WO2000022181A1 - Free-cutting copper alloy - Google Patents

Free-cutting copper alloy Download PDF

Info

Publication number
WO2000022181A1
WO2000022181A1 PCT/JP1998/005156 JP9805156W WO0022181A1 WO 2000022181 A1 WO2000022181 A1 WO 2000022181A1 JP 9805156 W JP9805156 W JP 9805156W WO 0022181 A1 WO0022181 A1 WO 0022181A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
alloy
silicon
machinability
copper
Prior art date
Application number
PCT/JP1998/005156
Other languages
French (fr)
Japanese (ja)
Inventor
Keiichiro Oishi
Original Assignee
Sambo Copper Alloy Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sambo Copper Alloy Co., Ltd. filed Critical Sambo Copper Alloy Co., Ltd.
Priority to CA002303512A priority Critical patent/CA2303512C/en
Priority to AU10540/99A priority patent/AU738301B2/en
Priority to EP98953070A priority patent/EP1038981B1/en
Priority to DE69828818T priority patent/DE69828818T2/en
Publication of WO2000022181A1 publication Critical patent/WO2000022181A1/en
Priority to US09/983,029 priority patent/US7056396B2/en
Priority to US11/004,879 priority patent/US20050092401A1/en
Priority to US11/094,815 priority patent/US8506730B2/en
Priority to US13/829,813 priority patent/US20130276938A1/en
Priority to US14/463,172 priority patent/US20150044089A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Definitions

  • the present invention relates to a free-cutting copper alloy containing almost no lead component.
  • bronze alloys such as JISH 5111BC6 and brass alloys such as JISH 3250-C3604 and C3771 are generally known. These have improved machinability by containing about 1.0 to 6.0% by weight of lead, and have been used for various products that require cutting (for example, water supply pipes). It is useful as a component of faucet fittings, plumbing fittings, valves, etc.).
  • lead does not form a solid solution in the matrix, but improves the machinability by dispersing in the form of particles.
  • chips are generated.
  • Fig. 1 (D) various troubles such as spiral generation and entanglement with the byte occur.
  • the lead content is usually set to 2.0% by weight or more.
  • wrought copper alloys that require advanced cutting processing contain about 3.0% by weight or more of lead, and bronze-based materials contain about 5% by weight of lead. ing.
  • the lead content is about 5.0% by weight.
  • lead is a harmful substance that has an adverse effect on human health and the environment, its use has recently tended to be greatly restricted.
  • metal vapor generated during high-temperature work such as melting and forging alloys may contain lead components, or lead components may be eluted from faucet fittings or valves upon contact with drinking water.
  • lead components may be eluted from faucet fittings or valves upon contact with drinking water.
  • An object of the present invention is to have extremely high machinability in spite of the fact that the content of lead, which is a machinability improving element, is extremely small (0.02 to 0.4% by weight), It can be safely used as an alternative to conventional free-cutting copper alloys containing a large amount of lead, and has no environmental health problems, including the reuse of chips, and lead-containing products are being regulated.
  • An object of the present invention is to provide a free-cutting copper alloy that can sufficiently cope with a recent trend.
  • Another object of the present invention is to provide excellent corrosion resistance in addition to machinability, such as cut products, forged products, and porcelain products that require corrosion resistance (for example, hydrants, plumbing fittings, valves, etc.). , Stems, hot water supply piping parts, shafts, heat exchanger parts, etc.), and it is an object of the present invention to provide a free-cutting copper alloy having an extremely large practical value.
  • Still another object of the present invention is to provide not only machinability but also high strength and abrasion resistance, and a machined product, a forged product and a porcelain product requiring high strength and abrasion resistance.
  • machinability but also high strength and abrasion resistance
  • a machined product a forged product and a porcelain product requiring high strength and abrasion resistance.
  • bearings, bolts, nuts, bushings, gears, sewing machine parts, hydraulic parts, etc. has a very high practical value. Is to provide.
  • Still another object of the present invention is to excel in high-temperature oxidation resistance in addition to machinability, such as cut products, forged products, and porcelain products that require high-temperature oxidation resistance (for example, petroleum products).
  • machinability such as cut products, forged products, and porcelain products that require high-temperature oxidation resistance (for example, petroleum products).
  • It can be suitably used as a constituent material of gas hot air nozzles, perna heads, gas nozzles for water heaters, etc., and is intended to provide a free-cutting copper alloy with a very large practical value. is there.
  • the present invention proposes the following free-cutting copper alloy to achieve the above object. That is, in the first invention, as a copper alloy having excellent machinability, copper 69 to 79% by weight, silicon 2.0 to 4.0% by weight, and lead 0.02 to 0.4% by weight.
  • the first invention alloy a free-cutting copper alloy which contains an alloy and has an alloy composition composed of zinc.
  • the first invention alloy enables a significant reduction in lead content while ensuring industrially satisfactory machinability by adding silicon. .
  • the first invention alloy has improved machinability by forming seven phases by adding silicon.
  • the amount of silicon is less than 2.0% by weight, the formation of seven phases sufficient to ensure industrially satisfactory machinability is not performed.
  • the machinability is improved with an increase in the amount of silicon added.
  • silicon has a high melting point and a low specific gravity and is easily oxidized, when silicon alone is charged into a furnace during melting of an alloy, the silicon floats on the surface of the molten metal and is oxidized during melting to form silicon oxide or oxidized silicon. It becomes silicon, and it becomes difficult to produce a silicon-containing copper alloy.
  • the addition of silicon is performed after a Cu—Si alloy is added, and the production cost increases. Even in consideration of such an alloy production cost, it is not preferable to add silicon in an amount at which the machinability improving effect is saturated (more than 4.0 wt.
  • the copper content is 6% in consideration of the relationship with the zinc content. For this reason, it has been found that the content of copper and silicon is preferably 69-79% by weight and 2-9% by weight, respectively. . It was set to 0 to 4.0% by weight.
  • the addition of silicon not only improves the machinability, but also improves the flowability, strength, wear resistance, stress corrosion cracking resistance, and high temperature oxidation resistance during fabrication. Also, ductility and anti-zinc corrosion resistance are improved to some extent.
  • the amount of lead added was set to 0.02 to 4% by weight for the following reasons. That is, in the first invention alloy, machinability can be ensured even when the amount of lead is reduced by adding silicon having the above-described functions, but in particular, the conventional free-cutting copper alloy is used. In order to obtain better machinability, it is necessary to add lead in an amount of 0.02% by weight or more. However, if the added amount of lead exceeds 0.4% by weight, the cut surface becomes rougher, the workability in hot working (for example, forging) becomes worse, and the ductility in cold work also decreases.
  • the addition amount of lead is set to 0.02 to 0.4% by weight for the above-described reason.
  • copper alloys also having excellent machinability include 69 to 79% by weight of copper, 2.0 to 4.0% by weight of silicon, and 0.02 to 0.4% of lead. % By weight, and one element selected from bismuth 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight and selenium 0.02 to 0.4% by weight.
  • second invention alloy a free-cutting copper alloy having an alloy composition of zinc.
  • the second invention alloy is composed of the first invention alloy containing 0.02 to 0.4% by weight of bismuth, 0.02 to 0.4% by weight of tellurium, and 0.02 to 0.4% by weight of selenium. It forms an alloy composition further containing one.
  • Bismuth, tellurium, or selenium, like lead does not form a solid solution in the matrix and disperses in a granular form, thereby exhibiting the function of improving machinability, and can compensate for the shortage of lead. Things. Therefore, if any of these are co-added with silicon and lead, the limit of machinability improvement by the addition of silicon and lead And the machinability can be further improved.
  • the second invention alloy paying attention to this point, one of bismuth, tellurium, and selenium is added to further improve the machinability of the first invention alloy. In particular, by adding bismuth, tellurium, or selenium in addition to silicon and lead, a high degree of machinability is exhibited even when cutting complicated shapes at high speed.
  • the addition amount of bismuth, tellurium, or selenium is set to 0.02 to 0.4% by weight.
  • the total amount of both added is not more than 0.4% by weight. If the total amount of addition exceeds 0.4% by weight even slightly, the workability in hot work and ductility in cold state is not as large as in the case where the single addition amount exceeds 0.4% by weight.
  • copper alloys also having excellent machinability include copper of 70 to 80% by weight, silicon of 1.8 to 3.5% by weight, and lead of 0.02 to 0.4%.
  • Wt%, tin 0.3-3.5 wt%, aluminum 0.3-3.5 wt% and phosphorus A free-cutting copper alloy containing at least one element selected from the group consisting of 0.02 to 0.25% by weight and the balance being zinc (hereinafter referred to as "third invention alloy”) ).
  • Tin when added to a Cu—Zn alloy, forms seven phases, similar to silicon, to improve machinability.
  • tin is added in an amount of 1.8 to 4.0% by weight in a Cu-Zn-based alloy containing 58 to 70% by weight of (1) so that even if silicon is not added, It shows good machinability, so by adding tin to the Cu-Si-Zn-based alloy, the formation of the ⁇ -phase can be promoted, and the Cu-Si-Zn-based alloy can be promoted.
  • the formation of the alpha phase by tin is carried out at 1.0% by weight or more and becomes saturated when it reaches 3.5% by weight.
  • the effect of forming the ⁇ phase is not only saturated, but also the ductility is reduced, and when the amount of tin added is less than 1.0% by weight, the effect of forming the y phase is small.
  • the amount of addition is 0.3% by weight or more, there is an effect of dispersing and homogenizing the “phase formed by silicon”.
  • the machinability is also improved by the phase dispersing effect, that is, if the added amount of tin is 0.3% by weight or more, the machinability is improved by the addition of tin.
  • Aluminum also has a function of promoting the formation of the ⁇ phase, as with tin. By adding it together with or instead of tin, aluminum improves the machinability of the Cu—Si—Zn alloy. It can be further improved. Aluminum has a function to improve strength, wear resistance, high-temperature oxidation resistance, and a function to lower the specific gravity of the alloy, in addition to the machinability. It is necessary to add 0% by weight. However, even if added in an amount exceeding 3.5%, the machinability improvement effect commensurate with the added amount is not seen, and as with tin, ductility is reduced.
  • Phosphorus does not have the function of forming an alpha phase like tin or aluminum, but it is added with silicon or with one or both of tin and aluminum.
  • there is a function of uniformly dispersing the generated a phase and improving the phase distribution and such a function can further improve the machinability due to the formation of the a phase.
  • the addition of phosphorus improves the hot workability, improves the strength and stress corrosion cracking resistance, by dispersing the seven phases and at the same time refining the ⁇ -phase crystal grains in the matrix.
  • it also has the effect of significantly improving the flowability of the molten metal during construction. Such an effect due to the addition of phosphorus is not exhibited with an addition of less than 0.02% by weight.
  • the (11-31-? 3 ⁇ 4) -211 series alloy (the first invention alloy) contains 0.3 to 3.5% by weight of tin and 1.0% of aluminum.
  • the machinability is further improved by adding at least one of -3.5% by weight and 0.02 -0.25% by weight of phosphorus.
  • tin, aluminum or phosphorus improves the machinability by the function of forming the a phase or the function of dispersing the seven phases as described above.
  • tin, aluminum or phosphorus is closely contacted with silicon. Relationship. Therefore, in the third invention alloy in which tin, aluminum or phosphorus is co-added to silicon, the function of improving machinability is exhibited by replacing with silicon of the first invention alloy, and the machinability is independent of the seven phases.
  • the required addition amount of silicon is smaller than that of the second invention alloy to which bismuth, tellurium, or selenium is added, which has a function of improving the machinability (a function of improving the machinability by dispersing in a granular form in the matrix).
  • machinability a function of improving the machinability by dispersing in a granular form in the matrix.
  • the addition amount of silicon is set to 1.8 to 3.5% by weight.
  • the relationship between the amount of silicon added and The upper and lower limits of the amount of copper were set slightly higher than those of the second invention alloy, and the preferred content was set to 70 to 80% by weight from the viewpoint of the addition of tin, aluminum or phosphorus.
  • copper alloys also having excellent machinability include copper of 70 to 80% by weight, silicon of 1.8 to 3.5% by weight, and lead of 0.02 to 0.4%. And at least one element selected from the group consisting of tin 0.3 to 3.5% by weight, aluminum 1.0 to 3.5% by weight and phosphorus 0.02 to 0.25% by weight, and bismuth.
  • One element selected from 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight and selenium 0.02 to 0.4% by weight, and the balance is We propose a free-cutting copper alloy having an alloy composition of zinc (hereinafter referred to as the "fourth invention alloy"). That is, the fourth invention alloy has bismuth 0.02 to 0.4 weight as the third invention alloy.
  • the fifth invention as a copper alloy having excellent corrosion resistance in addition to machinability, 69-79% by weight of copper, 2.0-4.0% by weight of silicon, and 0.4% by weight of lead. 0.2 to 0.4% by weight, tin 0.3 to 3.5% by weight, phosphorus 0.02 to 25% by weight, antimony 0.02 to 0.15% by weight and arsenic 0.02
  • a free-cutting copper alloy hereinafter referred to as the "fifth invention alloy" containing at least one element selected from 0.1 to 15% by weight and having the balance of zinc. .
  • the first invention alloy contains 0.3 to 3.5% by weight of tin, 0.02 to 25% by weight of phosphorus, 0.02 to 0.15% by weight of antimony and 0 to 15% by weight of arsenic.
  • the alloy composition further contains at least one of 0.2 to 15% by weight.
  • Tin has a function to improve corrosion resistance (anti-zinc corrosion resistance, corrosion resistance) and forgeability, in addition to its machinability improving function.
  • corrosion resistance anti-zinc corrosion resistance, corrosion resistance
  • forgeability and corrosion cracking resistance can be improved by dispersing the ⁇ phase.
  • the corrosion resistance is improved by such a function of tin, and the machinability is improved mainly by the effect of silicon addition. Therefore, the contents of silicon and copper are the same as those of the first invention alloy.
  • the amount of tin added must be at least 0.3% by weight.
  • the function of improving the corrosion resistance and forgeability due to the addition of tin is not economically useless even if added in excess of 3.5% by weight, because the effect cannot be obtained in proportion to the amount added.
  • Phosphorus uniformly disperses the seven phases and refines the crystal grains of the phases in the matrix, thereby improving the machinability and improving the corrosion resistance (anti-zinc corrosion resistance, anti-zinc corrosion resistance). It has the function of improving forgeability, forgeability, stress corrosion cracking resistance and mechanical strength.
  • the function of phosphorus improves corrosion resistance and the like, and the machinability is improved mainly by the effect of silicon addition.
  • the effect of improving the corrosion resistance and the like due to the addition of phosphorus is exerted by the addition of a trace amount of phosphorus, and is exerted by the addition of 0.02% by weight or more. However, even if it is added in excess of 0.25% by weight, not only the effect corresponding to the added amount cannot be obtained, but also the hot forgeability and the extrudability decrease.
  • Antimony and arsenic also improve anti-zinc corrosion resistance and the like in a very small amount (0.02% by weight or more), like phosphorus. However, if the content exceeds 0.15% by weight, not only the effect corresponding to the added amount is not obtained, but also the hot forgeability and the extrudability are reduced as in the case of excessive addition of phosphorus.
  • the fifth invention alloy in addition to the same amount of copper, silicon and lead as in the first invention alloy, at least one of tin, phosphorus, antimony and arsenic as a corrosion resistance improving element is in the above range. By adding it within, not only the machinability but also the corrosion resistance and the like can be improved.
  • tin and phosphorus mainly function as anticorrosion elements similar to antimony and arsenic. Therefore, a machinability improving element is added in addition to silicon and trace amounts of lead.
  • the compounding amounts of copper and silicon are 69 to 79% by weight and 2.0 to 4.0% by weight, respectively.
  • copper alloys also having excellent machinability and corrosion resistance include 69 to 79% by weight of copper, 2.0 to 4.0% by weight of silicon, and 0.02% of lead. ⁇ 0.4 wt%, tin 0.3-3.5 wt%, phosphorus 0.02-0.25 wt%, antimony 0.02-0.15 wt% and arsenic 0.02 At least one element selected from 0.1 to 5% by weight, bismuth 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight and selenium 0.02 to 0%
  • theixth invention alloy containing one element selected from 4% by weight and having an alloy composition of zinc.
  • the sixth invention alloy has the fifth invention alloy containing bismuth 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight, and selenium 0.02 to 0.4% by weight. It has an alloy composition further containing any one of them, and has a machinability by adding any one of bismuth, tellurium, and selenium in addition to silicon and lead, as in the second invention alloy. And at least one selected from the group consisting of tin, phosphorus, antimony, and arsenic, as in the fifth invention alloy, to improve corrosion resistance and the like.
  • the addition amounts of copper, silicon, lead, bismuth, tellurium, and selenium were the same as those of the second invention alloy, and the addition amounts of tin, phosphorus, antimony, and arsenic were the same as those of the fifth invention alloy.
  • the seventh invention as a copper alloy excellent in machinability, high strength and wear resistance, copper 62 to 78% by weight, silicon 2.5 to 4.5% by weight, Lead is selected from 0.02 to 0.4% by weight, tin 0.3 to 3.0% by weight, aluminum 0.2 to 2.5% by weight, and phosphorus 0.02 to 0.25% by weight. Contains at least one element selected from the group consisting of 0.7 to 3.5% by weight of manganese and 0.73.5% by weight of nickel, with the balance being zinc
  • Manganese or nickel combines with silicon to form Mn x S i ⁇ or N i ⁇ S i ⁇
  • a fine intermetallic compound is formed and uniformly deposited on the matrix, thereby improving wear resistance and strength. Therefore, high strength and wear resistance are improved by adding one or both of manganese and nickel. Such effects are exhibited when manganese and nickel are added in an amount of 0.7% by weight or more, respectively. However, even if it is added in excess of 3.5% by weight, the effect becomes saturated and the effect corresponding to the added amount cannot be obtained. Silicon was added in an amount of 2.5 to 4.5% by weight in consideration of the amount of silicon required to form an intermetallic compound with manganese or nickel.
  • the addition of tin, aluminum and phosphorus also strengthens the matrix phase and improves machinability.
  • Tin and phosphorus improve the strength, abrasion resistance and machinability by dispersing the graphite and ⁇ phases. Tin improves the strength and machinability when added at 0.3% by weight or more, but decreases the ductility when added at more than 3.0% by weight. Therefore, in the alloy of the seventh invention for improving high strength and wear resistance, the addition amount of tin is set to 0.3 to 3.0% by weight in consideration of the effect of improving machinability.
  • Aluminum also contributes to the improvement of abrasion resistance, and the matrix strengthening function is exhibited by adding 0.2% by weight or more. However, if added in excess of 2.5% by weight, the ductility decreases.
  • the addition amount of aluminum is set to 0.2 to 2.5% by weight.
  • the addition of phosphorus improves the hot workability, and improves the strength and wear resistance by dispersing the seven phases and simultaneously refining the grains of the single phase in the matrix.
  • the amount of copper was set to 62 to 78% by weight based on the relationship with the amount of silicon added and the relationship between manganese and nickel combined with silicon.
  • the eighth invention as a copper alloy having excellent high-temperature oxidation resistance in addition to machinability, 69-79% by weight of copper, 2.0-4.0% by weight of silicon, and 0.0% by weight of lead. 2 to 0.4% by weight, aluminum 0.1 to 1.5% by weight and phosphorus 0.02 to 0.2.
  • a free-cutting copper alloy containing 5% by weight and having an alloy composition consisting of zinc with the balance being zinc hereinafter, referred to as an "eighth invention alloy").
  • Aluminum is an element that improves strength, machinability and wear resistance, as well as high-temperature oxidation resistance. Further, as described above, silicon also has functions of improving machinability, strength, wear resistance, stress corrosion cracking resistance, and high temperature oxidation resistance. Improvement of the high-temperature oxidation resistance by aluminum is performed by adding 0.1% by weight or more by co-addition with silicon. However, even if aluminum is added in an amount exceeding 1.5% by weight, the effect of improving high-temperature oxidation resistance corresponding to the added amount is not observed. From this point, the addition amount of aluminum is set to 0.1 to 1.5% by weight.
  • Phosphorus is added to improve the flowability of the molten metal during the production of the alloy. Phosphorus also improves the high-temperature oxidation resistance in addition to the above-mentioned machinability and dezincification corrosion resistance in addition to the flowability of the molten metal. Such an effect of adding phosphorus is exhibited at 0.02% by weight or more. However, even if it is added in excess of 0.25% by weight, no effect commensurate with the added amount is observed, and rather the alloy becomes brittle. From such a point, the addition amount of phosphorus is set to 0.02 to 0.25% by weight.
  • silicon is added to improve machinability as described above, silicon also has a function of improving the flowability of molten metal like phosphorus.
  • the improvement of the fluidity due to silicon is exhibited by the addition of 2.0% by weight or more, which overlaps the addition range necessary for improving machinability. Therefore, the addition amount of silicon is set to 2.0 to 4.0% by weight in consideration of improvement in machinability.
  • copper alloys also having excellent machinability and high-temperature oxidation resistance include 69-79% by weight of copper, 2.0-4.0% by weight of silicon, and 0.1% by weight of lead. 0 2 to 0.4% by weight, aluminum 0.1 to 1.5% by weight, phosphorus 0.02 to 0.25% by weight, bismuth 0.02 to 0.4% by weight, tellurium 0
  • a copper alloy containing an element selected from 2 to 0.4% by weight and selenium 0.02 to 0.4% by weight and a balance of zinc hereinafter referred to as “the 9th alloy”. "Ming alloy").
  • the ninth invention alloy has the eighth invention alloy containing bismuth 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight, and selenium 0.02 to 0.4% by weight.
  • the alloy composition further contains any one of them. As described above, by adding bismuth or the like which is an element for improving machinability similar to lead, high-temperature oxidation resistance similar to that of the eighth invention alloy is obtained. While further improving the machinability.
  • copper alloys also having excellent machinability and high-temperature oxidation resistance include 69 to 79% by weight of copper, 2.0 to 4.0% by weight of silicon, and 0.1% by weight of lead. 0 2 to 0.4% by weight, aluminum 0.1 to 1.5% by weight, phosphorus 0.02 to 0.25% by weight, chromium 0.02 to 0.4% by weight and titanium 0 Free-cutting copper alloy containing one or more elements selected from the range of 0.2 to 0.4% by weight, with the balance being zinc (hereinafter referred to as "the 10th invention alloy”) We propose.
  • Chromium and titanium have a function of improving high-temperature oxidation resistance, and the function is particularly remarkably exerted by a synergistic effect of co-addition with aluminum. Such a function is exhibited at 0.02% by weight or more and becomes saturated at 0.4% by weight, respectively, irrespective of whether they are added alone or co-added. From such a point, in the tenth invention alloy, the eighth invention alloy further contains at least one of 0.02 to 0.4% by weight of chromium and 0.02 to 4% by weight of titanium.
  • the alloy composition of the present invention is intended to further improve the high-temperature oxidation resistance of the eighth invention alloy.
  • copper alloys also having excellent machinability and high-temperature oxidation resistance include 69 to 79% by weight of copper, 2.0 to 4.0% by weight of silicon, and 0.1% of lead. 0 2 to 0.4% by weight, aluminum 0.1 to 1.5% by weight, phosphorus 0.02 to 0.25% by weight, chromium 0.02 to 0.4% by weight and titanium 0 0.2 to 0.4% by weight of at least one element selected from the group consisting of bismuth 0.02 to 4 % By weight, one element selected from 0.02 to 0.4% by weight of tellurium, and 0.02 to 0.4% by weight of selenium, and the balance being an alloy composition comprising zinc.
  • the eleventh invention alloy a machinable copper alloy (hereinafter referred to as "the eleventh invention alloy").
  • the tenth invention alloy has bismuth 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight, and selenium 0.02 to 0.4% by weight.
  • bismuth which is an element similar to lead, which improves machinability by a function different from that of silicon, as described above, the tenth invention is achieved. It is intended to further improve machinability while maintaining high temperature oxidation resistance similar to that of alloys.
  • the above-mentioned alloys of the invention are subjected to a heat treatment at 400 to 600 ° C. for 30 minutes to 5 hours, so that the machinability is further improved.
  • a conductive copper alloy hereinafter referred to as the “first and second invention alloy”.
  • the first to eleventh invention alloys are obtained by adding a machinability improving element such as silicon, and have an excellent machinability due to the addition of such an element. Properties may be further improved by heat treatment. For example, for the alloys having a high copper concentration in the first to eleventh invention alloys and having a small number of a phases and a large number of phases, the heat treatment changes the c phase into the a phase, and the a phase becomes fine. By dispersing and precipitating, machinability is further improved. In addition, when assuming the actual production of porcelain, wrought material, and hot forged products, depending on the conditions such as ⁇ forming conditions, productivity after hot working (hot extrusion, hot forging, etc.), work environment, etc.
  • a machinability improving element such as silicon
  • these materials may be forced air-cooled or water-cooled.
  • the ⁇ phase is slightly reduced and contains the S phase.
  • the seven phases are finely dispersed and precipitated, and the machinability is improved.
  • the heat treatment temperature is less than 400 ° C.
  • the above-mentioned phase change rate becomes slow, and the heat treatment takes an extremely long time, so that it is not economically practical.
  • the temperature exceeds 600 ° C, the phase increases or the S phase appears, The effect of improving machinability cannot be obtained. Therefore, in consideration of practicality, it is preferable to perform heat treatment for 30 minutes to 5 hours under the condition of 400 to 600 ° C. in order to improve machinability.
  • FIG. 1 is a perspective view showing the form of chips generated when the surface of a round bar-shaped copper alloy is cut with a lathe.
  • No. 1200 was obtained by heat-treating an extruded material having the same composition as that of the first invention alloy No. 1006 at 580 ° C. for 30 minutes.
  • 200 2 is extruded material having the same composition as No. 100 6 at 450 ° C,
  • No. 12 00 3 was heat-treated under the conditions of 2 hours, and No. 12 00 3 was an extruded material having the same composition as the first invention alloy No. 100 7 under the same conditions as No. 1 2 0 1 (5
  • No. 12 0 04 is No. 10 at 80 ° C for 30 minutes.
  • Extruded material having the same composition as No. 07 was used under the same conditions as No. 1 2 0 2 (450 ° C, 2 Time).
  • No. 13006 corresponds to “13C4622”, and is a naval brass having the highest corrosion resistance among the copper products specified in JIS.
  • Figs. 1 (A) to (D) the state of the chips generated by cutting was observed and classified into four types as shown in Figs. 1 (A) to (D) according to their shapes and shown in Tables 1 to 15. Place If the chips have a spiral shape of three or more turns as shown in Fig. (D), it becomes difficult to process the chips (collection and reuse of the chips, etc.), and the chips are turned into bytes. Troubles such as entanglement or damage to the cutting surface occur, making it impossible to perform good cutting. Also, as shown in Fig. (C), when the chip has a spiral shape of about 2 turns from a half-turn arc shape, a large trouble such as a spiral form of 3 turns or more is obtained.
  • the quality of the cut surface was judged by the surface roughness.
  • the results were as shown in Tables 18 to 33.
  • the maximum height (Rmax) is often used as a standard for surface roughness, and it depends on the use of brass products. 10 ⁇ m ⁇ Rmax and 15 ⁇ m, it can be judged that industrially satisfactory machinability was obtained, and Rmax ⁇ 15 ⁇ m In this case, it can be determined that the machinability is poor.
  • Rmax ⁇ 10 am The case of W 1 P is indicated by “ ⁇ ”, the case of 10 m ⁇ Rmax ⁇ 15 ⁇ m is indicated by “ ⁇ ”, and the case of Rmax ⁇ 15 ⁇ m is indicated by “x”.
  • the first invention alloy No. 1001 to No. 107 the second invention alloy No. 200 to No. 206, 3rd invention alloy No. 3001 to No. 310, 4th invention alloy No. 4001 to No. 210, 5th invention alloy No. 5 0 0 1 to No. 520, 6th invention alloy No. 6 0 1 to No. 6 0 45, 7th invention alloy No. 7 0 1 to No. 7 0 29, 8th Invention alloys No. 800 1 to No. 800, ninth invention alloy No. 900 to No. 906, No. 10 invention alloy No. 1000 to No. 1 0 0 8, 1st invention alloy No. 1 1 0 0 1 to No.
  • 1 1 0 1 1 and 1 2 invention alloy No. 1 2 0 0 1 to No. 1 2 0 0 4 also has the same machinability as conventional alloys No. 1301 to No. 1303 containing a large amount of lead.
  • lead as well as conventional alloys No. 1304-No. It has good machinability compared to conventional alloys containing a large amount of No. 1301 to No. 1303.
  • the heat-treated first invention alloys N 0.12 0 01 to No. 1 200 4 Have the same or higher machinability, and it is understood that the heat treatment can further improve the machinability of the first to eleventh invention alloys depending on the conditions such as the alloy composition.
  • the first and second test pieces having the same shape were cut out from each extruded material obtained as described above.
  • each of the first test pieces was heated to 700 ° C, held for 30 minutes, and then compressed in the axial direction at a compressibility of 70% (the height of the first test piece). (Length) is 25 mm
  • the surface morphology 700 ° C deformability was visually determined after compression. The results were as shown in Tables 18 to 33. Judgment of the deformability was carried out visually from the state of the cracks on the side of the test piece, and in Tables 18 to 33, ⁇ indicates that no crack occurred and ⁇ indicates that a small crack occurred.
  • the 1st to 12th invention alloys are the same as the conventional alloys No. 13001 to No. 13004 and No. 13 It had a hot workability and a mechanical property equal to or higher than that of 1306, and was confirmed to be industrially suitable for use.
  • the seventh invention alloy has the same mechanical properties as conventional alloy No. 135, which is aluminum bronze with the highest strength among the copper products specified in JIS, It is understood that it is excellent in high strength.
  • the first to fourth invention alloys and the eighth to 12th invention alloys Lead-containing conventional alloys No. 1.301 to No. 1.33 have superior corrosion resistance compared to No. 1.33, and in particular, have improved machinability and corrosion resistance.
  • the No. 5 and No. 6 invention alloys are extremely superior to the conventional alloy No. 1.306, which is one of the most excellent corrosion resistance among brass products specified in JIS. It was confirmed that the steel had corrosion resistance.
  • the 12th invention alloy also has the same stress corrosion cracking resistance as the conventional alloy No. 1305, which is aluminum bronze that does not contain zinc, and is a corrosion-resistant copper product specified in JIS. It was confirmed that it had better stress corrosion cracking resistance than conventional alloy No. 13006, which is Naval brass which is the most excellent in resistance.
  • the obtained round bar-shaped test pieces were obtained, and the weight of each test piece (hereinafter referred to as “weight before oxidation”) was measured. Thereafter, each test piece was stored in a magnetic crucible and left in an electric furnace maintained at 500 ° C.
  • the test piece is taken out of the electric furnace, the weight of each test piece (hereinafter referred to as “post-oxidation weight”) is measured, and the weight of the test piece is calculated from the weight before oxidation and the weight after oxidation.
  • X (1 0 cm 2 test piece (cm 2) are those calculated from the equation J.
  • the wear resistance of the seventh invention alloys No. 701a to No. 709a was compared with that of the conventional alloys No. 1301a to No. 1306a. The following wear test was performed to confirm this.
  • an outer diameter of 32 mm and a thickness (length in the axial direction) of 10 mm are obtained by cutting an outer peripheral surface thereof, and performing drilling and cutting.
  • each test piece was fitted and fixed to a rotatable shaft, and 50 kg of SUS304 with an outer diameter of 48 mm whose axis was parallel to this was placed in a hole made of SUS304. A load is applied to maintain the state of pressing contact. Thereafter, the SUS304 roll and the test piece rolling thereon are rotated at the same rotation speed (209 rpm) while multi-oil is dropped on the outer peripheral surface of the test piece.
  • the seventh invention alloy No. 7001 a to No. 720 Conventional alloy No. 1 which is aluminum bronze with the highest wear resistance among the copper products specified in JIS as well as No. 1 304 and No. 130 06 It was confirmed that the abrasion resistance was excellent as compared with 1305. Therefore, when judged comprehensively in consideration of the results of the tensile test described above, the 7th invention alloy shows that, in addition to machinability, the wear resistance of the copper alloy products specified in JIS It can be said that it has high strength and wear resistance equal to or higher than aluminum bronze, which has the highest resistance.
  • Nana 74.6 2.8 0.05 0.08 0.19 Nana
  • Applicable 1 Painting Hot workability Suggested properties Refractory metal Cutting surface of chip Principal force Observed 70 0 ° C elongation Corrosion Elongation Corrosion No. Machine form (N) ( «m ) mm (N / mm 2 ) (%)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Adornments (AREA)
  • Domestic Plumbing Installations (AREA)
  • Forging (AREA)

Abstract

A free-cutting copper alloy capable of securing an ability of being freely cut in an industrially satisfactory manner in spite of the lead content reduced greatly as compared with that of a conventional free-cutting copper alloy, and having alloy composition comprising 69-79 wt.% of copper, 2.0-4.0 wt.% of silicon, 0.02-0.4 wt.% of lead, and zinc for the remainder.

Description

明 細 書  Specification
快 削 性 銅 合 金  Free-cutting copper alloy
技術分野 Technical field
本発明は、 鉛成分を殆ど含有しない快削性銅合金に関するものである。 背景技術  The present invention relates to a free-cutting copper alloy containing almost no lead component. Background art
被削性に優れた銅合金として、 一般に、 J I S H 5 1 1 1 BC 6等の 青銅系合金や J I S H 325 0 -C 36 04, C 377 1等の黄銅系合金 が知られている。 これらは 1. 0〜6. 0重量%程度の鉛を含有することに よって被削性を向上させたものであり、 従来からも、 切削加工を必要とする 各種製品 (例えば、 上水道用配管の水栓金具, 給排水金具, バルブ等) の構 成材として重宝されている。  As copper alloys having excellent machinability, bronze alloys such as JISH 5111BC6 and brass alloys such as JISH 3250-C3604 and C3771 are generally known. These have improved machinability by containing about 1.0 to 6.0% by weight of lead, and have been used for various products that require cutting (for example, water supply pipes). It is useful as a component of faucet fittings, plumbing fittings, valves, etc.).
ところで、 鉛はマトリックスに固溶せず、 粒状をなして分散することによ つて、 被削性を向上させるものであるが、 鉛含有量が 1重量%に満たない場 合には、 切屑が図 1 (D) の如く螺旋状に連なった状態で生成してバイ トに 絡み付く等の種々のトラブルを生じる。 一方、 鉛含有量が 1. 0重量%以上 であれば、 切削抵抗の軽減等を充分に図ることができるが、 鉛含有量が 2. 0重量%に満たない場合には切削表面が粗くなる。 したがって、 工業的に満 足しうる被削性を確保するためには、 鉛含有量を 2. 0重量%以上としてお くのが普通である。 一般に、 高度の切削加工が要求される銅合金展伸材にお いては約 3. 0重量%以上の鉛が含有されており、 青銅系の铸物においては 約 5重量%の鉛が含有されている。 例えば、 上記した J I S H 5 1 1 1 B C 6では鉛含有量が約 5. 0重量%である。  By the way, lead does not form a solid solution in the matrix, but improves the machinability by dispersing in the form of particles. However, when the lead content is less than 1% by weight, chips are generated. As shown in Fig. 1 (D), various troubles such as spiral generation and entanglement with the byte occur. On the other hand, if the lead content is 1.0% by weight or more, cutting resistance can be sufficiently reduced, but if the lead content is less than 2.0% by weight, the cutting surface becomes rough. . Therefore, in order to ensure industrially satisfactory machinability, the lead content is usually set to 2.0% by weight or more. In general, wrought copper alloys that require advanced cutting processing contain about 3.0% by weight or more of lead, and bronze-based materials contain about 5% by weight of lead. ing. For example, in the above-mentioned JISH5111BC6, the lead content is about 5.0% by weight.
しかし、 鉛は人体や環境に悪影響を及ぼす有害物質であるところから、 近 時においては、 その用途が大幅に制限される傾向にある。 例えば、 合金の溶 解, 铸造等の高温作業時に発生する金属蒸気には鉛成分が含まれることにな り、 或いは飲料水等との接触により水栓金具や弁等から鉛成分が溶出する虞 れがあり、 人体や環境衛生上問題がある。 そこで、 近時、 米国等の先進国に おいては銅合金における鉛含有量を大幅に制限する傾向にあり、 わが国にお いても鉛含有量を可及的に低減した快削性銅合金の開発が強く要請されてい 発明の開示 However, since lead is a harmful substance that has an adverse effect on human health and the environment, its use has recently tended to be greatly restricted. For example, metal vapor generated during high-temperature work such as melting and forging alloys may contain lead components, or lead components may be eluted from faucet fittings or valves upon contact with drinking water. There are problems with human health and environmental health. Therefore, recently, developed countries such as the United States In recent years, there has been a strong demand for the development of free-cutting copper alloys with the lowest possible lead content in Japan.
本発明の目的は、 被削性改善元素である鉛の含有量が極く微量 ( 0 . 0 2 〜0 . 4重量%) であるにも拘わらず、 極めて被削性に富むものであり、 鉛 を大量に含有する従来の快削性銅合金の代替材料として安全に使用できるも のであり、 切屑の再利用等を含めて環境衛生上の問題が全くなく、 鉛含有製 品が規制されつつある近時の傾向に充分対応することができる快削性銅合金 を提供することにある。  An object of the present invention is to have extremely high machinability in spite of the fact that the content of lead, which is a machinability improving element, is extremely small (0.02 to 0.4% by weight), It can be safely used as an alternative to conventional free-cutting copper alloys containing a large amount of lead, and has no environmental health problems, including the reuse of chips, and lead-containing products are being regulated. An object of the present invention is to provide a free-cutting copper alloy that can sufficiently cope with a recent trend.
本発明の他の目的は、 被削性に加えて耐蝕性にも優れるものであり、 耐蝕 性を必要とする切削加工品, 鍛造品, 铸物製品等 (例えば、 給水栓, 給排水 金具, バルブ, ステム, 給湯配管部品, シャフト, 熱交換器部品等) の構成 材として好適に使用することができるものであり、 その実用的価値極めて大 なる快削性銅合金を提供することにある。  Another object of the present invention is to provide excellent corrosion resistance in addition to machinability, such as cut products, forged products, and porcelain products that require corrosion resistance (for example, hydrants, plumbing fittings, valves, etc.). , Stems, hot water supply piping parts, shafts, heat exchanger parts, etc.), and it is an object of the present invention to provide a free-cutting copper alloy having an extremely large practical value.
本発明の更に他の目的は、 被削性に加えて高力性, 耐摩耗性にも優れるも のであり、 高力性, 耐摩耗性を必要とする切削加工品, 鍛造品, 鐯物製品等 (例えば、 軸受, ボルト, ナッ ト, ブッシュ, 歯車, ミシン部品, 油圧部品 等) の構成材として好適に使用することができるものであり、 その実用的価 値極めて大なる快削性銅合金を提供することにある。  Still another object of the present invention is to provide not only machinability but also high strength and abrasion resistance, and a machined product, a forged product and a porcelain product requiring high strength and abrasion resistance. (For example, bearings, bolts, nuts, bushings, gears, sewing machine parts, hydraulic parts, etc.), and has a very high practical value. Is to provide.
本発明の更に他の目的は、 被削性に加えて耐高温酸化性にも優れるもので あり、 耐高温酸化性を必要とする切削加工品, 鍛造品, 鐯物製品等 (例え ば、 石油 · ガス温風ヒー夕用ノズル, パーナヘッ ド, 給湯器用ガスノズル 等) の構成材として好適に使用することができるものであり、 その実用的価 値極めて大なる快削性銅合金を提供することにある。  Still another object of the present invention is to excel in high-temperature oxidation resistance in addition to machinability, such as cut products, forged products, and porcelain products that require high-temperature oxidation resistance (for example, petroleum products). · It can be suitably used as a constituent material of gas hot air nozzles, perna heads, gas nozzles for water heaters, etc., and is intended to provide a free-cutting copper alloy with a very large practical value. is there.
本発明は、 上記の目的を達成すべく、 次のような快削性銅合金を提案す る。 すなわち、 第 1発明においては、 被削性に優れた銅合金として、 銅 6 9〜 7 9重量%と珪素 2 . 0〜4 . 0重量%と鉛 0 . 0 2〜0 . 4重量%とを含 有し、 且つ残部が亜鉛からなる合金組成をなす快削性銅合金 (以下 「第 1発 明合金」 という) を提案する。 The present invention proposes the following free-cutting copper alloy to achieve the above object. That is, in the first invention, as a copper alloy having excellent machinability, copper 69 to 79% by weight, silicon 2.0 to 4.0% by weight, and lead 0.02 to 0.4% by weight. We propose a free-cutting copper alloy (hereinafter, referred to as "the first invention alloy") which contains an alloy and has an alloy composition composed of zinc.
鉛はマトリックスに固溶せず、 粒状をなして分散することによって、 被削 性を向上させるものである。 一方、 珪素は金属組織中に 7相 (場合によって は/ c相) を出現させることにより、 被削性を改善するものである。 このよう に、 両者は合金特性における機能を全く異にするものであるが、 被削性を改 善させる点では共通する。 かかる点に着目して、 第 1発明合金は、 珪素を添 加することにより、 工業的に満足しうる被削性を確保しつつ、 鉛含有量の大 幅な低減を可能としたものである。 すなわち、 第 1発明合金は、 珪素の添加 による 7相形成により被削性を改善したものである。  Lead does not form a solid solution in the matrix but disperses in the form of particles to improve machinability. On the other hand, silicon improves machinability by causing seven phases (or / c phase in some cases) to appear in the metal structure. As described above, the two have completely different functions in alloy properties, but they are common in terms of improving machinability. Focusing on this point, the first invention alloy enables a significant reduction in lead content while ensuring industrially satisfactory machinability by adding silicon. . In other words, the first invention alloy has improved machinability by forming seven phases by adding silicon.
而して、 珪素の添加量が 2 . 0重量%未満では、 工業的に満足しうる被削 性を確保するに充分な 7相の形成が行われない。 また、 被削性は珪素添加量 の増大に伴って向上するが、 4 . 0重量%を超えて添加しても、 その添加量 に見合う被削性改善効果はない。 ところで、 珪素は融点が高く比重が小さい ため又酸化し易いため、 合金溶融時に珪素単体で炉内に装入すると、 当該珪 素が湯面に浮く と共に、 溶融時に酸化されて珪素酸化物ないし酸化珪素とな り、 珪素含有銅合金の製造が困難となる。 したがって、 珪素含有銅合金の铸 塊製造にあっては、 通常、 珪素添加を C u— S i合金とした上で行うことに なり、 製造コストが高くなる。 このような合金製造コストを考慮した場合に も、 被削性改善効果が飽和状態となる量 (4 . 0重量 を超えて珪素を添 加することは好ましくない。 また、 実験によれば、 珪素を 2 . 0〜4 . 0重 量%添加したときにおいて、 C u— Z n系合金本来の特性を維持するために は、 亜鉛含有量との関係をも考慮した場合、 銅含有量は 6 9〜7 9重量%の 範囲としておくことが好ましいことが判明した。 このような理由から、 第 1 発明合金にあっては、 銅及び珪素の含有量を夫々 6 9〜7 9重量%及び 2 . 0〜4. 0重量%とした。 なお、 珪素の添加により、 被削性が改善される 他、 铸造時の湯流れ性, 強度, 耐摩耗性, 耐応力腐蝕割れ性, 耐高温酸化性 も改善される。 また、 延性, 耐脱亜鉛腐蝕性も或る程度改善される。 Thus, if the amount of silicon is less than 2.0% by weight, the formation of seven phases sufficient to ensure industrially satisfactory machinability is not performed. The machinability is improved with an increase in the amount of silicon added. However, even if added over 4.0% by weight, there is no machinability improvement effect commensurate with the added amount. By the way, since silicon has a high melting point and a low specific gravity and is easily oxidized, when silicon alone is charged into a furnace during melting of an alloy, the silicon floats on the surface of the molten metal and is oxidized during melting to form silicon oxide or oxidized silicon. It becomes silicon, and it becomes difficult to produce a silicon-containing copper alloy. Therefore, in the bulk production of a silicon-containing copper alloy, usually, the addition of silicon is performed after a Cu—Si alloy is added, and the production cost increases. Even in consideration of such an alloy production cost, it is not preferable to add silicon in an amount at which the machinability improving effect is saturated (more than 4.0 wt. When 2.0 to 4.0% by weight of Cu is added, in order to maintain the original characteristics of the Cu—Zn alloy, the copper content is 6% in consideration of the relationship with the zinc content. For this reason, it has been found that the content of copper and silicon is preferably 69-79% by weight and 2-9% by weight, respectively. . It was set to 0 to 4.0% by weight. The addition of silicon not only improves the machinability, but also improves the flowability, strength, wear resistance, stress corrosion cracking resistance, and high temperature oxidation resistance during fabrication. Also, ductility and anti-zinc corrosion resistance are improved to some extent.
一方、 鉛の添加量は、 次の理由から 0. 0 2〜 4重量%とした。 すな わち、 第 1発明合金では、 上記した如き機能を有する珪素を添加したことに より、 鉛添加量を低減しても被削性を確保できるが、 特に、 従来の快削性銅 合金より優れた被削性を得るためには、 鉛を 0. 0 2重量%以上添加する必 要がある。 しかし、 鉛添加量が 0. 4重量%を超えると、 却って切削表面が 粗くなると共に、 熱間での加工性 (例えば、 鍛造性) が悪くなり、 冷間での 延性も低下する。 そして、 鉛添加量が 0. 4重量%以下の微量であれば、 わ が国を含めた先進各国において近い将来制定されるであろう鉛含有量規制が 如何に厳格なものであったとしても、 その規制を充分にクリアすることがで きると考えられる。 なお、 後述する第 2〜第 1 1発明合金においても、 上記 した理由から、 鉛の添加量は 0. 0 2〜0. 4重量%とされている。  On the other hand, the amount of lead added was set to 0.02 to 4% by weight for the following reasons. That is, in the first invention alloy, machinability can be ensured even when the amount of lead is reduced by adding silicon having the above-described functions, but in particular, the conventional free-cutting copper alloy is used. In order to obtain better machinability, it is necessary to add lead in an amount of 0.02% by weight or more. However, if the added amount of lead exceeds 0.4% by weight, the cut surface becomes rougher, the workability in hot working (for example, forging) becomes worse, and the ductility in cold work also decreases. If the amount of lead added is as small as 0.4% by weight or less, no matter how strict the lead content regulations that will be enacted in advanced countries including Japan in the near future, It is thought that the regulation can be cleared sufficiently. In addition, in the second to eleventh invention alloys described later, the addition amount of lead is set to 0.02 to 0.4% by weight for the above-described reason.
また、 第 2発明においては、 同じく被削性に優れた銅合金として、 銅 6 9 〜7 9重量%と、 珪素2. 0〜4. 0重量%と、 鉛 0. 0 2〜0. 4重量% と、 ビスマス 0. 0 2〜0. 4重量%、 テルル 0. 0 2〜0. 4重量%及び セレン 0. 0 2〜0. 4重量%から選択された 1種の元素とを含有し、 且つ 残部が亜鉛からなる合金組成をなす快削性銅合金 (以下 「第 2発明合金」 と いう) を提案する。  In the second invention, copper alloys also having excellent machinability include 69 to 79% by weight of copper, 2.0 to 4.0% by weight of silicon, and 0.02 to 0.4% of lead. % By weight, and one element selected from bismuth 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight and selenium 0.02 to 0.4% by weight. In addition, the present invention proposes a free-cutting copper alloy (hereinafter, referred to as "second invention alloy") having an alloy composition of zinc.
すなわち、 第 2発明合金は、 第 1発明合金にビスマス 0. 0 2〜0. 4重 量%、 テルル 0. 0 2〜0. 4重量%及びセレン 0. 0 2〜0. 4重量%の 1つを更に含有させた合金組成をなすものである。  That is, the second invention alloy is composed of the first invention alloy containing 0.02 to 0.4% by weight of bismuth, 0.02 to 0.4% by weight of tellurium, and 0.02 to 0.4% by weight of selenium. It forms an alloy composition further containing one.
ビスマス、 テルル又はセレンは、 鉛と同様に、 マトリックスに固溶せず、 粒状をなして分散することによって、 被削性を向上させる機能を発揮するも のであり、 鉛の添加量不足を補いうるものである。 したがって、 これらの何 れかを珪素及び鉛と共添させると、 珪素及び鉛の添加による被削性改善限度 を超えて被削性を更に向上させることが可能となる。 第 2発明合金では、 か かる点に着目して、 第 1発明合金における被削性を更に改善すべく、 ビスマ ス、 テルル及びセレンのうちの 1つを添加させることとした。 特に、 珪素及 び鉛に加えてビスマス、 テルル又はセレンを添加することにより、 複雑な形 状を高速で切削加工する場合にも、 高度の被削性を発揮する。 しかし、 ビス マス、 テルル又はセレンの添加による被削性向上効果は、 各々の添加量が 0 . 0 2重量%未満では発揮されない。 一方、 これらは銅に比して高価なも のであるから、 0 . 4重量%を超えて添加しても、 被削性は僅かながらも添 加量の増加に応じて向上するものの、 経済的に添加量に見合う程の効果は認 められない。 また、 添加量が 0 . 4重量%を超えると、 熱間での加工性 (例 えば、 鍛造性等) が悪くなり、 冷間での加工性 (延性) も低下する。 しか も、 ビスマス等の重金属について仮に鉛同様の問題が生じる可能性があった としても、 0 . 4重量%以下の微量添加であれば、 格別の問題を生じる虞れ もないと考えられる。 これらの点から、 第 2発明合金では、 ビスマス、 テル ル又はセレンの添加量を 0 . 0 2〜0 . 4重量%とした。 なお、 鉛とビスマ ス、 テルル又はセレンとを共添させる場合、 両者の合計添加量は 0 . 4重量 %以下となるようにしておくことが好ましい。 けだし、 合計添加量が 0 . 4 重量%を僅かでも超えると、 それらの単独添加量が 0 . 4重量%を超える場 合ほどではないが、 熱間での加工性や冷間での延性が低下し始め、 或いは切 屑形態が図 1 ( B ) から同図 (A ) へと移行する虞れがあるからである。 と ころで、 ビスマス、 テルル又はセレンは上記した如く珪素と異なる機能によ り被削性を向上させるものであるから、 これらの添加により銅及び珪素の適 正含有量は影響されない。 したがって、 第 2発明合金における銅及び珪素の 含有量は第 1発明合金と同一とした。 Bismuth, tellurium, or selenium, like lead, does not form a solid solution in the matrix and disperses in a granular form, thereby exhibiting the function of improving machinability, and can compensate for the shortage of lead. Things. Therefore, if any of these are co-added with silicon and lead, the limit of machinability improvement by the addition of silicon and lead And the machinability can be further improved. In the second invention alloy, paying attention to this point, one of bismuth, tellurium, and selenium is added to further improve the machinability of the first invention alloy. In particular, by adding bismuth, tellurium, or selenium in addition to silicon and lead, a high degree of machinability is exhibited even when cutting complicated shapes at high speed. However, the effect of improving the machinability by adding bismuth, tellurium or selenium is not exhibited when the amount of each addition is less than 0.02% by weight. On the other hand, since these are more expensive than copper, even if they are added in an amount exceeding 0.4% by weight, the machinability is slightly improved with an increase in the added amount, but the cost is low. No effect commensurate with the amount added was observed. If the addition amount exceeds 0.4% by weight, hot workability (for example, forgeability) deteriorates, and cold workability (ductility) also deteriorates. Even if a heavy metal such as bismuth may have the same problem as lead, it is considered that there is no possibility that a special problem will occur if a small amount of 0.4 wt% or less is added. From these points, in the second invention alloy, the addition amount of bismuth, tellurium, or selenium is set to 0.02 to 0.4% by weight. When lead and bismuth, tellurium, or selenium are added together, it is preferable that the total amount of both added is not more than 0.4% by weight. If the total amount of addition exceeds 0.4% by weight even slightly, the workability in hot work and ductility in cold state is not as large as in the case where the single addition amount exceeds 0.4% by weight. This is because there is a possibility that the chip shape will start to decrease or the chip morphology will shift from FIG. 1 (B) to FIG. 1 (A). Since bismuth, tellurium, or selenium improves machinability by a function different from that of silicon as described above, the proper content of copper and silicon is not affected by the addition of bismuth, tellurium, or selenium. Therefore, the contents of copper and silicon in the second invention alloy were the same as those in the first invention alloy.
また、 第 3発明においては、 同じく被削性に優れた銅合金として、 銅 7 0 〜8 0重量%と、 珪素 1 . 8〜3 . 5重量%と、 鉛 0 . 0 2〜0 . 4重量% と、 錫 0 . 3〜3 . 5重量%、 アルミニウムし 0〜3 . 5重量%及び燐 0 . 0 2〜0 . 2 5重量%から選択された 1種以上の元素とを含有し、 且つ 残部が亜鉛からなる合金組成をなす快削性銅合金 (以下 「第 3発明合金」 と いう) を提案する。 In the third invention, copper alloys also having excellent machinability include copper of 70 to 80% by weight, silicon of 1.8 to 3.5% by weight, and lead of 0.02 to 0.4%. Wt%, tin 0.3-3.5 wt%, aluminum 0.3-3.5 wt% and phosphorus A free-cutting copper alloy containing at least one element selected from the group consisting of 0.02 to 0.25% by weight and the balance being zinc (hereinafter referred to as "third invention alloy") ).
錫は、 C u— Z n系合金に添加した場合、 珪素と同様に、 7相を形成して 被削性を向上させるものである。 例えば、 錫は、 5 8〜7 0重量%の( 1を 含有する C u— Z n系合金において 1 . 8〜4 . 0重量%添加させることに より、 珪素が添加されておらずとも、 良好な被削性を示す。 したがって、 C u - S i 一 Z n系合金に錫を添加させることにより、 ァ相の形成を促進さ せることができ、 C u— S i—Z n系合金の被削性を更に向上させることが できる。 錫によるァ相の形成は 1 . 0重量%以上で行なわれ、 3 . 5重量% に達すると飽和状態となる。 なお、 錫の添加量が 3 . 5重量%を超えると、 ァ相の形成効果が飽和状態となるばかりでなく、 却って延性が低下する。 ま た、 錫の添加量が 1 . 0重量%未満では y相の形成効果が少ないものの、 添 加量が 0 . 3重量%以上であれば、 珪素により形成される "相を分散させて 均一化させる効果があり、 このような γ相の分散効果によつても被削性が改 善される。 すなわち、 錫の添加量が 0 . 3重量%以上であれば、 その添加に より被削性が改善されることになる。  Tin, when added to a Cu—Zn alloy, forms seven phases, similar to silicon, to improve machinability. For example, tin is added in an amount of 1.8 to 4.0% by weight in a Cu-Zn-based alloy containing 58 to 70% by weight of (1) so that even if silicon is not added, It shows good machinability, so by adding tin to the Cu-Si-Zn-based alloy, the formation of the α-phase can be promoted, and the Cu-Si-Zn-based alloy can be promoted. The formation of the alpha phase by tin is carried out at 1.0% by weight or more and becomes saturated when it reaches 3.5% by weight. When the content exceeds 5% by weight, the effect of forming the α phase is not only saturated, but also the ductility is reduced, and when the amount of tin added is less than 1.0% by weight, the effect of forming the y phase is small. However, when the amount of addition is 0.3% by weight or more, there is an effect of dispersing and homogenizing the “phase formed by silicon”. The machinability is also improved by the phase dispersing effect, that is, if the added amount of tin is 0.3% by weight or more, the machinability is improved by the addition of tin.
また、 アルミニウムも、 錫と同様に、 ァ相形成を促進させる機能を有する ものであり、 錫と共に或いはこれに代えて添加することにより、 C u— S i — Z n系合金の被削性を更に向上させることができる。 アルミニウムには、 被削性の他、 強度, 耐摩耗性, 耐高温酸化性を改善させる機能や合金比重を 低下させる機能ももあるが、 被削性改善機能が発揮されるためには、 少なく ともし 0重量%添加させる必要がある。 しかし、 3 . 5童量%を超えて添 加しても、 添加量に見合った被削性改善効果はみられないし、 錫と同様に延 性の低下を招来する。  Aluminum also has a function of promoting the formation of the α phase, as with tin. By adding it together with or instead of tin, aluminum improves the machinability of the Cu—Si—Zn alloy. It can be further improved. Aluminum has a function to improve strength, wear resistance, high-temperature oxidation resistance, and a function to lower the specific gravity of the alloy, in addition to the machinability. It is necessary to add 0% by weight. However, even if added in an amount exceeding 3.5%, the machinability improvement effect commensurate with the added amount is not seen, and as with tin, ductility is reduced.
また、 燐には、 錫やアルミニウムのようなァ相の形成機能はないが、 珪素 の添加により又はこれと錫, アルミニウムの一方若しくは両方を共添させる ことにより生成したァ相を均一に分散して、 相分布を良好なものとする機 能があり、 かかる機能によってァ相形成による被削性の更なる向上を図るこ とができる。 また、 燐の添加により、 7相の分散化と同時にマトリックスに おける α相の結晶粒を微細化して、 熱間加工性を向上させ、 強度, 耐応力腐 蝕割れ性も向上させる。 さらに、 铸造時の湯流れ性を著しく向上させる効果 もある。 このような燐添加による効果は 0 . 0 2重量%未満の添加では発揮 されない。 一方、 燐の添加量が 0 . 2 5重量%を超えると、 添加量に見合つ た被削性改善等の効果は得られないし、 過剰添加により却って熱間鍛造性, 押出性の低下を招来する。 Phosphorus does not have the function of forming an alpha phase like tin or aluminum, but it is added with silicon or with one or both of tin and aluminum. Thus, there is a function of uniformly dispersing the generated a phase and improving the phase distribution, and such a function can further improve the machinability due to the formation of the a phase. In addition, the addition of phosphorus improves the hot workability, improves the strength and stress corrosion cracking resistance, by dispersing the seven phases and at the same time refining the α-phase crystal grains in the matrix. In addition, it also has the effect of significantly improving the flowability of the molten metal during construction. Such an effect due to the addition of phosphorus is not exhibited with an addition of less than 0.02% by weight. On the other hand, if the added amount of phosphorus exceeds 0.25% by weight, the effect of improving machinability and the like corresponding to the added amount cannot be obtained, and excessive addition leads to deterioration of hot forgeability and extrudability. I do.
第 3発明合金では、 かかる点に着目して、 ( 11 ー 3 1 —?¾)ー2 11系合金 (第 1発明合金) に、 錫 0 . 3〜3 . 5重量%、 アルミニウム 1 . 0〜3 . 5重量%及び燐 0 . 0 2〜0 . 2 5重量%のうち少なくとも 1つを添加させ ることより、 被削性の更なる向上を図っている。  In the third invention alloy, paying attention to such a point, the (11-31-? ¾) -211 series alloy (the first invention alloy) contains 0.3 to 3.5% by weight of tin and 1.0% of aluminum. The machinability is further improved by adding at least one of -3.5% by weight and 0.02 -0.25% by weight of phosphorus.
ところで、 錫、 アルミニウム又は燐は、 上記した如く ァ相の形成機能又は 7相の分散機能により被削性を改善させるものであり、 7相による被削性改 善を図る上で、 珪素と密接な関係を有するものである。 したがって、 珪素に 錫、 アルミニウム又は燐を共添させた第 3発明合金では、 第 1発明合金の珪 素に置き換えて被削性を向上させる機能が発揮され、 7相とは関係なく被削 性を改善させる機能 (マトリックスに粒状をなして分散することにより被削 性を向上させる機能) を発揮するビスマス、 テルル又はセレンを添加した第 2発明合金に比して、 珪素の必要添加量が少なくなる。 すなわち、 珪素添加 量が 2 . 0重量%未満であっても、 1 . 8重量%以上であれば、 錫、 アルミ ニゥム又は燐の共添により、 工業的に満足しうる被削性を得ることができ る。 し力、し、 珪素の添加量が 4 . 0重量%以下であっても、 3 . 5重量%を 超えると、 錫、 アルミニウム又は燐を共添することにより、 珪素添加による 被削性改善効果は飽和状態となる。 かかる点から、 第 3発明合金では、 珪素 の添加量を 1 . 8〜3 . 5重量%とした。 また、 かかる珪素の添加量との関 係及び錫、 アルミニウム又は燐を添加させることとの関係から、 銅配合量の 上下限値は第 2発明合金より若干大きく して、 その好ましい含有量を 7 0〜 8 0重量%とした。 By the way, tin, aluminum or phosphorus improves the machinability by the function of forming the a phase or the function of dispersing the seven phases as described above. In order to improve the machinability by the seven phases, tin, aluminum or phosphorus is closely contacted with silicon. Relationship. Therefore, in the third invention alloy in which tin, aluminum or phosphorus is co-added to silicon, the function of improving machinability is exhibited by replacing with silicon of the first invention alloy, and the machinability is independent of the seven phases. The required addition amount of silicon is smaller than that of the second invention alloy to which bismuth, tellurium, or selenium is added, which has a function of improving the machinability (a function of improving the machinability by dispersing in a granular form in the matrix). Become. That is, even if the silicon addition amount is less than 2.0% by weight, if it is 1.8% by weight or more, it is possible to obtain industrially satisfactory machinability by co-adding tin, aluminum or phosphorus. Can be done. Even if the addition amount of silicon is less than 4.0% by weight, if it exceeds 3.5% by weight, tin, aluminum or phosphorus is co-added to improve the machinability by adding silicon. Becomes saturated. From such a point, in the third invention alloy, the addition amount of silicon is set to 1.8 to 3.5% by weight. In addition, the relationship between the amount of silicon added and The upper and lower limits of the amount of copper were set slightly higher than those of the second invention alloy, and the preferred content was set to 70 to 80% by weight from the viewpoint of the addition of tin, aluminum or phosphorus.
また、 第 4発明においては、 同じく被削性に優れた銅合金として、 銅 7 0 〜8 0重量%と、 珪素 1. 8〜3. 5重量%と、 鉛 0. 0 2〜0. 4重量% と、 錫 0. 3〜3. 5重量%、 アルミニウム 1. 0〜3. 5重量%及び燐 0. 0 2〜0. 2 5重量%から選択された 1種以上の元素と、 ビスマス 0. 0 2〜0. 4重量%、 テルル 0. 0 2〜0. 4重量%及びセレン 0. 0 2〜 0. 4重量%から選択された 1種の元素とを含有し、 且つ残部が亜鉛からな る合金組成をなす快削性銅合金 (以下 「第 4発明合金」 という) を提案す すなわち、 第 4発明合金は、 第 3発明合金にビスマス 0. 0 2〜0. 4重 量%、 テルル 0. 0 2〜0. 4重量%及びセレン 0. 0 2〜0. 4重量%の 何れかを更に含有させた合金組成をなすものであり、 これらを添加させる理 由及び添加量の決定理由は第 2発明合金について述べたと同様である。 また、 第 5発明においては、 被削性に加えて耐蝕性にも優れた銅合金とし て、 銅 6 9〜 7 9重量%と、 珪素 2. 0〜4. 0重量%と、 鉛 0. 0 2〜 0. 4重量%と、 錫 0. 3〜3. 5重量%、 燐 0. 0 2〜 2 5重量%、 アンチモン 0. 0 2〜0. 1 5重量%及び砒素 0. 0 2〜0. 1 5重量%か ら選択された 1種以上の元素とを含有し、 且つ残部が亜鉛からなる合金組成 をなす快削性銅合金 (以下 「第 5発明合金」 という) を提案する。  In the fourth invention, copper alloys also having excellent machinability include copper of 70 to 80% by weight, silicon of 1.8 to 3.5% by weight, and lead of 0.02 to 0.4%. And at least one element selected from the group consisting of tin 0.3 to 3.5% by weight, aluminum 1.0 to 3.5% by weight and phosphorus 0.02 to 0.25% by weight, and bismuth. One element selected from 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight and selenium 0.02 to 0.4% by weight, and the balance is We propose a free-cutting copper alloy having an alloy composition of zinc (hereinafter referred to as the "fourth invention alloy"). That is, the fourth invention alloy has bismuth 0.02 to 0.4 weight as the third invention alloy. %, Tellurium 0.02 to 0.4% by weight and selenium 0.02 to 0.4% by weight. The reason and amount of these additions The reasons for the determination were the same as described for the second invention alloy A. Further, in the fifth invention, as a copper alloy having excellent corrosion resistance in addition to machinability, 69-79% by weight of copper, 2.0-4.0% by weight of silicon, and 0.4% by weight of lead. 0.2 to 0.4% by weight, tin 0.3 to 3.5% by weight, phosphorus 0.02 to 25% by weight, antimony 0.02 to 0.15% by weight and arsenic 0.02 We propose a free-cutting copper alloy (hereinafter referred to as the "fifth invention alloy") containing at least one element selected from 0.1 to 15% by weight and having the balance of zinc. .
すなわち、 第 5発明合金は、 第 1発明合金に錫 0. 3〜3. 5重量%、 燐 0. 0 2〜 2 5重量%、 アンチモン 0. 0 2〜0. 1 5重量%及び砒素 0. 0 2〜 1 5重量%の少なく とも 1つを更に含有させた合金組成をな すものである。  That is, in the fifth invention alloy, the first invention alloy contains 0.3 to 3.5% by weight of tin, 0.02 to 25% by weight of phosphorus, 0.02 to 0.15% by weight of antimony and 0 to 15% by weight of arsenic. The alloy composition further contains at least one of 0.2 to 15% by weight.
錫には、 被削性改善機能の他、 耐蝕性 (耐脱亜鉛腐蝕性, 耐漬食性) 及び 鍛造性を向上させる機能がある。 すなわち、 ひ相マト リ ックスの耐蝕性を向 上させ、 γ相の分散化により耐蝕性、 鍛造性及び耐応カ腐蝕割れ性の改善を 図ることができる。 第 5発明合金では、 錫のかかる機能により耐蝕性の改善 を図り、 被削性の改善は主として珪素添加効果により図っている。 したがつ て、 珪素及び銅の含有量は第 1発明合金と同一としてある。 一方、 耐蝕性, 鍛造性の改善機能を発揮させるためには、 錫の添加量を少なく とも 0 . 3重 量%とする必要がある。 しかし、 錫添加による耐蝕性, 鍛造性の改善機能 は、 3 . 5重量%を超えて添加しても、 添加量に見合うだけの効果が得られ ず、 経済的にも無駄である。 Tin has a function to improve corrosion resistance (anti-zinc corrosion resistance, corrosion resistance) and forgeability, in addition to its machinability improving function. In other words, the corrosion resistance of the matrix is improved. The corrosion resistance, forgeability and corrosion cracking resistance can be improved by dispersing the γ phase. In the fifth invention alloy, the corrosion resistance is improved by such a function of tin, and the machinability is improved mainly by the effect of silicon addition. Therefore, the contents of silicon and copper are the same as those of the first invention alloy. On the other hand, in order to exhibit the function of improving corrosion resistance and forgeability, the amount of tin added must be at least 0.3% by weight. However, the function of improving the corrosion resistance and forgeability due to the addition of tin is not economically useless even if added in excess of 3.5% by weight, because the effect cannot be obtained in proportion to the amount added.
また、 燐は、 上記した如く 7相を均一分散化させる共にマトリックスにお けるひ相の結晶粒を細分化させることにより、 被削性改善機能の他、 耐蝕性 (耐脱亜鉛腐食性, 耐漬食性) 、 鍛造性、 耐応力腐蝕割れ性及び機械的強度 を向上させる機能を発揮するものである。 第 5発明合金では、 燐のかかる機 能により耐蝕性等の改善を図り、 被削性の改善は主として珪素添加効果によ り図っている。 燐添加による耐蝕性等の改善効果は、 微量の燐添加により発 揮されるものであり、 0 . 0 2重量%以上の添加で発揮される。 しかし、 0 . 2 5重量%を超えて添加しても、 添加量に見合った効果が得られないば かりか、 熱間鍛造性, 押出性が却って低下する。  Phosphorus, as described above, uniformly disperses the seven phases and refines the crystal grains of the phases in the matrix, thereby improving the machinability and improving the corrosion resistance (anti-zinc corrosion resistance, anti-zinc corrosion resistance). It has the function of improving forgeability, forgeability, stress corrosion cracking resistance and mechanical strength. In the fifth invention alloy, the function of phosphorus improves corrosion resistance and the like, and the machinability is improved mainly by the effect of silicon addition. The effect of improving the corrosion resistance and the like due to the addition of phosphorus is exerted by the addition of a trace amount of phosphorus, and is exerted by the addition of 0.02% by weight or more. However, even if it is added in excess of 0.25% by weight, not only the effect corresponding to the added amount cannot be obtained, but also the hot forgeability and the extrudability decrease.
また、 アンチモン及び砒素も、 燐と同様に、 微量 ( 0 . 0 2重量%以上) で耐脱亜鉛腐食性等を向上させるものである。 しかし、 0 . 1 5重量%を超 えて添加しても、 添加量に見合う効果が得られないばかりか、 燐の過剰添加 と同様に、 熱間鍛造性, 押出性が却って低下する。  Antimony and arsenic also improve anti-zinc corrosion resistance and the like in a very small amount (0.02% by weight or more), like phosphorus. However, if the content exceeds 0.15% by weight, not only the effect corresponding to the added amount is not obtained, but also the hot forgeability and the extrudability are reduced as in the case of excessive addition of phosphorus.
これらのことから、 第 5発明合金では、 第 1発明合金におけると同量の 銅、 珪素及び鉛に加えて、 耐蝕性向上元素として錫、 燐、 アンチモン及び砒 素の少なくとも 1つを上記した範囲内で添加させることにより、 被削性のみ ならず、 耐蝕性等をも向上させることができるのである。 なお、 第 5発明合 金にあっては、 錫及び燐は、 主として、 アンチモン及び砒素と同様の耐蝕性 改善元素として機能するため、 珪素及び微量の鉛以外に被削性改善元素を添 加しない第 1発明合金と同様に、 銅及び珪素の配合量は、 夫々、 6 9〜7 9 重量%及び 2. 0〜4. 0重量%としてある。 From these facts, in the fifth invention alloy, in addition to the same amount of copper, silicon and lead as in the first invention alloy, at least one of tin, phosphorus, antimony and arsenic as a corrosion resistance improving element is in the above range. By adding it within, not only the machinability but also the corrosion resistance and the like can be improved. In the fifth invention alloy, tin and phosphorus mainly function as anticorrosion elements similar to antimony and arsenic. Therefore, a machinability improving element is added in addition to silicon and trace amounts of lead. As in the case of the first invention alloy which is not added, the compounding amounts of copper and silicon are 69 to 79% by weight and 2.0 to 4.0% by weight, respectively.
また、 第 6発明においては、 同じく被削性及び耐蝕性に優れた銅合金とし て、 銅 6 9〜 7 9重量%と、 珪素 2. 0〜4. 0重量%と、 鉛 0. 0 2〜 0. 4重量%と、 錫 0. 3〜3. 5重量%、 燐 0. 0 2〜0. 2 5重量%、 アンチモン 0. 0 2〜0. 1 5重量%及び砒素 0. 0 2〜0. 1 5重量%か ら選択された 1種以上の元素と、 ビスマス 0. 0 2〜0. 4重量%、 テルル 0. 0 2〜0. 4重量%及びセレン 0. 0 2〜0. 4重量%から選択された 1種の元素とを含有し、 且つ残部が亜鉛からなる合金組成をなす快削性銅合 金 (以下 「第 6発明合金」 という) を提案する。  In the sixth invention, copper alloys also having excellent machinability and corrosion resistance include 69 to 79% by weight of copper, 2.0 to 4.0% by weight of silicon, and 0.02% of lead. ~ 0.4 wt%, tin 0.3-3.5 wt%, phosphorus 0.02-0.25 wt%, antimony 0.02-0.15 wt% and arsenic 0.02 At least one element selected from 0.1 to 5% by weight, bismuth 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight and selenium 0.02 to 0% We propose a free-cutting copper alloy (hereinafter referred to as the "sixth invention alloy") containing one element selected from 4% by weight and having an alloy composition of zinc.
すなわち、 第 6発明合金は、 第 5発明合金にビスマス 0. 0 2〜0. 4重 量%、 テルル 0. 0 2〜0. 4重量%及びセレン 0. 0 2〜0. 4重量%の 何れか 1つを更に含有させた合金組成をなすものであり、 第 2発明合金と同 様に、 珪素及び鉛に加えてビスマス、 テルル及びセレンの何れか 1つを添加 することにより被削性を改善すると共に、 第 5発明合金と同様に、 錫、 燐、 アンチモン及び砒素のうちから選択した少なく とも 1つを添加することによ り耐蝕性等を改善したものである。 したがって、 銅、 珪素、 鉛、 ビスマス、 テルル及びセレンの添加量については第 2発明合金と同一とし、 錫、 燐、 ァ ンチモン及び砒素の添加量については第 5発明合金と同一とした。  That is, the sixth invention alloy has the fifth invention alloy containing bismuth 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight, and selenium 0.02 to 0.4% by weight. It has an alloy composition further containing any one of them, and has a machinability by adding any one of bismuth, tellurium, and selenium in addition to silicon and lead, as in the second invention alloy. And at least one selected from the group consisting of tin, phosphorus, antimony, and arsenic, as in the fifth invention alloy, to improve corrosion resistance and the like. Therefore, the addition amounts of copper, silicon, lead, bismuth, tellurium, and selenium were the same as those of the second invention alloy, and the addition amounts of tin, phosphorus, antimony, and arsenic were the same as those of the fifth invention alloy.
また、 第 7発明においては、 被削性に加えて高力性, 耐摩耗性に優れた銅 合金として、 銅 6 2〜7 8重量%と、 珪素 2. 5〜4. 5重量%と、 鉛 0. 0 2〜0. 4重量%と、 錫 0. 3〜 3. 0重量%、 アルミニウム 0. 2〜 2. 5重量%及び燐 0. 0 2〜0. 2 5重量%から選択された 1種以上の元 素と、 マンガン 0. 7〜3. 5重量%及びニッケル 0. 7 3. 5重量%か ら選択された 1種以上の元素とを含有し、 且つ残部が亜鉛からなる合金組成 をなす快削性銅合金 (以下 「第 7発明合金」 という) を提案する。  Further, in the seventh invention, as a copper alloy excellent in machinability, high strength and wear resistance, copper 62 to 78% by weight, silicon 2.5 to 4.5% by weight, Lead is selected from 0.02 to 0.4% by weight, tin 0.3 to 3.0% by weight, aluminum 0.2 to 2.5% by weight, and phosphorus 0.02 to 0.25% by weight. Contains at least one element selected from the group consisting of 0.7 to 3.5% by weight of manganese and 0.73.5% by weight of nickel, with the balance being zinc We propose a free-cutting copper alloy with an alloy composition (hereinafter referred to as the “seventh invention alloy”).
マンガン又はニッケルは、 珪素と結合して Mnx S i γ 又は N i χ S i ν Manganese or nickel combines with silicon to form Mn x S i γ or N i χ S i ν
一 l o — の微細金属間化合物を形成して、 マトリックスに均一に析出し、 それにより 耐摩耗性, 強度を向上させる。 したがって、 マンガン及びニッケルの一方又 は両方を添加することにより、 高力性, 耐摩耗性が改善される。 かかる効果 は、 マンガン及びニッケルを夫々 0 . 7重量%以上添加することに発揮され る。 しかし、 3 . 5重量%を超えて添加しても、 効果が飽和状態となり、 添 加量に見合う効果が得られない。 珪素は、 マンガン又はニッケルの添加に伴 い、 これらとの金属間化合物形成に要する消費量を考慮して、 2 . 5〜4 . 5重量%を添加させることとした。 One lo — A fine intermetallic compound is formed and uniformly deposited on the matrix, thereby improving wear resistance and strength. Therefore, high strength and wear resistance are improved by adding one or both of manganese and nickel. Such effects are exhibited when manganese and nickel are added in an amount of 0.7% by weight or more, respectively. However, even if it is added in excess of 3.5% by weight, the effect becomes saturated and the effect corresponding to the added amount cannot be obtained. Silicon was added in an amount of 2.5 to 4.5% by weight in consideration of the amount of silicon required to form an intermetallic compound with manganese or nickel.
また、 錫、 アルミニウム及び燐の添加により、 マトリックスのひ相が強化 され、 被削性も改善される。 錫及び燐は、 ひ相, ァ相の分散により強度, 耐 摩耗性を向上させ、 被削性も向上させる。 錫は、 0 . 3重量%以上の添加に より強度及び被削性を向上させるが、 3 . 0重量%を超えて添加すると延性 が低下する。 したがって、 高力性, 耐摩耗性の改善を図る第 7発明合金にお いては、 被削性改善効果も考慮して、 錫の添加量を 0 . 3〜3 . 0重量%と した。 また、 アルミニウムは、 耐摩耗性改善に寄与し、 マトリックスの強化 機能は 0 . 2重量%以上の添加により発揮される。 しかし、 2 . 5重量%を 超えて添加すると、 延性が低下する。 したがって、 被削性改善効果も考慮し て、 アルミニウムの添加量は 0 . 2〜2 . 5重量%とした。 また、 燐の添加 により、 7相の分散化と同時にマトリックスにおけるひ相の結晶粒を微細化 して、 熱間加工性を向上させ、 強度, 耐摩耗性も向上させる。 しかも、 铸造 時の湯流れ性を著しく向上させる効果もある。 このような効果は、 燐を 0 . 0 2〜0 . 2 5重量%の範囲で添加することにより奏せられる。 なお、 銅の 配合量については、 珪素添加量との関係及びマンガン, ニッケルが珪素と結 合する関係から、 6 2〜7 8重量%とした。  The addition of tin, aluminum and phosphorus also strengthens the matrix phase and improves machinability. Tin and phosphorus improve the strength, abrasion resistance and machinability by dispersing the graphite and α phases. Tin improves the strength and machinability when added at 0.3% by weight or more, but decreases the ductility when added at more than 3.0% by weight. Therefore, in the alloy of the seventh invention for improving high strength and wear resistance, the addition amount of tin is set to 0.3 to 3.0% by weight in consideration of the effect of improving machinability. Aluminum also contributes to the improvement of abrasion resistance, and the matrix strengthening function is exhibited by adding 0.2% by weight or more. However, if added in excess of 2.5% by weight, the ductility decreases. Therefore, in consideration of the machinability improvement effect, the addition amount of aluminum is set to 0.2 to 2.5% by weight. In addition, the addition of phosphorus improves the hot workability, and improves the strength and wear resistance by dispersing the seven phases and simultaneously refining the grains of the single phase in the matrix. In addition, there is also an effect of remarkably improving the flowability of the molten metal during manufacturing. Such an effect can be obtained by adding phosphorus in a range of 0.02 to 0.25% by weight. The amount of copper was set to 62 to 78% by weight based on the relationship with the amount of silicon added and the relationship between manganese and nickel combined with silicon.
さらに、 第 8発明においては、 被削性に加えて耐高温酸化性に優れた銅合 金として、 銅 6 9〜7 9重量%、 珪素 2 . 0〜4 . 0重量%、 鉛 0 . 0 2〜 0 . 4重量%、 アルミニウム 0 . 1〜 1 . 5重量%及び燐 0 . 0 2〜0 . 2 5重量%を含有し、 且つ残部が亜鉛からなる合金組成をなす快削性銅合金 ( 以下 「第 8発明合金」 という) を提案する。 Furthermore, in the eighth invention, as a copper alloy having excellent high-temperature oxidation resistance in addition to machinability, 69-79% by weight of copper, 2.0-4.0% by weight of silicon, and 0.0% by weight of lead. 2 to 0.4% by weight, aluminum 0.1 to 1.5% by weight and phosphorus 0.02 to 0.2. We propose a free-cutting copper alloy containing 5% by weight and having an alloy composition consisting of zinc with the balance being zinc (hereinafter, referred to as an "eighth invention alloy").
アルミニウムは、 強度, 被削性, 耐摩耗性を改善させる他、 耐高温酸化性 を改善させる元素である。 また、 珪素も、 上記した如く、 被削性, 強度, 耐 摩耗性, 耐応力腐蝕割れ性を改善させる他、 耐高温酸化性を改善する機能を 発揮する。 アルミニウムによる耐高温酸化性の改善は、 珪素との共添によつ て、 0. 1重量%以上の添加で行なわれる。 しかし、 アルミニウムを 1. 5 重量%を超えて添加しても、 添加量に見合う耐高温酸化性改善効果はみられ ない。 かかる点から、 アルミニウムの添加量は 0. 1〜 1. 5重量%とし た。  Aluminum is an element that improves strength, machinability and wear resistance, as well as high-temperature oxidation resistance. Further, as described above, silicon also has functions of improving machinability, strength, wear resistance, stress corrosion cracking resistance, and high temperature oxidation resistance. Improvement of the high-temperature oxidation resistance by aluminum is performed by adding 0.1% by weight or more by co-addition with silicon. However, even if aluminum is added in an amount exceeding 1.5% by weight, the effect of improving high-temperature oxidation resistance corresponding to the added amount is not observed. From this point, the addition amount of aluminum is set to 0.1 to 1.5% by weight.
燐は、 合金铸造時における湯流れ性を向上させるために添加される。 ま た、 燐は、 かかる湯流れ性の他、 上記した被削性, 耐脱亜鉛腐蝕性に加え て、 耐高温酸化性をも改善する。 このような燐の添加効果は 0. 0 2重量% 以上で発揮される。 しかし、 0. 2 5重量%を超えて添加しても、 添加量に 見合う効果はみられず、 却って合金の脆性化を招くことになる。 かかる点か ら、 燐の添加量は、 0. 0 2〜0. 2 5重量%とした。  Phosphorus is added to improve the flowability of the molten metal during the production of the alloy. Phosphorus also improves the high-temperature oxidation resistance in addition to the above-mentioned machinability and dezincification corrosion resistance in addition to the flowability of the molten metal. Such an effect of adding phosphorus is exhibited at 0.02% by weight or more. However, even if it is added in excess of 0.25% by weight, no effect commensurate with the added amount is observed, and rather the alloy becomes brittle. From such a point, the addition amount of phosphorus is set to 0.02 to 0.25% by weight.
また、 珪素は、 上記した如く被削性を改善させるために添加されるもので あるが、 燐と同様に湯流れ性を向上させる機能も有するものである。 珪素に よる湯流れ性の向上は 2. 0重量%以上の添加により発揮され、 被削性を向 上させるに必要な添加範囲と重複する。 したがって、 珪素の添加量は、 被削 性の改善を考慮して、 2. 0〜4. 0重量%とした。  Although silicon is added to improve machinability as described above, silicon also has a function of improving the flowability of molten metal like phosphorus. The improvement of the fluidity due to silicon is exhibited by the addition of 2.0% by weight or more, which overlaps the addition range necessary for improving machinability. Therefore, the addition amount of silicon is set to 2.0 to 4.0% by weight in consideration of improvement in machinability.
また、 第 9発明においては、 同じく被削性及び耐高温酸化性に優れた銅合 金として、 銅 6 9〜7 9重量%と、 珪素 2. 0〜4. 0重量%と、 鉛 0. 0 2〜0. 4重量%と、 アルミニウム 0. 1〜 1. 5重量%と、 燐 0. 0 2〜 0. 2 5重量%と、 ビスマス 0. 0 2〜0. 4重量%、 テルル 0 2〜 0. 4重量%及びセレン 0. 0 2〜0. 4重量%から選択された 1種の元素 とを含有し、 且つ残部が亜鉛からなる合金組成をなす銅合金 (以下 「第 9発 明合金」 という) を提案する。 Further, in the ninth invention, copper alloys also having excellent machinability and high-temperature oxidation resistance include 69-79% by weight of copper, 2.0-4.0% by weight of silicon, and 0.1% by weight of lead. 0 2 to 0.4% by weight, aluminum 0.1 to 1.5% by weight, phosphorus 0.02 to 0.25% by weight, bismuth 0.02 to 0.4% by weight, tellurium 0 A copper alloy containing an element selected from 2 to 0.4% by weight and selenium 0.02 to 0.4% by weight and a balance of zinc (hereinafter referred to as “the 9th alloy”). "Ming alloy").
すなわち、 第 9発明合金は、 第 8発明合金にビスマス 0. 0 2〜0. 4重 量%、 テルル 0. 0 2〜0. 4重量%及びセレン 0. 0 2〜0. 4重量%の 何れかを更に含有させた合金組成をなすものであり、 前記した如く鉛同様の 被削性を改善する元素であるビスマス等を添加することにより、 第 8発明合 金と同様の耐高温酸化性を確保しつつ、 被削性の更なる改善を図ったもので のる。  That is, the ninth invention alloy has the eighth invention alloy containing bismuth 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight, and selenium 0.02 to 0.4% by weight. The alloy composition further contains any one of them. As described above, by adding bismuth or the like which is an element for improving machinability similar to lead, high-temperature oxidation resistance similar to that of the eighth invention alloy is obtained. While further improving the machinability.
また、 第 1 0発明においては、 同じく被削性及び耐高温酸化性に優れた銅 合金として、 銅 6 9〜7 9重量%と、 珪素 2. 0〜4. 0重量%と、 鉛 0. 0 2〜0. 4重量%と、 アルミニウム 0. 1〜 1. 5重量%と、 燐 0. 0 2 〜0. 2 5重量%と、 クロム 0. 0 2〜0. 4重量%及びチタン 0. 0 2〜 0. 4重量%から選択された 1種以上の元素とを含有し、 且つ残部が亜鉛か らなる合金組成をなす快削性銅合金 (以下 「第 1 0発明合金」 という) を提 案する。  In the tenth invention, copper alloys also having excellent machinability and high-temperature oxidation resistance include 69 to 79% by weight of copper, 2.0 to 4.0% by weight of silicon, and 0.1% by weight of lead. 0 2 to 0.4% by weight, aluminum 0.1 to 1.5% by weight, phosphorus 0.02 to 0.25% by weight, chromium 0.02 to 0.4% by weight and titanium 0 Free-cutting copper alloy containing one or more elements selected from the range of 0.2 to 0.4% by weight, with the balance being zinc (hereinafter referred to as "the 10th invention alloy") We propose.
クロム及びチタンは耐高温酸化性を向上させる機能を有するものであり、 その機能は、 特に、 アルミニウムとの共添による相乗効果によって顕著に発 揮される。 かかる機能は、 これらを単独添加すると共添するとに拘わらず、 夫々、 0. 0 2重量%以上で発揮され、 0. 4重量%で飽和状態となる。 こ のような点から、 第 1 0発明合金においては、 第 8発明合金にクロム 0. 0 2〜0. 4重量%及びチタン 0. 0 2〜 4重量%の少なく とも 1っを更 に含有させた合金組成をなすものとして、 第 8発明合金の耐高温酸化性を更 に向上させるベく図っている。  Chromium and titanium have a function of improving high-temperature oxidation resistance, and the function is particularly remarkably exerted by a synergistic effect of co-addition with aluminum. Such a function is exhibited at 0.02% by weight or more and becomes saturated at 0.4% by weight, respectively, irrespective of whether they are added alone or co-added. From such a point, in the tenth invention alloy, the eighth invention alloy further contains at least one of 0.02 to 0.4% by weight of chromium and 0.02 to 4% by weight of titanium. The alloy composition of the present invention is intended to further improve the high-temperature oxidation resistance of the eighth invention alloy.
また、 第 1 1発明においては、 同じく被削性及び耐高温酸化性に優れた銅 合金として、 銅 6 9〜7 9重量%と、 珪素 2. 0〜4. 0重量%と、 鉛 0. 0 2〜0. 4重量%と、 アルミニウム 0. 1〜 1. 5重量%と、 燐 0. 0 2 〜0. 2 5重量%と、 クロム 0. 0 2〜0. 4重量%及びチタン 0. 0 2〜 0. 4重量%から選択された 1種以上の元素と、 ビスマス 0. 0 2〜 4 重量%、 テルル 0 . 0 2〜0 . 4重量%及びセレン 0 . 0 2〜0 . 4重量% から選択された 1種の元素とを含有し、 且つ残部が亜鉛からなる合金組成を なす快削性銅合金 (以下 「第 1 1発明合金」 という) を提案する。 In the eleventh invention, copper alloys also having excellent machinability and high-temperature oxidation resistance include 69 to 79% by weight of copper, 2.0 to 4.0% by weight of silicon, and 0.1% of lead. 0 2 to 0.4% by weight, aluminum 0.1 to 1.5% by weight, phosphorus 0.02 to 0.25% by weight, chromium 0.02 to 0.4% by weight and titanium 0 0.2 to 0.4% by weight of at least one element selected from the group consisting of bismuth 0.02 to 4 % By weight, one element selected from 0.02 to 0.4% by weight of tellurium, and 0.02 to 0.4% by weight of selenium, and the balance being an alloy composition comprising zinc. We propose a machinable copper alloy (hereinafter referred to as "the eleventh invention alloy").
すなわち、 第 1 1発明合金は、 第 1 0発明合金にビスマス 0 . 0 2〜0 . 4重量%、 テルル 0 . 0 2〜0 . 4重量%及びセレン 0 . 0 2〜0 . 4重量 %の何れか 1つを更に含有させた合金組成をなすものであり、 前記した如く 珪素と異なる機能により被削性を改善する鉛同様元素であるビスマス等を添 加することにより、 第 1 0発明合金と同様の耐高温酸化性を確保しつつ、 被 削性の更なる改善を図ったものである。  That is, in the eleventh invention alloy, the tenth invention alloy has bismuth 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight, and selenium 0.02 to 0.4% by weight. In addition, as described above, by adding bismuth, which is an element similar to lead, which improves machinability by a function different from that of silicon, as described above, the tenth invention is achieved. It is intended to further improve machinability while maintaining high temperature oxidation resistance similar to that of alloys.
また、 第 1 2発明においては、 上記した各発明合金に 4 0 0〜6 0 0 °Cで 3 0分〜 5時間の熱処理を施しておくことより、 その被削性を更に改善した 快削性銅合金 (以下 「第 1 2発明合金」 という) を提案する。  Further, in the 12th invention, the above-mentioned alloys of the invention are subjected to a heat treatment at 400 to 600 ° C. for 30 minutes to 5 hours, so that the machinability is further improved. We propose a conductive copper alloy (hereinafter referred to as the “first and second invention alloy”).
第 1〜第 1 1発明合金は珪素等の被削性改善元素を添加したものであり、 かかる元素の添加により優れた被削性を有するものである力^ かかる添加元 素の機能による被削性は熱処理によって更に向上する場合がある。 例えば、 第 1〜第 1 1発明合金における銅濃度が高いものであって、 ァ相が少なく且 つ 相が多いもののについては、 熱処理により c相がァ相に変化して、 ァ相 が微細に分散析出することにより、 被削性が更に改善される。 また、 実際の 铸物, 展伸材, 熱間鍛造品の製造を想定した場合、 铸造条件や熱間加工 (熱 間押出, 熱間鍛造等) 後の生産性, 作業環境等の条件によって、 それらの材 料が強制空冷, 水冷される場合がある。 かかる場合、 第 1〜第 1 1発明合金 において、 特に、 銅濃度が低いものでは、 ァ相が若干少なく且つ S相を含ん でいるが、 熱処理を施すと、 これにより ; 8相がァ相に変化すると共に 7相が 微細に分散析出することになり、 被削性が改善される。 しかし、 何れの場合 においても、 熱処理温度が 4 0 0 °C未満であれば、 上記した相変化速度が遅 くなり、 熱処理に極めて長時間を要するため、 経済的にも実用できない。 逆 に、 6 0 0 °Cを超えると、 却って 相が増大し或いは S相が出現するため、 被削性の改善効果が得られない。 したがって、 実用性をも考慮した場合、 被 削性改善のためには、 4 0 0〜6 0 0 °Cの条件で 3 0分〜 5時間の熱処理を 行なうことが好ましい。 The first to eleventh invention alloys are obtained by adding a machinability improving element such as silicon, and have an excellent machinability due to the addition of such an element. Properties may be further improved by heat treatment. For example, for the alloys having a high copper concentration in the first to eleventh invention alloys and having a small number of a phases and a large number of phases, the heat treatment changes the c phase into the a phase, and the a phase becomes fine. By dispersing and precipitating, machinability is further improved. In addition, when assuming the actual production of porcelain, wrought material, and hot forged products, depending on the conditions such as 铸 forming conditions, productivity after hot working (hot extrusion, hot forging, etc.), work environment, etc. These materials may be forced air-cooled or water-cooled. In such a case, in the first to eleventh invention alloys, in particular, when the copper concentration is low, the α phase is slightly reduced and contains the S phase. As it changes, the seven phases are finely dispersed and precipitated, and the machinability is improved. However, in any case, if the heat treatment temperature is less than 400 ° C., the above-mentioned phase change rate becomes slow, and the heat treatment takes an extremely long time, so that it is not economically practical. Conversely, when the temperature exceeds 600 ° C, the phase increases or the S phase appears, The effect of improving machinability cannot be obtained. Therefore, in consideration of practicality, it is preferable to perform heat treatment for 30 minutes to 5 hours under the condition of 400 to 600 ° C. in order to improve machinability.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 丸棒状銅合金の表面を旋盤で切削した場合に生成する切屑の形態 を示す斜視図である。  FIG. 1 is a perspective view showing the form of chips generated when the surface of a round bar-shaped copper alloy is cut with a lathe.
実施例 Example
実施例として、 表 1〜表 1 5に示す組成の铸塊 (外径 1 0 0 mm, 長さ 1 As an example, a lump of the composition shown in Table 1 to Table 15 (outer diameter 100 mm, length 1
5 Ommの円柱形状のもの) を熱間 (7 5 0 °C) で外径 1 5 mmの丸棒状に 押出加工して、 第 1発明合金 No. 1 0 0 1〜No. 1 0 0 7、 第 2発明合 金 No. 2 0 0 1〜No. 2 0 0 6、 第 3発明合金 No. 3 0 0 1〜No. 3 0 1 0、 第 4発明合金 N o. 4 0 0 1〜No. 4 0 2 1、 第 5発明合金 No. 5 0 0 1〜No. 5 0 2 0、 第 6発明合金 N o. 6 0 0 1〜N o .5 Omm cylindrical shape) is extruded in a hot (750 ° C) into a round bar shape with an outer diameter of 15 mm, and the first invention alloy No. 1001 to No. 1007 , 2nd invention alloy No. 201 to No. 206, 3rd invention alloy No. 3001 to No. 310, 4th invention alloy No. 4001 to No. 4002, Fifth invention alloy No. 500-1 to No. 520, sixth invention alloy No. 600-1 to No.
6 0 4 5、 第 7発明合金 N o. 7 0 0 1〜No. 7 0 2 9、 第 8発明合金 No. 8 0 0 1〜No. 8 0 0 8、 第 9発明合金 N o . 9 0 0 1〜No. 96005, 7th invention alloy No. 7001-No. 720, 8th invention alloy No. 8001-No. 808, 9th invention alloy No. 9 0 0 1 to No. 9
0 0 6、 第 1 0発明合金 N 0. 1 0 0 0 1〜No. 1 0 0 0 8及び第 1 1発 明合金 No. 1 1 0 0 l〜No. 1 1 0 1 1を得た。 また、 表 1 6に示す組 成の铸塊 (外径 1 0 0 mm, 長さ 1 5 0 mmの円柱形状のもの) を熱間 (70 06, No. 10 invention alloy N 0.10 0 0 1 to No. 1 0 0 8 and No. 11 invention alloy No. 1 1 0 0 1 to No. 1 1 0 1 1 . In addition, the lumps (columns with an outer diameter of 100 mm and a length of 150 mm) with the composition shown in Table 16 were hot (7
5 0°C) で外径 1 5 mmの丸棒状に押出加工した上、 その押出材を表 1 6に 示す条件で熱処理して、 第 1 2発明合金 No. 1 2 0 0 1〜No. 1 2 0 0(50 ° C) and extruded into a round bar with an outer diameter of 15 mm.Then, the extruded material was heat-treated under the conditions shown in Table 16 to obtain the No. 12 invention alloy No. 1 1 2 0 0
4を得た。 すなわち、 No. 1 2 0 0 1は第 1発明合金 No. 1 0 0 6と同 一組成をなす押出材を 5 8 0 °C, 3 0分の条件で熱処理したものであり、 No. 1 2 0 0 2は No. 1 0 0 6と同一組成をなす押出材を 4 5 0 °C,Got 4 That is, No. 1200 was obtained by heat-treating an extruded material having the same composition as that of the first invention alloy No. 1006 at 580 ° C. for 30 minutes. 200 2 is extruded material having the same composition as No. 100 6 at 450 ° C,
2時間の条件で熱処理したものであり、 No. 1 2 0 0 3は第 1発明合金 No. 1 0 0 7と同一組成をなす押出材を No. 1 2 0 0 1 と同一条件 (5No. 12 00 3 was heat-treated under the conditions of 2 hours, and No. 12 00 3 was an extruded material having the same composition as the first invention alloy No. 100 7 under the same conditions as No. 1 2 0 1 (5
8 0°C, 3 0分) で熱処理したものであり、 No. 1 2 0 0 4は No. 1 0No. 12 0 04 is No. 10 at 80 ° C for 30 minutes.
0 7と同一組成をなす押出材を No. 1 2 0 0 2と同一条件 (4 5 0 °C, 2 時間) で熱処理したものである。 Extruded material having the same composition as No. 07 was used under the same conditions as No. 1 2 0 2 (450 ° C, 2 Time).
また、 比較例として、 表 1 7に示す組成の铸塊 (外径 1 0 Omm, 長さ 1 5 0 mmの円柱形状のもの) を熱間 (75 0 °C) で押出加工して、 外径 1 5 mmの丸棒状押出材 (以下 「従来合金」 という) No. 1 3 0 0 l〜No. 1 30 0 6を得た。 なお、 N 0. 1 30 0 1は 「 J I S C 3 6 04」 に相 当するものであり、 No. 1 30 0 2は 「。0八 C 3 6 0 0 0」 に相当す るものであり、 No. 1 3 0 0 3は 「J I S C 377 1」 に相当するもの であり、 No. 1 3 0 04は 「C DA C 6 9 8 0 0 J に相当するものであ る。 また、 No. 1 30 0 5は 「 13 C 6 1 9 1」 に相当するものであ り、 J I Sに規定される伸銅品の中で強度, 耐磨耗性に最も優れるアルミ二 ゥム青銅である。 また、 No. 1 30 0 6は 「 13 C 4 6 22」 に相当 するものであり、 J I Sに規定される伸銅品の中で耐蝕性に最も優れるネー バル黄銅である。  As a comparative example, a lump having a composition shown in Table 17 (having a cylindrical shape with an outer diameter of 10 Omm and a length of 150 mm) was extruded hot (750 ° C). No. 13001 to No. 13006 round rod-shaped extruded materials having a diameter of 15 mm (hereinafter referred to as "conventional alloys") were obtained. Note that N 0.130 01 is equivalent to "JISC 3604", and No. 130002 is equivalent to ". No. 13 003 corresponds to “JISC 377 1”, and No. 13 004 corresponds to “CDAC 690 000 J. No. 1 3005 is equivalent to “13C6191” and is aluminum bronze with the highest strength and abrasion resistance among the brass products specified in JIS. In addition, No. 13006 corresponds to “13C4622”, and is a naval brass having the highest corrosion resistance among the copper products specified in JIS.
そして、 第 1〜第 1 2発明合金の被削性を従来合金との比較において確認 すべく、 次のような切削試験を行い、 切削主分力、 切屑状態及び切削表面形 態を判定した。  Then, in order to confirm the machinability of the first to the 12th invention alloys in comparison with the conventional alloys, the following cutting test was performed, and the main component force of the cutting, the chip state, and the cutting surface state were determined.
すなわち、 上記の如くして得られた各押出材の外周面を、 真剣バイト (す くい角 : — 8° ) を取り付けた旋盤により、 切削速度: 5 OmZ分, 切込み 深さ (切削代) : 1. 5mm, 送り量: 0. 1 1 mmZr e v. の条件で切 削し、 バイトに取り付けた 3分力動力計からの信号を重歪測定器により電圧 信号に変換してレコーダで記録し、 これを切削抵抗に換算した。 ところで、 切削抵抗の大小は 3分力つまり主分力、 送り分力及び背分力によって判断さ れるが、 ここでは、 3分力のうち最も大きな値を示す主分力 (N) をもって 切削抵抗の大小を判断することとした。 その結果は、 表 1 8〜表 3 3に示す 通りであった。  In other words, the outer peripheral surface of each extruded material obtained as described above was turned on a lathe equipped with a serious cutting tool (rake angle: -8 °), cutting speed: 5 OmZ, cutting depth (cutting allowance): 1.5 mm, feed rate: 0.1 1 mm Cut under the condition of Zr e v., Convert the signal from the 3-component dynamometer attached to the cutting tool into a voltage signal using a heavy strain measuring instrument and record it with a recorder. This was converted to cutting force. By the way, the magnitude of the cutting force is determined by the three-component force, that is, the main component, the feed component and the back component. Here, the main component (N) showing the largest value among the three components is the cutting force. Was determined to be larger or smaller. The results were as shown in Tables 18 to 33.
また、 切削により生成した切屑の状態を観察し、 その形状によって図 1 (A) 〜 (D) に示す如く 4つに分類して、 表 1〜表 1 5に示した。 ところ で、 切屑が、 (D ) 図に示す如く、 3巻以上の螺旋形状をなしている場合に は、 切屑の処理 (切屑の回収や再利用等) が困難となる上、 切屑がバイ トに 絡み付いたり、 切削表面を損傷させる等のトラブルが発生して、 良好な切削 加工を行なうことができない。 また、 切屑が、 (C ) 図に示す如く、 半巻程 度の円弧形状から 2巻程度の螺旋形状をなしている場合には、 3巻以上の螺 旋形状をなす場合のような大きなトラブルは生じないものの、 やはり切屑の 処理が容易ではなく、 連続切削加工を行う場合等にあってはバイ トへの絡み 付きや切削表面の損傷等を生じる虞れがある。 しかし、 切屑が、 (A ) の如 き微細な針形状片ゃ (B ) の如き扇形状片又は円弧形状片に剪断される場合 には、 上記のようなトラブルが生じることがなく、 (C ) 図や (D ) 図に示 すもののように嵩張らないことから、 切屑の処理も容易である。 但し、 切屑 が (A) 図のような微細形状に剪断される場合には、 旋盤等の工作機械の摺 動面に潜り込んで機械的障害を発生したり、 作業者の手指, 目に刺さる等の 危険を伴うことがある。 したがって、 被削性を判断する上では、 (B ) 図 に示すものが最良であり、 (A ) 図に示すものがこれに続き、 (C ) 図や ( D ) 図に示すものは不適当とするのが相当である。 表 1 8〜表 3 3におい ては、 (B ) に示す最良の切屑状態が観察されたものを 「◎」 で、 (A ) 図 に示すやや良好な切屑状態が観察されたものを 「〇」 で、 (C ) 図に示す不 良な切屑状態が観察されたものを 「△」 で、 (D ) に示す最悪の切屑状態が 観察されたものを 「X」 で示した。 In addition, the state of the chips generated by cutting was observed and classified into four types as shown in Figs. 1 (A) to (D) according to their shapes and shown in Tables 1 to 15. Place If the chips have a spiral shape of three or more turns as shown in Fig. (D), it becomes difficult to process the chips (collection and reuse of the chips, etc.), and the chips are turned into bytes. Troubles such as entanglement or damage to the cutting surface occur, making it impossible to perform good cutting. Also, as shown in Fig. (C), when the chip has a spiral shape of about 2 turns from a half-turn arc shape, a large trouble such as a spiral form of 3 turns or more is obtained. However, the processing of chips is still not easy, and in the case of continuous cutting, entanglement with the bytes and damage to the cutting surface may occur. However, when the chip is sheared into a fine needle-shaped piece such as (A) and a fan-shaped piece or an arc-shaped piece such as (B), the trouble described above does not occur and (C) ) Since it is not bulky as shown in the figure and (D) figure, the processing of chips is easy. However, if the chips are sheared into a fine shape as shown in Fig. (A), they may fall into the sliding surface of a machine tool such as a lathe and cause mechanical obstacles, or may be stuck by the fingers or eyes of the worker. May be dangerous. Therefore, in determining the machinability, the one shown in (B) is the best, the one shown in (A) follows, and the one shown in (C) or (D) is inappropriate. It is appropriate to do. In Tables 18 to 33, “◎” indicates that the best chip condition shown in (B) was observed, and “〇” indicates that the slightly better chip condition was observed in (A) diagram. In (C), the poor chip condition shown in Fig. (C) was observed by "△", and the worst chip condition shown in (D) was observed by "X".
また、 切削後において、 切削表面の良否を表面粗さにより判定した。 その 結果は、 表 1 8〜表 3 3に示す通りであった。 ところで、 表面粗さの基準と しては最大高さ (Rmax ) が使用されることが多く、 黄銅製品の用途にもよ るが、 一般に、 Rmax く 1 0〃mであれば極めて被削性に優れると判断する ことができ、 1 0〃m≤Rmax く 1 5〃mであれば工業的に満足しうる被削 性を得ることができたものと判断でき、 R max ≥ 1 5〃mの場合には被削性 に劣るものと判断できる。 表 1 8〜表 3 3においては、 Rmax < 1 0 a mの W 1 P 場合を 「〇」 で、 1 0 m≤Rmax < 1 5〃mの場合を 「△」 で、 Rmax ≥ 1 5〃mの場合を 「x」 で示した。 After cutting, the quality of the cut surface was judged by the surface roughness. The results were as shown in Tables 18 to 33. By the way, the maximum height (Rmax) is often used as a standard for surface roughness, and it depends on the use of brass products. 10〃m≤Rmax and 15〃m, it can be judged that industrially satisfactory machinability was obtained, and Rmax ≥15〃m In this case, it can be determined that the machinability is poor. In Tables 18 to 33, Rmax <10 am The case of W 1 P is indicated by “〇”, the case of 10 m≤Rmax <15〃m is indicated by “△”, and the case of Rmax ≥ 15〃m is indicated by “x”.
表 1 8〜表 3 3に示す切削試験の結果から明らかなように、 第 1発明合金 No. 1 0 0 1〜No. 1 0 0 7、 第 2発明合金 No. 2 0 0 1〜N o . 2 0 0 6、 第 3発明合金 No. 3 0 0 1〜No. 3 0 1 0、 第 4発明合金 No. 4 0 0 1〜No. 4 0 2 1、 第 5発明合金 N o. 5 0 0 1〜No. 5 0 2 0、 第 6発明合金 N o. 6 0 0 1〜No. 6 0 4 5、 第 7発明合金 No. 7 0 0 1〜No. 7 0 2 9、 第 8発明合金 No. 8 0 0 1〜No. 8 0 0 8、 第 9発明合金 No. 9 0 0 1〜No. 9 0 0 6、 第 1 0発明合金 No. 1 0 0 0 1〜No. 1 0 0 0 8、 第 1 1発明合金 No. 1 1 0 0 1〜 No. 1 1 0 1 1及び第 1 2発明合金 No. 1 2 0 0 1〜No. 1 2 0 0 4 は、 その何れにおいても、 鉛を大量に含有する従来合金 No. 1 3 0 0 1〜 No. 1 3 0 0 3と同等の被削性を有するものである。 特に、 切屑の生成状 態に限っては、 鉛含有量が 0. 1重量%以下である従来合金 No. 1 3 0 0 4〜No. 1 3 0 0 6に比しては勿論、 鉛を大量に含有する従来合金 N o . 1 3 0 0 l〜No. 1 3 0 0 3に比しても、 良好な被削性を有する。 また、 第 1発明合金 No. 1 0 0 6及び No. 1 0 0 7に比して、 これを熱処理し た第 1 2発明合金 N 0. 1 2 0 0 1〜No. 1 2 0 0 4は同等以上の被削性 を有しており、 合金組成等の条件によっては、 熱処理により第 1〜第 1 1発 明合金の被削性を更に向上させ得ることが理解される。  As is clear from the results of the cutting tests shown in Tables 18 to 33, the first invention alloy No. 1001 to No. 107, the second invention alloy No. 200 to No. 206, 3rd invention alloy No. 3001 to No. 310, 4th invention alloy No. 4001 to No. 210, 5th invention alloy No. 5 0 0 1 to No. 520, 6th invention alloy No. 6 0 1 to No. 6 0 45, 7th invention alloy No. 7 0 1 to No. 7 0 29, 8th Invention alloys No. 800 1 to No. 800, ninth invention alloy No. 900 to No. 906, No. 10 invention alloy No. 1000 to No. 1 0 0 8, 1st invention alloy No. 1 1 0 0 1 to No. 1 1 0 1 1 and 1 2 invention alloy No. 1 2 0 0 1 to No. 1 2 0 0 4 Also has the same machinability as conventional alloys No. 1301 to No. 1303 containing a large amount of lead. In particular, as far as the state of chip generation is concerned, lead as well as conventional alloys No. 1304-No. It has good machinability compared to conventional alloys containing a large amount of No. 1301 to No. 1303. Further, as compared with the first invention alloys No. 106 and No. 107, the heat-treated first invention alloys N 0.12 0 01 to No. 1 200 4 Have the same or higher machinability, and it is understood that the heat treatment can further improve the machinability of the first to eleventh invention alloys depending on the conditions such as the alloy composition.
次に、 第 1〜第 1 2発明合金の熱間加工性及び機械的性質を、 従来合金と の比較において確認すべく、 次のような熱間圧縮試験及び引張試験を行つ た。  Next, the following hot compression test and tensile test were performed to confirm the hot workability and mechanical properties of the first to the 12th invention alloys in comparison with the conventional alloys.
すなわち、 上記の如く して得られた各押出材から同一形状 (外径 1 5 m m, 長さ 2 5 mm) の第 1及び第 2試験片を切り出した。 そして、 熱間圧縮 試験においては、 各第 1試験片を 7 0 0 °Cに加熱して 3 0分間保持した上、 軸線方向に 7 0 %の圧縮率で圧縮 (第 1試験片の高さ (長さ) が 2 5 mmか ら 7. 5 mmになるまで圧縮) して、 圧縮後の表面形態 (7 0 0 °C変形能) を目視判定した。 その結果は、 表 1 8〜表 3 3に示す通りであった。 変形能 の判定は試験片側面におけるクラックの状態から目視により行い、 表 1 8〜 表 3 3においては、 クラックが全く生じなかったものを 「〇」 で、 小さなク ラックが生じたものを 「△」 で、 大きなクラックが生じたものを 「x」 で示 した。 また、 各第 2試験片を使用して、 常法による引張試験を行ない、 引張 強さ (NZmm2 ) 及び伸び (%) を測定した。 That is, the first and second test pieces having the same shape (outer diameter 15 mm, length 25 mm) were cut out from each extruded material obtained as described above. In the hot compression test, each of the first test pieces was heated to 700 ° C, held for 30 minutes, and then compressed in the axial direction at a compressibility of 70% (the height of the first test piece). (Length) is 25 mm The surface morphology (700 ° C deformability) was visually determined after compression. The results were as shown in Tables 18 to 33. Judgment of the deformability was carried out visually from the state of the cracks on the side of the test piece, and in Tables 18 to 33, 〇 indicates that no crack occurred and △ indicates that a small crack occurred. In the figure, those with large cracks are indicated by “x”. Further, a tensile test was carried out using each of the second test pieces by a conventional method, and the tensile strength (NZmm 2 ) and elongation (%) were measured.
表 1 8〜表 3 3に示す熱間圧縮試験及び引張試験の結果から、 第 1〜第 1 2発明合金は、 従来合金 No. 1 3 0 0 1〜No. 1 3 0 0 4及び No. 1 3 0 0 6と同等若しくはそれ以上の熱間加工性及び機械的性質を有するもの であり、 工業的に好適に使用できるものであることが確認された。 特に、 第 7発明合金については、 J I Sに規定される伸銅品の中で強度に最も優れる アルミニウム青銅である従来合金 No. 1 3 0 0 5と同等の機械的性質を有 するものであり、 高力性に優れることが理解される。  From the results of the hot compression test and the tensile test shown in Tables 18 to 33, the 1st to 12th invention alloys are the same as the conventional alloys No. 13001 to No. 13004 and No. 13 It had a hot workability and a mechanical property equal to or higher than that of 1306, and was confirmed to be industrially suitable for use. In particular, the seventh invention alloy has the same mechanical properties as conventional alloy No. 135, which is aluminum bronze with the highest strength among the copper products specified in JIS, It is understood that it is excellent in high strength.
また、 第 1〜第 6発明合金及び第 8〜第 1 2発明合金の耐蝕性及び耐応力 腐蝕割れ性を、 従来合金との比較において確認すべく、 「 I S O 6 5 0 9 J に定める方法による脱亜鉛腐蝕試験及び 「J I S H 3 2 5 0」 に規定 される応力腐蝕割れ試験を行つた。  In addition, in order to confirm the corrosion resistance and stress corrosion cracking resistance of the first to sixth invention alloys and the eighth to 12th invention alloys in comparison with the conventional alloys, `` by the method specified in ISO 6509 J Dezincification corrosion test and stress corrosion cracking test specified in “JISH 3250” were performed.
すなわち、 「 I SO 6 5 0 9」 の脱亜鉛腐蝕試験においては、 各押出材 から採取した試料を、 暴露試料表面が当該押出材の押出し方向に対して直角 となるようにしてフエノール樹脂材に埋込み、 試料表面をェメリー紙により 1 2 0 0番まで研磨した後、 これを純水中で超音波洗浄して乾燥した。 か く して得られた被腐蝕試験試料を、 1. 0 %の塩化第 2銅 2水和塩 (C u C 12 · 2 H2 0) の水溶液 ( 1 2. 7 g/ 1 ) 中に浸漬し、 7 5°Cの温度 条件下で 2 4時間保持した後、 水溶液中から取出して、 その脱亜鉛腐蝕深さ の最大値 (最大脱亜鉛腐蝕深さ) を測定した。 その結果は、 表 18 〜表 2 5 及び表 2 8〜表 3 3に示す通りであった。 表 1 8 〜表 2 5及び表 2 8〜表 3 3に示す脱亜鉛腐蝕試験の結果から理解 されるように、 第 1〜第 4発明合金及び第 8〜第 1 2発明合金は、 大量の鉛 を含有する従来合金 N o . 1 3 0 0 1〜N o . 1 3 0 0 3に比して優れた耐 蝕性を有し、 特に、 被削性と共に耐蝕性の向上を図った第 5及び第 6発明合 金については、 J I Sに規定される伸銅品の中で耐蝕性に最も優れるネ一バ ル黄銅である従来合金 N o . 1 3 0 0 6に比しても極めて優れた耐蝕性を有 することが確認された。 In other words, in the dezincification corrosion test of “ISO 6509”, a sample taken from each extruded material was applied to a phenol resin material so that the surface of the exposed sample was perpendicular to the extrusion direction of the extruded material. After embedding, the surface of the sample was polished with emery paper to a number of 1200, and this was ultrasonically washed in pure water and dried. Or Ku was to be corrosion test specimen thus obtained, the aqueous solution (1 2. 7 g / 1) 1. 0% cupric chloride 2 hydrated salt (C u C 12 · 2 H 2 0) After being immersed and kept at a temperature of 75 ° C. for 24 hours, it was taken out from the aqueous solution, and the maximum value of the dezincification corrosion depth (maximum dezincification corrosion depth) was measured. The results were as shown in Tables 18 to 25 and 28 to 33. As can be understood from the results of the dezincification corrosion tests shown in Tables 18 to 25 and Tables 28 to 33, the first to fourth invention alloys and the eighth to 12th invention alloys Lead-containing conventional alloys No. 1.301 to No. 1.33 have superior corrosion resistance compared to No. 1.33, and in particular, have improved machinability and corrosion resistance. The No. 5 and No. 6 invention alloys are extremely superior to the conventional alloy No. 1.306, which is one of the most excellent corrosion resistance among brass products specified in JIS. It was confirmed that the steel had corrosion resistance.
また、 「J I S H 3 2 5 0」 の応力腐蝕割れ試験においては、 各押出材 から長さ 1 5 0 mmの試料を切り出し、 各試料を、 その中央部を半径 4 0 m mの円弧状治具に当てた状態で、 その一端部が他端部に対して 4 5 ° となる ように折曲させて、 試験片とした。 このようにして引張残留応力を付加され た各試験片を脱脂, 乾燥処理した上、 1 2 . 5 %のアンモニア水 (アンモニ ァを等量の純水で薄めたもの) を入れたデシケ一夕内のアンモニア雰囲気 ( 2 5 °C) 中に保持させた。 すなわち、 各試験片をデシケ一夕内におけるアン モニァ水面から約 8 0 mm上方の位置に保持する。 そして、 試験片のアンモ ニァ雰囲気中における保持時間が、 2時間, 8時間, 2 4時間を経過した時 点で、 試験片をデシケ一夕から取り出して、 1 0 %の硫酸で洗浄した上、 当 該試験片の割れの有無を拡大鏡 (倍率: 1 0倍) で視認した。 その結果は、 表 1 8 〜表 2 5及び表 2 8〜表 3 3に示す通りであった。 これらの表におい ては、 アンモニア雰囲気中での保持時間が 2時間である場合に明瞭な割れが 認められたものについては 「x x」 で、 2時間経過時においては割れが認め られなかつたが、 8時間経過時においては明瞭な割れが認められたものにつ いては 「X」 で、 8時間経過時においては割れが認められなかったが、 2 4 時間経過時においては明瞭な割れが認められたものについては 「△」 で、 2 4時間経過時においても割れが全く認められなかったものについては 「〇」 で示した。  In the stress corrosion cracking test of “JISH 3250”, a sample of 150 mm in length was cut out from each extruded material, and each sample was placed in a circular jig with a radius of 40 mm at the center. In this state, the test piece was bent so that its one end was at 45 ° to the other end. Each test piece to which the residual tensile stress was applied in this manner was degreased and dried, and then desiccated with 12.5% ammonia water (ammonia diluted with an equal volume of pure water). It was kept in an ammonia atmosphere (25 ° C). That is, each test piece is held at a position about 80 mm above the surface of the ammonia water in the desiccator. Then, when the holding time of the test piece in the atmosphere of ammonia exceeded 2 hours, 8 hours, and 24 hours, the test piece was taken out of the desiccator, washed with 10% sulfuric acid, The presence or absence of cracks in the test specimen was visually observed with a magnifying glass (magnification: 10 times). The results were as shown in Tables 18 to 25 and Tables 28 to 33. In these tables, `` xx '' indicates that a clear crack was observed when the holding time in the ammonia atmosphere was 2 hours, and no crack was observed after 2 hours. `` X '' indicates that a clear crack was observed after 8 hours, and no crack was observed after 8 hours, but a clear crack was observed after 24 hours. Those that were not cracked were indicated by “△”, and those that did not show any cracks even after 24 hours were indicated by “〇”.
表 1 8 〜表 2 5及び表 2 8〜表 3 3に示す応力腐蝕割れ試験の結果から理 解されるように、 被削性と共に耐蝕性の向上を図った第 5及び第 6発明合金 については勿論、 耐蝕性については格別の配慮をしていない第 1〜第 4発明 合金及び第 8〜第 1 2発明合金についても、 亜鉛を含まないアルミニウム青 銅である従来合金 No. 1 3 0 0 5と同等の耐応力腐蝕割れ性を有し、 J I Sに規定ざれる伸銅品の中で耐蝕性に最も優れるネーバル黄銅である従来合 金 No. 1 3 0 0 6より優れた耐応力腐蝕割れ性を有することが確認され た。 Based on the results of the stress corrosion cracking tests shown in Table 18 to Table 25 and Table 28 to Table 33, As can be understood, the first to fourth invention alloys and the eighth to eighth invention alloys which do not pay particular attention to the corrosion resistance, as well as the fifth and sixth invention alloys which have improved machinability and corrosion resistance. The 12th invention alloy also has the same stress corrosion cracking resistance as the conventional alloy No. 1305, which is aluminum bronze that does not contain zinc, and is a corrosion-resistant copper product specified in JIS. It was confirmed that it had better stress corrosion cracking resistance than conventional alloy No. 13006, which is Naval brass which is the most excellent in resistance.
また、 第 8〜第 1 1発明合金の耐高温酸化性を、 従来合金との比較におい て確認すべく、 次のような酸化試験を行った。  The following oxidation test was performed to confirm the high-temperature oxidation resistance of the eighth to eleventh invention alloys in comparison with the conventional alloys.
すなわち、 各押出材 No. 8 0 0 1〜No. 8 0 0 8、 No. 9 0 0 1〜 No. 9 0 0 6、 No. 1 0 0 0 1〜No. 1 0 0 0 8、 No. 1 1 0 0 1 〜No. 1 1 0 1 1及び No. 1 3 0 0 1〜 1 3 0 0 6から、 外径が 1 4 m mとなるように表面研削され且つ長さ 3 0mmに切断された丸棒状の試験片 を得て、 各試験片の重量 (以下 「酸化前重量」 という) を測定した。 しかる 後、 各試験片を、 磁性坩堝に収納した状態で、 5 0 0 °Cに保持された電気炉 内に放置した。 そして、 放置時間が 1 0 0時間を経過した時点で電気炉から 取り出して、 各試験片の重量 (以下 「酸化後重量」 という) を測定した上、 酸化前重量と酸化後重量とから酸化増量を算出した。 ここに、 酸化増量と は、 試験片の表面積 1 0 cm2 当たりの酸化による増加重量 (mg) の程 度を示すものであり、 「酸化増量 (mgZl 0 cm2 ) = (酸化後重量 (m g) 一酸化前重量 (mg) ) X ( 1 0 cm2 試験片の表面積 (cm2 ) J の式から算出されたものである。 すなわち、 各試験片の酸化後重量は酸化前 重量より増加しているが、 これは高温酸化によるものである。 つまり、 高温 に晒されると、 酸素と銅, 亜鉛, 珪素とが結合して C u2 〇., Zn O, S i 02 となり、 その酸素増分により重量が増加するのである。 したがって、 こ の増加重量の程度 (酸化増量) が小さい程、 耐高温酸化性に優れているとい うことができ、 表 2 8〜表 3 1及び表 3 3に示す結果となった。 表 2 3〜表 3 1及び表 3 3に示す酸化試験の結果から明らかなように、 第 8〜第 1 1発明合金の酸化増量は、 J I Sに規定される伸銅品の中でも高度 の耐高温酸化性を有するアルミニウム青銅である従来合金 No. 1 3 0 0 5 と同等であり、 他の従来合金よりは極めて小さくなつている。 したがって、 第 8〜第 1 1発明合金が、 被削性に加えて、 耐高温酸化性にも極めて優れた ものであることが確認された。 That is, each extruded material No. 800 1 to No. 800, No. 900 to No. 900, No. 100 to No. 100, No. From 1101 to No. 1 101 and No. 1301 to 1306, the surface was ground to an outer diameter of 14 mm and cut to a length of 30 mm. The obtained round bar-shaped test pieces were obtained, and the weight of each test piece (hereinafter referred to as “weight before oxidation”) was measured. Thereafter, each test piece was stored in a magnetic crucible and left in an electric furnace maintained at 500 ° C. When the standing time exceeds 100 hours, the test piece is taken out of the electric furnace, the weight of each test piece (hereinafter referred to as “post-oxidation weight”) is measured, and the weight of the test piece is calculated from the weight before oxidation and the weight after oxidation. Was calculated. Here, the term “oxidized weight gain” refers to the degree of weight increase (mg) due to oxidation per 10 cm 2 of the surface area of the test piece, and is expressed as “oxidized weight gain (mgZl 0 cm 2 ) = (weight after oxidation (mg ) surface area monoxide weight before (mg)) X (1 0 cm 2 test piece (cm 2) are those calculated from the equation J. that is, the weight after the oxidation of the specimen was increased from the previous oxidation weight However, this is due to high-temperature oxidation, that is, when exposed to high temperatures, oxygen and copper, zinc, and silicon combine to form Cu 2 〇., Zn O, S i 0 2 , and the oxygen Therefore, it can be said that the smaller the degree of the increase in weight (oxidation increase), the better the resistance to high-temperature oxidation, and Table 28 to Table 31 and Table 33 The result shown in FIG. As is evident from the results of the oxidation tests shown in Tables 23 to 31 and 33, the oxidation increase of the 8th to 11th invention alloys is the highest in high-temperature-resistant copper alloys specified in JIS. It is equivalent to the conventional alloy No. 13005, which is aluminum bronze with oxidizing properties, and is much smaller than other conventional alloys. Accordingly, it was confirmed that the eighth to eleventh invention alloys were extremely excellent in high temperature oxidation resistance in addition to machinability.
また、 第 2の実施例として、 表 9〜表 1 1に示す組成の鏵塊 (外径 1 0 0 mm, 長さ 2 0 0 mmの円柱形状のもの) を熱間 ( 7 0 0 °C) で外径 3 5 m mの丸棒状に押出加工して、 第 7発明合金 No. 7 0 0 1 a〜No. 7 0 2 9 aを得た。 また、 第 2の比較例として、 表 1 7に示す組成の铸塊 (外径 1 0 0 mm, 長さ 2 0 0 mmの円柱形状のもの) を熱間 ( 7 0 0で) で押出加 ェして、 外径 3 5mmの丸棒状押出材 (以下 「従来合金」 という) No. 1 3 0 0 1 a〜No. 1 3 0 0 6 aを得た。 なお、 No. 7 0 0 1 a〜No. 7 0 2 9 a及び No. 1 3 0 0 1 a〜No. 1 3 0 0 6 aは、 夫々、 前記し た銅合金 No. 7 0 0 1〜No. 7 0 2 9及び No. 1 3 0 0 1〜No. 1 3 0 0 6と同一の合金組成をなすものである。  In addition, as a second example, a lump of a composition shown in Tables 9 to 11 (a cylindrical shape having an outer diameter of 100 mm and a length of 200 mm) was heated (700 ° C ) Was extruded into a round bar having an outer diameter of 35 mm to obtain No. 7001 a to No. 720 a of the seventh invention alloy. As a second comparative example, a lump having a composition shown in Table 17 (a cylinder having an outer diameter of 100 mm and a length of 200 mm) was extruded hot (at 700). As a result, extruded rods having an outer diameter of 35 mm (hereinafter referred to as “conventional alloys”) No. 13001 a to No. 13006 a were obtained. In addition, No. 7001 a to No. 720 a and No. 1301 a to No. 130a are copper alloy No. 7001 described above, respectively. No. 709 and No. 130201 to No. 13006.
そして、 第 7発明合金 No. 7 0 0 1 a〜No. 7 0 2 9 aの耐摩耗性 を、 従来合金 No. 1 3 0 0 1 a〜No. 1 3 0 0 6 aとの比較において確 認すべく、 次のような摩耗試験を行った。  The wear resistance of the seventh invention alloys No. 701a to No. 709a was compared with that of the conventional alloys No. 1301a to No. 1306a. The following wear test was performed to confirm this.
すなわち、 上記の如く して得られた各押出材から、 その外周面を切削した 上、 穴明け加工及び切断加工を施すことにより、 外径 3 2mm, 厚さ (軸線 方向長さ) 1 0 mmのリング状試験片を得た上、 各試験片を回転自在な軸に 嵌合固定して、 これと軸線を平行とする外径 4 8mmの SUS 3 0 4製口一 ルに 5 0 k gの荷重を掛けて押圧接触させた状態に保持させる。 しかる後、 SUS 3 0 4製ロール及びこれに転接する試験片を、 当該試験片の外周面に マルチオイルを滴下しつつ、 同一回転数 (2 0 9 r. p. m. ) で回転駆動 させる。 そして、 当該試験片の回転数が 1 0万回に達した時点で、 SUS 3 0 4製ロール及び試験片の回転を停止して、 各試験片の回転前後における重 量差つまり摩耗減量 (mg) を測定した。 かかる摩耗減量が少ない程、 耐摩 耗性に優れた銅合金ということができるが、 その結果は、 表 34〜表 3 6に 示す通りであった。 That is, from each extruded material obtained as described above, an outer diameter of 32 mm and a thickness (length in the axial direction) of 10 mm are obtained by cutting an outer peripheral surface thereof, and performing drilling and cutting. After obtaining a ring-shaped test piece, each test piece was fitted and fixed to a rotatable shaft, and 50 kg of SUS304 with an outer diameter of 48 mm whose axis was parallel to this was placed in a hole made of SUS304. A load is applied to maintain the state of pressing contact. Thereafter, the SUS304 roll and the test piece rolling thereon are rotated at the same rotation speed (209 rpm) while multi-oil is dropped on the outer peripheral surface of the test piece. When the number of revolutions of the test piece reaches 100,000 times, the SUS 3 The rotation of the roll made of 04 and the test piece was stopped, and the weight difference before and after the rotation of each test piece, that is, the abrasion loss (mg) was measured. The smaller the loss on wear, the better the copper alloy with excellent wear resistance. The results are shown in Tables 34 to 36.
表 3 4〜表 3 6に示す摩耗試験の結果から明らかなように、 第 7発明合 金 No. 7 0 0 1 a〜No. 7 0 2 9 aは、 従来合金 N o . 1 3 0 0 1〜 No. 1 3 0 0 4及び No. 1 3 0 0 6に比しては勿論、 J I Sに規定さ れる伸銅品の中で耐磨耗性に最も優れるアルミニゥム青銅である従来合金 No. 1 3 0 0 5に比しても、 耐摩耗性が優れることが確認された。 したが つて、 上記した引張試験の結果をも考慮して総合的に判断した場合、 第 7発 明合金は、 被削性に加えて、 J I Sに規定される伸銅品の中で耐磨耗性に最 も優れるアルミニゥム青銅と同等以上の高力性, 耐摩耗性を有するものであ るということができる。 As is clear from the results of the wear tests shown in Tables 34 to 36, the seventh invention alloy No. 7001 a to No. 720 Conventional alloy No. 1 which is aluminum bronze with the highest wear resistance among the copper products specified in JIS as well as No. 1 304 and No. 130 06 It was confirmed that the abrasion resistance was excellent as compared with 1305. Therefore, when judged comprehensively in consideration of the results of the tensile test described above, the 7th invention alloy shows that, in addition to machinability, the wear resistance of the copper alloy products specified in JIS It can be said that it has high strength and wear resistance equal to or higher than aluminum bronze, which has the highest resistance.
【表 1 】 【table 1 】
Figure imgf000026_0001
Figure imgf000026_0001
【表 2】  [Table 2]
合金 合^ *誠 (¾i 1%)  Alloy alloy ^ * Makoto (¾i 1%)
No. Cu S i Pb B i Te S e Zn No. Cu S i Pb B i Te S e Zn
2001 73.8 2.7 0.05 0.03 残部2001 73.8 2.7 0.05 0.03 Rest
2 2002 69.9 2.0 0.33 0.27 残部 発 2003 74.5 2.8 0.03 0.31 2 2002 69.9 2.0 0.33 0.27 Rest 2003 74.5 2.8 0.03 0.31
明 2004 78.0 3.6 0.12 0.05 残部 合 2005 76.2 3.2 0.05 0.33 簡 金 2006 72.9 2.6 0.24 0.06 残部  Akira 2004 78.0 3.6 0.12 0.05 Balance 2005 76.2 3.2 0.05 0.33 Simple 2006 72.9 2.6 0.24 0.06 Balance
【表 3】 [Table 3]
合金 合 脈合«¾ m%)  (Alloy alloy «¾ m%)
No. Cu S i Pb Sn Al P Zn No. Cu S i Pb Sn Al P Zn
3001 70.8 1.9 0.23 3.2 麟3001 70.8 1.9 0.23 3.2 Lin
3002 74.5 3.0 0.05 0.4 觸3002 74.5 3.0 0.05 0.4 Touch
3003 78.8 2.5 0.15 3.4 3003 78.8 2.5 0.15 3.4
3 3004 74.9 2.7 0.09 1.2 ¾S(5 発 3005 74.6 2.3 0.26 1.2 1.9 残部 明 3006 74.8 2.8 0.18 0.03 残部 合 3007 76.5 3.3 0.04 0.21 残部 金 3008 73.5 2.5 0.05 1.6 0.05 残部 3 3004 74.9 2.7 0.09 1.2 ¾S (5 rounds 3005 74.6 2.3 0.26 1.2 1.9 Remaining light 3006 74.8 2.8 0.18 0.03 Remaining 3007 76.5 3.3 0.04 0.21 Remaining gold 3008 73.5 2.5 0.05 1.6 0.05 Remaining
3009 74.9 2.0 0.35 2.7 0.13 残部3009 74.9 2.0 0.35 2.7 0.13 Remainder
3010 75.2 2.9 0.23 0.8 1.4 0.04 残部 3010 75.2 2.9 0.23 0.8 1.4 0.04 Remainder
【表 4】 [Table 4]
合金 合金城(重量  Alloy alloy castle (weight
No. L u o i r D o n Λ I  No. L u o i r D o n Λ I
1 D 1 1 e e ム n n 0 n  1 D 1 1 e e n n 0 n
柳 1 Yd.0 0 1). U4 U.0 U. i n(J 残邵  Yanagi 1 Yd.0 0 1). U4 U.0 U. inn (J Zhao
74.5 L fa U.丄丄 0 U. U4 J  74.5 L fa U. 丄 丄 0 U. U4 J
残部 Rest
4UU 丄 U. 丄 1. L Z. o L U. Uo 4UU 丄 U. 丄 1. L Z. o L U. Uo
4UU n 4UU n
i. U. U U. n Uo U. ol 残 ¾j i. U.U U.n Uo U. ol Remaining ¾j
4UUO (4.丄 D U. U( 1.4 U. U4 u. uy 残4UUO (4. 丄 D U.U (1.4 U.U4 u.uy remaining
4UUb Ό 1.9 U. 0. Z u.丄;) u. ID 4UUb Ό 1.9 U. 0. Z u. 丄;) u. ID
Π  Π
4UU/ 11, o 0 U.1U U.1 丄 1. υ. uo U. UO  4UU / 11, o 0 U.1U U.1 丄 1. υ. Uo U. UO
No.
4UU8 /U.0 丄. Q b U. LL .4 U. Uo 5¾n|S 4  4UU8 /U.0 丄. Q b U. LL .4 U. Uo 5¾n | S 4
4UUa 79.1 L 7 U.10 o.4 U. Uo 残部 発  4UUa 79.1 L 7 U.10 o.4 U. Uo Remaining
4ϋ1ϋ 74.5 U.1U U. Uu U. Uo 残部 明 o o  4ϋ1ϋ 74.5 U.1U U. Uu U. Uo Remaining light o o
401丄 77. 0.0 U. U( U.4 U. dl 残部 合 n 0 o n  401 丄 77. 0.0 U.U (U.4 U. dl balance n 0 o n
U. Ua し U U. Uoo  U. Ua then U U. Uoo
U. lo 残 金 o  U. lo balance o
4013 74.5 U. lo 1.4 L 1 U. 残部 4013 74.5 U. lo 1.4 L 1 U.
4014 74.0 2.5 0.20 2.1 1.1 0.10 0.07 鶴4014 74.0 2.5 0.20 2.1 1.1 0.10 0.07 Crane
4015 72.5 2.4 0.11 1.0 0.05 残部4015 72.5 2.4 0.11 1.0 0.05 Remainder
4016 76.1 2.5 0.07 2.3 0.10 残部4016 76.1 2.5 0.07 2.3 0.10 Rest
4017 76.4 2.7 0.05 0.6 3.1 0.22 残部4017 76.4 2.7 0.05 0.6 3.1 0.22 Rest
4018 74.0 2.5 0.23 0.22 0.03 残部4018 74.0 2.5 0.23 0.22 0.03 balance
4019 71.2 2.2 0.11 2.8 0.05 0.30 觸4019 71.2 2.2 0.11 2.8 0.05 0.30 Touch
4020 75.3 2.7 0.22 1.4 0.03 0.05 残部4020 75.3 2.7 0.22 1.4 0.03 0.05 Rest
4021 74.1 2.5 0.05 2.4 1.2 0.07 0.07 4021 74.1 2.5 0.05 2.4 1.2 0.07 0.07
【表 5】 [Table 5]
合金 合 脈 .%)  Alloy vein.%)
No. Cu S i Pb Sn P Sb As Zn  No. Cu S i Pb Sn P Sb As Zn
5001 74.3 2.9 0.05 0.4 残部  5001 74.3 2.9 0.05 0.4 Remainder
5002 69.8 2.1 0.31 3.1 残部  5002 69.8 2.1 0.31 3.1 Rest
5003 74.8 2.8 0.03 0.08 残部  5003 74.8 2.8 0.03 0.08 Remainder
5004 78.2 3.4 0.16 0.21 鶴  5004 78.2 3.4 0.16 0.21 Crane
5005 74.9 3.1 0.09 0.07 残部  5005 74.9 3.1 0.09 0.07 balance
5006 72.2 2.4 0.25 0.13 残部  5006 72.2 2.4 0.25 0.13 Remainder
5007 73.5 2.5 0.18 2.2 0.04 残部  5007 73.5 2.5 0.18 2.2 0.04 Rest
No.
5008 77.0 3.3 0.06 0.7 0.15  5008 77.0 3.3 0.06 0.7 0.15
5 >  5>
5009 76.4 3.6 0.12 1.2 残部  5009 76.4 3.6 0.12 1.2 Rest
Departure
5010 71.4 2.3 0.26 2.6 0.03 残部  5010 71.4 2.3 0.26 2.6 0.03 Remainder
Light
5011 77.3 3.4 0.17 0.5 0.14 残部  5011 77.3 3.4 0.17 0.5 0.14 Remainder
 Mouth
5012 74.8 2.8 0.07 1.4 0.03 残部  5012 74.8 2.8 0.07 1.4 0.03 Remainder
Money
5013 74.5 2.7 0.05 0.03 0.12 残部  5013 74.5 2.7 0.05 0.03 0.12 Remainder
5014 76.1 3.1 0.14 0.18 0.03  5014 76.1 3.1 0.14 0.18 0.03
5015 73.9 2.5 0.08 0.07 0.05 残部  5015 73.9 2.5 0.08 0.07 0.05 Remainder
5016 74.5 2.8 0.07 0.08 0.04 残部  5016 74.5 2.8 0.07 0.08 0.04 balance
5017 77.3 3.1 0.12 1.5 0.13 0.05 残部  5017 77.3 3.1 0.12 1.5 0.13 0.05 Rest
5018 72.8 2.4 0.18 0.7 0.03 0.09 残部  5018 72.8 2.4 0.18 0.7 0.03 0.09 Remainder
5019 74.2 2.7 0.07 0.5 0.11 0.10 残部  5019 74.2 2.7 0.07 0.5 0.11 0.10 Remainder
5020 74.6 2.8 0.05 0.9 0.07 0.05 0.03 残部 【表 6】 5020 74.6 2.8 0.05 0.9 0.07 0.05 0.03 Remainder [Table 6]
合金 合 . (重量  Alloy alloy (weight
No. C u S i Pb B i Te S e Sn P Sb As Zn No. Cu Si Pb B i Te S e Sn P Sb As Zn
6001 70.7 2.3 0.17 0.05 2.8 残部6001 70.7 2.3 0.17 0.05 2.8 Remainder
6002 74.6 2.5 0.08 0.03 0.7 0.06 残部6002 74.6 2.5 0.08 0.03 0.7 0.06 Rest
6003 78.0 3.7 0.05 0.34 0.4 0.05 残部6003 78.0 3.7 0.05 0.34 0.4 0.05 Remainder
6004 69.5 2.1 0.32 0.02 3.3 0.03 残部6004 69.5 2.1 0.32 0.02 3.3 0.03 balance
6005 76.8 2.8 0.03 0.07 0.8 0.21 0.02 残部6005 76.8 2.8 0.03 0.07 0.8 0.21 0.02 Remainder
6006 74.2 2.7 0.18 0.10 0.5 0.03 0.13 鶴6006 74.2 2.7 0.18 0.10 0.5 0.03 0.13 Crane
6007 76.1 3.2 0.12 0.05 1.7 0.12 0.026007 76.1 3.2 0.12 0.05 1.7 0.12 0.02
6008 75.3 2.8 0.20 0.16 1.3 0.10 0.03 0.05 麟6008 75.3 2.8 0.20 0.16 1.3 0.10 0.03 0.05 Lin
6009 77.0 3.1 0.14 0.06 0.21 郷6009 77.0 3.1 0.14 0.06 0.21 Township
6010 72.5 2.5 0.07 0.09 0.05 0.03 残部6010 72.5 2.5 0.07 0.09 0.05 0.03 Rest
6011 74.7 2.9 0.10 0.32 0.14 0.10 残部6011 74.7 2.9 0.10 0.32 0.14 0.10 Remainder
6012 71.4 2.3 0.25 0.14 0.07 0.03 0.02 蘭6012 71.4 2.3 0.25 0.14 0.07 0.03 0.02 Orchid
6013 74.7 3.0 0.13 0.05 0.12 残部6013 74.7 3.0 0.13 0.05 0.12 Remainder
6014 77.2 3.2 0.27 0.23 0.07 0.04 残部6014 77.2 3.2 0.27 0.23 0.07 0.04 Rest
6015 74.0 2.8 0.07 0.03 0.03 残部6015 74.0 2.8 0.07 0.03 0.03 Remainder
6016 69.8 2.1 0.22 0.17 3.2 残部6016 69.8 2.1 0.22 0.17 3.2 Remainder
6017 73.8 2.9 0.15 0.03 1.6 0.07 6017 73.8 2.9 0.15 0.03 1.6 0.07
6018 75.8 2.8 0.08 0.06 0.4 0.03  6018 75.8 2.8 0.08 0.06 0.4 0.03
6019 71.2 2.3 0.15 0.07 2.5 0.07 残部 6019 71.2 2.3 0.15 0.07 2.5 0.07 Rest
6020 72.0 2.6 0.12 0.04 0.9 0.03 0.05 残部 6020 72.0 2.6 0.12 0.04 0.9 0.03 0.05 Remainder
【表 7】 [Table 7]
合明 Agreement
台 合翁 m (.mm%) Taigo m (.mm%)
o. Cu S i Pb B i Te S e Sn P Sb As Zn o. Cu S i Pb B i Te S e Sn P Sb As Zn
6021 76.8 2.9 0.20 0.30 0.8 0.17 0.03 蘭6021 76.8 2.9 0.20 0.30 0.8 0.17 0.03 Orchid
78.3 3.2 0.15 0.36 0.4 0.06 0.14 残部78.3 3.2 0.15 0.36 0.4 0.06 0.14 Remainder
73.4 2.3 0.12 0.06 2.7 0.02 0.11 0.03 觸73.4 2.3 0.12 0.06 2.7 0.02 0.11 0.03 Touch
74.6 2.8 0.05 0.08 0.19 娜74.6 2.8 0.05 0.08 0.19 Nana
78.5 3.7 0.22 0.25 0.23 0.03 觸78.5 3.7 0.22 0.25 0.23 0.03 Touch
74.9 2.9 0.16 0.05 0.05 0.10 残部74.9 2.9 0.16 0.05 0.05 0.10 Rest
73.8 2.5 0.07 0.03 0.06 0.02 0.04 残部73.8 2.5 0.07 0.03 0.06 0.02 0.04 Rest
74.8 2.6 0.12 0.02 0.12 残部74.8 2.6 0.12 0.02 0.12 Remainder
74.2 2.8 0.37 0.10 0.11 0.02 歹繊 bU u 76.3 3.2 0.08 0.05 0.07 残部 bUd丄 70.8 2.4 0.11 0.05 2.6 74.2 2.8 0.37 0.10 0.11 0.02 System bU u 76.3 3.2 0.08 0.05 0.07 Rest bUd 丄 70.8 2.4 0.11 0.05 2.6
74.6 3.0 0.25 0.32 0.6 0.06 残部 74.6 3.0 0.25 0.32 0.6 0.06 Rest
603d 75.0 2.8 0.03 0.12 0.3 0.13 残部603d 75.0 2.8 0.03 0.12 0.3 0.13 Remainder
6034 73.5 2.8 0.12 0.07 1.0 0.11 鄉6034 73.5 2.8 0.12 0.07 1.0 0.11 鄉
6035 78.0 3.3 0.07 0.03 0.5 0.16 0.02 残部6035 78.0 3.3 0.07 0.03 0.5 0.16 0.02 Rest
6036 72.4 2.5 0.13 0.05 3.1 0.03 0.05 鄉6036 72.4 2.5 0.13 0.05 3.1 0.03 0.05 鄉
6037 78.0 2.8 0.18 0.20 1.7 0.08 0.02 残部6037 78.0 2.8 0.18 0.20 1.7 0.08 0.02 Remainder
6038 76.5 3.1 0.10 0.11 1.7 0.03 0.03 0.046038 76.5 3.1 0.10 0.11 1.7 0.03 0.03 0.04
6039 71.9 2.4 0.12 0.17 0.04 残部6039 71.9 2.4 0.12 0.17 0.04 Remainder
6040 77.0 3.5 0.03 0.35 0.23 0.03 残部 6040 77.0 3.5 0.03 0.35 0.23 0.03 Remainder
【表 8】 [Table 8]
Figure imgf000030_0001
Figure imgf000030_0001
【表 9】  [Table 9]
合^ f誠 .%)  (Go ^ f sincere.%)
No. Cu S i Pb Sn A 1 P Mn N i Zn No. Cu S i Pb Sn A 1 P Mn N i Zn
7001 7001
67.0 3.8 0.04 1.6 3.2 郷 67.0 3.8 0.04 1.6 3.2 Township
7001a 7001a
7002  7002
69.3 4.2 0.15 0.4 2.2 残部 69.3 4.2 0.15 0.4 2.2 Remainder
7002a 7002a
7003  7003
63.8 2.6 0.33 2.8 0.9 残部 63.8 2.6 0.33 2.8 0.9 Remainder
7003a 7003a
7  7
7004  7004
66.5 3.4 0.07 1.5 2.0 残部 66.5 3.4 0.07 1.5 2.0 Remainder
7004a 7004a
 Departure
7005  7005
67.2 3.6 0.10 0.9 1.8 0.9 残部 67.2 3.6 0.10 0.9 1.8 0.9 Remainder
7005a 7005a
 Light
7006  7006
63.0 2.7 0.27 2.7 1.2 2.1 残部 63.0 2.7 0.27 2.7 1.2 2.1 Remainder
7006a 7006a
 Mouth
7007  7007
68.7 3.4 0.05 1.4 1.3 0.9 残部 68.7 3.4 0.05 1.4 1.3 0.9 Rest
7007a 7007a
 Money
7008  7008
70.6 4.1 0.03 0.5 1.6 3.4 残部 70.6 4.1 0.03 0.5 1.6 3.4 Remainder
7008a 7008a
7009  7009
67.8 3.6 0.12 2.6 2.1 3.3 残部 67.8 3.6 0.12 2.6 2.1 3.3 Rest
7009a 7009a
7010  7010
68.4 3.5 0.06 0.4 0.3 1.8 残部 68.4 3.5 0.06 0.4 0.3 1.8 Remainder
7010a 7010a
【表 1 0】 [Table 10]
Figure imgf000031_0001
Figure imgf000031_0001
【表 1 1】  [Table 11]
合 金 合金誠 m%)  (Metal alloy alloy m%)
No. Cu S i Pb Sn A 1 P Mn Ni Zn No. Cu S i Pb Sn A 1 P Mn Ni Zn
7021 7021
75.0 4.2 0.19 1.7 2.1 娜 75.0 4.2 0.19 1.7 2.1 Nana
7021a 7021a
7022  7022
72.3 3.7 0.05 1.4 1.1 0.8 残部 72.3 3.7 0.05 1.4 1.1 0.8 Remainder
7022a 7022a
7023  7023
64.5 3.8 0.35 0.3 2.0 2.3 残部 64.5 3.8 0.35 0.3 2.0 2.3 Remainder
7023a 7023a
7  7
7024  7024
75.8 3.9 0.05 2.7 0.04 1.0 残部 75.8 3.9 0.05 2.7 0.04 1.0 Remainder
7024a 7024a
 Departure
7025  7025
70.1 3.5 0.06 1.2 0.23 3.0 残部 70.1 3.5 0.06 1.2 0.23 3.0 Remainder
7025a 7025a
 Light
7026  7026
67.2 2.8 0.22 1.8 0.14 2.2 0.9 鶴 67.2 2.8 0.22 1.8 0.14 2.2 0.9 Crane
7026a 7026a
7027  7027
70.2 3.8 0.11 0.03 3.2 麵 70.2 3.8 0.11 0.03 3.2 麵
7027a 7027a
 Money
7028  7028
75.9 4.4 0.03 0.20 1.1 残部 75.9 4.4 0.03 0.20 1.1 Rest
7028a 7028a
7029  7029
66.0 3.0 0.18 0.12 1.0 2.1 残部 66.0 3.0 0.18 0.12 1.0 2.1 Remainder
7029a 【表 1 2】 7029a [Table 1 2]
Figure imgf000032_0001
Figure imgf000032_0001
【表 1 3】[Table 13]
π. 合 喊 (fii 1%)  π. Combat (fii 1%)
No. Cu S i Pb A 1 P Zn  No. Cu S i Pb A 1 P Zn
9001 74.5 2.9 0.16 0.2 0.05 残部  9001 74.5 2.9 0.16 0.2 0.05 Rest
9002 76.0 2.7 0.03 1.2 0.21 残部  9002 76.0 2.7 0.03 1.2 0.21 Remainder
9 9003 76.3 3.0 0.35 0.6 0.12 残部  9 9003 76.3 3.0 0.35 0.6 0.12 Remainder
発 9004 69.9 2.1 0.27 0.3 0.03 残部  Departure 9004 69.9 2.1 0.27 0.3 0.03 Rest
明 9005 71.5 2.3 0.12 0.8 0.10 残部  Akira 9005 71.5 2.3 0.12 0.8 0.10 Rest
合 9006 78.1 3.6 0.05 0.2 0.13 残部  Total 9006 78.1 3.6 0.05 0.2 0.13 Rest
金 9007 77.7 3.4 0.18 1.4 0.06 残部  Gold 9007 77.7 3.4 0.18 1.4 0.06 balance
9008 77.5 3.5 0.03 0.9 0.15 残部  9008 77.5 3.5 0.03 0.9 0.15 Remainder
【表 14 】 [Table 14]
合 金 合 (重量%) 合^ No. Cu S i Pb A 1 P B i Te Se Zn No. Cu Si Pb A 1 P B i Te Se Zn
10001 74.8 2.8 0.05 0.6 0.07 0.03 残部 第 10002 76.6 2.9 0.12 0.9 0.03 0.32 残部 10 10001 74.8 2.8 0.05 0.6 0.07 0.03 Remaining No. 10002 76.6 2.9 0.12 0.9 0.03 0.32 Remaining 10
発 10003 72.3 2.2 0.32 0.5 0.12 0.25 ¾S|5 明  Departure 10003 72.3 2.2 0.32 0.5 0.12 0.25 ¾S | 5
合 10004 77.2 3.0 0.07 1.4 0.21 0.05 残部 金  Total 10004 77.2 3.0 0.07 1.4 0.21 0.05 Remaining gold
10005 78.1 3.6 0.16 0.3 0.15 0.29 鶴 10005 78.1 3.6 0.16 0.3 0.15 0.29 Crane
10006 74.5 2.6 0.05 0.6 0.08 0.07 残部 【表 1 5】 10006 74.5 2.6 0.05 0.6 0.08 0.07 Rest [Table 15]
Figure imgf000033_0001
Figure imgf000033_0001
[表 17】  [Table 17]
合 金 合金糸- m (si  Alloy alloy thread-m (si
No. Cu S i Pb Sn A 1 Mn N i Fe Zn No. Cu S i Pb Sn A 1 Mn N i Fe Zn
13001 13001
58.8 3.1 0.2 0.2 麟 58.8 3.1 0.2 0.2 Lin
13001a 13001a
13002  13002
61.4 3.0 0.2 0.2 鶴 61.4 3.0 0.2 0.2 Crane
13002a 13002a
 Obedience
13003  13003
59.1 2.0 0.2 0.2 残部 来 13003a  59.1 2.0 0.2 0.2 Remainder 13003a
13004  13004
69.2 1.2 0.1 残部 69.2 1.2 0.1 Remainder
13004a 13004a
金 13005  Gold 13005
残部 9.8 1.1 1.2 3.9 Rest 9.8 1.1 1.2 3.9
13005a 13005a
13006  13006
61.8 0.1 1.0 残部 61.8 0.1 1.0 Remainder
13006a 【表 1 8 】 13006a [Table 18]
被肖 1胜 Ki*性 熱間加工性 機誘生質 耐応カ 金 丰 力 最^ ife架さ 7 0 0 °C /由? " 腐 Ι 胜 1 * Ki * property Hot workability Machine temperability Heat-resisting resistance Metal strength Maximum ife span 7 0 0 ° C / Yu?
No. 状態 の形態 (N) (は m) 麵能 (N/mm2 ) (%) 害 Uれ性No. State form (N) (m) Function (N / mm 2 ) (%) Harm
1001 3 3 5 〇 第 ◎ 〇 1 1 7 1 6 0 〇 5 3 1001 3 3 5 〇 Chapter ◎ 〇 1 1 7 1 6 0 〇 5 3
1002 1 4 1 7 0 〇 5 2 0 3 2 〇 1 ◎ 〇 1  1002 1 4 1 7 0 〇 5 2 0 3 2 〇 1 ◎ 〇 1
1003 〇 1 1 9 1 4 0 Δ 5 7 5 3 6 〇 発 ◎  1003 〇 1 1 9 1 4 0 Δ5 7 5 3 6 〇 Development ◎
1004 4 9 0 3 0 Δ 明 ◎ 〇 1 1 8 2 2 0 厶  1004 4 9 0 3 0 Δ light ◎ 〇 1 1 8 2 2 0
1005 〇 1 14 1 7 0 〇 5 4 6 3 4 〇 合 ◎  1005 〇 1 14 1 7 0 〇 5 4 6 3 4 ◎
1006 Δ 〇 1 2 6 2 3 0 〇 5 0 4 3 2 Δ 金  1006 Δ 〇 1 2 6 2 3 0 〇 5 0 4 3 2 Δ Gold
1006 ◎ Δ 1 2 7 1 7 0 Δ 5 1 5 4 4 〇 1006 ◎ Δ 1 2 7 1 7 0 Δ 5 1 5 4 4 〇
【表 1 9】 [Table 19]
被肖 1胜 画生 熱間加工性 機勸性質 耐応カ 金 切屑の 切削表面 主分力 最 觀さ 7 0 0 °C 引? S¾さ 伸び 腐 蝕 No. 機 の形態 (N) ( «m) mm (N/mm2 ) (%) 割れ性Applicable 1 胜 Painting Hot workability Suggested properties Refractory metal Cutting surface of chip Principal force Observed 70 0 ° C elongation Corrosion Elongation Corrosion No. Machine form (N) («m ) mm (N / mm 2 ) (%)
2001 ◎ 〇 1 1 6 1 8 0 〇 5 1 0 3 3 〇2001 ◎ 〇 1 1 6 1 8 0 〇 5 1 0 3 3 〇
2 2002 ◎ 〇 1 1 5 2 3 0 Δ 4 7 5 2 8 Δ2 2002 ◎ 〇 1 1 5 2 3 0 Δ 4 7 5 2 8 Δ
2003 〇 1 1 5 1 6 0 Δ 5 4 0 3 2 〇 明 2004 〇 1 1 7 1 5 0 Δ 5 7 6 3 5 〇2003 〇 1 1 5 1 6 0 Δ5 4 0 3 2 明 Description 2004 〇 1 1 7 1 5 0 Δ5 7 6 3 5 〇
2005 ◎ 〇 1 1 6 1 4 0 Δ 5 4 3 3 7 〇 金 2006 ◎ 〇 1 1 4 1 8 0 厶 5 0 2 3 2 〇 2005 ◎ 〇 1 1 6 1 4 0 Δ5 4 3 3 7 〇 Fri 2006 ◎ 〇 1 1 4 1 8 0 m 5 0 2 3 2 〇
【表 2 0】 [Table 20]
被肖 1胜 而纖 熱間加工性 機画生質 耐応カ 金 切屑の 切削表面 主分力 最大腐聽さ 7 0 0 °C 引 ¾!¾さ 伸び 腐 蝕 No. 觀 の形態 (N) ( «m) mm (N/mm2 ) (%) 割れ性被 1 胜 纖 纖 纖 性 纖 纖 纖 熱 胜 胜 胜 胜 胜 胜 0 0 0 0 0 0 0 0 0 0 («M) mm (N / mm 2 ) (%)
3001 ◎ 〇 1 2 0 3 0 o 5 4 2 2 3 〇3001 ◎ 〇 1 2 0 3 0 o 5 4 2 2 3 〇
3002 ◎ 〇 1 1 7 7 0 〇 5 5 0 3 0 〇3002 ◎ 〇 1 1 7 7 0 〇 5 5 0 3 0 〇
3003 @ 〇 1 1 9 1 1 0 Δ 5 6 5 3 4 〇3003 @ 〇 1 1 9 1 1 0 Δ5 6 5 3 4 〇
3 3004 ◎ 〇 1 1 8 1 4 0 〇 5 3 2 3 5 〇 発 3005 ◎ 〇 1 1 9 5 0 厶 5 4 7 2 7 〇 明 3006 ◎ 〇 1 1 5 3 0 〇 5 3 8 3 4 〇3 3004 ◎ 〇 1 1 8 1 4 0 〇 5 3 2 3 5 〇 Development 3005 ◎ 〇 1 1 9 5 0 um 5 4 7 2 7 〇 Description 3006 ◎ 〇 1 1 5 3 0 〇 5 3 8 3 4 〇
3007 ◎ 〇 1 1 7 < 5 Δ 5 6 2 3 6 〇 金 3008 ◎ 〇 1 1 9 < 5 〇 5 2 9 2 6 〇3007 ◎ 〇 1 1 7 <5 Δ5 6 2 3 6 〇 Gold 3008 ◎ 〇 1 1 9 <5 〇 5 2 9 2 6 〇
3009 ◎ 〇 1 1 8 < 5 Δ 5 1 8 3 0 〇3009 ◎ 〇 1 1 8 <5 Δ5 1 8 3 0 〇
3010 ◎ 〇 1 1 6 < 5 . 〇 5 5 5 2 8 〇 【表 2 1】 3010 ◎ 〇 1 1 6 <5 .〇 5 5 5 2 8 〇 [Table 21]
合明 Agreement
被肖 1胜 而樹 * 埶間加工性 麵勺性質 、、力 金 切屑の 切削表面 主分力 最大腐触深さ 了 o o。c 引? δ¾さ 伸び 肉 胜 1 而 樹 * 加工 麵 埶 麵 麵 麵 麵 麵 麵 麵 麵 主 表面 表面 主 主 表面 主 主 主c Pulling δ¾ Length Growth Meat
No. 觀 の形態 (Ν) 変形能 (N/mm2 ) No. View form (Ν) Deformability (N / mm 2 )
4001 ◎ ο 1 1 9 7 0 o 5 3 5 3 o oリ 4001 ◎ ο 1 1 9 7 0 o 5 3 5 3 o o
4002 ◎ ο 1 1 6 1 2 0 o 5 4 7 3 3 n4002 ◎ ο 1 1 6 1 2 0 o 5 4 7 3 3 n
4003 ◎ ο 1 1 8 6 ο 5 3 9 2 δ o4003 ◎ ο 1 1 8 6 ο 5 3 9 2 δ o
4004 ο 〇 1 1 3 3 0 △ 5 5 0 3 i o4004 ο 〇 1 1 3 3 0 △ 5 5 0 3 i o
4005 ◎ 〇 1 1 7 < 5 o 5 3 4 2 74005 ◎ 〇 1 1 7 <5 o 5 3 4 2 7
4006 ◎ 〇 1 1 8 ぐ 5 Λ 5 4 2 3 04006 ◎ 〇 1 1 8 5 5 Λ 5 4 2 3 0
4007 〇 〇 1 1 6 < 5 o 5 6 3 3 2 o4007 〇 〇 1 1 6 <5 o 5 6 3 3 2 o
4008 ◎ 〇 1 2 0 4 0 Δ 5 0 7 2 5 o4008 ◎ 〇 1 2 0 4 0 Δ5 0 7 2 5 o
4009 ◎ 〇 1 1 7 1 1 0 Δ 5 7 2 3 6 o4009 ◎ 〇 1 1 7 1 1 0 Δ5 7 2 3 6 o
4010 ◎ 〇 1 1 5 1 0 o 5 2 4 3 3 o4010 ◎ 〇 1 1 5 1 0 o 5 2 4 3 3 o
4011 ◎ 〇 1 1 6 < 5 Δ 5 8 0 3 i o4011 ◎ 〇 1 1 6 <5 Δ5 8 0 3 i o
4012 ◎ ο 1 1 4 2 0 o 5 7 5 3 Γ)4012 ◎ ο 1 1 4 2 0 o 5 7 5 3 Γ)
4013 ο ο 1 1 5 5 0 s a )4013 ο ο 1 1 5 5 0 s a)
◎ 〇 1 1 7 、 リ 5 4 3 2 6 u◎ 〇 1 1 7, 5 5 4 3 2 6 u
4015 ◎ 〇 1 1 7 6 0 〇 5 0 1 2 7 〇4015 ◎ 〇 1 1 7 6 0 〇 5 0 1 2 7 〇
4016 ◎ 〇 1 1 6 1 3 0 Δ 5 3 9 3 2 o4016 ◎ 〇 1 1 6 1 3 0 Δ5 3 9 3 2 o
4017 ◎ 〇 1 1 8 5 0 〇 5 7 4 3 4 〇4017 ◎ 〇 1 1 8 5 0 〇 5 7 4 3 4 〇
4018 ◎ 〇 1 1 5 < 5 〇 5 0 6 3 0 〇4018 ◎ 〇 1 1 5 <5 〇 5 0 6 3 0 〇
4019 ◎ 〇 1 1 8 < 5 〇 5 2 3 2 8 〇4019 ◎ 〇 1 1 8 <5 〇 5 2 3 2 8 〇
4020 ◎ 〇 1 1 5 2 0 Δ 5 4 8 3 2 〇4020 ◎ 〇 1 1 5 2 0 Δ5 4 8 3 2 〇
4021 ◎ 〇 1 1 8 ぐ 5 〇 5 5 3 2 7 〇 4021 ◎ 〇 1 1 8 5 5 〇 5 5 3 2 7 〇
【表 2 2】 [Table 22]
合明 Agreement
口 被肖 1胜 ^l 執間 π丁 機麵生質 拡"l 切屑の 切肖 IJ表面 主分力 昜 flit女腐 Φ 7 η υ π υ°Γ 引? i¾さ ί 1由び η υ. 雌 の形態 (N) V, /i/- m i 4¾« Η (N/mm2 ) (%) a'J liMouth 被 1 胜 ^ l 執 π 麵 麵 麵 麵 麵 麵 麵 l l l l l 由 由 由 由 由 由 由 由 由 由 由 由 由Female morphology (N) V, / i /-mi 4¾ «Η (N / mm 2 ) (%) a'J li
5001 ◎ o 116 7 o ο 525 34 ο5001 ◎ o 116 7 o ο 525 34 ο
5002 ◎ o 120 4 o Λ 501 2 o5002 ◎ o 120 4 o Λ 501 2 o
5 ◎ o 11 ぐ 5 510 υ Q ο Q 5 ◎ o 11 gusset 5 510 υ Q ο Q
◎ o 11 ぐ 5 Λ 547 4 9 ) ◎ o 11 g 5 Λ 547 4 9)
◎ . o 115 ぐ 5 リ 533 J◎.
5006 ◎ o 116 < 5 470 30 Λ5006 ◎ o 116 <5 470 30 Λ
5007 ◎ o 1 18 < 5 512 28 5007 ◎ o 1 18 <5 512 28
5008 ◎ o 119 < 5 A 558  5008 ◎ o 119 <5 A 558
◎ o 120 ς n Λ 595  ◎ o 120 ς n Λ 595
◎ o 121 < 5 516 27 ◎ o 121 <5 516 27
5011 ◎ o 118 < 5 569 34 5011 ◎ o 118 <5 569 34
5012 ο o 117 < 5 ο 523 30  5012 ο o 117 <5 ο 523 30
5013 ◎ 〇 1 16 < 5 ο 504 33  5013 ◎ 〇 1 16 <5 ο 504 33
5014 〇 〇 1 14 5 〇 536 35 〇 5014 〇 〇 1 14 5 〇 536 35 〇
5015 ◎ 〇 117 < 5 〇 488 31 〇5015 ◎ 〇 117 <5 488 488 31 〇
5016 ◎ 〇 116 < 5 〇 510 37 〇5016 ◎ 〇 116 <5 〇 510 37 〇
5017 ◎ 〇 118 < 5 Δ 557 32 〇5017 ◎ 〇 118 <5 Δ 557 32 〇
5018 ◎ 〇 117 < 5 〇 480 30 〇5018 ◎ 〇 117 <5 480 480 30 〇
5019 ◎ 〇 117 < 5 〇 511 31 〇5019 ◎ 〇 117 <5 〇 511 31 〇
5020 ◎ 〇 115 < 5 〇 528 30 〇 5020 ◎ 〇 115 <5 528 528 30 〇
【表 2 3 3 [Table 2 3 3
合明 Agreement
被肖 1胜 囊性 ^間加工性 機觸生質 ίϊίίϊΗι、、 金 切屑の 切削表面 ¾分力 最:^ ΚΙί深さ 7 0 0°C 引? 油  胜 胜 胜 ^ ^ ^ ^ ^ ^ ^ ^ ^ 、 ^ 金 表面 ¾ ¾ 胜 ¾ ¾ ¾ ¾ ¾
雌 の形態 (N) ί m") 恋形能 /υ ilわ W: Female form (N) ί m ") Koi noh / υ ilwa W:
6001 ◎ o 1 1 9 4 0 o o6001 ◎ o 1 1 9 4 0 o o
6002 ◎ o 1 1 7 < 5 o 4 9 6 o o6002 ◎ o 1 1 7 <5 o 4 9 6 o o
6003 ◎ o 1 1 9 < 5 △ 5 7 0 3 4 )6003 ◎ o 1 1 9 <5 △ 5 7 0 3 4)
6004 ◎ 〇 1 1 8 < 5 Δ 5 0 3 2 6 o6004 ◎ 〇 1 1 8 <5 Δ5 0 3 2 6 o
6005 ◎ 〇 1 1 5 < 5 o 5 3 6 3 7 o6005 ◎ 〇 1 1 5 <5 o 5 3 6 3 7 o
6006 〇 〇 1 1 3 < 5 o 5 1 2 3 3 〇6006 〇 〇 1 1 3 <5 o 5 1 2 3 3 〇
6007 ◎ 〇 1 1 7 ぐ 5 Δ 5 5 9 2 9 o 第 6007 ◎ 〇 1 1 7 5 5 Δ 5 5 9 2 9 o o
6008 〇 〇 1 1 5 < 5 Δ 5 2 7 3 i o 6008 〇 〇 1 1 5 <5 Δ5 2 7 3 i o
6 6
6009 ◎ o 1 1 5 < 5 Δ 5 4 6 4 o  6009 ◎ o 1 1 5 <5 Δ5 4 6 4 o
6010 ◎ o 1 1 6 < 5 o 5 0 7 Q fl  6010 ◎ o 1 1 6 <5 o 5 0 7 Q fl
6011 o o 1 1 3 < 5 A 2 0 Q fl  6011 o o 1 1 3 <5 A 2 0 Q fl
6012 (3) o 1 1 5 < 5 A A  6012 (3) o 1 1 5 <5 A A
I  I
〇 〇 1 1 4 ぐ 5 3 1 3 2 u 〇 〇 1 1 4 5 5 3 1 3 2 u
6014 ◎ 〇 1 1 4 < 5 Δ 5 6 4 3 1 〇6014 ◎ 〇 1 1 4 <5 Δ5 6 4 3 1 〇
6015 ◎ o 1 1 5 2 0 〇 5 2 5 3 4 〇6015 ◎ o 1 1 5 2 0 〇 5 2 5 3 4 〇
6016 ◎ 〇 1 2 1 3 0 〇 5 1 4 2 5 〇6016 ◎ 〇 1 2 1 3 0 〇 5 1 4 2 5 〇
6017 ◎ 〇 1 1 9 < 5 〇 5 1 0 2 7 〇6017 ◎ 〇 1 1 9 <5 〇 5 1 0 2 7 〇
6018 ◎ 〇 1 1 6 < 5 〇 5 2 8 3 2 〇6018 ◎ 〇 1 1 6 <5 〇 5 2 8 3 2 〇
6019 ◎ 〇 1 1 θ < 5 〇 5 2 6 2 8 〇6019 ◎ 〇 1 1 θ <5 〇 5 2 6 2 8 〇
6020 ◎ 〇 1 1 6 < 5 〇 5 0 9 3 0 〇 6020 ◎ 〇 1 1 6 <5 〇 5 0 9 3 0 〇
【表 2 4】 [Table 24]
被肖 1胜 耐蝕性 熱間加工性 機勸性質 耐応カ 金 切屑の 切削表面 主分力 最 麟さ 7 0 0 °C 引? S¾さ 伸び 腐 蝕 Degraded 1 胜 Corrosion resistance Hot workability Recommended properties Resistance to corrosion Metal Cutting surface Main component force Maximum strength 700 ° C elongation Corrosion Elongation Corrosion
No. 難 の形態 (N) ( m) mm (N/mm2 ) (% 割れ性No. Difficult form (N) (m) mm (N / mm 2 ) (%
6021 ◎ 〇 1 1 3 < 5 〇 5 3 4 3 0 〇6021 ◎ 〇 1 1 3 <5 〇 5 3 4 3 0 〇
6022 〇 1 1 7 < 5 〇 5 6 2 3 4 〇6022 〇 1 1 7 <5 〇 5 6 2 3 4 〇
6023 ◎ 〇 1 2 0 < 5 〇 5 2 7 2 7 〇6023 ◎ 〇 1 2 0 <5 〇 5 2 7 2 7 〇
6024 ◎ 〇 1 1 6 < 5 〇 5 1 5 3 3 〇6024 ◎ 〇 1 1 6 <5 〇 5 1 5 3 3 〇
6025 ◎ 〇 1 1 7 < 5 Δ 5 7 5 3 5 〇6025 ◎ 〇 1 1 7 <5 Δ5 7 5 3 5 〇
6026 ◎ 〇 1 1 4 < 5 〇 5 2 4 3 2 〇6026 ◎ 〇 1 1 4 <5 〇 5 2 4 3 2 〇
6027 o 1 1 9 < 5 〇 5 0 3 3 4 〇 第 ◎ 6027 o 1 1 9 <5 〇 5 0 3 3 4 〇 No. ◎
6028 1 1 7 < 5 〇 5 1 0 3 3 〇 6 ◎ 〇  6028 1 1 7 <5 〇 5 1 0 3 3 〇 6 ◎ 〇
6029 〇 〇 1 1 4 < 5 厶 5 2 2 3 0 〇 6029 〇 〇 1 1 4 <5 mm 5 2 2 3 0 〇
6030 ◎ 〇 1 1 8 4 0 〇 5 4 6 3 7 〇 明 6030 ◎ 〇 1 1 8 4 0 〇 5 4 6 3 7 明 Description
6031 9 < 5 〇 5 2 9 2 7 〇 合 ◎ 〇 1 1  6031 9 <5 〇 5 2 9 2 7 ◎ 〇 1 1 1
6032 〇 1 1 5 < 5 Δ 5 4 5 3 0 〇 金 ◎  6032 〇 1 1 5 <5 Δ5 4 5 3 0 〇 Gold ◎
6033 ◎ o 1 1 6 < 5 〇 5 2 1 3 4 〇 6033 ◎ o 1 1 6 <5 〇 5 2 1 3 4 〇
6034 ◎ o 1 1 6 < 5 〇 5 1 3 3 1 〇6034 ◎ o 1 1 6 <5 〇 5 1 3 3 1 〇
6035 ◎ 〇 1 1 8 < 5 Δ 5 6 8 3 5 〇6035 ◎ 〇 1 1 8 <5 Δ5 6 8 3 5 〇
6036 ◎ 〇 1 1 8 < 5 〇 5 3 6 2 6 〇6036 ◎ 〇 1 1 8 <5 〇 5 3 6 2 6 〇
6037 〇 〇 1 1 6 < 5 〇 5 3 0 2 9 〇6037 〇 〇 1 1 6 <5 〇 5 3 0 2 9 〇
6038 ◎ 〇 1 1 7 < 5 Δ 5 5 5 3 0 〇6038 ◎ 〇 1 1 7 <5 Δ5 5 5 3 0 〇
6039 ◎ 〇 1 1 7 2 0 〇 4 9 7 3 1 〇6039 ◎ 〇 1 1 7 2 0 〇 4 9 7 3 1 〇
6040 ◎ 〇 1 1 8 < 5 厶 5 7 4 3 5 〇 6040 ◎ 〇 1 1 8 <5 mm 5 7 4 3 5 〇
【表 2 5】 [Table 25]
被肖 1胜 瞧生 熱間加工性 機画生質 耐応カ 金 切屑の 切削表面 主分力 最大腐翻さ 7 0 0 C 引 さ 伸び 腐 蝕 胜 1 胜 瞧 瞧 Raw Hot workability Machine drawing quality Refractory metal Cutting surface of chip Main component Maximum rot 70 100 C elongation Corrosion
No. m の形態 (N) ( u m) 変形能 (N/mm2 ) (%) 割れ性No. m form (N) (um) Deformability (N / mm 2 ) (%) Crackability
6041 © 〇 1 1 5 く 5 〇 5 2 0 3 4 〇 第 6041 © 〇 1 1 5 5 5 〇 5 2 0 3 4 〇 No.
6 6042 @ 〇 1 1 7 2 0 Δ 5 0 1 3 1 〇 発  6 6042 @ 〇 1 1 7 2 0 Δ5 0 1 3 1 〇
明 6043 ◎ 〇 1 1 8 < 5 Δ 5 8 5 3 2 〇 合  Bright 6043 ◎ 〇 1 1 8 <5 Δ5 8 5 3 2
金 6044 ◎ 〇 1 1 6 く 5 〇 5 1 6 3 2 〇 Gold 6044 ◎ 〇 1 1 6 5 5 〇 5 1 6 3 2 〇
6045 ◎ 〇 1 1 6 < 5 〇 5 3 8 3 5 〇 【表 2 6:] 6045 ◎ 〇 1 1 6 <5 〇 5 3 8 3 5 〇 [Table 26:]
口 被肖 1胜 熱間加工性 機讀生質 金 切屑の 切削表面 主分力 引張強さ 伸び Mouth 胜 胜 1 胜 Hot workability Machine cutting surface of metal chips Main component force Tensile strength Elongation
No. 難 の形態 (N) (N/mm2 ) (%)No. Difficulty form (N) (N / mm 2 ) (%)
7001 ◎ 〇 1 3 2 O 7 5 5 1 77001 ◎ 〇 1 3 2 O 7 5 5 1 7
7002 ◎ 〇 1 2 7 O 7 7 6 1 97002 ◎ 〇 1 2 7 O 7 7 6 1 9
7003 ◎ Δ 1 3 5 〇 6 2 0 1 57003 ◎ Δ1 3 5 〇 6 2 0 1 5
7004 © 〇 1 3 0 o 7 1 4 1 8 第 7004 © 〇 1 3 0 o 7 1 4 1 8
7005 ◎ 〇 1 2 8 〇 7 0 8 1 9 7005 ◎ 〇 1 2 8 〇 7 0 8 1 9
7006 1 3 0 〇 6 8 5 1 67006 1 3 0 〇 6 8 5 1 6
7 ◎ 〇 7 ◎ 〇
7007 ◎ 〇 1 3 2 〇 7 1 7 1 8 7007 ◎ 〇 1 3 2 〇 7 1 7 1 8
7008 1 3 0 〇 8 1 1 1 8 発 ◎ 〇 7008 1 3 0 〇 8 1 1 1 8 shots ◎ 〇
7009 〇 1 3 0 〇 7 9 0 1 5 7009 〇 1 3 0 〇 7 9 0 1 5
7010 7 0 8 1 8 明 ◎ 〇 1 3 1 〇 ^ 。 7010 7 0 8 1 8 Description ◎ 〇 1 3 1 〇 ^.
7011 ◎ 〇 1 2 8 〇 8 1 0 1 7 7011 ◎ 〇 1 2 8 〇 8 1 0 1 7
7012 〇 1 2 8 〇 6 9 4 1 7 口 ◎ 7012 〇 1 2 8 〇 6 9 4 1 7 ◎
7013 ◎ 〇 1 3 2 〇 7 4 2 1 6 7013 ◎ 〇 1 3 2 〇 7 4 2 1 6
7014 〇 1 2 8 〇 8 0 9 1 7 金 ◎ 7014 〇 1 2 8 〇 8 0 9 1 7 Fri ◎
7015 ◎ 〇 1 2 9 〇 7 2 5 1 5 7015 ◎ 〇 1 2 9 〇 7 2 5 1 5
7016 ◎ 〇 1 2 8 〇 7 6 5 1 87016 ◎ 〇 1 2 8 〇 7 6 5 1 8
7017 ◎ 〇 1 3 0 〇 6 8 4 1 67017 ◎ 〇 1 3 0 〇 6 8 4 1 6
7018 ◎ 〇 1 2 8 〇 7 1 0 2 17018 ◎ 〇 1 2 8 〇 7 1 0 2 1
7019 ◎ 〇 1 2 8 〇 7 4 6 2 07019 ◎ 〇 1 2 8 〇 7 4 6 2 0
7020 ◎ 〇 1 2 6 〇 8 0 2 1 9 7020 ◎ 〇 1 2 6 〇 8 0 2 1 9
【表 2 7】 [Table 27]
口 被肖 1胜 熱間加工性 機勸性質 金 切屑の 切削表面 主分力 7 0 0 °C 引? S¾さ 伸び 口 被 1 胜 Hot workability Recommended properties Gold Cutting surface Cutting force Main component 7 0 0 ° C elongation S length elongation
No. 雌 の形態 (N) 変形能 (N/mm2 ) (%)No. Female morphology (N) Deformability (N / mm 2 ) (%)
7021 ◎ 〇 1 2 6 〇 7 9 2 1 97021 ◎ 〇 1 2 6 〇 7 9 2 1 9
7022 ◎ 〇 1 2 8 〇 7 6 2 2 0 第 7023 ◎ 〇 1 2 9 〇 7 2 5 1 77022 ◎ 〇 1 2 8 〇 7 6 2 2 0 No. 7023 ◎ 〇 1 2 9 〇 7 2 5 1 7
7 7024 ◎ 〇 1 2 8 〇 7 4 4 2 17 7024 ◎ 〇 1 2 8 〇 7 4 4 2 1
7025 ◎ 〇 1 3 0 〇 7 5 0 2 0 明 7026 Δ 〇 1 3 2 〇 6 7 1 2 3 口 7027 ◎ 〇 1 2 8 〇 7 4 0 2 3 金 7028 ◎ 〇 1 3 3 〇 7 6 3 2 27025 ◎ 〇 1 3 0 〇 7 5 0 2 0 Clear 7026 Δ 〇 1 3 2 〇 6 7 1 2 3 mouth 7027 ◎ 〇 1 2 8 〇 7 4 0 2 3 Fri 7028 ◎ 〇 1 3 3 〇 7 6 3 2 Two
7029 Δ 〇 1 2 9 〇 6 4 7 2 4 【表 2 8】 7029 Δ 〇 1 2 9 〇 6 4 7 2 4 [Table 28]
被肖 1胜 画生 熱間加工性 機麵生質 而オ 、力 金 切屑の 切自 IJ表囟 王分力 最大腐觀さ 7 0 0 °C 引 さ 伸ひ 腐 蝕 胜 1 胜 生 画 間 間 熱 熱 熱 熱 J J J J J J 胜 J 0 胜
No. 状態 の形態 (N) 亦 Wife (N/mm2 ) 剖れ性No. State morphology (N) Wife (N / mm 2 ) Necrotic
8001 ◎ 〇 1 2 2 2 1 0 〇 4 8 6 3 6 〇8001 ◎ 〇 1 2 2 2 1 0 〇 4 8 6 3 6 〇
8 8002 ◎ 〇 1 1 9 2 0 0 〇 4 9 0 3 5 〇 発 8 8002 ◎ 〇 1 1 9 2 0 0 〇 4 9 0 3 5 発
明 8003 ◎ 〇 1 2 0 1 6 0 Δ 5 0 1 4 0 〇 金 8004 ◎ ο 1 1 9 1 6 0 Δ 5 0 5 4 1 〇 Bright 8003 ◎ 〇 1 2 0 1 6 0 Δ5 0 1 4 0 〇 Gold 8004 ◎ ο 1 1 9 1 6 0 Δ5 0 5 4 1 〇
【表 29 】 口 被肖胜 隱性 熱間加工性 機械的性質 t#応力 咼温酸化性 金 切屑の 切削表面 主分力 最大腐赌さ 700°C 引張強さ 伸び 腐 蝕 酸ィ 量[Table 29] Mouth Covert Oddness Hot workability Mechanical properties T # stress Vs Oxidizing temperature Cutting surface of gold chip Main component Maximum corrosion 700 ° C Tensile strength Elongation Corrosion acidity
No. 觀 の形態 (N) (tfm) 麵能 (N/mm2 ) (.%) 害' Jれ性 (mg/10cm2 No. View form (N) (tfm) Function (N / mm 2 ) (.%) Harmfulness (mg / 10cm 2
9001 ◎ 〇 1 1 4 <5 〇 528 35 〇 0. 5 第 9002 ◎ 〇 1 1 6 ぐ 5 〇 545 37 〇 0. 29001 ◎ 〇 1 1 4 <5 〇 528 35 〇 0.5 5th 9002 ◎ 〇 1 1 6 5 5 〇 545 37 〇 0.2
9 9003 〇 〇 1 1 3 <5 Δ 547 34 〇 0. 4 発 9004 ◎ 〇 1 1 6 40 〇 482 30 Δ 0. 5 明 9005 ◎ 〇 1 1 7 ぐ 5 O 502 32 〇 0. 3 口 9006 ◎ 〇 1 1 7 <5 Δ 570 36 〇 0. 4 金 9007 ◎ 〇 1 1 7 <5 〇 575 33 〇 0. 29 9003 〇 〇 1 1 3 <5 Δ547 34 〇 0.4 Departure 9004 ◎ 〇 1 1 6 40 〇 482 30 Δ 0.5 clarification 9005 ◎ 〇 1 1 7 5 O 502 32 〇 0.3 Port 9006 ◎ 〇 1 1 7 <5 Δ 570 36 〇 0.4 Gold 9007 ◎ 〇 1 1 7 <5 〇 575 33 〇 0.2
9008 ◎ 〇 1 1 8 ぐ 5 〇 552 36 O 0. 3 9008 ◎ 〇 1 1 8 5 5 〇 552 36 O 0.3
【表 3 0】 口 披繊 而纖 熱間加工性 機綱性質 耐応力 高温酸化性 金 切屑の 切削表面 主分力 最大腐聽さ 700°C 引張強さ 伸び 腐 蝕 酸ィ it量[Table 30] Knitting Fiber Hot workability Machine properties Stress resistance High temperature oxidizing property Cutting surface of gold chip Main component force Maximum strength 700 ° C Tensile strength Elongation Corrosion acid
No. 状態 の形態 (N) iu .) 変形能 (N/mm2 ) (% 割れ性 (m /lOcm2 No. State form (N) iu.) Deformability (N / mm 2 ) (% Crackability (m / lOcm 2
10001 ◎ 〇 1 1 5 ぐ 5 〇 526 33 〇 0. 410001 ◎ 〇 1 1 5 5 5 〇 526 33 〇 0.4
10 10002 〇 〇 1 1 3 20 Δ 543 30 〇 0. 3 発 10003 〇 〇 1 1 5 ぐ 5 Δ 508 28 〇 0. 4 明 10004 ◎ 〇 1 1 7 ぐ 5 O 567 37 〇 0. 2 口 10005 ◎ 〇 1 1 5 <5 Δ 57 1 33 〇 0. 4 金 10006 ◎ 〇 1 1 6 ぐ 5 O 5 1 3 35 〇 0. 4 10 10002 〇 〇 1 1 3 20 Δ543 30 〇 0.3 Departure 10003 〇 〇 1 1 5 5 5 508 28 〇 0.4 4 Description 10004 ◎ 〇 1 1 7 37 5 O567 37 〇 0.22 10005 ◎ 〇 1 1 5 <5 Δ57 1 33 〇 0.4 Gold 10006 ◎ 〇 1 1 6 5 5 O 5 1 3 35 〇 0.4
【表 3 1】 [Table 3 1]
合 被肖 1胜 ffi傲性 ^間加工性 機函生質 耐応カ 高温酸化件 金 tn届の 切肖瞎 ffi ΐ分力 700°C 引張強さ 伸び 腐 14 酸 ίϋ曽量 被 被 1 胜 傲 傲 ffi 間 間 間 間 間 間 ffi ffi ΐ ffi ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ
No. 状態 の形態 (N) ( IXJ) 変形能 (N/mm2 ) {%) 害' 1れ性 (mg/10cm2 )No. State form (N) (IXJ) Deformability (N / mm 2 ) (%) Damage (mg / 10cm 2 )
11001 ◎ 〇 1 1 5 ぐ 5 o 534 38 o 0. 1 第 11002 ◎ 〇 1 1 6 1 0 〇 538 36 〇 0. 411001 ◎ 〇 1 1 5 10 5 o 534 38 o 0.1 1st 11002 ◎ 〇 1 1 6 1 0 〇 538 36 〇 0.4
11 11003 ◎ 〇 1 1 7 <5 O 563 39 〇 < 0. 1 発 11004 ◎ 〇 1 1 5 ぐ 5 〇 505 30 Δ 0. 2 明 11005 ◎ 〇 1 16 <5 Δ 572 38 〇 0. 211 11003 ◎ 〇 1 1 7 <5 O 563 39 〇 <0.1 departure 11004 ◎ 〇 1 1 5 5 5 505 505 30 Δ 0.2 Bright 11005 ◎ 〇 1 16 <5 Δ 572 38 〇 0.2
11006 ◎ 〇 1 1 5 <5 〇 5 1 4 28 〇 0. 1 金 11007 ◎ 〇 1 1 4 <5 〇 525 34 〇 0. 211006 ◎ 〇 1 1 5 <5 〇 5 1 4 28 〇 0.1 Fri 11007 ◎ 〇 1 1 4 <5 〇 525 34 〇 0.2
11008 ◎ 〇 1 1 5 20 〇 530 36 〇 0. 2 11008 ◎ 〇 1 1 5 20 〇 530 36 〇 0.2
【表 3 2】 [Table 3 2]
口 被肖 1胜 画生 熱間加工性 機函生質 耐応力 高温酸化性 金 切屑の 切削表面 主分力 最大腐聽さ 700°C 引張強さ 伸び 腐 蝕 酸 ik¾量 口 被 胜 1 胜 Painting Hot workability Machine quality Stress resistance High temperature oxidization Cutting surface of gold chip Main component Maximum force 700 ° C Tensile strength Elongation Corrosion acid ik
No. 雌 の形態 (Ν) (wm) 変形能 (N/mm2 ) (%) 割れ性 (mg/10cm2 )No. Female morphology (() (wm) Deformability (N / mm 2 ) (%) Crackability (mg / 10cm 2 )
12001 ◎ 〇 115 <5 O 552 35 〇 0. 212001 ◎ 〇 115 <5 O 552 35 〇 0.2
12002 ◎ 〇 1 16 30 Δ 504 28 Δ 0. 212002 ◎ 〇 1 16 30 Δ 504 28 Δ 0.2
12003 ◎ 〇 1 15 <5 Δ 598 34 〇 < 0. 112003 ◎ 〇 1 15 <5 Δ598 34 〇 <0.1
12 12004 ◎ 〇 116 <5 O 515 32 O 0. 1 発 12005 〇 〇 1 13 ぐ 5 〇 540 35 O 0. 1 明 12006 ◎ 〇 116 20 Δ 487 31 〇 0. 1 α 12007 ◎ 〇 1 17 ぐ 5 O 524 32 〇 0. 1 金 12008 ο 〇 1 14 <5 〇 537 30 〇 0. 212 12004 ◎ 〇 116 <5 O 515 32 O 0.1 departure 12005 〇 〇 1 13 5 5 〇 540 35 O 0.1 1 clear 12006 ◎ 〇 116 20 Δ 487 31 〇 0.1 α 12007 ◎ 〇 1 17 gu 5 O 524 32 〇 0.1 Fri 12008 ο 〇 1 14 <5 〇 537 30 〇 0.2
12009 ◎ 〇 115 ぐ 5 Δ 569 35 〇 0. 112009 ◎ 〇 115 ug 5 Δ 569 35 〇 0.1
12010 ◎ 〇 1 15 10 O 531 32 〇 0. 112010 ◎ 〇 1 15 10 O 531 32 〇 0.1
12011 ◎ 〇 116 ぐ 5 〇 510 29 〇 0. 1 12011 ◎ 〇 116 5 5 〇 510 29 〇 0.1
【表 3 3】 [Table 3 3]
α 被肖 1胜 顧性 熱間加工性 機動性質 耐 fc力 高温酸化性 金 切暦の 切削表面 主分力 最;^觸さ 700°C 引 55¾さ 伸び 腐 蝕 酸ィけ曾量 α Defect 1 Hotness Hot workability Mobility resistance Fc resistance High temperature oxidization Cutting surface of the iris main component Maximum; ^ 700 ° C contact 55 ° elongation Corrosion
No. 状態 の形態 (Ν) (yum) 変形能 (N/mm2 ) .%) 割れ性 (mg/10cm2 )No. Morphology of state (Ν) (yum) Deformability (N / mm 2 ).%) Crackability (mg / 10cm 2 )
13001 〇 〇 1 03 1 1 00 Δ 408 37 X X 1. 8 従 13002 〇 〇 1 0 1 1 000 X 387 39 X X 1. 7 来 13003 〇 Δ 1 1 2 1050 〇 4 14 38 X X 1. 7 合 13004 X 〇 223 900 O 438 38 X 1. 2 金 13005 X 〇 1 78 350 Δ 735 28 〇 0. 213001 〇 〇 1 03 1 1 00 Δ408 37 XX 1.8 Subordinate 13002 〇 〇 1 0 1 1 000 X 387 39 XX 1.7 Since 13003 〇 Δ 1 1 2 1050 〇 4 14 38 XX 1.7 223 223 900 O 438 38 X 1.2 Gold 13005 X 〇 1 78 350 Δ 735 28 〇 0.2
13006 X 〇 2 1 7 600 〇 4 25 39 X 1. 8 13006 X 〇 2 1 7 600 〇 4 25 39 X 1.8
【表 3 4】 【表 3 5】 耐離性 [Table 34] [Table 35] Separation resistance
金 摩耗'疆  Gold wear 'jiang
No. (mg/1 0万  No. (mg / 100,000
7001a 0. 7  7001a 0.7
7002a 1. 4  7002a 1.4
7003a 2. 0  7003a 2.0
7004a 1. 4  7004a 1.4
7005a 1. 2  7005a 1.2
7006a 1. 8  7006a 1.8
7007a 2. 3  7007a 2.3
7 7008a 0. 7  7 7008a 0.7
7009a 0. 6  7009a 0.6
Figure imgf000045_0001
Departure
Figure imgf000045_0001
7010a 1. 3  7010a 1.3
明 7011a 0. 8 Ming 7011a 0.8
7012a 1. 7  7012a 1.7
7013a 1. 1  7013a 1.1
金 7014a 0. 8 Gold 7014a 0.8
7015a 1. 1  7015a 1.1
7016a 1. 0  7016a 1.0
7017a 1. 6  7017a 1.6
7018a 1. 9  7018a 1. 9
7019a 1. 1  7019a 1.1
7020a 1.  7020a 1.
【表 3 6】 [Table 36]
合 耐麵生  Total heat resistance
金 雜羅  Gold
No. (mg/1 0万回転)  No. (mg / 1 million rotations)
13001a 500  13001a 500
従 13002a 620 Obey 13002a 620
来 13003a 520 Coming 13003a 520
13004a 450  13004a 450
金 13005a 25 Gold 13005a 25
13006a 600  13006a 600

Claims

請 求 の 範 囲 The scope of the claims
銅 6 9〜 7 9重量%と珪素 2. 0〜 4. 0重量%と鉛 0. 0 2〜 0. 4重量%とを含有し、 且つ残部が亜鉛からなる合金組成をなすことを特 徴とする快削性銅合金。  It is characterized by containing 69-79% by weight of copper, 2.0-4.0% by weight of silicon and 0.02-0.4% by weight of lead, with the balance being zinc. Free-cutting copper alloy.
銅 6 9〜7 9重量%と、 珪素 2. 0〜4. 0重量%と、 鉛 0. 0 2〜 0. 4重量%と、 ビスマス 0. 0 2〜 4重量%、 テルル 0 2〜 0. 4重量%及びセレン 0. 0 2〜0. 4重量%から選択された 1種の 元素とを含有し、 且つ残部が亜鉛からなる合金組成をなすことを特徴と する快削性銅合金。  Copper 69-79% by weight, Silicon 2.0-4.0% by weight, Lead 0.02-0.4% by weight, Bismuth 0.02-4% by weight, Tellurium 0-2-0 A free-cutting copper alloy containing 4% by weight and one element selected from 0.02 to 0.4% by weight of selenium, and a balance of zinc.
銅 7 0〜8 0重量%と、 珪素 1. 8〜3, 5重量%と、 鉛 0. 0 2~ 0. 4重量%と、 錫 0. 3〜3. 5重量%、 アルミニウム 1 , 0〜3. 5重量%及び燐 0. 0 2〜0. 2 5重量%から選択された 1種以上の元 素とを含有し、 且つ残部が亜鉛からなる合金組成をなすことを特徴とす る快削性銅合金。  70 to 80% by weight of copper, 1.8 to 3.5% by weight of silicon, 0.02 to 0.4% by weight of lead, 0.3 to 3.5% by weight of tin, and 1,0 of aluminum At least one element selected from the group consisting of -3.5 wt% and phosphorus 0.02 -0.25 wt%, and the balance being zinc. Free-cutting copper alloy.
銅 7 0〜8 0重量%と、 珪素 1. 8〜3. 5重量%と、 鉛 0. 0 2〜 0. 4重量%と、 錫 0. 3〜3. 5重量%、 アルミニウム 1. 0〜3. 5重量%及び燐 0. 0 2〜0. 2 5重量%から選択された 1種以上の元 素と、 ビスマス 0 , 0 2〜0. 4重量%、 テルル 0. 0 2〜 4重量 %及びセレン 0. 0 2〜 4重量%から選択された 1種の元素とを含 有し、 且つ残部が亜鉛からなる合金組成をなすことを特徴とする快削性 銅合金。  70 to 80% by weight of copper, 1.8 to 3.5% by weight of silicon, 0.02 to 0.4% by weight of lead, 0.3 to 3.5% by weight of tin, 1.0% of aluminum And at least one element selected from the group consisting of 0.1 to 3.5% by weight and phosphorus 0.02 to 0.25% by weight, bismuth 0.2 to 0.2 to 0.4% by weight, and tellurium 0.02 to 4%. A free-cutting copper alloy comprising an alloy selected from the group consisting of at least one element selected from the group consisting of selenium and 0.02 to 4% by weight, with the balance being zinc.
銅 6 9〜7 9重量%と、 珪素 2. 0〜4. 0重量%と、 鉛 0. 0 2〜 0. 4重量%と、 錫 0. 3〜3. 5重量%、 燐 0. 0 2〜 2 5重量 %、 アンチモン 0. 0 2〜0. 1 5重量%及び砒素 0. 0 2〜0. 1 5 重量%から選択された 1種以上の元素とを含有し、 且つ残部が亜鉛から なる合金組成をなすことを特徴とする快削性銅合金。  Copper 69-79% by weight, silicon 2.0-4.0% by weight, lead 0.02-0.4% by weight, tin 0.3-3.5% by weight, phosphorus 0.0 2 to 25% by weight, antimony 0.02 to 0.15% by weight and arsenic 0.02 to 0.15% by weight and at least one element selected from the group consisting of zinc A free-cutting copper alloy characterized by having an alloy composition of:
6. 銅 6 9〜7 9重量%と、 珪素 2. 0〜4. 0重量%と、 鉛 0. 0 2 6. Copper 69-79% by weight, Silicon 2.0-4.0% by weight, Lead 0.02
0. 4重量%と、 錫 0. 3〜3. 5重量%、 燐 0. 0 2〜0. 2 5重量 %、 アンチモン 0. 0 2〜0. 1 5重量%及び砒素 0. 0 2〜0. 1 5 重量%から選択された 1種以上の元素と、 ビスマス 0. 0 2〜 4重 量%、 テルル 0. 0 2〜0. 4重量%及びセレン 0. 0 2〜0. 4重量 %から選択された 1種の元素とを含有し、 且つ残部が亜鉛からなる合金 組成をなすことを特徴とする快削性銅合金。 0.4% by weight, tin 0.3 to 3.5% by weight, phosphorus 0.02 to 0.25% by weight, antimony 0.02 to 0.15% by weight and arsenic 0.02 to At least one element selected from 0.15% by weight, bismuth 0.02 to 4% by weight, tellurium 0.02 to 0.4% by weight, and selenium 0.02 to 0.4% by weight A free-cutting copper alloy comprising an alloy selected from the group consisting of one element selected from the group consisting of zinc and the balance of zinc.
銅 6 2〜 7 8重量%と、 珪素 2. 5〜4. 5重量%と、 鉛 0. 0 2〜 0. 4重量%と、 錫 0. 3〜3. 0重量%、 アルミニウム 0. 2〜2. 5重量%及び燐 0. 0 2〜 2 5重量%から選択された 1種以上の元 素と、 マンガン 0. 了〜 3. 5重量%及びニッケル 0. 7〜3. 5重量 %から選択された 1種以上の元素とを含有し、 且つ残部が亜鉛からなる 合金組成をなすことを特徴とする快削性銅合金。  Copper 62 to 78% by weight, silicon 2.5 to 4.5% by weight, lead 0.02 to 0.4% by weight, tin 0.3 to 3.0% by weight, aluminum 0.2 At least one element selected from the group consisting of 2.5 wt% and phosphorus 0.02 225 wt%, and manganese 0.2 了 3.5 wt% and nickel 0.7 73.5 wt%. A free-cutting copper alloy comprising at least one element selected from the group consisting of: and a balance of zinc.
銅 6 9〜 7 9重量%、 珪素 2. 0〜4. 0重量%、 鉛 0. 0 2〜0. 4重量%、 アルミニウム 0. 1〜 1. 5重量%及び燐 0. 0 2〜0. 2 5重量%を含有し、 且つ残部が亜鉛からなる合金組成をなすことを特徴 とする快削性銅合金。  69-79% by weight of copper, 2.0-4.0% by weight of silicon, 0.02-0.4% by weight of lead, 0.1-1.5% by weight of aluminum and 0.02--0% of phosphorus 25. A free-cutting copper alloy containing 25% by weight and the balance being zinc.
銅 6 9〜7 9重量%と、 珪素 2. 0〜4. 0重量%と、 鉛 0. 0 2〜 0. 4重量%と、 アルミニウム 0. 1〜 1. 5重量%と、 燐 0. 0 2〜 0. 2 5重量%と、 ビスマス 0. 0 2〜 4重量%、 テルル 0. 0 2 〜0. 4重量%及びセレン 0. 0 2〜0. 4重量%から選択された 1種 の元素とを含有し、 且つ残部が亜鉛からなる合金組成をなす銅合金。 Copper 69-79% by weight, silicon 2.0-4.0% by weight, lead 0.02-0.4% by weight, aluminum 0.1-1.5% by weight, phosphorus 0. 0.2 to 0.25% by weight, bismuth 0.02 to 4% by weight, tellurium 0.02 to 0.4% by weight and selenium 0.02 to 0.4% by weight A copper alloy containing an element of the formula (1) and the balance being zinc.
10. 銅 6 9〜7 9重量%と、 珪素 2. 0〜4. 0重量%と、 鉛 0. 0 2〜 0. 4重量%と、 アルミニウム 0. 1〜 1. 5重量%と、 燐 0. 0 2〜 0. 2 5重量%と、 クロム 0. 0 2〜 4重量%及びチタン 0. 0 2 〜0. 4重量%から選択された 1種以上の元素とを含有し、 且つ残部が 亜鉛からなる合金組成をなすことを特徴とする快削性銅合金。 10. Copper 69-79% by weight, silicon 2.0-4.0% by weight, lead 0.02-0.4% by weight, aluminum 0.1-1.5% by weight, phosphorus 0.02 to 0.25% by weight, and one or more elements selected from 0.02 to 4% by weight of chromium and 0.02 to 0.4% by weight of titanium, and the balance A free-cutting copper alloy characterized by having an alloy composition of zinc.
11. 銅 6 9〜7 9重量%と、 珪素 2. 0〜4. 0重量%と、 鉛 0. 0 2〜 11. Copper 69-79% by weight, Silicon 2.0-4.0% by weight, Lead 0.02-
0. 4重量%と、 アルミニウム 0. 1〜1. 5重量%と、 燐 0. 0 2〜 0. 2 5重量%と、 クロム 0. 0 2〜 4重量%及びチタン 0. 0 2 〜0. 4重量%から選択された 1種以上の元素と、 ビスマス 0. 0 2〜 0. 4重量%、 テルル 0. 0 2〜0. 4重量%及びセレン 0. 0 2〜 0. 4重量%から選択された 1種の元素とを含有し、 且つ残部が亜鉛か らなる合金組成をなすことを特徴とする快削性銅合金。 0.4% by weight, aluminum 0.1 to 1.5% by weight, phosphorus 0.02 to 0.25% by weight, chromium 0.02 to 4% by weight and titanium 0.02 to 0% One or more elements selected from 4% by weight, bismuth 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight and selenium 0.02 to 0.4% by weight A free-cutting copper alloy containing one element selected from the group consisting of: and an alloy composition consisting of zinc in the remainder.
12. 4 0 0〜6 0 0 °Cで 3 0分〜 5時間熱処理したことを特徴とする、 請 求項 1、 請求項 2、 請求項 3、 請求項 4、 請求項 5、 請求項 6、 請求項 7、 請求項 8、 請求項 9、 請求項 1 0又は請求項 1 1に記載する快削性 銅合金。  12. Claim 1, Claim 2, Claim 3, Claim 4, Claim 5, Claim 6, characterized by being heat-treated at 400 to 600 ° C for 30 minutes to 5 hours. The free-cutting copper alloy according to claim 7, claim 8, claim 9, claim 10, or claim 11.
PCT/JP1998/005156 1998-10-09 1998-11-16 Free-cutting copper alloy WO2000022181A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA002303512A CA2303512C (en) 1998-10-09 1998-11-16 Free cutting copper alloy
AU10540/99A AU738301B2 (en) 1998-10-09 1998-11-16 Free-cutting copper alloys
EP98953070A EP1038981B1 (en) 1998-10-09 1998-11-16 Free-cutting copper alloy
DE69828818T DE69828818T2 (en) 1998-10-09 1998-11-16 AUTOMATED ALLOY ON COPPER BASE
US09/983,029 US7056396B2 (en) 1998-10-09 2001-10-22 Copper/zinc alloys having low levels of lead and good machinability
US11/004,879 US20050092401A1 (en) 1998-10-09 2004-12-07 Copper/zinc alloys having low levels of lead and good machinability
US11/094,815 US8506730B2 (en) 1998-10-09 2005-03-31 Copper/zinc alloys having low levels of lead and good machinability
US13/829,813 US20130276938A1 (en) 1998-10-09 2013-03-14 Copper/zinc alloys having low levels of lead and good machinability
US14/463,172 US20150044089A1 (en) 1998-10-09 2014-08-19 Copper/zinc alloys having low levels of lead and good machinability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/287921 1998-10-09
JP28792198A JP3917304B2 (en) 1998-10-09 1998-10-09 Free-cutting copper alloy

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09403834 A-371-Of-International 1999-10-27
US09/983,029 Continuation-In-Part US7056396B2 (en) 1998-10-09 2001-10-22 Copper/zinc alloys having low levels of lead and good machinability

Publications (1)

Publication Number Publication Date
WO2000022181A1 true WO2000022181A1 (en) 2000-04-20

Family

ID=17723462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005156 WO2000022181A1 (en) 1998-10-09 1998-11-16 Free-cutting copper alloy

Country Status (8)

Country Link
EP (3) EP1038981B1 (en)
JP (1) JP3917304B2 (en)
KR (1) KR100375426B1 (en)
AU (1) AU738301B2 (en)
CA (1) CA2303512C (en)
DE (3) DE69828818T2 (en)
TW (1) TW577931B (en)
WO (1) WO2000022181A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8506730B2 (en) 1998-10-09 2013-08-13 Mitsubishi Shindoh Co., Ltd. Copper/zinc alloys having low levels of lead and good machinability
CN109563569A (en) * 2016-08-15 2019-04-02 三菱伸铜株式会社 The manufacturing method of free-cutting machinability copper alloy and free-cutting machinability copper alloy

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069551A (en) * 2000-09-04 2002-03-08 Sumitomo Light Metal Ind Ltd Free cutting copper alloy
DE10132055C2 (en) * 2001-07-05 2003-12-11 Diehl Metall Stiftung & Co Kg Dezincification-resistant copper-zinc alloy and process for its production
JP2004244672A (en) 2003-02-13 2004-09-02 Dowa Mining Co Ltd Copper-base alloy with excellent dezincification resistance
CZ294891B6 (en) * 2003-08-01 2005-04-13 Kovohutě Čelákovice A. S. Architectural bronze
EP1812612B1 (en) * 2004-10-11 2010-05-05 Diehl Metall Stiftung &amp; Co. KG Copper/zinc/silicon alloy, use and production thereof
BRPI0519837B1 (en) 2005-09-22 2016-11-16 Mitsubishi Shindo Kk easily machined copper alloys containing very low lead content
KR100864909B1 (en) * 2007-01-30 2008-10-22 주식회사 풍산 A free-cutting copper alloy
KR100864910B1 (en) * 2007-01-30 2008-10-22 주식회사 풍산 A free-cutting copper alloy
CN102361995B (en) 2009-04-24 2014-09-03 三越金属株式会社 High-strength copper alloy
JP5645570B2 (en) * 2010-09-27 2014-12-24 株式会社Lixil Copper-based alloys for forging and cutting, and water supply equipment
MX2013008503A (en) 2011-02-04 2014-07-30 Baoshida Swissmetal Ag Cu-ni-zn-mn alloy.
MX337957B (en) * 2011-11-04 2016-03-29 Mitsubishi Shindo Kk Hot-forged copper alloy article.
JP5763504B2 (en) * 2011-11-11 2015-08-12 三菱伸銅株式会社 Copper alloy rolling materials and rolled products
JP2013194277A (en) * 2012-03-19 2013-09-30 Lixil Corp Copper-based alloy for cutting and device for water service using the alloy
AU2013340034B2 (en) 2012-10-31 2018-03-22 Kitz Corporation Brass alloy and processed part and wetted part
JP2015175008A (en) * 2014-03-13 2015-10-05 株式会社Lixil Lead-less brass material and implement for aqueduct
EP3128020B1 (en) * 2014-03-31 2019-03-06 Kurimoto, Ltd. Low-lead brass alloy for plumbing member
TWI598452B (en) 2016-01-21 2017-09-11 慶堂工業股份有限公司 Unleaded, free-cutting brass alloys with excellent castability, method for producing the same, and application thereof
WO2019035224A1 (en) * 2017-08-15 2019-02-21 三菱伸銅株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
JP6448168B1 (en) * 2017-08-15 2019-01-09 三菱伸銅株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
JP6448166B1 (en) * 2017-08-15 2019-01-09 三菱伸銅株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
US11155909B2 (en) 2017-08-15 2021-10-26 Mitsubishi Materials Corporation High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
KR101969010B1 (en) 2018-12-19 2019-04-15 주식회사 풍산 Lead free cutting copper alloy with no lead and bismuth
JP7180488B2 (en) * 2019-03-25 2022-11-30 三菱マテリアル株式会社 Copper alloy round bar
WO2020261666A1 (en) 2019-06-25 2020-12-30 三菱マテリアル株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
CN113348261B (en) 2019-06-25 2022-09-16 三菱综合材料株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
EP3992321A4 (en) 2019-06-25 2023-08-09 Mitsubishi Materials Corporation Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting
KR20220059528A (en) 2019-12-11 2022-05-10 미쓰비시 마테리알 가부시키가이샤 A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy
DE102020127317A1 (en) 2020-10-16 2022-04-21 Diehl Metall Stiftung & Co. Kg Lead-free copper alloy and use of lead-free copper alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696040A (en) * 1979-12-28 1981-08-03 Seiko Epson Corp Exterior decorative part material for casting
JPS61133357A (en) * 1984-12-03 1986-06-20 Showa Alum Ind Kk Cu base alloy for bearing superior in workability and seizure resistance
JPS62297429A (en) * 1986-06-17 1987-12-24 Nippon Mining Co Ltd Copper alloy having excellent corrosion resistance

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3427740A1 (en) * 1984-07-27 1986-02-06 Diehl GmbH & Co, 8500 Nürnberg BRASS ALLOY, MANUFACTURING METHOD AND USE
US5288458A (en) * 1991-03-01 1994-02-22 Olin Corporation Machinable copper alloys having reduced lead content
DE4339426C2 (en) * 1993-11-18 1999-07-01 Diehl Stiftung & Co Copper-zinc alloy
JP3459520B2 (en) * 1996-09-05 2003-10-20 古河電気工業株式会社 Copper alloy for lead frame
KR20000064324A (en) * 1996-09-05 2000-11-06 후루까와 준노스께 Copper alloy for electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696040A (en) * 1979-12-28 1981-08-03 Seiko Epson Corp Exterior decorative part material for casting
JPS61133357A (en) * 1984-12-03 1986-06-20 Showa Alum Ind Kk Cu base alloy for bearing superior in workability and seizure resistance
JPS62297429A (en) * 1986-06-17 1987-12-24 Nippon Mining Co Ltd Copper alloy having excellent corrosion resistance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1038981A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8506730B2 (en) 1998-10-09 2013-08-13 Mitsubishi Shindoh Co., Ltd. Copper/zinc alloys having low levels of lead and good machinability
CN109563569A (en) * 2016-08-15 2019-04-02 三菱伸铜株式会社 The manufacturing method of free-cutting machinability copper alloy and free-cutting machinability copper alloy
CN109563569B (en) * 2016-08-15 2020-09-18 三菱伸铜株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy

Also Published As

Publication number Publication date
CA2303512C (en) 2006-07-11
EP1038981A1 (en) 2000-09-27
EP1508626A1 (en) 2005-02-23
EP1502964B1 (en) 2006-03-01
AU1054099A (en) 2000-05-01
DE69835912D1 (en) 2006-10-26
EP1038981A4 (en) 2003-02-19
TW577931B (en) 2004-03-01
DE69835912T2 (en) 2007-03-08
KR20010033101A (en) 2001-04-25
EP1508626B1 (en) 2006-09-13
DE69828818D1 (en) 2005-03-03
JP3917304B2 (en) 2007-05-23
EP1038981B1 (en) 2005-01-26
DE69828818T2 (en) 2006-01-05
EP1502964A1 (en) 2005-02-02
KR100375426B1 (en) 2003-03-10
JP2000119774A (en) 2000-04-25
AU738301B2 (en) 2001-09-13
DE69833582D1 (en) 2006-04-27
CA2303512A1 (en) 2000-04-20
DE69833582T2 (en) 2007-01-18

Similar Documents

Publication Publication Date Title
WO2000022181A1 (en) Free-cutting copper alloy
JP3734372B2 (en) Lead-free free-cutting copper alloy
JP4951623B2 (en) Free-cutting copper alloy with ultra-low lead content
US6413330B1 (en) Lead-free free-cutting copper alloys
US10163539B2 (en) High strength and high conductivity copper alloy rod or wire
US7628872B2 (en) Lead-free free-cutting copper-antimony alloys
US20150044089A1 (en) Copper/zinc alloys having low levels of lead and good machinability
US7056396B2 (en) Copper/zinc alloys having low levels of lead and good machinability
WO2020130247A1 (en) Free-cutting lead-free copper alloy to which lead and bismuth are not added
JP2000239765A (en) Leadless corrosion resistant brass alloy for metallic mold casting or for sand mold casting, metallic mold cast product or sand mold cast product, and leadless corrosion resistant brass alloy for continuous casting or continuous cast product
JP2004183056A (en) Lead-reduced free-cutting copper alloy

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09403834

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2303512

Country of ref document: CA

Ref country code: CA

Ref document number: 2303512

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10540/99

Country of ref document: AU

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1020007006464

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998953070

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998953070

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007006464

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 10540/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020007006464

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998953070

Country of ref document: EP