WO2000018841A1 - Antistatisch ausgerüstete thermoplastische formmassen mit verbesserten eingeschaften - Google Patents

Antistatisch ausgerüstete thermoplastische formmassen mit verbesserten eingeschaften Download PDF

Info

Publication number
WO2000018841A1
WO2000018841A1 PCT/EP1999/006883 EP9906883W WO0018841A1 WO 2000018841 A1 WO2000018841 A1 WO 2000018841A1 EP 9906883 W EP9906883 W EP 9906883W WO 0018841 A1 WO0018841 A1 WO 0018841A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
acid
styrene
monomers
parts
Prior art date
Application number
PCT/EP1999/006883
Other languages
English (en)
French (fr)
Inventor
Herbert Eichenauer
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to EP99947374A priority Critical patent/EP1129136A1/de
Priority to BR9914107-8A priority patent/BR9914107A/pt
Priority to US09/787,681 priority patent/US6509402B1/en
Priority to AU60849/99A priority patent/AU6084999A/en
Priority to KR1020017003923A priority patent/KR20010075407A/ko
Priority to JP2000572293A priority patent/JP2002525413A/ja
Priority to CA002345437A priority patent/CA2345437A1/en
Publication of WO2000018841A1 publication Critical patent/WO2000018841A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/04Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof

Definitions

  • the invention relates to antistatic, thermoplastic molding compositions with improved properties based on optionally rubber-modified polymers of vinyl aromatics, e.g. Styrene and / or ⁇ -methylstyrene and acrylonitrile and / or acrylates, which contain a special acid-reacting polyether as an antistatic agent.
  • vinyl aromatics e.g. Styrene and / or ⁇ -methylstyrene and acrylonitrile and / or acrylates
  • a special acid-reacting polyether as an antistatic agent.
  • antistatic treatment of such molding compositions is known.
  • antistatic agents e.g. Alkyl and aryl sulfonates (DE-OS 1 544 652), amines (DE-PS 1 258 083), quaternary ammonium salts, amides, phosphoric acids and alkyl and aryl phosphonates are recommended.
  • the molding compounds which have been antistatically treated in this way still have defects. Many of the antistatic agents mentioned are not very effective and must be used in high concentrations; many of these low molecular weight compounds migrate to the surface. For this reason, molded parts with inhomogeneous and spotty surfaces are often obtained. or even surface coverings. Mechanical properties, such as heat resistance or the modulus of elasticity, are often severely impaired.
  • Amounts of approximately 5% by weight or more can be used. This leads to stained and greasy surfaces and even surface coverings on the finished plastic parts.
  • EP-A-0 278 349 for the antistatic treatment of styrene polymers leads to an improved effectiveness compared to the unmodified polyether, the application is critical with regard to a quantitative decomposition of the radical generator characterized by high energy requirements and long reaction times when modifying the polyether to avoid it undesirable side effects, in particular discoloration and negative effects on the thermoplastic flowability and the toughness of the molding compounds treated with it.
  • thermoplastic molding compositions based on vinyl aromatic polymer antistatically with polyethers without the disadvantages mentioned above.
  • thermoplastic molding compositions with very good antistatic activity are obtained when certain acid-reacting polyethers, preferably polyethers treated with certain carboxylic acids, are used as
  • Antistatic can be used.
  • the invention relates to antistatic, thermoplastic molding compositions containing
  • thermoplastic vinyl polymers 100 to 0% by weight of one or more thermoplastic vinyl polymers, the monomers being selected from the series styrene, ⁇ -methylstyrene, nucleus-substituted styrene, methyl methacrylate, acrylonitrile, methacrylonitrile, maleic anhydride, N-substituted maleimides or mixtures from it, and
  • the invention further relates to a process for the antistatic finishing of optionally rubber-modified polymers of vinyl aromatics and other vinyl monomers, as described above, which is characterized in that 99.8 to 95 parts by weight of polymer I.) 0, Adds 2 to 5 parts of a polyalkylene ether with molecular weights (number average) between 500 and 15,000 and a pH of 2.5 to 5.5 (measured as a 5% dispersion in water), which is a reaction product of polyols with one or more alkylene - Oxides and which can preferably be prepared by mixing with 0.01 to 3 wt .-%, preferably 0.02 to 2 wt .-%, and particularly preferably 0.05 to 1 wt .-% (based on the amount of polyalkylene ether ) at least one carboxylic acid and / or a carboxylic anhydride and stirring at temperatures greater than or equal to room temperature, preferably at 20 ° C. to 100 ° C., particularly preferably 25 to
  • rubber-modified copolymers of vinyl aromatics and other vinyl monomers (I) for the purposes of the invention are mixtures of (A) 0 to 100, preferably 1 to 60, in particular 5 to 50% by weight of one or more graft polymers and (B) 100 to 0, preferably 40 to 99, in particular 50 to 95% by weight of one or more thermoplastic vinyl polymers.
  • graft polymers (A) are those in which either styrene, ⁇ -methylstyrene, methyl methacrylate or a mixture of
  • styrene, ⁇ -methylstyrene, nucleus-substituted styrene, methyl methacrylate or mixtures thereof and 5 to 50% by weight (meth) acrylonitrile, maleic anhydride, N-substituted maleimides or mixtures thereof are graft-polymerized.
  • Suitable rubbers are practically all rubbers with glass transition temperatures ⁇ 10 ° C.
  • Examples are polybutadiene, polyisoprene, styrene-butadiene copolymers, acrylonitrile-butadiene copolymers, acrylic rubbers, EPM rubbers (ethylene / propylene rubbers) and EPDM rubbers (ethylene / propylene / diene rubbers), which are used as diene non-conjugated diene, such as hexadiene-1,5 or
  • the graft copolymers (A) contain 10 to 95% by weight, in particular 20 to 70% by weight, rubber and 90 to 5% by weight, in particular 80 to 30% by weight, of graft-copolymerized monomers.
  • the rubbers are present in these graft copolymers in the form of at least partially crosslinked particles having an average particle diameter (d 50 ) of 0.05 to 20 ⁇ m, preferably 0.1 to 2 ⁇ m and particularly preferably 0.1 to 0.8 ⁇ m.
  • Such graft copolymers can be prepared by radical graft copolymerization of styrene, ⁇ -methylstyrene, nucleus-substituted styrene, (meth) acrylonitrile, methyl methacrylate, maleic anhydride, N-substituted maleimide in the presence of the rubbers to be grafted.
  • Preferred production processes are emulsion, solution, bulk or suspension polymerization.
  • the average particle size d 50 is the diameter above and below which 50% by weight of the particles lie. It can be determined by means of ultracentrifuge measurement (W. Scholtan, H. Lange, Kolloid-Z. And Z. Polymer 250 (1972), 782-796).
  • copolymers (B) can be made from the graft monomers for (A) or the like
  • Monomers are built up by polymerization, in particular from styrene, ⁇ -methylstyrene, halostyrene, acrylonitrile, methacrylonitrile, methyl methacrylate, maleic anhydride, vinyl acetate, N-substituted maleimide or mixtures thereof.
  • They are preferably copolymers of 95 to 50, preferably 60 to 80% by weight of styrene, ⁇ -methylstyrene, methyl methacrylate or mixtures thereof with 5 to 50, preferably 40 to 20% by weight of acrylonitrile, methacrylonitrile, methyl methacrylate, maleic anhydride or Mixtures of these.
  • Such copolymers also arise as by-products in graft copolymerization. In addition to the copolymers contained in the graft polymer, it is customary to also mix in separately prepared copolymers.
  • Suitable copolymers produced separately are resin-like, thermoplastic and rubber-free; there are in particular copolymers of styrene and / or ⁇ -methylstyrene with acrylonitrile, optionally in a mixture with methyl methacrylate.
  • Particularly preferred copolymers consist of 20 to
  • copolymers 40% by weight of acrylonitrile and 80 to 60% by weight of styrene or ⁇ -methylstyrene.
  • Such copolymers are known and can be produced in particular by radical polymerization, in particular by emulsion, suspension, solution or bulk polymerization.
  • the copolymers preferably have molecular weights of 15,000 to 200,000.
  • thermoplastic resins made up of vinyl monomers the use of polycondensates, e.g. aromatic polycarbonates, aromatic polyester carbonates, polyesters, polyamides are possible as rubber-free copolymers in the molding compositions according to the invention.
  • polycondensates e.g. aromatic polycarbonates, aromatic polyester carbonates, polyesters, polyamides are possible as rubber-free copolymers in the molding compositions according to the invention.
  • thermoplastic polycarbonates and polyester carbonates are known (see, for example, DE-AS 1 495 626, DE-OS 2 232 877, DE-OS 2 703 376, DE-OS 2 714 544, DE-OS 3 000 610, DE-OS 3 832 396, DE-OS 3 077 934), for example producible by reacting diphenols of the formulas (III) and (IV)
  • A is a single bond, Cj-C5-alkylene, C2-C5-alkylidene, C5-Cg-cycloalkyl-idene, -O-, -S-, -SO-, -SO2- or -CO-,
  • R5 and R ° independently of one another represent hydrogen, methyl or halogen, in particular hydrogen, methyl, chlorine or bromine,
  • Rl and R ⁇ independently of one another hydrogen, halogen preferably chlorine or bromine, Ci-Cg-alkyl, preferably methyl, ethyl, C5-Cg-cycloalkyl, preferably cyclohexyl, Cg-Ci Q-aryl, preferably phenyl, or C -C ⁇ - Aralkyl, preferably phenyl-C 1 -C 4 -alkyl, in particular benzyl,
  • n is an integer from 4 to 7, preferably 4 or 5
  • n 0 or 1
  • R-> and R ⁇ are individually selectable for each X and are independently hydrogen or Cj-Cg-alkyl and X means carbon
  • Suitable diphenols of the formulas (III) and (IV) are e.g. Hydroquinone, resorcinol. 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) propane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 2,2-bis (4-hydroxy- 3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane , l, l-bis (4-hydroxyphenyl) cyclohexane, l, l-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3 , 3-dimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5,5-tetramethylcyclohexane or 1,1-bis (4-hydroxyphenyl)
  • Preferred diphenols of the formula (III) are 2,2-bis (4-hydroxyphenyl) propane and l, l-bis (4-hydroxyphenyl) cyclohexane, preferred phenol of the formula (IV) is 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane.
  • Mixtures of diphenols can also be used.
  • Suitable chain terminators are, for example, phenol, p-tert-butylphenol, long-chain alkylphenols such as 4- (1,3-tetramethylbutyl) phenol according to DE-OS 2 842 005, monoalkylphenols, dialkylphenols with a total of 8 to 20 C- Atoms in the alkyl substituents according to DE-OS 3 506 472, such as p-nonylphenol, 2,5-di-tert-butylphenol, p-tert-octylphenol, p-dodecylphenol, 2- (3,5-dimethylheptyl) phenol and 4- (3,5- Dimethylheptyl) phenol.
  • the amount of chain terminators required is generally 0.5 to 10 mol%, based on the sum of the diphenols (III) and (IV).
  • the suitable polycarbonates or polyester carbonates can be linear or branched; branched products are preferred by incorporating from 0.05 to
  • the suitable polycarbonates or polyester carbonates can contain aromatically bound flalogen, preferably bromine and / or chlorine; they are preferably halogen-free.
  • M w average molecular weights
  • Suitable thermoplastic polyesters are preferably polyalkylene terephthalates, i.e. reaction products made from aromatic dicarboxylic acids or their reactive derivatives (e.g. dimethyl esters or anhydrides) and aliphatic, cycloaliphatic or arylaliphatic diols and mixtures of such reaction products.
  • polyalkylene terephthalates i.e. reaction products made from aromatic dicarboxylic acids or their reactive derivatives (e.g. dimethyl esters or anhydrides) and aliphatic, cycloaliphatic or arylaliphatic diols and mixtures of such reaction products.
  • Preferred polyalkylene terephthalates can be prepared from terephthalic acids (or their reactive derivatives) and aliphatic or cycloaliphatic diols with 2 to 10 carbon atoms by known methods (Kunststoff-Handbuch, Volume VIII, p. 695 ff, Carl Hanser Verlag, Kunststoff 1973).
  • Preferred polyalkylene terephthalates contain 80 to 100, preferably 90 to 100 mol% of the dicarboxylic acid residues, terephthalic acid residues and 80 to 100, preferably 90 to 100 mol% of the diol residues, ethylene glycol and / or butanediol 1,4 residues.
  • the preferred polyalkylene terephthalates can contain, in addition to ethylene glycol or 1,4-butanediol, 0 to 20 mol% of other aliphatic diols having 3 to 12 carbon atoms or cycloaliphatic diols having 6 to 12 carbon atoms, for example residues of Propanediol-1,3, 2-ethylpropanediol-1,3, neopentylglycol, pentanediol-1,5, hexanediol-1,6, cyclohexanediol-1,4-methanol, 3-methylpentanediol-1,3 and -1,6 , 2-ethyl-hexanediol-1,3, 2,2-diethyl-propanediol-1,3, hexanediol-2,5,1,4-di ( ⁇ -hydroxyethoxy) benzene, 2,2-bis-4-hydroxycyclohex
  • the polyalkylene terephthalates can be branched by incorporating relatively small amounts of trihydric or tetravalent alcohols or trihydric or tetravalent carboxylic acids, as described in DE-OS 1 900 270 and US Pat. No. 3,692,744.
  • preferred branching agents are trimesic acid, trimellitic acid, trimethyl olethane and propane and pentaerythritol. It is advisable not to use more than 1 mol% of the branching agent, based on the acid component.
  • polyalkylene terephthalates which have been produced solely from terephthalic acid and its reactive derivatives (e.g. its dialkyl esters) and ethylene glycol and / or 1,4-butanediol and mixtures of these polyalkylene terephthalates.
  • Preferred polyalkylene terephthalates are also copolyesters which are produced from at least two of the abovementioned alcohol components: particularly preferred copolyesters are poly (ethylene glycol butanediol-1,4) terephthalates.
  • the preferably suitable polyalkylene terephthalates generally have one
  • Suitable polyamides are known homopolyamides, copolyamides and mixtures of these polyamides. These can be partially crystalline and / or amorphous polyamides.
  • Polyamide-6, polyamide-6,6, mixtures and corresponding copolymers of these components are suitable as partially crystalline polyamides.
  • partially crystalline polyamides the acid component of which is wholly or partly composed of terephthalic acid and / or isophthalic acid and / or suberic acid and / or sebacic acid and / or azelaic acid and / or adipic acid and / or cyclohexanedicarboxylic acid, the diamine component wholly or partly of m- and / or p-xylylene diamine and / or hexamethylene diamine and / or 2,2,4-trimethylhexamethylene diamine and / or 2,2,4-trimethylhexamethylene diamine and / or isophorone diamine and the composition of which is known in principle.
  • Particularly preferred partially crystalline polyamides are polyamide 6 and polyamide 6,6 and their mixtures.
  • Known products can be used as amorphous polyamides. They are obtained by polycondensation of diamines such as ethylene diamine, hexamethylene diamine, decamethylene diamine, 2,2,4- and / or 2,4,4-trimethylhexamethylene diamine, m- and / or p-xylylene diamine, bis- (4th -aminocyclohexyl) methane, bis- (4-aminocyclohexyl) propane, 3,3'-dimethyl-4,4'-diamino-dicyclohexyl-methane, 3-aminomethyl, 3,5,5, -trimethylcyclohexylamine, 2,5 - and / or 2,6-bis-
  • diamines such as ethylene diamine, hexamethylene diamine, decamethylene diamine, 2,2,4- and / or 2,4,4-trimethylhex
  • Copolymers which are obtained by polycondensation of several monomers are also suitable, furthermore copolymers which are prepared with the addition of aminocarboxylic acids such as ⁇ -aminocaproic acid, ⁇ -aminoundecanoic acid or ⁇ -aminolauric acid or their lactams.
  • aminocarboxylic acids such as ⁇ -aminocaproic acid, ⁇ -aminoundecanoic acid or ⁇ -aminolauric acid or their lactams.
  • Particularly suitable amorphous polyamides are the polyamides made from isophthalic acid, hexamethylene diamine and other diamines such as 4,4'-diaminodicyclohexyl methane, isophorone diamine, 2,2,4- and / or 2,4,4-trimethylhexamethylene diamine, 2,5- and / or 2,6-bis (aminomethyl) norbornene; or from isophthalic acid, 4,4'-diamino-dicyclohexylmethane and ⁇ -caprolactam; or from isophthalic acid, 3,3'-
  • the polyamides preferably have a relative viscosity (measured on a 1% strength by weight solution in m-cresol at 25 ° C.) from 2.0 to 5.0, particularly preferably from 2.5 to 4.0. If additional rubber-free thermoplastic resins not made from vinyl monomers are used, their amount is up to 500 parts by weight, preferably up to 400 parts by weight and particularly preferably up to 300 parts by weight (in each case based on 100 parts by weight) I) + II)).
  • modified polyalkylene ethers (II) for the purposes of the invention are prepared by treating polyethers with carboxylic acids and / or carboxylic anhydrides.
  • the polyalkylene ethers to be modified according to the invention are composed of di- and polyfunctional (cyclo) aliphatic radicals and may also contain olefinic groups to a small extent. Reaction products made from diols or polyols, ethylene glycol, 1,2-propylene glycol, trimethylolpropane, glycerol, pentaerythritol, sorbitol and mannitol and one or more alkylene oxides, such as ethylene oxide and propylene oxide (for preparation and use see Ullmann's Encyclopedia of Industrial Chemistry , 4th edition, vol. 19, p.31, Verlag Chemie, Weinheim 1980). Polyalkylene ethers with high proportions of 1,2-propylene structures are preferred.
  • Both linear and branched polyalkylene ethers can be used, with moderately branched and linear types being preferred.
  • the "output" - i.e. unmodified polyalkylene ethers have number average molecular weights between 500 and 15,000, preferably between 1000 and 10,000 and particularly preferably between 2000 and 5000.
  • Suitable carboxylic acids for the treatment of the polyethers are in principle aliphatic, preferably with 1 to 20 carbon atoms, aromatic and araliphatic carboxylic acids and their anhydrides. Saturated and unsaturated mono-, di- and tricarboxylic acids can be used.
  • carboxylic acids are formic acid, acetic acid, propionic acid, trimethyl acetic acid, lauric acid, oleic acid, stearic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, benzoic acid, phenylacetic acid, o-, m- or p-toluic acid, phthalic acid , Terephthalic acid.
  • suitable carboxylic acids are formic acid, acetic acid, propionic acid, trimethyl acetic acid, lauric acid, oleic acid, stearic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, benzoic acid, phenylacetic acid, o-, m- or p-toluic acid, phthalic acid , Terephthalic acid.
  • carboxylic anhydrides examples include acetic anhydride, maleic anhydride, phthalic anhydride.
  • carboxylic acid derivatives such as hydroxycarboxylic acids (e.g.
  • Glycolic acid lactic acid, hydroxybutyric acid, glyceric acid, malic acid, tartaric acid, citric acid, mandelic acid, salicylic acid or 2.2 "thiodiacetic acid and 3.3" thiodipropionic acid.
  • Preferred carboxylic acids for the purposes of the invention are formic acid, acetic acid,
  • Propionic acid, oxalic acid, benzoic acid, phthalic acid, formic acid, acetic acid, oxalic acid and benzoic acid are particularly preferred; acetic acid is very particularly preferred.
  • Preferred carboxylic anhydrides for the purposes of the invention are acetic anhydride and
  • the treatment of the polyalkylene ethers with carboxylic acid or carboxylic anhydride is generally carried out at from 20 ° C. to 100 ° C., preferably from 25 ° C. to 90 ° C., particularly preferably 30 ° C. to 80 ° C. and very particularly preferably
  • the amount of carboxylic acid or carboxylic anhydride, based on the amount of polyalkylene ether, can be varied within wide limits. It is generally 0.01 to 3% by weight, preferably 0.02 to 2% by weight and particularly preferably
  • modified polyalkylene ethers obtained according to the invention can be incorporated into the antistatic polymers by known methods, for example by kneading, rolling or extruding them together.
  • molding compositions can contain the usual additives such as Pigments, fillers, stabilizers, lubricants, mold release agents, flame retardants and the like can be added.
  • thermoplastics e.g. Housing parts for household and electrical appliances, profile parts, foils, automotive interiors, etc. processed.
  • the finished molded parts are characterized by excellent antistatic behavior and in particular by coating-free, homogeneous and shiny surfaces.
  • the mechanical properties, especially the heat resistance and the impact resistance, and in particular the thermoplastic flowability, are practically not impaired in comparison to the unmodified material.
  • the raw tone of the molded parts is also not affected.
  • ABS polymer made up of 60 parts by weight of a thermoplastic styrene / acrylonitrile copolymer (styrene: acrylonitrile - weight ratio 72:28) with an intrinsic viscosity of 55 ml / g (measured in dirnethylformamide at 23 ° C) and 40 parts by weight of a graft polymer of 36 parts by weight of styrene and 14 parts by weight of acrylonitrile to 50 parts by weight of polybutadiene with a bimodal particle size distribution (50% with d 50 value approx. 400 nm and 50% with d 50 Value of approx. 100 nm).
  • the polyalkylene ether 2 is prepared by adding 0.4 part by weight of the substances listed in Table 1 to 100 parts by weight of the starting material used in the preparation of the polyalkylene ether 1 (for other conditions, see Table 1).
  • Polyalkylene ether 3 (comparison)
  • the pH is 6.9.
  • Linear polypropylene ether identical to the starting material in the production of polyalkylene ether 1, modified with dibenzoyl peroxide according to the instructions in EP
  • test specimens have notched impact strength at room temperature and - 40 ° C
  • thermoplastic Flowability is achieved by measuring the required filling pressure during injection molding at 240 ° C (unit: bar, see F. Johannaber, Kunststoffe 74 (1984), 1, pages 2 to 5 as well as by measuring the MVI according to DIN 53 735 U (unit: cm 3/10 min).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Gegenstand der Erfindung sind antistatische, thermoplastische Formassen mit verbesserten Eigenschaften auf Basis von gegebenenfalls kautschukmodifizierten Polymerisaten aus Vinylaromaten, z.B. Styrol und/oder α-Methylstyrol und Acrylnitril und/oder Acrylaten, die als antistatisches Mittel einen speziellen sauer reagierenden Polyether enthalten.

Description

Antistatisch ausgerüstete thermoplastische Formmassen mit verbesserten Eigenschaften
Gegenstand der Erfindung sind antistatische, thermoplastische Formmassen mit verbesserten Eigenschaften auf Basis von gegebenenfalls kautschukmodifizierten Polymerisaten aus Vinylaromaten, z.B. Styrol und/oder α-Methylstyrol und Acrylnitril und/oder Acrylaten, die als antistatisches Mittel einen speziellen sauer reagierenden Polyether enthalten.
Die meisten Kunststoffe sind aufgrund ihrer chemischen Konstitution elektrische Isolatoren mit einem hohen elektrischen Oberflächenwiderstand. Das führt bei der Verarbeitung und im Gebrauch solcher Massen leicht zur elektrostatischen Aufladung der Kunststoffoberflächen. Die Folge sind vielfältige Störungen und Belästigungen in der Praxis, z.B. schnelle Verschmutzung und Verstaubung der Kunststoffteile, wobei sich charakteristische Staubfiguren an der Oberfläche ausbilden. Dies gilt auch im besonderen Maß auch für gegebenenfalls kautschukmodifizierte als Formmassen verwendete Polymerisate aus Vinylaromaten und Acrylnitril, z.B. Styrol-Acrylnitril- Copolymerisate (SAN) und Pfropfpolymerisate von Styrol und Acrylnitril auf Poly- butadien (ABS).
Die antistatische Ausrüstung solcher Formmassen ist bekannt. Als antistatische Mittel werden z.B. Alkyl- und Arylsulfonate (DE-OS 1 544 652), Amine (DE-PS 1 258 083), quartäre Ammoniumsalze, Amide, Phosphorsäuren sowie Alkyl- und Arylphosphonate empfohlen.
Die so antistatisch ausgerüsteten Formmassen haben noch Mängel. Viele der genannten Antistatika sind wenig wirksam und müssen in hohen Konzentrationen eingesetzt werden; viele dieser niedermolekularen Verbindungen wandern an die Ober- fläche. Deshalb erhält man oft Formteile mit inhomogenen und fleckigen Oberflä- chen oder sogar Oberflächenbelägen. Häufig werden auch mechanische Eigenschaften, wie z.B. Wärmeformbeständigkeit oder der E-Modul, stark beeinträchtigt.
Auch reine Polyether, wie z.B. in DE-PS 1 244 398 als hochmolekulare Antistatika vorgeschlagen, müssen zur sicheren Antistatikausrüstung von Styrolpolymerisaten in
Mengen von ca. 5 Gew.-% oder mehr eingesetzt werden. Das führt zu fleckigen und schmierigen Oberflächen bis hin zu Oberflächenbelägen auf den Kunststoff-Fertigteilen.
Durch Pfropfpolymerisation von Styrol und Acrylnitril auf solche Polyether, wie in
EP-A-0 061 692 beschrieben, kann zwar die Antistatik Wirkung verbessert werden, jedoch treten bei der Verarbeitung von Styrolpolymerisaten, die solche Antistatika enthalten, bei Temperaturen > 150°C gelbe bis braune Verfärbungen auf.
Die Verwendung von mit Radikalbildnern modifizierten Polyethern gemäß
EP-A-0 278 349 zur Antistatikausrüstung von Styrolpolymerisaten führt zwar zu einer im Vergleich zum unmodifizierten Polyether verbesserten Wirksamkeit, die Anwendung ist jedoch kritisch im Hinblick auf eine durch hohen Energiebedarf und lange Reaktionszeiten gekennzeichnete quantitative Zersetzung des Radikalbildners bei der Modifizierung des Polyethers zur Vermeidung unerwünschter Nebeneffekte, insbesondere Verfärbungen und negative Auswirkungen auf die thermoplastische Fließfähigkeit sowie die Zähigkeit der damit ausgerüsteten Formmassen.
Aufgabe der vorliegenden Erfindung war es daher, mit Polyethern antistatisch ausge- rüstete thermoplastische Formmassen auf Vinylaromatpolymerisat-Basis ohne die oben genannten Nachteile zur Verfügung zu stellen.
Überraschend wurde gefunden, daß die gewünschten thermoplastischen Formmassen mit sehr guter Antistatikwirkung erhalten werden, wenn bestimmte sauer reagierende Polyether, vorzugsweise mit bestimmten Carbonsäuren behandelte Polyether, als
Antistatikum verwendet werden. Gegenstand der Erfindung sind antistatische, thermoplastische Formmassen, enthaltend
I.) 99,8 bis 95 Gew.-Teile, vorzugsweise 99,5 bis 96 Gew.-Teile und besonders bevorzugt 99 bis 97 Gew.-Teile eines gegebenenfalls kautschukmodifizierten Polymerisats aus Vinylaromaten und gegebenenfalls anderen Vinylmonome- ren bestehend aus
A) 0 bis 100 Gew.-% eines oder mehrerer Pfropfpolymerisate aus 10 bis
95 Gew.-% (bezogen auf A) Kautschuk und 90 bis 5 Gew.-% (bezogen auf A) auf den Kautschuk pfropfpolymerisierte Monomere, wobei als Monomere Styrol, α-Methylstyrol, kernsubstituiertes Styrol, Methylmethacrylat, (Meth)Acrylnitril, Maleinsäureanhydrid, N-substi- tuierte Maleinimide oder Mischungen daraus pfropfpolymerisiert sind und die Kautschuke Glasübergangstemperaturen < 10°C aufweisen und in Form wenigstens partiell vernetzter Teilchen mit einem mittleren Teilchendurchmesser (d50) von 0,05 bis 20 μm vorliegen
und
B) 100 bis 0 Gew.-% eines oder mehrerer thermoplastischer Vinylpoly- merisate, wobei die Monomeren ausgewählt sind aus der Reihe Styrol, α-Methylstyrol, kernsubstituiertem Styrol, Methylmethacrylat, Acryl- nitril, Methacrylnitril, Maleinsäureanhydrid, N-substituierte Maleinimide oder Mischungen daraus, und
II.) 0,2 bis 5 Gew.-Teile, vorzugsweise 0,5 bis 4 Gew.-Teile und besonders bevorzugt 1 bis 3 Gew.-Teile eines Polyalkylenethers mit Molekulargewich- ten (Zahlenmittel) zwischen 500 und 15.000 und einem pH-Wert von 2,5 bis 5,5, vorzugsweise von 3,0 bis 5,0 (gemessen als 5 %ige Dispersion in Wasser), der vorzugsweise Carboxylgruppen enthält.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur antistatischen Aus- rüstung von gegebenenfalls kautschukmodifizierten Polymerisaten von Vinylaromaten und anderen Vinylmonomeren, wie oben beschrieben, das dadurch gekennzeichnet ist, daß man zu 99,8 bis 95 Gew.-Teilen Polymerisat I.) 0,2 bis 5 Teile eines Polyalkylenethers mit Molekulargewichten (Zahlenmittel) zwischen 500 und 15.000 und einem pH-Wert von 2,5 bis 5,5 (gemessen als 5 %ige Dispersion in Wasser) zufügt, der ein Reaktionsprodukt aus Polyolen mit einem oder mehreren Alkylen- oxiden ist und der vorzugsweise herstellbar ist durch Vermischen mit 0,01 bis 3 Gew.-%, vorzugsweise 0,02 bis 2 Gew.-%, und besonders bevorzugt 0,05 bis 1 Gew.-% (bezogen auf Menge an Polyalkylenether) mindestens einer Carbonsäure und/oder eines Carbonsäureanhydrids und Rühren bei Temperaturen größer gleich Raumtemperatur, vorzugsweise bei 20°C bis 100°C, besonders bevorzugt 25 bis
90°C und insbesondere 30°C bis 80°C.
Gegebenenfalls kautschukmodifizierte Copolymerisate aus Vinylaromaten und anderen Vinylmonomeren (I) im Sinne der Erfindung sind Mischungen aus (A) 0 bis 100, vorzugsweise 1 bis 60, insbesondere 5 bis 50 Gew.-% eines oder mehrerer Pfropfpolymerisate und (B) 100 bis 0, vorzugsweise 40 bis 99, insbesondere 50 bis 95 Gew.-% eines oder mehrerer thermoplastischer Vinylpolymerisate.
Pfropfpolymerisate (A) im Sinne der Erfindung sind solche, in denen auf einen Kau- tschuk entweder Styrol, α-Methylstyrol, Methylmethacrylat oder eine Mischung von
95 bis 50 Gew.-% Styrol, α-Methylstyrol, kernsubstituiertem Styrol, Methylmethacrylat oder Mischungen daraus und 5 bis 50 Gew.-% (Meth)Acrylnitril, Maleinsäureanhydrid, N-substituierte Maleinimide oder Mischungen daraus pfropf- polymerisiert sind. Geeignete Kautschuke sind praktisch alle Kautschuke mit Glasübergangstemperaturen < 10°C. Beispiele sind Polybutadien, Polyisopren, Styrol-Butadien-Copoly- merisate, Acrylnitril-Butadien-Copolymerisate, Acrylkautschuke, EPM-Kautschuke (Ethylen/Propylen-Kautschuke) und EPDM-Kautschuke (Ethylen/Propylen/Dien- Kautschuke), die als Dien ein nichtkonjugiertes Dien, wie z.B. Hexadien-1,5 oder
Norbornadien, in kleinen Mengen enthalten. Bevorzugt sind Dienkautschuke.
Die Pfropfmischpolymerisate (A) enthalten 10 bis 95 Gew.-%, insbesondere 20 bis 70 Gew.-%, Kautschuk und 90 bis 5 Gew.-% , insbesondere 80 bis 30 Gew.-%, pfropfcopolymerisierte Monomere. Die Kautschuke liegen in diesen Pfropfmischpolymerisaten in Form wenigstens partiell vernetzter Teilchen eines mittleren Teilchendurchmessers (d50) von 0,05 bis 20 μm, bevorzugt 0, 1 bis 2 μm und besonders bevorzugt 0,1 bis 0,8 μm, vor.
Derartige Pfropfmischpolymerisate können durch radikalische Pfropfcopolymerisa- tion von Styrol, α-Methylstyrol, kernsubstituiertem Styrol, (Meth) Acrylnitril, Methylmethacrylat, Maleinsäureanhydrid, N-substituiertem Maleinimid in Gegenwart der zu pfropfenden Kautschuke hergestellt werden. Bevorzugte Herstellungsverfahren sind die Emulsions-, Lösungs-, Masse- oder Suspensionspolymerisation.
Die mittlere Teilchengröße d5o ist der Durchmesser, oberhalb und unterhalb dessen jeweils 50 Gew.-% der Teilchen liegen. Er kann mittels Ultrazentrifugenmessung (W. Scholtan, H. Lange, Kolloid-Z. und Z. Polymere 250 (1972), 782-796) bestimmt werden.
Die Herstellung der Pfropf- und Copolymere ist allgemein bekannt (vgl. z.B. DE-OS 1 694 173 (= US-A 3 564 077), DE-OS 2 348 377 (= US-A 3 919 353), DE- OS 2 035 390 (= US-A 3 644 574), DE-OS 2 228 242 (= GB 1 409 275).
Die Copolymerisate (B) können aus den Pfropfmonomeren für (A) oder ähnlichen
Monomeren durch Polymerisation aufgebaut werden, insbesondere aus Styrol, α-Methylstyrol, Halogenstyrol, Acrylnitril, Methacrylnitril, Methylmethacrylat, Maleinsäureanhydrid, Vinylacetat, N-substituiertem Maleinimid oder Mischungen daraus. Es handelt sich bevorzugt um Copolymerisate aus 95 bis 50, vorzugsweise 60 bis 80 Gew.-% Styrol, α-Methylstyrol, Methylmethacrylat oder Mischungen daraus mit 5 bis 50, vorzugsweise 40 bis 20 Gew.-% Acrylnitril, Methacrylnitril, Methylmethacrylat, Maleinsäureanhydrid oder Mischungen daraus. Solche Copolymerisate entstehen auch bei der Pfropfmischpolymerisation als Nebenprodukte. Es ist üblich, neben den in Pfropfpolymerisat enthaltenen Copolymeren noch getrennt hergestellte Copolymere zuzumischen.
Diese müssen nicht mit den in den Pfropfpolymeren vorliegenden ungepfropften Harzanteilen chemisch identisch sein. Geeignete getrennt hergestellte Copolymere sind harzartig, thermoplastisch und kautschukfrei; es sind insbesondere Copolymere aus Styrol und/oder α-Methylstyrol mit Acrylnitril, gegebenenfalls in Mischung mit Methylmethacrylat. Besonders bevorzugte Copolymerisate bestehen aus 20 bis
40 Gew.-% Acrylnitril und 80 bis 60 Gew.-% Styrol oder α-Methylstyrol. Solche Copolymerisate sind bekannt und lassen sich insbesondere durch radikalische Polymerisation, insbesondere durch Emulsions-, Suspensions-, Lösungs- oder Massepolymerisation herstellen. Die Copolymerisate besitzen vorzugsweise Molekulargewichte von 15 000 bis 200 000.
Außer aus Vinylmonomeren aufgebauten Thermoplastharzen ist auch die Verwendung von Polykondensaten z.B. aromatischen Polycarbonaten, aromatischen Poly- estercarbonaten, Polyestern, Polyamiden als kautschukfreies Copolymerisat in den erfindungsgemäßen Formmassen möglich.
Geeignete thermoplastische Polycarbonate und Polyestercarbonate sind bekannt (vgl. z.B. DE-AS 1 495 626, DE-OS 2 232 877, DE-OS 2 703 376, DE-OS 2 714 544, DE-OS 3 000 610, DE-OS 3 832 396, DE-OS 3 077 934), z.B. herstellbar durch Um- Setzung von Diphenolen der Formeln (III) und (IV)
Figure imgf000009_0001
Figure imgf000009_0002
worin
A eine Einfachbindung, Cj-C5-Alkylen, C2-C5-Alkyliden, C5-Cg-Cycloalkyl- iden, -O-, -S-, -SO-, -SO2- oder -CO- ist,
R5 und R° unabhängig voneinander für Wasserstoff, Methyl oder Halogen, insbe- sondere für Wasserstoff, Methyl, Chlor oder Brom stehen,
Rl und R^ unabhängig voneinander Wasserstoff, Halogen bevorzugt Chlor oder Brom, Ci -Cg-Alkyl, bevorzugt Methyl, Ethyl, C5-Cg-Cycloalkyl, bevorzugt Cyclohexyl, Cg-Ci Q-Aryl, bevorzugt Phenyl, oder C -C^-Aralkyl, bevorzugt Phenyl-C|-C4-alkyl, insbesondere Benzyl, bedeuten,
m eine ganze Zahl von 4 bis 7, bevorzugt 4 oder 5 ist,
n 0 oder 1 ist,
R-> und R^ für jedes X individuell wählbar sind und unabhängig voneinander Wasserstoff oder Cj-Cg-Alkyl bedeuten und X Kohlenstoff bedeutet,
mit Kohlensäurehalogeniden, vorzugsweise Phosgen, und/oder mit aromatischen Di- carbonsäuredihalogeniden, vorzugsweise Benzoldicarbonsäuredihalogeniden, durch Phasengrenzflächen-Polykondensation oder mit Phosgen durch Polykondensation in homogener Phase (dem sogenannten Pyridinverfahren), wobei das Molekulargewicht in bekannter Weise durch eine entsprechende Menge an bekannten Kettenabbrechern eingestellt werden kann.
Geeignete Diphenole der Formeln (III) und (IV) sind z.B. Hydrochinon, Resorcin. 4,4'-Dihydroxydiphenyl, 2,2-Bis-(4-hydroxyphenyl)-propan, 2,4-Bis-(4-hydroxy- phenyl)-2-methylbutan, 2,2-Bis-(4-hydroxy-3,5-dimethylphenyl)-propan, 2,2-Bis-(4- hydroxy-3,5-dichlorphenyl)-propan, 2,2-Bis-(4-hydroxy-3,5-dibromphenyl)-pro- pan, l,l-Bis-(4-hydroxyphenyl)-cyclohexan, l,l-Bis-(4-hydroxyphenyl)-3,3,5-tri- methylcyclohexan, 1 , 1 -Bis-(4-hydroxyphenyl)-3 ,3-dimethylcyclohexan, 1 , 1 -Bis-(4- hydroxyphenyl)-3,3,5,5-tetramethylcyclohexan oder 1 ,l-Bis-(4-hydroxyphenyl)- 2,4,4,-trimethylcyclopentan.
Bevorzugte Diphenole der Formel (III) sind 2,2-Bis-(4-hydroxyphenyl)-propan und l,l-Bis-(4-hydroxyphenyl)-cyclohexan, bevorzugtes Phenol der Formel (IV) ist 1,1- Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan.
Es können auch Mischungen von Diphenolen eingesetzt werden.
Geeignete Kettenabbrecher sind z.B. Phenol, p-tert.-Butylphenol, langkettige Alkyl- phenole wie 4-(l,3-Tetramethyl-butyl)phenol gemäß DE-OS 2 842 005, Monoalkyl- phenole, Dialkylphenole mit insgesamt 8 bis 20 C-Atomen in den Alkylsubstituenten gemäß DE-OS 3 506 472, wie p-Nonylphenol, 2,5-di-tert.-Butylphenol, p-tert.- Octylphenol, p-Dodecylphenol, 2-(3,5-Dimethylheptyl)-phenol und 4-(3,5- Dimethylheptyl)-phenol. Die erforderliche Menge an Kettenabbrechern ist im allgemeinen 0,5 bis 10 Mol-%, bezogen auf die Summe der Diphenole (III) und (IV).
Die geeigneten Polycarbonate bzw. Polyestercarbonate können linear oder verzweigt sein; verzweigte Produkte werden vorzugsweise durch den Einbau von 0,05 bis
2,0 Mol-%, bezogen auf die Summe der eingesetzten Diphenole, an drei - oder mehr als dreifunktionellen Verbindungen, z.B. solchen mit drei oder mehr als drei phenolischen OH-Gruppen, erhalten.
Die geeigneten Polycarbonate bzw. Polyestercarbonate können aromatisch gebundenes Flalogen, vorzugsweise Brom und/oder Chlor, enthalten; vorzugsweise sind sie halogenfrei.
Sie haben mittlere Molekulargewichte (Mw, Gewichtsmittel) bestimmt z.B. durch Ultrazentrifugation oder Streulichtmessung von 10 000 bis 200 000, vorzugsweise von 20 000 bis 80 000.
Geeignete thermoplastische Polyester sind vorzugsweise Polyalkylenterephthalate, d.h., Reaktionsprodukte aus aromatischen Dicarbonsäuren oder ihren reaktionsfähi- gen Derivaten (z.B. Dimethylestern oder Anhydriden) und aliphatischen, cycloali- phatischen oder arylaliphatischen Diolen und Mischungen solcher Reaktionsprodukte.
Bevorzugte Polyalkylenterephthalate lassen sich aus Terephthalsäuren (oder ihren reaktionsfähigen Derivaten) und aliphatischen oder cycloaliphatischen Diolen mit 2 bis 10 C-Atomen nach bekannten Methoden herstellen (Kunststoff-Handbuch, Band VIII, S. 695 ff, Carl Hanser Verlag, München 1973).
In bevorzugten Polyalkylenterephthalaten sind 80 bis 100, vorzugsweise 90 bis 100 Mol-% der Dicarbonsäurereste, Terephthalsäurereste und 80 bis 100, vorzugsweise 90 bis 100 Mol-% der Diolreste, Ethylenglykol- und/Oder Butandiol-l,4-Reste. Die bevorzugten Polyalkylenterephthalate können neben Ethylenglykol- bzw. Butan- diol-l,4-Resten 0 bis 20 Mol-% Reste anderer aliphatischer Diole mit 3 bis 12 C- Atomen oder cycloaliphatischer Diole mit 6 bis 12 C-Atomen enthalten, z.B. Reste von Propandiol-1,3, 2-Ethylpropandiol-l,3, Neopentylglykol, Pentandiol-1,5, Hexan- diol-1,6, Cyclohexandi-methanol-1,4, 3-Methylpentandiol-l,3 und -1,6, 2-Ethyl- hexandiol-1,3, 2,2-Diethylpropandiol-l,3, Hexandiol-2,5, l,4-Di(ß-hydroxyethoxy)- benzol, 2,2,-Bis-4-hydroxycyclohexyl)-propan, 2,4-Dihydroxy-l,l,3,3-tetramethyl- cyclobutan, 2,2-Bis-(3-ß-hydroxyethoxyphenyl)-propan und 2,2-Bis-(4-hydroxypro- poxyphenyl)-propan (DE-OS 2 407 647, 2 407 776, 2 715 932).
Die Polyalkylenterephthalate können durch Einbau relativ kleiner Mengen 3- oder 4-wertiger Alkohole oder 3- oder 4-basiger Carbonsäuren, wie sie in der DE-OS 1 900 270 und der US-PS 3 692 744 beschrieben sind, verzweigt werden. Beispiele bevorzugter Verzweigungsmittel sind Trimesinsäure, Trimellithsäure, Trimethyl- olethan und -propan und Pentaerythrit. Es ist ratsam, nicht mehr als 1 Mol-% des Verzweigungsmittels, bezogen auf die Säurekomponente, zu verwenden.
Besonders bevorzugt sind Polyalkylenterephthalate, die allein aus Terephthalsäure und deren reaktionsfähigen Derivaten (z.B. deren Dialkylestern) und Ethylenglykol und/oder Butandiol-1,4 hergestellt worden sind und Mischungen dieser Polyalkylenterephthalate.
Bevorzugte Polyalkylenterephthalate sind auch Copolyester, die aus mindestens zwei der oben genannten Alkoholkomponenten hergestellt sind: besonders bevorzugte Copolyester sind Poly-(ethylenglykolbutandiol-l,4)-terephthalate.
Die vorzugsweise geeigneten Polyalkylenterephthalate besitzen im allgemeinen eine
Intrinsic-Viskosität von 0,4 bis 1 ,5 dl/g, vorzugsweise 0,5 bis 1 ,3 dl/g, insbesondere 0,6 bis 1,2 dl/g, jeweils gemessen in Phenol/o-Dichlorbenzol (1 :1 Gew.-Teile) bei
25°C. Geeignete Polyamide sind bekannte Homopolyamide, Copolyamide und Mischungen dieser Polyamide. Es können dies teilkristalline und/oder amorphe Polyamide sein.
Als teilkristalline Polyamide sind Polyamid-6, Polyamid-6,6, Mischungen und entsprechende Copolymerisate aus diesen Komponenten geeignet. Weiterhin kommen teilkristalline Polyamide in Betracht, deren Säurekomponente ganz oder teilweise aus Terephthalsäure und/oder Isophthalsäure und/oder Korksäure und/oder Sebacinsäure und/oder Azelainsäure und/oder Adipinsäure und/oder Cyclohexandicarbonsäure, deren Diaminkomponente ganz oder teilweise aus m- und/oder p-Xylylen-diamin und/oder Hexamethylendiamin und/oder 2,2,4-Trimethylhexamethylendiamin und/oder 2,2,4-Trimethylhexamethylendiamin und/oder Isophorondiamin besteht und deren Zusammensetzung prinzipiell bekannt ist.
Außerdem sind Polyamide zu nennen, die ganz oder teilweise aus Lactamen mit 1-
12 C-Atomen im Ring, gegebenenfalls unter Mitverwendung einer oder mehrerer der oben genannten Ausgangskomponenten, hergestellt werden.
Besonders bevorzugte teilkristalline Polyamide sind Polyamid-6 und Polyamid-6,6 und ihre Mischungen. Als amorphe Polyamide können bekannte Produkte eingesetzt werden. Sie werden erhalten durch Polykondensation von Diaminen wie Ethylen- diamin, Hexamethylendiamin, Decamethylendiamin, 2,2,4- und/oder 2,4,4-Trime- thylhexamethylendiamin, m- und/oder p-Xylylen-diamin, Bis-(4-aminocyclohexyl)- methan, Bis-(4-aminocyclohexyl)-propan, 3,3'-Dimethyl-4,4'-diamino-dicyclohexyl- methan, 3-Aminomethyl,3,5,5,-trimethylcyclohexylamin, 2,5- und/oder 2,6-Bis-
(aminomethyl)-norbornan und/oder 1 ,4-Diaminomethylcyclohexan mit Dicarbon- säuren wie Oxalsäure, Adipinsäure, Azelainsäure, Azelainsäure, Decandicarbonsäure, Heptadecandicarbonsäure, 2,2,4- und/oder 2,4,4-Trimethyladipinsäure, Isophthalsäure und Terephthalsäure. Auch Copolymere, die durch Polykondensation mehrerer Monomerer erhalten werden, sind geeignet, ferner Copolymere, die unter Zusatz von Aminocarbonsäuren wie ε-Aminocapronsäure, ω-Aminoundecansäure oder ω-Aminolaurinsäure oder ihren Lactamen, hergestellt werden.
Besonders geeignete amorphe Polyamide sind die Polyamide hergestellt aus Isophthalsäure, Hexamethylendiamin und weiteren Diaminen wie 4,4'-Diaminodicyclo- hexylmethan, Isophorondiamin, 2,2,4- und/oder 2,4,4-Trimethylhexamethylen- diamin, 2,5- und/oder 2,6-Bis-(aminomethyl)-norbornen; oder aus Isophthalsäure, 4,4'-Diamino-dicyclohexylmethan und ε-Caprolactam; oder aus Isophthalsäure, 3,3'-
Dimethyl-4,4'-diamino-dicyclohexylmethan und Laurinlactam; oder aus Terephthalsäure und dem Isomerengemisch aus 2,2,4- und/oder 2,4,4-Trimethylhexamethylen- diamin.
Anstelle des reinen 4,4'-Diaminodicyclohexylmethans können auch Gemische der stellungsisomeren Diaminodicyclohexylmethane eingesetzt werden, die sich zusammensetzen aus
70 bis 99 Mol-% des 4,4'-Diamino-Isomeren 1 bis 30 Mol-% des 2,4'-Diamino-Isomeren
0 bis 2 Mol-% des 2,2'-Diamino-Isomeren und
gegebenenfalls entsprechend höher kondensierten Diaminen, die durch Hydrierung von Diaminodiphenylmethan technischer Qualität erhalten werden. Die Isophthal- säure kann bis zu 30 % durch Terephthalsäure ersetzt sein.
Die Polyamide weisen vorzugsweise eine relative Viskosität (gemessen an einer 1 gew.-%igen Lösung in m-Kresol bei 25°C) von 2,0 bis 5,0, besonders bevorzugt von 2,5 bis 4,0 auf. Falls zusätzlich weitere kautschukfreie nicht aus Vinylmonomeren aufgebaute Thermoplastharze verwendet werden, beträgt deren Menge bis zu 500 Gew.-Teile, vorzugsweise bis zu 400 Gew.-Teile und besonders bevorzugt bis zu 300 Gew.-Teile (jeweils bezogen auf 100 Gew.-Teile I) + II)).
Die modifizierten Polyalkylenether (II) im Sinne der Erfindung werden durch Behandlung von Polyethern mit Carbonsäuren und/oder Carbonsäureanhydriden hergestellt.
Die erfindungsgemäß zu modifizierenden Polyalkylenether sind aus di- und poly- fuktionellen (cyclo)- aliphatischen Resten aufgebaut und können in geringem Maße auch olefinische Gruppen enthalten. Geeignet sind Reaktionsprodukte aus Di- oder Polyolen, Ethylenglykol, 1,2-Propylenglykol, Trimethylolpropan, Glycerin, Penta- erythrit, Sorbit und Mannit und einem oder mehreren Alkylenoxiden, wie Ethylen- oxid und Propylenoxid (Herstellung und Verwendung siehe Ullmanns Encyklopädie der technischen Chemie, 4. Aufl., Bd.19, S.31, Verlag Chemie, Weinheim 1980). Dabei werden Polyalkylenether mit hohen Anteilen an 1 ,2-Propylenstrukturen bevorzugt.
Es können sowohl lineare als auch verzweigte Polyalkylenether verwendet werden, wobei mäßig verzweigte und lineare Typen bevorzugt werden.
Die "Ausgangs"-, d.h. unmodifizierten, -Polyalkylenether besitzen Molekulargewichte (Zahlenmittel) zwischen 500 und 15.000, bevorzugt zwischen 1000 und 10.000 und besonders bevorzugt zwischen 2000 und 5000.
Als Carbonsäuren zur Behandlung der Polyether kommen prinzipiell aliphatische, vorzugsweise mit 1 bis 20 Kohlenstoff atomen, aromatische und araliphatische Carbonsäuren sowie deren Anhydride in Betracht. Dabei können gesättigte und unge- sättigte Mono-, Di- und Tricarbonsäuren eingesetzt werden. Beispiele für geeignete Carbonsäuren sind Ameisensäure, Essigsäure, Propionsäure, Trimethylessigsäure, Laurinsäure, Ölsäure, Stearinsäure, Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Maleinsäure, Fumarsäure, Benzoesäure, Phenylessigsäure, o-, m- oder p-Toluylsäure, Phthalsäure, Isophthalsäure, Terephthalsäure.
Beispiele für geeignete Carbonsäureanhydride sind Acetanhydrid, Maleinsäureanhydrid, Phthalsäureanhydrid.
Prinzipiell geeignet sind auch Carbonsäurederivate wie Hydroxycarbonsäuren (z.B.
Glykolsäure, Milchsäure, Hydroxybuttersäure, Glycerinsäure, Apfelsäure, Weinsäure, Citronensäure, Mandelsäure, Salicylsäure oder 2,2"-Thiodiessigsäure und 3,3"- Thiodipropionsäure.
Bevorzugte Carbonsäuren im Sinne der Erfindung sind Ameisensäure, Essigsäure,
Propionsäure, Oxalsäure, Benzoesäure, Phthalsäure, besonders bevorzugt sind Ameisensäure, Essigsäure, Oxalsäure und Benzoesäure; ganz besonders bevorzugt ist Essigsäure.
Bevorzugte Carbonsäureanhydride im Sinne der Erfindung sind Acetanhydrid und
Phthalsäureanhydrid.
Die Behandlung der Polyalkylenether mit Carbonsäure bzw. Carbonsäureanhydrid erfolgt im allgemeinen bei Temperaturen von 20°C bis 100°C, vorzugsweise von 25°C bis 90°C, besonders bevorzugt 30°C bis 80°C und ganz besonders bevorzugt
40°C bis 60°C.
Die Menge an Carbonsäure bzw. Carbonsäureanhydrid, bezogen auf die Menge an Polyalkylenether, kann in weiten Bereichen variiert werden. Sie beträgt im allgemei- nen 0,01 bis 3 Gew.-%, vorzugsweise 0,02 bis 2 Gew.-% und besonders bevorzugt
0,05 bis 1 Gew.-%. Die erfindungsgemäß erhaltenen modifizierten Polyalkylenether können nach bekannten Methoden, z.B. durch gemeinsames Kneten, Walzen oder Extrudieren, in die antistatisch auszurüstenden Polymeren eingearbeitet werden.
Neben den erfindungsgemäßen Antistatika können Formmassen die üblichen Zusätze wie z.B. Pigmente, Füllstoffe, Stabilisatoren, Gleitmittel, Entformungsmittel, Flammschutzmittel und dergleichen zugesetzt werden.
Die so erhaltenen erfindungsgemäßen Formmassen werden mit den für Thermoplaste üblichen Methoden zu Fertigteilen z.B. Gehäuseteilen für Haushalts- und Elektrogeräte, Profilteilen, Folien, Automobilinnenausstattungen etc. verarbeitet.
Die fertigen Formteile zeichnen sich durch hervorragendes antistatisches Verhalten und insbesondere durch belagfreie, homogene und glänzende Oberflächen aus. Die mechanischen Eigenschaften, speziell die Wärmeformbeständigkeit und die Schlagzähigkeit sowie insbesondere die thermoplastische Fließfähigkeit sind im Vergleich zum unmodifizierten Material praktisch nicht beeinträchtigt. Ebensowenig wird der Rohton der Formteile beeinflußt.
Beispiele
Eingesetztes ABS-Polymerisat
ABS-Polymer aufgebaut aus 60 Gew.-Teilen eines thermoplastischen Styrol / Acryl- nitril-Copolymeren (Styrol : Acrylnitril - Gew.-Verhältnis 72 : 28) mit einer Grenzviskosität von 55 ml/g (gemessen in Dirnethylformamid bei 23°C) und 40 Gew.- Teilen eines Pfropfpolymeren von 36 Gew.-Teilen Styrol und 14 Gew.-Teilen Acrylnitril auf 50 Gew.-Teile Polybutadien mit einer bimodalen Teilchengrößenverteilung (50% mit d50-Wert ca. 400 nm und 50% mit d50-Wert von ca.100 nm).
Die bei den nachfolgend beschriebenen Polyalkylenethern angegebenen pH-Werte wurden nach Dispergieren der Polyalkylenether in Wasser durch kräftiges Rühren (5%ige Dispersionen) gemessen (bei 23°C).
Polyalkylenether 1 (erfindungsgemäß)
Die Herstellung der erfindungsgemäßen Polyalkylenether erfolgt durch Zusatz von x Gew.-Teilen der in Tabelle 1 angegebenen Carbonsäure zu 100 Gew.-Teilen eines im Vakuum unter Erhitzen entgasten linearen Polypropylenethers mit mittlerer Molmasse Mn = 2000 (OH-Zahl = 57) und y - stündiges Erhitzen auf z°C (siehe Tabelle
1)
Polyalkylenether 2 (Vergleich)
Die Herstellung des Polyalkylenethers 2 erfolgt durch Zusatz von 0,4 Gew.-Teilen der in Tabelle 1 angegebenen Substanzen zu 100 Gew.-Teilen des bei Herstellung der Polyalkylenether 1 verwendeten Ausgangsmaterials (sonstige Bedingungen siehe Tabelle 1). Polyalkylenether 3 (Vergleich)
Linearer Polypropylenether mit mittlerer Molmasse Mn = 2000 (OH-Zahl = 57), identisch mit Ausgangsmaterial bei Herstellung von Polyether 1. Der pH- Wert liegt bei 6,9.
Polyalkylenether 4 (Vergleich)
Linearer Polypropylenether identisch mit Ausgangsmaterial bei Herstellung von Polyalkylenether 1, modifiziert mit Dibenzoylperoxid gemäß Vorschrift in EP
0 278 349 Bl, Polyether Il-a. Der pH-Wert liegt bei 6.5.
Antistatikum 5 (Vergleich)
Trishydroxyethyliertes Dodecylamin
Einarbeitung der Polyalkylenether und des Antistatikum 5 in das ABS -Polymerisat und Verarbeitung der resultierenden Formmassen
Die Einarbeitung erfolgt zusammen mit 2 Gew.-Teilen Ethylenbisstearylamid und
1 Gew.-Teil Farbruß auf einem Innenkneter vom Banbury-Typ bei ca. 190°C bis 200°C, die Verarbeitung der resultierenden, in Granulatform überfüherten Massen erfolgte durch Spritzgießen bei 240°C zu Prüfstäben und zu Formteilen der Abmessungen 140 mm x 75 mm x 2 mm.
Prüfung
An den Prüfkörpern werden Kerbschlagzähigkeit bei Raumtemperatur und - 40°C
(ak RT bzw. a -40°c, Einheit : kJ/m2, Prüfmethode ISO 180 A), Wärmeformbeständigkeit (Vicat B nach DIN 53 460, Einheit : °C) und Kugeleindruckhärte (Hc, Einheit :
N/mm2, Prüfmethode DIN 53 456 ) ermittelt. Die Beurteilung der thermoplastischen Fließfähigkeit erfolgt durch Messung des notwendigen Fülldruckes bei der Spritzgußverarbeitung bei 240°C (Einheit : bar, siehe F. Johannaber, Kunststoffe 74 (1984), 1, Seiten 2 bis 5 sowie durch Messung des MVI nach DIN 53 735 U (Einheit : cm3/ 10 min).
Die Antistatikwirkung wird durch Lagern der Formteile in staubiger Umgebung ermittelt (Beurteilung nach 1 Tag, 3 Tagen und 2 Wochen : + = Nach 2 Wochen noch sehr gute Antistatikwirkung zu erkennen, keinerlei Staubfiguren, - = nach 3 Tagen Staubfiguren zu erkennen, — = nach 1 Tag Staubfiguren).
Tabelle 1 :
Herstellbedingungen zur Herstellung der erfindungsgemäßen Polyalkylenether 1 sowie der Vergleichspolyalkylenether 2
Figure imgf000021_0001
Tabelle 2 : Eigenschaften der untersuchten ABS-Formmassen
Figure imgf000022_0001
Tabelle 2: (Fortsetzung)
Figure imgf000023_0001

Claims

Patentansprüche
1. Thermoplastische Formmassen enthaltend
I.) 99,8 bis 95 Gew.-Teile eines gegebenenfalls kautschukmodifizierten
Polymerisats aus Vinylaromaten, und gegebenenfalls anderen Vinylmonomeren bestehend aus
A) 0 bis 100 Gew.-% eines oder mehrerer Pfropfpolymerisate aus 10 bis 95 Gew.-% (bezogen auf A) Kautschuk und 90 bis
5 Gew.-% (bezogen auf A) auf den Kautschuk pfropfpolymeri- sierte Monomere, wobei als Monomere Styrol, α-Methylstyrol, kernsubstituiertes Styrol, Methylmethacrylat, (Meth)Acrylni- tril, Maleinsäureanhydrid, N-substituierte Maleinimide oder Mischungen daraus pfropfpolymerisiert sind und die Kautschuke Glasübergangstemperaturen < 10°C aufweisen und in Form wenigstens partiell vernetzter Teilchen mit einem mittleren Teilchendurchmesser (d50) von 0,05 bis 20 μm vorliegen
und
B) 100 bis 0 Gew.-% eines oder mehrerer thermoplastischer Vinylpolymerisate, wobei die Monomeren ausgewählt sind aus der Reihe Styrol, α-Methylstyrol, kernsubstituiertem Styrol, Methylmethacrylat, Acrylnitril, Methacrylnitril, Maleinsäureanhydrid, N-substituierte Maleinimide oder Mischungen daraus, und
II.) 0,
2 bis 5 Gew.-Teile eines Polyalkylenethers mit Molekulargewichten zwischen 500 bis 15.000, und einem pH- Wert von 2,5 bis 5,5. Thermoplastische Formmassen gemäß Anspruch 1 enthaltend
I.) 99,5 bis 96 Gew.-Teile eines gegebenenfalls kautschukmodifizierten Polymerisats aus Vinylaromaten, und gegebenenfalls anderen Vinyl- monomeren bestehend aus
A) 0 bis 100 Gew.-% eines oder mehrerer Pfropfpolymerisate aus 10 bis 95 Gew.-% (bezogen auf A) Kautschuk und 90 bis 5 Gew.-% (bezogen auf A) auf den Kautschuk pfropfpolymeri- sierte Monomere, wobei als Monomere Styrol, α-Methylstyrol, kernsubstituiertes Styrol, Methylmethacrylat, (Meth)Acrylni- tril, Maleinsäureanhydrid, N-substituierte Maleinimide oder Mischungen daraus pfropfpolymerisiert sind und die Kautschuke Glasübergangstemperaturen < 10°C aufweisen und in Form wenigstens partiell vernetzter Teilchen mit einem mittleren Teilchendurchmesser (d50) von 0,05 bis 20 μm vorliegen
und
B) 100 bis 0 Gew.-% eines oder mehrerer thermoplastischer
Vinylpolymerisate, wobei die Monomeren ausgewählt sind aus der Reihe Styrol, α-Methylstyrol, kernsubstituiertem Styrol, Methylmethacrylat, Acrylnitril, Methacrylnitril, Maleinsäureanhydrid, N-substituierte Maleinimide oder Mischungen daraus, und
II.) 0,5 bis 4 Gew.-Teile eines Polyalkylenethers mit Molekulargewichten zwischen 500 und 15.000 und einem pH- Wert von 3,0 bis 5,0, der ein
Reaktionsprodukt aus Polyolen und einem oder mehreren Alkylenoxi- den ist und der mit 0,02 bis 2 Gew.-% (bezogen auf Menge an Polyal- kylenether) mindestens einer Carbonsäure oder Carbonsäureanhydrid vermischt und bei 25 bis 90°C behandelt ist.
3. Thermoplastische Formmassen nach Ansprüchen 1 und 2, enthaltend zusätz- lieh mindestens ein Harz ausgewählt aus aromatischem Polycarbonat, aromatischem Polyestercarbonat, Polyester, Polyamid oder Mischungen daraus.
4. Thermoplastische Formmassen gemäß Ansprüchen 1 bis 3, enthaltend Additive, ausgewählt aus mindestens einem der Gruppe der Pigmente, Füllstoffe, Stabilisatoren, Gleitmittel, Entformungsrnittel und Flammschutzmittel.
5. Verwendung der Formmassen gemäß Ansprüchen 1 bis 4 zur Herstellung von Formkörpern.
6. Formkörper, hergestellt aus Formmassen gemäß Ansprüchen 1 bis 4.
7. Verfahren zur antistatischen Ausrüstung von gegebenenfalls kautschukmodifizierten Polymerisaten aus Vinylaromaten, anderen Vinylmonomeren, gegebenenfalls weiteren Flarzen und üblichen Zusätzen gemäß Anspruch 1, dadurch gekennzeichnet, daß man zu 99,8 bis 95 Gew.-Teilen Polymerisat I.)
0,2 bis 5 Gew.-Teile eines Polyalkylenethers II.) zufügt.
PCT/EP1999/006883 1998-09-29 1999-09-17 Antistatisch ausgerüstete thermoplastische formmassen mit verbesserten eingeschaften WO2000018841A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP99947374A EP1129136A1 (de) 1998-09-29 1999-09-17 Antistatisch ausgerüstete thermoplastische formmassen mit verbesserten eingeschaften
BR9914107-8A BR9914107A (pt) 1998-09-29 1999-09-17 Massas de moldagem termoplásticas com acabamento antiestático, com propriedades aperfeiçoadas
US09/787,681 US6509402B1 (en) 1998-09-29 1999-09-17 Antistatic finished thermoplastic molding materials with improved properties
AU60849/99A AU6084999A (en) 1998-09-29 1999-09-17 Antistatic finished thermoplastic molding materials with improved properties
KR1020017003923A KR20010075407A (ko) 1998-09-29 1999-09-17 개선된 성질을 갖는 대전방지성 열가소성 성형재
JP2000572293A JP2002525413A (ja) 1998-09-29 1999-09-17 改良特性を有する帯電防止熱可塑性成形用組成物
CA002345437A CA2345437A1 (en) 1998-09-29 1999-09-17 Antistatic finished thermoplastic molding materials with improved properties

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19844496A DE19844496A1 (de) 1998-09-29 1998-09-29 Antistatisch ausgerüstete thermoplastische Formmassen mit verbesserten Eigenschaften
DE19844496.6 1998-09-29

Publications (1)

Publication Number Publication Date
WO2000018841A1 true WO2000018841A1 (de) 2000-04-06

Family

ID=7882551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/006883 WO2000018841A1 (de) 1998-09-29 1999-09-17 Antistatisch ausgerüstete thermoplastische formmassen mit verbesserten eingeschaften

Country Status (11)

Country Link
US (1) US6509402B1 (de)
EP (1) EP1129136A1 (de)
JP (1) JP2002525413A (de)
KR (1) KR20010075407A (de)
CN (1) CN1172986C (de)
AU (1) AU6084999A (de)
BR (1) BR9914107A (de)
CA (1) CA2345437A1 (de)
DE (1) DE19844496A1 (de)
TW (1) TW576853B (de)
WO (1) WO2000018841A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063290A1 (de) * 1999-04-19 2000-10-26 Bayer Aktiengesellschaft Thermoplastische antistatisch ausgerüstete formmassen mit verbesserter farbstabilität bei der verarbeitung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102718684A (zh) * 2012-07-06 2012-10-10 太仓市新星轻工助剂厂 一种季铵盐改性丙烯酸酯抗静电剂的合成方法
JP6765337B2 (ja) * 2016-12-05 2020-10-07 三菱エンジニアリングプラスチックス株式会社 光学部品用ポリカーボネート樹脂組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3203488A1 (de) * 1982-02-03 1983-08-11 Basf Ag, 6700 Ludwigshafen Thermoplastische formmasse
EP0135802A2 (de) * 1983-08-30 1985-04-03 BASF Aktiengesellschaft Thermoplastische Formmasse
EP0605937A1 (de) * 1991-10-21 1994-07-13 Daiso Co., Ltd. Antistatische Harzzusammensetzung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1244398B (de) 1963-07-11 1967-07-13 Bayer Ag Antistatische thermoplastische Formmassen
DE1544652A1 (de) 1965-07-16 1969-03-06 Basf Ag Verfahren zur antistatischen Ausruestung von Styrolpolymerisaten
DE1258083B (de) 1965-10-09 1968-01-04 Huels Chemische Werke Ag Antielektrostatische Formmassen aus Styrolpolymerisaten
DE3112428A1 (de) 1981-03-28 1982-10-07 Basf Ag, 6700 Ludwigshafen Antistatische thermoplastische formmassen
DE3704486A1 (de) 1987-02-13 1988-08-25 Bayer Ag Antistatische, thermoplastische formmassen auf basis von vinylaromatpolymerisaten ii
DK0751179T3 (da) * 1995-06-28 2006-09-18 Chemtura Vinyl Additives Gmbh Antistatisk behandlede, halogenholdige polymerer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3203488A1 (de) * 1982-02-03 1983-08-11 Basf Ag, 6700 Ludwigshafen Thermoplastische formmasse
EP0135802A2 (de) * 1983-08-30 1985-04-03 BASF Aktiengesellschaft Thermoplastische Formmasse
EP0605937A1 (de) * 1991-10-21 1994-07-13 Daiso Co., Ltd. Antistatische Harzzusammensetzung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063290A1 (de) * 1999-04-19 2000-10-26 Bayer Aktiengesellschaft Thermoplastische antistatisch ausgerüstete formmassen mit verbesserter farbstabilität bei der verarbeitung
US6639005B1 (en) 1999-04-19 2003-10-28 Bayer Aktiengesellschaft Thermoplastic molding compounds, provided with an antistatic agent which exhibit improved color stability during processing

Also Published As

Publication number Publication date
CN1172986C (zh) 2004-10-27
DE19844496A1 (de) 2000-03-30
US6509402B1 (en) 2003-01-21
CN1320141A (zh) 2001-10-31
BR9914107A (pt) 2001-06-12
CA2345437A1 (en) 2000-04-06
AU6084999A (en) 2000-04-17
JP2002525413A (ja) 2002-08-13
KR20010075407A (ko) 2001-08-09
TW576853B (en) 2004-02-21
EP1129136A1 (de) 2001-09-05

Similar Documents

Publication Publication Date Title
EP0845496B1 (de) Thermoplastische Hochglanz-Formmassen vom ABS-Typ
EP0576950B1 (de) Thermoplastische Formmassen
EP1294801B1 (de) Flammwidrige und anti-elektrostatische polycarbonat-formmassen
EP1268662B1 (de) Polymerzusammensetzungen mit verbesserter eigenschaftskonstanz
EP1095097B1 (de) Flammwidrige polycarbonat-abs-formmassen
EP0745624B1 (de) ABS-Formmassen mit verbesserten Eigenschaften
EP0845497A2 (de) Verbesserte thermoplastische Formmassen vom ABS-Typ
EP1567596B1 (de) Schlagzähmodifizierte blends
EP0818480B1 (de) Hochzähe ABS-Formmassen
WO2001090241A1 (de) Schlagzähmodifizierte polymer-zusammensetzungen
WO2013160371A1 (de) Pc/abs-zusammensetzungen mit guter thermischer und chemischer beständigkeit
WO2001016230A1 (de) Thermoplastische formmassen auf basis bestimmter pfropfkautschukkomponenten
EP0731138B1 (de) Thermoplastische Formmassen vom ABS-Typ
EP1910469A1 (de) Schlagzähmodifizierte polycarbonat- zusammensetzungen, verfahren zu ihrer herstellung und formkörper enthaltend diese zusammensetzungen
WO2000018841A1 (de) Antistatisch ausgerüstete thermoplastische formmassen mit verbesserten eingeschaften
EP0743342A1 (de) Thermoplastische ABS-Formmassen
EP1098919B1 (de) Thermoplastische formmassen auf basis spezieller hocheffektiver pfropfpolymerkomponenten
WO2000037559A1 (de) Hochschlagzähe abs-formmassen
EP1214379B1 (de) Flammwidrige polycarbonat-blends
EP1228145A1 (de) Flammwidrige polycarbonat-blends
EP1339795B1 (de) Mit phosphorigsäureestern stabilisierte polyalkylenterephthalat-zusammensetzungen
EP1699859B1 (de) Stabilisierte thermoplastische zusammensetzungen
EP0131196A1 (de) Thermoplastische Formmassen
EP0576948B1 (de) Thermoplastische Formmassen
DE4114589A1 (de) Polycarbonat/polyamid-formmassen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99811544.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999947374

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/00296/MU

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 09787681

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2345437

Country of ref document: CA

Ref document number: 2345437

Country of ref document: CA

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2000 572293

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/003234

Country of ref document: MX

Ref document number: 1020017003923

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017003923

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999947374

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWR Wipo information: refused in national office

Ref document number: 1020017003923

Country of ref document: KR