioxide, zirconia, etc., or of mixtures of these oxides. Preferably, zirconia or alumina or combinations of these two oxides will be used.
  • the ratio between the content of active phase, preferably copper, and the specific surface of the supported catalyst, will preferably be between 0J0 and 0.90 mg / m 2 .
  • said catalyst is preferably a mixed zirconia-alumina-copper oxide, obtained by the sol-gel route from a soil composition containing pore-forming additives, providing a bimodal porous texture to said catalyst.
  • the catalysts can be prepared by any other means known to those skilled in the art, in particular by impregnating a porous support with a solution of one or more metal compounds providing the metals or metal oxides by thermal activation, or by mixture of the oxide support and one or more metal compounds then shaping by extrusion, pelletization, granulation, pelletizing, etc., or also by the co-gel technique which consists of transforming a solution of salts of the catalytic metal (s) and of the precursor metal (s) of the constituent oxides of the support.
  • the technique of preparation of the catalyst by the sol-gel method as described in European patent application EP-B 1-718 239 will be used.
  • the catalysts prepared by this method are more resistant to leaching of the active metal in aqueous phase than the catalysts prepared by impregnation, and on the other hand the active metal is distributed homogeneously in the porous support.
  • the catalyst of the invention may be in the form of spheres, pellets, cylindrical or multi-lobed extrudates, rings, honeycombs, or any other form suitable for constituting a fixed bed of catalyst placed in the reactor. liquid phase oxidation treatment.
  • the shapes of spheres, pellets, cylindrical or multi-lobed extrudates are particularly suitable for preventing, in combination with ozone, the generation of foams if the rinsing waters contain surfactant compounds, said foams being able to prevent satisfactory progress subsequent stages of treatment.
  • the ozonation is carried out in the presence of a catalyst based on copper oxide deposited or combined in a proportion of 1 to 10% by weight on a support of zirconia or of alumina with a specific surface. of between 50 and 350 m 2 / g, of total pore volume of between 0.20 and 1 ⁇ 10 cm 3 / g, having both mesopores with an average diameter of between 6 and 25 nm and macropores with an average diameter of between 1 and 25 ⁇ m so as to allow efficient diffusion of the ozone and of the compounds to be destroyed and to have sufficient adsorption capacity to buffer the TOC fluctuations in the rinsing waters to be treated.
  • a catalyst based on copper oxide deposited or combined in a proportion of 1 to 10% by weight on a support of zirconia or of alumina with a specific surface. of between 50 and 350 m 2 / g, of total pore volume of between 0.20 and 1 ⁇ 10 cm 3 / g, having both mesopores with
  • the catalytic ozonation step is carried out in a reactor operating continuously or discontinuously, under a total pressure of between approximately 1 and approximately 5 bar.
  • the catalytic ozonization reactor can be a piston type reactor, or partially or infinitely mixed by means for example of a recirculation pump.
  • the amount of ozone introduced into said catalytic ozonization step corresponds to an ozone / TOC ratio of untreated rinse water of between approximately 1.0 and 5.0 g / g, preferably between 2.0 and 3.5 g / g.
  • the residence time on the catalyst is between 5 and 60 min approximately, preferably between 10 and 30 min.
  • the reduction in TOC can be reinforced by the simultaneous addition of hydrogen peroxide with a mass ratio of peroxide / ozone included. between 0J and 0.8 g / g, preferably between OJ and 0.5 g / g.
  • Ozone is produced from dry air, enriched air or oxygen, preferably from oxygen, and is introduced into the catalytic ozonization reactor by any means known to those skilled in the art. , in particular by turbine, porous diffusers, hydro-ejectors and static mixers, preferably by a combination of a hydro-ejector and one or more static mixers.
  • the first ozonization step of the process of the invention leads to a substantial elimination of the TOC, which must however be completed by additional treatments.
  • the Applicant Companies have discovered that it is possible to significantly reduce the TOC after catalytic ozonation, by means of filtration on CAG operating in biological mode, despite the presence of residual dissolved ozone and metal ions like copper and tin potentially toxic to fixed biomass.
  • filtration on CAG in biological mode is meant a method of eliminating dissolved organic compounds by contact with a purifying biomass fixed on the activated carbon grains.
  • the assimilation of organic compounds by this biomass leads to a partial mineralization of pollutants in the form of CO 2 but also to the growth of this biomass, the excess of which is periodically removed by washing. This process therefore does not significantly implement the adsorption function of the CAG.
  • This method is used when treating drinking water.
  • the particle size of the AGC is preferably between 0.5 and 2.0 mm, and the residence time of the rinse water on the AGC is between approximately 5 and 60 minutes, preferably between 10 and 40 minutes.
  • the stages of catalytic ozonation and filtration on biological CAG are supplemented by a final stage of membrane filtration, preferably of reverse osmosis, the characteristics of the membrane being chosen as a function of the final level of TOC to be reached.
  • the reverse osmosis device is advantageously protected from biological contamination by prior irradiation of the water leaving the CAG filter with germicidal UV radiation, and from the risks of clogging by a suitable filter cartridge.
  • the rinsing water is reused directly in the production lines or else sent in the usual chain for converting drinking water into ultra-pure water in substantial substitution for drinking water. .
  • FIG. 2 shows a diagram of an installation according to the invention.
  • the processing chain shown in Figure 2 is an example of an integrated installation implementing the method of the invention.
  • this installation is a rinsing water treatment unit comprising mainly after pre-filtration 1, a catalytic ozonization unit 2, a biological AGF filter 3, UV sterilization 4 and a pre -filtration 5 intended to protect the filtration on reverse osmosis membrane 6, making it possible to obtain at the outlet a rinsing water highly depleted in dissolved organic carbon, which can be reused directly in the rinsing baths or undergo an additional treatment aimed at transform it into ultra-pure water.
  • the treatment chain mainly comprises: a storage tank 101 receiving the raw rinsing water 100, which passes through a pipe 102 to a pump 103 supplying the treatment facility through a pipe 104; - an ozone production unit 106 supplied with air or oxygen 105, the ozone being transferred into the rinsing water by a pipe 107 leading to a hydro-injector 108 followed by a static mixer 109; a catalytic ozonization unit 111 supplied by the pipe 110, comprising the catalyst 112 and a vent 113 making it possible to evacuate the possible excess of ozone; a biological AGC filter 115 supplied by the pipe 114 situated at the outlet of the catalytic ozonization unit 111, furnished with a charge of AGC 116; a high pressure pump 118 which receives the water treated in the biological CAG reactor 111 and disinfected by the UV sterilization lamp 117, and which feeds a pre-filter 120 through the line 119; a reverse o
  • the concentrate 126 is intended for discharge into the sewer or to an effluent treatment station, while the permeate joins via line 125 a storage tank 127, which allows the return of the treated rinsing water 128 to the rinsing baths or to a complementary treatment for the production of ultra-pure water.
  • Example 1
  • the pilot feed rate is 55 l / h
  • the ozonation reactor is of the perfectly mixed type, thanks to a 2001 / h recirculation pump.
  • the residence time on the ozonation catalyst is 17 min, that on the AGC 28 min.
  • Tests for treating a reconstituted rinse water containing the main organic compounds described in Example 1 are carried out under conditions identical to those of Example 1, with the exception of the addition of hydrogen peroxide at a rate of 0.21 g / g 0 3 for test No. 6, test No. 7 having been carried out in the absence of addition of hydrogen peroxide and of copper-based catalyst deposited on alumina, and test No.
  • the treated rinse water of test 9 was characterized so as to identify the residual organic compounds making up the TOC of the permeate of reverse osmosis.
  • About 18% of the residual TOC is composed of amino acids and 7% of saccharides, compounds released by the biomass fixed on the CAG.
  • the reduction in acetic acid, present in an amount of 6 mg / 1 in the rinsing water before treatment by the process of the invention, is therefore 99.93%.
  • Example 3 Preparation of a bimodal catalyst 9% Cu on a support 91% ZrO 2 -9% Al 2 O 3
  • DOLAPIX CE 64 TM synthetic polyelectrolyte, Zschimmer
  • a ZACu9B catalyst based on 9% copper on zirconia-alumina, prepared according to the above procedure, is tested in the presence of ozone and an aqueous solution of triethanolamine at pH 5 for 570 h.
  • the same test is carried out with a catalyst ZA 16 + Cu8, based on 8% copper deposited by impregnation on a zirconia-alumina support also prepared by sol-gel.
  • the chemical analysis of the catalysts shows that the catalyst ZACu9B still contains 6.3% of copper (loss 30%), while the catalyst ZA 16 + Cu8 contains only 5.0% of copper (loss 38%).
  • Table 3 The tests presented in Table 3 relate to the selection of the catalyst in a laboratory ozonization reactor supplied with water (synthetic rinsing containing products used for the manufacture of printed circuits: sodium gluconate (GLU) and Triton X100 (TX100 non-ionic detergent), with a TOC of 8 mg / 1.
  • the catalysts ZACu4, ZACu ⁇ and ZACu9, prepared according to the procedure described above, are based on 4, 6 and 9% of Cu combined respectively by sol process -gel to zirconia-alumina, while the catalysts ZA + Co7.7 and ZA + Ni 7.8 respectively contain 7.7% of cobalt and 7.8% of nickel deposited by impregnation on a zirconia-alumina support prepared by sol-gel process.
  • Example 4 The tests presented in Table 4 relate to the selection of the contact time on the 10% Cu catalyst on CR 3S alumina in a laboratory ozonization reactor, supplied with synthetic rinsing water containing products used for the manufacture of printed circuits: sodium gluconate (GLU), Triton XI 00 (TX100, non-ionic detergent), EDTA, triethanolamine and para-toluenesulfonic acid (TOLS), with a TOC of 8 mg / 1 .
  • This rinsing water also contains 0.3 mg / 1 of copper and 0.3 mg / 1 of tin.
  • the applied ozone dose is 3 g / g TOC. 00/40514
  • the rinsing water treated during test 21 contains only 4% of the initial concentration of TOLS at the outlet of catalytic ozonation and 0.7% at the outlet of the biological CAG.
  • Example 5 Synthetic rinse waters containing products used for the manufacture of printed circuits: sodium gluconate (GLU), Triton X100 (TX100, non-ionic detergent), EDTA, triethanolamine and para acid - toluenesulfonic, with a TOC of 6.0 mg / 1, are treated in a pilot unit of the process described in Figure 2, in which ozone is generated from oxygen, the biological CAG comes from a factory drinking water, the reverse osmosis membrane is of the Hydranautics 2540 UST-ESPA type.
  • the catalyst based on 10% Cu on alumina CR 3S is compared to a catalyst based on 9% Cu deposited by impregnation on a support zirconia-alumina (ZA + Cu9), the ozone dose is 2 g / g TOC.
  • Example 6 (comparative example not in accordance with the invention)
  • the same rinsing water used in Example 5 is treated by catalytic ozonation followed by pre-filtration and reverse osmosis. In this test No. 27, filtration on biological CAG is omitted.
  • the reduction in TOC at the catalyst outlet is 9%, and the permeate still has a TOC of 0.9 mg / 1, to be compared with the values of 0J4 - 0.19 mg / 1 obtained in Example 6 when filtration on biological CAG is carried out in addition to catalytic ozonation.
  • Example 7 (comparative example not in accordance with the invention)
  • Example 5 The same rinse water used in Example 5 is treated by pre-filtration, reverse osmosis, catalytic ozonation followed by filtration on biological CAG.
  • the catalytic ozonation applied downstream of the reverse osmosis does not lead to a significant additional reduction in the TOC, while the biological CAG even results in a release of TOC.
  • Example 8 (comparative example not in accordance with the invention) The same rinsing water used in Example 1 is treated by reverse osmosis on different membranes: Hydranautics ESPA-4040-UHT and 4040-LHA-CPA2, and Filmtec BW30- 4040, omitting the steps of catalytic ozonation and filtration on biological CAG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

The invention concerns a method and a plant for abating the total organic carbon content and considerably eliminate harmful organic compounds in water such as industrial waste effluents. Said method is characterised in that it comprises the following steps which consist in: ozonizing (2) said effluents in the presence of a heterogeneous catalyst; filtering (3) said effluents on an absorbent granular material bed collecting a purifying biomass; carrying out membrane filtration (6) of said effluents.

Description

PROCEDE ET INSTALLAΗON POUR ABATTRE LA TENEUR EN COMPOSES ORGANIQUES INDESIRABLES DES EAUX DE RINÇAGE INDUSTRIELLES EN VUE DE LEUR RECYCLAGEMETHOD AND INSTALLAΗON FOR BREAKING THE CONTENT OF ORGANIC COMPOUNDS SIDE WATER RIN G INDUSTRIAL AGE FOR RECYCLING
Le domaine de l'invention est celui du traitement des eaux telles que les eaux de rinçage issues de divers procédés industriels, faiblement contaminées par des composés organiques dissous, en vue de permettre leur recyclage dans ces procédés, dans des secteurs comme le traitement de surface, l'électronique, la peinture automobile, l'agroalimentaire, la blanchisserie, etc.The field of the invention is that of water treatment such as rinsing water from various industrial processes, lightly contaminated with dissolved organic compounds, in order to allow their recycling in these processes, in sectors such as surface treatment , electronics, automotive paint, food, laundry, etc.
L'actuelle législation française (arrêté du 26 septembre 1985) impose de ne pas dépasser 8 litres d'eau de rinçage perdue par mètre carré de surface de pièces et montages en contact avec le bain et par fonction de rinçage. Cette réglementation conduit les industriels concernés à développer le recyclage des eaux de rinçage afin de respecter le ratio volume d'eau utilisé par unité de surface traitée.The current French legislation (decree of September 26, 1985) imposes not to exceed 8 liters of rinsing water lost per square meter of surface of parts and assemblies in contact with the bath and by function of rinsing. This regulation leads the manufacturers concerned to develop recycling of rinsing water in order to respect the ratio of volume of water used per unit of surface treated.
Alors que des techniques éprouvées comme la précipitation en présence d'agents alcalins ou l'échange d'ions permettent d'éliminer les ions métalliques gênants contenus dans les bains de rinçage, il n'existe pas à l'heure actuelle de technique ou de combinaisons de techniques garantissant une élimination poussée des composés organiques dissous, qui est absolument impérative pour autoriser le recyclage des eaux de rinçage dans des procédés industriels exigeants comme par exemple ceux de l'industrie électronique.While proven techniques such as precipitation in the presence of alkaline agents or ion exchange make it possible to remove the annoying metal ions contained in the rinsing baths, there is at present no technique or combinations of techniques guaranteeing a thorough elimination of dissolved organic compounds, which is absolutely imperative to authorize the recycling of rinsing water in demanding industrial processes such as those of the electronics industry.
L'industrie électronique est traditionnellement grande consommatrice d'eau. Les technologies mises en oeuvre dans la fabrication de circuits imprimés font appel à une variété importante de produits chimiques pour des opérations telles que le dégraissage, le décapage des métaux, les dépôts chimiques ou électrolytiques des métaux ou leur conversion. Dans les chaînes de production, tous ces produits sont utilisés dans des bains de traitement, toujours à base minérale, mais renfermant également des produits organiques divers :The electronics industry is traditionally a large consumer of water. The technologies used in the manufacture of printed circuits use a large variety of chemicals for operations such as degreasing, pickling of metals, chemical or electrolytic deposition of metals or their conversion. In the production lines, all these products are used in treatment baths, still mineral-based, but also containing various organic products:
- des tensio-actifs : alcools gras éthoxylés, alkylsulfonates, alkylphénols ethoxylés ;- surfactants: ethoxylated fatty alcohols, alkylsulfonates, ethoxylated alkylphenols;
- des brillanteurs : thiourée, pyridine, résorcine, butynediol ; - des complexants : gluconate de sodium, EDTA, NTA ; - des inhibiteurs de corrosion : thiourée, triéthanolamine, trisopropylamine.- brighteners: thiourea, pyridine, resorcin, butynediol; - complexing agents: sodium gluconate, EDTA, NTA; - corrosion inhibitors: thiourea, triethanolamine, trisopropylamine.
La fabrication de microprocesseurs et de semiconducteurs nécessite d'une part une eau ultra-pure en grande quantité, 2 mètres cubes pour une tranche de silicium de 200 mm de diamètre, et d'autre part une variété de composés organiques : isopropanol, acide acétique, lactate d'éthyle, éthylèneglycol, aminés organiques, hydroxyde de tétraméthyl ammonium (TMA), etc.The manufacture of microprocessors and semiconductors requires, on the one hand, ultra-pure water in large quantities, 2 cubic meters for a 200 mm diameter silicon wafer, and on the other hand, a variety of organic compounds: isopropanol, acetic acid. , ethyl lactate, ethylene glycol, organic amines, tetramethyl ammonium hydroxide (TMA), etc.
Dans une chaîne de production de composants électroniques, chaque bain est séparé du bain suivant par des postes de rinçage à l'eau, dont le but est d'assurer un nettoyage poussé des pièces afin d'éviter la pollution des bains actifs par le bain précédent. Une grande partie de ces eaux de rinçage est faiblement polluée et recyclable (rinçages finaux), à condition que les composés organiques puissent en être retirés de façon poussée.In a production line of electronic components, each bath is separated from the next bath by water rinsing stations, the purpose of which is to ensure thorough cleaning of the parts in order to avoid pollution of the active baths by the bath. previous. A large part of this rinsing water is slightly polluted and recyclable (final rinses), provided that the organic compounds can be removed therefrom extensively.
Une chaîne de traitement adaptée à cet objectif est constituée d'une combinaison d'adsorption sur charbon actif en grains (CAG), d'échange d'ions sur plusieurs types de résines pour éliminer les ions, les acides organiques et le TMA, d'une oxydation par une lampe UV moyenne pression en présence de peroxyde d'hydrogène pour minéraliser les composés organiques qui n'ont pas été retenus lors des 2 étapes précédentes, d'une élimination de l'excès de peroxyde sur un second lit de CAG, et d'un traitement final par osmose inverse pour éliminer les traces résiduelles de composés organiques, ainsi que les particules et les bactéries. Une telle chaîne de traitement complexe est décrite par S. Ojima et coll. dans « Ultrapure Water », nov. 1994, pp. 45-50.A treatment chain adapted to this objective consists of a combination of adsorption on granular activated carbon (CAG), ion exchange on several types of resins to remove ions, organic acids and TMA, d '' an oxidation by a medium pressure UV lamp in the presence of hydrogen peroxide to mineralize the organic compounds which were not retained during the 2 preceding stages, of elimination of the excess of peroxide on a second bed of AGC , and a final reverse osmosis treatment to remove residual traces of organic compounds, as well as particles and bacteria. Such a complex processing chain is described by S. Ojima et al. in "Ultrapure Water", Nov. 1994, pp. 45-50.
Pour assurer l'élimination poussée des composés organiques dissous présents dans les eaux de rinçage et autoriser leur recyclage dans les procédés de fabrication notamment de l' électronique, un tel procédé de l'art antérieur est insuffisamment efficace ou trop coûteux pour être mis en œuvre industriellement.To ensure the thorough elimination of the dissolved organic compounds present in the rinsing waters and to authorize their recycling in the manufacturing processes, in particular of electronics, such a process of the prior art is insufficiently efficient or too costly to be implemented. industrially.
L'invention a pour objectif de fournir un procédé de traitement d'eaux telles que les eaux de rinçage industrielles permettant d'éliminer les composés organiques dissous en palliant les inconvénients de l'état de la technique.The object of the invention is to provide a process for treating water such as industrial rinsing water which makes it possible to remove the dissolved organic compounds while overcoming the drawbacks of the prior art.
Plus précisément, l'objectif de la présente invention est de fournir un procédé de traitement des eaux de rinçage industrielles faiblement chargées en matières organiques dissoutes et en suspension, qui permette une élimination importante du Carbone Organique Total (COT) ainsi que, simultanément, une élimination complète des composés organiques dissous originellement présents dans lesdits eaux de rinçage.More specifically, the objective of the present invention is to provide a process for treating industrial rinsing water lightly loaded with organic matter dissolved and in suspension, which allows a significant elimination of Total Organic Carbon (TOC) as well as, simultaneously, a complete elimination of the dissolved organic compounds originally present in said rinsing waters.
Un autre objectif de l'invention est de proposer un procédé et une installation permettant l'utilisation sans inconvénient de catalyseurs hétérogènes dans le cadre des procédés d'oxydation en phase aqueuse.Another objective of the invention is to propose a process and an installation allowing the use without disadvantage of heterogeneous catalysts within the framework of the processes of oxidation in aqueous phase.
Encore un autre objectif de l'invention est d'améliorer l'efficacité des procédés de traitement des eaux de rinçage en vue de leur recyclage, et de diminuer le coût engendré par leur mise en oeuvre. Ces différents objectifs sont atteints grâce à l'invention qui concerne un procédé pour abattre la teneur en C.O.T. (carbone organique total) et éliminer de façon poussée les composés organiques gênants des eaux telles que les eaux de rinçage industrielles caractérisé en ce qu'il comprend les étapes suivantes consistant à :Yet another objective of the invention is to improve the efficiency of the processes for treating rinsing water with a view to recycling it, and to reduce the cost generated by their implementation. These various objectives are achieved thanks to the invention which relates to a process for reducing the content of C.O.T. (total organic carbon) and thoroughly remove the annoying organic compounds from the water such as industrial rinsing water, characterized in that it comprises the following stages consisting in:
- ozoner lesdites eaux en présence d'un catalyseur hétérogène ; - filtrer lesdites eaux sur un lit de matériau adsorbant en grains accueillant une biomasse épuratoire,- ozonate said water in the presence of a heterogeneous catalyst; - filter said water on a bed of grain adsorbent material receiving a purifying biomass,
-effectuer une filtration sur membrane(s) desdites eaux.perform filtration on membrane (s) of said water.
Un tel procédé permet d' éliminer plus de 95 % du COT desdites eaux de rinçage et plus de 99 % des réactifs chimiques qu'elles contiennent avant traitement. L'utilisation d'un catalyseur hétérogène au cours de l'étape d'ozonation permet d'augmenter sensiblement le rendement global d'élimination du COT, de réguler la concentration deSuch a process makes it possible to remove more than 95% of the TOC from said rinsing waters and more than 99% of the chemical reagents which they contain before treatment. The use of a heterogeneous catalyst during the ozonization stage makes it possible to significantly increase the overall yield for eliminating TOC, to regulate the concentration of
COT dans l'eau produite et d'empêcher la formation gênante de mousses.TOC in the produced water and prevent the annoying formation of mosses.
Selon une variante préférentielle de l'invention, ladite étape supplémentaire d'affinage est une étape de filtration par osmose inverse. Egalement préférentiellement, ledit matériau adsorbant utilisé est du charbon actif en grains.According to a preferred variant of the invention, said additional refining step is a filtration step by reverse osmosis. Also preferably, said adsorbent material used is granular activated carbon.
Préférentiellement, ledit catalyseur hétérogène est un métal appartenant au groupe comprenant le vanadium, le niobium, le chrome, le molybdène, le tungstène, le manganèse, le fer, le cobalt, le nickel, le cuivre, le cérium, le platine, le rhodium, le ruthénium et l'iridium et les mélanges et composés d'un ou plusieurs d'entre eux. Préférentiellement on utilisera le cuivre.Preferably, said heterogeneous catalyst is a metal belonging to the group comprising vanadium, niobium, chromium, molybdenum, tungsten, manganese, iron, cobalt, nickel, copper, cerium, platinum, rhodium , ruthenium and iridium and mixtures and compounds of one or more of them. Preferably, copper will be used.
Le catalyseur peut être avantageusement déposé sur un support minéral constitué par exemple d'un oxyde comme l'alumine, la silice, les alumino silicates, le dioxyde de titane, la zircone, etc., ou de mélanges de ces oxydes. Préférentiellement, on utilisera la zircone ou l'alumine ou des combinaisons de ces deux oxydes. Le rapport entre la teneur en phase active, de préférence cuivre, et la surface spécifique du catalyseur supporté, sera de préférence compris entre 0J0 et 0,90 mg/m2.The catalyst can advantageously be deposited on an inorganic support consisting for example of an oxide such as alumina, silica, alumino silicates, titanium dioxide, zirconia, etc., or of mixtures of these oxides. Preferably, zirconia or alumina or combinations of these two oxides will be used. The ratio between the content of active phase, preferably copper, and the specific surface of the supported catalyst, will preferably be between 0J0 and 0.90 mg / m 2 .
Préférentiellement, ledit catalyseur est préférentiellement un oxyde mixte zircone- alumine-cuivre, obtenu par voie sol-gel à partir d'une composition de sol renfermant des additifs porogènes, apportant une texture poreuse bimodale audit catalyseur.Preferably, said catalyst is preferably a mixed zirconia-alumina-copper oxide, obtained by the sol-gel route from a soil composition containing pore-forming additives, providing a bimodal porous texture to said catalyst.
Les catalyseurs peuvent être préparés par tout autre moyen connu de l'homme de l'art, notamment par imprégnation d'un support poreux par une solution d'un ou plusieurs composés de métaux fournissant les métaux ou oxydes métalliques par activation thermique, ou par mélange du support oxyde et d'un ou plusieurs composés de métaux puis mise en forme par extrusion, pelletisation, granulation, pastillage, etc., ou encore par la technique de co-gel qui consiste à transformer en sol puis en gel une solution de sels du ou des métaux catalytiques et du ou des métaux précurseurs des oxydes constitutifs du support. Préférentiellement on utilisera la technique de préparation du catalyseur par méthode sol-gel telle que décrite dans la demande de brevet européen EP-B 1-718 239. Les catalyseurs préparés par cette méthode résistent davantage à la lixiviation du métal actif en phase aqueuse que les catalyseurs préparés par imprégnation, et d'autre part le métal actif se trouve réparti de façon homogène dans le support poreux.The catalysts can be prepared by any other means known to those skilled in the art, in particular by impregnating a porous support with a solution of one or more metal compounds providing the metals or metal oxides by thermal activation, or by mixture of the oxide support and one or more metal compounds then shaping by extrusion, pelletization, granulation, pelletizing, etc., or also by the co-gel technique which consists of transforming a solution of salts of the catalytic metal (s) and of the precursor metal (s) of the constituent oxides of the support. Preferably, the technique of preparation of the catalyst by the sol-gel method as described in European patent application EP-B 1-718 239 will be used. The catalysts prepared by this method are more resistant to leaching of the active metal in aqueous phase than the catalysts prepared by impregnation, and on the other hand the active metal is distributed homogeneously in the porous support.
Afin de faciliter les réactions d'oxydation en limitant les résistances diffusionnelles dans les particules de catalyseur, il est avantageux que ceux-ci présentent non seulement des micro- et mésopores qui développent une surface active importante, mais aussi des macropores facilitant la diffusion de l'ozone et des composés à oxyder. Ceci petit être atteint par l'adjonction de composés porogènes comme de la sciure de bois ultra-fine qui sont ensuite éliminés lors de la calcination du support. Toutefois, ces additifs entraînent une dégradation importante de la résistance mécanique des supports. De façon surprenante, il a été trouvé que l'ajout simultané de sciure de bois et de fines particules de catalyseur de la même composition que le catalyseur à préparer assurait à la fois une distribution poreuse bimodale et une résistance mécanique appropriée.In order to facilitate the oxidation reactions by limiting the diffusional resistances in the catalyst particles, it is advantageous that these present not only micro- and mesopores which develop a large active surface, but also macropores facilitating the diffusion of the 'ozone and compounds to be oxidized. This can be achieved by the addition of pore-forming compounds such as ultra-fine sawdust which are then eliminated during the calcination of the support. However, these additives cause significant deterioration in the mechanical strength of the supports. Surprisingly, it has been found that the simultaneous addition of sawdust and fine catalyst particles of the same composition as the catalyst to be prepared ensured both a bimodal porous distribution and an appropriate mechanical strength.
Le catalyseur de l'invention peut se présenter sous forme de sphères, de pastilles, d'extrudés cylindriques ou polylobés, d'anneaux, de nids d'abeille, ou tout autre forme adaptée à constituer un lit fixe de catalyseur disposé dans le réacteur de traitement d'oxydation en phase liquide. Les formes de sphères, de pastilles, d'extrudés cylindriques ou polylobés sont particulièrement aptes à empêcher, en combinaison avec l'ozone, la génération de mousses si les eaux de rinçage renferment des composés tensio- actifs, lesdites mousses pouvant empêcher le déroulement satisfaisant des étapes ultérieures de traitement.The catalyst of the invention may be in the form of spheres, pellets, cylindrical or multi-lobed extrudates, rings, honeycombs, or any other form suitable for constituting a fixed bed of catalyst placed in the reactor. liquid phase oxidation treatment. The shapes of spheres, pellets, cylindrical or multi-lobed extrudates are particularly suitable for preventing, in combination with ozone, the generation of foams if the rinsing waters contain surfactant compounds, said foams being able to prevent satisfactory progress subsequent stages of treatment.
Dans un mode de réalisation particulièrement avantageux, l'ozonation est réalisée en présence d'un catalyseur à base d'oxyde de cuivre déposé ou combiné à raison de 1 à 10 % en poids sur un support de zircone ou d'alumine de surface spécifique comprise entre 50 et 350 m2/g, de volume poreux total compris entre 0,20 et 1J0 cm3/g, présentant à la fois des mésopores de diamètre moyen compris entre 6 et 25 nm et des macropores de diamètre moyen compris entre 1 et 25 μm de façon à permettre une diffusion efficace de l'ozone et des composés à détruire et à présenter une capacité d'adsorption suffisante pour tamponner les fluctuations de COT dans les eaux de rinçage à traiter. Avantageusement, l'étape d'ozonation catalytique est effectuée dans un réacteur fonctionnant en continu ou en discontinu, sous une pression totale comprise entre environ 1 et environ 5 bar. Le réacteur d'ozonation catalytique peut être un réacteur de type piston, ou partiellement ou infiniment mélangé au moyen par exemple d'une pompe de recirculation. Egalement préférentiellement, la quantité d'ozone introduite dans ladite l'étape d'ozonation catalytique correspond à un rapport ozone/COT de l'eau de rinçage non traitée compris entre 1,0 et 5,0 g/g environ, de préférence entre 2,0 et 3,5 g/g. Le temps de séjour sur le catalyseur est compris entre 5 et 60 mn environ, de préférence entre 10 et 30 mn. Optionnellement l'abattement du COT peut être renforcé par l'adjonction simultanée de peroxyde d'hydrogène avec un rapport massique peroxyde/ozone compris entre 0J et 0,8 g/g, de préférence entre OJ et 0,5 g/g.In a particularly advantageous embodiment, the ozonation is carried out in the presence of a catalyst based on copper oxide deposited or combined in a proportion of 1 to 10% by weight on a support of zirconia or of alumina with a specific surface. of between 50 and 350 m 2 / g, of total pore volume of between 0.20 and 1 × 10 cm 3 / g, having both mesopores with an average diameter of between 6 and 25 nm and macropores with an average diameter of between 1 and 25 μm so as to allow efficient diffusion of the ozone and of the compounds to be destroyed and to have sufficient adsorption capacity to buffer the TOC fluctuations in the rinsing waters to be treated. Advantageously, the catalytic ozonation step is carried out in a reactor operating continuously or discontinuously, under a total pressure of between approximately 1 and approximately 5 bar. The catalytic ozonization reactor can be a piston type reactor, or partially or infinitely mixed by means for example of a recirculation pump. Also preferably, the amount of ozone introduced into said catalytic ozonization step corresponds to an ozone / TOC ratio of untreated rinse water of between approximately 1.0 and 5.0 g / g, preferably between 2.0 and 3.5 g / g. The residence time on the catalyst is between 5 and 60 min approximately, preferably between 10 and 30 min. Optionally, the reduction in TOC can be reinforced by the simultaneous addition of hydrogen peroxide with a mass ratio of peroxide / ozone included. between 0J and 0.8 g / g, preferably between OJ and 0.5 g / g.
L'ozone est produite à partir d'air sec, d'air enrichi ou d'oxygène, préférentiellement à partir d'oxygène, et est introduit dans le réacteur d'ozonation catalytique par tout moyen connu de l'homme de l'art, notamment par turbine, diffuseurs poreux, hydroéjecteurs et mélangeurs statiques, préférentiellement par une combinaison d'un hydroéjécteur et d'un ou plusieurs mélangeurs statiques.Ozone is produced from dry air, enriched air or oxygen, preferably from oxygen, and is introduced into the catalytic ozonization reactor by any means known to those skilled in the art. , in particular by turbine, porous diffusers, hydro-ejectors and static mixers, preferably by a combination of a hydro-ejector and one or more static mixers.
La première étape d'ozonation du procédé de l'invention conduit à une élimination substantielle du COT, qui doit cependant être parachevée par des traitements complémentaires. De façon surprenante, les Sociétés Demanderesses ont découvert qu'il était possible de réduire dans des proportions importantes le COT après ozonation catalytique, au moyen d'une filtration sur CAG fonctionnant en mode biologique, malgré la présence d'ozone dissous résiduel et d'ions métalliques comme le cuivre et l'étain potentiellement toxiques pour la biomasse fixée.The first ozonization step of the process of the invention leads to a substantial elimination of the TOC, which must however be completed by additional treatments. Surprisingly, the Applicant Companies have discovered that it is possible to significantly reduce the TOC after catalytic ozonation, by means of filtration on CAG operating in biological mode, despite the presence of residual dissolved ozone and metal ions like copper and tin potentially toxic to fixed biomass.
On entend par filtration sur CAG en mode biologique une méthode d'élimination des composés organiques dissous par contact avec une biomasse épuratoire fixée sur les grains de charbon actif. L'assimilation des composés organiques par cette biomasse conduit à une minéralisation partielle des polluants sous forme de CO2 mais aussi à la croissance de cette biomasse dont l'excès est périodiquement éliminé par lavage. Ce procédé ne met donc pas en œuvre de façon significative la fonction d'adsorption du CAG. Cette méthode est pratiquée lors du traitement de l'eau potable.By filtration on CAG in biological mode is meant a method of eliminating dissolved organic compounds by contact with a purifying biomass fixed on the activated carbon grains. The assimilation of organic compounds by this biomass leads to a partial mineralization of pollutants in the form of CO 2 but also to the growth of this biomass, the excess of which is periodically removed by washing. This process therefore does not significantly implement the adsorption function of the CAG. This method is used when treating drinking water.
Il est avantageux d'utiliser un CAG usagé provenant d'une usine de potabilisation d'eau, seul ou en mélange avec une fraction de CAG neuf. Cette procédure, outre l'aspect économique avantageux, présente l'intérêt d'accélérer considérablement la mise en régime biologique de la filtration sur CAG. L'étape de filtration sur CAG permet aussi d'éliminer d'éventuelles matières en suspension présentes en traces dans les eaux de rinçage, qui subsisteraient après l'étape précédente d'ozonation catalytique. La granulométrie du CAG est de préférence comprise entre 0,5 et 2,0 mm, et le temps de séjour de l'eau de rinçage sur le CAG est compris entre 5 et 60 mn environ, de préférence entre 10 et 40 mn.It is advantageous to use a used CAG from a water purification plant, alone or in mixture with a fraction of new CAG. This procedure, in addition to the advantageous economic aspect, has the advantage of considerably speeding up the biological regime of filtration on CAG. The filtration step on CAG also makes it possible to eliminate any suspended solids present in traces in the rinsing water, which would remain after the previous step of catalytic ozonation. The particle size of the AGC is preferably between 0.5 and 2.0 mm, and the residence time of the rinse water on the AGC is between approximately 5 and 60 minutes, preferably between 10 and 40 minutes.
De façon à abaisser encore plus le COT pour permettre le recyclage des eaux de rinçage, les étapes d'ozonation catalytique et de filtration sur CAG biologique sont complétées par une étape finale de filtration sur membrane, préférentiellement d'osmose inverse, les caractéristiques de la membrane étant choisies en fonction du niveau final de COT à atteindre. Le dispositif d'osmose inverse est avantageusement protégé de la contamination biologique par une irradiation préalable des eaux sorties du filtre CAG par un rayonnement UV germicide, et des risques de colmatage par une cartouche filtrante adaptée.In order to further lower the TOC to allow recycling of the rinsing water, the stages of catalytic ozonation and filtration on biological CAG are supplemented by a final stage of membrane filtration, preferably of reverse osmosis, the characteristics of the membrane being chosen as a function of the final level of TOC to be reached. The reverse osmosis device is advantageously protected from biological contamination by prior irradiation of the water leaving the CAG filter with germicidal UV radiation, and from the risks of clogging by a suitable filter cartridge.
En sortie du procédé de traitement de l'invention, les eaux de rinçage sont réutilisées directement dans les chaînes de fabrication ou encore envoyées dans la chaîne habituelle de conversion de l'eau potable en eau ultra-pure en substitution importante de l'eau potable.At the end of the treatment process of the invention, the rinsing water is reused directly in the production lines or else sent in the usual chain for converting drinking water into ultra-pure water in substantial substitution for drinking water. .
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante d'un mode de réalisation préférentiel de l'invention donné à titre illustratif et non limitatif, et des exemples de traitement de diverses eaux de rinçage selon le procédé de l'invention, en référence aux dessins dans lesquels : - la figure 1 représente un synoptique du procédé selon l'invention ;Other characteristics and advantages of the invention will appear on reading the following description of a preferred embodiment of the invention given by way of illustration and not limitation, and examples of treatment of various rinsing waters according to the method of the invention, with reference to the drawings in which: - Figure 1 shows a block diagram of the method according to the invention;
- la figure 2 représente un schéma d'une installation selon l'invention. La chaîne de traitement représentée en Figure 2 est un exemple d'installation intégrée mettant en œuvre le procédé de l'invention. En référence à la Figure 1, cette installation est une unité de traitement des eaux de rinçage comprenant à titre principal après pré-filtration 1, une unité d'ozonation catalytique 2, un filtre à CAG biologique 3, une stérilisation UV 4 et une pré-filtration 5 destinées à protéger la filtration sur membrane d'osmose inverse 6, permettant d'obtenir en sortie une eau de rinçage fortement appauvrie en carbone organique dissous, qui peut être réutilisée directement dans les bains de rinçage ou subir un traitement complémentaire visant à la transformer en eau ultra-pure.- Figure 2 shows a diagram of an installation according to the invention. The processing chain shown in Figure 2 is an example of an integrated installation implementing the method of the invention. Referring to Figure 1, this installation is a rinsing water treatment unit comprising mainly after pre-filtration 1, a catalytic ozonization unit 2, a biological AGF filter 3, UV sterilization 4 and a pre -filtration 5 intended to protect the filtration on reverse osmosis membrane 6, making it possible to obtain at the outlet a rinsing water highly depleted in dissolved organic carbon, which can be reused directly in the rinsing baths or undergo an additional treatment aimed at transform it into ultra-pure water.
Plus précisément, la chaîne de traitement (voir figure 2) comprend principalement: un bac de stockage 101 recevant les eaux de rinçage brutes 100, qui transitent par une canalisation 102 vers une pompe 103 alimentant par une canalisation 104 l'installation de traitement ; - une unité de production d'ozone 106 alimentée par de l'air ou de l'oxygène 105, l'ozone étant transféré dans les eaux de rinçage par une canalisation 107 conduisant à une hydroéjécteur 108 suivi d'un mélangeur statique 109 ; une unité d'ozonation catalytique 111 alimentée par la canalisation 110, comportant le catalyseur 112 et un évent 113 permettant d'évacuer l'éventuel excès d'ozone ; un filtre à CAG biologique 115 alimenté par la canalisation 114 située en sortie de l'unité d'ozonation catalytique 111, garni d'une charge de CAG 116 ; une pompe haute pression 118 qui reçoit les eaux traitées dans le réacteur CAG biologique 111 et désinfectées par la lampe de stérilisation UV 117, et qui alimente un pré-filtre 120 par la conduite 119 ; une unité d'osmose inverse alimentée par la conduite 121, comportant 2 étages 122 et 123 de membranes d'osmose inverse reliés par la canalisation 123. Le concentré 126 est destiné au rejet à l'égout ou vers une station de traitement des effluents, tandis que le perméat rejoint par la canalisation 125 un bac de stockage 127, qui permet le retour des eaux de rinçage traitées 128 vers les bains de rinçage ou vers un traitement complémentaire pour une production d'eau ultra-pure. Exemple 1More specifically, the treatment chain (see FIG. 2) mainly comprises: a storage tank 101 receiving the raw rinsing water 100, which passes through a pipe 102 to a pump 103 supplying the treatment facility through a pipe 104; - an ozone production unit 106 supplied with air or oxygen 105, the ozone being transferred into the rinsing water by a pipe 107 leading to a hydro-injector 108 followed by a static mixer 109; a catalytic ozonization unit 111 supplied by the pipe 110, comprising the catalyst 112 and a vent 113 making it possible to evacuate the possible excess of ozone; a biological AGC filter 115 supplied by the pipe 114 situated at the outlet of the catalytic ozonization unit 111, furnished with a charge of AGC 116; a high pressure pump 118 which receives the water treated in the biological CAG reactor 111 and disinfected by the UV sterilization lamp 117, and which feeds a pre-filter 120 through the line 119; a reverse osmosis unit supplied by line 121, comprising 2 stages 122 and 123 of reverse osmosis membranes connected by pipe 123. The concentrate 126 is intended for discharge into the sewer or to an effluent treatment station, while the permeate joins via line 125 a storage tank 127, which allows the return of the treated rinsing water 128 to the rinsing baths or to a complementary treatment for the production of ultra-pure water. Example 1
Des eaux de rinçage issues de la fabrication de semiconducteurs contenant comme principaux produits organiques de l'acide acétique, du TMA, des aminés organiques et de l'isopropanol sont traitées dans une unité pilote du procédé décrit en Figure 2, dans laquelle l'ozone est généré à partir d'oxygène, le catalyseur est constitué de 10 % de Cu déposé sur billes d'alumine CR 3S (surface spécifique de l'alumine 353 m2/g, du catalyseur 230 m2, ratio Cu/surface catalyseur = 0,43 mg/m2), le CAG biologique provient d'une usine d'eau potable, la membrane d'osmose inverse est de type Hydranautics 2540 HST-SCW2. Le débit d'alimentation du pilote est de 55 1/h, et le réacteur d'ozonation est de type parfaitement mélangé, grâce à une pompe de recirculation de débit 2001/h. Le temps de séjour sur le catalyseur d'ozonation est de 17 mn, celui sur le CAG de 28 mn.Rinsing water from the manufacture of semiconductors containing as main organic products acetic acid, TMA, organic amines and isopropanol are treated in a pilot unit of the process described in Figure 2, in which ozone is generated from oxygen, the catalyst consists of 10% Cu deposited on CR 3S alumina beads (specific surface area of alumina 353 m 2 / g, catalyst 230 m 2 , ratio Cu / catalyst area = 0.43 mg / m 2 ), the biological CAG comes from a drinking water plant, the reverse osmosis membrane is of the Hydranautics 2540 HST-SCW2 type. The pilot feed rate is 55 l / h, and the ozonation reactor is of the perfectly mixed type, thanks to a 2001 / h recirculation pump. The residence time on the ozonation catalyst is 17 min, that on the AGC 28 min.
Les résultats de différents essais dans lesquels la dose d'ozone a été variable sont reportés dans le Tableau 1. Les résultats obtenus montrent que l'augmentation de la dose d'ozone s'accompagne d'une augmentation de l'abattement du COT lors de l'ozonation catalytique, alors qu'elle reste sans effet sur l'abattement cumulé du COT en sortie du filtre CAG biologique, et semble même nuire à l'abattement du COT en sortie d'osmose inverse. Une dose d'ozone de l'ordre de 3,3-3.5 g/g COT est suffisante pour atteindre un abattement élevé en sortie d'osmose inverse.The results of various tests in which the dose of ozone has been variable are reported in Table 1. The results obtained show that the increase in the dose of ozone is accompanied by an increase in the reduction in TOC during catalytic ozonation, while it has no effect on the cumulative reduction of TOC at the outlet of the biological CAG filter, and even seems to harm the reduction of TOC at the outlet of reverse osmosis. An ozone dose of around 3.3-3.5 g / g TOC is sufficient to achieve a high reduction at the end of reverse osmosis.
Tableau 1Table 1
Figure imgf000011_0001
Figure imgf000011_0001
Exemple 2Example 2
Des essais de traitement d'une eau de rinçage reconstituée renfermant les principaux composés organiques décrits dans l'Exemple 1, sont réalisés dans des conditions identiques à celles de l'Exemple 1, à l'exception de l'ajout de peroxyde d'hydrogène à raison de 0.21 g/g 03 pour l'essai n° 6, l'essai n° 7 ayant été conduit en l'absence d'ajout de peroxyde d'hydrogène et de catalyseur à base de cuivre déposé sur alumine, et l'essai n°9 en présence d'un catalyseur à base de 2 % de Cu déposé sur alumine Spheralite 531 B (surface spécifique de l'alumine 107 m2/g, du catalyseur 97 m2/g, volume poreux total du catalyseur 0,54 cm3/g, diamètre moyen de mésopores 8 nm, diamètre moyen de macropores 2,5 μm, ratio Cu/surface catalyseur = 0.21 mg/m2).Tests for treating a reconstituted rinse water containing the main organic compounds described in Example 1 are carried out under conditions identical to those of Example 1, with the exception of the addition of hydrogen peroxide at a rate of 0.21 g / g 0 3 for test No. 6, test No. 7 having been carried out in the absence of addition of hydrogen peroxide and of copper-based catalyst deposited on alumina, and test No. 9 in the presence of a catalyst based on 2% Cu deposited on Spheralite 531 B alumina (specific surface of alumina 107 m 2 / g, of catalyst 97 m 2 / g, volume total porous of the catalyst 0.54 cm 3 / g, average diameter of mesopores 8 nm, average diameter of macropores 2.5 μm, ratio Cu / catalyst surface = 0.21 mg / m 2 ).
Tableau 2Table 2
Figure imgf000012_0001
Figure imgf000012_0001
Les résultats reportés dans le Tableau 2 montrent qu'en l'absence de catalyseur l'abattement cumulé en sortie de filtre CAG est nettement inférieur que celui obtenu en présence de catalyseur. De même, le COT final en sortie d'osmose inverse est plus élevé qu'en présence de catalyseur. En outre les essais 8 et 9 montrent que les abattements du COT aux différents stades du traitement ne dépendent que peu de la teneur en cuivre du catalyseur hétérogène.The results reported in Table 2 show that in the absence of a catalyst, the cumulative reduction at the outlet of the AGC filter is much lower than that obtained in the presence of a catalyst. Similarly, the final TOC at the output of reverse osmosis is higher than in the presence of a catalyst. In addition, tests 8 and 9 show that the reductions in TOC at the various stages of treatment depend only little on the copper content of the heterogeneous catalyst.
L'eau de rinçage traitée de l'essai 9 a été caractérisée de façon à identifier les composés organiques résiduels composant le COT du perméat de l'osmose inverse. Environ 18% du COT résiduel est composé d'acides aminés et 7% de saccharides, composés relargués par la biomasse fixée sur le CAG. Ont aussi été identifiés des traces - d'acétone, de formaldehyde, de butanone-2, et des acides lactique, formique et acétique, ces acides étant cependant présents en concentration de l'ordre de 4 microgrammes/1, soit des concentrations inférieures à celles relevées dans l'eau purifiée du laboratoire d'analyses. L'abattement de l'acide acétique, présent à raison de 6 mg/1 dans l'eau de rinçage avant traitement par le procédé de l'invention, est donc de 99,93 %. Exemple 3 Préparation d'un catalyseur bimodal 9 % Cu sur support 91% ZrO2-9 % Al2O3 The treated rinse water of test 9 was characterized so as to identify the residual organic compounds making up the TOC of the permeate of reverse osmosis. About 18% of the residual TOC is composed of amino acids and 7% of saccharides, compounds released by the biomass fixed on the CAG. Were also identified traces - of acetone, formaldehyde, butanone-2, and lactic acids, formic and acetic, these acids being however present in concentration of the order of 4 micrograms / 1, that is concentrations lower than those found in purified water from the analysis laboratory. The reduction in acetic acid, present in an amount of 6 mg / 1 in the rinsing water before treatment by the process of the invention, is therefore 99.93%. Example 3 Preparation of a bimodal catalyst 9% Cu on a support 91% ZrO 2 -9% Al 2 O 3
Préparation du sol de zircone-alumine-cuivre :Preparation of the zirconia-alumina-copper soil:
10340 ml solution aqueuse de zirconium solution (178 g/1 en Zr-O2) préparée par dissolution de carbonate basique de zirconium dans de l'acide nitrique concentré 2050 g hydrate d'alumine dispersible dans l'eau (10% en Al2O3)10340 ml aqueous zirconium solution solution (178 g / 1 in Zr-O 2 ) prepared by dissolving basic zirconium carbonate in concentrated nitric acid 2050 g alumina hydrate dispersible in water (10% Al 2 O 3 )
1035 ml Cu(NO3)2.3 H20 en solution dans l'eau (198 g/1 en CuO)1035 ml Cu (NO 3 ) 2.3 H 2 0 in solution in water (198 g / 1 in CuO)
30 g alcool polyvinylique (masse molaire 15 000) 150 g hydroxypropylméthylcellulose30 g polyvinyl alcohol (molar mass 15,000) 150 g hydroxypropyl methylcellulose
13,5 g DOLAPIX CE 64™ (polyélectrolyte de synthèse, Zschimmer13.5 g DOLAPIX CE 64 ™ (synthetic polyelectrolyte, Zschimmer
&SchwarzGmbh) 13.5 g GLYDOL N 1003™ (mélange de tensioactifs, Zschimmer & Schwarz& SchwarzGmbh) 13.5 g GLYDOL N 1003 ™ (mixture of surfactants, Zschimmer & Schwarz
Gmbh) 600 g sciure de bois tamisée sous 50 μmGmbh) 600 g sawdust sieved under 50 μm
750 g poudre de zircone-alumine (9 %)-oxyde de cuivre (9%) calcinée, tamisée sous 50 μm Eau qsp volume total de 30 1 Bain de gélation :750 g zirconia-alumina powder (9%) - calcined copper oxide (9%), sieved under 50 μm Water qs total volume of 30 1 Freezing bath:
Hydroxyde de tétramethylammonium en solution 2.2 M dans du méthanol (ou de l'éthanol); Bain de gélation alternatif: NaOH dans de l'éthanol. Appareil de formation des billes:Tetramethylammonium hydroxide in solution 2.2 M in methanol (or ethanol); Alternative gel bath: NaOH in ethanol. Ball forming apparatus:
36 capillaires (diamètre interne = 4 mm, diamètre externe = 6 mm) Durée de maturation : minimum 1 h ; rinçage à l'eau jusqu'à pH 9 ; séchage à 110 °C, calcination : montée linéaire en température à 2 °C/mn jusqu'à 550°C , puis plateau de 3 h et refroidissement à température ambiante. Diamètre des billes : 2,2 - 2,5 mm après calcination.36 capillaries (internal diameter = 4 mm, external diameter = 6 mm) Duration of maturation: minimum 1 h; rinsing with water until pH 9; drying at 110 ° C, calcination: linear rise in temperature at 2 ° C / min to 550 ° C, then plateau for 3 h and cooling to room temperature. Diameter of the beads: 2.2 - 2.5 mm after calcination.
Un catalyseur ZACu9B à base de 9% de cuivre sur zircone-alumine, préparé selon le mode opératoire ci-dessus, est testé en présence d'ozone et d'une solution aqueuse de triéthanolamine à pH 5 pendant 570 h. Le même essai est réalisé avec un catalyseur ZA 16 + Cu8, à base de 8 % de cuivre déposé par imprégnation sur un support zircone-alumine préparé lui aussi par sol-gel. A l'issue des essais, l'analyse chimique des catalyseurs montre que le catalyseur ZACu9B contient encore 6,3% de cuivre (perte 30%), alors que le catalyseur ZA 16 + Cu8 ne contient plus que 5,0 % de cuivre (perte 38 %).A ZACu9B catalyst based on 9% copper on zirconia-alumina, prepared according to the above procedure, is tested in the presence of ozone and an aqueous solution of triethanolamine at pH 5 for 570 h. The same test is carried out with a catalyst ZA 16 + Cu8, based on 8% copper deposited by impregnation on a zirconia-alumina support also prepared by sol-gel. At the end of the tests, the chemical analysis of the catalysts shows that the catalyst ZACu9B still contains 6.3% of copper (loss 30%), while the catalyst ZA 16 + Cu8 contains only 5.0% of copper (loss 38%).
Les essais présentés dans le Tableau 3 portent sur la sélection du catalyseur en réacteur d'ozonation de laboratoire alimenté par des eaux (de rinçage synthétiques contenant des produits utilisés pour la fabrication de circuits imprimés : gluconate de sodium (GLU) et Triton X100 (TX100 détergent non-ionique), avec un COT de 8 mg/1. Les catalyseurs ZACu4, ZACuό et ZACu9, préparés selon le mode opératoire décrits ci-dessus, sont à base respectivement de 4, 6 et 9 % de Cu combiné par procédé sol-gel à de la zircone- alumine,tandis que les catalyseur ZA + Co7.7 et ZA + Ni 7.8 contiennent respectivement 7,7% de cobalt et 7,8 % de nickel déposé par imprégnation sur un support de zircone- alumine préparé par procédé sol-gel. O 00/40514The tests presented in Table 3 relate to the selection of the catalyst in a laboratory ozonization reactor supplied with water (synthetic rinsing containing products used for the manufacture of printed circuits: sodium gluconate (GLU) and Triton X100 (TX100 non-ionic detergent), with a TOC of 8 mg / 1. The catalysts ZACu4, ZACuό and ZACu9, prepared according to the procedure described above, are based on 4, 6 and 9% of Cu combined respectively by sol process -gel to zirconia-alumina, while the catalysts ZA + Co7.7 and ZA + Ni 7.8 respectively contain 7.7% of cobalt and 7.8% of nickel deposited by impregnation on a zirconia-alumina support prepared by sol-gel process. O 00/40514
13 Tableau 313 Table 3
Figure imgf000015_0001
Figure imgf000015_0001
Les résultats du Tableau 3 montrent que le cuivre constitue un catalyseur plus actif et moins onéreux que le cobalt et le nickel. D'autre part, le catalyseur ZACu9 (ratio Cu/surface catalyseur = 0,36 mg/m2) est plus efficace que le catalyseur ZA Cu4 (ratio Cu/surface catalyseur = 0J6 mg/m2). Les catalyseurs ZA + Co7.7 et ZA + Co7.8 présentent des rapports métal/surface catalyseur voisins de 0,54 mg/m2. Exemple 4 Les essais présentés dans le Tableau 4 portent sur la sélection du temps de contact sur le catalyseur 10 % Cu sur alumine CR 3S en réacteur d'ozonation de laboratoire, alimenté par des eaux de rinçage synthétiques contenant des produits utilisés pour la fabrication de circuits imprimés : gluconate de sodium (GLU), Triton XI 00 (TX100, détergent non-ionique), de l'EDTA, de la triethanolamine et de l'acide para- toluènesulfonique (TOLS), avec un COT de 8 mg/1. Cette eau de rinçage renferme également 0,3 mg/1 de cuivre et 0,3 mg/1 d'étain. La dose d'ozone appliquée est de 3 g/g COT. 00/40514The results in Table 3 show that copper is a more active and less expensive catalyst than cobalt and nickel. On the other hand, the catalyst ZACu9 (ratio Cu / catalyst surface = 0.36 mg / m 2 ) is more effective than the catalyst ZA Cu4 (ratio Cu / catalyst surface = 0J6 mg / m 2 ). The catalysts ZA + Co7.7 and ZA + Co7.8 have metal / catalyst surface ratios close to 0.54 mg / m 2 . Example 4 The tests presented in Table 4 relate to the selection of the contact time on the 10% Cu catalyst on CR 3S alumina in a laboratory ozonization reactor, supplied with synthetic rinsing water containing products used for the manufacture of printed circuits: sodium gluconate (GLU), Triton XI 00 (TX100, non-ionic detergent), EDTA, triethanolamine and para-toluenesulfonic acid (TOLS), with a TOC of 8 mg / 1 . This rinsing water also contains 0.3 mg / 1 of copper and 0.3 mg / 1 of tin. The applied ozone dose is 3 g / g TOC. 00/40514
1414
Tableau 4Table 4
Figure imgf000016_0001
Figure imgf000016_0001
Ces essais montrent qu'un temps de séjour prolongé sur le catalyseur lors de l'ozonation améliore l'abattement du COT en sortie du réacteur d'ozonation catalytique. Cependant, de façon surprenante, à un abattement élevé en sortie d'ozonation catalytique correspond un abattement plus faible sur le CAG biologique, ce qui fait que le bilan global d'abattement des 2 étapes n'est que peu sensible au temps de contact sur le catalyseur.These tests show that an extended residence time on the catalyst during ozonation improves the reduction of the TOC at the outlet of the catalytic ozonation reactor. However, surprisingly, a high reduction at the outlet of catalytic ozonation corresponds to a lower reduction on the biological CAG, which means that the overall reduction balance of the 2 stages is only slightly sensitive to the contact time on the catalyst.
L'eau de rinçage traitée lors de l'essai 21 ne contient plus que 4 % de la concentration initiale en TOLS en sortie d'ozonation catalytique et 0,7 % en sortie du CAG biologique. Exemple 5 Des eaux de rinçage synthétiques renfermant des produits utilisés pour la fabrication de circuits imprimés : gluconate de sodium (GLU), Triton X100 (TX100, détergent non-ionique), de l'EDTA, de la triethanolamine et de l'acide para- toluènesulfonique, avec un COT de 6,0 mg/1, sont traitées dans une unité pilote du procédé décrit en Figure 2, dans laquelle l'ozone est généré à partir d'oxygène, le CAG biologique provient d'une usine d'eau potable, la membrane d'osmose inverse est de type Hydranautics 2540 UST-ESPA. Le catalyseur à base de 10 % de Cu sur alumine CR 3S est comparé à un catalyseur à base de 9 % de Cu déposé par imprégnation sur support zircone-alumine (ZA + Cu9), la dose d'ozone est de 2 g/g COT.The rinsing water treated during test 21 contains only 4% of the initial concentration of TOLS at the outlet of catalytic ozonation and 0.7% at the outlet of the biological CAG. Example 5 Synthetic rinse waters containing products used for the manufacture of printed circuits: sodium gluconate (GLU), Triton X100 (TX100, non-ionic detergent), EDTA, triethanolamine and para acid - toluenesulfonic, with a TOC of 6.0 mg / 1, are treated in a pilot unit of the process described in Figure 2, in which ozone is generated from oxygen, the biological CAG comes from a factory drinking water, the reverse osmosis membrane is of the Hydranautics 2540 UST-ESPA type. The catalyst based on 10% Cu on alumina CR 3S is compared to a catalyst based on 9% Cu deposited by impregnation on a support zirconia-alumina (ZA + Cu9), the ozone dose is 2 g / g TOC.
Les résultats du Tableau 5 montrent que le catalyseur cuivre/zircone est plus actif pour l'abattement du COT et conduit à un COT final du perméat d'osmose inverse plus faible. Tableau 5The results in Table 5 show that the copper / zirconia catalyst is more active for the reduction of TOC and leads to a lower final TOC of the reverse osmosis permeate. Table 5
Figure imgf000017_0001
Figure imgf000017_0001
Exemple 6 (exemple comparatif non conforme à l'invention) La même eau de rinçage utilisée dans l'Exemple 5 est traitée par ozonation catalytique suivie d'une pré-filtration et d'une osmose inverse. On omet dans cet essai n° 27 la filtration sur CAG biologique. L'abattement du COT en sortie de catalyseur est de 9 %, et le perméat présente encore un COT de 0,9 mg/1, à comparer aux valeurs de 0J4- 0,19 mg/1 obtenues dans l'exemple 6 lorsqu'une filtration sur CAG biologique est mise en oeuvre en complément de l'ozonation catalytique. Exemple 7 (exemple comparatif non conforme à l'invention)Example 6 (comparative example not in accordance with the invention) The same rinsing water used in Example 5 is treated by catalytic ozonation followed by pre-filtration and reverse osmosis. In this test No. 27, filtration on biological CAG is omitted. The reduction in TOC at the catalyst outlet is 9%, and the permeate still has a TOC of 0.9 mg / 1, to be compared with the values of 0J4 - 0.19 mg / 1 obtained in Example 6 when filtration on biological CAG is carried out in addition to catalytic ozonation. Example 7 (comparative example not in accordance with the invention)
La même eau de rinçage utilisée dans l'Exemple 5 est traitée par pré-filtration, osmose inverse, ozonation catalytique suivie d'une filtration sur CAG biologique.The same rinse water used in Example 5 is treated by pre-filtration, reverse osmosis, catalytic ozonation followed by filtration on biological CAG.
Les résultats du Tableau 6 montrent qu'en sortie d'osmose inverse le perméat contient encore une teneur en COT 2 à 4 fois plus élevée que lors du traitement par le procédé de l'invention, malgré des doses d'ozone appliquées très élevées.The results of Table 6 show that, at the end of reverse osmosis, the permeate still contains a TOC content 2 to 4 times higher than during treatment with process of the invention, despite very high doses of ozone applied.
En outre, l'ozonation catalytique appliquée en aval de l'osmose inverse ne conduit pas à un abattement supplémentaire significatif du COT, alors que le CAG biologique entraîne même un relargage de COT.In addition, the catalytic ozonation applied downstream of the reverse osmosis does not lead to a significant additional reduction in the TOC, while the biological CAG even results in a release of TOC.
Tableau 6Table 6
Figure imgf000018_0001
Figure imgf000018_0001
Par comparaison, sur la même eau de rinçage présentant un COT de 6J9 mg/1, traitée par le procédé de l'invention avec une dose d'ozone de 2 g/g COT (essai 32), le COT en sortie d'ozonation catalytique est de 5,53 mg/1, en sortie de CAG biologique de 3,35 mg/1 et le COT du perméat d'osmose inverse n'est que d 0J7 mg/1.By comparison, on the same rinse water having a TOC of 6J9 mg / 1, treated by the method of the invention with an ozone dose of 2 g / g TOC (test 32), the TOC at the outlet of ozonation catalytic is 5.53 mg / 1, at the output of biological CAG of 3.35 mg / 1 and the TOC of the reverse osmosis permeate is only 0J7 mg / 1.
Exemple 8 (exemple comparatif non conforme à l'invention) La même eau de rinçage utilisée dans l'Exemple 1 est traitée par osmose inverse sur différentes membranes : Hydranautics ESPA-4040-UHT et de 4040-LHA-CPA2, et Filmtec BW30-4040, en omettant les étapes d'ozonation catalytique et de filtration sur CAG biologique.Example 8 (comparative example not in accordance with the invention) The same rinsing water used in Example 1 is treated by reverse osmosis on different membranes: Hydranautics ESPA-4040-UHT and 4040-LHA-CPA2, and Filmtec BW30- 4040, omitting the steps of catalytic ozonation and filtration on biological CAG.
Les résultats du Tableau 7 confirment qu'en sortie d'osmose inverse le perméat contient encore une teneur en COT au moins 6 fois plus élevée que lors du traitement par le procédé de l'invention comme montré dans l'Exemple 1.The results in Table 7 confirm that, at the end of reverse osmosis, the permeate still contains a TOC content at least 6 times higher than during treatment with the process of the invention as shown in Example 1.
Tableau 7Table 7
Figure imgf000019_0001
Figure imgf000019_0001
Les modes de réalisation de l'invention ici décrits n'ont pas pour objet de réduire la portée de l'invention. En conséquence, il pourra y être apporté de nombreuses modification sans sortir de son cadre. The embodiments of the invention described here are not intended to reduce the scope of the invention. Consequently, many modifications can be made without departing from its scope.

Claims

REVENDICATIONS
1. Procédé pour abattre la teneur en C.O.T. et éliminer de façon poussée les composés organiques gênants des eaux telles que les eaux de rinçage industrielles caractérisé en ce qu'il comprend les étapes suivantes consistant à : - ozoner lesdites eaux en présence d'un catalyseur hétérogène ;1. Method for reducing the content of C.O.T. and removing in a thorough manner the annoying organic compounds from the waters such as industrial rinsing waters, characterized in that it comprises the following steps consisting in: - ozonizing said waters in the presence of a heterogeneous catalyst;
- filtrer lesdites eaux sur un lit de matériau adsorbant en grains accueillant une biomasse épuratoire,- filter said water on a bed of grain adsorbent material receiving a purifying biomass,
- effectuer une filtration sur membrane(s) desdites eaux.- carry out a filtration on membrane (s) of said water.
2 . Procédé selon la revendication 1 caractérisé en ce que ladite étape suplémentaire d'affinage est une étape de filtration par osmose inverse.2. A method according to claim 1 characterized in that said additional refining step is a filtration step by reverse osmosis.
3 . Procédé selon l'une quelconque des revendications 1 ou 2 caractérisé en ce que ledit matériau adsorbant est du charbon actif en grains.3. Process according to either of Claims 1 and 2, characterized in that the said adsorbent material is granular activated carbon.
4 . Procédé selon la revendication 3 caractérisé en ce que ledit charbon actif en grain présente une granulométrie comprise entre 0,5 et 2,0 mm. 4. A method according to claim 3 characterized in that said activated carbon in grain has a particle size between 0.5 and 2.0 mm.
5 . Procédé selon l'une quelconque des revendications 1 à 4 caractérisé en ce que ledit catalyseur hétérogène est un métal ou un groupe de métaux choisis dans le groupe constitué par le vanadium, le niobium, le chrome, le molybdène, le tungstène, le manganèse, le fer, le cobalt, le nickel, le cuivre, le cérium, le platine, le rhodium, ruthénium et l'iridium. 5. Process according to any one of Claims 1 to 4, characterized in that the said heterogeneous catalyst is a metal or a group of metals chosen from the group consisting of vanadium, niobium, chromium, molybdenum, tungsten, manganese, iron, cobalt, nickel, copper, cerium, platinum, rhodium, ruthenium and iridium.
6 . Procédé selon la revendication 5 caractérisé en ce que ledit catalyseur hétérogène est le cuivre.6. Process according to Claim 5, characterized in that the said heterogeneous catalyst is copper.
7 . Procédé selon l'une des revendications 5 ou 6 caractérisé en ce que ledit catalyseur est déposé sur un support minéral.7. Method according to one of claims 5 or 6 characterized in that said catalyst is deposited on an inorganic support.
8 . Procédé selon la revendication 7 caractérisé en ce que ledit support minéral est choisi dans le groupe constitué par l'alumine, la silice, les aluminosilicates, le dioxyde de titane, la zircone ou un mélange de ces oxydes.8. Process according to Claim 7, characterized in that the said mineral support is chosen from the group consisting of alumina, silica, aluminosilicates, titanium dioxide, zirconia or a mixture of these oxides.
9 . Procédé selon la revendication 8 caractérisé en ce que ledit support est constitué de zircone ou d'alumine ou d'un mélange de ces deux oxydes.9. A method according to claim 8 characterized in that said support consists of zirconia or alumina or a mixture of these two oxides.
10. Procédé selon l'une quelconque des revendications 7 à 9 caractérisé en ce que le rapport tenuer métal catalyseur / surface spécifique du catalyseur supporté est compris entre 0J0 et 0,90 mg de catalyseur par m2 de surface de support10. Method according to any one of claims 7 to 9 characterized in that the ratio of metal catalyst to specific surface area of the supported catalyst is understood between 0J0 and 0.90 mg of catalyst per m2 of support surface
1 1 . Procédé selon la revendication 9 ou 10 caractérisé en ce que ledit catalyseur est un oxyde de cuivre déposé à raison de 1 à 10 % en poids sur un support de zircone ou d'alumine de surface spécifique comprise entre 50 et 350 mg/g, de volume poreux total1 1. Process according to Claim 9 or 10, characterized in that the said catalyst is a copper oxide deposited in an amount of 1 to 10% by weight on a support of zirconia or of alumina with a specific surface between 50 and 350 mg / g, of total pore volume
5 compris entre 0,20 et 1J0 cm3/g, présentant à la fois des mésopores de diamètre moyen compris entre 6 et 25 nm et des macropores de diamètre moyen compris entre 1 et 25 μm.5 between 0.20 and 110 cm 3 / g, having both mesopores with an average diameter between 6 and 25 nm and macropores with an average diameter between 1 and 25 μm.
12. Procédé selon l'une quelconque des revendications 9 à 11 caractérisé en ce que ledit catalyseur est préférentiellement un oxyde mixte zircone-alumine-cuivre, obtenu par voie sol-gel à partir d'une composition de sol renfermant des additifs porogènes,12. Method according to any one of claims 9 to 11 characterized in that said catalyst is preferably a mixed zirconia-alumina-copper oxide, obtained by sol-gel route from a soil composition containing pore-forming additives,
10 apportant une texture poreuse bimodale audit catalyseur.10 providing a porous bimodal texture to said catalyst.
13. Procédé selon l'une quelconque des revendications 1 à 12 caractérisé en ce que ledit catalyseur se présente sour la forme de sphères, de pastilles, d'extrudés cylindriques ou polylobés, d'anneaux ou de nids d'abeille.13. Method according to any one of claims 1 to 12 characterized in that said catalyst is in the form of spheres, pellets, cylindrical or multi-lobed extrudates, rings or honeycombs.
14. Procédé selon l'une quelconque des revendications 1 à 13 caractérisé en ce que 15 ladite étape d'ozonation est effectué avec un apport d'ozone selon un rapport ozone/COT de l'eau non traitée compris entre 1,0 et 5,0 g/g, préférentiellement 2,0 et 3,5 g/g.14. Method according to any one of claims 1 to 13 characterized in that said ozonation step is carried out with an addition of ozone according to an ozone / TOC ratio of untreated water between 1.0 and 5 , 0 g / g, preferably 2.0 and 3.5 g / g.
15. Procédé selon l'une quelconque des revendications 1 à 14 caractérisé en ce que ladite étape d'ozonation est effectuée durant un temps compris entre 5 mn et 60 mn, préférentiellement entre 10 mn et 30 mn.15. Method according to any one of claims 1 to 14 characterized in that said ozonization step is carried out for a time between 5 min and 60 min, preferably between 10 min and 30 min.
20 16. Procédé selon l'une quelconque des revendications 1 à 15 caractérisé en ce que du peroxyde d'hydrogène est injecté durant ladite étape d'ozonation avec un rapport massique peroxyde/ozone compris entre 0J et 0,8 g/g, préférentiellement entre 0,2 et 0,5 g/g16. Method according to any one of claims 1 to 15 characterized in that hydrogen peroxide is injected during said ozonization step with a mass ratio of peroxide / ozone of between 0J and 0.8 g / g, preferably between 0.2 and 0.5 g / g
17. Procédé selon l'une des revendications 3 à 16 caractérisé en ce que le charbon 25 actif en grain utilisé provient d'une usine de potabilisation d'eau.17. Method according to one of claims 3 to 16 characterized in that the activated carbon in grain used comes from a water purification plant.
18. Installation pour le traitement des eaux de rinçage industrielles selon le procédé selon l'une des revendications 1 à 17 caractérisé en ce qu'elle comprend au moins un réacteur d'ozonation catalytique, au moins un lit de matériau adorbant en grains et au moins un module de filtration sur membrane. 18. Installation for the treatment of industrial rinsing water according to the method according to one of claims 1 to 17 characterized in that it comprises at least one catalytic ozonization reactor, at least one bed of grain adsorbent material and at minus a membrane filtration module.
19. Installation selon la revendication 18 caractérisé en ce qu'elle comprend au moins un réacteur d'ozonation catalytique, au moins un lit de charbon actif en grain et au moins une module de filtration par osmose inverse. 19. Installation according to claim 18 characterized in that it comprises at least one catalytic ozonization reactor, at least one bed of activated carbon in grain and at least one filtration module by reverse osmosis.
PCT/FR2000/000019 1999-01-06 2000-01-06 Method for abating the content of undesirable organic compounds in industrial waste effluents for recycling WO2000040514A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU19869/00A AU1986900A (en) 1999-01-06 2000-01-06 Method for abating the content of undesirable organic compounds in industrial waste effluents for recycling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9900198A FR2788054B1 (en) 1999-01-06 1999-01-06 PROCEDURE AND INSTALLATION FOR REDUCING THE TOC CONTENT AND PROMISING ELIMINATION OF ORGANIC COMPOUNDS GENERATING WATERS SUCH AS INDUSTRIAL RINSING WATERS FOR RECYCLING
FR99/00198 1999-01-06

Publications (1)

Publication Number Publication Date
WO2000040514A1 true WO2000040514A1 (en) 2000-07-13

Family

ID=9540753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/000019 WO2000040514A1 (en) 1999-01-06 2000-01-06 Method for abating the content of undesirable organic compounds in industrial waste effluents for recycling

Country Status (3)

Country Link
AU (1) AU1986900A (en)
FR (1) FR2788054B1 (en)
WO (1) WO2000040514A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102452741A (en) * 2010-10-20 2012-05-16 深圳市兰科环境技术有限公司 Method and device for treating painting wastewater
CN104496077A (en) * 2014-12-22 2015-04-08 同济大学 Deep scrap iron catalytic ozonation wastewater treatment method
CN105013504A (en) * 2015-07-20 2015-11-04 华南理工大学 Loaded binary composite metal oxide catalytic ozonation catalyst and preparation method thereof
CN107243357A (en) * 2017-06-28 2017-10-13 华杰 A kind of composite metal catalyst and its production and use
CN108640343A (en) * 2018-05-14 2018-10-12 北京赛科康仑环保科技有限公司 A kind for the treatment of process for industrial wastewater near-zero release
CN111410382A (en) * 2020-05-11 2020-07-14 中国科学院生态环境研究中心 Efficient treatment method for waste lubricating oil regeneration wastewater

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1553055A1 (en) * 2004-01-07 2005-07-13 HomeFlow Switzerland Distribution SA Apparatus and method for purifying water
GR20070100306A (en) * 2007-05-22 2008-12-19 Νικολαος Πηττας Automatic device of desalination treatment of sea water for production by absolute sanitation of potable water of very high specifications.
FR2927622B1 (en) * 2008-02-14 2014-08-01 Otv Sa METHOD FOR WATER TREATMENT BY A NANOFILTRATION OR REVERSE OSMOSIS MEMBRANE SYSTEM ENABLING HIGH CONVERSION RATES BY ELIMINATING ORGANIC MATTER.
CN103787488B (en) * 2014-02-10 2015-10-28 同济大学 A kind of method utilizing pyrite cinder O3 catalytic oxidation process waste water
CN108249705A (en) * 2018-02-02 2018-07-06 回音必集团安徽制药有限公司 A kind of new and effective pharmacy sewage processing method
CN110054363A (en) * 2019-05-22 2019-07-26 南京大学盐城环保技术与工程研究院 A kind of IV class water quality standard advanced treating antigravity system of quasi- earth's surface, processing method and equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0433200A1 (en) * 1989-12-11 1991-06-19 Gie Anjou-Recherche Water filtration and purification process
EP0436409A1 (en) * 1989-12-07 1991-07-10 Anjou Recherche (Groupement D'interet Economique Dit:) Method for ozonizing water by means of heterogeneous catalyst activation
EP0567866A1 (en) * 1992-04-25 1993-11-03 Dornier Gmbh Treating of waste water from printing plants
EP0625482A1 (en) * 1993-05-18 1994-11-23 OMNIUM DE TRAITEMENTS ET DE VALORISATION OTV Société Anonyme Method and installation for the purification of an aqueous effluent by oxidation on a sorbent support
WO1996029289A1 (en) * 1995-03-17 1996-09-26 Otv Omnium De Traitements Et De Valorisation Method and facility for the oxidation processing of effluents in the presence of a heterogeneous catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0436409A1 (en) * 1989-12-07 1991-07-10 Anjou Recherche (Groupement D'interet Economique Dit:) Method for ozonizing water by means of heterogeneous catalyst activation
EP0433200A1 (en) * 1989-12-11 1991-06-19 Gie Anjou-Recherche Water filtration and purification process
EP0567866A1 (en) * 1992-04-25 1993-11-03 Dornier Gmbh Treating of waste water from printing plants
EP0625482A1 (en) * 1993-05-18 1994-11-23 OMNIUM DE TRAITEMENTS ET DE VALORISATION OTV Société Anonyme Method and installation for the purification of an aqueous effluent by oxidation on a sorbent support
WO1996029289A1 (en) * 1995-03-17 1996-09-26 Otv Omnium De Traitements Et De Valorisation Method and facility for the oxidation processing of effluents in the presence of a heterogeneous catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102452741A (en) * 2010-10-20 2012-05-16 深圳市兰科环境技术有限公司 Method and device for treating painting wastewater
CN104496077A (en) * 2014-12-22 2015-04-08 同济大学 Deep scrap iron catalytic ozonation wastewater treatment method
CN105013504A (en) * 2015-07-20 2015-11-04 华南理工大学 Loaded binary composite metal oxide catalytic ozonation catalyst and preparation method thereof
CN107243357A (en) * 2017-06-28 2017-10-13 华杰 A kind of composite metal catalyst and its production and use
CN108640343A (en) * 2018-05-14 2018-10-12 北京赛科康仑环保科技有限公司 A kind for the treatment of process for industrial wastewater near-zero release
CN111410382A (en) * 2020-05-11 2020-07-14 中国科学院生态环境研究中心 Efficient treatment method for waste lubricating oil regeneration wastewater

Also Published As

Publication number Publication date
FR2788054A1 (en) 2000-07-07
FR2788054B1 (en) 2001-03-16
AU1986900A (en) 2000-07-24

Similar Documents

Publication Publication Date Title
EP1253115B1 (en) Catalytic ozonation process for the mineralisation of organic pollutants in water
TWI408107B (en) Extra-pure water production equipment and operating method thereof
KR101306389B1 (en) Method for cleaning separation membrane module, and method for fresh water generation
WO2000040514A1 (en) Method for abating the content of undesirable organic compounds in industrial waste effluents for recycling
CN101374769A (en) Method and apparatus for removing hydrogen peroxide
JPH0790219B2 (en) Pure water production apparatus and production method
WO2005047191A1 (en) Installation and method for the purification of an aqueous effluent by means of oxidation and membrane filtration
WO2011108478A1 (en) Water treatment method and process for producing ultrapure water
TW201532977A (en) Method and apparatus for manufacturing pure water
EP0436409B1 (en) Method for ozonizing water by means of heterogeneous catalyst activation
WO1996013463A1 (en) Method and apparatus for the oxidation processing of effluents in the presence of a heterogeneous catalyst
JPH05154473A (en) Photochemical reaction treatment for fluid
JP4608765B2 (en) Biodegradation method of TOC component
Kochkodan et al. Photocatalytic membrane reactors for water treatment from organic pollutants
JP2005152688A (en) Membrane separation method
JP5061410B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP2001300576A (en) Sewage treating method
JP2006239617A (en) Water treatment method and water treatment apparatus
JP4177521B2 (en) Method for treating wastewater containing metal and ammonia
CN114713259B (en) Preparation of cobalt carbon nitrogen hollow polyhedral catalyst and application thereof in degradation of emerging pollutants
JP4760648B2 (en) Pure water production equipment
JP2004230269A (en) Wastewater treatment method and apparatus therefor
EP3684734B1 (en) Method and system for treating wastewater containing pharmaceutical micropollutants
JP2019042715A (en) Water treatment method
JP3499251B2 (en) Water treatment catalyst and water treatment method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase