WO1999067661A1 - Embedded sensor - Google Patents

Embedded sensor Download PDF

Info

Publication number
WO1999067661A1
WO1999067661A1 PCT/JP1999/003329 JP9903329W WO9967661A1 WO 1999067661 A1 WO1999067661 A1 WO 1999067661A1 JP 9903329 W JP9903329 W JP 9903329W WO 9967661 A1 WO9967661 A1 WO 9967661A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
electrode
detection electrode
insulated
reference electrode
Prior art date
Application number
PCT/JP1999/003329
Other languages
French (fr)
Japanese (ja)
Inventor
Ryochi Kato
Hideto Kato
Kunihide Kamiyama
Kiichi Seino
Original Assignee
Ks Techno Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ks Techno Co., Ltd. filed Critical Ks Techno Co., Ltd.
Priority to AU43916/99A priority Critical patent/AU4391699A/en
Publication of WO1999067661A1 publication Critical patent/WO1999067661A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices

Definitions

  • the present invention relates to a buried sensor, and more particularly to a buried sensor for detecting an object existing on the ground and an object existing on a floor of a building.
  • a loop coil sensor using a variation in a resonance frequency of a loop coil has been used as a detecting unit for detecting whether a vehicle is present in each parking space in a parking lot.
  • this loop coil sensor a loop coil formed by winding an electric wire about 4 to 6 times in a circular shape having a diameter of about 1 m to 2 m is buried horizontally in the ground of each section, and 100 A high frequency current of KHz to 50 O KHz is supplied to generate a magnetic field around the loop coil.
  • the inductance of the loop coil decreases due to the iron loss and the change in the magnetic permeability of the vehicle body.
  • a change in the frequency of the high frequency due to the decrease in the inductance is detected by a detection circuit, and it is detected whether or not a vehicle exists in each of the sections.
  • this loop coil sensor since this loop coil sensor generates a high frequency, the high frequency affects a telephone line, an electronic circuit, and the like around a parking lot, and there is a problem that the loop coil sensor becomes a noise source. Conversely, a noise source around the loop coil, for example, a noise generated from a spark plug of the vehicle is detected by a detection circuit connected to the loop coil, which causes a malfunction.
  • the present invention solves the above-described problems of the loop coil sensor and generates a magnetic field. It is an object of the present invention to provide an embedded sensor having excellent detection stability without using high frequency. Disclosure of the invention
  • the embedded sensor according to claim 1 is embedded in the ground or a building floor and is insulated from the ground or the building, and is embedded in the ground or the building floor and insulated from the ground or the building.
  • it has a reference electrode insulated from the detection electrode, and a detection circuit for detecting a change in capacitance between the detection electrode and the reference electrode caused by the presence of an object in the detectable region.
  • an object existing on the ground or on the floor can be detected as a change in capacitance between a detection electrode and a reference electrode embedded in the ground or the floor of a building, and the presence of the object can be detected. Therefore, the embedded sensor of the present invention does not need to generate a magnetic field by high frequency, and thus does not have the above-mentioned problems of the loop coil sensor at all.
  • dielectric polarization occurs in an insulator such as earth and sand between the detection electrode and the human.
  • the detection electrode and the reference electrode are insulated from the buried detection electrode and the earth and sand surrounding the reference electrode, the electric charge (polarization charge) generated by the dielectric polarization becomes an electric current and becomes a current. Does not move directly to the reference electrode.
  • this polarization charge forms an electric field in the earth and sand around the detection electrode. Electrostatic induction occurs at the detection electrode located in this electric field, and the capacitance between the detection electrode and the reference electrode increases. The detection of the increase in the capacitance by the detection circuit makes it possible to detect the intrusion of the person.
  • the buried sensor of the present invention connects the detection signal of the detection circuit to other control means to detect the presence or absence of a vehicle in each parking section of the above-mentioned parking lot, and to detect a security device for monitoring an intruder. It can also be used as an outgoing sensor.
  • the embedded sensor according to the present invention is particularly effective as a detection sensor for a security device because the embedded detection electrode and reference electrode cannot be found from the outside.
  • the object to be detected is not limited as long as it has a detectable capacitance, such as a human, an automobile, a vehicle, and an animal.
  • embedding means not only the case where the detection electrode and the reference electrode are buried with a single substance such as earth and sand, but also two types such as a floor composed of a tile and concrete fixing the back surface of this tile. This includes the case where the floor is made up of such materials and the case where the detection electrode and the reference electrode are buried inside this concrete.
  • burying includes the case where the burial is partially buried, and also includes the case where the burial is simply placed on the surface of the ground.
  • the embedded sensor according to claim 2 is provided such that at least a part thereof is disposed within a detection region of the detection electrode and a charging member insulated from the detection electrode and the reference electrode is provided. Things.
  • the detection electrode and the reference electrode are buried in earth and sand, if the earth and sand existing above these electrodes is blown up by wind and rain, etc., the volume of the earth and sand existing above these electrodes will increase. For this reason, even if the earth and sand existing above these electrodes is charged by the approach of humans, the charge is dispersed by the increased volume, and the polarization charge of the earth and sand around the detection electrodes decreases, and the predetermined strength No electric field is formed. For this reason, the detection circuit cannot detect the approach of a human.
  • the present invention uses a charging member having a predetermined volume and a predetermined conductivity or dielectric constant to stabilize the intensity of an electric field formed around a detection electrode caused by the presence of an object in a detectable region. And high detection accuracy can be maintained.
  • the charging member may be a conductor or an insulator.
  • the conductor is preferably made of aluminum or stainless steel, and the insulator is preferably made of natural stone such as marble, granite, granite, porcelain, concrete, or artificial stone. is there.
  • the embedded sensor according to claim 3 is characterized in that the charging member is a conductor and has a partitioning means made of an insulator.
  • the electric charge of the charging member becomes an electric current, and is arranged on the ground or a building around the charging member or adjacently. Movement to other charging members can be prevented.
  • the charging member is formed of an aluminum plate, and a synthetic resin is applied around the charging member to form an insulating layer. Therefore, the embedded sensor of the present invention is produced by the presence of an object within the detectable area. The strength of the electric field formed around the detection electrode can be stabilized.
  • a buried sensor according to claim 4 is characterized in that the charging member is an insulator, and that the charging member has a partitioning means made of a low-insulator having a smaller dielectric constant than the insulator.
  • the present invention provides an insulating charging member provided with partitioning means made of an insulator having a smaller dielectric constant than the charging member, so that the charge of the charging member is changed to the ground or building around the charging member, or Dispersion to other charging members disposed adjacent to the charging member can be prevented. Therefore, it is possible to stabilize the intensity of the electric field formed around the detection electrode caused by the presence of the object in the detectable region.
  • the insulator having a small dielectric constant means, for example, when the charging member of the insulator is a concrete material, a synthetic resin having a smaller dielectric constant than that of the concrete material. Is formed.
  • the embedded sensor according to claim 5 is characterized in that the partitioning means is provided with a residual charge dispersing means for dispersing the residual charge of the charging member to the outside.
  • the detection circuit may continue to transmit a detection signal due to the charge remaining on the charging member.
  • the air is dry and the intruder's body has a large charge. Therefore, the charge of the charging member charged by the human body also becomes large. At the same time, the atmosphere around the charging member is also dry, so that electric charges are hardly dispersed.
  • the present invention disperses the residual charge from the charging member to the ground or a building in a predetermined time by providing a residual charge dispersing means in the partitioning means, and prevents the detection circuit from continuing to transmit the detection signal. .
  • the embedded sensor according to claim 6 is characterized in that the charging member is provided with a water-repellent means.
  • the detection circuit when an embedded sensor is installed outdoors, if moisture penetrates into the charging member due to rainwater, etc., positive hydrogen ions facilitate the movement of charges in the charging member, and the charging member changes to a state close to a conductor . Therefore, the rate of increase (increase rate) of the static state capacitance and the charged state capacitance detected by the detection circuit relatively decreases. For this reason, the detection circuit must detect a relatively decreased rate of increase in capacitance, and it is necessary to improve the detection accuracy.
  • the present invention provides a water-repellent means on the non-buried portion to prevent moisture from penetrating into the charging member and maintain a high detection accuracy by maintaining a static charge amount of the charging member. can do.
  • the embedded sensor according to claim 7 is characterized in that the charging member is provided with drainage means.
  • the influence of moisture on the charging member can be reduced by providing the charging member with drainage means.
  • the drainage means is a means for increasing the drainage efficiency of the surface of the charging member by inclining the surface of the non-buried portion of the charging member or providing a groove or the like, and also makes the charging member itself porous. Means for increasing the drainage efficiency inside the charging member is also included.
  • An embedded sensor according to claim 8 is provided with directivity control means for limiting the direction of the line of electric force of the detection electrode.
  • the direction of the electric field lines of the detection electrode is limited to limit the detectable area to a predetermined range so that the detection electrode is not affected by the fluctuation of the electric charge in other areas. Can be.
  • the embedded sensor according to claim 9 is characterized in that the directivity control means is a shield electrode connected to the reference electrode.
  • the embedded sensor according to claim 10 is provided with at least one or more inter-electrode charging members that are disposed between the detection electrode and the reference electrode and are insulated from the detection electrode and the reference electrode. That is.
  • the sensitivity of the detection electrode can be stabilized, and the detection threshold value of the detection circuit can be set small. Therefore, the detectable area Can be expanded.
  • the detection electrode is composed of a first detection electrode and a second detection electrode that are insulated from each other, and the detection circuit is configured to detect a static between the first detection electrode and the reference electrode. It has comparison means for comparing the capacitance with the capacitance between the second detection electrode and the reference electrode.
  • the embedded sensor according to claim 12 is characterized in that the first detection electrode and the second detection electrode are arranged so that the distance to the object to be detected is different.
  • An embedded sensor according to claim 13 is a sensor in which the first detection electrode and the second detection electrode are provided side by side so that the detection areas are different from each other.
  • An electrode and a plurality of reference electrodes are connected to one detection circuit.
  • the embedded sensor according to the present invention can realize a wide detectable area at low cost by detecting a change in capacitance between a plurality of sets of detection electrodes and a reference electrode by one detection circuit.
  • the embedded sensor according to claim 15 is configured such that a plurality of detection electrodes and a plurality of reference electrodes are connected to one detection circuit via a capacitor.
  • the paving material described in claim 16 may include: a detection electrode insulated from the ground or a building; a reference electrode insulated from the ground or the building and insulated from the detection electrode; At least a part of the charging member is provided so as to be located at least, and has a charging member insulated from the detection electrode and the reference electrode.
  • pavement material according to claim 17 wherein a pavement material portion, a detection electrode, an insulating member, and a reference electrode are sequentially laminated, and the upper pavement material portion and the reference electrode are insulated, The detection electrode and the reference electrode are insulated from the ground or a building.
  • the pavement material according to claim 18 is formed by sequentially laminating an upper pavement material portion, a detection electrode, a first insulating member, a lower pavement material portion, a second insulating member, and a reference electrode.
  • the detection electrode and the reference electrode are insulated from the lower pavement portion, and the detection electrode and the reference electrode are connected to the ground or a building. It is insulated from things.
  • the pavement material according to claim 19, comprising a detection electrode, an insulating member, a reference electrode, and a pavement material portion sequentially laminated, wherein the upper pavement portion and the reference electrode are insulated, and The detection electrode and the pavement portion are insulated, and the reference electrode is insulated from the ground or a building.
  • the pavement material according to claim 23, wherein the water film separating means comprises: a main groove having a width of 6 mm or more and opening downward; and a sub-groove having a width of less than 6 mm and opening downward inside the main groove. It is to be prepared.
  • FIG. 1 is a perspective view of an embedded sensor according to the first embodiment of the present invention, and shows a state where an embedded sensor unit 1 is embedded below a plurality of flat plates 10.
  • FIG. 2 is a sectional view taken along line AA of FIG.
  • FIG. 3 is a block diagram showing a connection state between each unit 1 and the detection circuit 20 of the embedded sensor in FIG.
  • FIG. 4 is a circuit diagram of the detection circuit 20 of the embedded sensor of FIG.
  • FIG. 5 is an explanatory diagram showing electric lines of force E of the detection electrode plate 2 of the unit 1 of the embedded sensor of FIG.
  • Reference symbol R denotes a detection area of the detection electrode plate 2.
  • FIG. 6 is a block diagram showing another connection state between each unit 1 and the detection circuit 20 of the embedded sensor in FIG.
  • FIG. 7 is a perspective view of the embedded sensor according to the second embodiment of the present invention.
  • FIG. 8 is a perspective view of an embedded sensor according to the third embodiment of the present invention.
  • FIG. 9 is a perspective view of a pottery plate 60 that is a power-resistant member of the embedded sensor according to the fourth embodiment of the present invention.
  • FIG. 10 is a perspective view of an embedded sensor according to a fifth embodiment of the present invention.
  • FIG. 11 is a sectional view of a unit 70 of the embedded sensor of FIG.
  • FIG. 12 is a block diagram of the embedded sensor of FIG.
  • FIG. 13 is a plan view of an embedded sensor according to a sixth embodiment of the present invention. The top plate of case 101 has been removed.
  • FIG. 14 is a sectional view taken along line BB of FIG.
  • FIG. 15 is a vertical sectional view of a pavement material of an embedded sensor according to a seventh embodiment of the present invention.
  • FIG. 16 is a vertical sectional view of a pavement material of an embedded sensor according to an eighth embodiment of the present invention.
  • FIG. 17 is a vertical sectional view of a pavement material of an embedded sensor according to a ninth embodiment of the present invention.
  • FIG. 18 is a longitudinal sectional view of a pavement material of the embedded sensor according to the tenth embodiment of the present invention.
  • FIG. 19 is a vertical sectional view of a pavement material of the embedded sensor according to the eleventh embodiment of the present invention.
  • the embedded sensor according to a first embodiment of the present invention is a sensor for a security system provided on the ground around a building, and an alarm is activated when an intruder walks on the flat plate 10.
  • Reference numeral 1 denotes a buried sensor unit buried immediately below a flat plate 10 as a charging member.
  • the embedded sensor unit 1 has a detection electrode plate 2 which is a circular flat conductor, a reference electrode plate 3 which is a conductor disposed below the detection electrode plate 2, and a reference electrode It comprises a cylindrical shield plate 4 provided integrally with the electrode plate, and a case 5 filled with an insulator (not shown) for insulating the detection electrode plate 2 from the reference electrode plate 3 and the shield plate 4.
  • the flat plate 10 is composed of a main body 11 made of a concrete material, a water-repellent layer 12 applied to a surface of a portion of the main body 11 exposed to the ground, and an insulating material applied to a surface of a buried portion of the main body 11. layer 13 and a residual charge dispersing portion 14 in which the insulating layer 13 is cut to expose the main body 11.
  • the water-repellent layer 12 is for preventing moisture from penetrating into the inside of the flat plate 10 and uses a water-repellent material mainly composed of a synthetic resin.
  • the insulating layer 13 is formed of a synthetic resin having a lower dielectric constant than that of a concrete material.
  • the embedded sensor unit 1 is a set of four, and connects between the detection electrode plates and between the reference electrode plates, and is connected to the detection circuit 20.
  • the detection circuit 20 is further connected to a control circuit (not shown). When the control circuit receives the detection signal of the detection circuit 20, it activates an alarm.
  • the operation of the embedded sensor unit will be described.
  • the flat plate 10 of the insulator is charged due to the contact of the shoe sole of the intruder, and dielectric polarization occurs.
  • the electric charge (polarized electric charge) generated by the dielectric polarization forms an electric field on the back side of the flat plate 10, that is, on the contact surface with the unit 1.
  • the insulating layer 13 is formed around the buried portion of the main body 11 of the flat plate 10, the electric charge of the main body 11 caused by the induced polarization is transferred to the ground or another adjacent flat plate 10. You can Plih dispersing.
  • the shield plate 4 erected from the periphery of the reference electrode plate 3 surrounds the detection electrode plate 2 and functions as a directivity control means for limiting the direction of the electric flux lines of the detection electrode plate 3.
  • the shield plate 4 blocks electric lines of force extending horizontally from the periphery of the detection electrode plate 2. Therefore, the directivity of the lines of electric force of the detection electrode plate 2 is limited to only the back side of the flat plate 10, and the detection electrode plate 2 is affected by the change in the electric charge in the ground due to the ground current or the like, and the detection circuit 20 malfunctions.
  • the residual charge dispersing part 14 is a part where the earth and sand etc. under the ground are in direct contact with the main body 11 of the slab. is there. After the intruder walks on a flat plate 10, the charge provided by the intruder is dispersed into the ground for a predetermined time, and the residual charge remains inside the flat plate 10 for a long time. Can be prevented. Since the area of the residual charge dispersing portion 14 is extremely small as compared with the area on which the insulating layer 13 is provided, the charge of the flat plate 10 generated when the intruder walks on the flat plate 10 is obtained. The amount of scattered in the ground via the residual charge dispersion unit 14 does not affect the detection accuracy. Next, the detection circuit 20 will be described with reference to FIG.
  • the detection circuit 20 is composed of a pulse signal generation circuit 21 connected in series, a differential amplifier 22, a ⁇ 0 variable 23, and a comparator 24.
  • the pulse signal V 1 output from the circuit 20 is branched, and the pulse frequency of the branched pulse signal becomes lower due to an increase in the resistance 25 and the capacitance of the embedded sensor unit 1.
  • the differential amplifier 22 generates a noise signal V I and a pulse signal formed by a change in capacitance.
  • the difference of V2 is amplified, and the output V3 is converted to DC by the transformer 3.
  • the comparator 24 compares the output V 4 of the variable 3 with a preset detection threshold value, and if V 4 is larger than this threshold value, transmits a detection signal to the control circuit.
  • the desired detection area can be obtained by adjusting the force for adjusting the detection threshold value and the distance between the detection electrode plate 2 and the reference electrode plate 3 as to the size of the detection region R of the detection electrode plate 2. . Then, by adjusting the detection region R of the detection electrode plate 2, a predetermined distance from the surface of the flat plate 10 can be set as the detectable region. That is, this detectable area is the minimum area where the intruder touched the flat plate 10, that is, the intruder stepped on the slab, and by the above adjustment, the intruder approached the flat plate 10 by a predetermined distance. May also be detectable.
  • the unit 1 of the present embodiment four units 1 are connected to the detection circuit 20.
  • the total capacitance of the four units 1 is calculated between the detection electrode plate 2 and the reference electrode plate 3 of one unit 1. 4 times the capacitance. That is, it can be regarded as a state where four capacitors are connected in parallel.
  • the ratio (increase rate) of the increase in the static state capacitance and the charged state capacitance detected by the detection circuit 20 of the present embodiment is simply that one unit 1 is one detection circuit. Compared to the case where it is connected to 20, it will be reduced to a quarter. For this reason, the detection circuit 20 must detect the rate of increase in the capacitance that has been reduced to one-fourth, and it is necessary to improve the detection accuracy.
  • unit groups 30 and 31 each having four units 1 are provided in parallel, and the detecting electrode plate 2 of each unit group is connected via the capacitors 32 and 34, and the reference electrode plate 3 is , And are connected to the detection circuit 20 via the capacitors 33 and 35.
  • the detection electrode plate 2 of one unit 1 of the unit group 30 increases its charge due to the above-mentioned charged state, this charge instantaneously becomes a current and the four detection electrode plates of the unit group 30 Disperse to 2.
  • the capacitors 32 and 34 prevent this charge from dispersing to the four detection electrode plates 2 of the unit group 31 as a current.
  • the increase rate of the capacitance substantially equal to that of this embodiment shown in FIG. Can be maintained.
  • Reference numeral 40 denotes a concrete flat plate, which is formed by integrally forming a detection electrode material 41 and a reference electrode material 42, each of which is a circular flat-plate-shaped wire mesh horizontally disposed inside.
  • the detection electrode material 41 and the reference electrode material 42 are separated from each other by a predetermined distance in the vertical direction, and a lead wire (not shown) is connected to each electrode material and provided on the back surface of the flat plate 40. Connect to detection circuit 20 via connector (not shown).
  • the flat plate 40 is provided with a groove 44 provided as a drainage means provided on the surface thereof, and a drain hole 45 provided at the intersection of the four grooves 40 so as to penetrate the flat plate 40 in a vertical direction.
  • a water-repellent layer (not shown) is formed on the surface of each block 43 partitioned by the groove 44, and an insulating layer (not shown) is formed on the back and side walls of the flat plate 43.
  • the drain hole 45 penetrates the insulating layer on the back surface of the flat plate 43, and the lower part of the inner wall of the drain hole 45 functions as a residual charge dispersing means for dispersing the residual charge to the outside.
  • the concrete material of the flat plate 40 located above the detection electrode material 41 functions as a charging member.
  • the detection electrode and the reference electrode are integrally provided on the charging member, there is no possibility of damaging the detection electrode and the reference electrode during construction, and the construction can be facilitated.
  • Reference numeral 50 denotes a pavement member including 16 granite blocks 53 and an FRP tray 51 containing the blocks 53 and sand for fixing the blocks.
  • This pavement member 50 is used in place of the flat plate 10 of the first embodiment. Therefore, the embedded sensor unit 1 (not shown) of the first embodiment is embedded on the back surface of the pavement member 50.
  • the tray 51 is an insulating means for the block 53 serving as a charging member.
  • a drain hole 52 serving as a water means is formed in the bottom surface of the tray 51, and the drain hole also functions as a residual charge dispersing means for dispersing the residual charge of the block 53 to the outside.
  • the whole of a plurality of relatively small blocks 53 can be used as one charging member. That is, the tray 51 indicates that the charges of the 16 blocks 53 stored in the tray 51 move to the 16 blocks 53 and the ground in another adjacent tray 51. ih. Therefore, stable detection accuracy can be secured.
  • Reference numeral 60 denotes a ceramic plate, which is composed of four charged portions 61 having a high dielectric constant, a low dielectric constant other than the charged portions, and an insulating portion 62.
  • the cylindrical charging section 61 is formed by mixing a substance having a high dielectric constant.
  • the ceramic plate 60 is a flat plate having a relatively large area, and each charging unit 61 constitutes an independent charging member.
  • On the back surface of the ceramic plate 60 four embedded sensor units 1 of the first embodiment are embedded, and each unit 1 is embedded immediately below each charging unit 61.
  • the charging section 61 by providing the charging section 61 as described above, a plurality of embedded sensor units 1 can be provided on one ceramic plate 60 having a relatively large area.
  • the charging section 61 is formed integrally with the ceramic plate 6 °, a plurality of charging members can be installed at a time, and the construction is easy.
  • the embedded sensor according to the present embodiment is a sensor for detecting the presence or absence of a vehicle in each parking section of a parking lot, and a flat plate 10 is provided on the floor of each I main vehicle section.
  • Reference numeral 70 shown in FIG. 10 denotes a cable-shaped sensor unit having a rectangular cross-sectional shape housed in a groove 81 provided on the back surface of a concrete flat plate 80.
  • the unit 70 is housed in a groove 81 of a plurality of flat plates 80 installed in series.
  • the unit 70 includes a case 71, a first detection electrode wire 72, a first inter-electrode charging wire 73, and a first reference electrode wire 74 stored in the case 71.
  • a first electrode member composed of a first shield plate 75, a second detection electrode wire 76, a second inter-electrode charging wire 77, a second reference electrode wire 78, and a first It comprises a second electrode member constituted by a shield plate 79, an insulator (not shown) filled in the inside of the case 71, and a force.
  • the separation distance L1 between the first detection electrode line 72 and the first reference electrode line 74 is longer than the separation distance L2 between the second detection electrode line 76 and the second reference electrode line 78. Therefore, the first detection electrode line 72 is closer to the bottom surface 82 of the groove 81 of the flat plate 80 as the charging member than the second detection electrode line 76 is.
  • the first detection electrode line 72 is closer to the bottom surface 82 than the second detection electrode line 76, the bottom surface of the vehicle is completely horizontal and flat, and the distribution of the electric charge of the flat plate 80. Even when the voltage is completely uniform, the first detection electrode wire 72 is more likely to cause electrostatic induction. Therefore, in the charged state, the capacitance between the first detection electrode line 72 and the first reference electrode line 74 becomes static between the second detection electrode line 76 and the second reference electrode line 78. It becomes larger than electric capacity.
  • the inter-electrode charging wires 73 and 77 correspond to an inter-electrode charging member provided between the detection electrode and the reference electrode.
  • These bands S ⁇ 73, 77 are insulated from the detection electrode wires 72, 76 and the reference voltages 74, 78, respectively, and both charged wires 73, 77 are also insulated from each other. hand And is not electrically connected to any other members.
  • These charged wires 73, 77 supply or absorb electric charges to the respective detecting electrode lines 72, 76 according to the charge amount of the corresponding detecting electrode lines 72, 76. I do.
  • the charged wires 73 and 77 function as supply / absorption portions of electric charges to the corresponding detection electrode wires 72 and 76 respectively.
  • the first electrode member between the first detection electrode wire 72 and the first inter-electrode charged wire 73, and between the first inter-electrode charged wire 73 and the first reference electrode wire 74.
  • two capacitors connected in series are formed, and the capacitance at that location decreases. The same applies to the second electrode member. For this reason, noise caused by fluctuations in capacitance due to fluctuations in the external environment (temperature, humidity, ground current, vibration, etc.) is reduced.
  • the ratio of the signal to the noise generated by the external environment increases, and the stable detection sensitivity of both electrode members can be maintained. For this reason, it is possible to set the detection threshold value of the detection circuit small, and it is possible to enlarge the detection area of the detection electrode line.
  • the detectable area formed at a predetermined distance from the surface of the flat plate 80 can be expanded.
  • the shield plates 75 and 79 are directivity control means for limiting the directions of the electric lines of force of the corresponding detection electrode lines 72 and 76, respectively. These shield plates 75 and 79 are connected to the corresponding reference electrode wires 74 and 78, respectively, to eliminate the influence of earth current and also eliminate the influence between both electrode members. .
  • the detection circuit 90 of the present embodiment will be described with reference to FIG.
  • the detection circuit 90 includes a pulse signal generator 91, a variable resistor 92, a first variable delay circuit 93, a second variable delay circuit 94, and a phase discrimination circuit 95. .
  • the pulse signal output from the circuit 91 is branched to a first variable delay circuit 93 and a second variable delay circuit 94 via a variable resistor 92.
  • the first detection electrode line 72 is connected to the first variable delay circuit 93
  • the second detection electrode line 76 is connected to the second variable delay circuit 94.
  • Both variable delay circuits 93, 94 are input according to the magnitude of the capacitance between each detection electrode line 72, 76 connected to each, and each reference electrode line 74, 78.
  • the pulse signal is delayed and output to the phase discriminating circuit 95, which is a comparing means.
  • the phase discriminating circuit 95 compares the phases of the pulse signals output from the first variable delay circuit 93 and the second variable delay circuit 94, and when a phase shift of a predetermined threshold or more is detected, A detection signal is transmitted to a control circuit (not shown) that displays a parking state.
  • the operation of the present embodiment will be described.
  • a control circuit (not shown) in order to know the parking state of the parking lot
  • power is supplied to the detection circuit 90.
  • the capacitance between the first detection electrode line 72 and the first reference electrode 74 is the capacitance between the second detection electrode line 76 and the second reference electrode line. Therefore, the detection circuit 90 transmits a detection signal to the control circuit.
  • the detection circuit 20 If the detection circuit 20 according to the first embodiment is used for the embedded sensor according to the present embodiment, the parking state of the vehicle cannot be detected. Even if the operator turns on the control circuit and activates the detection circuit 20, when the vehicle is stopped, the capacitance of the detection electrode and the reference electrode does not increase and remains at a constant value. . That is, the detection circuit 20 can transmit the detection signal only when the capacitance between the detection electrode and the reference electrode changes, and when the detection target is a stationary object, the detection circuit 20 detects the detection signal. You cannot do it.
  • the detection circuit 90 of the present embodiment is configured such that the first detection electrode line 72 and the second detection electrode line Objects can be detected. If the distance to the object is different, the object can be detected even if it is moving. That is, the detection circuit 90 is a stationary object detection circuit and also a moving object detection circuit.
  • the difference in capacitance between the two detection electrode members is adjusted by the variable resistor 92 of the detection circuit 90, and the pulse signal by the phase discrimination circuit 95 Can be prevented from affecting the detection of the phase shift.
  • the embedded sensor according to the present embodiment is an embedded sensor for crime prevention, and is used by being embedded directly in the ground, and the detection circuit uses the detection circuit 90 according to the fifth embodiment.
  • the embedded sensor unit 100 includes a case 101, a first detection electrode plate 102 of a circular flat plate horizontally disposed in the center of the case 101, and a predetermined periphery of the first detection electrode plate. Between isolation The second detection electrode plate 104, which has a flat plate shape and is arranged so as to surround it, is provided separately below and directly below the first detection electrode plate 102, and has the same shape and shape as the first detection electrode plate 102. A first inter-electrode charging plate 10 3 and a second inter-electrode charging plate 10 5 having the same size and shape as the second detection electrode plate 104, which are provided directly below the second detection electrode plate 104 and the second detection electrode plate 104. And a reference electrode plate 106 provided separately and directly below the charging plates 103 and 105 between the two electrodes; and a cylindrical shenored plate 10 erectly provided on the periphery of the reference electrode plate 106. 7 and power.
  • the detection area of both detection electrode plates affected by the charge on the sole is as follows.
  • the area is S1 for the first detection electrode plate 102 and the area S2 for the second detection electrode plate 104.
  • the first detection electrode plate 102 is more strongly affected by the charge of the shoe sole than the second detection electrode plate 104. Accordingly, the electric charge of the first detection electrode plate 102 becomes larger than the electric charge of the second detection electrode plate 104, and the electrostatic charge between the first detection electrode plate 102 and the reference electrode plate 106 becomes larger.
  • the capacitance is larger than the capacitance between the second detection electrode plate 104 and the reference electrode plate 106. Then, this difference in capacitance is detected by the detection circuit 90, and an alarm is activated by transmitting a detection signal to the control circuit.
  • the embedded sensor according to the present embodiment uses the surface of concrete block 110 as a detection area.
  • the block 110 is composed of the upper concrete part 1 1 1, the detection electrode plate 1 1 5, the insulating plate 1 1 4 made of synthetic resin, the ground electrode plate 1 1 6, and the lower concrete section 1 1 2 Clearly.
  • the side and bottom surfaces of the block 110 are covered with an insulating layer 113 made of synthetic resin.
  • the synthetic resin insulating plate 1 1 4 stabilizes the capacitance between the detection electrode plate 1 1 5 and the ground electrode plate 1 1 6 and the electric charge of the upper concrete portion 1 1 1 is transferred to the lower concrete portion 1 1 2. It prevents movement and affects the charge on the ground electrode plate 116.
  • the block 110 of the embedded sensor according to the present embodiment is defined by a drain wall 119 serving as a water film separating means formed of urethane around the upper surface thereof.
  • a drain wall 119 serving as a water film separating means formed of urethane around the upper surface thereof.
  • the embedded sensor according to an eighth embodiment of the present invention uses the surface of the concrete block 120 as a detection area.
  • the block 120 is composed of an upper concrete part 121, a detection electrode plate 126, a synthetic resin insulating plate 124, a lower concrete part 122, and a synthetic resin second insulating plate 125,
  • the source electrode plates 127 are sequentially laminated.
  • the side and bottom surfaces of the block 120 are covered with an insulating layer 123 made of synthetic resin.
  • the capacitance between the detection electrode plate and the ground electrode plate in a static state can be reduced. Can be smaller.
  • the second insulating plate 125 electrically insulates the lower concrete part 122 from the ground electrode plate 127. For this reason, the electric charge of the ground electrode plate 127 is prevented from being dispersed in the lower concrete part 122 by the moisture contained in the lower concrete part 122. If the second insulating plate 125 is not present, the position of the ground electrode plate 127 is substantially the same as the state where the ground electrode plate 127 is disposed close to the detection electrode plate 126. Therefore, the above-mentioned basic capacitance cannot be reduced. In addition, the second insulating plate 125 allows the ground electrode plate 127 to be electrically stable regardless of the amount of water contained in the lower concrete portion 122, thereby providing a high stability of the detection circuit. Can be secured.
  • the embedded sensor according to a ninth embodiment of the present invention uses the surface of the non-slip block 130 as a detection area.
  • Anti-slip block 13 0 is a synthetic resin anti-slip plate with multiple projections 13 2 1 3 1, detection electrode plate 1 3 6, insulating plate 1 3 5, earth electrode plate 1 3 7, concrete part It consists of 1 3 3 stacked in order.
  • the side and bottom surfaces of the block 130 are covered with an insulating layer 133 made of synthetic resin.
  • the detection electrode plate and the ground electrode plate can be formed by bonding to the upper surface of the concrete portion 133, the manufacture is easy.
  • the ground electrode plate 13 7 and the concrete portion 13 3 need not necessarily be insulated. This is because the transfer of electric charge from the ground electrode plate 13 7 to the concrete portion 13 3 does not significantly affect the detection accuracy.
  • the embedded sensor according to a tenth embodiment of the present invention uses the left side surface of the block 140 in FIG. 18 and the surface of the block 140 as detection areas, and is installed on a stair, a step, or the like.
  • This embodiment differs from the seventh embodiment in that a force is different in that the block on the left side of the block is also used as a detection area, and other configurations are substantially the same.
  • This block 140 is composed of an upper concrete part 141, a detection electrode plate 144 bent vertically downward on the left side of the block, and a synthetic resin insulating plate 1 bent vertically downward on the left side of the block.
  • a ground electrode plate 146 which is bent vertically downward on the left side of the block, and a lower block portion 142, which are sequentially laminated.
  • the side and bottom surfaces of the block 140 except for the left side surface are covered with an insulating layer 144 made of synthetic resin.
  • a drain wall 148 serving as a water film separation means is provided on the left side of the bottom surface of the block.
  • the inner wall 149 of the drain wall 148 is located at a distance L from the foundation outer wall 150 below the block, and a groove is formed between the inner wall 149 and the outer wall 150. 1 4 9 is formed. This distance L is 6 mm or more.
  • the static capacitance in the static state rapidly increases. This is because the distance between the surfaces of both water films becomes extremely small. In this case, the detection circuit outputs a detection signal due to the rapid increase in the capacitance. That is, a malfunction occurs.
  • the water films are prevented from contacting each other. This is because, by setting the distance L of the groove 149 to 6 mm or more, the water film is prevented from being bonded across the groove 149 due to the surface tension of the water film. It is. Therefore, malfunction of the detection circuit is prevented.
  • the embedded sensor according to the present embodiment also uses the left side surface and the front surface of the block as the detection area, similarly to the block of the tenth embodiment.
  • This embodiment is different from the eighth embodiment in that the block on the left side of the block is also used as a detection area, but other configurations are substantially the same. It is like.
  • the block 160 is composed of an upper concrete part 161, a detection electrode plate 1664 which is bent vertically downward on the left side of the block, and a synthetic resin material which is bent vertically downward on the left side of the block.
  • the side and bottom surfaces of the block 160 except the left side surface are covered with an insulating layer 163 made of synthetic resin.
  • a draining member 170 as a water film separating means is provided on the left side of the block bottom surface.
  • the upper inner wall surface 17 2 of the draining member 17 0 is located at a distance L 2 from the outer wall 180, and a sub-groove 1 7 3 is located between the ⁇ wall surface 17 2 and the outer wall 180. Are formed.
  • the distance L2 is 1 mm or more and less than 6 mm.
  • the value of 1 mm or more is a value larger than the thickness of the water film, and the value of less than 6 mm is a value smaller than L1 described below.
  • the lower inner wall 1 7 1 of the draining member 1 7 0 is located at a distance L 1 from the outer wall 1 8 0, and a main groove 1 7 4 is provided between the inner wall 1 7 1 and the outer wall 1 8 0. Is formed.
  • This distance L1 is 6 mm or more.
  • the embedded sensor according to the present invention can be mainly used as a security sensor for detecting an intruder or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

An embedded sensor having an excellent sensing stability without using any high frequency radio wave for generating a magnetic field, comprising a sensing electrode (2) embedded in the ground or the floor of a building and insulated from the ground or the building, a reference electrode (4) embedded in the ground or the floor and insulated from the ground or the floor and from the sensing electrode (2), a flat plate (10) serving as a charging member, a water-repellent layer (12) formed on the body (11) of the flat plate (10), an insulating layer (13) provided on the surface of the embedment portion of the body (11), a residual charge dispersing part (14) provided on the surface of the embedment portion of the body (11), a sensing circuit (20) for sensing the change in the capacitance between the sensing electrode (2) and the reference electrode (3) caused by the existence of an object in the sensing area of the sensor.

Description

明細書  Specification
埋設センサ 技術分野 Embedded sensor technology
本発明は、 埋設センサに関し、 特に、 地上に存在する物体や、 建築物の床上に存在す る物体を検出する埋設センサに関する。  The present invention relates to a buried sensor, and more particularly to a buried sensor for detecting an object existing on the ground and an object existing on a floor of a building.
背景技術 Background art
従来、 駐車場において各駐車区画に車両が存在するかどう力を検出する検出手段とし て、ループコイルの共振周波数の変動を利用したループコイルセンサが用いられている。 このループコイルセンサは、 直径 1 m乃至 2 m程度の円形状に電線を 4乃至 6回程度 卷いて形成したループコイルを上記各区画の地中に水平に埋設し、 このループコイルに 1 0 0 KH z乃至 5 0 O KH zの高周波電流を供給し、 ループコイル周囲に磁界を発生 させる。  2. Description of the Related Art Conventionally, a loop coil sensor using a variation in a resonance frequency of a loop coil has been used as a detecting unit for detecting whether a vehicle is present in each parking space in a parking lot. In this loop coil sensor, a loop coil formed by winding an electric wire about 4 to 6 times in a circular shape having a diameter of about 1 m to 2 m is buried horizontally in the ground of each section, and 100 A high frequency current of KHz to 50 O KHz is supplied to generate a magnetic field around the loop coil.
この磁界に車両が侵入すると、 車体の鉄損失及ぴ透磁率の変化により、 ループコイル のィンダクタンスが減少する。 このィンダクタンスの減少による高周波の周波数の変動 を検出回路により検出し、 上記各区画に車両が存在するか否かを検出する。  When the vehicle enters the magnetic field, the inductance of the loop coil decreases due to the iron loss and the change in the magnetic permeability of the vehicle body. A change in the frequency of the high frequency due to the decrease in the inductance is detected by a detection circuit, and it is detected whether or not a vehicle exists in each of the sections.
上記のようなループコイルセンサは、 高周波を用いてループコイルにより磁界を発生 させるために、 近接する他のループコィルとの干渉により誤動作が生じる場合がある。 この場合、 ループコイル間の間隔を厳密に調整する必要があり、 配設位置が限定される という問題点があった。  In the above-described loop coil sensor, since a magnetic field is generated by the loop coil using a high frequency, a malfunction may occur due to interference with another nearby loop coil. In this case, it is necessary to strictly adjust the interval between the loop coils, and there is a problem that the arrangement position is limited.
さらに、 このループコイルセンサは高周波を発生するために、 駐車場周囲の電話回線 や電子回路等にこの高周波が影響を与え、 ノイズ源になるという問題点があった。逆に、 ループコイル周囲のノイズ源、例えば、車両のスパークプラグから発生するノイズ等が、 このループコイルに接続された検出回路により検出され、 誤動作を生じるという問題点 かあつた。  Furthermore, since this loop coil sensor generates a high frequency, the high frequency affects a telephone line, an electronic circuit, and the like around a parking lot, and there is a problem that the loop coil sensor becomes a noise source. Conversely, a noise source around the loop coil, for example, a noise generated from a spark plug of the vehicle is detected by a detection circuit connected to the loop coil, which causes a malfunction.
本発明は、 上記のループコイルセンサの問題点を解決すると共に、 磁界を発生するた めの高周波を用いず、 検出安定性に優れた埋設センサを提供することを目的とする。 発明の開示 The present invention solves the above-described problems of the loop coil sensor and generates a magnetic field. It is an object of the present invention to provide an embedded sensor having excellent detection stability without using high frequency. Disclosure of the invention
請求の範囲第 1項記載の埋設センサは、 大地又は建築物の床に埋設され、 大地又は建 築物と絶縁した検出電極と、 大地又は建築物の床に埋設され、 大地又は建築物と絶縁す ると共に検出電極と絶縁した基準電極と、 検出可能領域内の被検出物の存在により生じ た検出電極と基準電極間の静電容量の変化を検出する検出回路とを有する。  The embedded sensor according to claim 1 is embedded in the ground or a building floor and is insulated from the ground or the building, and is embedded in the ground or the building floor and insulated from the ground or the building. In addition, it has a reference electrode insulated from the detection electrode, and a detection circuit for detecting a change in capacitance between the detection electrode and the reference electrode caused by the presence of an object in the detectable region.
本発明は、 地上又は床上に存在する物体を、 大地又は建築物の床に埋設した検出電極 と基準電極間の静電容量の変化として検出し、この物体の存在を検出することができる。 従って、 本発明の埋設センサは、 高周波による磁界を形成する必要が無いため、 上記の ループコイルセンサが有する問題点が全く生じない。  According to the present invention, an object existing on the ground or on the floor can be detected as a change in capacitance between a detection electrode and a reference electrode embedded in the ground or the floor of a building, and the presence of the object can be detected. Therefore, the embedded sensor of the present invention does not need to generate a magnetic field by high frequency, and thus does not have the above-mentioned problems of the loop coil sensor at all.
例えば、 検出可能領域に人間が侵入すると、 検出電極とこの人間の間にある土砂等の 絶縁体に誘電分極を生じる。 しかし、 検出電極と基準電極は、 埋設されている検出電極 や基準電極の周囲の土砂等と絶縁されているため、 誘電分極により生じた電荷 (分極電 荷) は、 電流となって検出電極や基準電極へ直接移動しない。  For example, when a human enters the detectable area, dielectric polarization occurs in an insulator such as earth and sand between the detection electrode and the human. However, since the detection electrode and the reference electrode are insulated from the buried detection electrode and the earth and sand surrounding the reference electrode, the electric charge (polarization charge) generated by the dielectric polarization becomes an electric current and becomes a current. Does not move directly to the reference electrode.
一方、 この分極電荷は、 検出電極周囲の土砂等に電界を形成する。 この電界に位置す る検出電極では静電誘導が生じ、検出電極と基準電極間の静電容量が増大する。 そして、 この静電容量の増大を検出回路で検出することにより上記人間の侵入を検出することが できる。  On the other hand, this polarization charge forms an electric field in the earth and sand around the detection electrode. Electrostatic induction occurs at the detection electrode located in this electric field, and the capacitance between the detection electrode and the reference electrode increases. The detection of the increase in the capacitance by the detection circuit makes it possible to detect the intrusion of the person.
本発明の埋設センサは、 検出回路の検出信号を他の制御手段に接続することにより、 上記の駐車場の各駐車区画内の車両の有無の検出の他、 侵入者を監視する防犯装置の検 出センサとしても使用することができる。 本発明の埋設センサは、 埋設された検出電極 と基準電極を外部から発見することができないため、 特に、 防犯装置の検出センサとし て有効である。 また、 人間、 自動車、 車両等の他、 動物等、 検出可能な静電容量を有す るものであれば、 被検出物は制限されない。  The buried sensor of the present invention connects the detection signal of the detection circuit to other control means to detect the presence or absence of a vehicle in each parking section of the above-mentioned parking lot, and to detect a security device for monitoring an intruder. It can also be used as an outgoing sensor. The embedded sensor according to the present invention is particularly effective as a detection sensor for a security device because the embedded detection electrode and reference electrode cannot be found from the outside. In addition, the object to be detected is not limited as long as it has a detectable capacitance, such as a human, an automobile, a vehicle, and an animal.
ここで、 埋設とは、 検出電極と基準電極を土砂等の単一の物質により埋設ずる場合の 他、 タイルとこのタイルの裏面を固定しているコンクリートで構成した床のように 2種 類の物質により床が構成されている場合、 このコンクリート内部に検出電極と基準電極 を埋設した場合も含む。 さらに、建築物とは、 住居家屋やビルの他、 道路、 線路、 バス 停、 鉄道の駅のプラットホーム等の交通機関に付随する構築物等その用途を問わず、 広 レ、範囲で適用される。 また、 埋設とは、 一部埋設する場合をも含み、 単に、 大地等の表 面に載置した場合をも含む。 Here, embedding means not only the case where the detection electrode and the reference electrode are buried with a single substance such as earth and sand, but also two types such as a floor composed of a tile and concrete fixing the back surface of this tile. This includes the case where the floor is made up of such materials and the case where the detection electrode and the reference electrode are buried inside this concrete. In addition to buildings, residential buildings and buildings, as well as buildings associated with transportation such as roads, railway tracks, bus stops, and platforms at railway stations, etc., are used in a wide range of areas regardless of their use. In addition, burying includes the case where the burial is partially buried, and also includes the case where the burial is simply placed on the surface of the ground.
請求の範囲第 2項記載の埋設センサは、 検出電極の検出領域内に少なくともその一部 が位置するように配設されると共に、 検出電極及び基準電極と絶縁されている帯電部材 を設けたというものである。  The embedded sensor according to claim 2 is provided such that at least a part thereof is disposed within a detection region of the detection electrode and a charging member insulated from the detection electrode and the reference electrode is provided. Things.
例えば、 検出電極と基準電極を土砂に埋設した場合、 これら電極の上部に存在する土 砂が風雨等により吹き寄せられ増大すると、 これら電極の上部に存在する土砂の体積が 増大することになる。 このため、 これら電極の上部に存在する土砂が人間の接近によつ て帯電しても、 増大した体積により電荷は分散され、 検出電極周囲の土砂の分極電荷が 減少し、 所定の強さの電界を形成しない。 このため、 検出回路は人間の接近を検出でき なくなる。  For example, when the detection electrode and the reference electrode are buried in earth and sand, if the earth and sand existing above these electrodes is blown up by wind and rain, etc., the volume of the earth and sand existing above these electrodes will increase. For this reason, even if the earth and sand existing above these electrodes is charged by the approach of humans, the charge is dispersed by the increased volume, and the polarization charge of the earth and sand around the detection electrodes decreases, and the predetermined strength No electric field is formed. For this reason, the detection circuit cannot detect the approach of a human.
そこで、 本発明は、 所定の体積と所定の導電率あるいは誘電率を有する帯電部材を用 い、 検出可能領域内の被検出物の存在により生じる検出電極周囲に形成される電界の強 さを安定させ、 高い検出精度を維持することができる。  Therefore, the present invention uses a charging member having a predetermined volume and a predetermined conductivity or dielectric constant to stabilize the intensity of an electric field formed around a detection electrode caused by the presence of an object in a detectable region. And high detection accuracy can be maintained.
帯電部材は、 導体でも絶縁体でも良く、 導体としては、 アルミニウムやステンレスス チール、 絶縁体としては、 大理石、 御影石、 花崗岩等の自然石の他、 陶材、 コンクリー ト、 人造石等が好適である。  The charging member may be a conductor or an insulator.The conductor is preferably made of aluminum or stainless steel, and the insulator is preferably made of natural stone such as marble, granite, granite, porcelain, concrete, or artificial stone. is there.
請求の範囲第 3項記載の埋設センサは、 帯電部材が導体であり、 絶縁体で構成された 区画手段を有するというものである。  The embedded sensor according to claim 3 is characterized in that the charging member is a conductor and has a partitioning means made of an insulator.
本発明は、 導体の帯電部材に絶縁体で構成された区画手段を設けることにより、 帯電 部材の電荷が電流となって帯電部材周囲の大地又は建築物、 あるいは、 隣接して配設さ れた他の帯電部材へ移動することを防止できる。  According to the present invention, by providing a conductor charging member with a partitioning means made of an insulator, the electric charge of the charging member becomes an electric current, and is arranged on the ground or a building around the charging member or adjacently. Movement to other charging members can be prevented.
例えば、 帯電部材をアルミニウム板で構成し、 その周囲に合成樹脂を塗布して絶縁層を 形成する。 従って、 本発明の埋設センサは、 検出可能領域内の被検出物の存在により生 じる検出電極周囲に形成される電界の強さを安定させることができる。 For example, the charging member is formed of an aluminum plate, and a synthetic resin is applied around the charging member to form an insulating layer. Therefore, the embedded sensor of the present invention is produced by the presence of an object within the detectable area. The strength of the electric field formed around the detection electrode can be stabilized.
請求の範囲第 4項記載の埋設センサは、 帯電部材が絶縁体であり、 この絶縁体よりも 誘電率の小さレヽ絶縁体で構成された区画手段を有するというものである。  A buried sensor according to claim 4 is characterized in that the charging member is an insulator, and that the charging member has a partitioning means made of a low-insulator having a smaller dielectric constant than the insulator.
本発明は、 絶縁体の帯電部材に、 この帯電部材よりも誘電率の小さい絶縁体で構成さ れた区画手段を設けることにより、 帯電部材の電荷が帯電部材周囲の大地又は建築物、 あるいは、 この帯電部材に隣接して配設された他の帯電部材へ分散することを防止でき る。 従って、 検出可能領域内の被検出物の存在により生じる検出電極周囲の周囲に形成 される電界の強さを安定させることができる。  The present invention provides an insulating charging member provided with partitioning means made of an insulator having a smaller dielectric constant than the charging member, so that the charge of the charging member is changed to the ground or building around the charging member, or Dispersion to other charging members disposed adjacent to the charging member can be prevented. Therefore, it is possible to stabilize the intensity of the electric field formed around the detection electrode caused by the presence of the object in the detectable region.
ここで、 誘電率の小さい絶縁体とは、 例えば、 絶縁体の帯電部材がコンクリート材で ある場合、 コンクリート材よりも誘電率が小さい合成樹脂をいい、 この合成樹脂により コンクリート材の周囲に区画手段を形成することをいう。  Here, the insulator having a small dielectric constant means, for example, when the charging member of the insulator is a concrete material, a synthetic resin having a smaller dielectric constant than that of the concrete material. Is formed.
請求の範囲第 5項記載の埋設センサは、 区画手段に帯電部材の残留電荷を外部へ分散 する残留電荷分散手段を設けたというものである。  The embedded sensor according to claim 5 is characterized in that the partitioning means is provided with a residual charge dispersing means for dispersing the residual charge of the charging member to the outside.
帯電部材に、上記の区画手段を設けると、電荷が帯電部材に残留し続けることにより、 検出回路が検出信号を発信し続ける恐れがある。 上記の例で説明すると、 特に、 冬期に おいては大気が乾燥しているため、 侵入者の人体の有する電荷が大きくなつている。 従 つて、 この人体により帯電した帯電部材の電荷も大きなものとなる。 また、 同時に、 帯 電部材の周囲の大気も乾燥しているため電荷が分散しにくい状態となっている。  If the charging member is provided with the above-described partitioning means, there is a possibility that the detection circuit may continue to transmit a detection signal due to the charge remaining on the charging member. Explaining in the above example, especially in winter, the air is dry and the intruder's body has a large charge. Therefore, the charge of the charging member charged by the human body also becomes large. At the same time, the atmosphere around the charging member is also dry, so that electric charges are hardly dispersed.
このため、 帯電部材には、 検出回路の検出しきい値よりも大きな残留電荷が長時間留 まる場合がある。 そこで、本発明は、 区画手段に残留電荷分散手段を設けることにより、 所定の時間で残留電荷を帯電部材から大地や建築物へ分散し、 検出回路が検出信号を発 信しつづけることを防止した。  For this reason, a residual charge larger than the detection threshold value of the detection circuit may remain on the charging member for a long time. In view of the above, the present invention disperses the residual charge from the charging member to the ground or a building in a predetermined time by providing a residual charge dispersing means in the partitioning means, and prevents the detection circuit from continuing to transmit the detection signal. .
請求の範囲第 6項記載の埋設センサは、 帯電部材に撥水手段を設けたというものであ る。  The embedded sensor according to claim 6 is characterized in that the charging member is provided with a water-repellent means.
例えば、 埋設センサを屋外に設けた場合、 雨水等により帯電部材の内部に水分が浸透 すると、 プラスの水素イオンにより帯電部材内の電荷の移動が容易になり、 帯電部材が 導体に近い状態に変わる。 従って、 検出回路により検出される静的状態の静電容量と帯電状態の静電容量の増加 の割合 (増加率) は、 相対的に減少する。 このため、 検出回路は、 相対的に減少した静 電容量の増加率を検出しなければならず、 その検出精度を向上させる必要がある。 For example, when an embedded sensor is installed outdoors, if moisture penetrates into the charging member due to rainwater, etc., positive hydrogen ions facilitate the movement of charges in the charging member, and the charging member changes to a state close to a conductor . Therefore, the rate of increase (increase rate) of the static state capacitance and the charged state capacitance detected by the detection circuit relatively decreases. For this reason, the detection circuit must detect a relatively decreased rate of increase in capacitance, and it is necessary to improve the detection accuracy.
そこで、 本発明は、 非埋設部分に撥水手段を設け、 帯電部材内部に水分が浸透するこ とを防止し、 帯電部材の静的状態の電荷量を維持することにより、 高い検出精度を維持 することができる。  Accordingly, the present invention provides a water-repellent means on the non-buried portion to prevent moisture from penetrating into the charging member and maintain a high detection accuracy by maintaining a static charge amount of the charging member. can do.
請求の範囲第 7項記載の埋設センサは、 帯電部材に排水手段を設けたというものであ る。  The embedded sensor according to claim 7 is characterized in that the charging member is provided with drainage means.
本発明は、 帯電部材に排水手段を設けることにより、 帯電部材に対する水分の影響を 減少することができる。  According to the present invention, the influence of moisture on the charging member can be reduced by providing the charging member with drainage means.
ここで、 排水手段とは、 帯電部材の非埋設部分の表面を傾斜させ、 あるいは、 溝等を 設けることにより、 帯電部材の表面の排水効率を高める手段の他、 帯電部材自体を多孔 質とするような帯電部材内部の排水効率を高める手段をも含む。  Here, the drainage means is a means for increasing the drainage efficiency of the surface of the charging member by inclining the surface of the non-buried portion of the charging member or providing a groove or the like, and also makes the charging member itself porous. Means for increasing the drainage efficiency inside the charging member is also included.
請求の範囲第 8記載の埋設センサは、 検出電極の電気力線の方向を限定する指向性制 御手段を設けたというものである。  An embedded sensor according to claim 8 is provided with directivity control means for limiting the direction of the line of electric force of the detection electrode.
本発明の埋設センサは、 検出電極の電気力線の方向を限定することにより、 検出可能 領域を所定範囲に限定し、 その他の領域の電荷の変動の影響を検出電極が受けないよう にすることができる。  In the embedded sensor according to the present invention, the direction of the electric field lines of the detection electrode is limited to limit the detectable area to a predetermined range so that the detection electrode is not affected by the fluctuation of the electric charge in other areas. Can be.
請求の範囲第 9項記載の埋設センサは、 指向性制御手段が、 基準電極と接続されたシ ールド電極であるとレ、うものである。  The embedded sensor according to claim 9 is characterized in that the directivity control means is a shield electrode connected to the reference electrode.
本発明の埋設センサは、 シールド電極が基準電極と接続されているために、 検出電極 の不要な電気力線を完全に遮断することができる。  In the embedded sensor according to the present invention, since the shield electrode is connected to the reference electrode, unnecessary lines of electric force of the detection electrode can be completely cut off.
請求の範囲第 1 0項記載の埋設センサは、 検出電極と基準電極の間に配設されると共 に、 検出電極及び基準電極と絶縁されている少なくとも 1以上の電極間帯電部材を設け たというものである。  The embedded sensor according to claim 10 is provided with at least one or more inter-electrode charging members that are disposed between the detection electrode and the reference electrode and are insulated from the detection electrode and the reference electrode. That is.
本発明の埋設センサは、 電極間帯電部材を設けることにより、 検出電極の感度を安定 させ、 検出回路の検出しきい値を小さく設定することができる。 従って、 検出可能領域 を拡大することができる。 In the embedded sensor of the present invention, by providing the interelectrode charging member, the sensitivity of the detection electrode can be stabilized, and the detection threshold value of the detection circuit can be set small. Therefore, the detectable area Can be expanded.
請求の範囲第 1 1項記載の埋設センサは、 検出電極が、 互いに絶縁された第 1検出電 極と第 2検出電極とから構成され、 検出回路が、 第 1検出電極と基準電極間の静電容量 と、 第 2検出電極と基準電極間の静電容量とを比較する比較手段を有するというもので ある。  The embedded sensor according to claim 11, wherein the detection electrode is composed of a first detection electrode and a second detection electrode that are insulated from each other, and the detection circuit is configured to detect a static between the first detection electrode and the reference electrode. It has comparison means for comparing the capacitance with the capacitance between the second detection electrode and the reference electrode.
請求の範囲第 1 2項記載の埋設センサは、 第 1検出電極と第 2検出電極が、 被検出物 までの距離が異なるように配設されているというものである。  The embedded sensor according to claim 12 is characterized in that the first detection electrode and the second detection electrode are arranged so that the distance to the object to be detected is different.
請求の範囲第 1 3項記載の埋設センサは、 第 1検出電極と第 2検出電極が、 互いに検 出面積が相違するように併設されているとレヽぅものである。  An embedded sensor according to claim 13 is a sensor in which the first detection electrode and the second detection electrode are provided side by side so that the detection areas are different from each other.
請求の範囲第 1 4項記載の埋設センサは、 検出電極と基準電極とを複数組設け、 複数 の検出電極を電気的に接続すると共に、 複数の基準電極を電気的に接続し、 複数の検出 電極と複数の基準電極を一の前記検出回路に接続したというものである。  The embedded sensor according to claim 14, wherein a plurality of sets of detection electrodes and reference electrodes are provided, the plurality of detection electrodes are electrically connected, and the plurality of reference electrodes are electrically connected, and a plurality of detection electrodes are provided. An electrode and a plurality of reference electrodes are connected to one detection circuit.
本発明の埋設センサは、 複数組の検出電極と基準電極間の静電容量の変化を一の検出 回路により検出することにより、 広範囲の検出可能領域を低廉なコストにより実現する ことができる。  The embedded sensor according to the present invention can realize a wide detectable area at low cost by detecting a change in capacitance between a plurality of sets of detection electrodes and a reference electrode by one detection circuit.
請求の範囲第 1 5項記載の埋設センサは、 複数の検出電極と複数の基準電極をコンデ ンサを介して一の検出回路に接続したというものである。  The embedded sensor according to claim 15 is configured such that a plurality of detection electrodes and a plurality of reference electrodes are connected to one detection circuit via a capacitor.
請求の範囲第 1 6項記載の舗装材は、 大地又は建築物と絶縁した検出電極と、 大地又 は建築物と絶縁すると共に検出電極と絶縁した基準電極と、 検出電極の検出領域内に少 なくともその一部が位置するように配設されると共に、 検出電極及び基準電極と絶縁さ れている帯電部材とを有するというものである。  The paving material described in claim 16 may include: a detection electrode insulated from the ground or a building; a reference electrode insulated from the ground or the building and insulated from the detection electrode; At least a part of the charging member is provided so as to be located at least, and has a charging member insulated from the detection electrode and the reference electrode.
請求の範囲第 1 7項記載の舗装材は、 舗装材部と、 検出電極と、 絶縁部材と、 基準電 極とを順に積層して成り、 該上部舗装材部と該基準電極が絶縁され、 且つ、 該検出電極 と該基準電極とは大地又は建築物と絶縁されているというものである。  The pavement material according to claim 17, wherein a pavement material portion, a detection electrode, an insulating member, and a reference electrode are sequentially laminated, and the upper pavement material portion and the reference electrode are insulated, The detection electrode and the reference electrode are insulated from the ground or a building.
請求の範囲第 1 8項記載の舗装材は、 上部舗装材部と、検出電極と、第 1絶縁部材と、 下部舗装材部と、 第 2絶縁部材と、 基準電極とを順に積層して成り、 該検出電極と該基 準電極は該下部舗装材部と絶縁され、 且つ、 該検出電極と該基準電極とは大地又は建築 物と絶縁されているというものである。 The pavement material according to claim 18 is formed by sequentially laminating an upper pavement material portion, a detection electrode, a first insulating member, a lower pavement material portion, a second insulating member, and a reference electrode. The detection electrode and the reference electrode are insulated from the lower pavement portion, and the detection electrode and the reference electrode are connected to the ground or a building. It is insulated from things.
請求の範囲第 1 9項記載の舗装材は、 検出電極と、 絶縁部材と、 基準電極と、 舗装材 部とを順に積層して成り、 該上部舗装部と該基準電極が絶縁され、 且つ、 該検出電極と 舗装材部は絶縁され、 且つ、 該基準電極とは大地又は建築物と絶縁されているというも のである。  The pavement material according to claim 19, comprising a detection electrode, an insulating member, a reference electrode, and a pavement material portion sequentially laminated, wherein the upper pavement portion and the reference electrode are insulated, and The detection electrode and the pavement portion are insulated, and the reference electrode is insulated from the ground or a building.
請求の範囲第 2 0項記載の舗装材は、 前記検出電極は下方に向かって屈曲され、 前記 基準電極は上方又は下方に向かって屈曲され、 舗装材部の側方をも検出領域としたもの である。  20. The pavement material according to claim 20, wherein the detection electrode is bent downward, the reference electrode is bent upward or downward, and the side of the pavement portion is also a detection area. It is.
請求の範囲第 2 1項記載の舗装材は、 前記舗装部材の検出領域である側方下部に水膜 分離手段を設けたというものである。  21. The pavement material according to claim 21, wherein a water film separation means is provided at a lower side portion of the pavement member, which is a detection area.
請求の範囲第 2 2項の舗装材は、 前記水膜分離手段が、 下方に開口した幅 6 mm以上 の溝であるというものである。  22. The pavement material according to claim 22, wherein the water film separating means is a groove having a width of 6 mm or more and opening downward.
請求の範囲第 2 3項の舗装材は、 前記水膜分離手段が、 下方に開口した幅 6 mm以上 の主溝と、 該主溝内部に下方に開口した幅 6 mm未満の副溝とを備えて成るというもの である。 図面の簡単な説明  The pavement material according to claim 23, wherein the water film separating means comprises: a main groove having a width of 6 mm or more and opening downward; and a sub-groove having a width of less than 6 mm and opening downward inside the main groove. It is to be prepared. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る第 1の実施の形態の埋設センサの斜視図であり、 複数の平板 1 0の下方に、 それぞれ埋設センサュニット 1が埋設されている状態を示している。 図 2は、 図 1の A— A線断面図である。  FIG. 1 is a perspective view of an embedded sensor according to the first embodiment of the present invention, and shows a state where an embedded sensor unit 1 is embedded below a plurality of flat plates 10. FIG. 2 is a sectional view taken along line AA of FIG.
図 3は、 図 1の埋設センサの各ュニット 1と検出回路 2 0との接続状態を示すプロッ ク図である。  FIG. 3 is a block diagram showing a connection state between each unit 1 and the detection circuit 20 of the embedded sensor in FIG.
図 4は、 図 1の埋設センサの検出回路 2 0の回路図である。  FIG. 4 is a circuit diagram of the detection circuit 20 of the embedded sensor of FIG.
図 5は、 図 1の埋設センサのュニット 1の検出電極板 2の電気力線 Eを示した説明図 である。 符号 Rは、 検出電極板 2の検出領域である。  FIG. 5 is an explanatory diagram showing electric lines of force E of the detection electrode plate 2 of the unit 1 of the embedded sensor of FIG. Reference symbol R denotes a detection area of the detection electrode plate 2.
図 6は、 図 1の埋設センサの各ュニット 1と検出回路 2 0との他の接続状態を示すブ 口ック図である。 図 7は、 本発明に係る第 2の実施の形態の埋設センサの斜視図である。 FIG. 6 is a block diagram showing another connection state between each unit 1 and the detection circuit 20 of the embedded sensor in FIG. FIG. 7 is a perspective view of the embedded sensor according to the second embodiment of the present invention.
図 8は、 本発明に係る第 3の実施の形態の埋設センサの斜視図である。  FIG. 8 is a perspective view of an embedded sensor according to the third embodiment of the present invention.
図 9は、 本発明に係る第 4の実施の形態の埋設センサの耐電部材である陶板 6 0の斜 視図である。  FIG. 9 is a perspective view of a pottery plate 60 that is a power-resistant member of the embedded sensor according to the fourth embodiment of the present invention.
図 1 0は、 本発明に係る第 5の実施の形態の埋設センサの斜視図である。  FIG. 10 is a perspective view of an embedded sensor according to a fifth embodiment of the present invention.
図 1 1は、 図 1 0の埋設センサのュニット 7 0の断面図である。  FIG. 11 is a sectional view of a unit 70 of the embedded sensor of FIG.
図 1 2は、 図 1 0の埋設センサのブロック図である。  FIG. 12 is a block diagram of the embedded sensor of FIG.
図 1 3は、 本発明に係る第 6の実施の形態の埋設センサの平面図である。 尚、 ケース 1 0 1の天板は除去されている。  FIG. 13 is a plan view of an embedded sensor according to a sixth embodiment of the present invention. The top plate of case 101 has been removed.
図 1 4は、 図 1 2の B— B線断面図である。  FIG. 14 is a sectional view taken along line BB of FIG.
図 1 5は、 本発明に係る第 7の実施の形態の埋設センサの舗装材の縦断面図である。 図 1 6は、 本発明に係る第 8の実施の形態の埋設センサの舗装材の縦断面図である。 図 1 7は、 本発明に係る第 9の実施の形態の埋設センサの舗装材の縦断面図である。 図 1 8は、本発明に係る第 1 0の実施の形態の埋設センサの舗装材の縦断面図である。 図 1 9は、本発明に係る第 1 1の実施の形態の埋設センサの舗装材の縦断面図である。 発明を実施するための最良の形態  FIG. 15 is a vertical sectional view of a pavement material of an embedded sensor according to a seventh embodiment of the present invention. FIG. 16 is a vertical sectional view of a pavement material of an embedded sensor according to an eighth embodiment of the present invention. FIG. 17 is a vertical sectional view of a pavement material of an embedded sensor according to a ninth embodiment of the present invention. FIG. 18 is a longitudinal sectional view of a pavement material of the embedded sensor according to the tenth embodiment of the present invention. FIG. 19 is a vertical sectional view of a pavement material of the embedded sensor according to the eleventh embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る第 1の実施の形態の埋設センサを図 1乃至図 6を参照しつつ説明する。 本実施の形態の埋設センサは、 建物周囲の地面に設けた防犯システム用センサであり、 侵入者が平板 1 0の上を歩くと警報が作動するというものである。  An embedded sensor according to a first embodiment of the present invention will be described with reference to FIGS. The embedded sensor according to the present embodiment is a sensor for a security system provided on the ground around a building, and an alarm is activated when an intruder walks on the flat plate 10.
符号 1は、 帯電部材である平板 1 0の直下に埋設した埋設センサユニットである。 こ の埋設センサュニット 1は、 円形平板状の導電体である検出電極板 2と、 検出電極板 2 の下方に配設した導電体である基準電極板 3と、 基準電極板 3の周縁にこの基準電極板 と一体に設けた円筒状のシールド板 4と、 検出電極板 2を基準電極板 3及びシールド板 4から絶縁するための絶縁体 (図示せず) を充填したケース 5とから成る。  Reference numeral 1 denotes a buried sensor unit buried immediately below a flat plate 10 as a charging member. The embedded sensor unit 1 has a detection electrode plate 2 which is a circular flat conductor, a reference electrode plate 3 which is a conductor disposed below the detection electrode plate 2, and a reference electrode It comprises a cylindrical shield plate 4 provided integrally with the electrode plate, and a case 5 filled with an insulator (not shown) for insulating the detection electrode plate 2 from the reference electrode plate 3 and the shield plate 4.
平板 1 0は、 コンクリート材により形成した本体 1 1と、 この本体 1 1の地上に露出 する部分の表面に施した撥水層 1 2と、 この本体 1 1の埋設部分の表面に施した絶縁層 1 3と、 この絶縁層 1 3を切削し本体 1 1を露出した残留電荷分散部 1 4から成る。 尚、 撥水層 1 2は、 平板 1 0の内部へ水分が浸透することを防止するためのものであり、 合 成樹脂を主成分とする撥水材を用いる。 また、 絶縁層 1 3は、 コンクリート材よりも誘 電率の低レ、合成樹脂で形成する。 The flat plate 10 is composed of a main body 11 made of a concrete material, a water-repellent layer 12 applied to a surface of a portion of the main body 11 exposed to the ground, and an insulating material applied to a surface of a buried portion of the main body 11. layer 13 and a residual charge dispersing portion 14 in which the insulating layer 13 is cut to expose the main body 11. The water-repellent layer 12 is for preventing moisture from penetrating into the inside of the flat plate 10 and uses a water-repellent material mainly composed of a synthetic resin. The insulating layer 13 is formed of a synthetic resin having a lower dielectric constant than that of a concrete material.
次に、 本実施の形態の埋設センサの全体構成を図 3を参照しつつ説明する。 埋設セン サュニット 1は 4個一組となっており、 各検出電極板相互間と各基準電極板相互間を接 続し、 検出回路 2 0へ接続する。 この検出回路 2 0は、 さらに制御回路 (図示せず) に 接続されており、 この制御回路は、 検出回路 2 0の検出信号を受信すると、 警報を作動 させる。  Next, the overall configuration of the embedded sensor according to the present embodiment will be described with reference to FIG. The embedded sensor unit 1 is a set of four, and connects between the detection electrode plates and between the reference electrode plates, and is connected to the detection circuit 20. The detection circuit 20 is further connected to a control circuit (not shown). When the control circuit receives the detection signal of the detection circuit 20, it activates an alarm.
次に、 この埋設センサユニットの作用を説明する。 侵入者が平板 1 0の上を歩くと、 侵入者の靴底が接触すること等により絶縁体の平板 1 0が帯電し誘電分極が生じる。 こ の誘電分極により生じた電荷 (分極電荷) は、 この平板 1 0の裏面側、 即ち、 ユニット 1との接触面に電界を形成する。  Next, the operation of the embedded sensor unit will be described. When the intruder walks on the flat plate 10, the flat plate 10 of the insulator is charged due to the contact of the shoe sole of the intruder, and dielectric polarization occurs. The electric charge (polarized electric charge) generated by the dielectric polarization forms an electric field on the back side of the flat plate 10, that is, on the contact surface with the unit 1.
尚、 平板 1 0の本体 1 1の埋設部分周囲に絶縁層 1 3が形成されているため、 上記誘 電分極により生じた本体 1 1の電荷が、 地中や隣接する他の平板 1 0へ分散することを Plihすることができる。  Since the insulating layer 13 is formed around the buried portion of the main body 11 of the flat plate 10, the electric charge of the main body 11 caused by the induced polarization is transferred to the ground or another adjacent flat plate 10. You can Plih dispersing.
上記の電界の形成により、 ユニット 1内部の検出電極板 2に静電誘導が生じ、 この検 出電極 2と基準電極板 3の間の静電容量が増大する。 そして、 この静電容量の増大は、 検出回路 2 0により検出され、 検出回路 2 0が検出信号を送信すると制御回路が警報を 作動する。  Due to the formation of the electric field, electrostatic induction occurs in the detection electrode plate 2 inside the unit 1, and the capacitance between the detection electrode 2 and the reference electrode plate 3 increases. Then, the increase in the capacitance is detected by the detection circuit 20, and when the detection circuit 20 transmits a detection signal, the control circuit activates an alarm.
上記基準電極板 3の周縁から立設したシールド板 4は、 検出電極板 2の周囲を囲い込 んでおり、 検出電極板 3の電気力線の方向を限定する指向性制御手段として機能する。 このシールド板 4は、 図 5に示すように、 検出電極板 2の周縁から水平方向に伸びる電 気力線を遮断する。 従って、 検出電極板 2の電気力線の指向性を平板 1 0の裏面側のみ に限定し、 検出電極板 2が地電流等による地中の電荷の変動の影響を受け検出回路 2 0 が誤動作することを防止する。  The shield plate 4 erected from the periphery of the reference electrode plate 3 surrounds the detection electrode plate 2 and functions as a directivity control means for limiting the direction of the electric flux lines of the detection electrode plate 3. As shown in FIG. 5, the shield plate 4 blocks electric lines of force extending horizontally from the periphery of the detection electrode plate 2. Therefore, the directivity of the lines of electric force of the detection electrode plate 2 is limited to only the back side of the flat plate 10, and the detection electrode plate 2 is affected by the change in the electric charge in the ground due to the ground current or the like, and the detection circuit 20 malfunctions. To prevent
尚、 残留電荷分散部 1 4は、 地中の土砂等と石板本体 1 1が直接接触している部分で ある。 侵入者が、 一の平板 1 0の上を歩き去った後、 侵入者によりもたらされた電荷を 所定の時間で地中へ分散し、 残留電荷が平板 1 0の内部に長時間残存することを防止す ることができる。 尚、 この残留電荷分散部 1 4の面積は、 絶縁層 1 3が施されている面 積に比較すると極めて小さいため、 侵入者が平板 1 0の上を歩いた時に生じた平板 1 0 の電荷が残留電荷分散部 1 4を介して地中に分散する量は、検出精度に影響を与えない。 次に、 図 4を参照しつつ検出回路 2 0を説明する。 検出回路 2 0は、 一連に接続され たパルス信号発生回路 2 1と、 差動増幅器 2 2と、 じー0〇変脇2 3と、 比較器 2 4と力ら成る。 回路 2 0から出力されたパルス信号 V 1は分枝され、 分枝されたパルス 信号は、 抵抗 2 5と埋設センサュニット 1の静電容量の増大により、 パルスの周波数が 低くなる。 The residual charge dispersing part 14 is a part where the earth and sand etc. under the ground are in direct contact with the main body 11 of the slab. is there. After the intruder walks on a flat plate 10, the charge provided by the intruder is dispersed into the ground for a predetermined time, and the residual charge remains inside the flat plate 10 for a long time. Can be prevented. Since the area of the residual charge dispersing portion 14 is extremely small as compared with the area on which the insulating layer 13 is provided, the charge of the flat plate 10 generated when the intruder walks on the flat plate 10 is obtained. The amount of scattered in the ground via the residual charge dispersion unit 14 does not affect the detection accuracy. Next, the detection circuit 20 will be described with reference to FIG. The detection circuit 20 is composed of a pulse signal generation circuit 21 connected in series, a differential amplifier 22, a 〇0 variable 23, and a comparator 24. The pulse signal V 1 output from the circuit 20 is branched, and the pulse frequency of the branched pulse signal becomes lower due to an increase in the resistance 25 and the capacitance of the embedded sensor unit 1.
差動増幅器 2 2は、 ノ^レス信号 V Iと、 静電容量の変化により形成されたパルス信号 The differential amplifier 22 generates a noise signal V I and a pulse signal formed by a change in capacitance.
V 2の mi£差を増幅し、 さらに、 この出力 V 3を変 3により直流 に変換する。 比較器 2 4は、 変 3の出力 V 4を、 予め設定されている検出しきい値と比較し、 このしきい値よりも V 4が大きい場合、 制御回路に検出信号を送信する。 The difference of V2 is amplified, and the output V3 is converted to DC by the transformer 3. The comparator 24 compares the output V 4 of the variable 3 with a preset detection threshold value, and if V 4 is larger than this threshold value, transmits a detection signal to the control circuit.
検出電極板 2の検出領域 Rの広さは、 上記検出しきい値を調整する力、、 検出電極板 2 と基準電極板 3の距離を調整することにより、 所望の検出領域を得ることができる。 そして、 上記の検出電極板 2の検出領域 Rの調整により、 平板 1 0の表面からの所定 距離を検出可能領域とすることができる。 即ち、 この検出可能領域は、 平板 1 0に接触 したこと、 即ち、 侵入者が石板踏んだこと、 が最小領域であり、 上記の調整により、 侵 入者が平板 1 0に所定距離接近しても検出可能とすることもできる。  The desired detection area can be obtained by adjusting the force for adjusting the detection threshold value and the distance between the detection electrode plate 2 and the reference electrode plate 3 as to the size of the detection region R of the detection electrode plate 2. . Then, by adjusting the detection region R of the detection electrode plate 2, a predetermined distance from the surface of the flat plate 10 can be set as the detectable region. That is, this detectable area is the minimum area where the intruder touched the flat plate 10, that is, the intruder stepped on the slab, and by the above adjustment, the intruder approached the flat plate 10 by a predetermined distance. May also be detectable.
尚、 本実施の形態のュニット 1は、 4個のュニット 1が検出回路 2 0に接続されてい る。 この場合、 平板 1 0の上に侵入者が存在しない場合 (静的状態) の 4個のユニット 1の静電容量の総計は、 一のュニット 1の検出電極板 2と基準電極板 3間の静電容量の 4倍になる。 即ち、 4個のコンデンサを並列に接続した状態と同視できるからである。 In the unit 1 of the present embodiment, four units 1 are connected to the detection circuit 20. In this case, when no intruder is present on the flat plate 10 (static state), the total capacitance of the four units 1 is calculated between the detection electrode plate 2 and the reference electrode plate 3 of one unit 1. 4 times the capacitance. That is, it can be regarded as a state where four capacitors are connected in parallel.
—の平板 1 0の上を侵入者が歩いた場合 (帯電状態) に、 その平板 1 0の下方に埋設 した一のュニット;Lの一の検出電極板 2と一の基準電極板 3の間で増加する静電容量は、 複数のュニット 1を接続した場合でも変化しない。 この静電容量の増加量は、 侵入者の 人体の電荷の量により決定されるからである。 -When an intruder walks on the flat plate 10 (charged state), one unit buried under the flat plate 10; between one detection electrode plate 2 and one reference electrode plate 3 of L Does not change even when multiple units 1 are connected. This increase in capacitance is This is because it is determined by the amount of electric charge of the human body.
従って、 本実施の形態の検出回路 2 0により検出される静的状態の静電容量と帯電状 態の静電容量の増加の割合 (増加率) は、 単に一のュニット 1を一の検出回路 2 0に接 続した場合と比較すると、 4分の 1に減少することになる。 このため、検出回路 2 0は、 4分の 1に減少した静電容量の増加率を検出しなければならず、 その検出精度を向上さ せる必要がある。  Therefore, the ratio (increase rate) of the increase in the static state capacitance and the charged state capacitance detected by the detection circuit 20 of the present embodiment is simply that one unit 1 is one detection circuit. Compared to the case where it is connected to 20, it will be reduced to a quarter. For this reason, the detection circuit 20 must detect the rate of increase in the capacitance that has been reduced to one-fourth, and it is necessary to improve the detection accuracy.
上記のように、 一の検出回路に接続するユニット 1の個数を増加させると、 相対的に 上記静電容量の増加率が減少するため、 多くのュニットを一の検出回路に接続すること ができない。 そこで、 図 6に示すように、 コンデンサを介して検出回路 2 0に複数のュ ニット 1を接続することにより、 静電容量の増加率の減少を抑制できる。  As described above, when the number of units 1 connected to one detection circuit is increased, the rate of increase in the capacitance is relatively reduced, so that many units cannot be connected to one detection circuit. . Therefore, as shown in FIG. 6, by connecting a plurality of units 1 to the detection circuit 20 via a capacitor, it is possible to suppress a decrease in the rate of increase in capacitance.
即ち、 ユニット 1を 4個一組としたュニット群 3 0、 3 1を並列に設け、 各ュニット 群の検出電極板 2は、 コンデンサ 3 2、 3 4を介して、 また、 基準電極板 3は、 コンデ ンサ 3 3、 3 5を介して、 検出回路 2 0に接続する。  That is, unit groups 30 and 31 each having four units 1 are provided in parallel, and the detecting electrode plate 2 of each unit group is connected via the capacitors 32 and 34, and the reference electrode plate 3 is , And are connected to the detection circuit 20 via the capacitors 33 and 35.
例えば、 ユニット群 3 0の一のュニット 1の検出電極板 2が、 上記帯電状態により、 その電荷を増大した場合、 この電荷は瞬時に電流となってュニット群 3 0の 4枚の検出 電極板 2へ分散する。 し力 し、 コンデンサ 3 2及び 3 4により、 この電荷が電流となつ てユニット群 3 1の 4枚の検出電極板 2へ分散することは阻止される。 このため、 この 実施の形態では、 8個のュニット 1がーの検出回路 2 0を共用しているにもかかわらず、 図 3に示す本実施の形態と略同等の静電容量の増加率を維持することができる。  For example, when the detection electrode plate 2 of one unit 1 of the unit group 30 increases its charge due to the above-mentioned charged state, this charge instantaneously becomes a current and the four detection electrode plates of the unit group 30 Disperse to 2. However, the capacitors 32 and 34 prevent this charge from dispersing to the four detection electrode plates 2 of the unit group 31 as a current. For this reason, in this embodiment, despite the fact that eight units 1 share the same detection circuit 20, the increase rate of the capacitance substantially equal to that of this embodiment shown in FIG. Can be maintained.
本発明に係る第 2の実施の形態の埋設センサを図 7を参照しつつ説明する。 符号 4 0 は、 コンクリート製の平板であり、 その内部に水平に配置した円形平板状の金網である 検出電極材 4 1と基準電極材 4 2とを一体に成形して成る。  An embedded sensor according to a second embodiment of the present invention will be described with reference to FIG. Reference numeral 40 denotes a concrete flat plate, which is formed by integrally forming a detection electrode material 41 and a reference electrode material 42, each of which is a circular flat-plate-shaped wire mesh horizontally disposed inside.
この検出電極材 4 1と基準電極材 4 2は、垂直方向において所定距離離間されており、 また、 各電極材にはリード線 (図示せず) が接続され、 平板 4 0の裏面に設けたコネク タ (図示せず) を介して検出回路 2 0に接続する。  The detection electrode material 41 and the reference electrode material 42 are separated from each other by a predetermined distance in the vertical direction, and a lead wire (not shown) is connected to each electrode material and provided on the back surface of the flat plate 40. Connect to detection circuit 20 via connector (not shown).
さらに、 平板 4 0は、 その表面に設けた排水手段である溝 4 4と、 この溝 4 0の 4ケ 所の交差点に平板 4 0を垂直方向に貫通するように設けた排水孔 4 5を備えている。 さ らに、 溝 4 4で区画された各ブロック 4 3の表面には撥水層 (図示せず) を形成し、 平 板 4 3の裏面及び側壁には絶縁層 (図示せず) を形成する。 尚、 排水孔 4 5は、 平板 4 3の裏面の絶縁層を貫通しており、 この排水孔 4 5の内壁下方は、 残留電荷を外部へ分 散する残留電荷分散手段として機能する。 Further, the flat plate 40 is provided with a groove 44 provided as a drainage means provided on the surface thereof, and a drain hole 45 provided at the intersection of the four grooves 40 so as to penetrate the flat plate 40 in a vertical direction. Have. Sa In addition, a water-repellent layer (not shown) is formed on the surface of each block 43 partitioned by the groove 44, and an insulating layer (not shown) is formed on the back and side walls of the flat plate 43. . The drain hole 45 penetrates the insulating layer on the back surface of the flat plate 43, and the lower part of the inner wall of the drain hole 45 functions as a residual charge dispersing means for dispersing the residual charge to the outside.
本実施の形態の埋設センサは、 検出電極材 4 1の上部に位置する平板 4 0のコンクリ 一ト材が帯電部材として機能する。 このように、 本実施の形態は、 帯電部材に検出電極 及び基準電極を一体に設けたため、施工時に検出電極や基準電極を損傷する恐れがなく、 施工を容易にすることができる。  In the embedded sensor according to the present embodiment, the concrete material of the flat plate 40 located above the detection electrode material 41 functions as a charging member. As described above, in the present embodiment, since the detection electrode and the reference electrode are integrally provided on the charging member, there is no possibility of damaging the detection electrode and the reference electrode during construction, and the construction can be facilitated.
本発明に係る第 3の実施の形態の埋設センサを図 8を参照しつつ説明する。 符号 5 0 は、 1 6個の花崗岩のブロック 5 3と、 このブロック 5 3とブロック固定用の砂を収納 した F R P製のトレー 5 1から成る舗装部材である。 この舗装部材 5 0は、 上記第 1の 実施の形態の平板 1 0の代わりに用いる。 このため、 舗装部材 5 0の裏面には、 上記第 1の実施の形態の埋設センサユニット 1 (図示せず) を埋設する。  An embedded sensor according to a third embodiment of the present invention will be described with reference to FIG. Reference numeral 50 denotes a pavement member including 16 granite blocks 53 and an FRP tray 51 containing the blocks 53 and sand for fixing the blocks. This pavement member 50 is used in place of the flat plate 10 of the first embodiment. Therefore, the embedded sensor unit 1 (not shown) of the first embodiment is embedded on the back surface of the pavement member 50.
このトレー 5 1は、 帯電部材であるブロック 5 3の絶縁手段である。 また、 トレー 5 1の底面には、 お水手段である排水孔 5 2が穿孔されており、 この排水孔は、 ブロック 5 3の残留電荷を外部へ分散する残留電荷分散手段としても機能する。  The tray 51 is an insulating means for the block 53 serving as a charging member. In addition, a drain hole 52 serving as a water means is formed in the bottom surface of the tray 51, and the drain hole also functions as a residual charge dispersing means for dispersing the residual charge of the block 53 to the outside.
本実施の形態の埋設センサは、 比較的小さな複数のブロック 5 3の総体を、 一の帯電 部材として用いることができる。 即ち、 トレー 5 1は、 その内部に収納した 1 6個のブ ロック 5 3の電荷が、 隣接している他のトレー 5 1内の 1 6個のブロック 5 3や大地へ 移動することを P ihする。 従って、 安定した検出精度を確保することができる。  In the embedded sensor according to the present embodiment, the whole of a plurality of relatively small blocks 53 can be used as one charging member. That is, the tray 51 indicates that the charges of the 16 blocks 53 stored in the tray 51 move to the 16 blocks 53 and the ground in another adjacent tray 51. ih. Therefore, stable detection accuracy can be secured.
本発明に係る第 4の実施の形態の埋設センサを図 9を参照しつつ説明する。 符号 6 0 は陶板であり、 誘電率の高レヽ 4つの帯電部 6 1と、 この帯電部以外の誘電率の低レ、絶縁 部 6 2と力 成る。 この円筒状の帯電部 6 1は、誘電率の高い物質を混入して形成する。 この陶板 6 0は、 比較的大きな面積を有する平板状であり、 各帯電部 6 1が独立した 帯電部材を構成している。 そして、 この陶板 6 0の裏面には、 上記第 1の実施の形態の 埋設センサュニット 1が 4個埋設されており、 各ュニット 1は、 各帯電部 6 1の直下に 埋設されている。 本実施の形態の埋設センサは、 上記のような帯電部 6 1を設けることにより、 比較的 大きな面積を有する一の陶板 6 0に複数の埋設センサュニット 1を設けることができる。 また、 帯電部 6 1は陶板 6◦と一体に形成されているため、 複数の帯電部材を一度に設 置することができ、 施工が容易である。 An embedded sensor according to a fourth embodiment of the present invention will be described with reference to FIG. Reference numeral 60 denotes a ceramic plate, which is composed of four charged portions 61 having a high dielectric constant, a low dielectric constant other than the charged portions, and an insulating portion 62. The cylindrical charging section 61 is formed by mixing a substance having a high dielectric constant. The ceramic plate 60 is a flat plate having a relatively large area, and each charging unit 61 constitutes an independent charging member. On the back surface of the ceramic plate 60, four embedded sensor units 1 of the first embodiment are embedded, and each unit 1 is embedded immediately below each charging unit 61. In the embedded sensor according to the present embodiment, by providing the charging section 61 as described above, a plurality of embedded sensor units 1 can be provided on one ceramic plate 60 having a relatively large area. In addition, since the charging section 61 is formed integrally with the ceramic plate 6 °, a plurality of charging members can be installed at a time, and the construction is easy.
本発明に係る第 5の実施の形態の埋設センサを図 1 0乃至図 1 2を参照しつつ説明す る。 本実施の形態の埋設センサは、 駐車場の各駐車区画の車両の有無を検出するための センサであり、 平板 1 0は各 I主車区画の床面に設ける。  An embedded sensor according to a fifth embodiment of the present invention will be described with reference to FIGS. The embedded sensor according to the present embodiment is a sensor for detecting the presence or absence of a vehicle in each parking section of a parking lot, and a flat plate 10 is provided on the floor of each I main vehicle section.
図 1 0に示す符号 7 0は、 コンクリート製の平板 8 0の裏面に設けた溝 8 1に収納し た矩形の断面形状を有するケーブル状のセンサュニットである。 このュニット 7 0は、 一連に設置された複数の平板 8 0の溝 8 1内部に収納されている。  Reference numeral 70 shown in FIG. 10 denotes a cable-shaped sensor unit having a rectangular cross-sectional shape housed in a groove 81 provided on the back surface of a concrete flat plate 80. The unit 70 is housed in a groove 81 of a plurality of flat plates 80 installed in series.
図 1 1に示すように、 ユニット 7 0は、 ケース 7 1と、 このケース 7 1に収納された 第 1検出電極線 7 2、 第 1電極間帯電線 7 3、 第 1基準電極線 7 4、 第 1シールド板 7 5により構成した第 1電極部材と、 このケース 7 1に収納した第 2検出電極線 7 6、 第 2電極間帯電線 7 7、 第 2基準電極線 7 8、 第 1シールド板 7 9により構成した第 2電 極部材と、 このケース 7 1内部に充填した絶縁体 (図示せず) と力 ら成る。  As shown in FIG. 11, the unit 70 includes a case 71, a first detection electrode wire 72, a first inter-electrode charging wire 73, and a first reference electrode wire 74 stored in the case 71. A first electrode member composed of a first shield plate 75, a second detection electrode wire 76, a second inter-electrode charging wire 77, a second reference electrode wire 78, and a first It comprises a second electrode member constituted by a shield plate 79, an insulator (not shown) filled in the inside of the case 71, and a force.
上記第 1検出電極線 7 2と第 1基準電極線 7 4間の離間距離 L 1は、 第 2検出電極線 7 6と第 2基準電極線 7 8間の離間距離 L 2よりも長い。 従って、 第 1検出電極線 7 2 は、 第 2検出電極線 7 6よりも、 帯電部材である平板 8 0の溝 8 1の底面 8 2に近接し ている。  The separation distance L1 between the first detection electrode line 72 and the first reference electrode line 74 is longer than the separation distance L2 between the second detection electrode line 76 and the second reference electrode line 78. Therefore, the first detection electrode line 72 is closer to the bottom surface 82 of the groove 81 of the flat plate 80 as the charging member than the second detection electrode line 76 is.
このように、 第 1検出電極線 7 2は、 第 2検出電極線 7 6よりも底面 8 2に近接して いるため、 車両の底面が完全に水平且つ平坦であり平板 8 0の電荷の分布が完全に均一 である場合でも、 第 1検出電極線 7 2の方が静電誘導を生じやすい。 従って、 帯電状態 におレ、て、 第 1検出電極線 7 2と第 1基準電極線 7 4間の静電容量は、 第 2検出電極線 7 6と第 2基準電極線 7 8間の静電容量よりも大きくなる。  As described above, since the first detection electrode line 72 is closer to the bottom surface 82 than the second detection electrode line 76, the bottom surface of the vehicle is completely horizontal and flat, and the distribution of the electric charge of the flat plate 80. Even when the voltage is completely uniform, the first detection electrode wire 72 is more likely to cause electrostatic induction. Therefore, in the charged state, the capacitance between the first detection electrode line 72 and the first reference electrode line 74 becomes static between the second detection electrode line 76 and the second reference electrode line 78. It becomes larger than electric capacity.
次に、 上記電極間帯電線 7 3、 7 7は、 検出電極と基準電極の間に配設される電極間 帯電部材に該当する。 これら帯 S^ 7 3、 7 7は、 夫々、 検出電極線 7 2、 7 6及び基 準電 7 4、 7 8と絶縁されており、 また、 両帯電線 7 3、 7 7も互いに絶縁されて おり、 他の一切の部材と電気的に接続されていない。 これら帯電線 7 3、 7 7は、 対応 する夫々の検出電極線 7 2、 7 6の電荷量に応じて、 各検出電極線 7 2、 7 6に電荷を 供給したり、 また、 電荷を吸収する。 即ち、 帯電線 7 3、 7 7は、 対応する夫々の検出 電極線 7 2 , 7 6への電荷の供給 ·吸収部として機能する。 Next, the inter-electrode charging wires 73 and 77 correspond to an inter-electrode charging member provided between the detection electrode and the reference electrode. These bands S ^ 73, 77 are insulated from the detection electrode wires 72, 76 and the reference voltages 74, 78, respectively, and both charged wires 73, 77 are also insulated from each other. hand And is not electrically connected to any other members. These charged wires 73, 77 supply or absorb electric charges to the respective detecting electrode lines 72, 76 according to the charge amount of the corresponding detecting electrode lines 72, 76. I do. In other words, the charged wires 73 and 77 function as supply / absorption portions of electric charges to the corresponding detection electrode wires 72 and 76 respectively.
具体的には、 第 1電極部材においては、 第 1検出電極線 7 2と第 1電極間帯電線 7 3 の間、 第 1電極間帯電線 7 3と第 1基準電極線 7 4との間に、 直列に接続された 2つの コンデンサが形成されるので、 その部位の静電容量が低下する。 第 2電極部材において も同様である。 このため、 外部環境 (温度や湿度、 あるいは、 地電流や振動等) の変動 による静電容量の変動によって生じるノイズが低減される。  Specifically, in the first electrode member, between the first detection electrode wire 72 and the first inter-electrode charged wire 73, and between the first inter-electrode charged wire 73 and the first reference electrode wire 74. In addition, two capacitors connected in series are formed, and the capacitance at that location decreases. The same applies to the second electrode member. For this reason, noise caused by fluctuations in capacitance due to fluctuations in the external environment (temperature, humidity, ground current, vibration, etc.) is reduced.
従って、 帯電線を設けることにより、 外部環境によって生じるノイズに対する信号の 割合 (S ZN比) が増大し、 両電極部材の安定した検出感度が維持できる。 このため、 検出回路の検出しきい値を小さく設定することが可能となり、 故に、 検出電極線の検出 領域を拡大することができる。 そして、 この検出電極線の検出領域の拡大により、 平板 8 0の表面から所定距離の領域に形成した検出可能領域を拡大することができる。  Therefore, by providing the charged wires, the ratio of the signal to the noise generated by the external environment (SZN ratio) increases, and the stable detection sensitivity of both electrode members can be maintained. For this reason, it is possible to set the detection threshold value of the detection circuit small, and it is possible to enlarge the detection area of the detection electrode line. By expanding the detection area of the detection electrode line, the detectable area formed at a predetermined distance from the surface of the flat plate 80 can be expanded.
次に、 上記シールド板 7 5、 7 9は、 夫々、 対応する検出電極線 7 2、 7 6の電気力 線の方向を限定する指向性制御手段である。 これらシールド板 7 5、 7 9は、 夫々、 対 応する基準電極線 7 4、 7 8に接続されており、 地電流の影響を排除すると共に、 両電 極部材相互間の影響をも排除する。  Next, the shield plates 75 and 79 are directivity control means for limiting the directions of the electric lines of force of the corresponding detection electrode lines 72 and 76, respectively. These shield plates 75 and 79 are connected to the corresponding reference electrode wires 74 and 78, respectively, to eliminate the influence of earth current and also eliminate the influence between both electrode members. .
図 1 2を参照しつつ、本実施の形態の検出回路 9 0を説明する。 この検出回路 9 0は、 パルス信号発生装置 9 1と、 可変抵抗 9 2と、 第 1可変遅延回路 9 3と、 第 2可変遅延 回路 9 4と、 位相弁別回路 9 5とから構成されている。  The detection circuit 90 of the present embodiment will be described with reference to FIG. The detection circuit 90 includes a pulse signal generator 91, a variable resistor 92, a first variable delay circuit 93, a second variable delay circuit 94, and a phase discrimination circuit 95. .
回路 9 1から出力されたパルス信号は、 可変抵抗 9 2を介して第 1可変遅延回路 9 3 と第 2可変遅延回路 9 4へ分枝される。 この第 1可変遅延回路 9 3には、 第 1検出電極 線 7 2が接続され、 また、 第 2可変遅延回路 9 4には、 第 2検出電極線 7 6が接続され ている。 両可変遅延回路 9 3、 9 4は、 それぞれに接続されている各検出電極線 7 2、 7 6と各基準電極線 7 4 , 7 8間の静電容量の大きさに応じ、 入力されたパルス信号を 遅延させ、 比較手段である位相弁別回路 9 5へ出力する。 位相弁別回路 9 5は、 第 1可変遅延回路 9 3と第 2可変遅延回路 9 4により出力され たパルス信号の位相を比較し、 所定しきい値以上の位相のずれを検出した場合には、 駐 車状態を表示する制御回路 (図示せず) に検出信号を送信する。 The pulse signal output from the circuit 91 is branched to a first variable delay circuit 93 and a second variable delay circuit 94 via a variable resistor 92. The first detection electrode line 72 is connected to the first variable delay circuit 93, and the second detection electrode line 76 is connected to the second variable delay circuit 94. Both variable delay circuits 93, 94 are input according to the magnitude of the capacitance between each detection electrode line 72, 76 connected to each, and each reference electrode line 74, 78. The pulse signal is delayed and output to the phase discriminating circuit 95, which is a comparing means. The phase discriminating circuit 95 compares the phases of the pulse signals output from the first variable delay circuit 93 and the second variable delay circuit 94, and when a phase shift of a predetermined threshold or more is detected, A detection signal is transmitted to a control circuit (not shown) that displays a parking state.
次に、 本実施の形態の作用を説明する。 駐車場の駐車状態を知るために、 操作者が制 御回路 (図示せず) の電源を入れると、 検出回路 9 0に電源が供給される。 駐車区画に 車両が停車している場合、 第 1検出電極線 7 2と第 1基準電極 7 4間の静電容量は、 第 2検出電極線 7 6と第 2基準電極線間の静電容量よりも大きいため、 検出回路 9 0は、 検出信号を制御回路に送信する。  Next, the operation of the present embodiment will be described. When the operator turns on a control circuit (not shown) in order to know the parking state of the parking lot, power is supplied to the detection circuit 90. When the vehicle is stopped in the parking space, the capacitance between the first detection electrode line 72 and the first reference electrode 74 is the capacitance between the second detection electrode line 76 and the second reference electrode line. Therefore, the detection circuit 90 transmits a detection signal to the control circuit.
本実施の形態の埋設センサに、 上記第 1の実施の形態の検出回路 2 0を使用すると、 車両の駐車状態を検出することができない。 操作者が制御回路に電源を入れて検出回路 2 0を作動させても、 車両が停止している場合、 検出電極と基準電極の静電容量は増大 せず一定値を保持したままだからである。 即ち、 この検出回路 2 0は、 検出電極と基準 電極間の静電容量の変化が生じた場合にのみ、 検出信号を発信することができ、 被検出 物が静止物である場合には、 検出することができないのである。  If the detection circuit 20 according to the first embodiment is used for the embedded sensor according to the present embodiment, the parking state of the vehicle cannot be detected. Even if the operator turns on the control circuit and activates the detection circuit 20, when the vehicle is stopped, the capacitance of the detection electrode and the reference electrode does not increase and remains at a constant value. . That is, the detection circuit 20 can transmit the detection signal only when the capacitance between the detection electrode and the reference electrode changes, and when the detection target is a stationary object, the detection circuit 20 detects the detection signal. You cannot do it.
上記のように、 本実施の形態の検出回路 9 0は、 第 1検出電極線 7 2と第 2検出電極 線 7 6を、 被検出物までの距離が異なるように配設することにより、 静止物を検出でき る。 また、 被検出物までの距離が相違すれば、 被検出物が移動している物体であっても 検出できる。 即ち、 この検出回路 9 0は、 静止物検出回路であると同時に、 動体検出回 路でもある。  As described above, the detection circuit 90 of the present embodiment is configured such that the first detection electrode line 72 and the second detection electrode line Objects can be detected. If the distance to the object is different, the object can be detected even if it is moving. That is, the detection circuit 90 is a stationary object detection circuit and also a moving object detection circuit.
尚、 駐車区画に車両が存在しない場合 (静的状態) の両検出電極部材の静電容量の相 違は、 検出回路 9 0の可変抵抗 9 2により調整し、 位相弁別回路 9 5によるパルス信号 の位相のずれの検出に影響を与えないようにすることができる。  When there is no vehicle in the parking space (static state), the difference in capacitance between the two detection electrode members is adjusted by the variable resistor 92 of the detection circuit 90, and the pulse signal by the phase discrimination circuit 95 Can be prevented from affecting the detection of the phase shift.
本発明に係る第 6の実施の形態の埋設センサを図 1 3及び図 1 4を参照しつつ説明す る。 本実施の形態の埋設センサは、 防犯用の埋設センサであり、 直接地中に埋設して使 用し、 検出回路は、 第 5の実施の形態の検出回路 9 0を使用する。  An embedded sensor according to a sixth embodiment of the present invention will be described with reference to FIG. 13 and FIG. The embedded sensor according to the present embodiment is an embedded sensor for crime prevention, and is used by being embedded directly in the ground, and the detection circuit uses the detection circuit 90 according to the fifth embodiment.
埋設センサユニット 1 0 0は、 ケース 1 0 1と、 このケース 1 0 1の中央に水平に 配設した円形平板状の第 1検出電極板 1 0 2と、 第 1検出電極板の周囲を所定間隔離間 しつつ取り囲むように併設した平板状の第 2検出電極板 1 0 4と、 第 1検出電極板 1 0 2の直下に離間して設けると共に第 1検出電極板 1 0 2と同寸同形状の第 1電極間帯電 板 1 0 3と、 第 2検出電極板 1 0 4の直下に離間して設けると共に第 2検出電極板 1 0 4と同寸同形状の第 2電極間帯電板 1 0 5と、 両電極間帯電板 1 0 3、 1 0 5の直下に 離間して設けた基準電極板 1 0 6と、 この基準電極板 1 0 6の周縁に立設した円筒状の シーノレド板 1 0 7と力、ら成る。 The embedded sensor unit 100 includes a case 101, a first detection electrode plate 102 of a circular flat plate horizontally disposed in the center of the case 101, and a predetermined periphery of the first detection electrode plate. Between isolation The second detection electrode plate 104, which has a flat plate shape and is arranged so as to surround it, is provided separately below and directly below the first detection electrode plate 102, and has the same shape and shape as the first detection electrode plate 102. A first inter-electrode charging plate 10 3 and a second inter-electrode charging plate 10 5 having the same size and shape as the second detection electrode plate 104, which are provided directly below the second detection electrode plate 104 and the second detection electrode plate 104. And a reference electrode plate 106 provided separately and directly below the charging plates 103 and 105 between the two electrodes; and a cylindrical shenored plate 10 erectly provided on the periphery of the reference electrode plate 106. 7 and power.
侵入者がュニット 1 0 0が埋設してある地面を歩き、 侵入者の靴底が図 1 3示すよう に位置すると、 この靴底の電荷が影響を与える両検出電極板の検出面積は、 第 1検出電 極板 1 0 2では面積 S 1であり、 第 2検出電極板 1 0 4では面積 S 2となる。  When the intruder walks on the ground where the unit 100 is buried, and the sole of the intruder is located as shown in Fig. 13, the detection area of both detection electrode plates affected by the charge on the sole is as follows. The area is S1 for the first detection electrode plate 102 and the area S2 for the second detection electrode plate 104.
この場合、 面積 S 1は面積 S 2よりも広いため、 第 1検出電極板 1 0 2は、 第 2検出 電極板 1 0 4よりも、 靴底の電荷の影響をより強く受けることになる。 従って、 第 1検 出電極板 1 0 2の電荷は、 第 2検出電極板 1 0 4の電荷よりも大きくなり、 第 1検出電 極板 1 0 2と基準電極板 1 0 6間の静電容量は、 第 2検出電極板 1 0 4と基準電極板 1 0 6間の静電容量よりも大きくなる。 そして、 この静電容量の相違は、 検出回路 9 0に より検出され、 検出信号が制御回路に送信されることにより警報が作動する。  In this case, since the area S 1 is larger than the area S 2, the first detection electrode plate 102 is more strongly affected by the charge of the shoe sole than the second detection electrode plate 104. Accordingly, the electric charge of the first detection electrode plate 102 becomes larger than the electric charge of the second detection electrode plate 104, and the electrostatic charge between the first detection electrode plate 102 and the reference electrode plate 106 becomes larger. The capacitance is larger than the capacitance between the second detection electrode plate 104 and the reference electrode plate 106. Then, this difference in capacitance is detected by the detection circuit 90, and an alarm is activated by transmitting a detection signal to the control circuit.
本発明に係る第 7の実施の形態の埋設センサを図 1 5を参照しつつ説明する。 本実施 の形態の埋設センサは、 コンクリート製のブロック 1 1 0の表面を検出領域としたもの である。 ブロック 1 1 0は、 上部コンクリート部 1 1 1、 検出電極板 1 1 5、 合成榭月旨 製の絶縁板 1 1 4、 アース電極板 1 1 6、 下部コンクリート部 1 1 2を順に積層して成 る。 また、 ブロック 1 1 0の側面及び底面は、 合成樹脂製の絶縁層 1 1 3により被覆さ れている。 合成樹脂製の絶縁板 1 1 4は、 検出電極板 1 1 5とアース電極板 1 1 6間の 静電容量を安定させると共に、 上部コンクリート部 1 1 1の電荷が下部コンクリート部 1 1 2に移動してアース電極板 1 1 6の電荷に影響を与えることを防止している。  An embedded sensor according to a seventh embodiment of the present invention will be described with reference to FIG. The embedded sensor according to the present embodiment uses the surface of concrete block 110 as a detection area. The block 110 is composed of the upper concrete part 1 1 1, the detection electrode plate 1 1 5, the insulating plate 1 1 4 made of synthetic resin, the ground electrode plate 1 1 6, and the lower concrete section 1 1 2 Become. The side and bottom surfaces of the block 110 are covered with an insulating layer 113 made of synthetic resin. The synthetic resin insulating plate 1 1 4 stabilizes the capacitance between the detection electrode plate 1 1 5 and the ground electrode plate 1 1 6 and the electric charge of the upper concrete portion 1 1 1 is transferred to the lower concrete portion 1 1 2. It prevents movement and affects the charge on the ground electrode plate 116.
さらに、 本実施の形態の埋設センサのブロック 1 1 0は、 その上面周囲にウレタンで 形成した水膜分離手段である水切り壁 1 1 9により区画されている。 ブロック 1 1 0と 隣接する他のブロック 1 1 0等の夫々の表面に雨水等の水膜が形成されると、 これら水 膜同士が接触する直前に、 ブロック 1 1 0の静電容量が急激に増大する。 このため、 検 出回路 (図示せず) は、 検出電極板 1 1 5とアース電極板 1 1 6との間の静電容量の急 激な増大により検出信号を出力する。 即ち、 誤作動することになる。 し力 し、 本実施の 形態のように、 上記の水切り壁 1 1 9をブロック 1 1 0の周囲に設けると、 上記の両水 膜が接触することが防止される。 従って、 上記の検出回路の誤作動が防止される。 Further, the block 110 of the embedded sensor according to the present embodiment is defined by a drain wall 119 serving as a water film separating means formed of urethane around the upper surface thereof. When a water film such as rainwater is formed on each surface of the block 110 and another adjacent block 110, etc., the capacitance of the block 110 suddenly increases immediately before these water films come into contact with each other. To increase. For this reason, inspection An output circuit (not shown) outputs a detection signal due to a sharp increase in capacitance between the detection electrode plate 115 and the ground electrode plate 116. That is, a malfunction occurs. However, if the drain wall 119 is provided around the block 110 as in the present embodiment, the two water films are prevented from contacting each other. Therefore, malfunction of the detection circuit is prevented.
本発明に係る第 8の実施の形態の埋設センサを図 1 6を参照しつつ説明する。 本実施 の形態の埋設センサは、 コンクリート製のブロック 1 2 0の表面を検出領域としたもの である。 ブロック 1 2 0は、 上部コンクリート部 1 2 1、 検出電極板 1 2 6、 合成樹脂 製の絶縁板 1 2 4、 下部コンクリート部 1 2 2、 合成樹脂製の第 2絶縁板 1 2 5、 ァー ス電極板 1 2 7を順に積層して成る。 また、 ブロック 1 2 0の側面及び底面は、 合成樹 脂製の絶縁層 1 2 3により被覆されている。 本実施の形態は、 上記第 7の実施の形態に 比べて検出電極板とアース電極板の間隔を十分に確保できるため、 静的状態における検 出電極板とアース電極板間の静電容量を小さくすることができる。 また、 第 2絶縁板 1 2 5は、 下部コンクリート部 1 2 2とアース電極板 1 2 7とを電気的に絶縁する。 この ため、 アース電極板 1 2 7の電荷が下部コンクリート部 1 2 2に含まれている水分によ り下部コンクリート部 1 2 2内に分散することが防止される。 もし、 この第 2絶縁板 1 2 5が存在しないと、 電気的には、 アース電極板 1 2 7の位置を実質的に検出電極板 1 2 6に近接して配設した状態と同じになるため、 上記の基礎静電容量を小さくすること ができなくなる。 また、 この第 2絶縁板 1 2 5により、 下部コンクリート部 1 2 2が含 有する水分量の多少にかかわらず、 アース電極板 1 2 7が電気的に安定するため、 検出 回路の高い安定†生を確保できる。  An embedded sensor according to an eighth embodiment of the present invention will be described with reference to FIG. The embedded sensor according to the present embodiment uses the surface of the concrete block 120 as a detection area. The block 120 is composed of an upper concrete part 121, a detection electrode plate 126, a synthetic resin insulating plate 124, a lower concrete part 122, and a synthetic resin second insulating plate 125, The source electrode plates 127 are sequentially laminated. The side and bottom surfaces of the block 120 are covered with an insulating layer 123 made of synthetic resin. In the present embodiment, since the distance between the detection electrode plate and the ground electrode plate can be sufficiently secured as compared with the seventh embodiment, the capacitance between the detection electrode plate and the ground electrode plate in a static state can be reduced. Can be smaller. The second insulating plate 125 electrically insulates the lower concrete part 122 from the ground electrode plate 127. For this reason, the electric charge of the ground electrode plate 127 is prevented from being dispersed in the lower concrete part 122 by the moisture contained in the lower concrete part 122. If the second insulating plate 125 is not present, the position of the ground electrode plate 127 is substantially the same as the state where the ground electrode plate 127 is disposed close to the detection electrode plate 126. Therefore, the above-mentioned basic capacitance cannot be reduced. In addition, the second insulating plate 125 allows the ground electrode plate 127 to be electrically stable regardless of the amount of water contained in the lower concrete portion 122, thereby providing a high stability of the detection circuit. Can be secured.
本発明に係る第 9の実施の形態の埋設センサを図 1 7を参照しつつ説明する。 本実施 の形態の埋設センサは、 滑り止めブロック 1 3 0の表面を検出領域としたものである。 滑り止めプロック 1 3 0は、複数の突起 1 3 2を備えた合成樹脂製の滑り止め板 1 3 1、 検出電極板 1 3 6、 絶縁板 1 3 5、 アース電極板 1 3 7、 コンクリート部 1 3 3を順に 積層して成る。 また、 ブロック 1 3 0の側面及び底面は、 合成樹脂製の絶縁層 1 3 3に より被覆されている。 本実施の形態では、 検出電極板やアース電極板をコンクリート部 1 3 3の上面に接着することで形成することができるため、 製造が容易である。 尚、 了 ース電極板 1 3 7とコンクリート部 1 3 3は必ずしも絶縁されている必要はない。 ァー ス電極板 1 3 7からコンクリート部 1 3 3への電荷の移動は、 検出精度には大きな影響 を与えないからである。 An embedded sensor according to a ninth embodiment of the present invention will be described with reference to FIG. The embedded sensor according to the present embodiment uses the surface of the non-slip block 130 as a detection area. Anti-slip block 13 0 is a synthetic resin anti-slip plate with multiple projections 13 2 1 3 1, detection electrode plate 1 3 6, insulating plate 1 3 5, earth electrode plate 1 3 7, concrete part It consists of 1 3 3 stacked in order. The side and bottom surfaces of the block 130 are covered with an insulating layer 133 made of synthetic resin. In the present embodiment, since the detection electrode plate and the ground electrode plate can be formed by bonding to the upper surface of the concrete portion 133, the manufacture is easy. In addition, The ground electrode plate 13 7 and the concrete portion 13 3 need not necessarily be insulated. This is because the transfer of electric charge from the ground electrode plate 13 7 to the concrete portion 13 3 does not significantly affect the detection accuracy.
本発明に係る第 1 0の実施の形態の埋設センサを図 1 8を参照しつつ説明する。 本実 施の形態の埋設センサは、 ブロック 1 4 0の図 1 8における左側側面と、 ブロック 1 4 0の表面とを検出領域としたものであり、 階段や段部等に設置される。本実施の形態は、 上記第 7の実施の形態のプロックをプロック左側側面をも検出領域とした点で異なる力 その他の構成は、 略同様である。 このブロック 1 4 0は、 上部コンクリート部 1 4 1、 ブロック左側において下方に向かって垂直に屈曲した検出電極板 1 4 5、 ブロック左側 において下方に向かって垂直に屈曲した合成樹脂製の絶縁板 1 4 4、 プロック左側にお いて下方に向かって垂直に屈曲したアース電極板 1 4 6、 下部プロック部 1 4 2を順に 積層して成る。 また、 ブロック 1 4 0の左側側面を除く側面及び底面は、 合成樹脂製の 絶縁層 1 4 3により被覆されている。 さらに、 プロック底面の左側には、 水膜分離手段 である水切り壁 1 4 8が設けられている。 この水切り壁 1 4 8の内壁面 1 4 9は、 ブロ ック下方の基礎外壁 1 5 0と距離 Lを隔てて位置しており、 この内壁面 1 4 9と外壁 1 5 0の間に溝 1 4 9が形成されている。 なお、 この距離 Lは、 6 mm以上である。 プロ ック左側表面に雨水等の水 1IW 1と、外壁 1 5 0の表面の水, 2とが接触する直前に、 静的状態における静電容量が急激に増大する。 これは、 両水膜の表面間の距離が極めて 小さくなるからである。 この場合、 検出回路は、 この静電容量の急激な増大により検出 信号を出力する。 即ち、 誤作動することになる。 し力 し、 水膜分離手段を設けることに より、 上記両水膜が接触することが防止される。 これは、 溝 1 4 9の距離 Lを 6 mm以 上にすることにより、 両水膜の表面張力の作用で両水膜がこの溝 1 4 9を横断して結合 することが防止されるからである。 従って、 検出回路の誤作動が防止される。  An embedded sensor according to a tenth embodiment of the present invention will be described with reference to FIG. The embedded sensor according to the present embodiment uses the left side surface of the block 140 in FIG. 18 and the surface of the block 140 as detection areas, and is installed on a stair, a step, or the like. This embodiment differs from the seventh embodiment in that a force is different in that the block on the left side of the block is also used as a detection area, and other configurations are substantially the same. This block 140 is composed of an upper concrete part 141, a detection electrode plate 144 bent vertically downward on the left side of the block, and a synthetic resin insulating plate 1 bent vertically downward on the left side of the block. 44, a ground electrode plate 146, which is bent vertically downward on the left side of the block, and a lower block portion 142, which are sequentially laminated. The side and bottom surfaces of the block 140 except for the left side surface are covered with an insulating layer 144 made of synthetic resin. Further, on the left side of the bottom surface of the block, a drain wall 148 serving as a water film separation means is provided. The inner wall 149 of the drain wall 148 is located at a distance L from the foundation outer wall 150 below the block, and a groove is formed between the inner wall 149 and the outer wall 150. 1 4 9 is formed. This distance L is 6 mm or more. Immediately before the water 1IW 1 such as rainwater and the water 2 on the surface of the outer wall 150 come into contact with the left surface of the block, the static capacitance in the static state rapidly increases. This is because the distance between the surfaces of both water films becomes extremely small. In this case, the detection circuit outputs a detection signal due to the rapid increase in the capacitance. That is, a malfunction occurs. By providing the water film separating means, the water films are prevented from contacting each other. This is because, by setting the distance L of the groove 149 to 6 mm or more, the water film is prevented from being bonded across the groove 149 due to the surface tension of the water film. It is. Therefore, malfunction of the detection circuit is prevented.
本発明に係る第 1 1の実施の形態の埋設センサを図 1 9を参照しつつ説明する。 本実 施の形態の埋設センサも、 上記第 1 0の実施の形態のブロックと同様に、 ブロック左側 側面と表面とを検出領域としたものである。 本実施の形態は、 上記第 8の実施の形態の ブロックをブロック左側側面をも検出領域とした点で異なるが、 その他の構成は、 略同 様である。 このブロック 1 6 0は、 上部コンクリ一ト部 1 6 1、 ブロック左側において 下方に向かって垂直に屈曲した検出電極板 1 6 4、 ブロック左側において下方に向かつ て垂直に屈曲した合成樹脂製の絶縁板 1 6 6、 下部コンクリート部 1 6 2、 ブロック左 側において上方に向かって垂直に屈曲した合成樹脂製の絶縁板 1 6 7、 ブロック左側に おいて上方に向かって垂直に屈曲したアース電極板 1 6 5を順に積層して成る。 また、 ブロック 1 6 0の左側側面を除く側面及び底面は、 合成樹脂製の絶縁層 1 6 3により被 覆されている。 さらに、 ブロック底面の左側には、 水膜分離手段である水切り部材 1 7 0が設けられている。 この水切り部材 1 7 0の上部内壁面 1 7 2は、 外壁 1 8 0と距離 L 2を隔てて位置しており、 この內壁面 1 7 2と外壁 1 8 0の間に副溝 1 7 3が形成さ れている。 なお、 この距離 L 2は、 1 mm以上 6 mm未満である。 1 mm以上とは、 水 膜の厚さよりも大きな数値であり、 また、 6 mm未満とは、 下記 L 1よりも小さな値に する必要があるからである。 この水切り部材 1 7 0の下部内壁面 1 7 1は、 外壁 1 8 0 と距離 L 1を隔てて位置しており、 この内壁面 1 7 1と外壁 1 8 0の間に主溝 1 7 4が 形成されている。 なお、 この距離 L 1は、 6 mm以上である。 外壁 1 8 0に対し横方向 力 ら風雨が吹き付けると、 水 S W 2が外壁 1 8 0の上方に向かって上昇する。 しかし、 当該水 , 2の上端が副溝 1 7 3に達すると、 副溝 1 7 3内の水膜の自重により、 さら に上昇しょうとする水 HW 2が押し戻され、 水 BfW 2の上昇が防止される。 このため、 水 , 1と水 SIW 2の分離が維持され、 従って、 本実施の形態では、 横方向からの風雨 下でも検出回路の誤作動が防止できる。 産業上の利用分野 An embedded sensor according to a first embodiment of the present invention will be described with reference to FIG. The embedded sensor according to the present embodiment also uses the left side surface and the front surface of the block as the detection area, similarly to the block of the tenth embodiment. This embodiment is different from the eighth embodiment in that the block on the left side of the block is also used as a detection area, but other configurations are substantially the same. It is like. The block 160 is composed of an upper concrete part 161, a detection electrode plate 1664 which is bent vertically downward on the left side of the block, and a synthetic resin material which is bent vertically downward on the left side of the block. Insulation plate 166, lower concrete section 162, synthetic resin insulation plate 166 bent vertically upward on the left side of the block, earth electrode bent vertically upward on the left side of the block It is made by laminating plates 1 65 in order. In addition, the side and bottom surfaces of the block 160 except the left side surface are covered with an insulating layer 163 made of synthetic resin. Further, on the left side of the block bottom surface, a draining member 170 as a water film separating means is provided. The upper inner wall surface 17 2 of the draining member 17 0 is located at a distance L 2 from the outer wall 180, and a sub-groove 1 7 3 is located between the 內 wall surface 17 2 and the outer wall 180. Are formed. The distance L2 is 1 mm or more and less than 6 mm. The value of 1 mm or more is a value larger than the thickness of the water film, and the value of less than 6 mm is a value smaller than L1 described below. The lower inner wall 1 7 1 of the draining member 1 7 0 is located at a distance L 1 from the outer wall 1 8 0, and a main groove 1 7 4 is provided between the inner wall 1 7 1 and the outer wall 1 8 0. Is formed. This distance L1 is 6 mm or more. When wind and rain blow from the lateral force to the outer wall 180, the water SW 2 rises upward from the outer wall 180. However, when the upper end of the water 2 reaches the sub-groove 1 73, the water HW 2, which is going to rise further, is pushed back by the weight of the water film in the sub-groove 1 73, and the water BfW 2 rises. Is prevented. For this reason, the separation of the water 1 and the water SIW 2 is maintained, and therefore, in the present embodiment, malfunction of the detection circuit can be prevented even under the wind and rain from the lateral direction. Industrial applications
以上のように、 本発明に係る埋設センサは、 主として、 侵入者等を発見する防犯用セ ンサとして利用することができる。  As described above, the embedded sensor according to the present invention can be mainly used as a security sensor for detecting an intruder or the like.

Claims

請求の範囲 The scope of the claims
1 . 大地又は建築物の床に埋設され、 大地又は建築物と絶縁した検出電極と、 大地又は 建築物の床に埋設され、 大地又は建築物と絶縁すると共に該検出電極と絶縁した基準電 極と、 検出可能領域内の被検出物の存在により生じた該検出電極と該基準電極間の静電 容量の変化を検出する検出回路とを有する埋設センサ。 1. A sensing electrode embedded in the ground or building floor and insulated from the ground or building, and a reference electrode embedded in the ground or building floor and insulated from the ground or building and insulated from the sensing electrode And a detection circuit for detecting a change in capacitance between the detection electrode and the reference electrode caused by the presence of an object in a detectable region.
2. 前記検出電極の検出領域内に少なくともその一部が位置するように配設されると共 に、 前記検出電極及び前記基準電極と絶縁されている帯電部材を設けた請求の範囲第 1 項記載の埋設センサ。  2. The charging device according to claim 1, further comprising a charging member that is disposed so as to be at least partially located within a detection region of the detection electrode and that is insulated from the detection electrode and the reference electrode. Embedded sensor as described.
3 . 前記帯電部材は導体であり、 絶縁体で構成された区画手段を有する請求の範囲第 2 項記載の埋設センサ。  3. The embedded sensor according to claim 2, wherein the charging member is a conductor, and has a partitioning unit formed of an insulator.
4. 前記帯電部材は絶縁体であり、 該絶縁体よりも誘電率の小さい絶縁体で構成された 区画手段を有する請求の範囲第 2項記載の埋設センサ。  4. The embedded sensor according to claim 2, wherein said charging member is an insulator, and said partitioning means is made of an insulator having a lower dielectric constant than said insulator.
5. 前記区画手段には、 前記帯電部材の残留電荷を外部へ分散する残留電荷分散手段を 設けた請求の範囲第 3又は請求の範囲第 4項記載の埋設センサ。  5. The embedded sensor according to claim 3, wherein said partitioning means is provided with residual charge dispersing means for dispersing residual charge of said charging member to the outside.
6 . 前記帯電部材に撥水手段を設けた請求の範囲第 2項記載の埋設センサ。  6. The embedded sensor according to claim 2, wherein the charging member is provided with a water-repellent means.
7 . 前記帯電部材に排水手段を設けた請求の範囲第 2項記載の埋設センサ。  7. The embedded sensor according to claim 2, wherein drainage means is provided on the charging member.
8 . 前記検出電極の電気力線の方向を限定する指向性制御手段を設けた請求の範囲第 1 項記載の埋設センサ。  8. The embedded sensor according to claim 1, further comprising directivity control means for limiting a direction of a line of electric force of the detection electrode.
9 . 前記指向性制御手段は、 前記基準電極と接続されたシールド電極である請求の範囲 第 8項記載の埋設センサ。  9. The embedded sensor according to claim 8, wherein the directivity control means is a shield electrode connected to the reference electrode.
1 0. 前記検出電極と前記基準電極の間に配設されると共に、 前記検出電極及び前記基 準電極と絶縁されている少なくとも 1以上の電極間帯電部材を設けた請求の範囲第 1項 記載の埋設センサ。  10. The method according to claim 1, wherein at least one or more inter-electrode charging members are provided between the detection electrode and the reference electrode and are insulated from the detection electrode and the reference electrode. Embedded sensor.
1 1 . 前記検出電極は、互いに絶縁された第 1検出電極と第 2検出電極とから構成され、 前記検出回路は、 該第 1検出電極と前記基準電極間の静電容量と、 該第 2検出電極と前 記基準電極間の静電容量とを比較する比較手段を有する請求の範囲第 1項記載の埋設セ ンサ。 11. The detection electrode includes a first detection electrode and a second detection electrode that are insulated from each other, and the detection circuit includes: a capacitance between the first detection electrode and the reference electrode; 2. The buried cell according to claim 1, further comprising comparison means for comparing the capacitance between the detection electrode and the reference electrode. Sensor.
1 2 . 前記第 1検出電極と前記第 2検出電極は、 被検出物までの距離が異なるように配 設した請求の範囲第 1 1項記載の埋設センサ。  12. The embedded sensor according to claim 11, wherein the first detection electrode and the second detection electrode are arranged so as to have different distances to an object to be detected.
1 3 . 前記第 1検出電極と前記第 2検出電極は、 互いに検出面積が相違するように併設 した請求の範囲第 1 1項記載の埋設センサ。  13. The embedded sensor according to claim 11, wherein the first detection electrode and the second detection electrode are provided side by side so that the detection areas are different from each other.
1 4 . 前記検出電極と前記基準電極とを複数組設け、 該複数の検出電極を電気的に接続 すると共に、 該複数の基準電極を電気的に接続し、 該複数の検出電極と該複数の基準電 極を一の前記検出回路に接続した請求の範囲第 1項記載の埋設センサ。  14. A plurality of sets of the detection electrode and the reference electrode are provided, the plurality of detection electrodes are electrically connected, the plurality of reference electrodes are electrically connected, and the plurality of detection electrodes and the plurality of reference electrodes are connected. 2. The embedded sensor according to claim 1, wherein a reference electrode is connected to one of the detection circuits.
1 5 . 前記複数の検出電極と前記複数の基準電極をコンデンサを介して前記一の検出回 路に接続した請求の範囲第 1 4項記載の埋設センサ。  15. The embedded sensor according to claim 14, wherein the plurality of detection electrodes and the plurality of reference electrodes are connected to the one detection circuit via a capacitor.
1 6 . 大地又は建築物と絶縁した検出電極と、 大地又は建築物と絶縁すると共に該検出 電極と絶縁した基準電極と、 該検出電極の検出領域内に少なくともその一部が位置する ように配設されると共に、 該検出電極及び該基準電極と絶縁されている帯電部材とを有 する舗装材。  16. A detection electrode insulated from the ground or building, a reference electrode insulated from the ground or building and insulated from the detection electrode, and arranged so that at least a part thereof is located within a detection area of the detection electrode. A pavement material having a charging member that is provided and is insulated from the detection electrode and the reference electrode.
1 7 . 舗装材部と、 検出電極と、 絶縁部材と、 基準電極とを順に積層して成り、 該上部 舗装材部と該基準電極が絶縁され、 且つ、 該検出電極と該基準電極とは大地又は建築物 と絶縁されている舗装材。  17. The pavement member, the detection electrode, the insulating member, and the reference electrode are sequentially laminated, and the upper pavement member and the reference electrode are insulated, and the detection electrode and the reference electrode are Paving material that is insulated from the ground or building.
1 8 . 上部舗装材部と、 検出電極と、 第 1絶縁部材と、 下部舗装材部と、 第 2絶縁部材 と、 基準電極とを順に積層して成り、 該検出電極と該基準電極は該下部舗装材部と絶縁 され、 且つ、 該検出電極と該基準電極とは大地又は建築物と絶縁されている舗装材。 18. The upper pavement portion, the detection electrode, the first insulating member, the lower pavement portion, the second insulating member, and the reference electrode are sequentially laminated, and the detection electrode and the reference electrode are A pavement material which is insulated from a lower pavement material portion, and wherein the detection electrode and the reference electrode are insulated from the ground or a building.
1 9 . 検出電極と、 絶縁部材と、 基準電極と、 舗装材部とを順に積層して成り、 該上部 舗装材部と該基準電極が絶縁され、 且つ、 該検出電極と舗装材部は絶縁され、 且つ、 該 基準電極とは大地又は建築物と絶縁されている舗装材。 19. The detection electrode, the insulating member, the reference electrode, and the pavement portion are sequentially laminated, and the upper pavement portion and the reference electrode are insulated, and the detection electrode and the pavement portion are insulated. And a pavement material in which the reference electrode is insulated from the ground or a building.
2 0 . 前記検出電極は下方に向かって屈曲され、 前記基準電極は上方又は下方に向かつ て屈曲され、 舗装材部の側方をも検出領域とした請求の範囲第 1 7項乃至請求の範囲第 1 9項の何れかに記載の舗装材。  20. The method according to claim 17, wherein the detection electrode is bent downward, the reference electrode is bent upward or downward, and the side of the pavement portion is also a detection area. Paving material according to any one of range 19 to 19.
2 1 . 前記舗装材の検出領域である側方下部に水膜分離手段を設けた請求の範囲第 2 0 項記載の舗装材。 21. The method according to claim 20, wherein a water film separating means is provided at a lower side portion of the paving material detection area. Pavement material described in the item.
2 2 . 前記水膜分離手段は、 下方に開口した幅 6 mm以上の溝である請求の範囲第 2 1 項記載の舗装材。  22. The pavement material according to claim 21, wherein said water film separating means is a groove having a width of 6 mm or more and opened downward.
2 3 . 前記水膜分離手段は、 下方に開口した幅 6 mm以上の主溝と、 該主溝内部に下方 に開口した幅 6 mm未満の副溝とを備えて成る請求の範囲第 2 1項記載の舗装材。  23. The water film separation means, comprising: a main groove having a width of 6 mm or more that opens downward; and a sub-groove that opens downward and having a width of less than 6 mm inside the main groove. Pavement material described in the item.
PCT/JP1999/003329 1998-06-23 1999-06-23 Embedded sensor WO1999067661A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU43916/99A AU4391699A (en) 1998-06-23 1999-06-23 Embedded sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/191005 1998-06-23
JP19100598 1998-06-23

Publications (1)

Publication Number Publication Date
WO1999067661A1 true WO1999067661A1 (en) 1999-12-29

Family

ID=16267296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003329 WO1999067661A1 (en) 1998-06-23 1999-06-23 Embedded sensor

Country Status (2)

Country Link
AU (1) AU4391699A (en)
WO (1) WO1999067661A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002140771A (en) * 2000-07-13 2002-05-17 Omron Corp Security system and sensor to be used for the same
JP2005284480A (en) * 2004-03-29 2005-10-13 Asahi Kasei Homes Kk Security system in site
JP2006092393A (en) * 2004-09-27 2006-04-06 Toa Corp Area intrusion material detector, face detection type pressure sensitive unit and crime-prevention system
JP2008083382A (en) * 2006-09-27 2008-04-10 Fuji Xerox Co Ltd Connecting structure, image display device, and image display system
JP2020505617A (en) * 2017-01-13 2020-02-20 フランクリン センサーズ インコーポレイテッドFranklin Sensors Inc. Apparatus and method for detecting hard-to-sight configuration with uniform electric field
JP2020517956A (en) * 2017-04-27 2020-06-18 フランクリン センサーズ インコーポレイテッドFranklin Sensors Inc. Device and method for detecting a blind configuration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194456A (en) * 1992-12-22 1994-07-15 Matsushita Electric Works Ltd Parking sensor
JPH06194453A (en) * 1992-12-22 1994-07-15 Matsushita Electric Works Ltd Foot switch
JPH09145850A (en) * 1995-11-22 1997-06-06 Koushiyoku Kagaku Kk Capacitance type object detecting sensor and automatic door opening/closing device using this object detecting sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194456A (en) * 1992-12-22 1994-07-15 Matsushita Electric Works Ltd Parking sensor
JPH06194453A (en) * 1992-12-22 1994-07-15 Matsushita Electric Works Ltd Foot switch
JPH09145850A (en) * 1995-11-22 1997-06-06 Koushiyoku Kagaku Kk Capacitance type object detecting sensor and automatic door opening/closing device using this object detecting sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002140771A (en) * 2000-07-13 2002-05-17 Omron Corp Security system and sensor to be used for the same
JP2005284480A (en) * 2004-03-29 2005-10-13 Asahi Kasei Homes Kk Security system in site
JP2006092393A (en) * 2004-09-27 2006-04-06 Toa Corp Area intrusion material detector, face detection type pressure sensitive unit and crime-prevention system
JP4559807B2 (en) * 2004-09-27 2010-10-13 ティーオーエー株式会社 Area intruder detection device, surface detection type pressure sensitive unit and crime prevention system
JP2008083382A (en) * 2006-09-27 2008-04-10 Fuji Xerox Co Ltd Connecting structure, image display device, and image display system
JP2020505617A (en) * 2017-01-13 2020-02-20 フランクリン センサーズ インコーポレイテッドFranklin Sensors Inc. Apparatus and method for detecting hard-to-sight configuration with uniform electric field
JP2020517956A (en) * 2017-04-27 2020-06-18 フランクリン センサーズ インコーポレイテッドFranklin Sensors Inc. Device and method for detecting a blind configuration

Also Published As

Publication number Publication date
AU4391699A (en) 2000-01-10

Similar Documents

Publication Publication Date Title
JP3600796B2 (en) Fence sensor
US11067713B2 (en) Electrostatic field sensor and security system in interior and exterior spaces
JP2015537195A (en) Capacitive sensor for detecting the presence of objects and / or humans
US7973729B2 (en) Thin-film EAS and RFID antennas
WO1999067661A1 (en) Embedded sensor
Chen et al. Dynamic application of the Inductive Power Transfer (IPT) systems in an electrified road: Dielectric power loss due to pavement materials
CA2567453A1 (en) Wide exit electronic article surveillance antenna system
CN110192324A (en) Wireless power transmitter, Wireless power transmission system and the method for driving Wireless power transmission system
KR20190009869A (en) Sensor for landslide detection and landslide detecting system includng the same
JP2013104766A (en) Human body approach detection system and guard system
US20230246489A1 (en) Foreign Object Detection Using Hybrid Inductive and Capacitive Sensing
JP3405948B2 (en) Fence sensor
US3978469A (en) Method and apparatus for communicating in building structures and parts thereof particularly multi-story building
US4180953A (en) Method and apparatus for countering an upward capillary flow of soil moisture in a foundation wall
JP2008280783A (en) Power communication floor structure, and supply panel and functional module for the same
JPS6123513B2 (en)
EP1489572A1 (en) Wide exit electromic article surveillance antenna system
JPS62500875A (en) masonry dehumidification equipment
JP2022024807A (en) Power supply device
JPH04120494A (en) Detecting sensor of human body and equipment therefor
WO2022091847A1 (en) Wireless communication unit and wireless changing method
JP2022121803A (en) Penetration electrode member, accommodation box, and wireless power supply system for vehicle
RU128407U1 (en) AUTONOMOUS UNIVERSAL MEASURING MODULE IN THE ELECTRIC TRANSMISSION NETWORK
JP2023180001A (en) wireless power supply system
JP2008261872A (en) Embedded sensor for crime prevention

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 556261

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase