WO2000028102A1 - Piece de roulement a billes resistant aux hautes temperatures - Google Patents

Piece de roulement a billes resistant aux hautes temperatures Download PDF

Info

Publication number
WO2000028102A1
WO2000028102A1 PCT/JP1999/006253 JP9906253W WO0028102A1 WO 2000028102 A1 WO2000028102 A1 WO 2000028102A1 JP 9906253 W JP9906253 W JP 9906253W WO 0028102 A1 WO0028102 A1 WO 0028102A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
temperature
rolling bearing
rolling
hardness
Prior art date
Application number
PCT/JP1999/006253
Other languages
English (en)
French (fr)
Inventor
Katsunori Itou
Kikuo Maeda
Toshiya Kinami
Sadayuki Nakamura
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn Corporation filed Critical Ntn Corporation
Priority to KR1020007007602A priority Critical patent/KR20010034008A/ko
Priority to CA002316183A priority patent/CA2316183C/en
Priority to DE19982613T priority patent/DE19982613B3/de
Publication of WO2000028102A1 publication Critical patent/WO2000028102A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/44Selection of substances
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/04Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/64Medium carbon steel, i.e. carbon content from 0.4 to 0,8 wt%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/66High carbon steel, i.e. carbon content above 0.8 wt%, e.g. through-hardenable steel

Definitions

  • the present invention relates to a rolling bearing component used for a power transmission device such as an automobile, an aircraft, a ship, and an industrial machine, and an engine unit, and more specifically, to an environment and an atmosphere where foreign matters such as dust and dirt are mixed.
  • the present invention relates to an inexpensive high-temperature rolling bearing component having an excellent rolling fatigue life even in an environment in which the temperature is from room temperature to 300 ° C. Background art
  • Rolling bearings used in power transmission parts and engine parts of automobiles, aircraft, ships, industrial machines, etc. are used in harsh environments. Require reliability and reliability.
  • foreign matter such as dust, dirt, and iron powder may be mixed in, and in such an environment, the rolling fatigue life is significantly reduced as compared with the use in a clean environment.
  • high-carbon chromium bearing steel such as SUJ2
  • case-hardened steel such as SCM420, SNCM420, and SNCM815 have been subjected to carbonitriding so that The method of generating an appropriate amount of residual austenite is applied, and the life is improved even if foreign matter is mixed.
  • rolling bearings used in automobiles and aircraft are used in high-temperature environments, they are required to have excellent rolling fatigue life characteristics in extremely contaminated environments and high-temperature environments. ing.
  • high carbon chromium bearings such as SUJ2 are quenched, or case hardened steels such as SCM420 and SNCM815 are carburized. After obtaining dimensional stability Therefore, tempering is performed at a high temperature of 300 ° C. or more.
  • the present invention has been made in order to solve the above problems, and has excellent rolling fatigue life even in a foreign material mixed environment and a high temperature environment, and is inexpensive as compared with a conventional example.
  • An object of the present invention is to provide a high-temperature rolling bearing component. Disclosure of the invention
  • compositional elements and their respective components that can provide an inexpensive high-temperature rolling bearing part having excellent rolling fatigue life in a foreign material-contaminated environment and a high-temperature environment. The content was found.
  • the high-temperature rolling bearing component of the present invention is a component of a high-temperature rolling bearing having an inner ring, an outer ring, and a rolling element, wherein the alloy element content is mass% and c (carbon) is
  • Si 0.6% or more and 1.3% or less
  • Si 0.3% or more and 3.0% or less
  • Mn manganese 0.2% or more and 1.5% or less
  • P phosphorus
  • S sulfur
  • Cr chromium
  • Nickel is 0.1% or more and 3.0% or less
  • A1 anoremium
  • Ti titanium
  • O oxygen
  • N Nonrogen
  • the balance consists of steel consisting of Fe (iron) and unavoidable impurities, and has been tempered after quenching or carbonitriding It has a structure, hardness after tempering is HRC 58 or more, and maximum carbide size is 8 ⁇ m or less.
  • the high-temperature rolling bearing component of the present invention has the above-described composition, if it is subjected to quenching and tempering, excellent rolling fatigue life can be obtained in a foreign matter-mixed environment without carbonitriding. Therefore, the carbonitriding treatment can be omitted, and the production cost can be reduced.
  • steels of the above composition are less expensive than precipitation hardened bearing steels such as M50.
  • the tempering temperature is from 180 ° C to 350 ° C. Since rolling bearings are usually used at a temperature of about 100 ° C, the tempering temperature must be at least 180 ° C.
  • C is an essential element for ensuring strength as a rolling bearing, and must be contained at least 0.6% in order to maintain the hardness after a given heat treatment. Limited to 6%. Also, in the present invention, carbides play an important role in rolling fatigue life as described later, but if the C content exceeds 1.3%, large carbides are generated, Since it was found that the fatigue life was reduced, the upper limit of the C content was limited to 1.3%.
  • Si is desirably added because it has the effect of suppressing softening at high temperatures and improving the heat resistance of rolling bearings.
  • the effect cannot be obtained if the Si content is less than 0.3%, so the lower limit of the Si content is limited to 0.3%.
  • the heat resistance improves with an increase in the Si content, the effect saturates even if it is contained in a large amount exceeding 3.0%, and decreases in hot workability and machinability. Therefore, the upper limit of the Si content was limited to 3.0%.
  • Mn is an element used for deoxidation in the production of steel, and is also an element that improves hardenability.It is necessary to add 0.2% or more to obtain this effect.
  • the lower limit of the Mn content was limited to 0.2%. However, if it is contained in a large amount exceeding 1.5%, machinability is greatly reduced, so the upper limit of the Mn content was limited to 1.5%.
  • the upper limit of the content is set to 0.03%.
  • the upper limit of the S content is set to 0.03%.
  • S has a harmful surface as described above, but also has the effect of improving the machinability. Therefore, it is desirable to reduce S as much as possible, but if it is contained up to 0.005%, it is allowable. Is done.
  • C ⁇ ⁇ is an element that plays an important role in the present invention, and is added to improve hardenability, secure hardness by carbide and improve life. Since the addition of 0.3% or more is necessary in order to obtain a predetermined carbide, the lower limit of the Cr content is limited to 0.3%. However, if it is contained in a large amount exceeding 5.0%, large carbides are formed and the rolling fatigue life is reduced, so the upper limit of the Cr content was limited to 5.0%.
  • A1 is used as a deoxidizing agent in the production of steel, but it is desirable to reduce it because hard oxide-based inclusions are formed and the rolling fatigue life is reduced.
  • the upper limit of the A1 content was limited to 0.050%.
  • the lower limit of the A1 content is preferably limited to 0.005%.
  • T i, O and N form oxides and nitrides in the steel and become the starting point of fatigue fracture as non-metallic inclusions, reducing the rolling fatigue life.
  • N: 0.01 5% was set as the upper limit of each element.
  • Ni content (0.1% or more and 3.0% or less) Ni is an element that plays an important role in the present invention, and in particular, suppresses the structural change in the rolling fatigue process when used in a high-temperature environment, and also suppresses the decrease in hardness in the high-temperature region. It has the effect of improving the rolling fatigue life. In addition, Ni improves toughness, improves life under foreign material environments, and is effective in improving corrosion resistance. For this reason, since it is necessary to contain Ni at 0.1% or more, the lower limit of the Ni content is limited to 0.1%. However, if a large amount of Ni is contained in excess of 3.0%, a large amount of residual austenite is generated during the quenching process, and a predetermined hardness cannot be obtained, and the cost of steel material rises. Was limited to 3.0%.
  • Bearings used in high-temperature areas are generally subjected to tempering at a temperature equal to or higher than the environmental temperature in order to stabilize the dimensions in the operating environment.
  • the inventors of the present invention conducted detailed adjustments on the tempering hardness and rolling fatigue life at a temperature of 200 ° C. As a result, a correlation was found between the tempering hardness and the rolling fatigue life, and the tempering hardness was reduced. It was confirmed that the higher the value, the longer the rolling fatigue life tends to be. In particular, when the tempering hardness is the same, it was found that a bearing whose tempering treatment was performed at a higher temperature has a longer life, and a bearing whose tempering hardness is higher even at a high temperature has a longer life. Was done.
  • the carbides maintain the hardness during tempering, suppress the microstructural changes during rolling fatigue, and have an effect on improving the rolling fatigue life.
  • the maximum dimensions of carbide and the rolling fatigue life at a depth of 0.1 mm from the bearing surface were investigated, and as a result, the life tended to decrease when large carbides were present. It has been clarified that if large carbides larger than m remain, the life is suddenly shortened, so the maximum size of carbides is specified at 8 m.
  • the steel material is 0.05% or more and 0.25% by mass. /. It further contains at least one of Mo less than and less than 0.05% and less than 1.0% of V.
  • the rolling fatigue life can be further improved in a foreign substance mixed environment and a high temperature environment, and the hardness after tempering can be improved.
  • the reasons for limiting the chemical components will be described.
  • Mo has the effect of improving the hardenability of steel and preventing softening during tempering by forming a solid solution in the carbide.
  • Mo is added because it has been found to have an effect of improving the rolling fatigue life at high temperatures.
  • the Mo content was limited to less than 0.25%. If the content of Mo is less than 0.05%, there is no effect on carbide formation, so the lower limit of the Mo content was limited to 0.05%.
  • V combines with carbon to precipitate fine carbides, promotes the refinement of crystal grains, and has the effect of improving strength and toughness.
  • the addition of V improves the heat resistance of steel materials, It suppresses softening, improves rolling fatigue life, and reduces life variability. Since the V content at which this effect is obtained is 0.05% or more, the lower limit of the V content is limited to 0.05%. However, if a large amount of V is contained in excess of 1.0%, machinability and hot workability are reduced, so the upper limit of the V content is limited to 1.0%.
  • the steel material having the chemical composition shown in Table 1 was melted by a vacuum induction furnace, forged into a steel ingot having a weight of 150 kg, and then heated and maintained at a temperature of 1200 ° C for 3 hours for hot forging. Was carried out to produce a round bar having a diameter of 50 mm. After normalizing the round bar material at 850 ° C for 1 hour as a normalizing process, it is air-cooled to further facilitate cutting. 790 as softening treatment. After holding at C for 6 hours, the material was cooled down to 650 ° C at a cooling rate of 10 ° C / hour and softened to cool to room temperature in the air.
  • CD 12 1.01 0.50 0.35 0.017 0.021 0.79 4.51 ⁇ 0.021 0.0025 0.0011 0.010
  • V 22 1.10 0.55 0.15 0.017 0.020 1.00 0.22 0.01 0.02 0.003 0.0020 0.0010 0.009
  • a cylindrical test piece with a diameter of 20 mm and a length of 100 mm was prepared by machining from a material with a diameter of 5 O mm. did.
  • the quenching process is performed by heating in a salt furnace, soaking at 850 ° C for 30 minutes,
  • the carbonitriding process using a gas atmosphere furnace used in ordinary production processes 1 carbon potential in RX gas atmosphere. 0 to 1.2%, the amount of NH 3. 5 to a 1 0% 8 After being kept at 50 ° C for 60 minutes, it was quenched in oil. Thereafter, tempering was performed at 350 ° C. for 120 minutes.
  • a 10 mm-thick disk-shaped test piece was cut from the center of the quenched and tempered test piece or the test piece that was tempered after carbonitriding, and both sides were polished by wet polishing.
  • a test piece for hardness measurement was prepared.
  • the hardness was measured at a position 2 mm deep from the surface in the cross section of the test piece using a mouth-well hardness tester, and the average value at seven points was determined as the tempered hardness.
  • the test piece used for the life evaluation was a ring-shaped thrust-type rolling fatigue life test piece with an outer diameter of 47 mm, an inner diameter of 29 mm, and a thickness of 7 mm, which was machined from a 50 mm diameter round bar material. Roughed.
  • both surfaces of the test piece were polished to a mirror finish.
  • the machining allowance for polishing was set to 0.1 mm on both sides.
  • the rolling fatigue life test was performed using a thrust rolling fatigue life tester. Table 2 shows the conditions of the test. The test was performed under normal temperature environment and at 200 ° C environment, and was also performed under an environment in which the environment in which foreign substances were mixed was reproduced. Table 2
  • the fatigue test was repeated 15 times under the same conditions, and the life when the cumulative damage probability in the Weibull probability was 10% was determined as the life of each material.
  • the comparative example No. 13 in Table 2 is a general-purpose SUJ2, and the life value of each material is described as a ratio when the life of the quenched and tempered material is set to 1.0.
  • Thrust-type rolling fatigue life specimens were used to measure the carbides present in the steel.
  • a cross section of the ring was cut from a test piece processed into a thrust rolling fatigue life test piece by performing various heat treatments, and a micro test piece for structure observation was manufactured.
  • the specimen was mirror-finished and corroded by Picral etchant to observe carbides.
  • carbide at a depth of 0.1 mm from the surface layer of the rolling contact surface was observed with an optical microscope, and the largest carbide in a visual field area of 50 mm 2 was measured.
  • Table 3 shows the results of the above-mentioned tempering hardness at 350 ° C, rolling fatigue life at room temperature and 200 ° C, rolling fatigue life under foreign matter-contaminated conditions, and the maximum carbide size.
  • Table 4 shows comparative examples. Table 3
  • the present invention can be advantageously applied to a high-temperature rolling bearing component used in a foreign substance-mixed environment and a high-temperature environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Description

明細書 高温用転がり軸受部品 技術分野
本発明は、 自動車、 航空機、 船舶、 産業機械などの動力伝達装置やエンジン部 などに用いられる転がり軸受部品に関し、 より特定的には、 粉塵、 ゴミなどの異 物が混入する環境下ならびに雰囲気の温度が常温〜 3 0 0 °Cの環境下においても 優れた転動疲労寿命を有する安価な高温用転がり軸受部品に関するものである。 背景技術
自動車、 航空機、 船舶、 産業機械などの動力伝達部やエンジン部に使用される 転がり軸受は、 苛酷な環境下で使用されることになるが、 このような環境下でも 優れた転動疲労寿命と信頼性とを要求されている。 特に、 上記に用いられる転が り軸受では、 粉塵、 ゴミ、 鉄粉などの異物が混入する場合があり、 これらの環境 下では清浄な環境での使用に比べて転動疲労寿命が大幅に低下することが知られ ている。 この対策として、 近年では、 S U J 2などの高炭素クロム軸受鋼ゃ S C M 4 2 0 , S N C M 4 2 0 , S N C M 8 1 5などの肌焼き鋼に浸炭窒化処理を施 し、 転動面の直下に適量の残留オーステナイ トを生成させる工法が適用されてお り、 異物混入下での寿命改善が図られている。
しかし、 一般的な浸炭窒化処理は、 S U J 2鋼などに適用されている焼入れ焼 戻し処理に比べて長時間の処理である。 このため、 これらの浸炭窒化処理された 転がり軸受では、 通常の焼入れ焼戻し工程で製造される転がり軸受に比べて製造 コス トが大幅に増加するなどの問題がある。
また、 自動車や航空機などに用いられる転がり軸受は、 高温環境下で使用され るため、 異物混入環境でかつ高温環境とレ、う極めて苛酷な使用環境下で優れた転 動疲労寿命特性を要求されている。 一般に、 高温下で使用される転がり軸受には、 S U J 2などの高炭素クロム軸受に焼入れ処理を施した後、 または S C M 4 2 0、 S N C M 8 1 5などの肌焼き鋼に浸炭焼入れ処理を施した後に、 寸法安定性を得 るために 3 0 0 °C以上の高温で焼戻し処理が実施されている。
しかし、 これらの材料を高温で焼戻し処理すると硬さが大幅に低下するため、 転がり軸受に要求される所定の硬さを得ることができず、 転動疲労寿命おょぴ耐 摩耗性が低下する。 このため、 高温域で使用される軸受鋼には M 5 0のような析 出硬化型の鋼材が使用されているが、 このような鋼材では製造コストおよぴ材料 コストが高く、 使用範囲が限定されているために上記のようなニーズに対応する ことができなかった。
また、 浸炭窒化処理を施した転がり軸受では、 熱処理後に転動部直下に残留ォ ーステナイ 卜が生成されるとともに鋼中に窒素が侵入する。 この残留オーステナ イ トの作用で異物混入による応力集中が緩和されることによって、 さらには鋼中 に侵入した窒素の作用で焼戻し軟化抵抗が改善されて転動疲労の過程で発生する 組織の変化が抑制されることによって、 転動疲労寿命の向上が図られている。 しかし、 高温用の転がり軸受に適用するに際しては、 先述したように寸法の安 定性を確保するために高温焼戻しを行なう必要がある。 この高温焼戻しを施した 場合には、 残留オーステナイ トは分解し、 その量が減少してしまうために、 その 効果を期待することができず、 また窒素による焼戻し軟化防止にも限界があるた め、 異物が混入する高温環境下では十分な性能を得ることができない。
近年では、 自動車などの分野ではエンジンの高出力 ·小型化が急速に進行して いるが、 同時に、 転がり軸受の使用環境はさらに苛酷な条件で使用されるケース が増加してきている。 エンジン部に用いられる転がり軸受の使用温度域は、 常用 温度で 1 3 0 °C程度であるが、 瞬間的には 1 6 0 °Cまで温度上昇することが見込 まれている。 今日では、 エンジンの高出力化に伴って、 転がり軸受の使用温度域 は常用温度で 1 6 0 °C程度まで上昇し、 さらに瞬間的には 2 0 0 °Cを超すことが 予測されている。 したがって、 今後、 エンジンの高出力化や軽量化が促進された 場合に、 異物混入環境下ならびに高温環境下での転動疲労寿命の向上が必要とさ れると予想される。
しかし、 現状の高炭素クロム軸受鋼ゃ浸炭または浸炭窒化処理を施した転がり 軸受は、 十分な耐熱性を有しておらず、 予想される異物混入環境下、 高温環境下 では十分な転動疲労寿命を維持することができない。 また、 M 5 0のような析出 硬化型軸受鋼ではコストが高いなどの問題があり、 安価で、 かつ転動疲労寿命特 性に優れる転がり軸受を提供することができない状況である。
本発明は、 上記のような問題点を解決するためになされたもので、 異物混入環 境下ならびに高温環境下においても優れた転動疲労寿命を有し、 かつ従来例に比 ベて安価な高温用転がり軸受部品を提供することを目的とする。 発明の開示
本願発明者らは、 鋭意検討した結果、 異物混入環境下ならびに高温環境下にお いて優れた転動疲労寿命を有する安価な高温用転がり軸受部品を得ることのでき る組成元素の組合せおよびその各含有量を見出した。
それゆえ本発明の高温用転がり軸受部品は、 内輪、 外輪および転動体を有する 高温用転がり軸受の部品であって、 合金元素の含有量が質量%で、 c (炭素) を
0. 6%以上1. 3%以下、 S i (シリコン) を 0. 3 %以上 3. 0 %以下、 M n (マンガン) を 0. 2%以上1. 5%以下、 P (リン) を 0. 0 3%以下、 S (硫黄) を 0. 0 3%以下、 C r (クロム) を 0. 3%以上 5. 0%以下、 N i
(ニッケル) を 0. 1 %以上 3. 0%以下、 A 1 (ァノレミニゥム) を 0. 0 5 0 %以下、 T i (チタン) を 0. 0 0 3%以下、 O (酸素) を 0. 0 0 1 5%以下、 N (窒素) を 0. 0 1 5 %以下含み、 残部が F e (鉄) および不可避不純物から なる鋼材よりなり、 かつ焼入れ処理後または浸炭窒化処理後に焼戻し処理された 構成を有し、 かつ焼戻し処理後の硬さが HRC 5 8以上であり、 かつ最大の炭化 物寸法が 8 μ m以下である。
本発明の高温用転がり軸受部品では、 上記組成を有しているため、 焼入れ焼戻 し処理を施せば、 浸炭窒化処理を施さずとも異物混入環境下において優れた転動 疲労寿命が得られる。 このため、 浸炭窒化処理を省くことができるため、 製造コ ス トを低くすることができる。
上記のように製造コスト削減の観点からは浸炭窒化処理を省くことが望ましい 力 焼入れ処理に代えて浸炭窒化処理を施しても異物混入環境下において優れた 転動疲労寿命を得ることができる。
また、 上記組成を有するため、 高温 (たとえば 3 5 0°C) で焼戾し処理を施し ても、 HRC 58以上と高い硬度を得ることができる。 このように高温で焼戻し 処理を施すことで残留オーステナイト量を少なくできるため高温環境下での寸法 安定性を得ることができるとともに、 HRC58以上と高い硬度を得ることがで きる。 このため、 高温環境下での転動疲労寿命および耐摩耗性を従来例より向上 させることができる。
また、 上記組成の鋼は M 50のような析出硬化型軸受鋼より安価である。
以上より、 異物混入環境下ならびに高温環境下において優れた転動疲労寿命を 有し、 かつ安価な高温用転がり軸受部品を得ることができる。
なお、 焼戻し処理温度は 1 80°C以上 350°C以下であることが好ましい。 転 がり軸受は通常 1 00°C程度の温度で使用されるため、 焼戻し処理温度は 1 80 °C以上である必要がある。
以下、 本発明の高温用転がり軸受部品の化学成分の限定理由について説明する。
(1) Cの含有量 (0. 6%以上1. 3%以下) について
Cは転がり軸受として強度を確保するために必須の元素であり、 所定の熱処理 後の硬さを維持するためには 0. 6%以上含有する必要があるため、 C含有量の 下限を 0. 6%に限定した。 また本発明においては、 後述するように炭化物が転 動疲労寿命に重要な役割を与えるが、 C含有量が 1. 3%を超えて含有された場 合、 大型の炭化物が生成し、 転動疲労寿命の低下を生じることが判明したため、 C含有量の上限を 1. 3%に限定した。
(2) S iの含有量 (0. 3%以上 3. 0%以下) について
S iは高温域での軟化を抑制し、 転がり軸受の耐熱性を改善する作用があるた め添加することが望ましい。 しかし、 S i含有量が 0. 3%未満ではその効果が 得られないため、 S i含有量の下限を 0. 3%に限定した。 また、 S i含有量の 増加に伴って耐熱性は向上するが、 3. 0%を超えて多量に含有させてもその効 果が飽和するとともに、 熱間加工性や被削性の低下が生じるため、 S i含有量の 上限を 3. 0%に限定した。
(3) Mnの含有量 (0. 2%以上1. 5%以下) について
Mnは鋼を製造する際の脱酸に用いられる元素であるとともに、 焼入れ性を改 善する元素であり、 この効果を得るために 0. 2%以上添加する必要があるため、 Mn含有量の下限を 0. 2%に限定した。 しかし、 1. 5%を超えて多量に含有 すると被削性が大幅に低下するため、 Mn含有量の上限を 1. 5%に限定した。
(4) Pの含有量 (0. 03%以下) について
Pは鋼のオーステナイ ト粒界に偏析し、 靱性ゃ転動疲労寿命の低下を招くため、 0. 03%を含有量の上限とした。
(5) Sの含有量 (0. 03%以下) について
Sは鋼の熱間加工性を害し、 鋼中で非金属介在物を形成して靱性ゃ転動疲労寿 命を低下させるため、 0. 03%を S含有量の上限とした。 また、 Sは前記のよ うな有害な面を持つ反面、 切削加工性を向上させる効果も有しているため、 可及 的に少なくすることが望ましいが 0. 005%までの含有であれば許容される。
(6) C rの含有量 (0. 3%以上 5. 0%以下) について
C ι·は本発明において重要な作用を果たす元素であり、 焼入れ性の改善と炭化 物による硬さ確保と寿命改善とのために添加される。 所定の炭化物を得るために は 0. 3%以上の添加が必要であるため、 C r含有量の下限を 0. 3%に限定し た。 しかし、 5. 0%を超えて多量に含有すると、 大型の炭化物が生成し転動疲 労寿命の低下が生じるため、 C r含有量の上限を 5. 0%に限定した。
(7) A 1の含有量 (0. 050%以下) について
A 1は鋼の製造時の脱酸剤として使用されるが、 硬質の酸化物系介在物を生成 し転動疲労寿命を低下させるため低減することが望ましい。 また、 0. 050% を超えて A 1が多量に含有されると顕著な転動疲労寿命の低下が認められたため、 A 1含有量の上限を 0. 050%に限定した。
なお、 八 1含有量を0. 005%未満とするためには鋼の製造コストの上昇が 生じるため、 A 1含有量の下限を 0. 005%に限定することが好ましい。
(8) 丁 1の含有量 (0. 003%以下) 、 Oの含有量 (0. 001 5%以 下) 、 Nの含有量 (0. 01 5%以下) について
T i、 Oおよび Nは鋼中に酸化物、 窒化物を形成し非金属介在物として疲労破 壊の起点となり転動疲労寿命を低下させるため、 T i : 0. 003%、 〇 : 0. 001 5%、 N: 0. 01 5%を各元素の上限とした。
(9) N iの含有量 (0. 1%以上 3. 0%以下) について N iは本発明において重要な作用を果たす元素であり、 特に高温環境下で使用 された場合の転動疲労過程における組織の変化を抑制し、 また高温域での硬さの 低下を抑制して転動疲労寿命を向上する効果を有する。 加えて、 N iは靱性を改 善して異物環境下での寿命を改善するとともに耐食性の改善にも効果がある。 こ のため、 N iを 0 . 1 %以上含有させる必要があるため、 N i含有量の下限を 0 . 1 %に限定した。 しかし、 3 . 0 %を超えて多量に N iを含有すると、 焼入れ処 理時に多量の残留オーステナイ トが生成され所定の硬さが得られなくなり、 また 鋼材コストが上昇するため、 N i含有量の上限を 3 . 0 %に限定した。
次に、 本発明の高温用転がり軸受部品の焼戻し硬さおよび炭化物について言及 する。
( 1 0 ) 焼戻し硬さ
高温域で使用される軸受は使用環境下での寸法を安定させるために、 環境温度 以上の温度で焼戻し処理を施されることが一般的である。 本願発明者らは、 焼戻 し硬さと温度環境 2 0 0 °Cにおける転動疲労寿命に関する詳細な調查を行なった 結果、 焼戻し硬さと転動疲労寿命とに相関が認められ、 焼戻し硬さが高いほど転 動疲労寿命が長寿命を示す傾向にあることを確認した。 特に、 焼戻し硬さが同一 の場合には、 焼戻し処理が高い温度で実施された軸受ほど長寿命であり、 高温で 焼戻しを施しても焼戻し硬さが高い軸受ほど長寿命であることが見出された。 さ らには、 焼戻し処理後の硬さが H R C 5 8未満になると、 急激に寿命が低下する 傾向にあり、 また寿命ばらつきが大きくなることが判明した。 高温での寿命を改 善し、 ばらつきを低減するためには、 H C R 5 8以上の硬さを維持することが必 要であり、 かっこの際の焼戻し温度は高いほど好ましい。
( 1 1 ) 炭化物
炭化物は焼戻し処理時の硬さを維持させるとともに、 転動疲労中の組織変化を 抑制し、 転動疲労寿命の改善に効果を有することが判明した。 この際、 軸受の表 層から 0 . 1 mm深さにおける炭化物の最大寸法と転動疲労寿命とを調査した結 果、 大型の炭化物が存在すると寿命が低下する傾向が認められ、 最大寸法が 8 mを超える大きな炭化物が残存すると急激に寿命低下が発生することが明らかに なったため、 炭化物の最大寸法を 8 mに規定した。 上記の高温用転がり軸受部品において好ましくは、 鋼材は、 質量%で、 0. 0 5 %以上 0. 25。/。未満の M oおよび 0. 05 %以上 1. 0 %以下の Vの少なく とも一種をさらに含んでいる。
これにより、 さらに異物混入環境下および高温環境下における転動疲労寿命を 向上させることができ、 かつ焼戻し処理後の硬度を向上させることができる。 以下、 上記化学成分の限定理由について説明する。
(1 2) Moの含有量 (0. 05%以上 0. 25%未満) について
Moは鋼の焼入れ性を改善するとともに、 炭化物中に固溶することによって焼 戻し処理時の軟化を防止する効果がある。 特に、 Moは高温域における転動疲労 寿命を改善する作用が見出されたため添加されている。 しかし、 0. 25%以上 と多量に Moを含有させると鋼材コストが上昇するとともに、 切削加工を容易に するための軟化処理時に硬さが低下せず被削性が大幅に劣化してしまうため、 M o含有量を 0. 25 %未満に限定した。 また M oの含有量が 0. 05 %未満では 炭化物形成に効果がないため、 Mo含有量の下限を 0. 05%に限定した。
(1 3) Vの含有量 (0. 05%以上 1. 0%以下) について
Vは炭素と結合して微細な炭化物を析出し、 結晶粒の微細化を促進し強度 ·靱 性を改善する効果を有するとともに、 Vの含有によって鋼材の耐熱性を改善し、 高温焼戻し後の軟化を抑制し、 転動疲労寿命を改善し、 寿命のばらつきを減少さ せる作用を示す。 この効果が得られる Vの含有量が 0. 05%以上であるため、 V含有量の下限を 0. 05%に限定した。 し力 し、 1. 0%を超えて多量に Vを 含有すると、 被削性、 熱間加工性が低下するため、 V含有量の上限を 1. 0%に 限定した。 発明を実施するための最良の形態
以下、 本発明の実施例について説明する。
表 1に示した化学糸且成を有する鋼材を、 真空誘導炉によって溶解し、 重量 1 5 0 k gの鋼塊に铸造した後、 1 200°Cの温度で 3時間加熱保持して熱間鍛造を 実施し、 直径 50mmの丸棒を製造した。 丸棒素材に焼ならし処理として 850 °Cで 1時間保持した後、 空冷する処理を施し、 さらに切削加工を容易にするため の軟化処理として 790。Cで 6時間保持した後 650°Cまでを 10°C/時間の冷 却速度で冷却し、 常温までを大気放冷する軟化処理を施し、 各種調査の素材とし た。
表 1
化学成分 (質量%)
爾重 No. c Si Mn p s Ni Cr Mo V AI Ti 0 N
A 1 0.81 2.01 0.50 0.018 0.020 0.53 1.49 0.021 0.0023 0.0010 0.009
B 2 1.01 0.75 0.45 0.019 0.020 1.01 1.51 0.020 0.0023 0.0011 0.011 c 3 0.80 2.51 0.44 0.017 0.022 0.55 1.48 0.022 0.0024 0.0013 0.010
D 4 1.21 1.01 0.35 0.018 0.019 0.78 1.49 0.020 0.0025 0.0010 0.011 本 E 5 1.05 1.51 0.40 0.019 0.017 2.01 1.50 0.021 0.0022 0.0009 0.008 発 F 6 1.01 1.49 0.45 0.016 0.021 1.51 1.51 0.021 0.0023 0.0010 0.009 明 G 7 1.20 1.01 0.25 0.018 0.020 0.79 1.50 0.24 0.021 0.0024 0.0011 0.011 例 H 8 1.01 0.51 0.45 0.019 0.021 2.51 1.51 0.41 0.022 0.0025 0.0010 0.010
1 9 1.00 0.52 0.46 0.020 0.020 1.51 1.52 0.85 0.021 0.0022 0.0009 0.011
J 10 1.00 1.48 1.10 0.018 0.020 1.52 1.48 0.022 0.0023 0.0011 0.009
K 11 1.21 1.00 0.45 0.019 0.019 2.51 2.51 一 一 0.020 0.0023 0.0012 0.010
CD し 12 1.01 0.50 0.35 0.017 0.021 0.79 4.51 ― 一 0.021 0.0025 0.0011 0.010
M 13 1.01 0.25 0.50 0.020 0.020 0.02 1.50 一 一 0.020 0.0022 0.0009 0.009
N 14 1.22 0.22 0.45 0.019 0.019 0.02 1.49 ― 一 0.021 0.0023 0.0010 0.010
0 15 1.00 1.51 0.45 0.018 0.019 0.03 1.48 ― ― 0.021 0.0024 0.0011 0.011
P 16 1.23 1.01 0.35 0.017 0.018 0.02 1.51 0.020 0.0023 0.0011 0.010
Q 17 0.55 1.00 0.40 0.016 0.017 0.50 1.50 0.25 0.020 0.0022 0.0010 0.010
R 18 1.55 1.01 0.35 0.017 0.018 1.00 1.50 0.40 0.022 0.0023 0.0011 0.009
S 19 1.21 1.00 0.30 0.065 0.040 0.50 1.50 0.065 0.0522 0.0025 0.025
T 20 1.20 1.01 2.65 0.018 0.020 1.50 1.45 0.021 0.0021 0.0010 0.011
U 21 1.21 0.98 0.45 0.017 0.019 1.50 6.01 0.020 0.0021 0.0011 0.009
V 22 1.10 0.55 0.15 0.017 0.020 1.00 0.22 0.01 0.02 0.003 0.0020 0.0010 0.009
W 23 1.15 1.01 0.45 0.018 0.020 1.50 1.45 0.35 0.021 0.0022 0.0011 0.010
X 24 1.15 1.00 0.40 0.019 0.021 2.00 1.40 2.01 0.022 0.0021 0.0010 0.010
Y 25 1.21 4.01 0.55 0.019 0.019 1.00 1.40 0.020 0.0022 0.0010 0.009 z 26 1.20 0.55 0.45 0.018 0.018 4.23 1.35 0.019 0.0020 0.0009 0.010
<硬さ調査 >
焼入れ後の焼戻し硬さおよび浸炭窒化処理後の焼戻し硬さを測定するために、 直径 5 O mmの素材から直径 2 0 mm、 長さ 1 0 0 mmの円柱状の試験片を機械 加工によって作製した。
焼入れ処理は、 ソルト炉による加熱を行ない、 8 5 0 °Cに 3 0分均熱した後、
8 0 °Cの油中に焼入れることで行なった。 この後に、 焼戻し処理として同じくソ ノレト炉で加熱を行ない、 3 5 0 °Cで 2時間保持した後に空冷する焼戻し処理を行 なった。
また浸炭窒化処理は通常の生産工程で使用されているガス雰囲気炉を用い、 R Xガス雰囲気中で炭素ポテンシャルを 1 . 0〜1 . 2 %、 N H3の添加量を 5〜 1 0 %として 8 5 0 °Cに 6 0分保持した後、 油中に焼入れた。 その後、 3 5 0 °C で 1 2 0分の焼戻しを行なった。
この焼入れ焼戻し処理を施した試験片または浸炭窒化処理後に焼戻し処理を施 した試験片の中央部から厚さ 1 0 mmの円盤型の試験片を切断し、 両面を湿式の 研磨加工によって研磨し、 硬さ測定用の試験片を作製した。
硬さは口ックウエル硬さ計を使用し、 試験片の断面において表面から 2 mm深 さの位置の硬さ測定を行ない、 7点の平均値を焼戻し硬さとして求めた。
く転動疲労寿命試験〉
軸受部品として性能を確認するために、 スラスト型の転動疲労寿命試験機によ つて疲労試験を行ない、 各材料の寿命評価を実施した。
寿命評価に用いた試験片は、 直径 5 0 mmの丸棒素材から機械加工によって外 径 4 7 mm, 内径 2 9 mmおよび厚さ 7 mmのリング状のスラスト型転動疲労寿 命試験片を粗加工した。
粗加工を完了した試験片の熱処理として、 焼入れ焼戻し処理および浸炭窒化処 理を施した。 処理は、 通常の生産工程で使用されている実炉を用いた。
焼入れ焼戻し処理については、 ガス雰囲気炉を用い、 R Xガス雰囲気中で各鋼 の炭素量をベースに脱炭や浸炭が起こらないように炭素ポテンシャルを制御しな がら 8 5 0 °Cに 3 0分保持した後、 油中に焼入れた。 その後、 3 5 0 °Cで 1 2 0 分の焼戻しを行なった。 浸炭窒化処理は上記の硬さ試験片と同条件で熱処理を行なつた。
熱処理完了の後に、 試験片の両面を研磨加工し鏡面状態に仕上げた。 なお、 浸 炭窒化処理した試験片では、 研磨加工時の加工代を両面とも 0 . 1 mmとした。 転動疲労寿命試験は、 スラスト型転動疲労寿命試験機によって実施した。 なお、 表 2にその試験の諸条件を示す。 試験は、 常温環境下および 2 0 0 °C環境下で実 施し、 さらに異物の混入環境を再現した環境下でも試験を行なった。 表 2
転動疲労寿命試験条件
Figure imgf000013_0001
疲労試験は、 同一条件で 1 5回の繰返し試験を行ない、 ワイブル確率における 累積損傷確率が 1 0 %となる寿命を各材料の寿命として判定した。 なお、 表 2に おける比較例 N o . 1 3は汎用の S U J 2であり、 この焼入れ焼戻し処理材の寿 命を 1 . 0とした場合の比率で各材料の寿命値を記述した。
<炭化物 >
鋼中に存在する炭化物の測定には、 スラスト型転動疲労寿命試験片を使用した。 各種の熱処理を実施してスラスト型転動疲労寿命試験片に加工された試験片にお いて、 リング横断面を切断し、 組織観察用のミクロ試験片を製造した。 この試験 片を鏡面仕上げし、 さらに炭化物の観察を行なうために、 ピクラル腐食液によつ て腐食した。 このミクロ試料において、 転動面の表層から 0 . 1 mm深さにおけ る炭化物の観察を光学顕微鏡で実施し、 視野面積 5 0 mm2における最大の炭化 物を測定した。
上記の 3 5 0 °C焼戻し硬さ、 常温および 2 0 0 °Cでの転動疲労寿命、 異物混入 条件下での転動疲労寿命および最大炭化物寸法の結果を本発明例については表 3 に、 比較例については表 4に示す。 表 3
350°C焼戻し硬さ 最大炭化物寸法 常温! 動疲労寿 200°C転動疲労 異物転動寿
No 鋼 命の比 . 処理
(HRC) 命の比 寿命の比 rn z :皿日 200°C
HT 58.8 2.5 3.2 4.0 3.6 4.3
1 A
浸炭窒化 59.3 3.3 3.5 4.8 4.1 5.5
HT 59.4 3.5 4.5 6.9 4.8 7.3
2 B
浸炭窒化 59.8 3.7 4.7 7.8 5.2 8.4
HT 58.8 2.5 3.1 5.1 3.4 5.3
3 C
浸炭窒化 60.0 2.9 3.5 5.8 4.0 6.3
HT 60.5 2.6 10.1 14.0 10.4 14.2
4 D
浸炭窒化 61.1 3.1 10.7 15.2 11.3 15.7
HT 59.9 3.3 5.1 8.1 5.4 8.3
5 E
浸炭窒化 59.3 3.9 7.0 10.2 7.7 10.8
HT 60.0 3.2 6.1 9.5 6.3 9.8
6 F 本
浸炭窒化 発 60.7 4.0 8.5 11.1 8.9 11.6 t HT 明 60.7 3.5 7.3 11.1 7.7 11.4
/
浸炭窒化 例 61.5 4.7 7.9 13.2 8.5 13.8
HT 59.8 2.7 4.0 7.6 4.3 7.9
8 H
浸炭窒化 59.0 3.5 7.0 9.5 7.5 10.0
HT 59.5 3.2 4.5 8.7 4.9 9.1
9 I
浸炭窒化 60.1 4.0 6.5 10.0 7.1 10.5
HT 59.6 4.2 5.2 9.1 5.4 9.3
10 J
浸炭窒化 59.9 5.0 7.3 9.4 7.8 10.0
HT 60.5 6.1 9.4 13.5 9.7 13.8
11 K
浸炭窒化 60.0 6.7 7.5 10.3 8.0 10.8
HT 59.8 6.8 6.4 9.6 6.7 9.8
12 し
浸炭窒化 61.1 7.5 4.2 6.5 4.7 7.0
表 4
0°C焼戻し硬さ 最大灰化物寸法 命の比
No. 鋼 35 常温転動疲労寿 200°C転動疲労 異物転動寿
処理
(HRC) m) 命の比 寿命の比 rh /皿 200°C
HT 55.6
13 1.1 1.0 1.0 1.0 1.0
M
浸炭窒化 57.2 2.8 1.8 1.4 2.0 1.7
HT 56.0 2.5 1.1 1.3 1.1 1.2
14 N
浸炭窒化 57.3 4.2 1.9 1.7 2.2 1.9
HT 60.1 2.8 2.1 2.5 2.0 2.5
15 0
浸炭窒化 60.3 4.3 2.2 2.8 2.6 3.1
HT 60.1 3.0 2.2 2.1 2.0 1.9
16 p
浸炭窒化 60.8 4.2 3.0 2.8 3.3 3.2
HT 53.0 2.5 0.4 0.7 0.3 0.6
17 Q
浸炭窒化 54.3 2.3 0.5 1.1 0.9 1.4
HT 54.2 6.5 1.6 1.4 1.9 1.5
18 R
浸灰窒化 61.5 9.2 0.9 1.0 1.0 1.2
HT 59.4 4.4 1.4 2.0 1.4 1.7
19 S 比
灰窒化 60.3 5.1 2.4 2.4 2.5 2.6
HT 59.4 7.7 1.9 1.5 1.9 1.3
20 T 例
; 灰窒化 59.9 6.5 1.7 1.7 1.9 1.8
HT 62.5 17.0 1.4 1.1 1.2 0.9
21 U k±j
; 灰 ¾化 63.0 29.0 0.8 0.8 0.9 1.1
HT 56.5 3.8 0.7 0.3 0.4 0.6
22 V
浸炭窒化 57.7 3.7 0.8 0.6 0.9 0.5
HT 59.4 3.0 1.3 1.5 1.1 1.3
23 W
浸炭窒化 60.0 3.4 2.2 2.2 2.3 2.3
HT 61.5 2.4 2.0 2.5 1.9 2.1
24 X
浸炭窒化 62.0 3.3 2.2 2.7 2.3 2.9
HT 62.5 1.4 2.3 2.7 2.3 2.9
25 Y
浸炭窒化 62.6 2.7 2.3 2.9 2.7 3.0
HT 62.4 1.5 2.4 2.6 2.3 2.8
26 Z
浸炭窒化 62.3 2.5 2.1 2.9 2.6 2.9
上記の表 3および表 4の結果より、 本発明の組成範囲を有する本発明例では、 3 5 0 °Cの焼戻し処理を施しても、 硬さが H R C 5 8以上となることが判明した。 また、 本発明例では、 単なる焼入れ焼戻し処理 (H T) を施した場合でも、 比較 例に比べて常温および 2 0 0 °Cでの転動疲労寿命おょぴ異物条件下における転動 疲労寿命が高くなることが判明した。 また、 焼入れ処理に代えて浸炭窒化処理を 施した場合でも、 優れた転動疲労寿命が得られることも判明した。 また、 本発明 例では、 転動面の表層から 0 . 1 mm深さにおける炭化物の最大寸法が 8 . 0 μ m以下になることが判明した。
今回開示された実施例は全ての点で例示であつて制限的なものではないと考え られるべきである。 本発明の範囲は上記.した説明ではなくて特許請求の範囲に よって示され、 特許請求の範囲と均等の意味および範囲内でのすべての変更が含 まれることが意図される。
以上に説明したように本願発明者らが最適な組成元素およびその含有量を見出 したことにより、 焼入れ焼戻し処理をすることで、 浸炭窒化処理を施さなくとも 異物混入条件下で優れた転動疲労寿命が得られるとともに、 高温 (たとえば 3 5 0 °c) で焼戻し処理を施しても高レ、硬度を得られる安価な高温用転がり軸受部品 を得ることができた。 産業上の利用可能性
本発明は、 異物混入環境下ならびに高温環境下で使用される高温用転がり軸受 部品に有利に適用され得る。

Claims

請求の範囲
1. 内輪、 外輪および転動体を有する高温用転がり軸受の部品であって、
合金元素の含有量が質量%で、 Cを 0, 6%以上1. 3%以下、 3 1を0. 3 %以上 3. 0 %以下、 M nを 0. 2 %以上 1. 5 %以下、 Pを 0. 03 %以下、 Sを 0. 03%以下、 じ ]:を0. 3%以上 5. 0%以下、 1を0. 1%以上 3. 0%以下、 1を0. 050%以下、 丁 1を0. 003%以下、 Oを 0. 001 5%以下、 Nを 0. 01 5%以下含み、 残部が F eおよび不可避不純物からなる 鋼材よりなり、 かつ焼入れ処理後または浸炭窒化処理後に焼戻し処理された構成 を有し、 かつ前記焼戻し処理後の硬さが HRC 58以上であり、 かつ最大の炭化 物寸法が 8 μ m以下であることを特徴とする、 高温用転がり軸受部品。
2. 前記鋼材は、 質量%で、 0. 05。/。以上0. 25%未満の Moおよび 0, 0 5%以上 1 · 0%以下の Vの少なくとも一種をさらに含んでいることを特徴とす る、 請求項 1に記載の高温用転がり軸受部品。
O 00/28102 補正書の請求の範囲 PCT/JP99/06253
[2000年 3月 28日 (28. 03. 00 ) 国際事務局受理:出願当初の請求の 範囲 1は補正された;他の請求の範囲は変更なし。 ( 1頁)]
1. (補正後) 内輪、 外輪および転動体を有する高温用転がり軸受の部品であつ て、
合金元素の含有量が質量%で、 Cを 0. 6%以上1. 3%以下、 ≤ 1を0. 5 %以上 3. 0 %以下、 M nを 0. 2 %以上 1. 5 %以下、 Pを 0. 03 %以下、 Sを 0. 03%以下、 〇 1~を0. 3%以上 5. 0%以下、 N iを0. 1 %以上 3. 0 %以下、 A 1を 0. 050 %以下、 T iを 0. 003 %以下、 Oを 0. 001
5%以下、 Nを 0. 015%以下で各元素を少なくとも含み、 残部が F eからな る鋼材よりなり、 かつ焼入れ処理後または浸炭窒化処理後に焼戻し処理された構 成を有し、 かつ前記焼戻し処理後の硬さが HRC 58以上であり、 かつ最大の炭 化物寸法が 8 μ m以下であることを特徴とする、 高温用転がり軸受部品。
2. 前記鋼材は、 質量%で、 0. 05%以上0. 25%未満の Moおよび 0. 0 5%以上1. 0%以下の Vの少なくとも一種をさらに含んでいることを特徴とす る、 請求項 1に記載の高温用転がり軸受部品。
1 6 補正された用紙 (条約第 19条)
PCT/JP1999/006253 1998-11-11 1999-11-10 Piece de roulement a billes resistant aux hautes temperatures WO2000028102A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020007007602A KR20010034008A (ko) 1998-11-11 1999-11-10 고온용 회전 베어링 부품
CA002316183A CA2316183C (en) 1998-11-11 1999-11-10 Antifriction bearing part for high temperature
DE19982613T DE19982613B3 (de) 1998-11-11 1999-11-10 Hochtemperatur-Wälzlagerteil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/320435 1998-11-11
JP32043598 1998-11-11

Publications (1)

Publication Number Publication Date
WO2000028102A1 true WO2000028102A1 (fr) 2000-05-18

Family

ID=18121423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006253 WO2000028102A1 (fr) 1998-11-11 1999-11-10 Piece de roulement a billes resistant aux hautes temperatures

Country Status (4)

Country Link
KR (1) KR20010034008A (ja)
CA (1) CA2316183C (ja)
DE (1) DE19982613B3 (ja)
WO (1) WO2000028102A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2384833A (en) * 2001-12-27 2003-08-06 Nsk Ltd Carburized/carbonitrized bearing elements

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206708A (ja) * 2002-01-16 2003-07-25 Ntn Corp ローラ付きカムフォロア
US7918649B2 (en) 2003-11-18 2011-04-05 Ntn Corporation Double-row self-aligning roller bearing and device for supporting wind turbine generator main shaft
US11162162B2 (en) 2017-08-18 2021-11-02 Osaka University Steel with high hardness and excellent toughness
DE102017216762A1 (de) * 2017-09-21 2019-03-21 Thyssenkrupp Ag Werkstoff und Herstellungsverfahren für Wälzlagerkomponenten

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521371B2 (ja) * 1972-03-10 1977-01-13
JPH04198417A (ja) * 1990-11-29 1992-07-17 Sumitomo Metal Ind Ltd 軸受鋼の製造方法
JPH06293939A (ja) * 1993-04-07 1994-10-21 Kobe Steel Ltd 高温転動疲労性に優れた軸受部品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1380635A (en) * 1972-10-17 1975-01-15 Nippon Seiko Kk Steel for rolling elements
JPS5929646B2 (ja) * 1979-07-19 1984-07-21 山陽特殊製鋼株式会社 ころがり軸受用鋼の製造方法
US4911885A (en) * 1988-04-04 1990-03-27 Koyo Seiko Co., Ltd. High carbon chromium bearing steel
US5413643A (en) * 1993-05-13 1995-05-09 Nsk Ltd. Rolling bearing
JPH07126804A (ja) * 1993-11-08 1995-05-16 Daido Steel Co Ltd 浸炭軸受用鋼

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521371B2 (ja) * 1972-03-10 1977-01-13
JPH04198417A (ja) * 1990-11-29 1992-07-17 Sumitomo Metal Ind Ltd 軸受鋼の製造方法
JPH06293939A (ja) * 1993-04-07 1994-10-21 Kobe Steel Ltd 高温転動疲労性に優れた軸受部品

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2384833A (en) * 2001-12-27 2003-08-06 Nsk Ltd Carburized/carbonitrized bearing elements
GB2384833B (en) * 2001-12-27 2004-02-11 Nsk Ltd Rolling bearing
US7137741B2 (en) 2001-12-27 2006-11-21 Nsk Ltd. Rolling bearing

Also Published As

Publication number Publication date
DE19982613T1 (de) 2001-03-08
DE19982613B3 (de) 2013-05-29
CA2316183C (en) 2008-07-15
KR20010034008A (ko) 2001-04-25
CA2316183A1 (en) 2000-05-18

Similar Documents

Publication Publication Date Title
KR101129370B1 (ko) 고온에서의 면압 피로 강도가 우수한 침탄 질화 고주파 담금질 강 부품 및 그 제조 방법
EP3088550B1 (en) Production method of carburized steel component and carburized steel component
EP2383359B1 (en) Hardfacing steel for machine structure, and steel component for machine structure
JP5597563B2 (ja) 窒化用鋼および窒化部品
JP5477111B2 (ja) 窒化高周波焼入れ用鋼及び窒化高周波焼入れ部品
JP2002115030A (ja) 工作機械主軸用転がり軸受
US11332817B2 (en) Machine component
US6808571B2 (en) Heat resistant carburized rolling bearing component and manufacturing method thereof
JP5886119B2 (ja) 肌焼鋼鋼材
JPWO2020138458A1 (ja) 浸炭窒化軸受部品
JPH06293939A (ja) 高温転動疲労性に優れた軸受部品
JP4502929B2 (ja) 転動疲労特性および結晶粒粗大化防止特性に優れた肌焼用鋼
JP3713975B2 (ja) 軸受用鋼
JP4343357B2 (ja) 高温用転がり軸受部品
JP5336972B2 (ja) 窒化用鋼および窒化部品
JP2005042188A (ja) 異物混入環境下での転動疲労寿命に優れた浸炭窒化軸受鋼
JPH0617224A (ja) 高温転動疲労性に優れた浸炭軸受部品
WO2000028102A1 (fr) Piece de roulement a billes resistant aux hautes temperatures
JP4458592B2 (ja) 高温用転がり軸受部品
JP2022170056A (ja) 鋼材
JPH0617225A (ja) 転動疲労性に優れた浸炭軸受部品
JP4343356B2 (ja) 高温用転がり軸受部品
JP5077814B2 (ja) シャフト及びその製造方法
JP4821582B2 (ja) 真空浸炭歯車用鋼
JP3996386B2 (ja) ねじり疲労特性に優れた浸炭用鋼

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA DE KR US

ENP Entry into the national phase

Ref document number: 2316183

Country of ref document: CA

Ref document number: 2316183

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020007007602

Country of ref document: KR

Ref document number: 09582982

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 19982613

Country of ref document: DE

Date of ref document: 20010308

WWE Wipo information: entry into national phase

Ref document number: 19982613

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020007007602

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020007007602

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607