WO1999062167A1 - Engine generator - Google Patents

Engine generator Download PDF

Info

Publication number
WO1999062167A1
WO1999062167A1 PCT/JP1999/002580 JP9902580W WO9962167A1 WO 1999062167 A1 WO1999062167 A1 WO 1999062167A1 JP 9902580 W JP9902580 W JP 9902580W WO 9962167 A1 WO9962167 A1 WO 9962167A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
flywheel
generator
cooling air
cooling
Prior art date
Application number
PCT/JP1999/002580
Other languages
French (fr)
Japanese (ja)
Inventor
Hirotsugu Fukui
Junji Yoshida
Kanzoh Kimura
Makoto Ishikura
Kazuyuki Yoshida
Tadahiko Nishikawa
Masami Yoshii
Naoto Suga
Original Assignee
Yanmar Diesel Engine Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP14429398A external-priority patent/JPH11341742A/en
Priority claimed from JP14429298A external-priority patent/JPH11341767A/en
Priority claimed from JP14791398A external-priority patent/JPH11343860A/en
Priority claimed from JP14791298A external-priority patent/JPH11341768A/en
Priority claimed from JP11011249A external-priority patent/JP2000217307A/en
Priority claimed from JP11011250A external-priority patent/JP2000213362A/en
Application filed by Yanmar Diesel Engine Co., Ltd. filed Critical Yanmar Diesel Engine Co., Ltd.
Publication of WO1999062167A1 publication Critical patent/WO1999062167A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1815Rotary generators structurally associated with reciprocating piston engines

Definitions

  • the present invention relates to an engine generator, particularly to an engine generator in which a generator is mounted on a flywheel of an engine, and to a structure for effectively cooling the engine and the generator in such an engine generator. Further, the present invention relates to a structure capable of taking out engine output other than the engine generator, and further relates to a structure for downsizing a device using such an engine generator as a power source or a power source. Background art
  • engine generators have a structure in which a generator separate from the engine is directly connected to the engine crankshaft or connected via a power transmission mechanism such as a belt-to-gear gear.
  • a generator consisting of a magnet and a coil is installed in a recess formed in the flywheel of the engine.
  • an engine generator that houses the engine.
  • Japanese Utility Model Application Laid-Open No. 58-68680 and Japanese Utility Model Application Laid-Open No. 58-139880 are examples of Japanese Utility Model Application Laid-Open No. 58-68680 and Japanese Utility Model Application Laid-Open No. 58-139880.
  • a cooling fan is conventionally formed on an outer peripheral portion of an outer surface of a flywheel, for example, and cooling air generated by rotation of the flywheel is fed to the flywheel. Of the generator was guided from outside to the recess to cool the generator.
  • the generator with a built-in flywheel has a small storage space for the magnet and the coil in the recess formed in the flywheel. Because of its low frequency and low frequency, such generators were used only for charging batteries.
  • the engine generator is provided with an engine output extractor, if this high-frequency power supply is connected to the engine extractor, for example, a hydraulic pump such as a hydraulic pump, an air conditioner presser, or a high-pressure water pump may be used. Even if you want to drive a load that requires engine power, such as a device, since this high-frequency power supply is connected to the engine output extractor, you must find another power source. Of course, if the load is connected to the engine output extraction section, a power source for the high-voltage generator must be prepared separately. As described above, in the conventional engine generator, when high-frequency power is required, the range of use is limited, and it is necessary to separately prepare a power supply and a power source.
  • the load of the high-frequency generator and the like is arranged on the anti-flywheel side of the engine body, so that the exhaust muffler is connected to the load.
  • they In order to arrange them side by side, they must be arranged in parallel with the load.
  • the exhaust muffler needs to be long in order to maintain its soundproofing effect sufficiently. There is. Therefore, either soundproofing or compactness had to be sacrificed.
  • the generator of the type installed in the flywheel of the engine generator can provide high-output high-frequency power while maintaining the conventional compactness.
  • a space for disposing the exhaust muffler can be secured because the high-frequency generator is not provided.
  • the cooling fan for cooling the generator with the built-in flywheel is formed to be small for the required compactness, and the flow of the cooling air flows from the cooling fan to the outer surface of the flywheel.
  • the cooling air from the cooling fan only cools the generator in the flywheel or only cools the engine secondarily, and it is necessary to perform sufficient cooling of the engine separately.
  • An engine generator is configured such that a concave portion is formed circumferentially around the shaft center on a flywheel attached to a crankshaft of an engine on the same axis, and an inner peripheral surface of the flywheel is formed in the concave portion.
  • a generator is constructed by fixing a rotor magnet made of a ferromagnetic permanent magnet on the engine body and arranging a plurality of armature poles on the engine body side to face the rotor magnet rotating integrally with the flywheel. ing. Since all the generators are accommodated in the space where the flywheel is placed, compactness is ensured. Despite such a compact configuration, the rotor magnet is a ferromagnetic permanent magnet. For example, by using a rare earth magnet, the rotor magnet is about 6 to 7 times as large as a commonly used fluoride magnet. It is possible to obtain output energy.
  • the output characteristics of the generator configured in the recess of the flywheel are determined by the discharge characteristics of a discharge lamp such as a metal-halide lamp. It has a large drooping characteristic suitable for the characteristics, for example, as a power source of a floodlight equipped with a discharge lamp such as a metal halide lamp, a generator in the flywheel recess can be used. In addition, there is no need to interpose a large and expensive ballast, and it can be used as a compact and inexpensive high-frequency power supply. As described above, the engine generator can be used as it is as a power source for those requiring high-frequency power, such as a floodlight or a welding machine.
  • flywheel attaching / detaching means for moving the flywheel with the rotor magnet attached thereto on the same axis as the crankshaft while piled on the attraction force between the rotor magnet and the armature pole.
  • this engine generator can be used as a power source for other engine power loads in addition to the generator in the flywheel used as a high-frequency power supply It becomes possible. Therefore, the high-frequency generator in the flywheel is used as a power source for loads that require high-frequency power, such as floodlights and welding machines, while a generator for commercial power is connected to the engine output extraction section.
  • An auxiliary lamp or a tool can be used as a power source, or a pressure supply device such as a hydraulic pump, air compressor, or high-pressure water pump is connected to the engine output port, and an engine generator is mounted by this pressure supply. It can be used as the driving power of a self-propelled machine or driving a tool. As described above, it is not necessary to prepare a power source of a commercial power supply or a pressure-driven device, and various loads can be used simultaneously with power supply by the high-frequency generator in the flywheel only by the engine generator of the present invention. .
  • an exhaust muffler is arranged in a substantially horizontal direction substantially orthogonal to the crankshaft on the side opposite to the flywheel of the engine body. .
  • the present invention relates to an engine generator in which a generator is housed in a recess of a flywheel.
  • the coil portion of the armature poles is particularly high in temperature. Since an effective cooling structure is desired, the following cooling structure is provided.
  • a concave portion is formed circumferentially around the shaft center on a flywheel urged coaxially with the crankshaft of the engine.
  • the rotor fixed to the wheel and the rotor fixed to the engine body A generator is constructed by arranging a fixed element and a cooling fan is constructed by arranging a plurality of blower blades on the anti-engine side of the flywheel, and the flywheel has at least one open end.
  • a through-hole communicating with the inside of the recess is formed to allow air to flow from the engine body side to the cooling fan through the inside of the recess and through the through-hole.
  • the cooling air flows in one direction from the engine side to the cooling fan without stagnation or turbulence of the cooling air, and the coil of the armature pole of the generator that becomes particularly hot The cooling air passes through the portion to cool it effectively.
  • a cooling air guide member for guiding the cooling air passing through the through hole from the engine body toward the cooling fan is provided on the side of the flywheel where the blowing blades are provided, so that the cooling air flows through the through hole. After passing through the cooling fan, the cooling fan is smoothly sent to the cooling fan, so that cooling air from the engine side is successively introduced into the through hole and passes therethrough. Therefore, the flow of the cooling air from the engine passing through the through-hole and the flywheel recess is stabilized, and the cooling effect of the generator in the recess is ensured.
  • the cooling air flows from the outside of the flywheel toward the cooling fan, that is, in the direction opposite to the cooling air from the engine side. Due to the cooling air, the cooling air from the engine side may stay or turbulently flow in the concave portion, and the cooling effect of the generator may be reduced. Therefore, the cooling air guide member is extended to the vicinity of the outer peripheral end of the rotation trajectory of the blower blade to partition the outer space of the flywheel substantially parallel to the surface of the flywheel.
  • the cooling wind passing through the through hole and the inside of the recess from the engine side is not affected by the cooling wind in the facing direction, and therefore does not stay or turbulent in the recess, and the outer peripheral end of the rotation locus of the blower blades
  • the cooling air flow is guided more stably to the vicinity of the cooling fan, that is, to the vicinity of the outer periphery of the cooling fan, and the cooling effect of the generator in the flywheel recess is further ensured.
  • the blower blade is provided at an end opposite to the flywheel of the cooling fan.
  • a closing member substantially parallel to the flywheel surface is provided.
  • the cooling air is sucked into the cooling fan and introduced from the outside of the flywheel (opposite the engine side) (opposed to the cooling air from the engine side).
  • the air is blown to the outer periphery of the fan to cool the engine cylinder and electrical components arranged near it, but when the cooling fan rotates, air is pushed out of the space between the air blowing blades, The cooling air may be pushed back, and these cooling effects may be reduced.
  • the cooling air from the outside of the flywheel is separated from the cooling air from the engine side by the cooling air guide member. Interference is avoided, and the blocking member does not return to the flow of air pushed out from between the blower blades, but is smoothly blown to the cylinder portion of the engine, etc., to ensure these cooling effects. You can.
  • the stator of the generator in the flywheel recess is integrally attached to the engine main body via the support member, if the stator is provided with the armature pole winding, Is generated from the stator and transmitted to the support member. Therefore, by forming a radiation fin on the support member, the radiation fin hits the cooling air passing through the through hole and the concave portion from the engine side, and the support member is effectively cooled. The cooling effect of the high-temperature part in the winding can be further improved.
  • a generator with a built-in flywheel is arranged inside a flywheel, that is, in a recess formed on the side facing the engine body.
  • the flywheel intervenes between the generator in the recess and the engine body, so that the heat generated by the engine body in the generator in the recess is cut off by the flywheel. As a result, the temperature of the generator can be suppressed from rising.
  • the flywheel is provided with a through-hole so that the cooling wind blown from the engine side is directed to the cooling fan through the recess and the through-hole.
  • Forming a cooling air passage having an outlet toward the wheel wherein the cooling air passing through the cooling air passage passes through the inside of the recess of the flywheel and the through hole, and arranges the blower blades of the flywheel. Shall be blown into the side space
  • the wind sucked through the through-hole by the cooling fan cools the engine body while passing through the cooling air passage, and further cools the generator while passing through the recess of the flywheel.
  • the flow of cooling air that effectively cools both the engine and the generator can be secured.
  • the pressure inside the cooling air passage becomes low due to the bowing I of the cooling fan, and therefore, there is a tolerance to further supplement the cooling air.
  • the flow of the cooling air passing through the cooling air passage and reaching the cooling fan passes through a particularly high-temperature portion such as an oil pan in the engine body or an armature pole winding of a generator in the flywheel. Therefore, we want to supply as much cooling air as possible to this flow.
  • Cooling air from the outside and inside of the flywheel merges into the outer periphery of the rejection fan to create a high pressure, and some of the cooling air can be supplied.
  • the high-pressure space around the outer periphery of the cooling fan is communicated with the low-pressure cooling air passage in the engine body, and a part of the cooling air in the high-pressure space is transmitted to the cooling air passage.
  • the cooling air is concentrated in the cooling air flow path from the cooling air passage to the cooling fan, where the hot parts such as oil pans and armature windings of the generator are concentrated. Is supplied, and these cooling effects can be further improved.
  • the exhaust air from the cooling air passage is concentrated and smoothly concentrated on the flywheel.
  • the cooling air is guided to the inside and the through hole, and the cooling air intensively hits the generator in the concave portion, and the cooling effect of the generator is further improved.
  • a cooling air passage formed in the engine main body when a cylinder is formed in a cylinder main body so as to be inclined when viewed in the crankshaft direction, there is a space below the cylinder, and a generator in the flywheel recess.
  • a thick portion is formed from the lower surface of the cylinder to the side of the crank chamber, and a thick portion is formed in the thick portion from the side opposite to the flywheel. It is conceivable to form a penetrating cooling air passage to the flywheel side. As a result, the cooling air passage is moved from the flywheel side to the flywheel by the suction bow I of the cooling fan.
  • the cooling air flows to the side of the flywheel, and the cooling air is introduced almost directly into the recess or through hole of the flywheel. Also, in the engine body, it is necessary to cool the oil pan at the bottom of the crankcase.Therefore, a cooling air passage should be formed just below the oil pan of the engine body, and the inlet should be opened at the bottom of the engine body. Is also conceivable. Thus, the cooling air is drawn from the cooling air passage from the bottom inlet to the flywheel side outlet by suction of the cooling fan, and the cooling air is introduced into the concave portion of the flywheel or into the through hole.
  • An engine generator having a cooling air passage formed immediately below an oil pan in the engine body was covered with a soundproof case, a ventilation duct was formed below the soundproof case, and the ventilation duct was opened at the bottom of the engine body from the ventilation duct.
  • FIG. 1 is a front view showing a state in which a fan case 14 of an engine generator according to a basic embodiment of the present invention, in which a generator D is mounted on a flywheel 4 of an engine E, is removed,
  • FIG. 2 is a cross-sectional view taken along the line I-I of FIG. 1 with the fan case 14 attached.
  • FIG. 3 is a partial front view of a floodlight power generator D1, which is an embodiment of the high-frequency AC generator D employed in the engine generator of the present invention,
  • FIG. 4 is a partial front view of the generator D2 for the power source of the welding machine.
  • FIG. 5 is a side sectional view showing a structure for attaching and detaching the flywheel 4 to and from the crankshaft 3 in the engine generator according to the present invention
  • FIG. 6 is a schematic diagram of the engine generator according to the present invention with the discharge lamp L connected
  • FIG. 7 is a graph showing output characteristics of the engine generator according to the present invention
  • FIG. 8 is a schematic diagram showing a state in which a discharge lamp L is connected via a ballast 17 to an engine generator in which a conventional generator D 'is housed in a flywheel,
  • Fig. 9 is a graph showing the output characteristics of a conventional engine generator.
  • FIG. 10 is a graph showing generator output characteristics when a ballast 17 is interposed between a conventional engine generator and a discharge lamp L.
  • FIG. 11 is a side sectional view of an engine generator including a generator D according to the present invention on a flywheel 4 of an air-cooled diesel engine E ′,
  • FIG. 12 is a side sectional view of an engine generator provided with a generator D according to the present invention on a flywheel 4 of a water-cooled diesel engine E ",
  • FIG. 13 shows a first embodiment of a further improved cooling structure according to the present invention, and is a fan case of an engine generator having a cooling air guide plate 25 and an external auxiliary blowing blade 26. It is a front view in a state where 14 has been removed,
  • FIG. 14 is a cross-sectional view taken along the line I-I of FIG. 13 with the fan case 14 attached.
  • FIG. 15 shows a second embodiment of the present invention, and is a front view of the engine generator having a cooling air guide plate 25 and a part of auxiliary fan blades 27 with a fan case 14 removed.
  • FIG. 16 is a cross-sectional view taken along the line I-I of FIG. 15 with the fan case 14 attached.
  • FIG. 17 shows the same third embodiment, in which the cooling fan 5 is provided with a cooling air guide plate 25 'and a closing plate 28, and the stay bracket 8 is provided with a heat radiating fin.
  • FIG. 5 is a front view of the engine generator with a fan case 14 having a guide plate 29 provided outside the outlet of the wind passages 1 e and 1 g, with a fan case 14 removed.
  • FIG. 18 is a cross-sectional view taken along the line I-I of FIG. 17 with the fan case 14 attached.
  • FIG. 19 is a side sectional view of the flywheel 4 with the cooling air guide plate 25 ′ and the closing plate 28 attached.
  • FIG. 20 is a front view of the cooling air guide plate 25 ′.
  • FIG. 21 is a front view of the closing plate 28
  • FIG. 22 is a front view of a stator bracket 8 having a radiation fin formed on an inner peripheral portion thereof.
  • FIG. 23 is also a side sectional view
  • FIG. 24 shows a fourth embodiment of a further improved cooling structure according to the present invention, which is a fan of an engine generator having a structure for communicating a high-pressure space and a low-pressure space in a cooling air passage. It is a front view in a state where the case 14 is removed,
  • FIG. 25 is a cross-sectional view taken along the line I-I of FIG. 24 with the fan case 14 attached.
  • FIG. 26 is a fifth embodiment of a further improved cooling structure for an engine generator according to the present invention, wherein a cylinder shaft of an engine generator having a structure in which a generator D is disposed outside a flywheel.
  • FIG. 3 is a cross-sectional view of a plane including a crankshaft center and a vertical plane including a crankshaft center;
  • Fig. 27 is an internal rear view of a generator unit with a high-power high-frequency AC generator D mounted on the flywheel 4 of the engine E and an engine generator installed inside the soundproof case 39. ,
  • FIG. 28 is also an internal side view
  • FIG. 29 is a bottom view showing the ceiling surface of a ventilation duct 39 b formed at the bottom of the soundproof case 39.
  • FIG. 30 is an internal side view showing an embodiment of a power generation unit capable of stacking vertically.
  • Figure 31 is also a bottom view
  • FIG. 32 shows a conventional low-frequency AC generator D 'mounted on the flywheel 4 of the engine E, and a high-frequency AC generator 44 connected to the engine output extraction section.
  • FIG. 9 is an internal invention diagram of a conventional generator unit having a configuration internally provided at 9 '.
  • Fig. 33 is also an internal side view
  • FIG. 34 shows an embodiment in which an auxiliary generator 45 is connected to the engine output extraction section of the engine generator in which the high-power high-frequency generator D according to the present invention is mounted on the flywheel 4 of the engine E.
  • FIG. 35 shows an embodiment in which a high-power high-frequency generator D according to the present invention is mounted on a flywheel 4 of an engine E, and a hydraulic pump 47 is connected to an engine output extraction section of the engine generator. It is a side sectional view,
  • FIG. 36 is a side view of a floodlight powered by an engine generator connected to the hydraulic pump 47 shown in FIG. 35 as a power source.
  • Fig. 37 is also a rear view
  • FIG. 38 is a side sectional view showing a telescopic drive configuration of the lamp 51 using the hydraulic motor 57 for raising and lowering the column 51 of the projector.
  • FIG. 39 is a drive hydraulic circuit diagram of a traveling hydraulic motor 55 and a lamp elevating hydraulic motor 57 by the hydraulic pump 47 of the floodlight.
  • FIG. 40 is a side view showing an embodiment in which an air compressor 63 is connected to an engine output extraction portion of an engine generator in which the high-power high-frequency generator D according to the present invention is mounted on the flywheel 4 of the engine E.
  • FIG. 40 is a side view showing an embodiment in which an air compressor 63 is connected to an engine output extraction portion of an engine generator in which the high-power high-frequency generator D according to the present invention is mounted on the flywheel 4 of the engine E.
  • FIG. 41 is a side sectional view showing an embodiment in which a high-pressure water pump 64 is connected to an engine output extracting portion of the engine generator.
  • an engine generator (motor generator) having a configuration in which a flywheel 4 of an air-cooled gasoline engine E according to the basic embodiment of the present invention shown in FIGS. .
  • the engine E which is the power source of the generator, has a cylinder head 2 attached to a cylinder part 1a formed in the engine body 1, and an outer surface of the cylinder part 1a has a cooling fan 5 to be described later. Heat-dissipating fins for radiating heat by cooling air are formed.
  • a crankshaft 3 is rotatably supported so as to cross back and forth in a crankcase 1 c formed in the engine body 1.
  • crankshaft 3 One end (the front end in this embodiment) of the crankshaft 3 is connected to a flywheel
  • the flywheel is fitted into the crankshaft hole 4e of the boss portion 4d formed at the center of the flywheel 4 and the endnut 9 is screwed into the screw portion 3a at the tip of the crankshaft 3 from the outside.
  • 4 is fixed to the crankshaft 3, and the flywheel 4 and the crankshaft 3 are integrally rotatable.
  • a part of the outer peripheral surface of the flywheel 4 is notched, and an ignition power supply magnet 10 is fixed in the notch.
  • the ignition power supply armature 11 wound with the ignition power supply coil 11 a is arranged so as to face the outer peripheral surface of the flywheel 4, and the flywheel 4 is arranged in the cylinder portion 1 a of the engine body 1.
  • the bosses 1b and 1b, which protrude horizontally from the installation side (front), are fastened with pins or bolts to the tips.
  • the power source of the ignition plug attached to the cylinder head 2 is configured, and the flywheel 4 rotates and the ignition power magnet 10 faces the ignition power armature 11 at the timing. Ignite the spark plug.
  • a ring gear 12 is fixedly provided on the inner surface of the flywheel 4, that is, on the outer peripheral portion of the surface facing the engine body 1, and mates with the output gear of the cell motor 13 for starting the engine E shown in FIG. ing.
  • a bracket 8 is fixed to the outer surface (the front in this embodiment) of the engine body 1 on which the flywheel 4 is disposed. Evening coil 7a-7a ⁇ ⁇ ⁇ is fixed to stay 7 by radially protruding.
  • the stay bracket 8 and the stay bracket 7 each have a substantially ring shape when viewed from the front and have center holes 8a and 7b, and both center holes 8a and 7b are connected to each other.
  • the crankshaft 3 is rotatably penetrated through a ⁇ 7b.
  • the radius of the center holes 8a and 7b is considerably larger than the radius of the crankshaft 3, and there is a considerable gap between the crankshaft 3 and the inner peripheral wall surfaces of the center holes 8a and 7b. It is used as a hole for the cooling air W2 from the cooling air passages 1e and 1g formed in the engine E into the rear recess 4a of the flywheel 4, which will be described later.
  • the recess 4 a is formed so as to open on the ffi! L surface (rear surface) of the flywheel 4, that is, toward the front surface of the engine body 1.
  • a rotor magnet 6 is fixed all around the inner peripheral surface of the outer peripheral portion of the flywheel 4 surrounding the outer periphery of the concave portion 4a.
  • a are arranged in the recess 4 a so as to face the rotor magnet 6.
  • the rotatable magnet 6 may be divided into a plurality and provided on the entire outer periphery of the concave portion 4a as shown in FIGS. 3 and 4 described later.
  • the engine E is driven, and the rotor shaft with the crankshaft 3 and flywheel 4
  • the stay coils 7a, 7a ... are excited to generate frequency power based on the rotation speed of the crankshaft 3 and the number of poles of the stay coils 7a, 7a This power can be supplied to the outside.
  • an engine output extraction portion 3b is formed at the end of the crankshaft 3 on the side opposite to the flywheel 4 as shown in FIG.
  • an engine output take-out portion 46a is formed at the end of the cam shaft 46 of the engine E opposite to the side where the flywheel 4 is provided, so that such an engine output take-out portion is formed.
  • Various loads may be connected. This will be described later in detail.
  • the mouth magnet 6 and the stator coil 7a which are components of the AC generator D, will be described.
  • the magnet 6 is made of a rare-earth magnet that is a ferromagnetic permanent magnet having a very high output energy, such as a neodymium-based sintered magnet whose main raw materials are the rare-earth elements neodymium, iron, and boron. Used.
  • the maximum energy product of this neodymium rare earth magnet is, for example, about 26 to 31 MG ⁇ Oe, and the output energy is about 6 to 7 times that of a commonly used fluoride magnet. You can get Lugie.
  • the residual magnetic flux density of the neodymium rare earth magnet is also very large.
  • the generator output can be increased by using the rotor magnet 6 having a large residual magnetic flux density Br.
  • the AC generator D employed in the engine generator of the present invention uses the rare-earth magnet having a very large residual magnetic flux density for the rotor magnet 6, so that a large generator output can be obtained.
  • the stay 7 is provided with a multi-pole stay coil 7a so as to increase the value of the frequency f, furthermore, A large generator output can be obtained.
  • the conventional flywheel-mounted generator D 'in a conventional engine generator using a rotor magnet made of ferrite magnets has a generator output of at most about 100 W, but the generator D of the present invention has However, since the rotor magnet 7 is used while having the same size as the conventional fly magnet but having the same strong magnetism, even if it is configured to be the same size as the conventional generator D ', at least 1 kW or more of power is generated. It is possible to obtain a generator output of about 2 kW to 3 kW. In other words, a large generator output can be generated while maintaining a lightweight and compact structure.
  • the AC generator in the conventional engine generator has a two-pole stay coil, and the power generation frequency is set to 50 Hz or 60 Hz, which is the same as that of commercial power. Was set.
  • the generator D of the present invention can set the power generation frequency to a high frequency, and the number of poles of the stay coil 7a can output power at a frequency corresponding to the power supply target.
  • the generator D 1 in FIG. 3 is a two-phase AC type in which an 18-pole stator coil 7 a is arranged, and the generator D 2 in FIG. This is a three-phase AC type with a total of 24 poles, with the overnight coil 7a as one unit.
  • the number of poles of the coil 6 is 18 poles, and if the rated rotation speed of the engine E is set to 360 rpm, it is possible to provide 540 Hz high-frequency AC power generation.
  • the output characteristics of the high-frequency AC generator D1 configured as described above in FIG. 3 (a graph with current on the horizontal axis and voltage on the vertical axis) have a large drooping characteristic as shown in FIG. As shown in Fig. 6, the output terminal of generator D1 is directly connected to discharge lamp L as shown in Fig. You can connect.
  • the output characteristics of the conventional engine generator having the low-frequency AC generator D ' have a substantially constant voltage characteristic as shown in Fig. 7, and are stable even when connected to a discharge lamp. Since a lamp cannot be obtained, a ballast 17 is interposed between the generator D 'and the discharge lamp L in the conventional engine generator, as shown in Fig. 8, and it can be seen in Fig. 9. It was necessary to control the output so as to have a drooping characteristic. This ballast 17 is heavy and expensive. In this regard, in the case of the engine generator according to the present invention using the generator D, as shown in FIG. 6, the discharge lamp L is stabilized without the ballast 17 interposed therebetween, and This contributes to weight reduction, compactness, and cost reduction.
  • FIG. 10 shows the detachable structure of the flywheel 4 in an engine generator in which such a high-output high-frequency AC generator D is mounted on the flywheel 4, that is, the connection of the flywheel 4 to the crankshaft 3 supported by the engine E.
  • the detachable structure will be described.
  • conventional engine generators equipped with an alternator on a flywheel when attaching and detaching the flywheel to and from the crankshaft, the operator directly performs the attachment and detachment work by hand.
  • the rotor magnet 6 since the rotor magnet 6 is formed of a rare-earth magnet having a very large magnetic force, it acts between the rotor magnet 6 and the stay coil 7a.
  • the suction force is large.
  • the flywheel 4 when the flywheel 4 is mounted on the crankshaft 3, when the flywheel 4 is moved closer to the engine body 1 side, the flywheel 4 is pulled strongly by the stay coil 7 a.
  • the moving direction of the flywheel 4 is displaced from the axis, so that the crankshaft hole 4 e at the center of the flywheel 4 cannot be fitted to the crankshaft 3, There was a case where the installation work did not go well due to the sticking of the evening coil 7a.
  • the flywheel 4 is attached to and detached from the crank shaft 3 by using an attaching / detaching jig 18.
  • the attachment / detachment jig 18 includes an inner tube 21 having an internal thread formed on an inner periphery thereof, an outer tube 19 slidably fitted to the inner tube 21, and an inner tube 19.
  • a screw member 20 that is rotatably attached and forms a male screw on the outer periphery and screwed into the inner cylinder 21, and an operation lever 23 that rotates the screw member 20 via the arm 22.
  • the screw member 20 and the outer cylinder 19 are integrally moved in the axial direction of the inner cylinder 21. are doing.
  • the attachment / detachment jig 18 is removed from the crankshaft 3 and the end nut 9 is screwed into the screw portion 3 a of the crankshaft 3. Then, the flywheel 4 is fixed to the crankshaft 3.
  • the flywheel 4 is pulled out of the crankshaft 3 by rotating the operation lever 23 in a direction in which the screw member 20 moves to the side opposite to the crankshaft 3. Further, rotate the operating levers 2 and 3 to separate the flywheel 4 from the stay coil 7a, and flywheel to a position where the attraction force between the mouth magnet 6 and the stay coil 7a becomes weak.
  • the inner cylinder 21 is removed from the crankshaft 3, and the attachment / detachment jig 18 and the flywheel 4 are separated from the engine E.
  • the flywheel 4 can be gradually moved in the axial direction while being against the attraction force between the rotor magnet 6 and the stay coil 7a, and can be removed from the crankshaft 3.
  • the flywheel 4 is attracted by the magnet between the mouth and magnet 6 and the stay and coil 7 a. While gradually moving in the direction of the axis of the crankshaft 3, and aligning the axis of the crankshaft with the axis of the flywheel 4.
  • the flywheel 4 when removing the flywheel 4 from the crankshaft 3, the flywheel 4 can be removed from the crankshaft 3 simply by rotating the operation lever 23 of the attachment / detachment jig 1 8 and performing a simple operation. Can be removed from the / 62167
  • a plurality of blower blades 5 a ⁇ 5 a ⁇ ⁇ ⁇ ⁇ are attached to the outer surface of the flywheel 2 to form a cooling fan 5.
  • Each of the blower blades 5a has a substantially U-shape in a front view, and all the blower blades 5a are arranged radially from the center of the flywheel 4 (crankshaft 3).
  • the shape of each blower blade 5a can be considered in various other ways, it is possible to consider the rotational direction of the flywheel 4 by rotating the blower blade 5a together with the flywheel 4 regardless of the shape of the flywheel 4.
  • the structure is such that air is blown from the inner peripheral part to the outer peripheral part of the cooling fan 5, that is, from the inner peripheral end to the outer peripheral end of the rotation trajectory of the blower blades 5 a, 5 a, in front view.
  • the flywheel 4, the cooling fan 5 attached to the flywheel 4, and an air supply port such as a circular shape in a front view are provided so as to cover electrical components such as an ignition power supply device having an ignition power supply coil 11a and the like.
  • Wind guide grill A fan case 14 opening the 14 a is provided, and when viewed from the front, the outer edge of the wind guide port 14 a is formed by the cooling fan 5 (the blower blade 5 a5 a ⁇
  • the rotation locus of ( ⁇ ) is located at the inner peripheral end or closer to the center of the flywheel 4 than that.
  • the blower blades 5a rotate together with the flywheel 4 to generate a flow of wind from the center of the cooling fan 5 to the outer peripheral side as described above, while being attracted to this flow.
  • Outside air is introduced from the air introduction port 14 a to the inner periphery of the cooling fan 5 in the fan case 14, and the introduced cooling air W 1 is supplied from the inner periphery of the cooling fan 5 in the fan case 14. It flows to the outer periphery, passes through the ignition power supply coil 11a, and hits the cylinder 1a of the engine body 1 (a heat radiation fin is formed on the outer surface) and the cylinder head 2 attached to the upper end of the cylinder. This cools a high-temperature portion such as an intake / exhaust valve or a spark plug provided in the cylinder head 2.
  • the cylinder portion la is formed in an inclined shape when viewed from the front (when viewed in the direction of the crankshaft 3). 1 7
  • a space can be secured under the lower part without any particular equipment. Therefore, using this space, a thick portion 1h is formed from the inclined lower surface of the cylinder portion 1a to the side of the crankcase 1c, and the thick portion lh is formed in the recess 4a of the flywheel 4.
  • a front-rear penetrating shape that is, a side cooling air passage 1 e penetrating from the side of the anti-flywheel 4 to the side of the flywheel 4 is formed.
  • the bottom of the engine body 1 in the crank chamber 1 c is an oil pan 1 d, and a bottom cooling air passage 1 g is formed immediately below the oil pan 1 d, which opens in the front, that is, on the surface on the flywheel 4 side.
  • a bottom cooling wind bottom inlet 1f is opened as an inlet.
  • a ventilation duct 15 may be connected to the bottom cooling air inlet 1 f downward and outward.
  • the ventilation hole 4c is located closer to the center than the inner periphery of the cooling fan 5 in front view (the center of the flywheel 4 is located closer to the inner periphery of the rotation locus of the blower blades 5a, 5a, ). I do.
  • the generator D Inside draws air through the ventilation holes 4c and is drawn into the outside of the side wall 4b of the flywheel 4 (inside the fan case 14). It cools one coil 7 a ⁇ 7 a ⁇ ⁇ '. That is, by the formation of the ventilation holes 4 c in the flywheel 4, the cooling air passages 1 e ⁇ 1 g pass through the generator D to the outside of the flywheel 4.
  • the cooling air W2 in one direction flowing into the fan case 14 of the engine E is secured, and a high cooling effect can be obtained for the oil pan 1d of the engine E and the generator D (particularly, the star coil 7a). .
  • the generator D with built-in flywheel and the cooling mechanism (cooling fan 5) as described above are used in the air-cooled diesel engine E 'shown in FIG. 11 and the water-cooled diesel engine E "shown in FIG.
  • the same reference numerals as those disclosed in FIGS. 1 and 2 denote members having the same structure and function.
  • the air-cooled diesel engine E 'shown in Fig. 11 has a cylinder head 2' for a diesel engine attached to the cylinder section a of the engine body 1 '.
  • the outer periphery of the cylinder section ⁇ a Forming a cooling fin passage, and a cooling air passage 1 ′ g opening toward the recess 4 a of the flywheel 4 (that is, the generator D provided therein) as described above.
  • Forming a cooling fan 5 similar to that shown in FIG. 1 and the like outside the flywheel 4 having the ventilation holes 4c it is possible to obtain a cooling air having the same flow as the cooling air Wl'W2. As a result, the cooling effect of the generator D's stay coil 7a etc. is ensured.
  • the motor 13 ' is disposed outside the fan case 14; however, the cooling air corresponding to the cooling air W1 is provided in the fan case 14. Can be introduced.
  • the water-cooled diesel engine E “shown in Fig. 12 has a cylinder head 2" for a diesel engine mounted on the cylinder section 1 "a of the engine body 1".
  • the engine body 1 has cooling air passages and radiating fins.
  • a cooling water pump 16 is installed inside the crankcase, and a cooling fan 5 formed in the flywheel 4 blows cooling air all over Rage
  • a structure such as the cooling air passages 1e and 1g described above may be specially formed in the engine body 1 "for cooling the stay coil 7a.
  • the engine is a water-cooled gasoline engine.
  • the engine constituting the generator is not limited to a water-cooled type and an air-cooled type, or a diesel type and a gasoline type, and may be any type.
  • the high-frequency AC generator D according to the present invention may be provided in a flywheel of any kind of engine.
  • the improved cooling structure for engine generators described below is mainly used for air-cooled engines, but as described above, water-cooled engines have special cooling air for cooling generator D.
  • a passage may be formed, and various improved cooling structures introduced below may be adopted.
  • FIGS. 1 and 2 an improved embodiment of the basic cooling structure shown in FIGS. 1 and 2, which is employed in the engine generator having the generator D in the flywheel as described above, will be described. This will be described with reference to FIGS. 13 to 26. Since the generator D is capable of generating high-power high-frequency power, the temperature of the generator D due to the stator coil 7a becomes significantly higher than before, so that the cooling effect of the generator D is particularly improved. In order to further enhance the structure, in addition to the cooling improvement structure of the ventilation hole 4c of the flywheel 4 shown in FIGS. 1 and 2 described above, the following various improvement structures are conceivable.
  • the center portion of the outer surface of the side wall 4b of the flywheel 4 is provided with a cooling wind guide member formed in a substantially mortar shape. 25 is attached with bolts or the like to cover the ventilation hole 4c from outside.
  • Cooling air W2 that has passed through 1g and generator D to cool the oil pan 1d and the stationary coil 7a, etc., does not escape from the ventilation hole 4c to the outside of the flywheel 4, and conversely The wind from 14a pushes back to the concave portion 4a, and the cooling effect of the generator D may be attenuated.
  • both flow of the cooling air W l 'W 2 is isolated opposite, the cooling air W 2 that escapes from the vent hole 4 c outward direction of the flywheel 4
  • the cooling air guide member 25 is smoothly guided from the cooling air guide member 25 to the blower blade 5a on the outer periphery thereof. That is, the cooling air guide member 25 controls and stabilizes the flow so that the cooling air W2 flows in a certain direction, thereby improving the cooling efficiency.
  • a plurality of external auxiliary blowing blades 26 are formed on the outer surface of the side wall 4b of the flywheel 4 near the center of the blowing blade 5a. As the flywheel 4 rotates, the external auxiliary blower blades 26 move from the inside of the flywheel 4 to the outside. Cooling air W2, which cools the oil pan 1d and the stationary coil 7a, passes through the ventilation hole 4c and is directed outward from the flywheel 4. When flowing out, the flow is strengthened and stabilized. Thereby, the cooling efficiency can be improved.
  • Such an auxiliary blowing blade may be formed inside the side wall 4 b of the flywheel 4.
  • a plurality of internal auxiliary blow blades 2 7 are provided on the boss 4 d closer to the center than the ventilation holes 4 c inside the side wall 4 of the flywheel 4. Is formed.
  • the internal auxiliary blowing blades 27 are configured such that a flow from the inside to the outside of the flywheel 4 is generated with the rotation of the flywheel 4, similarly to the external auxiliary blowing blades 26.
  • the outer peripheral edge of the cooling air guide member 25 shown in FIGS. 13 to 16 is located closer to the center of the cooling fan 5 than the blowing blades 5 a Since the cooling air Wl * W2 joins immediately before being guided to the blower blade 5a, the cooling air W2 may flow backward or stay inside the flywheel 4 (the recess 4a side). Still remains. Therefore, in the third embodiment shown in FIGS. 17 to 23, as shown in FIGS. 17 to 20, a conical plate corresponding to the above-mentioned substantially mortar-shaped cooling air guide member 25 is used.
  • a cooling air guide member 25 ′ having a shape in which a ring-shaped plate portion 25 ′ b extending parallel to the side wall 4 b from the outer peripheral edge of the portion 25 ′ a is attached to the outside of the side wall 4 b of the flywheel 4. It is attached to the surface. As shown in Fig. 20, a bolt hole 25'c is formed in the center of the conical plate portion 25'a, and a bolt 29 is inserted through the bolt hole 25'c. The cooling air guide member 25 ′ is screwed to the outer surface of the side wall 4 b of the flywheel 4.
  • the flat plate portion 25 ′ b of the cooling air guide member 25 ′ extends to an intermediate portion of each of the blower blades 5 a formed substantially in the radial direction of the flywheel 4.
  • a hole 25'd formed in the flat plate portion 25'b shown in FIG. 20 is a hole for passing a boss 28a protruding from the closing member 28 described later.
  • the space on the side of the flywheel 4 where the cooling fan 5 is formed that is, the side wall 4 b
  • the space between the fan case 14 and the fan case 14 is divided into two inside and outside by the cooling air guide member 25 ′, and the inside divided space communicating with the ventilation hole 4 c is covered by the cooling air guide member 25 ′. It will be.
  • the cooling air W 2 passes through the ventilation holes 2 d, and then passes through the space between the side wall 4 b of the flywheel 4 and the cooling air guide member 25 * to blow the blowing blades 5 a
  • the air is blown to the outer peripheral portion of the cooling fan 5 by the suction force of the rotation of the fan.
  • the cooling air W2 is isolated from the cooling air W1 from the air introduction port 14a, so that the flow is stabilized in one direction, and particularly, the cooling air W2 is heated at the generator D where the temperature becomes high during the operation of the engine E.
  • Overnight coil 7a provides excellent cooling effect.
  • the air in the space between the blower blades 5a and 5a is pushed out to the air guide port 14a side, and enters the fan case 14 via the air guide port 14a.
  • the introduced cooling air W1 is pushed back to the air introduction port 14a again, and the flow of the cooling air W1 from the air introduction port 14a to the cylinder 1a or the cylinder head 2 of the engine E is attenuated.
  • the closing member 28 formed in a substantially ring plate shape is attached to the outside of the cooling fan 5 by the blower blade 5. a ⁇ Arrange so that it abuts 5a.
  • a boss 28 a is projected horizontally behind the closing member 28, and each boss 28 a is passed through each hole 25 ′ d of the cooling air guide member 25 ′, and the tip is
  • the bolt 30 which is in contact with the side wall 4 b of the flywheel 4 and which is longer than the front is fitted into each boss 28 a, and the closing member 28 is screwed to the flywheel 4.
  • the blocking member 28 blocks the space between the blower blades 5a from the outside, the air flows from the space between the blower blades 5a to the air guide port 14a during rotation of the blower blades 5a. Is not pushed out, and the cooling air W1 from the air introduction port 14a smoothly flows to the outer peripheral portion of the cooling fan 5, and furthermore, due to the configuration of the cooling air guide member 25 ', the cooling air The cooling air W2 merges with the cooling air W2 at the outer periphery of the blade 5a, and the merged air efficiently cools the cylinder 1a, the cylinder head 2 and the like of the engine E.
  • the cooling air guide member 25 ′ and the closing member 28 are not only formed separately from the blower blade 5 a as in this embodiment, but also attached to the blower blade 5 a, and are integrated with the blower blade 5 a. It can also be formed as desired. Further, it is conceivable to form the cooling air guide members 25 and 25 ′ and the closing member 28 integrally with the flywheel 4. 62167
  • a radiation fin 8b is provided on the inner peripheral surface facing the center hole 8a through which the crankshaft 3 passes.
  • Has formed. 8 c is a bolt hole for fastening the bolt to the bracket 8 for the engine body 1 and 8 d for the sword 7.
  • the heat radiation fins formed on the stay bracket 8 may be formed not only on the inner peripheral surface of the stay bracket 8 but also on other appropriate places.
  • the cooling air from the outlet of the cooling air passages 1 e and 1 g opening to the front surface of the engine body 1 is higher than the outlet.
  • a vertically flat guide plate facing the outlet of the cooling air passages 1e and 1g so as to be smoothly and intensively introduced into the generator D in the recess 4a of the flywheel 4 located at the upper part. 3 1 is provided.
  • the guide plate 31 is formed so as to surround the lower part of the left side of the bearing portion for the crankshaft 3 on the flywheel 4 side of the engine body 1 in a front view so as to surround the guide plate 31 in an arc shape in a front view.
  • the lower left end is opposed to the outlet of the side cooling air passage 1 g, and the lower end is opposed to the outlet of the bottom cooling air passage 1 g.
  • the space between the engine body 1 and the outer peripheral edge of the guide plate 31 is covered with a fan case 14, and furthermore, just above the side cooling air passage 1e outlet and the bottom cooling air passage 1g outlet
  • the shielding plates 31a and 31b extend substantially perpendicularly to the surface of the guide plate 31 and abut against the front surface of the engine body 1, respectively.
  • the closing plate 31a prevents the air from the side cooling air passage 1e from leaking directly above it, and the shielding plate 31 prevents the air from the bottom cooling air passage 1g from the outlet. It does not leak to the right.
  • the cooling air W2 from the outlet of the cooling air passages 1e and 1g is supplied to the guide plate 31 by the guide plate 31 and its shielding plate portions 31a31b and the fan case 14. It is guided toward the inner peripheral side when viewed from the front, and intensively flows into the recess 4 a of the flywheel 4.
  • the flow of the cooling air W 2 to the outer periphery of the cooling fan 5 is ensured, and the cooling effect of the cooling coil 7 a in the generator D by the cooling air W 2 is obtained.
  • cooling fan 5 with cooling air guide member 25 'and blocking member 28 attached to flywheel 4, radiation fin structure of stay bracket 8 and cooling air passage
  • the three structures of the structure in which the guide plate 31 is disposed to face 1 e ⁇ 1 g are combined, one or two of them may be selectively employed. Further, a cooling structure combining at least one of these three structures with the external auxiliary blowing blade 26 of the first embodiment or the internal auxiliary blowing blade 27 of the second embodiment may be employed.
  • the fan case 14 the space 32 above the cooling fan 5 is introduced into the cooling air W 1 from the air introduction port 11 a by the rotation of the blower blade 5 a, and the cooling air W 2 is joined there.
  • the bottom cooling air passage 1 g formed in the lower portion of the engine body 1 is low-pressure because the cooling fan 5 sucks the cooling air W 2 to the generator D by the cooling fan 5.
  • the fan case 14 is provided with a joint member 33 for communicating the high-pressure space 32 with the outside, and the low-pressure air is supplied to the bottom cooling air inlet 1 f opening on the bottom of the engine body 1.
  • a joint member 34 is provided to communicate the bottom cooling air passage 1 g with the outside, and the two joint members 33 and 34 are connected to each other by a tube or the like.
  • part of the cooling air in the high-pressure space 32 flows into the low-pressure bottom cooling air passage 1 g, and cools the oil pan 1 d and the stay coil 7 a, which are particularly hot, again.
  • the cooling efficiency is increased. That is, the oil pan 1 d ⁇ stay coil 7 a etc., which becomes particularly high in temperature, is arranged along the low pressure space, and by partially recirculating the air in the high pressure space into the low pressure space, these high temperature
  • the department is intensively and intensively cooled.
  • such a structure that connects the high-pressure space and the low-pressure space to the cooling fan 5 is adopted in the third embodiment.
  • the basic cooling structure described above is adopted.
  • the flywheel 4 in each of the embodiments described above is attached to the crankshaft 3 so that the side wall 4b is located outside (in front of) the generator D.
  • the engine generator has a flywheel 4 ′ fixed to the crankshaft 3 such that its side wall 4 ′ b is located inside (rearward) of the generator D, and therefore the flywheel 4 ′
  • a concave portion 4'a is arranged on the outside, and a rotor magnet 6 and a stay 7 are provided inside the concave portion 4'a to constitute a generator D.
  • the stay 7 is attached to a stator bracket 8 fixed to the fan case 14.
  • the side wall 4 ′ b of the flywheel 4 ′ is arranged between the generator D and the engine 1, and in the recess 4 ′ a outside the flywheel 4 ′, the stationary coil 7 ′
  • the inside (rear) of a is closed and the outer (front) is open.
  • a plurality of blower blades 5 a of the cooling fan 5 are attached to the outer end of the outer periphery of the flywheel 4 ′, and communicate the outside and the inside of the side wall 4 ′ b with the side wall 4 ′ b.
  • a plurality of ventilation holes 4'c are penetrated to cool the oil pan 1d, etc. through the cooling air passages 1e and 1g by the operation of the cooling fan 5 accompanying the rotation of the flywheel 4 '.
  • the cooling air W2 is guided to the outside of the side wall 4'b through the ventilation hole 4'c, and flows to the outer periphery of the cooling fan 5 while cooling the coil 7a.
  • the generator D mounted on the outside of the flywheel 4 ′ is cooled by the cooling air W 2 from the cooling air passages 1 e and 1 g, similarly to the generator D. Since the side wall 4'b of the flywheel 4 'is interposed between the engine 1 and the generator D, the heat from the engine 1 which becomes hot during operation is cut off by the side wall 4'b and the generator D Is not transmitted to As a result, the generator D is prevented from being heated by the heat of the engine 1, and the cooling effect of the cooling fan 5 can be further improved.
  • the generator D provided in the flywheel of the engine can be efficiently cooled even in a high-frequency high-power configuration using the rotor magnet 6 composed of a rare-earth magnet that is a ferromagnetic permanent magnet. A sufficient cooling effect can be obtained, and stable output and good durability can be maintained.
  • an engine generator including the generator D described above and capable of generating high-frequency power is housed in a movable soundproof case to form a generator unit.
  • a high-power high-frequency generator 44 was added to the conventional engine generator in which the generator D 'with the output of the commercial power supply shown in Figs. 32 and 33 was installed inside the flywheel 2 of the engine 1. Connected and configured power supply can be moved with wheels A conventional high-frequency generator unit installed on the above soundproof unit will be described.
  • the generator D 'provided on the flywheel 4 of the engine generator has a low frequency, so when it is used as a power source for a floodlight or a welding machine, a high-frequency generator 44 is used separately.
  • the engine output section of the engine generator that is, the engine output extraction section 3b at the end of the crankshaft 3 opposite the flywheel side. Therefore, the soundproof case 39 'needs to be long in the axial direction of the crankshaft 3 to accommodate the combined length of the engine generator and the length of the generator connected thereto. .
  • the exhaust muffler 35 5 ′ of the engine 1 along with the high frequency generator 44 on the left and right (3 6 ′
  • the axis of the exhaust muffler 35' must also be parallel to the axis of the crankshaft 3. Therefore, if the length of the high-frequency generator 44 (in the direction of the axis of the crankshaft 3) is reduced to shorten the length of the soundproof case 39 ', the length of the exhaust muffler 35' will be adjusted accordingly. It must be shortened, which reduces the soundproofing effect.
  • the arrangement of the exhaust muffler causes a trade-off between the compacting factor of the generator unit and the soundproofing factor.
  • a fuel tank 38 ' is disposed at the upper part of the soundproof case 39', and the fuel filler port 38'a of the fuel tank 38 'is located at a position higher than the upper end of the soundproof case 39'. It protruded upward.
  • the suspension member 39'b is formed in the fuel tank 38 'so as to protrude upward.
  • the generator unit is suspended by a crane hook or the like. The suspension member protruded upward from the upper end of the soundproof case 39 '. Therefore, since these interfere with each other, it has not been possible to stack the generator units vertically in the past.
  • axles 40 and 40 extending in the left-right axis direction are supported at the bottom of the soundproof case 39 in parallel to the front and rear, and the left and right ends of each axle 40 are provided.
  • the wheels 41 are fixed to each of them.
  • the inside of the soundproof case 39 is divided into upper and lower rooms, the upper room is a power room 39a, and the lower room is a ventilation duct. G 3 9b.
  • a hanging member 42 protrudes above the upper end surface of the soundproof case 39 (in the present embodiment, the hanging member 42 is directly attached to or formed on the soundproof case 39 instead of the fuel tank).
  • the generator unit can be hung on hooks of a crane.
  • an engine generator including the engine E and the generator D is installed in the power room 39a.
  • the bottom of the engine E that is, the bottom of the engine body 1 is raised above the floor of the soundproof case 39a, and a vibration isolating support member 37 is interposed between the engine E and the floor as shown in FIG. ing.
  • a wind guide duct 15 can be interposed between the bottom of the engine body 4 and the floor of the soundproof case 39a.
  • a fuel tank 38 is provided above the engine generator, and a fuel filler port 39 a with a cap thereof protrudes upward from an opening at an upper end surface of the soundproof case 39.
  • a wind collecting cover 36 is disposed on the opposite side of the flywheel 4 via the engine E, and the exhaust muffler 35 of the engine 1 is disposed therein.
  • a flow of cooling air mainly through the cooling air W1 (the cooling air W2 is also merged) is introduced through the cylinder portion 1a and the like, and cools the exhaust muffler 35.
  • the air is exhausted from the air outlet 39j which is opened on a part of the side surface of the soundproof case 39.
  • the exhaust muffler 35 is provided horizontally in a direction orthogonal to the axis of the crank shaft 3 on a horizontal plane.
  • the generator D is installed using the space in the recess 4 a formed in the flywheel 4, the engine generator including the engine E and the generator D is arranged in the axial direction of the crankshaft 3. The length from the outer end of the flywheel 4 to the end on the side opposite to the flywheel 4 of the engine E without the generator D is almost the same.
  • the exhaust muffler 35 is disposed in a direction orthogonal to the axis of the crankshaft 3, so that the exhaust muffler is not provided in the direction of the crankshaft 3. 3
  • the length from the furthest part of the engine E to the end of the engine generator on the opposite side of the flywheel 4 from the engine E can be kept short. 7 P
  • the length of the soundproof case 39 in this direction that is, the front-back length can also be reduced.
  • the left-right width of the soundproof case 39 is also small. It only needs to be set according to the left and right width of E, and it is not necessary to make it longer. Since the length of the engine E in the left-right direction, that is, the direction perpendicular to the crankshaft 3 is sufficiently large, the length of the exhaust muffler 35 is assumed to be within the left-right width of the engine E. Can be secured to the extent that the desired exhaust noise silencing effect can be obtained.
  • the engine generator of the present invention can be made compact and low noise when configuring a generator unit, despite having high output.
  • the generator unit can be easily moved and installed when used, and the storage space for storage can be reduced.
  • a plurality of ventilation openings 39 d are opened, and outside air as cooling air flows from the ventilation opening 39 d inside the ventilation duct 39 b. It is configured to take in
  • the ceiling of the ventilation duct 39 b (that is, the floor of the power room 39 a) communicates the ventilation duct 39 b with the power room 39 a in order from the air guiding port 39 d.
  • the opening of the cooling air inlet 3 9 e ⁇ 39 f ⁇ 39 g is provided, and the ventilation opening 39 f extends downward from the bottom cooling air inlet 1 f at the bottom of the engine E.
  • a ventilation duct 15 is fitted inside. Further, in the ventilation duct 39b, both sides of the ventilation port 39e.39f.39g and between the ventilation port 39g and the suction port 39d are closed. Further, as shown in FIG. 29, a partition plate 43 is provided.
  • the outside air introduced into the ventilation duct 39 b from the ventilation duct 39 d flows along the outer sides of the partition 43 to the counter-vent 39 d side, and at the end of the partition 43.
  • a part of the air flows into the power chamber 39a through the ventilation port 39e, and the air flows into the side cooling air passage 1e formed on the side wall of the engine body 1 of the engine E.
  • the anti-fra The cooling air W 2 is introduced through an inlet opening on the wheel side, and becomes the cooling air W 2.
  • the exhaust muffler 35 disposed above the ventilation port 39e or the cover 36 covering the exhaust muffler 35 can be cooled.
  • the wind that has passed without being introduced into the ventilation port 39 e is then surrounded by the notch on the anti-suction port 39 d side of the partition plate 43 inside the partition plate 43.
  • a part of which is introduced between the ventilation opening 39 f and the bottom cooling air bottom introduction opening 1 f at the bottom of the engine body 1 located just above the ventilation opening 39 f.
  • the cooling air flows into the bottom cooling air passage 1 g via the duct 15 and becomes the cooling air W 2, which is guided to the generator D by the cooling fan 5, and is connected to the oil pan 1 d of the engine E and the generator D. Station overnight cool 7 a etc. to cool.
  • the last ventilation opening 39 g has a large opening along the partition plate 43, and the cooling air from the suction opening 39 d arriving so far is introduced into the power room 39 a and the fan
  • the case 14 and the members arranged therearound are cooled from below, and are used as cooling air W 1 introduced into the fan case 14 from the air guide port 14 a of the human case 14.
  • FIGS. 30 and 31 disclose a configuration in which a generator unit having an engine generator stored in the soundproof case 39 described above can be stacked vertically.
  • FIG. 27 used in the description of the embodiment of the generator unit is used as an explanatory diagram common to the present embodiment.
  • the bottom of the soundproof duct 39 b is recessed upward near the center of the bottom of the soundproof duct 39 b using the space inside the ventilation duct 39 b, and the recess 39 h for the oil supply port and A recess 39 i is formed.
  • the positions, widths, and depths of the recesses 3 9 h and 39 i are set so that the oil supply port 38 a and the suspension member 42 can be fitted into them, respectively.
  • the refueling port 38a and the suspending member 42 provided at the top of the lower generator unit fit into the recesses 39h and 39i, respectively.
  • the recesses 39 h and 39 i are formed to be approximately the same size or slightly larger than the lubrication port 38 a and the suspension member 42, respectively.
  • the opening 38a and the suspension member 42 are locked in the recesses 39h and 39i, respectively, to prevent the generator units stacked on the upper stage from moving in the horizontal direction. ing.
  • the left and right edges of the upper end of the soundproof case 39 are, as shown in FIG.
  • the chamfers 39 c ⁇ 39 c of the soundproof case 39 of the lower generator unit correspond to the inner lower ends of the left and right wheels 4 1-4 1.
  • the upper and lower wheels of the soundproof case 39 of the lower generator unit are attached to the bottom of the upper soundproof case 39 of the upper generator unit. Alternatively, the wheels come into contact with the lower ends of the wheels 40 and 40, so that there is no space between the two generator units in the vertically stacked state, so that the vertical height can be suppressed and the wheels do not wobble left and right. I have.
  • each generator unit itself length in the direction of the crankshaft
  • it can be stacked compactly and stably in multiple stages up and down. Can be stored.
  • the recesses 39 h and 39 i that allow the stacking of the upper and lower parts are provided with the ventilation holes 39 e and 39 f and 39 g as shown in Figs. 28 and 29 described above. It can be formed even in the ventilation duct 39 b provided with the plate 43. That is, the vent holes 39 e ⁇ 39 f ⁇ 39 g, the partition plate 43 force, and the concave portions 39 h ⁇ 39 i are formed at positions avoiding these concave portions.
  • FIG. 34 an auxiliary generator 45 is connected to the engine output extraction portion 3b formed at the end of the crankshaft 3 on the side opposite to the flywheel 4, and is connected to the generator D by the engine E at the same time. It can be driven.
  • the auxiliary generator 45 is configured as, for example, an AC generator such as a commercial power supply that outputs 100 V'50 Hz / 60 Hz power.
  • the high-frequency AC generator D in the engine generator (in this case, the generator D 1 shown in FIG. 3 described above) is irradiated with light over a wide area during nighttime work outdoors, as shown in FIG.
  • auxiliary lighting is connected to the auxiliary generator 45 as a commercial power source connected to the engine generator, and in addition to irradiating the workplace with the floodlight, spotting the work area etc.
  • the work can be further facilitated in light of the objective, and the work efficiency can be improved.
  • connecting a power tool to the auxiliary generator 45 eliminates the need for a separate power supply, and saves time and labor for work preparation, thus improving work efficiency. Can be improved, and costs can be reduced.
  • the submersible pump when performing work at the water's edge, can be connected to the auxiliary generator 45 for use.
  • the lighting is connected to the auxiliary generator 45 to save the work.
  • This makes it easier to perform welding work in the light, and it is possible to connect a power tool that removes burrs and force after welding, and perform post-processing simultaneously with welding.
  • the welding work can be performed in a flow work, and the work efficiency can be improved.
  • the workability of the welding operation can be improved.
  • a hydraulic pump 47 is connected to the engine output section of the engine generator.
  • the camshaft 46 for driving the valve train which is geared with the crankshaft 3 in the crankcase 1c, has the end on the side opposite to the flywheel 4 on which the flywheel 4 is disposed protruding to the outside.
  • the engine output extraction section 46a is formed so that the load can be connected to the drive.
  • a hydraulic pump 47 is connected as the load.
  • FIGS. 36 and 37 show an engine generator of the present invention (in this case, provided with a generator D 1) to which a hydraulic pump 47 is connected, and a power source and a power source of a self-propelled floodlight.
  • This floodlight is equipped with an engine generator connected to a hydraulic pump 47 on a bogie frame 48 having a pair of left and right wheels 49 at the front and back, and is covered with a soundproof case 50.
  • An extendable column 51 is erected from the frame 48, and the column 51 supports a plurality of metal halide lamps (discharge lamps) 52.
  • the handle 53 is erected on the bogie frame 48, and the operator can move the floodlight by manually pushing the handle 53.
  • a traveling lever 56 is provided above 53.
  • a pair of left and right stand members 54 are attached to the lower end of the handle 53 so as to be rotatable. When the projector is stopped, it is lowered to ground.
  • a power source that connects a hydraulic pump 47 to an engine generator consisting of an engine E and a high-frequency AC generator D (D1), and a fuel tank 3 above it. 8 mag is provided.
  • the generator D 1 is used as a power source for the illumination of the metal halide lamp 52
  • the hydraulic pump 47 is used as a power source for a hydraulic motor 55 for traveling and a hydraulic motor 57 for raising and lowering the lamp described later.
  • the driving hydraulic motor 55 is connected to the left and right wheels 49 of one of the front and rear wheels of the wheels 49, 49, and 49 ', and as shown in FIG. 39, the fluid is supplied to the hydraulic pump 47.
  • the traveling control valve 61 is operated by the traveling lever 56 to control the output of the two traveling hydraulic motors 55, thereby stopping the wheels 49 in the normal rotation and the reverse rotation.
  • a hydraulic motor 57 for raising and lowering the ramp is mounted in the middle of the column 51, and is fluidly connected to a hydraulic pump 47 as shown in FIG.
  • the lifting mechanism of the metal halide lamp 52 will be described with reference to FIG.
  • the support 51 has a first cylinder 51a having a lower end fixed to a bogie frame 48, and a second cylinder 51b is fitted inside the second cylinder 51b to be slidable forward and backward, and a third cylinder 5 is fitted to the second cylinder 51b. 1c is fitted inside so that it can slide forward and backward, and the fourth cylinder 51d can be fitted inside the third ⁇ 51c so that it can slide forward and backward.
  • One end of a wire 59 is connected inside the fourth cylinder 51d, and the other end is provided at the output end of a hydraulic motor 57 for lifting and lowering mounted on the outer surface of the first cylinder 51a.
  • the wire 59 is wound around the winch 57a by the forward / reverse rotation of the winch 57a driven by the lifting hydraulic motor 57, and is fed out.
  • pulleys 60 are arranged outside the first cylinder 51a, inside the second cylinder 51b and the third cylinder 51c, respectively, and wires 59 are engaged. Turning You. Grooves are formed in the third cylinder 51c and the fourth cylinder 51d so as not to interfere with the pulleys 60 provided in the second cylinder 51b and the third cylinder 51c, respectively. I have.
  • the operation of automatically adjusting the irradiation angle can be performed, and labor such as pushing a heavy projector by hand and adjusting the height of the metal halide lamp 52 by hand can be omitted.
  • a floodlight it is possible to quickly irradiate an appropriate area for work, and to improve work efficiency.
  • an air compressor 63 as a load is shoe-connected to an engine output take-out portion 46a at the end of the cam shaft 46 of the engine E.
  • an air compressor 63 is connected to an engine generator in which the generator D is a high-frequency AC generator D2 for a welding machine shown in FIG.
  • a generator is connected and driven by a welding machine, and an air-driven tool is connected to the air compressor 63 to perform welding and other deburring work at the same time as welding, or to connect painting equipment.
  • painting can be performed immediately after welding.
  • the welding operation can be performed in a flow operation, and the operation efficiency can be improved.
  • such an air compressor 63 is connected to an engine generator having the high-frequency AC generator D 1 for the floodlight shown in FIG.
  • a projector can be connected to the machine D1 to illuminate it, irradiate the work place, and connect a tool or the like driven by air to the air compressor 63, so that work can be performed by the tool.
  • a tool can be connected to the air compressor 63 directly connected to the engine E while using the engine generator for the floodlight, and there is no need to prepare a separate drive source for the tool. This saves time and labor, improves work efficiency and reduces costs.
  • a high-pressure water pump 64 is connected as a load to the engine output extraction section 46a.
  • This engine generator is equipped with, for example, a generator D1 shown in Fig. 4 as a generator D, which illuminates the floodlight and irradiates the construction site. It can be used to wash construction machinery and the like that has completed work by spraying water. Alternatively, the surface of the object to be painted is washed before painting with the spray water from the high-pressure water pump 64 while using this engine generator for painting work and illuminating the floodlight with the generator D1. Or remove old paint for repainting. There is no need to separately prepare a drive source for the high-pressure water pump 64 other than the engine generator, which saves time and effort for work preparation, etc., thereby improving work efficiency and reducing costs. .
  • the hydraulic pump 47 shown in Fig. 35, the air compressor 63 shown in Fig. 40, and the high-pressure water pump 64 shown in Fig. 41 connected to the engine output port 46a all supply pressure. (Pressure supply device), and the pressure supplied by the device can be used in various ways. In addition, various loads, such as a motor, can be connected to the engine output extraction part 3b or 46a. Industrial applicability
  • the engine generator according to the present invention has a compact configuration that enables high-frequency power generation, is excellent in storage and transportability, and has a high frequency power supply in addition to a floodlight and a welding machine.
  • the compact configuration and the need to prepare other high-frequency generators are not required. It is possible to connect various other loads by using the engine output of the machine, so it is low cost. Demand will be high in such work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

An engine generator, wherein, in a recessed part (4a) of a flywheel (4) of an engine (E), rotor magnets (6) comprising ferromagnetic permanent magnets are installed fixedly on the inner peripheral surface of the flywheel (4) and stator coils (7a) as armature poles which are installed on a stator (7) installed fixedly to an engine proper (1) through a stator bracket (8) and set so that they can output a high frequency power are allowed to face the rotor magnets (6) so as to form a generator (D) in the recessed part (4a), a blowing vane (5a) is installed on the outside of the flywheel (4) so as to form a cooling fan (5) and, in the flywheel (4), ventilating holes (4c) for communication of the installation space for the cooling fan (5) with the recessed part (4a) are formed so that cooling air is blown from engine cooling air passages (1e, 1g) formed in the engine proper (1) to the cooling fan (5) through the generator (D) formed in the recessed part (4a) and the ventilating holes (4c).

Description

明 細 書 エンジン発電機 技術分野  Description Engine Generator Technical Field
本発明は、 エンジン発電機、 特にエンジンのフライホイールに発電機を内装し てなるタイプのエンジン発電機に関し、 また、 このようなエンジン発電機におけ るエンジン及び発電機を有効に冷却する構造に関し、 また、 該エンジン発電機よ り他にエンジン出力を取出可能とする構造に関し、 更には、 このようなエンジン 発電機を電源または動力源とする装置のコンパクト化を図る構造に関する。 背景技術  The present invention relates to an engine generator, particularly to an engine generator in which a generator is mounted on a flywheel of an engine, and to a structure for effectively cooling the engine and the generator in such an engine generator. Further, the present invention relates to a structure capable of taking out engine output other than the engine generator, and further relates to a structure for downsizing a device using such an engine generator as a power source or a power source. Background art
エンジン発電機としては、 従来、 エンジンのクランク軸に対し、 エンジンとは 別体の発電機を直結、 或いはベルトゃギア等の動力伝達機構を介して連結する構 造があるが、 コンパクト性を要求される場合、 また、 クランク軸の回転を他の動 力として取り出す必要がある場合のために、 エンジンのフライホイ一ルに形成し た凹部内に口一夕磁石とステ一夕コイルよりなる発電機を収納してなるエンジン 発電機がある。 例えば、 実開昭 5 8 - 6 6 8 6 0号公報や実開昭 5 8 - 1 3 9 8 8 0号公報の如くである。  Conventionally, engine generators have a structure in which a generator separate from the engine is directly connected to the engine crankshaft or connected via a power transmission mechanism such as a belt-to-gear gear. In addition, if it is necessary to take out the rotation of the crankshaft as other power, a generator consisting of a magnet and a coil is installed in a recess formed in the flywheel of the engine. There is an engine generator that houses the engine. For example, Japanese Utility Model Application Laid-Open No. 58-68680 and Japanese Utility Model Application Laid-Open No. 58-139880.
また、 このようなフライホイール内装型の発電機を冷却する手段として、 従来 例えばフラィホイールの外側面の外周部に冷却ファンを形成し、 該フライホイ一 ルの回転に伴つて生じる冷却風をフライホイ一ルの外側から該凹部内に案内して 該発電機の冷却を行っていた。  As means for cooling such a flywheel built-in type generator, a cooling fan is conventionally formed on an outer peripheral portion of an outer surface of a flywheel, for example, and cooling air generated by rotation of the flywheel is fed to the flywheel. Of the generator was guided from outside to the recess to cool the generator.
しかし、 このフライホイール内蔵型の発電機は、 フライホイールに形成される 凹部内の口一夕磁石やステ一夕コィルの収納スペースが小さレ、ために、 発電能力 は通常 1 0 0 W程度の低いものであり、 周波数も低く、 このような発電機の用途 としては、 バッテリ一の充電用に使用される程度であつた。  However, the generator with a built-in flywheel has a small storage space for the magnet and the coil in the recess formed in the flywheel. Because of its low frequency and low frequency, such generators were used only for charging batteries.
従って、 発電機を投光機用や溶接機用等、 高周波で大きな電力を必要とする用 途に使用する場合には、 依然としてエンジンと別体の高周波発電機を用いなけれ ばならず、 前記のような必要性がある場合に不具合が生じていた。 Therefore, if the generator is used for applications requiring high power at high frequency, such as for floodlights and welding machines, a high-frequency generator separate from the engine must still be used. In the case where there is a need as described above, a problem has occurred.
仮に、 該エンジン発電機にエンジン出力取出部を設けている場合でも、 該ェン ジン取出部にこの高周波電源を接続してしまえば、 例えば油圧ポンプ、 エアコン プレッサ、 高圧水ポンプといった流体圧供給用装置等、 エンジン動力を必要とす る負荷を駆動しょうと思っても、 該エンジン出力取出部にはこの高周波電源が接 続されているので、 他に動力源を求めなければならない。 勿論、 該負荷をェンジ ン出力取出部に接続すれば、 高圧発電機の動力源を別途に用意しなければならな い。 このように従来のエンジン発電機では、 高周波電力を必要とされる場合に、 利用範囲が限定されてしまい、 電源や動力源を別途用意する必要があつた。 更に、 該ェンジン出力取出部がェンジン本体の反フラィホイール側に構成され ている場合に、 高周波発電機等の負荷は、 エンジン本体の反フライホイール側に 配置されるので、 排気マフラーは、 該負荷に並設すべく、 該負荷に平行状に配設 せざるを得ない。 しかし、 コンパク ト性を保持するには、 該負荷の前後長、 即ち クランク軸方向の長さを抑える必要があり、 対して、 排気マフラーは、 その防音 効果を十分に保つには、 長くする必要がある。 従って、 防音性かコンパクト性の いずれかを犠牲にしなければならなかった。  Even if the engine generator is provided with an engine output extractor, if this high-frequency power supply is connected to the engine extractor, for example, a hydraulic pump such as a hydraulic pump, an air conditioner presser, or a high-pressure water pump may be used. Even if you want to drive a load that requires engine power, such as a device, since this high-frequency power supply is connected to the engine output extractor, you must find another power source. Of course, if the load is connected to the engine output extraction section, a power source for the high-voltage generator must be prepared separately. As described above, in the conventional engine generator, when high-frequency power is required, the range of use is limited, and it is necessary to separately prepare a power supply and a power source. Further, when the engine output take-out section is configured on the anti-flywheel side of the engine body, the load of the high-frequency generator and the like is arranged on the anti-flywheel side of the engine body, so that the exhaust muffler is connected to the load. In order to arrange them side by side, they must be arranged in parallel with the load. However, in order to maintain compactness, it is necessary to reduce the length of the load in front and rear, that is, the length in the direction of the crankshaft. On the other hand, the exhaust muffler needs to be long in order to maintain its soundproofing effect sufficiently. There is. Therefore, either soundproofing or compactness had to be sacrificed.
以上のこと力、ら、 ェンジン発電機のフライホイールに内装される型式の発電機 を、 従来のコンパク ト性を保ちながら、 高出力高周波電力を提供できるものとす ることが望まれるのである。 このように構成すれば、 高周波電力を必要とする用 途において、 他に高周波電源を用意したり、 或いは、 該エンジンのエンジン出力 取出部に高周波発電機を接続したりする必要がなくなり、 後者の場合には、 該高 周波発電機を設けない分、 排気マフラーの配設スペースも確保できるのである。 また、 前記のフライホイール内蔵型の発電機冷却用の冷却ファンは、 コンパク ト性を要求される分、 小さく形成されているとともに、 冷却風の流れは、 該冷却 ファンからフライホイールの外側面に沿って凹部内に進入し、 再び該凹部内より 該外側面に沿って流出するものとなっており、 この凹部内からの流れが、 凹部内 に進入しょうとする流れと干渉するので、 冷却風が円滑に流れず、 即ち、 該凹部 内への十分な冷却風の流れが確保できず、 発電機の冷却効果が低かった。 従って フライホイール内蔵型の発電機を高出力化するに際しては、 ステ一夕コィルの発 熱量が増大するため、 該ステ一夕コイルの冷却効果がより高い冷却構造を考える 必要がある。 Therefore, it is desirable that the generator of the type installed in the flywheel of the engine generator can provide high-output high-frequency power while maintaining the conventional compactness. With this configuration, it is not necessary to prepare another high-frequency power supply or to connect a high-frequency generator to the engine output extraction portion of the engine in applications requiring high-frequency power. In this case, a space for disposing the exhaust muffler can be secured because the high-frequency generator is not provided. In addition, the cooling fan for cooling the generator with the built-in flywheel is formed to be small for the required compactness, and the flow of the cooling air flows from the cooling fan to the outer surface of the flywheel. Into the recess along the outer surface again from the inside of the recess, and the flow from the inside of the recess interferes with the flow to enter the inside of the recess. Did not flow smoothly, that is, a sufficient flow of cooling air into the recess could not be secured, and the cooling effect of the generator was low. Therefore, in order to increase the output of a generator with a built-in flywheel, Since the amount of heat increases, it is necessary to consider a cooling structure in which the cooling effect of the coil is higher.
更に、 該冷却ファンからの冷却風は、 フライホイール内の発電機の冷却を行う のみ、 或いは、 二次的にエンジンを冷却するのみであり、 エンジンの十分な冷却 は別途行う必要があった。  Furthermore, the cooling air from the cooling fan only cools the generator in the flywheel or only cools the engine secondarily, and it is necessary to perform sufficient cooling of the engine separately.
以上のことから、 フライホイールにおける発電機を内装する凹部内及びェンジ ンを十分に冷却する冷却構造が望まれるのである。 発明の開示  In view of the above, a cooling structure that sufficiently cools the interior of the recess in which the generator is installed in the flywheel and the engine is desired. Disclosure of the invention
本発明に係るェンジン発電機は、 エンジンのクランク軸に同一軸状に付設した フライホイールに、 該軸芯を中心として周状に凹部を形成し、 該凹部内において 、 該フライホイールの内周面に強磁性永久磁石よりなるロータ磁石を固設すると ともに、 該フライホイールと一体に回転する該ロータ磁石に対向すべく、 ェンジ ン本体側に複数の電機子極を配置して発電機を構成している。 フライホイールの 配置空間内に発電機が全て納まるので、 コンパクト性が確保される。 このような コンパクトな構成でありながら、 該ロータ磁石が強磁性永久磁石であり、 例えば 、 希土類磁石により構成することで、 一般的に用いられているフヱライト磁石に 対して 6倍〜 7倍程度の出力エネルギーを得ることが可能である。  An engine generator according to the present invention is configured such that a concave portion is formed circumferentially around the shaft center on a flywheel attached to a crankshaft of an engine on the same axis, and an inner peripheral surface of the flywheel is formed in the concave portion. A generator is constructed by fixing a rotor magnet made of a ferromagnetic permanent magnet on the engine body and arranging a plurality of armature poles on the engine body side to face the rotor magnet rotating integrally with the flywheel. ing. Since all the generators are accommodated in the space where the flywheel is placed, compactness is ensured. Despite such a compact configuration, the rotor magnet is a ferromagnetic permanent magnet. For example, by using a rare earth magnet, the rotor magnet is about 6 to 7 times as large as a commonly used fluoride magnet. It is possible to obtain output energy.
更には、 高周波出力特性を有すべく、 電機子極の極数を設定することで、 該フ ライホイールの凹部内に構成した発電機の出力特性は、 メタルハラィドランプ等 の放電ランプの放電特性に適した大きな垂下特性を有し、 例えば、 メタルハライ ドランプ等の放電ランプを具備した投光機の電源として、 該フライホイール凹部 内の発電機を使用でき、 該発電機と放電ランプとの間に、 重量大、 且つ、 高価な 安定器を介装する必要がなく、 コンパクトで安価な高周波電源として利用できる のである。 このように、 該エンジン発電機は、 投光機や溶接機等、 高周波電力を 必要とするものの電源としてそのまま使用できる。  Further, by setting the number of armature poles so as to have high-frequency output characteristics, the output characteristics of the generator configured in the recess of the flywheel are determined by the discharge characteristics of a discharge lamp such as a metal-halide lamp. It has a large drooping characteristic suitable for the characteristics, for example, as a power source of a floodlight equipped with a discharge lamp such as a metal halide lamp, a generator in the flywheel recess can be used. In addition, there is no need to interpose a large and expensive ballast, and it can be used as a compact and inexpensive high-frequency power supply. As described above, the engine generator can be used as it is as a power source for those requiring high-frequency power, such as a floodlight or a welding machine.
また、 このように構成した発電機におけるロータ磁石と電機子極との間には強 力な吸着力が働き、 フライホイールをクランク軸より外す際に、 フライホイール が該吸着によって旨く外れなかったり、 装着時に芯合わせがうまくいかなかった 99/62167 P In addition, a strong attraction force acts between the rotor magnet and the armature pole in the generator configured as described above, and when the flywheel is removed from the crankshaft, the flywheel does not come off properly due to the attraction. Alignment did not go well when installed 99/62167 P
りする。 本発明では、 該ロータ磁石を取り付けたままの該フライホイールを、 該 ロータ磁石と該電機子極との間の吸着力に杭しながらクランク軸と同一軸上に移 動させるフライホイール着脱手段を設けることで、 このような問題を解決でき、 クランク軸に対するフラィホイールの円滑な着脱を可能とする。 To In the present invention, there is provided flywheel attaching / detaching means for moving the flywheel with the rotor magnet attached thereto on the same axis as the crankshaft while piled on the attraction force between the rotor magnet and the armature pole. By providing this, such a problem can be solved, and the flywheel can be smoothly attached to and detached from the crankshaft.
そして、 ェンジン本体の反フラィホイール側にェンジン出力取出部を構成する ことで、 高周波電源として使用されるフライホイール内の発電機以外に、 このェ ンジン発電機を他のェンジン動力負荷の動力源として使用可能となる。 従って、 フライホイール内の高周波発電機を、 投光機や溶接機等、 高周波電力を必要とす る負荷の電源として使用する一方、 該エンジン出力取出部に商用電源用発電機を 接続して、 これを電源として補助ランプや工具等を使用でき、 或いは該エンジン 出力取出部に油圧ポンプ、 エアコンプレッサ、 或いは高圧水ポンプ等の圧力供給 装置を接続して、 この圧力供給によりェンジン発電機を搭載した自走機の走行動 力としたり、 工具を駆動したりすることができる。 このように、 他に商用電源や 圧力駆動される装置の動力源を用意する必要なく、 本発明のエンジン発電機だけ で、 フライホイール内の高周波発電機による電力供給と同時に様々な負荷を使用 できる。  By configuring the engine output extraction section on the anti-flywheel side of the engine body, this engine generator can be used as a power source for other engine power loads in addition to the generator in the flywheel used as a high-frequency power supply It becomes possible. Therefore, the high-frequency generator in the flywheel is used as a power source for loads that require high-frequency power, such as floodlights and welding machines, while a generator for commercial power is connected to the engine output extraction section. An auxiliary lamp or a tool can be used as a power source, or a pressure supply device such as a hydraulic pump, air compressor, or high-pressure water pump is connected to the engine output port, and an engine generator is mounted by this pressure supply. It can be used as the driving power of a self-propelled machine or driving a tool. As described above, it is not necessary to prepare a power source of a commercial power supply or a pressure-driven device, and various loads can be used simultaneously with power supply by the high-frequency generator in the flywheel only by the engine generator of the present invention. .
なお、 フライホイール内の高周波発電機のみを電源として使用するように構成 したェンジン発電機においては、 エンジン本体の反フライホイール側において、 排気マフラーをクランク軸に略直交する略水平方向に配設する。 これにより、 排 気マフラーも含めて、 クランク軸方向のエンジン発電機の全長がコンパクトとな る一方、 エンジン本体のクランク軸に直交する水平方向幅は十分に大きいので、 排気マフラーの長さも十分に確保され、 防音効果を犠牲にすることがない。 次に、 本発明は、 フライホイールの凹部内に発電機を内装してなるエンジン発 電機において、 該発電機を高周波発電機として場合に電機子極のコイル部分が特 に高温となるため、 一層有効な冷却構造が望まれるので、 以下のような冷却構造 を提供するものである。  In an engine generator configured to use only the high-frequency generator in the flywheel as a power source, an exhaust muffler is arranged in a substantially horizontal direction substantially orthogonal to the crankshaft on the side opposite to the flywheel of the engine body. . This reduces the overall length of the engine generator in the direction of the crankshaft, including the exhaust muffler, while the horizontal width of the engine body perpendicular to the crankshaft is sufficiently large, so that the length of the exhaust muffler is also sufficient. It is secured and does not sacrifice the soundproofing effect. Next, the present invention relates to an engine generator in which a generator is housed in a recess of a flywheel. In a case where the generator is a high-frequency generator, the coil portion of the armature poles is particularly high in temperature. Since an effective cooling structure is desired, the following cooling structure is provided.
まず、 本発明に係るエンジン発電機は、 エンジンのクランク軸に同一軸状に付 勢したフライホイールに、 該軸芯を中心として周状に凹部を形成し、 該凹部内に おいて、 該フライホイールに固設される回転子と、 エンジン本体に固設される固 定子とを配設して発電機を構成し、 該フライホイ一ルの反ェンジン側に複数の送 風羽根を配設して冷却ファンを構成するとともに、 該フライホイールに、 一開口 端を少なくとも該凹部内に連通させる貫通孔を形成して、 エンジン本体側より、 該凹部内及び該貫通孔を経て、 該冷却ファンに至る送風を可能とするものであつ て、 これにより、 該フライホイールの凹部内において、 冷却風が滞留したり乱流 を生じたりすることがなく、 ェンジン側から冷却ファンへと一方向に冷却風が流 れ、 該発電機のうち、 特に高温となる電機子極のコイル部分を該冷却風が通過し て、 これを有効に冷却する。 First, in the engine generator according to the present invention, a concave portion is formed circumferentially around the shaft center on a flywheel urged coaxially with the crankshaft of the engine. The rotor fixed to the wheel and the rotor fixed to the engine body A generator is constructed by arranging a fixed element and a cooling fan is constructed by arranging a plurality of blower blades on the anti-engine side of the flywheel, and the flywheel has at least one open end. A through-hole communicating with the inside of the recess is formed to allow air to flow from the engine body side to the cooling fan through the inside of the recess and through the through-hole. The cooling air flows in one direction from the engine side to the cooling fan without stagnation or turbulence of the cooling air, and the coil of the armature pole of the generator that becomes particularly hot The cooling air passes through the portion to cool it effectively.
該送風羽根に加えて、 フライホイールの外側、 或いは内側に補助送風羽根を配 設することにより、 ェンジン側から貫通孔を通過する冷却風の流れは一層強まつ て、 フライホイール凹部内の発電機の冷却効果を一層向上する。  By arranging auxiliary blower blades on the outside or inside of the flywheel in addition to the blower blades, the flow of cooling air passing through the through holes from the engine side is further strengthened, and the generator in the recess of the flywheel recesses The cooling effect is further improved.
また、 フライホイールの送風羽根配設側に、 エンジン本体側から該貫通孔を通 過した冷却風を該冷却ファンに向けて案内する冷却風ガイド部材を配設すること により、 冷却風が貫通孔を抜けた後に該冷却ファンまで円滑に送られるので、 該 貫通孔内にエンジン側からの冷却風が次々に導入されて通過する。 従って、 該貫 通孔及びフライホイール凹部内を通過するェンジン側からの冷却風の流れが安定 し、 該凹部内の発電機の冷却効果を確実にする。  Further, a cooling air guide member for guiding the cooling air passing through the through hole from the engine body toward the cooling fan is provided on the side of the flywheel where the blowing blades are provided, so that the cooling air flows through the through hole. After passing through the cooling fan, the cooling fan is smoothly sent to the cooling fan, so that cooling air from the engine side is successively introduced into the through hole and passes therethrough. Therefore, the flow of the cooling air from the engine passing through the through-hole and the flywheel recess is stabilized, and the cooling effect of the generator in the recess is ensured.
し力、し、 冷却ファンに向かっては、 該フライホイールの外側からの、 即ち、 該 エンジン側からの冷却風に対向する向きの冷却風も流れてくる。 この冷却風によ つて、 該エンジン側からの冷却風が、 該凹部内にて滞留或いは乱流してしまい、 発電機の冷却効果を減じてしまうという事態が考えられる。 そこで、 前記の冷却 風ガイド部材を、 該送風羽根の回転軌跡外周端部付近まで延設し、 該フライホイ —ルの外側空間を該フラィホイールの表面に略平行状に仕切る構造とすることに より、 該エンジン側から該貫通孔及び該凹部内を経た冷却風が、 対向する向きの 冷却風の影響を受けることなく、 従って凹部内での滞留や乱流を起こすことなく 送風羽根の回転軌跡外周端部付近、 即ち冷却ファンの外周部近傍まで案内され、 この冷却風の流れが更に安定して、 フライホイール凹部内の発電機の冷却効果を 一層確実にする。  The cooling air flows from the outside of the flywheel toward the cooling fan, that is, in the direction opposite to the cooling air from the engine side. Due to the cooling air, the cooling air from the engine side may stay or turbulently flow in the concave portion, and the cooling effect of the generator may be reduced. Therefore, the cooling air guide member is extended to the vicinity of the outer peripheral end of the rotation trajectory of the blower blade to partition the outer space of the flywheel substantially parallel to the surface of the flywheel. The cooling wind passing through the through hole and the inside of the recess from the engine side is not affected by the cooling wind in the facing direction, and therefore does not stay or turbulent in the recess, and the outer peripheral end of the rotation locus of the blower blades The cooling air flow is guided more stably to the vicinity of the cooling fan, that is, to the vicinity of the outer periphery of the cooling fan, and the cooling effect of the generator in the flywheel recess is further ensured.
この構成において、 更に、 冷却ファンの反フライホイール側端に、 該送風羽根 同士の間の空間を閉塞すベく、 該フライホイール表面と略平行状の閉塞部材を配 設する。 冷却ファンに吸引されてフライホイールの外側(反エンジン側) から導 入される (エンジン側からの冷却風に対向する) 冷却風は、 本来、 送風羽根の回 転軌跡外周端側、 即ち、 冷却ファンの外周側に送風されて、 エンジンのシリンダ 部やその付近に配設される電装品等を冷却するが、 冷却ファンが回転すると、 送 風羽根同士の間の空間より空気が押し出されてこの冷却風を押し戻してしまい、 これらの冷却効果を減じてしまうおそれがある。 そこで、 前記の改良された冷却 風ガイド部材に加えて、 このような閉塞部材を設けることにより、 フライホイ一 ルの外側からの冷却風は、 該冷却風ガイド部材によりエンジン側からの冷却風と の干渉が回避され、 更に該閉塞部材にて、 送風羽根同士の間から押し出される空 気の流れに押し戻されることもなく、 円滑にェンジンのシリ ンダ部等に送風され て、 これらの冷却効果を確保できるのである。 In this configuration, further, the blower blade is provided at an end opposite to the flywheel of the cooling fan. In order to close the space between the flywheels, a closing member substantially parallel to the flywheel surface is provided. The cooling air is sucked into the cooling fan and introduced from the outside of the flywheel (opposite the engine side) (opposed to the cooling air from the engine side). The air is blown to the outer periphery of the fan to cool the engine cylinder and electrical components arranged near it, but when the cooling fan rotates, air is pushed out of the space between the air blowing blades, The cooling air may be pushed back, and these cooling effects may be reduced. Therefore, by providing such a closing member in addition to the improved cooling air guide member, the cooling air from the outside of the flywheel is separated from the cooling air from the engine side by the cooling air guide member. Interference is avoided, and the blocking member does not return to the flow of air pushed out from between the blower blades, but is smoothly blown to the cylinder portion of the engine, etc., to ensure these cooling effects. You can.
また、 フライホイール凹部内における発電機の固定子を支持部材を介してェン ジン本体に一体状に取りつけている場合に、 固定子に電機子極巻線が具備されて いると、 該巻線の発する高温が固定子より支持部材に伝導する。 そこで、 該支持 部材に、 放熱フィンを形成することで、 該放熱フィンが前記のエンジン側から該 貫通孔及び該凹部内を抜ける冷却風に当たり、 該支持部材が有効に冷却され、 こ れにより、 該巻線における高温部の冷却効果を更に向上することができる。 また、 フライホイール内装型の発電機は、 フライホイールの内側、 即ちェンジ ン本体に面する側に形成した凹部内に配設するのが一般的であるが、 該凹部をフ ラィホイールにおける反ェンジン本体側に形成して、 該凹部内の発電機と該ェン ジン本体との間に該フライホイールが介在する状態とすることで、 凹部内の発電 機にェンジン本体の発する熱がフラィホイールにて遮断され、 発電機の高温化を 抑制できる。  When the stator of the generator in the flywheel recess is integrally attached to the engine main body via the support member, if the stator is provided with the armature pole winding, Is generated from the stator and transmitted to the support member. Therefore, by forming a radiation fin on the support member, the radiation fin hits the cooling air passing through the through hole and the concave portion from the engine side, and the support member is effectively cooled. The cooling effect of the high-temperature part in the winding can be further improved. Generally, a generator with a built-in flywheel is arranged inside a flywheel, that is, in a recess formed on the side facing the engine body. Side, and the flywheel intervenes between the generator in the recess and the engine body, so that the heat generated by the engine body in the generator in the recess is cut off by the flywheel. As a result, the temperature of the generator can be suppressed from rising.
前記のように、 フライホイールに貫通孔を設けて、 エンジン側から送風される 冷却風が凹部内及び該貫通孔を経て冷却ファンに向かうよう構成されているが、 該ェンジン本体内に、 前記フライホイールに向けて出口を有する冷却風通路を形 成し、 該冷却風通路を通過した冷却風が、 前記フライホイールの凹部内と前記貫 通孔とを経て、 該フライホイールの該送風羽根配設側空間に送風されるものとす ることで、 冷却ファンにより貫通孔を通じて吸引される風が、 冷却風通路を通過 する間にエンジン本体を冷却し、 更に、 フライホイールの凹部内を通過する中で 発電機を冷却するものであり、 エンジンも発電機も有効に冷却する冷却風の流れ が確保できるのである。 As described above, the flywheel is provided with a through-hole so that the cooling wind blown from the engine side is directed to the cooling fan through the recess and the through-hole. Forming a cooling air passage having an outlet toward the wheel, wherein the cooling air passing through the cooling air passage passes through the inside of the recess of the flywheel and the through hole, and arranges the blower blades of the flywheel. Shall be blown into the side space As a result, the wind sucked through the through-hole by the cooling fan cools the engine body while passing through the cooling air passage, and further cools the generator while passing through the recess of the flywheel. However, the flow of cooling air that effectively cools both the engine and the generator can be secured.
このような構成におし、て、 冷却ファンの吸弓 Iにて冷却風通路内は低圧になり、 従って、 更に冷却風を補塡できる許容度がある。 また、 該冷却風通路を通過して 冷却ファンに至る冷却風の流れは、 エンジン本体内のオイルパンや、 フライホイ ール内の発電機の電機子極巻線等、 特に高温となる部分を通過するので、 この流 れにはできるだけ多くの冷却風を供給したい。 一方、 ?令却ファンの外周部は、 フ ライホイールの外側からと内側からの冷却風が合流して高圧となり、 このうちの 冷却風の一部を供給可能である。 そこで、 該冷却ファンの外周部周りの高圧空間 と、 低圧となる前記のエンジン本体内の冷却風通路との間を連通させ、 該高圧空 間内の冷却風の一部を該冷却風通路に再循環させるものとすることで、 オイルパ ンや発電機の電気子極巻線等、 特に高温となる部分が集中する該冷却風通路から 冷却フアンまでの冷却風の流路に集中的に冷却風が供給され、 これらの冷却効果 を一層向上することができる。  In such a configuration, the pressure inside the cooling air passage becomes low due to the bowing I of the cooling fan, and therefore, there is a tolerance to further supplement the cooling air. The flow of the cooling air passing through the cooling air passage and reaching the cooling fan passes through a particularly high-temperature portion such as an oil pan in the engine body or an armature pole winding of a generator in the flywheel. Therefore, we want to supply as much cooling air as possible to this flow. on the other hand, ? Cooling air from the outside and inside of the flywheel merges into the outer periphery of the rejection fan to create a high pressure, and some of the cooling air can be supplied. Therefore, the high-pressure space around the outer periphery of the cooling fan is communicated with the low-pressure cooling air passage in the engine body, and a part of the cooling air in the high-pressure space is transmitted to the cooling air passage. By recirculating, the cooling air is concentrated in the cooling air flow path from the cooling air passage to the cooling fan, where the hot parts such as oil pans and armature windings of the generator are concentrated. Is supplied, and these cooling effects can be further improved.
また、 該冷却風通路の出口からの排風を前記凹部内または前記貫通孔に案内す るための案内板材を設けることで、 冷却風通路からの排風が集中的に円滑にフラ ィホイールの凹部内及び貫通孔に案内され、 該凹部内の発電機に冷却風が集中的 に当たり、 発電機の冷却効果が一層向上する。  Also, by providing a guide plate for guiding the exhaust air from the outlet of the cooling air passage into the recess or the through hole, the exhaust air from the cooling air passage is concentrated and smoothly concentrated on the flywheel. The cooling air is guided to the inside and the through hole, and the cooling air intensively hits the generator in the concave portion, and the cooling effect of the generator is further improved.
該エンジン本体内に形成する冷却風通路としては、 シリンダ一本体にクランク 軸方向に見て傾斜状にシリンダが形成されている場合、 該シリンダの下方に空間 があり、 フライホイール凹部内の発電機にも略直接的に冷却風を送り込める通路 を形成できるので、 エンジン本体において、 該シリンダ傾斜下面よりクランク室 の側方にかけて肉厚部を形成し、 該肉厚部に、 反フライホイール側よりフライホ ィ一ル側にかけて貫通状の冷却風通路を形成することが考えられる。 これによつ て、 冷却ファンの吸弓 Iにより該冷却風通路を反フライホイ一ル側からフライホイ As a cooling air passage formed in the engine main body, when a cylinder is formed in a cylinder main body so as to be inclined when viewed in the crankshaft direction, there is a space below the cylinder, and a generator in the flywheel recess. In the engine body, a thick portion is formed from the lower surface of the cylinder to the side of the crank chamber, and a thick portion is formed in the thick portion from the side opposite to the flywheel. It is conceivable to form a penetrating cooling air passage to the flywheel side. As a result, the cooling air passage is moved from the flywheel side to the flywheel by the suction bow I of the cooling fan.
—ル側に冷却風が抜け、 略直接的にフライホイールの凹部内または貫通孔に該冷 却風が導入される。 また、 エンジン本体内では、 クランク室底部のオイルパン部を特に冷却する必 要があり、 そこで、 エンジン本体のオイルパン直下に冷却風通路を形成し、 ェン ジン本体底部に入口を開口することも考えられる。 これによつて、 冷却ファンの 吸引により該冷却風通路を底部の入口からフライホイ一ル側の出口に冷却風が抜 け、 フライホイールの凹部内または貫通孔に該冷却風が導入される。 The cooling air flows to the side of the flywheel, and the cooling air is introduced almost directly into the recess or through hole of the flywheel. Also, in the engine body, it is necessary to cool the oil pan at the bottom of the crankcase.Therefore, a cooling air passage should be formed just below the oil pan of the engine body, and the inlet should be opened at the bottom of the engine body. Is also conceivable. Thus, the cooling air is drawn from the cooling air passage from the bottom inlet to the flywheel side outlet by suction of the cooling fan, and the cooling air is introduced into the concave portion of the flywheel or into the through hole.
このェンジン本体内のオイルパン直下に冷却風通路を形成したェンジン発電機 を防音ケースにて覆い、 該防音ケース下方には通風ダクトを形成し、 該通風ダク 卜より前記のェンジン本体底部に開口した前記冷却風通路の入口に冷却風を導入 可能とすることで、 該通風ダクトを通じて新鮮な外気をエンジン本体の底部より 効率的に該冷却風通路内に導入することができ、 オイルパンの冷却効果を向上す るものであり、 フライホイール凹部内の発電機にも、 該冷却風通路を介して効率 的に冷却風を送風できるのである。  An engine generator having a cooling air passage formed immediately below an oil pan in the engine body was covered with a soundproof case, a ventilation duct was formed below the soundproof case, and the ventilation duct was opened at the bottom of the engine body from the ventilation duct. By allowing cooling air to be introduced into the inlet of the cooling air passage, fresh outside air can be efficiently introduced into the cooling air passage from the bottom of the engine body through the ventilation duct, and the cooling effect of the oil pan Therefore, the cooling air can be efficiently sent to the generator in the flywheel recess through the cooling air passage.
この発明の他の特徴と利益とは、 添付図面を参照した次の説明で明白になるで あろう。 図面の簡単な説明  Other features and benefits of the present invention will become apparent from the following description with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 発電機 Dをエンジン Eのフライホイール 4に内装してなる本発明の 基本実施例に係るエンジン発電機のファンケース 1 4を取り外した状態の正面図 であり、  FIG. 1 is a front view showing a state in which a fan case 14 of an engine generator according to a basic embodiment of the present invention, in which a generator D is mounted on a flywheel 4 of an engine E, is removed,
第 2図は、 ファンケース 1 4を取り付けた状態における第 1図の I一 I線断面 図であり、  FIG. 2 is a cross-sectional view taken along the line I-I of FIG. 1 with the fan case 14 attached.
第 3図は、 本発明のェンジン発電機に採用される高周波交流発電機 Dの一実施 例である投光機電源用発電機 D 1の部分正面図であり、  FIG. 3 is a partial front view of a floodlight power generator D1, which is an embodiment of the high-frequency AC generator D employed in the engine generator of the present invention,
第 4図は、 同じく溶接機電源用発電機 D 2の部分正面図であり、  FIG. 4 is a partial front view of the generator D2 for the power source of the welding machine.
第 5図は、 本発明に係るェンジン発電機におけるクランク軸 3に対するフライ ホイール 4の着脱構造を示す側面断面図であり、  FIG. 5 is a side sectional view showing a structure for attaching and detaching the flywheel 4 to and from the crankshaft 3 in the engine generator according to the present invention,
第 6図は、 放電ランプ Lを接続した状態の本発明に係るェンジン発電機の模式 図であり、  FIG. 6 is a schematic diagram of the engine generator according to the present invention with the discharge lamp L connected,
第 7図は、 本発明に係るェンジン発電機の出力特性を示すグラフであり、 第 8図は、 従来の発電機 D' をフライホイールに内装してなるエンジン発電機 に安定器 1 7を介して放電ランプ Lを接続した状態を示す模式図であり、 FIG. 7 is a graph showing output characteristics of the engine generator according to the present invention, FIG. 8 is a schematic diagram showing a state in which a discharge lamp L is connected via a ballast 17 to an engine generator in which a conventional generator D 'is housed in a flywheel,
第 9図は、 従来のェンジン発電機の出力特性を示すグラフであり、  Fig. 9 is a graph showing the output characteristics of a conventional engine generator.
第 1 0図は、 従来のエンジン発電機と放電ランプ Lとの間に安定器 1 7を介装 した場合の発電機出力特性を示すグラフであり、  FIG. 10 is a graph showing generator output characteristics when a ballast 17 is interposed between a conventional engine generator and a discharge lamp L.
第 1 1図は、 空冷式ディーゼルエンジン E ' のフライホイール 4に本発明に係る 発電機 Dを備えてなるエンジン発電機の側面断面図であり、  FIG. 11 is a side sectional view of an engine generator including a generator D according to the present invention on a flywheel 4 of an air-cooled diesel engine E ′,
第 1 2図は、 水冷式ディーゼルエンジン E " のフライホイール 4に本発明に係る 発電機 Dを備えてなるエンジン発電機の側面断面図であり、  FIG. 12 is a side sectional view of an engine generator provided with a generator D according to the present invention on a flywheel 4 of a water-cooled diesel engine E ",
第 1 3図は、 本発明に係る更に改良された冷却構造の第一実施例を示すものであ つて、 冷却風ガイド板 2 5 と外部補助送風羽根 2 6とを有するエンジン発電機のフ ァンケース 1 4を取り外した状態における正面図であり、  FIG. 13 shows a first embodiment of a further improved cooling structure according to the present invention, and is a fan case of an engine generator having a cooling air guide plate 25 and an external auxiliary blowing blade 26. It is a front view in a state where 14 has been removed,
第 1 4図は、 ファンケース 1 4を取り付けた状態の第 1 3図の I 一 I線断面図 であり、  FIG. 14 is a cross-sectional view taken along the line I-I of FIG. 13 with the fan case 14 attached.
第 1 5図は、 同じく第二実施例を示すものであって、 冷却風ガイド板 2 5と內 部補助送風羽根 2 7とを有するエンジン発電機のファンケース 1 4を取り外した 状態における正面図であり、  FIG. 15 shows a second embodiment of the present invention, and is a front view of the engine generator having a cooling air guide plate 25 and a part of auxiliary fan blades 27 with a fan case 14 removed. And
第 1 6図は、 ファンケース 1 4を取り付けた状態の第 1 5図の I 一 I線断面図 であり、  FIG. 16 is a cross-sectional view taken along the line I-I of FIG. 15 with the fan case 14 attached.
第 1 7図は、 同じく第三実施を示すものであって、 冷却ファン 5には冷却風ガ イド板 2 5 ' と閉塞板 2 8を、 ステ一夕ブラケット 8には放熱フィ ンを、 冷却風 通路 1 e · 1 gの出口の外側には案内板 2 9を設けてなるエンジン発電機のファ ンケース 1 4を取り外した状態における正面図であり、  Fig. 17 shows the same third embodiment, in which the cooling fan 5 is provided with a cooling air guide plate 25 'and a closing plate 28, and the stay bracket 8 is provided with a heat radiating fin. FIG. 5 is a front view of the engine generator with a fan case 14 having a guide plate 29 provided outside the outlet of the wind passages 1 e and 1 g, with a fan case 14 removed.
第 1 8図は、 ファンケース 1 4を取り付けた状態の第 1 7図の I 一 I線断面図 であり、  FIG. 18 is a cross-sectional view taken along the line I-I of FIG. 17 with the fan case 14 attached.
第 1 9図は、 冷却風ガイ ド板 2 5 ' 及び閉塞板 2 8を取りつけたフライホイ一 ル 4の側面断面図であり、  FIG. 19 is a side sectional view of the flywheel 4 with the cooling air guide plate 25 ′ and the closing plate 28 attached.
第 2 0図は、 冷却風ガイド板 2 5 ' の正面図であり、  FIG. 20 is a front view of the cooling air guide plate 25 ′.
第 2 1図は、 閉塞板 2 8の正面図であり、 第 2 2図は、 内周部に放熱フィンを形成したステータブラケッ ト 8の正面図で あり、 FIG. 21 is a front view of the closing plate 28, FIG. 22 is a front view of a stator bracket 8 having a radiation fin formed on an inner peripheral portion thereof.
第 2 3図は、 同じく側面断面図であり、  FIG. 23 is also a side sectional view,
第 2 4図は、 本発明に係る更に改良された冷却構造の第四実施例を示すもので あって、 冷却風通路における高圧空間と低圧空間とを連通する構造を有するェンジ ン発電機のファンケース 1 4を取り外した状態における正面図であり、  FIG. 24 shows a fourth embodiment of a further improved cooling structure according to the present invention, which is a fan of an engine generator having a structure for communicating a high-pressure space and a low-pressure space in a cooling air passage. It is a front view in a state where the case 14 is removed,
第 2 5図は、 ファンケース 1 4を取り付けた状態における第 2 4図の I一 I線 断面図であり、  FIG. 25 is a cross-sectional view taken along the line I-I of FIG. 24 with the fan case 14 attached.
第 2 6図は、 本発明の更に改良されたエンジン発電機用冷却構造の第五実施例 であって、 フライホィ一ルの外側に発電機 Dを配設した構造のェンジン発電機の シリンダ軸芯とクランク軸芯とを含む平面と、 クランク軸芯を含む鉛直平面とに よる断面図であり、  FIG. 26 is a fifth embodiment of a further improved cooling structure for an engine generator according to the present invention, wherein a cylinder shaft of an engine generator having a structure in which a generator D is disposed outside a flywheel. FIG. 3 is a cross-sectional view of a plane including a crankshaft center and a vertical plane including a crankshaft center;
第 2 7図は、 高出力高周波交流発電機 Dをエンジン Eのフライホイール 4に装 備してなるエンジン発電機を、 防音ケース 3 9に内設した構成の発電機ュニット の内部背面図であり、  Fig. 27 is an internal rear view of a generator unit with a high-power high-frequency AC generator D mounted on the flywheel 4 of the engine E and an engine generator installed inside the soundproof case 39. ,
第 2 8図は、 同じく内部側面図であり、  FIG. 28 is also an internal side view,
第 2 9図は、 該防音ケース 3 9の底部に形成される通風ダクト 3 9 bの天井面 を示す底面図であり、  FIG. 29 is a bottom view showing the ceiling surface of a ventilation duct 39 b formed at the bottom of the soundproof case 39.
第 3 0図は、 上下段積みを可能とした発電ュニッ 卜の実施例を示す内部側面図 であり、  FIG. 30 is an internal side view showing an embodiment of a power generation unit capable of stacking vertically.
第 3 1図は、 同じく底面図であり、  Figure 31 is also a bottom view,
第 3 2図は、 従来の低周波交流発電機 D ' をエンジン Eのフライホイール 4に 装備し、 高周波交流発電機 4 4をエンジン出力取出部に接続してなるエンジン発 電機を、 防音ケース 3 9 ' に内設した構成の従来の発電機ユニットの内部発明図 であり、  Fig. 32 shows a conventional low-frequency AC generator D 'mounted on the flywheel 4 of the engine E, and a high-frequency AC generator 44 connected to the engine output extraction section. FIG. 9 is an internal invention diagram of a conventional generator unit having a configuration internally provided at 9 '.
第 3 3図は、 同じく内部側面図であり、  Fig. 33 is also an internal side view,
第 3 4図は、 本発明に係る高出力高周波発電機 Dをエンジン Eのフライホイ一 ル 4に装備してなるェンジン発電機のェンジン出力取出部に補助発電機 4 5を接 続した実施例を示す側面断面図であり、 第 3 5図は、 本発明に係る高出力高周波発電機 Dをエンジン Eのフライホイ一 ル 4に装備してなるェンジン発電機のェンジン出力取出部に油圧ポンプ 4 7を接 続した実施例を示す側面断面図であり、 FIG. 34 shows an embodiment in which an auxiliary generator 45 is connected to the engine output extraction section of the engine generator in which the high-power high-frequency generator D according to the present invention is mounted on the flywheel 4 of the engine E. FIG. FIG. 35 shows an embodiment in which a high-power high-frequency generator D according to the present invention is mounted on a flywheel 4 of an engine E, and a hydraulic pump 47 is connected to an engine output extraction section of the engine generator. It is a side sectional view,
第 3 6図は、 第 3 5図に示す油圧ポンプ 4 7を接続したエンジン発電機を電源 •動力源とする投光機の側面図であり、  FIG. 36 is a side view of a floodlight powered by an engine generator connected to the hydraulic pump 47 shown in FIG. 35 as a power source.
第 3 7図は、 同じく背面図であり、  Fig. 37 is also a rear view,
第 3 8図は、 該投光機の支柱 5 1のランプ昇降用油圧モータ 5 7による伸縮駆 動構成を示す側面断面図であり、  FIG. 38 is a side sectional view showing a telescopic drive configuration of the lamp 51 using the hydraulic motor 57 for raising and lowering the column 51 of the projector.
第 3 9図は、 該投光機の油圧ポンプ 4 7による走行用油圧モータ 5 5及びラン プ昇降用油圧モータ 5 7の駆動油圧回路図であり、  FIG. 39 is a drive hydraulic circuit diagram of a traveling hydraulic motor 55 and a lamp elevating hydraulic motor 57 by the hydraulic pump 47 of the floodlight.
第 4 0図は、 本発明に係る高出力高周波発電機 Dをエンジン Eのフライホイ一 ル 4に装備してなるェンジン発電機のェンジン出力取出部にエアコンプレッサー 6 3を接続した実施例を示す側面断面図であり、  FIG. 40 is a side view showing an embodiment in which an air compressor 63 is connected to an engine output extraction portion of an engine generator in which the high-power high-frequency generator D according to the present invention is mounted on the flywheel 4 of the engine E. FIG.
第 4 1図は、 該エンジン発電機のエンジン出力取出部に高圧水ポンプ 6 4を接 続した実施例を示す側面断面図である。 発明を実施するための最良の形態  FIG. 41 is a side sectional view showing an embodiment in which a high-pressure water pump 64 is connected to an engine output extracting portion of the engine generator. BEST MODE FOR CARRYING OUT THE INVENTION
まず、 第 1図及び第 2図に示す本発明の基本実施例に係る空冷式ガソリンェン ジン Eのフライホイール 4に高周波交流発電機 Dを備えた構成のェンジン発電機 (発動発電機) について説明する。 発電機の動力源となるエンジン Eは、 ェンジ ン本体 1に形成されるシリンダ部 1 aにシリンダへッ ド 2を取り付けており、 シ リンダ部 1 aの外面には、 後記冷却フアン 5からの冷却風にて放熱するための放 熱フィンが形成されている。 該エンジン本体 1内に形成したクランク室 1 c内を 前後に横切るようにクランク軸 3が回転自在に軸支されており、 該クランク軸 3 の一端部 (本実施例では前端) を、 フライホイール 4の中心部に形成したボス部 4 dのクランク軸孔 4 eに嵌揷し、 該クランク軸 3先端部の螺子部 3 aに外側か らェンドナツ ト 9を螺嵌することで、 該フライホイール 4がクランク軸 3に固設 され、 該フライホイール 4と該クランク軸 3とが一体的に回転可能に構成されて いる。 フライホイ一ル 4外周面の一部は切り欠かれていて、 該切欠部内に点火電源用 マグネッ ト 1 0を固設している。 一方、 点火電源用コイル 1 1 aを巻き付けてな る点火電源用電機子 1 1をフライホイール 4の外周面に対峙するように配置し、 エンジン本体 1のシリンダ部 1 aにおけるフライホイール 4の配設側 (前面) よ り水平状に突出形成したボス 1 b · 1 bの先端に、 ピン或いはボルト等にて締止 している。 こうして、 シリンダヘッ ド 2に取り付けてある点火プラグの電源を構 成しており、 フライホイール 4が回転して該点火電源用マグネッ ト 1 0が該点火 電源用電機子 1 1に対峙したタイミングで該点火プラグを点火させる。 First, an engine generator (motor generator) having a configuration in which a flywheel 4 of an air-cooled gasoline engine E according to the basic embodiment of the present invention shown in FIGS. . The engine E, which is the power source of the generator, has a cylinder head 2 attached to a cylinder part 1a formed in the engine body 1, and an outer surface of the cylinder part 1a has a cooling fan 5 to be described later. Heat-dissipating fins for radiating heat by cooling air are formed. A crankshaft 3 is rotatably supported so as to cross back and forth in a crankcase 1 c formed in the engine body 1. One end (the front end in this embodiment) of the crankshaft 3 is connected to a flywheel The flywheel is fitted into the crankshaft hole 4e of the boss portion 4d formed at the center of the flywheel 4 and the endnut 9 is screwed into the screw portion 3a at the tip of the crankshaft 3 from the outside. 4 is fixed to the crankshaft 3, and the flywheel 4 and the crankshaft 3 are integrally rotatable. A part of the outer peripheral surface of the flywheel 4 is notched, and an ignition power supply magnet 10 is fixed in the notch. On the other hand, the ignition power supply armature 11 wound with the ignition power supply coil 11 a is arranged so as to face the outer peripheral surface of the flywheel 4, and the flywheel 4 is arranged in the cylinder portion 1 a of the engine body 1. The bosses 1b and 1b, which protrude horizontally from the installation side (front), are fastened with pins or bolts to the tips. Thus, the power source of the ignition plug attached to the cylinder head 2 is configured, and the flywheel 4 rotates and the ignition power magnet 10 faces the ignition power armature 11 at the timing. Ignite the spark plug.
フライホイール 4の内側面、 即ちエンジン本体 1への対峙面の外周部にはリン グギア 1 2が固設されていて、 第 2図に示すエンジン E始動用のセルモータ 1 3 の出力ギアに嚙合している。  A ring gear 12 is fixedly provided on the inner surface of the flywheel 4, that is, on the outer peripheral portion of the surface facing the engine body 1, and mates with the output gear of the cell motor 13 for starting the engine E shown in FIG. ing.
フライホイール 4に内装される高周波交流発電機 Dについて説明する。 フライ ホイール 4を配設した方のエンジン本体 1の外面 (本実施例では前面) にステ一 夕ブラケッ ト 8が固設され、 該ステ一夕ブラケッ ト 8に、 電機子極数分のステ一 夕コイル 7 a - 7 a · · ·を放射状に突設してなるステ一夕 7を固設している。 該ステ一タブラケッ ト 8及びステ一夕 7は、 それぞれ中心孔 8 a · 7 bを有する 正面視略リング状になっていて、 両中心孔 8 a · 7 b同士が連接され、 該中心孔 8 a · 7 b内をクランク軸 3が回転自在に貫通している。 なお、 中心孔 8 a · 7 bの半径は、 クランク軸 3の半径よりもかなり大きく、 クランク軸 3と中心孔 8 a · 7 bの各内周壁面との間にはかなりの隙間が空いており、 後記の、 エンジン Eに形成する冷却風通路 1 e · 1 gよりフライホイール 4の後方凹部 4 a内への 冷却風 W 2の通過孔として利用される。  The high-frequency AC generator D installed in the flywheel 4 will be described. A bracket 8 is fixed to the outer surface (the front in this embodiment) of the engine body 1 on which the flywheel 4 is disposed. Evening coil 7a-7a · · · is fixed to stay 7 by radially protruding. The stay bracket 8 and the stay bracket 7 each have a substantially ring shape when viewed from the front and have center holes 8a and 7b, and both center holes 8a and 7b are connected to each other. The crankshaft 3 is rotatably penetrated through a · 7b. The radius of the center holes 8a and 7b is considerably larger than the radius of the crankshaft 3, and there is a considerable gap between the crankshaft 3 and the inner peripheral wall surfaces of the center holes 8a and 7b. It is used as a hole for the cooling air W2 from the cooling air passages 1e and 1g formed in the engine E into the rear recess 4a of the flywheel 4, which will be described later.
フライホイール 4の内 ffi!l面 (後面) において、 即ちエンジン本体 1の前面に対 して開口するように、 凹部 4 aを形成している。 該凹部 4 a内において、 該凹部 4 a外周を囲むフライホイール 4の外周部の内周面に、 全周に渡ってロータ磁石 6を固設しており、 前記ステ一夕コイル 7 a ■ 7 a · · ·が該ロータ磁石 6に対 向するように該凹部 4 a内に配置される。 なお、 ロー夕磁石 6は、 後述する第 3 図及び第 4図の如く、 複数に分割して該凹部 4 aの外周全周に設けてもよい。 エンジン Eが駆動されて、 クランク軸 3、 フライホイール 4とともにロータ磁 石 6が回転すると、 ステ一夕コイル 7 a · 7 a · · 'を励磁し、 クランク軸 3の 回転数とステ一夕コイル 7 a · 7 a · · 'の極数に基づく周波数電力を発電し、 この電力を外部に供給可能としている。 The recess 4 a is formed so as to open on the ffi! L surface (rear surface) of the flywheel 4, that is, toward the front surface of the engine body 1. In the concave portion 4a, a rotor magnet 6 is fixed all around the inner peripheral surface of the outer peripheral portion of the flywheel 4 surrounding the outer periphery of the concave portion 4a. a are arranged in the recess 4 a so as to face the rotor magnet 6. The rotatable magnet 6 may be divided into a plurality and provided on the entire outer periphery of the concave portion 4a as shown in FIGS. 3 and 4 described later. The engine E is driven, and the rotor shaft with the crankshaft 3 and flywheel 4 When the stone 6 rotates, the stay coils 7a, 7a ... are excited to generate frequency power based on the rotation speed of the crankshaft 3 and the number of poles of the stay coils 7a, 7a This power can be supplied to the outside.
なお、 この発電機 Dによる電力とは別に、 後述する第 3 4図の如く、 クランク 軸 3の反フライホイール 4配設側の端部にてェンジン出力取出部 3 bを形成した り、 後述する第 3 5図の如く、 エンジン Eのカム軸 4 6の反フライホイール 4配 設側の端部にてエンジン出力取出部 4 6 aを形成したりして、 このようなェンジ ン出力取出部に様々な負荷を接続してもよい。 これについては後に詳述する。 ここで、 交流発電機 Dの構成要素である口一夕磁石 6及びステ一タコイル 7 a について説明する。 口一夕磁石 6は、 非常に高い出力エネルギーを有する強磁性 永久磁石である希土類磁石、 例えば、 希土類元素であるネオジゥ厶、 鉄、 及びほ う素を主原料としたネオジゥム系の焼結磁石を用いている。 このネオジゥ厶系の 希土類磁石が有する最大エネルギー積は、 例えば 2 6〜3 1 MG · O e程度であ り、 一般的に用いられているフヱライト磁石に対して 6倍〜 7倍程度の出力エネ ルギーを得ることができる。 また、 最大エネルギー積と同様に、 ネオジゥ厶系の 希土類磁石が有する残留磁束密度も非常に大きなものとなっている。  In addition to the electric power generated by the generator D, an engine output extraction portion 3b is formed at the end of the crankshaft 3 on the side opposite to the flywheel 4 as shown in FIG. As shown in Fig. 35, an engine output take-out portion 46a is formed at the end of the cam shaft 46 of the engine E opposite to the side where the flywheel 4 is provided, so that such an engine output take-out portion is formed. Various loads may be connected. This will be described later in detail. Here, the mouth magnet 6 and the stator coil 7a, which are components of the AC generator D, will be described. The magnet 6 is made of a rare-earth magnet that is a ferromagnetic permanent magnet having a very high output energy, such as a neodymium-based sintered magnet whose main raw materials are the rare-earth elements neodymium, iron, and boron. Used. The maximum energy product of this neodymium rare earth magnet is, for example, about 26 to 31 MG · Oe, and the output energy is about 6 to 7 times that of a commonly used fluoride magnet. You can get Lugie. Similarly to the maximum energy product, the residual magnetic flux density of the neodymium rare earth magnet is also very large.
発電機出力は、 一般に、 Ε。 · I。 = A · f ■ p · · F uで表される。 但 し、 E。 は、 無負荷電圧を、 I。 は、 短絡電流を、 Aは、 定数を、 f は、 周波数 を、 Φ , は、 一極当たりのステ一夕コイル 7 aのギャップ磁束量を、 F uは、 一 極当たりのステ一夕コイル 7 aの起磁力を示している。 そして、 残留磁束密度を B rで表すと、 Φ κ a B r、 及び、 F u <: B rの関係が成り立つ。 即ち、 口一夕 磁石 6の残留磁束密度 B rが大きくなると、 それに比例してギヤップ磁束量 Φ , 及び起磁力 F uが増加する。 従って、 大きな残留磁束密度 B rを有するロータ磁 石 6を用いることにより、 発電機出力を大きくすることができる。 このように、 本発明のェンジン発電機に採用される交流発電機 Dは、 非常に大きな残留磁束密 度を有する希土類磁石をロータ磁石 6に用いているので、 大きな発電機出力を得 られる。 Generator output is generally Ε. · I. = A · f ■ p · · Fu However, E. The no-load voltage, I. Is the short-circuit current, A is a constant, f is the frequency, Φ, is the gap magnetic flux of the coil 7a per pole, Fu is the coil of the stay coil per pole It shows the magnetomotive force of 7a. When representing the residual magnetic flux density B r, [Phi kappa a B r, and, F u <: relationship B r holds. That is, as the residual magnetic flux density Br of the magnet 6 increases, the gap magnetic flux Φ and the magnetomotive force Fu increase proportionally. Therefore, the generator output can be increased by using the rotor magnet 6 having a large residual magnetic flux density Br. As described above, the AC generator D employed in the engine generator of the present invention uses the rare-earth magnet having a very large residual magnetic flux density for the rotor magnet 6, so that a large generator output can be obtained.
また、 本発明の発電機 Dでは、 ステ一夕 7において、 多数極のステ一夕コイル 7 aを配設して、 前記周波数 f の値が大きくなるように構成しているので、 さら に大きな発電機出力を得ることができる。 Further, in the generator D of the present invention, since the stay 7 is provided with a multi-pole stay coil 7a so as to increase the value of the frequency f, furthermore, A large generator output can be obtained.
従来の、 フェライ ト磁石によるロータ磁石を用いたエンジン発電機におけるフ ライホイール内装型の発電機 D ' は、 せいぜい 1 0 0 W程度の発電機出力であつ たが、 本発明の発電機 Dは、 従来のフ ライト磁石と同程度の大きさながら強磁 性のロータ磁石 7を用いているので、 従来の発電機 D ' と同程度の大きさに構成 しても、 少なくとも 1 k W以上の発電機出力を得ることができ、 2 kW〜3 kW 程度の発電機出力を得ることも可能である。 即ち、 軽量でコンパクトな構造を確 保しながらも、 大きな発電機出力を発することができるのである。  The conventional flywheel-mounted generator D 'in a conventional engine generator using a rotor magnet made of ferrite magnets has a generator output of at most about 100 W, but the generator D of the present invention has However, since the rotor magnet 7 is used while having the same size as the conventional fly magnet but having the same strong magnetism, even if it is configured to be the same size as the conventional generator D ', at least 1 kW or more of power is generated. It is possible to obtain a generator output of about 2 kW to 3 kW. In other words, a large generator output can be generated while maintaining a lightweight and compact structure.
一方、 ステ一夕コイルに関しては、 従来のエンジン発電機における交流発電機 は、 2極のステ一夕コイルを有し、 発電周波数を商用電源と同様の 5 0 H zまた は 6 0 H zに設定していた。 これに対し、 本発明の発電機 Dは、 発電周波数を高 周波に設定可能に、 ステ一夕コイル 7 aの極数は、 電力供給の対象物に対応した 周波数の電力を出力できるように、 様々に設定される。 例えば、 第 3図の発電機 D 1は、 1 8極のステ一夕コイル 7 aを配置した二相交流型のものであり、 第 4 図の発電機 D 2は、 連続する 3極のステ一夕コイル 7 aを一単位として合計 2 4 極配置した三相交流型のものである。  On the other hand, regarding the stay coil, the AC generator in the conventional engine generator has a two-pole stay coil, and the power generation frequency is set to 50 Hz or 60 Hz, which is the same as that of commercial power. Was set. On the other hand, the generator D of the present invention can set the power generation frequency to a high frequency, and the number of poles of the stay coil 7a can output power at a frequency corresponding to the power supply target. Various settings. For example, the generator D 1 in FIG. 3 is a two-phase AC type in which an 18-pole stator coil 7 a is arranged, and the generator D 2 in FIG. This is a three-phase AC type with a total of 24 poles, with the overnight coil 7a as one unit.
ここで、 第 3図に示す発電機 D 1を用いたエンジン発電機の発電周波数 f は、 f = { (ステ一タコイル 6の極数) 2 } ■ { (エンジン回転数) / / 6 0 } で表 される力、 ステ一夕コイル 6の極数は 1 8極であり、 エンジン Eの定格回転数を 3 6 0 0 r p mとすれば、 5 4 0 H zの高周波交流発電を提供できる。 Here, the power generation frequency f of the engine generator with generator D 1 shown in FIG. 3 is, f = {(number of poles of stearyl one Takoiru 6) 2} ■ {(engine speed) / / 6 0} The number of poles of the coil 6 is 18 poles, and if the rated rotation speed of the engine E is set to 360 rpm, it is possible to provide 540 Hz high-frequency AC power generation.
このように構成した第 3図の高周波交流発電機 D 1の出力特性 (横軸を電流、 縦軸を電圧とするグラフ) は、 第 5図に示すように、 大きな垂下特性を有し、 投 光機等に使用されるメタルハラィドランプ等の放電ランプの放電特性に適してい るため、 第 6図のように、 このような放電ランプ Lに対して発電機 D 1の出力端 子を直接接続できるのである。  The output characteristics of the high-frequency AC generator D1 configured as described above in FIG. 3 (a graph with current on the horizontal axis and voltage on the vertical axis) have a large drooping characteristic as shown in FIG. As shown in Fig. 6, the output terminal of generator D1 is directly connected to discharge lamp L as shown in Fig. You can connect.
これに対し、 従来の低周波交流発電機 D ' を有するエンジン発電機の出力特性 は、 第 7図のように略定電圧の特性を有し、 このまま放電ランプに接続しても安 定した照灯が得られないため、 従来のエンジン発電機における発電機 D ' と放電 ランプ Lとの間には、 第 8図のように安定器 1 7を介装し、 第 9図に見られるよ うな垂下特性を有する出力となるように制御する必要があった。 この安定器 1 7 は重い上に高価である。 この点、 発電機 Dを用いた本発明に係るエンジン発電機 であれば、 前記の第 6図の如く、 間に安定器 1 7を介装せずに放電ランプ Lを安 定して照灯させることができ、 軽量コンパクト化、 低コスト化に貢献するのであ る。 On the other hand, the output characteristics of the conventional engine generator having the low-frequency AC generator D 'have a substantially constant voltage characteristic as shown in Fig. 7, and are stable even when connected to a discharge lamp. Since a lamp cannot be obtained, a ballast 17 is interposed between the generator D 'and the discharge lamp L in the conventional engine generator, as shown in Fig. 8, and it can be seen in Fig. 9. It was necessary to control the output so as to have a drooping characteristic. This ballast 17 is heavy and expensive. In this regard, in the case of the engine generator according to the present invention using the generator D, as shown in FIG. 6, the discharge lamp L is stabilized without the ballast 17 interposed therebetween, and This contributes to weight reduction, compactness, and cost reduction.
第 4図に示す実施例の三相交流型発電機 D 2を有するエンジン発電機の発電周 波数 f は、 : f = { (ステ一夕コイル 7 aの極数) 3 } · { (エンジン回転数) / 6 0 } で表され、 ステ一夕コイル 7 aの極数が 2 4極で、 エンジン 1の定格回 転数を 3 6 0 0 r p mとすれば、 発電周波数は三相交流の 4 8 O H zで、 溶接機 の駆動等に適した高周波発電機となっており、 第 5図と同様の出力特性を有し、 安定器なしに溶接機等を発電機 D 2の出力端末に直接接続して駆動することがで きる。  The power generation frequency f of the engine generator having the three-phase AC generator D 2 of the embodiment shown in FIG. 4 is as follows: f = {((the number of poles of the stay coil 7a) 3} · {(engine rotation If the number of poles of the coil 7a is 24 and the rated speed of the engine 1 is 360 rpm, the power generation frequency is 4 At 8 OHz, it is a high-frequency generator suitable for driving a welding machine, etc., has the same output characteristics as in Fig. 5, and connects the welding machine etc. directly to the output terminal of generator D2 without a ballast. Can be connected and driven.
第 1 0図は、 このような高出力高周波交流発電機 Dをフライホイール 4に装着 したエンジン発電機におけるフライホイール 4の着脱構造、 即ち、 エンジン Eに 軸支したクランク軸 3に対するフライホイール 4の着脱構造について説明する。 従来のフライホイ一ルに交流発電機を備えたェンジン発電機においては、 クラ ンク軸に対してフラィホイ一ルを着脱する際には、 作業者が手作業で直接着脱作 業を行っていた。  FIG. 10 shows the detachable structure of the flywheel 4 in an engine generator in which such a high-output high-frequency AC generator D is mounted on the flywheel 4, that is, the connection of the flywheel 4 to the crankshaft 3 supported by the engine E. The detachable structure will be described. In conventional engine generators equipped with an alternator on a flywheel, when attaching and detaching the flywheel to and from the crankshaft, the operator directly performs the attachment and detachment work by hand.
し力、し、 本発明に係るエンジン発電機では、 ロータ磁石 6が非常に磁力が大き い希土類磁石にて構成されているので、 該ロータ磁石 6とステ一夕コイル 7 aと の間に働く吸着力が大きく、 例えば、 フライホイール 4をクランク軸 3に取り付 ける場合には、 フライホイール 4をエンジン本体 1側へ近づけると、 該フライホ ィ一ル 4がステ一夕コイル 7 aに強く引っ張られて、 フライホイール 4の移動方 向が軸芯から外れ、 フライホイール 4中心部のクランク軸孔 4 eとクランク軸 3 とを嵌合させることができなかったり、 口一夕磁石 6とステ一夕コイル 7 aとが くっついたりして取付作業がうまくいかない場合があった。 また、 クランク軸 3 へ取り付けたフライホイール 4を取り外す場合にも、 ロー夕磁石 6とステ一夕コ ィル 7 aとの間に働く吸着力が大きくて、 作業者の力だけでは軸方向へ抜き出す ことができなかった。 そこで、 本エンジン発電機においては、 フライホイール 4のクランク軸 3に対 する着脱に際し、 該フライホイール 4を、 ロータ磁石 6とステ一夕コイル 7 aと の間の吸着力に抗しながら、 フライホイール 4の回転軸芯方向へ徐々に移動させ るとともに、 クランク軸 3の軸芯と、 フライホイール 4の軸芯、 即ち、 クランク 軸孔 4 eの軸芯との芯合せをしながら着脱作業を行うことができるように構成さ れている。 In the engine generator according to the present invention, since the rotor magnet 6 is formed of a rare-earth magnet having a very large magnetic force, it acts between the rotor magnet 6 and the stay coil 7a. The suction force is large. For example, when the flywheel 4 is mounted on the crankshaft 3, when the flywheel 4 is moved closer to the engine body 1 side, the flywheel 4 is pulled strongly by the stay coil 7 a. As a result, the moving direction of the flywheel 4 is displaced from the axis, so that the crankshaft hole 4 e at the center of the flywheel 4 cannot be fitted to the crankshaft 3, There was a case where the installation work did not go well due to the sticking of the evening coil 7a. Also, when the flywheel 4 attached to the crankshaft 3 is removed, the attraction force acting between the rotatable magnet 6 and the stay coil 7a is large. I couldn't extract it. Therefore, in the present engine generator, when the flywheel 4 is attached to and detached from the crankshaft 3, the flywheel 4 is moved while the flywheel 4 resists the attraction force between the rotor magnet 6 and the stay coil 7a. While gradually moving in the direction of the rotation axis of the wheel 4, the attachment / detachment work is performed while aligning the axis of the crankshaft 3 with the axis of the flywheel 4, that is, the axis of the crankshaft hole 4e. It is configured to do so.
即ち、 第 1 0図に示すように、 着脱治具 1 8を用いてフライホイール 4をクラ ンク軸 3に対して着脱するように構成している。  That is, as shown in FIG. 10, the flywheel 4 is attached to and detached from the crank shaft 3 by using an attaching / detaching jig 18.
該着脱治具 1 8は、 内周に雌螺子が形成された内茼 2 1 と、 該内筒 2 1に摺動 自在に外嵌される外筒 1 9と、 該外茼 1 9内に回転自在に取り付けられ、 外周に 雄螺子を形成して内筒 2 1 と螺嵌する螺子部材 2 0と、 該螺子部材 2 0をアーム 2 2を介して回転操作する操作レバー 2 3とにより構成されており、 該内筒 2 1 に対して螺子部材 2 0を回転させると、 該螺子部材 2 0と外筒 1 9とが一体的に 内筒 2 1の軸芯方向に移動するように構成している。  The attachment / detachment jig 18 includes an inner tube 21 having an internal thread formed on an inner periphery thereof, an outer tube 19 slidably fitted to the inner tube 21, and an inner tube 19. A screw member 20 that is rotatably attached and forms a male screw on the outer periphery and screwed into the inner cylinder 21, and an operation lever 23 that rotates the screw member 20 via the arm 22. When the screw member 20 is rotated with respect to the inner cylinder 21, the screw member 20 and the outer cylinder 19 are integrally moved in the axial direction of the inner cylinder 21. are doing.
フライホイール 4をクランク軸 3に取り付ける際には、 まず、 内筒 2 1を外筒 1 9の先端部 (第 1 0図における左側端部) から突出させた状態で、 フライホイ ール 4のボス部 4 dのクランク軸孔 4 eに内筒 2 1を貫通させるとともに、 外筒 1 9先端部に形成したフランジ部 1 9 aへ、 該フライホイール 4をボルト 2 4等 により取付固定する。 その後、 内筒 2 1の先端部 (第 1 0図における左側端部) の雌螺子をクランク軸 3の螺子部 3 a周りに螺止する。 この状態において、 フラ ィホイール 4のボス部 4 dのクランク軸孔 4 eの軸芯、 クランク軸 3の軸芯、 及 び内筒 2 1の軸芯とは一致している。  When attaching the flywheel 4 to the crankshaft 3, first, with the inner cylinder 21 protruding from the tip of the outer cylinder 19 (the left end in FIG. 10), The inner cylinder 21 is passed through the crankshaft hole 4e of the part 4d, and the flywheel 4 is mounted and fixed to the flange part 19a formed at the tip of the outer cylinder 19 with bolts 24 and the like. Then, the female screw at the tip (the left end in FIG. 10) of the inner cylinder 21 is screwed around the screw 3 a of the crankshaft 3. In this state, the axis of the crankshaft hole 4 e of the boss 4 d of the flywheel 4, the axis of the crankshaft 3, and the axis of the inner cylinder 21 coincide with each other.
そして、 螺子部材 2 0がクランク軸 3側へ移動する方向に操作レバー 2 3を回 転操作すると、 フライホイール 4が、 該フライホイール 4のクランク軸孔 4 eの 軸芯とクランク軸 3の軸芯とを一致させたまま、 ロータ磁石 6とステ一夕コイル 7 aとの間の吸着力に抗しながら該クランク軸 3側へ徐々に移動していき、 該ク ランク軸孔 4 eとクランク軸 3とが嵌合する。  Then, when the operation lever 23 is rotated in the direction in which the screw member 20 moves to the crankshaft 3 side, the flywheel 4 is moved to the axis of the crankshaft hole 4 e of the flywheel 4 and the axis of the crankshaft 3. While keeping the core aligned, it gradually moves toward the crankshaft 3 while resisting the attraction force between the rotor magnet 6 and the stay coil 7a. Shaft 3 is fitted.
フライホイール 4とクランク軸 3とが嵌合した後は、 クランク軸 3から着脱治 具 1 8を取り外し、 該クランク軸 3の螺子部 3 aに前記ェンドナツ ト 9を螺嵌し てフライホイール 4をクランク軸 3に固定すればよい。 After the flywheel 4 and the crankshaft 3 have been fitted, the attachment / detachment jig 18 is removed from the crankshaft 3 and the end nut 9 is screwed into the screw portion 3 a of the crankshaft 3. Then, the flywheel 4 is fixed to the crankshaft 3.
逆に、 クランク軸 3に取付固定されたフライホイール 4を取り外す際には、 ク ランク軸 3の螺子部 3 aからェンドナツ ト 9を取り外した後に、 内筒 2 1を外筒 1 9の先端部から突出させておいて、 内筒 2 1の突出先端を該螺子部 3 aに螺嵌 して、 着脱治具 1 8をクランク軸 3へ取り付ける。 そして、 フライホイール 4と 外筒 1 9のフランジ部 1 9 aとが当接するまで操作レバー 2 3を回転操作し、 フ ライホイール 4とフランジ部 1 9 aとをボルト 2 4等により連結する。 その後、 螺子部材 2 0が反クランク軸 3側へ移動する方向に操作レバー 2 3を回転操作し て、 フライホイール 4をクランク軸 3から抜き出す。 さらに操作レバー 2 3を回 転操作して、 フライホイール 4をステ一夕コイル 7 aから引き離し、 口一夕磁石 6とステ一夕コイル 7 aとの間の吸着力が弱くなる位置までフライホイール 4が 移動したら、 内筒 2 1をクランク軸 3から取り外して、 着脱治具 1 8とフライホ ィ一ル 4とをエンジン Eから分離させる。  Conversely, when removing the flywheel 4 fixed to the crankshaft 3, remove the end nut 9 from the screw 3 a of the crankshaft 3 and then connect the inner cylinder 21 to the tip of the outer cylinder 19. And the projecting end of the inner cylinder 21 is screwed into the screw portion 3 a, and the attachment / detachment jig 18 is attached to the crankshaft 3. Then, the operation lever 23 is rotated until the flywheel 4 and the flange portion 19a of the outer cylinder 19 come into contact with each other, and the flywheel 4 and the flange portion 19a are connected by bolts 24 or the like. Then, the flywheel 4 is pulled out of the crankshaft 3 by rotating the operation lever 23 in a direction in which the screw member 20 moves to the side opposite to the crankshaft 3. Further, rotate the operating levers 2 and 3 to separate the flywheel 4 from the stay coil 7a, and flywheel to a position where the attraction force between the mouth magnet 6 and the stay coil 7a becomes weak. When 4 moves, the inner cylinder 21 is removed from the crankshaft 3, and the attachment / detachment jig 18 and the flywheel 4 are separated from the engine E.
このようにすることで、 フライホイール 4を、 ロータ磁石 6とステ一夕コイル 7 aとの間の吸着力に抗しながら軸芯方向へ徐々に移動させてクランク軸 3から 取り外すことができる。  By doing so, the flywheel 4 can be gradually moved in the axial direction while being against the attraction force between the rotor magnet 6 and the stay coil 7a, and can be removed from the crankshaft 3.
以上のように、 着脱治具 1 8を用いることで、 クランク軸 3に対するフライホ ィール 4の着脱に際し、 該フライホイール 4を、 口一夕磁石 6とステ一夕コイル 7 aとの間の吸着力に抗しながら、 クランク軸 3の軸芯方向へ徐々に移動させる とともに、 クランク軸の軸芯とフライホイール 4の軸芯との芯合せすることを可 能としている。  As described above, by using the attachment / detachment jig 18, when the flywheel 4 is attached to / detached from the crankshaft 3, the flywheel 4 is attracted by the magnet between the mouth and magnet 6 and the stay and coil 7 a. While gradually moving in the direction of the axis of the crankshaft 3, and aligning the axis of the crankshaft with the axis of the flywheel 4.
これにより、 フライホイール 4をクランク軸 3へ取り付ける場合には、 着脱治 具 1 8の操作レバー 2 3を回転操作するだけの簡単な作業を行うだけで、 ロータ 磁石 6とステ一夕コイル 7 aとがくつつくこともなく、 フライホイール 4のクラ ンク軸孔 4 eとクランク軸 3とを確実に嵌合させることができるので、 取付作業 を迅速に行うことが可能となる。  As a result, when the flywheel 4 is mounted on the crankshaft 3, the rotor magnet 6 and the stay coil 7a can be operated simply by rotating the operation lever 23 of the attachment / detachment jig 18. Since the crankshaft hole 4e of the flywheel 4 and the crankshaft 3 can be securely fitted without being sharpened, the mounting work can be performed quickly.
また、 フライホイール 4をクランク軸 3から取り外す場合においても、 着脱治 具 1 8の操作レバー 2 3を回転操作するだけの簡単で力がいらない作業を行うだ けで、 フライホイール 4をクランク軸 3から抜き出すことができ、 取外作業を迅 /62167 Also, when removing the flywheel 4 from the crankshaft 3, the flywheel 4 can be removed from the crankshaft 3 simply by rotating the operation lever 23 of the attachment / detachment jig 1 8 and performing a simple operation. Can be removed from the / 62167
速に行うことが可能となる。 It is possible to perform it quickly.
このように、 強力な磁力のロータ磁石 6を具備するフライホイール 4のクラン ク軸 3に対する着脱作業を、 簡単で確実な作業とし、 且つ、 作業を迅速に行うこ とができるのである。  In this manner, the work of attaching and detaching the flywheel 4 having the strong magnetic rotor magnet 6 to and from the crank shaft 3 can be performed simply and reliably, and the work can be performed quickly.
次に、 エンジン 1の冷却構造について、 第 1図及び第 2図より説明する。 フラ ィホイール 2の外側面に複数の送風羽根 5 a · 5 a · · ·を取り付け、 冷却ファ ン 5を構成している。 個々の送風羽根 5 aは、 正面視略 「く」 の字状になってい て、 全送風羽根 5 aがフライホイール 4の中心 (クランク軸 3 ) より放射状に配 設されている。 個々の送風羽根 5 aの形状は、 他にも色々考えられるが、 レ、ずれ にせよ、 フライホイール 4の回転方向を考慮して、 フライホイール 4とともに送 風羽根 5 aが回転することによって、 冷却ファン 5の内周部より外周部へと、 即 ち、 正面視における送風羽根 5 a · 5 a · ■ ·の回転軌跡の内周端から外周端へ と送風がなされる構造とする。  Next, the cooling structure of the engine 1 will be described with reference to FIGS. A plurality of blower blades 5 a · 5 a · · · · are attached to the outer surface of the flywheel 2 to form a cooling fan 5. Each of the blower blades 5a has a substantially U-shape in a front view, and all the blower blades 5a are arranged radially from the center of the flywheel 4 (crankshaft 3). Although the shape of each blower blade 5a can be considered in various other ways, it is possible to consider the rotational direction of the flywheel 4 by rotating the blower blade 5a together with the flywheel 4 regardless of the shape of the flywheel 4. The structure is such that air is blown from the inner peripheral part to the outer peripheral part of the cooling fan 5, that is, from the inner peripheral end to the outer peripheral end of the rotation trajectory of the blower blades 5 a, 5 a, in front view.
該フライホイール 4、 これに付設される冷却ファン 5、 また、 点火電源用コィ ル 1 1 a等を備える点火用電源装置等の電装品等を覆うように、 例えば正面視円 形等の導風口 (導風グリル) 1 4 aを開口するファンケース 1 4が配設されてお り、 正面視において、 該導風口 1 4 aの外縁が、 冷却ファン 5 (送風羽根 5 a · 5 a · · ·の回転軌跡) の内周端か、 それよりもフライホイール 4の中心寄りに 配置されるようにしている。 エンジン Eが運転されると、 フライホイール 4と一 体に送風羽根 5 aが回転し、 前記の如く、 冷却ファン 5の中心から外周側への風 の流れを生じさせる一方、 この流れに誘引されて、 外気が導風口 1 4 aよりファ ンケース 1 4内の冷却ファン 5の内周部へと導入され、 この導入冷却風 W 1力 ファンケース 1 4内にて冷却ファン 5の内周部より外周部へと流れ、 点火電源用 コイル 1 1 aを通過して、 エンジン本体 1のシリンダ部 1 a (外側面には放熱フ インを形成している) やその上端に取り付けたシリンダヘッ ド 2に当たり、 該シ リンダへッ ド 2に内装される吸排気バルブや点火プラグなどの高温部を冷却する のである。  The flywheel 4, the cooling fan 5 attached to the flywheel 4, and an air supply port such as a circular shape in a front view are provided so as to cover electrical components such as an ignition power supply device having an ignition power supply coil 11a and the like. (Wind guide grill) A fan case 14 opening the 14 a is provided, and when viewed from the front, the outer edge of the wind guide port 14 a is formed by the cooling fan 5 (the blower blade 5 a5 a · The rotation locus of (·) is located at the inner peripheral end or closer to the center of the flywheel 4 than that. When the engine E is operated, the blower blades 5a rotate together with the flywheel 4 to generate a flow of wind from the center of the cooling fan 5 to the outer peripheral side as described above, while being attracted to this flow. Outside air is introduced from the air introduction port 14 a to the inner periphery of the cooling fan 5 in the fan case 14, and the introduced cooling air W 1 is supplied from the inner periphery of the cooling fan 5 in the fan case 14. It flows to the outer periphery, passes through the ignition power supply coil 11a, and hits the cylinder 1a of the engine body 1 (a heat radiation fin is formed on the outer surface) and the cylinder head 2 attached to the upper end of the cylinder. This cools a high-temperature portion such as an intake / exhaust valve or a spark plug provided in the cylinder head 2.
本実施例に係るエンジン Eは、 エンジン本体 1において、 シリンダ部 l aが正 面視 (クランク軸 3方向に見て) 傾斜状に形成されており、 該シリンダ部 1 aの 1 7 In the engine E according to the present embodiment, in the engine main body 1, the cylinder portion la is formed in an inclined shape when viewed from the front (when viewed in the direction of the crankshaft 3). 1 7
下方には特に装備を設ける必要もなく空間を確保できる。 そこで、 この空間を利 用して、 シリンダ部 1 aの傾斜下面からクランク室 1 cの側方にかけて肉厚部 1 hを形成し、 該肉厚部 l hに、 フライホイール 4の凹部 4 a内の発電機に略直接 的に冷却風を案内できるように、 前後貫通状、 即ち、 反フライホイール 4側から フライホイール 4側へと貫通する側部冷却風通路 1 eが形成されており、 また、 エンジン本体 1のクランク室 1 c内の底部はオイルパン 1 dとなっていて、 その 直下に、 前方、 即ちフライホイール 4側の面にて開口する底部冷却風通路 1 gが 形成されていて、 その入口としてエンジン本体 1の底部に底部冷却風底部導入口 1 f が開口されている。 該底部冷却風導入口 1 f には導風ダクト 1 5を下方外向 きに接続してもよレ、。 A space can be secured under the lower part without any particular equipment. Therefore, using this space, a thick portion 1h is formed from the inclined lower surface of the cylinder portion 1a to the side of the crankcase 1c, and the thick portion lh is formed in the recess 4a of the flywheel 4. In order to guide the cooling air to the generator almost directly, a front-rear penetrating shape, that is, a side cooling air passage 1 e penetrating from the side of the anti-flywheel 4 to the side of the flywheel 4 is formed. The bottom of the engine body 1 in the crank chamber 1 c is an oil pan 1 d, and a bottom cooling air passage 1 g is formed immediately below the oil pan 1 d, which opens in the front, that is, on the surface on the flywheel 4 side. At the bottom of the engine body 1, a bottom cooling wind bottom inlet 1f is opened as an inlet. A ventilation duct 15 may be connected to the bottom cooling air inlet 1 f downward and outward.
冷却風通路 1 e · 1 f の出口は、 フライホイール 4 (発電機 D ) の内側に対時 して開口しており、 該出口からの排風がフライホイール 4の凹部 4 a内の発電機 Dに送風可能となっている。 更に、 フライホイール 4の側壁 4 bに、 凹部 4 aと フライホイール 4の外側のファンケース 1 4内空間とを連通する複数の通風孔 4 cを貫通している。 この通風孔 4 cは、 正面視において冷却ファン 5の内周より も中心寄り (送風羽根 5 a · 5 a · · 'の回転軌跡の内周端よりもフライホイ一 ル 4の中心寄り) に位置する。  The outlets of the cooling air passages 1 e and 1 f open to the inside of the flywheel 4 (generator D), and the exhaust air from the outlet generates the generator in the recess 4 a of the flywheel 4. Can be blown to D. Further, a plurality of ventilation holes 4c communicating between the recess 4a and the space inside the fan case 14 outside the flywheel 4 penetrate through the side wall 4b of the flywheel 4. The ventilation hole 4c is located closer to the center than the inner periphery of the cooling fan 5 in front view (the center of the flywheel 4 is located closer to the inner periphery of the rotation locus of the blower blades 5a, 5a, ...). I do.
フライホイール 4とともにその外側に付設した送風羽根 5 aが回転すると、 前 記の如く冷却ファン 5の内周側から外周側への風の流れを起こし、 通風孔 4 c内 において、 フライホイール 4内側 (エンジン本体 1側) の凹部 4 aから外側(フ アンケース 1 4側) への空気の流れが生じる。 これにより、 外気が、 側部冷却風 通路 1 eの反フライホイール 4側入口からフライホイール 4側出口へと通過する とともに、 底部冷却風導入口 1 f より底部冷却風通路 1 g内に導入されて、 その 上方のオイルパン部 1 dを冷却し、 該底部冷却風通路 1 gの前部出口より排風さ れ、 両冷却風通路 1 e · 1 gからの排風が、 該凹部 4 a内の発電機 Dより通風孔 4 cを通って、 フライホイール 4の側壁 4 bの外側 (ファンケース 1 4内) へと 吸引され、 該発電機 Dの通過時に、 特に高温となっているステ一タコイル 7 a · 7 a · · 'を冷却するのである。 即ち、 フライホイール 4における通風孔 4 cの 形成によって、 冷却風通路 1 e · 1 gから発電機 Dを経てフライホイール 4外側 のファンケース 1 4内に至る一方向の流れの冷却風 W 2が確保され、 エンジン E のオイルパン 1 d及び発電機 D (特にスター夕コイル 7 a ) について、 高い冷却 効果を得られるのである。 When the blower blade 5a attached to the outside together with the flywheel 4 rotates, the wind flows from the inner peripheral side to the outer peripheral side of the cooling fan 5 as described above, and the inside of the flywheel 4 inside the ventilation hole 4c. Air flows from the recess 4a on the engine body 1 side to the outside (fan case 14 side). As a result, outside air passes from the inlet of the side cooling air passage 1 e on the side opposite to the flywheel 4 to the outlet of the flywheel 4 and is introduced into the bottom cooling air passage 1 g from the bottom cooling air inlet 1 f. To cool the oil pan 1 d above it, and to be exhausted from the front outlet of the bottom cooling air passage 1 g, and the exhaust air from both cooling air passages 1 e The generator D inside draws air through the ventilation holes 4c and is drawn into the outside of the side wall 4b of the flywheel 4 (inside the fan case 14). It cools one coil 7 a · 7 a · · '. That is, by the formation of the ventilation holes 4 c in the flywheel 4, the cooling air passages 1 e · 1 g pass through the generator D to the outside of the flywheel 4. The cooling air W2 in one direction flowing into the fan case 14 of the engine E is secured, and a high cooling effect can be obtained for the oil pan 1d of the engine E and the generator D (particularly, the star coil 7a). .
前記のようなフライホイ一ル内装型の発電機 D及び冷却機構 (冷却ファン 5 ) は、 第 1 1図に示す空冷ディーゼルエンジン E ' や、 第 1 2図に示す水冷式ディ ーゼルエンジン E " に採用してもよい。 ここで、 第 1 1図及び第 1 2図中で、 第 1図及び第 2図にて開示される符号と同一の符号は同一の構造及び機能の部材を 示す。  The generator D with built-in flywheel and the cooling mechanism (cooling fan 5) as described above are used in the air-cooled diesel engine E 'shown in FIG. 11 and the water-cooled diesel engine E "shown in FIG. Here, in FIGS. 11 and 12, the same reference numerals as those disclosed in FIGS. 1 and 2 denote members having the same structure and function.
第 1 1図の空冷ディーゼルエンジン E ' は、 ディーゼルエンジン用のシリンダ ヘッ ド 2 ' をエンジン本体 1 ' のシリンダ部 aに取り付けてなり、 エンジン 本体 1 ' において、 シリンダ部 Γ aの外周部には放熱フィンを形成し、 また、 前記と同様にフライホイール 4の凹部 4 a (即ち、 その中に内装される発電機 D ) に向けて開口される冷却風通路 1 ' gを形成しており、 通風孔 4 cを有するフ ライホイール 4の外側に第 1図等図示のものと同様の冷却ファン 5を形成して、 前記の冷却風 W l ' W 2と同様の流れの冷却風を得られるようになつていて、 発 電機 Dのステ一夕コイル 7 a等への冷却効果を確保している。 なお、 本実施例で は、 ファンケース 1 4の外側にス夕一夕モータ 1 3 ' を配設しているが、 ファン ケース 1 4内には、 前記の冷却風 W 1に該当する冷却風が導入できるようにして める。  The air-cooled diesel engine E 'shown in Fig. 11 has a cylinder head 2' for a diesel engine attached to the cylinder section a of the engine body 1 '. In the engine body 1', the outer periphery of the cylinder section Γa Forming a cooling fin passage, and a cooling air passage 1 ′ g opening toward the recess 4 a of the flywheel 4 (that is, the generator D provided therein) as described above. Forming a cooling fan 5 similar to that shown in FIG. 1 and the like outside the flywheel 4 having the ventilation holes 4c, it is possible to obtain a cooling air having the same flow as the cooling air Wl'W2. As a result, the cooling effect of the generator D's stay coil 7a etc. is ensured. In this embodiment, the motor 13 'is disposed outside the fan case 14; however, the cooling air corresponding to the cooling air W1 is provided in the fan case 14. Can be introduced.
第 1 2図の水冷ディーゼルエンジン E " は、 ディーゼルエンジン用のシリンダ ヘッ ド 2 " をエンジン本体 1 " のシリンダ部 1 " aに取り付けてなり、 エンジン 本体 1 " には、 冷却風通路や放熱フィンに代えて、 冷却水ジャケットを形成して おり、 クランク室内には冷却水ポンプ 1 6等が内装されていて、 フライホイール 4に形成される冷却フアン 5は、 ラジェ一夕に冷却風を送風する機能を有してい る。 しかし、 ステ一夕コイル 7 aの冷却のため、 特別に前記の冷却風通路 1 e · 1 gのような構造をエンジン本体 1 " に形成してもよレ、。 勿論、 エンジンを水冷 式ガソリンエンジンとした場合も同様である。 このように、 本発電機を構成する エンジンは、 水冷式と空冷式、 又は、 ディーゼル式とガソリン式の別を問うもの ではなく、 何れの形式でも構わない。 そして、 以後の様々なエンジン発電機の実 W 99/62167 The water-cooled diesel engine E "shown in Fig. 12 has a cylinder head 2" for a diesel engine mounted on the cylinder section 1 "a of the engine body 1". The engine body 1 "has cooling air passages and radiating fins. Instead of a cooling water jacket, a cooling water pump 16 is installed inside the crankcase, and a cooling fan 5 formed in the flywheel 4 blows cooling air all over Rage However, a structure such as the cooling air passages 1e and 1g described above may be specially formed in the engine body 1 "for cooling the stay coil 7a. Of course, the same applies when the engine is a water-cooled gasoline engine. As described above, the engine constituting the generator is not limited to a water-cooled type and an air-cooled type, or a diesel type and a gasoline type, and may be any type. And the actual results of various engine generators W 99/62167
施例においても、 本発明に係る高周波交流発電機 Dをどのような種類のェンジン のフライホイールに備えてもよい。 また、 以後に記述するエンジン発電機用の改 良冷却構造は、 主に空冷式エンジンに採用されるものであるが、 前記のように水 冷式エンジンにおいて発電機 D冷却用に特別な冷却風通路を形成し、 以下に紹介 する諸々の改良冷却構造を採用しても構わない。 Also in the embodiments, the high-frequency AC generator D according to the present invention may be provided in a flywheel of any kind of engine. The improved cooling structure for engine generators described below is mainly used for air-cooled engines, but as described above, water-cooled engines have special cooling air for cooling generator D. A passage may be formed, and various improved cooling structures introduced below may be adopted.
次に、 前記の如くフライホイールに発電機 Dを備えてなるエンジン発電機にお いて採用される、 第 1図及び第 2図に示した基本的な冷却構造の改良実施例につ いて、 第 1 3図乃至第 2 6図より説明する。 前記発電機 Dは、 高出力の高周波発 電を可能とするため、 ステ一タコイル 7 aに起因する発電機 Dの高温化は従来に 増して著しくなるので、 特に発電機 Dの冷却効果をより一層高めるべく、 前記の 第 1図及び第 2図に示したフライホイール 4の通風孔 4 c等の冷却改良構成に加 えて、 以下の様々な改良構造が考えられるのである。  Next, an improved embodiment of the basic cooling structure shown in FIGS. 1 and 2, which is employed in the engine generator having the generator D in the flywheel as described above, will be described. This will be described with reference to FIGS. 13 to 26. Since the generator D is capable of generating high-power high-frequency power, the temperature of the generator D due to the stator coil 7a becomes significantly higher than before, so that the cooling effect of the generator D is particularly improved. In order to further enhance the structure, in addition to the cooling improvement structure of the ventilation hole 4c of the flywheel 4 shown in FIGS. 1 and 2 described above, the following various improvement structures are conceivable.
まず、 第 1 3図及び第 1 4図に開示される第一実施例において、 フライホイ一 ル 4の側壁 4 bの外側面における中心部分には、 略すり鉢状に形成した冷却風ガ ィド部材 2 5をボルト等にて取り付けて、 該通風孔 4 cを外側から覆っている。 この冷却風ガイド部材 2 5がなければ、 導風口 1 4 aを通じてファンケース 1 4 内に進入した冷却風 W 1力 通風孔 4 cより凹部 4 aへ進入し、 このため、 冷却 風通路 1 e · 1 g及び発電機 Dを通過してオイルパン 1 dゃステ一夕コイル 7 a 等を冷却した冷却風 W 2が通風孔 4 cからフライホイール 4の外側に抜けず、 逆 にこの導風口 1 4 aからの風によって凹部 4 aへと押し戻され、 発電機 Dの冷却 効果を減衰するという事態が起こりうる。 そこで、 冷却風ガイド部材 2 5を設け ることにより、 対向する両冷却風 W l ' W 2の流れが隔離され、 通風孔 4 cから フライホイール 4の外側方向へ抜けていく冷却風 W 2を冷却風ガイド部材 2 5か らその外周部の送風羽根 5 aへと円滑に案内する。 即ち、 冷却風ガイド部材 2 5 により、 冷却風 W 2が一定の方向に流れるように流れを制御して安定させ、 冷却 効率を向上させているのである。 First, in the first embodiment disclosed in FIGS. 13 and 14, the center portion of the outer surface of the side wall 4b of the flywheel 4 is provided with a cooling wind guide member formed in a substantially mortar shape. 25 is attached with bolts or the like to cover the ventilation hole 4c from outside. If the cooling air guide member 25 is not provided, the cooling air W that has entered the fan case 14 through the air introduction port 14a enters the recess 4a through the ventilation hole 4c, and thus the cooling air passage 1e Cooling air W2 that has passed through 1g and generator D to cool the oil pan 1d and the stationary coil 7a, etc., does not escape from the ventilation hole 4c to the outside of the flywheel 4, and conversely The wind from 14a pushes back to the concave portion 4a, and the cooling effect of the generator D may be attenuated. Therefore, the Rukoto a cooling air guide member 2 5, both flow of the cooling air W l 'W 2 is isolated opposite, the cooling air W 2 that escapes from the vent hole 4 c outward direction of the flywheel 4 The cooling air guide member 25 is smoothly guided from the cooling air guide member 25 to the blower blade 5a on the outer periphery thereof. That is, the cooling air guide member 25 controls and stabilizes the flow so that the cooling air W2 flows in a certain direction, thereby improving the cooling efficiency.
さらに、 フライホイール 4の側壁 4 bの外側面における送風羽根 5 aより中心 寄りの部分には、 複数の外部補助送風羽根 2 6を形成している。 該外部補助送風 羽根 2 6はフライホイール 4の回転に伴って、 該フライホイール 4の内側から外 側方向への流れが生じるように構成されており、 オイルパン 1 dやステ一夕コィ ル 7 aを冷却した冷却風 W 2が、 通風孔 4 cを通過してフライホイール 4の外側 方向へ流れ出る際に流れを強めて安定させるようにしている。 これにより、 冷却 効率を向上することが可能である。 Further, a plurality of external auxiliary blowing blades 26 are formed on the outer surface of the side wall 4b of the flywheel 4 near the center of the blowing blade 5a. As the flywheel 4 rotates, the external auxiliary blower blades 26 move from the inside of the flywheel 4 to the outside. Cooling air W2, which cools the oil pan 1d and the stationary coil 7a, passes through the ventilation hole 4c and is directed outward from the flywheel 4. When flowing out, the flow is strengthened and stabilized. Thereby, the cooling efficiency can be improved.
このような補助送風羽根は、 フライホイール 4の側壁 4 bの内側に形成しても よい。 第 1 5図及び第 1 6図の第二実施例では、 フライホイール 4の側壁 4わの 内側における、 通風孔 4 cよりも中心寄りのボス部 4 dに、 複数の内部補助送風 羽根 2 7を形成している。 該内部補助送風羽根 2 7は、 前記の外部補助送風羽根 2 6と同様に、 フライホイール 4の回転に伴って、 該フライホイール 4の内側か ら外側方向への流れが生じるように構成されており、 オイルパン 1 dゃステ一夕 コイル 7 aを冷却した冷却風が、 通風孔 4 cを通過してフライホイール 4の外側 方向へ流れ出る際に流れを強めて安定させるようにしている。 これにより、 冷却 効率を向上することが可能である。  Such an auxiliary blowing blade may be formed inside the side wall 4 b of the flywheel 4. In the second embodiment shown in FIGS. 15 and 16, a plurality of internal auxiliary blow blades 2 7 are provided on the boss 4 d closer to the center than the ventilation holes 4 c inside the side wall 4 of the flywheel 4. Is formed. The internal auxiliary blowing blades 27 are configured such that a flow from the inside to the outside of the flywheel 4 is generated with the rotation of the flywheel 4, similarly to the external auxiliary blowing blades 26. When the cooling air that has cooled the coil 7a flows out of the flywheel 4 through the ventilation hole 4c, the flow is strengthened and stabilized. Thereby, the cooling efficiency can be improved.
し力、し、 第 1 3図乃至第 1 6図に見られる冷却風ガイド部材 2 5の外周縁は、 送風羽根 5 a · 5 a ■ · ■よりも冷却ファン 5の中心寄りの位置にあり、 冷却風 W l * W 2は送風羽根 5 aまで案内される直前で合流することとなるので、 冷却 風 W 2がフライホイール 4の内側 (凹部 4 a側) に逆流または滞留する可能性が まだ残る。 そこで、 第 1 7図乃至第 2 3図図示の第三実施例においては、 第 1 7 図乃至第 2 0図の如く、 前記の略すり鉢状の冷却風ガイド部材 2 5に該当する円 錐板部 2 5 ' aの外周縁より該側壁 4 bに平行なリング板状の平板部 2 5 ' bを 延設した形状の冷却風ガイド部材 2 5 ' を、 フライホイール 4の側壁 4 bの外側 面に取り付けている。 円錐板部 2 5 ' aの中心部の平面部には、 第 2 0図のよう にボルト孔 2 5 ' cが穿設されていて、 該ボルト孔 2 5 ' cに通したボルト 2 9 にて、 冷却風ガイド部材 2 5 ' を、 フライホイール 4の側壁 4 bの外側面に螺止 するものである。 該冷却風ガイド部材 2 5 ' の平板部 2 5 ' bは、 フライホイ一 ル 4の略半径方向に形成された各送風羽根 5 aの途中部まで延設されている。 な お、 第 2 0図に示す平板部 2 5 ' bに穿設した孔 2 5 ' dは、 後記閉塞部材 2 8 より突設するボス 2 8 aを通過させるための孔である。  The outer peripheral edge of the cooling air guide member 25 shown in FIGS. 13 to 16 is located closer to the center of the cooling fan 5 than the blowing blades 5 a Since the cooling air Wl * W2 joins immediately before being guided to the blower blade 5a, the cooling air W2 may flow backward or stay inside the flywheel 4 (the recess 4a side). Still remains. Therefore, in the third embodiment shown in FIGS. 17 to 23, as shown in FIGS. 17 to 20, a conical plate corresponding to the above-mentioned substantially mortar-shaped cooling air guide member 25 is used. A cooling air guide member 25 ′ having a shape in which a ring-shaped plate portion 25 ′ b extending parallel to the side wall 4 b from the outer peripheral edge of the portion 25 ′ a is attached to the outside of the side wall 4 b of the flywheel 4. It is attached to the surface. As shown in Fig. 20, a bolt hole 25'c is formed in the center of the conical plate portion 25'a, and a bolt 29 is inserted through the bolt hole 25'c. The cooling air guide member 25 ′ is screwed to the outer surface of the side wall 4 b of the flywheel 4. The flat plate portion 25 ′ b of the cooling air guide member 25 ′ extends to an intermediate portion of each of the blower blades 5 a formed substantially in the radial direction of the flywheel 4. A hole 25'd formed in the flat plate portion 25'b shown in FIG. 20 is a hole for passing a boss 28a protruding from the closing member 28 described later.
こうして、 フライホイール 4の冷却ファン 5形成側の空間、 即ち、 側壁 4 bと ファンケース 1 4との間の空間が、 冷却風ガイド部材 2 5 ' にて内外に二分割さ れ、 通風孔 4 cに連通する内側の分割空間が該冷却風ガイド部材 2 5 ' にて覆わ れることとなる。 これにより、 前記の冷却風 W 2は、 通風孔 2 dを抜けた後、 フ ライホイール 4の側壁 4 bと該冷却風ガイド部材 2 5 * との間の空間を通って、 送風羽根 5 aの回転による吸引力により、 該冷却ファン 5の外周部まで送風され る。 この間、 冷却風 W 2は、 導風口 1 4 aからの冷却風 W 1から隔離されている ので、 流れが一方向に安定し、 特にエンジン Eの運転中に高温となる発電機 Dに おけるステ一夕コイル 7 aに優れた冷却効果をもたらす。 Thus, the space on the side of the flywheel 4 where the cooling fan 5 is formed, that is, the side wall 4 b The space between the fan case 14 and the fan case 14 is divided into two inside and outside by the cooling air guide member 25 ′, and the inside divided space communicating with the ventilation hole 4 c is covered by the cooling air guide member 25 ′. It will be. As a result, the cooling air W 2 passes through the ventilation holes 2 d, and then passes through the space between the side wall 4 b of the flywheel 4 and the cooling air guide member 25 * to blow the blowing blades 5 a The air is blown to the outer peripheral portion of the cooling fan 5 by the suction force of the rotation of the fan. During this time, the cooling air W2 is isolated from the cooling air W1 from the air introduction port 14a, so that the flow is stabilized in one direction, and particularly, the cooling air W2 is heated at the generator D where the temperature becomes high during the operation of the engine E. Overnight coil 7a provides excellent cooling effect.
一方、 送風羽根 5 aの回転に伴い、 送風羽根 5 a · 5 a間の空間中の空気が導 風口 1 4 a側に押し出されて、 導風口 1 4 aを介してファンケース 1 4内に導入 された冷却風 W 1を再び導風口 1 4 a側に押し戻してしまい、 導風口 1 4 aから エンジン Eのシリンダ部 1 aまたはシリンダへッド 2への冷却風 W 1の流れを減 衰してしまうおそれがある。 これを回避すべく、 第 1 7図乃至第 1 9図、 及び第 2 1図に示すように、 略リング板状に形成された閉塞部材 2 8を冷却ファン 5の 外側にて、 送風羽根 5 a ■ 5 aに当接するように配設する。 該閉塞部材 2 8より 後方にボス 2 8 aが水平状に突設しており、 各ボス 2 8 aを該冷却風ガイド部材 2 5 ' の各孔 2 5 ' dに通過させ、 その先端をフライホイール 4の側壁 4 bに当 接し、 前方より長足のボルト 3 0を各ボス 2 8 a内に嵌入して、 該閉塞部材 2 8 をフライホイール 4に螺止する。  On the other hand, with the rotation of the blower blade 5a, the air in the space between the blower blades 5a and 5a is pushed out to the air guide port 14a side, and enters the fan case 14 via the air guide port 14a. The introduced cooling air W1 is pushed back to the air introduction port 14a again, and the flow of the cooling air W1 from the air introduction port 14a to the cylinder 1a or the cylinder head 2 of the engine E is attenuated. There is a risk of doing it. To avoid this, as shown in FIGS. 17 to 19 and 21, the closing member 28 formed in a substantially ring plate shape is attached to the outside of the cooling fan 5 by the blower blade 5. a ■ Arrange so that it abuts 5a. A boss 28 a is projected horizontally behind the closing member 28, and each boss 28 a is passed through each hole 25 ′ d of the cooling air guide member 25 ′, and the tip is The bolt 30 which is in contact with the side wall 4 b of the flywheel 4 and which is longer than the front is fitted into each boss 28 a, and the closing member 28 is screwed to the flywheel 4.
該閉塞部材 2 8は、 各送風羽根 5 a間の空間を外側から閉塞しているので、 送 風羽根 5 aの回転中に、 送風羽根 5 a同士の空間から導風口 1 4 aへと空気が押 し出されることがなく、 導風口 1 4 aからの冷却風 W 1は円滑に冷却ファン 5の 外周部へと流れ、 更に、 前記の冷却風ガイド部材 2 5 ' の構成により、 該送風羽 根 5 aの外周部にて冷却風 W 2と合流し、 この合流風がエンジン Eにおけるシリ ンダ部 1 aゃシリンダへッド 2等を効率的に冷却するのである。  Since the blocking member 28 blocks the space between the blower blades 5a from the outside, the air flows from the space between the blower blades 5a to the air guide port 14a during rotation of the blower blades 5a. Is not pushed out, and the cooling air W1 from the air introduction port 14a smoothly flows to the outer peripheral portion of the cooling fan 5, and furthermore, due to the configuration of the cooling air guide member 25 ', the cooling air The cooling air W2 merges with the cooling air W2 at the outer periphery of the blade 5a, and the merged air efficiently cools the cylinder 1a, the cylinder head 2 and the like of the engine E.
尚、 冷却風ガイド部材 2 5 ' や閉塞部材 2 8は、 本実施例のように送風羽根 5 aと別体に形成したものを送風羽根 5 aに取り付けるだけでなく、 送風羽根 5 a と一体的に形成することもできる。 更に、 冷却風ガイド部材 2 5 · 2 5 ' や閉塞 部材 2 8をフライホイール 4と一体状に形成することも考えられる。 62167 The cooling air guide member 25 ′ and the closing member 28 are not only formed separately from the blower blade 5 a as in this embodiment, but also attached to the blower blade 5 a, and are integrated with the blower blade 5 a. It can also be formed as desired. Further, it is conceivable to form the cooling air guide members 25 and 25 ′ and the closing member 28 integrally with the flywheel 4. 62167
また、 エンジン Eの運転中に発生するステ一夕コイル 7 aの熱は、 ステ一夕 7 よりステータブラケット 8へと伝導する。 そこで、 ステータブラケット 8に放熱 構造を設けることが考えられる。 該第三実施例においては、 第 1 8図、 第 2 2図 及び第 2 3図に示すように、 クランク軸 3を通過させる中心孔 8 aに対峙する内 周面に放熱フィ ン 8 bを形成している。 尚、 8 cは、 エンジン本体 1に対して、 また、 8 dは、 スデータ 7に対して、 ステ一夕ブラケット 8をボルト締止するた めのボルト孔である。  Further, the heat of the stay coil 7 a generated during the operation of the engine E is conducted from the stay 7 to the stator bracket 8. Therefore, it is conceivable to provide the stator bracket 8 with a heat dissipation structure. In the third embodiment, as shown in FIG. 18, FIG. 22 and FIG. 23, a radiation fin 8b is provided on the inner peripheral surface facing the center hole 8a through which the crankshaft 3 passes. Has formed. 8 c is a bolt hole for fastening the bolt to the bracket 8 for the engine body 1 and 8 d for the sword 7.
尚、 ステ一夕ブラケット 8に形成する放熱フィンは、 該ステ一タブラケット 8 の内周面のみならずその他の適宜箇所に形成することも考えられる。  The heat radiation fins formed on the stay bracket 8 may be formed not only on the inner peripheral surface of the stay bracket 8 but also on other appropriate places.
更に、 該第三実施例では、 第 1 7図及び第 1 8図の如く、 エンジン本体 1の前 面に開口する冷却風通路 1 e · 1 gの出口からの冷却風が、 該出口よりも上部に 位置するフライホイール 4の凹部 4 a内の発電機 Dへと、 円滑かつ集中的に導入 されるように、 該冷却風通路 1 e · 1 gの出口に対峙する鉛直平板状の案内板 3 1を設けている。 案内板 3 1は、 第 1 7図の如く、 正面視において、 エンジン本 体 1におけるフライホイール 4側のクランク軸 3用軸受部の左側部より下部にか けて正面視円弧状に囲むように配設されており、 その左上端部を側部冷却風 1 e 出口に、 下端部を底部冷却風通路 1 gの出口に対峙させている。 該エンジン本体 1と案内板 3 1の外周縁との間は、 ファンケース 1 4にて覆われており、 更に、 側部冷却風通路 1 e出口の直上方と、 底部冷却風通路 1 g出口のやや右側におい て、 該案内板 3 1よりその表面に略直交状に、 それぞれ遮閉板部 3 1 a · 3 1 b を延設してエンジン本体 1の前面に当接させており、 遮閉板部 3 1 aにより、 側 部冷却風通路 1 e出口からの風がその直上方に漏れないように、 また、 遮閉板部 3 1 により、 底部冷却風通路 1 g出口からの風がその右側に漏れないようにし ている。 こうして、 案内板 3 1とその遮閉板部 3 1 a · 3 1 b、 及びファンケー ス 1 4により、 冷却風通路 1 e · 1 gの出口からの冷却風 W 2は、 案内板 3 1の 正面視内周部側へと案内され、 フライホイール 4の凹部 4 a内へと集中的に流入 するのである。  Further, in the third embodiment, as shown in FIGS. 17 and 18, the cooling air from the outlet of the cooling air passages 1 e and 1 g opening to the front surface of the engine body 1 is higher than the outlet. A vertically flat guide plate facing the outlet of the cooling air passages 1e and 1g so as to be smoothly and intensively introduced into the generator D in the recess 4a of the flywheel 4 located at the upper part. 3 1 is provided. As shown in FIG. 17, the guide plate 31 is formed so as to surround the lower part of the left side of the bearing portion for the crankshaft 3 on the flywheel 4 side of the engine body 1 in a front view so as to surround the guide plate 31 in an arc shape in a front view. The lower left end is opposed to the outlet of the side cooling air passage 1 g, and the lower end is opposed to the outlet of the bottom cooling air passage 1 g. The space between the engine body 1 and the outer peripheral edge of the guide plate 31 is covered with a fan case 14, and furthermore, just above the side cooling air passage 1e outlet and the bottom cooling air passage 1g outlet On the slightly right side, the shielding plates 31a and 31b extend substantially perpendicularly to the surface of the guide plate 31 and abut against the front surface of the engine body 1, respectively. The closing plate 31a prevents the air from the side cooling air passage 1e from leaking directly above it, and the shielding plate 31 prevents the air from the bottom cooling air passage 1g from the outlet. It does not leak to the right. Thus, the cooling air W2 from the outlet of the cooling air passages 1e and 1g is supplied to the guide plate 31 by the guide plate 31 and its shielding plate portions 31a31b and the fan case 14. It is guided toward the inner peripheral side when viewed from the front, and intensively flows into the recess 4 a of the flywheel 4.
第三実施例では、 冷却風 W 2の冷却ファン 5の外周部までの流れを確実にする とともに、 該冷却風 W 2による発電機 Dにおけるステ一夕コイル 7 aの冷却効果 167 In the third embodiment, the flow of the cooling air W 2 to the outer periphery of the cooling fan 5 is ensured, and the cooling effect of the cooling coil 7 a in the generator D by the cooling air W 2 is obtained. 167
を向上すベく、 フライホイール 4に冷却風ガイド部材 2 5 ' や閉塞部材 2 8を取 り付けた冷却ファン 5の改良構造、 ステ一夕ブラケット 8の放熱フィン構造、 そ して冷却風通路 1 e · 1 gに対向して案内板 3 1を配設する構造の三つの構造を 組み合わせているが、 これらのうち一^ ^または二つを選択的に採用してもよい。 また、 これら三つの構造のうちの少なくとも一つと、 前記の第一実施例の外部補 助送風羽根 2 6または第二実施例の内部補助送風羽根 2 7とを組み合わせた冷却 構造としてもよい。 Improved structure of cooling fan 5 with cooling air guide member 25 'and blocking member 28 attached to flywheel 4, radiation fin structure of stay bracket 8 and cooling air passage Although the three structures of the structure in which the guide plate 31 is disposed to face 1 e · 1 g are combined, one or two of them may be selectively employed. Further, a cooling structure combining at least one of these three structures with the external auxiliary blowing blade 26 of the first embodiment or the internal auxiliary blowing blade 27 of the second embodiment may be employed.
第 2 4図及び第 2 5図に示す第四実施例について説明する。 ファンケース 1 4 内において、 冷却ファン 5上方の空間 3 2は、 該送風羽根 5 aの回転により導風 口 1 1 aからの冷却風 W 1が導入される上に、 冷却風 W 2が合流して、 高圧とな つており、 一方、 エンジン本体 1下部内に形成される前記底部冷却風通路 1 gは 冷却ファン 5により発電機 Dへと冷却風 W 2が吸弓 Iされるため、 低圧となってい る。 該第四実施例では、 ファンケース 1 4に、 高圧空間 3 2を外部と連通するジ ョイント部材 3 3を設け、 エンジン本体 1底面に開口する底部冷却風導入口 1 f に、 低圧となっている底部冷却風通路 1 gを外部と連通するジョイント部材 3 4 を設けて、 両ジョイント部材 3 3 · 3 4同士をチューブ等にて接続している。 こ れにより、 高圧空間 3 2内の冷却風の一部が、 低圧の底部冷却風通路 1 g内へ流 入し、 特に高温となるオイルパン 1 dやステ一夕コイル 7 aを再度冷却するよう にして冷却効率を高めている。 即ち、 低圧空間に沿って特に高温となるオイルパ ン 1 dゃステ一夕コイル 7 a等を配置しており、 該低圧空間に高圧空間内の空気 を一部再循環させることにより、 これらの高温部が集中的 ·重点的に冷却される ようにしているのである。  The fourth embodiment shown in FIGS. 24 and 25 will be described. In the fan case 14, the space 32 above the cooling fan 5 is introduced into the cooling air W 1 from the air introduction port 11 a by the rotation of the blower blade 5 a, and the cooling air W 2 is joined there. On the other hand, the bottom cooling air passage 1 g formed in the lower portion of the engine body 1 is low-pressure because the cooling fan 5 sucks the cooling air W 2 to the generator D by the cooling fan 5. It is. In the fourth embodiment, the fan case 14 is provided with a joint member 33 for communicating the high-pressure space 32 with the outside, and the low-pressure air is supplied to the bottom cooling air inlet 1 f opening on the bottom of the engine body 1. A joint member 34 is provided to communicate the bottom cooling air passage 1 g with the outside, and the two joint members 33 and 34 are connected to each other by a tube or the like. As a result, part of the cooling air in the high-pressure space 32 flows into the low-pressure bottom cooling air passage 1 g, and cools the oil pan 1 d and the stay coil 7 a, which are particularly hot, again. In this way, the cooling efficiency is increased. That is, the oil pan 1 d ゃ stay coil 7 a etc., which becomes particularly high in temperature, is arranged along the low pressure space, and by partially recirculating the air in the high pressure space into the low pressure space, these high temperature The department is intensively and intensively cooled.
第四実施例は、 このような冷却ファン 5に対する高圧空間と低圧空間とを連通 する構造を前記の第三実施例に採用したものとしたものであるが、 勿論、 前記の 基本的な冷却構造を有する第 1図等の基本実施例や、 第 1 3図及び第 1 4図の改 良冷却構造の第一実施例、 第 1 5図及び第 1 6図の改良冷却構造の第二実施例、 または後記の第 2 6図の第五実施例と組み合わせることも可能である。  In the fourth embodiment, such a structure that connects the high-pressure space and the low-pressure space to the cooling fan 5 is adopted in the third embodiment. Of course, the basic cooling structure described above is adopted. Basic example of Fig. 1 etc., with the improved cooling structure of Fig. 13 and Fig. 14, the second embodiment of the improved cooling structure of Fig. 15 and Fig. 16 Alternatively, it is also possible to combine with the fifth embodiment of FIG. 26 described later.
以上で述べた各実施例でのフライホイール 4は、 側壁 4 bが発電機 Dの外側 ( 前方) に配置されるようにクランク軸 3へ取り付けられているが、 第 2 6図に示 すエンジン発電機は、 フライホイール 4 ' を、 その側壁 4 ' bが発電機 Dの内側 (後方) に配置されるようにクランク軸 3に固設しており、 従って、 フライホイ ール 4 ' の外側に凹部 4 ' aが配置され、 該凹部 4 ' a内にロータ磁石 6及びス テ一夕 7を内装して発電機 Dを構成している。 ステ一夕 7は、 ファンケース 1 4 に固設したステータブラケット 8に取り付けられている。 The flywheel 4 in each of the embodiments described above is attached to the crankshaft 3 so that the side wall 4b is located outside (in front of) the generator D. The engine generator has a flywheel 4 ′ fixed to the crankshaft 3 such that its side wall 4 ′ b is located inside (rearward) of the generator D, and therefore the flywheel 4 ′ A concave portion 4'a is arranged on the outside, and a rotor magnet 6 and a stay 7 are provided inside the concave portion 4'a to constitute a generator D. The stay 7 is attached to a stator bracket 8 fixed to the fan case 14.
こうして、 フライホイール 4 ' の側壁 4 ' bが発電機 Dとエンジン 1との間に 配置されており、 該フライホイール 4 ' の外側の凹部 4 ' a内にて、 ステ一夕コ ィル 7 aの内側 (後面) を閉塞するとともに、 外側 (前面) を開放している。 冷 却ファン 5の送風羽根 5 aは、 該フライホイール 4 ' 外周部の外側端に複数個取 り付けられており、 側壁 4 ' bに、 該側壁 4 ' bの外側と内側とを連通すべく通 風孔 4 ' cを複数貫通させており、 フライホイール 4 ' の回転に伴う冷却ファン 5の働きによって、 冷却風通路 1 e · 1 gを通過してオイルパン 1 d等を冷却し た冷却風 W 2が、 通風孔 4 ' cを介して側壁 4 ' bの外側に導かれて、 ステ一夕 コイル 7 aを冷却しながら冷却ファン 5の外周部へと流れるのである。 このよ うに、 フライホイール 4 ' の外側に装備される発電機 Dは、 前記発電機 Dと同様 に、 冷却風通路 1 e · 1 gからの冷却風 W 2によって冷却されるのに加え、 ェン ジン 1 と発電機 Dとの間にフライホイール 4 ' の側壁 4 ' bが介在するため、 運 転中に高温となるエンジン 1からの熱が該側壁 4 ' bにより遮断されて発電機 D へは伝達されない。 これにより、 発電機 Dのエンジン 1の熱による加熱が防止さ れ、 冷却ファン 5による冷却効果をさらに向上することが可能となる。  Thus, the side wall 4 ′ b of the flywheel 4 ′ is arranged between the generator D and the engine 1, and in the recess 4 ′ a outside the flywheel 4 ′, the stationary coil 7 ′ The inside (rear) of a is closed and the outer (front) is open. A plurality of blower blades 5 a of the cooling fan 5 are attached to the outer end of the outer periphery of the flywheel 4 ′, and communicate the outside and the inside of the side wall 4 ′ b with the side wall 4 ′ b. A plurality of ventilation holes 4'c are penetrated to cool the oil pan 1d, etc. through the cooling air passages 1e and 1g by the operation of the cooling fan 5 accompanying the rotation of the flywheel 4 '. The cooling air W2 is guided to the outside of the side wall 4'b through the ventilation hole 4'c, and flows to the outer periphery of the cooling fan 5 while cooling the coil 7a. As described above, the generator D mounted on the outside of the flywheel 4 ′ is cooled by the cooling air W 2 from the cooling air passages 1 e and 1 g, similarly to the generator D. Since the side wall 4'b of the flywheel 4 'is interposed between the engine 1 and the generator D, the heat from the engine 1 which becomes hot during operation is cut off by the side wall 4'b and the generator D Is not transmitted to As a result, the generator D is prevented from being heated by the heat of the engine 1, and the cooling effect of the cooling fan 5 can be further improved.
以上のような冷却構造により、 エンジンのフライホイールに備えられる発電機 Dは、 強磁性永久磁石である希土類磁石よりなるロータ磁石 6を用いた高周波高 出力構成であっても、 効率良く冷却されて十分に冷却効果を得ることができ、 出 力の安定化と良好な耐久性を維持できるのである。  With the cooling structure described above, the generator D provided in the flywheel of the engine can be efficiently cooled even in a high-frequency high-power configuration using the rotor magnet 6 composed of a rare-earth magnet that is a ferromagnetic permanent magnet. A sufficient cooling effect can be obtained, and stable output and good durability can be maintained.
次に、 これまでに記述した発電機 Dを備えて高周波発電を可能とするェンジン 発電機を、 移動可能な防音ケースに内装して、 発電機ユニットとした実施例につ いて説明するが、 その前に、 第 3 2図及び第 3 3図に示す商用電源程度の出力の 発電機 D ' をエンジン 1のフライホイール 2に内装してなる従来のエンジン発電 機に高出力高周波発電機 4 4を接続して構成した電源を、 車輪を備えて移動可能 とした防音ュニットに內設してなる従来の高周波発電機ュニットについて説明す る。 Next, a description will be given of an embodiment in which an engine generator including the generator D described above and capable of generating high-frequency power is housed in a movable soundproof case to form a generator unit. First, a high-power high-frequency generator 44 was added to the conventional engine generator in which the generator D 'with the output of the commercial power supply shown in Figs. 32 and 33 was installed inside the flywheel 2 of the engine 1. Connected and configured power supply can be moved with wheels A conventional high-frequency generator unit installed on the above soundproof unit will be described.
従来は、 エンジン発電機のフライホイール 4に備える発電機 D' が低周波であ るため、 投光機や溶接機等の電源として使用する場合には、 これとは別に高周波 発電機 4 4を、 エンジン発電機のエンジン出力部、 即ち、 前記のクランク軸 3の 反フライホイール側端部におけるェンジン出力取出部 3 bに接続していた。 従つ て、 防音ケース 3 9 ' は、 クランク軸 3の軸芯方向において、 エンジン発電機の 長さとこれに接続した発電機の長さとを合わせた分を収納できるように長くする 必要があった。 また、 防音ケース 3 9 ' 内のエンジン 1から見て反フライホイ一 ル側において、 エンジン 1の排気マフラー 3 5 ' を高周波発電機 4 4とともに左 右に並設する必要があり (3 6 ' は、 排気マフラー 3 5 ' の周りを覆う集風用の 覆いである。 ) 、 この関係で、 排気マフラー 3 5 ' の軸芯方向もクランク軸 3の 軸芯方向と平行にする必要がある。 従って、 防音ケース 3 9 ' の前後長を短縮す ベく高周波発電機 4 4の長さ (クランク軸 3の軸芯方向) を抑えた場合に、 排気 マフラー 3 5 ' の長さもこれに合わせて短くせざるを得ず、 防音効果を低減させ てしまう。 即ち、 このような排気マフラーの配置では、 発電機ュニッ卜のコンパ クト化要因と防音向上化要因との二律背反を弓 Iき起こすのである。  Conventionally, the generator D 'provided on the flywheel 4 of the engine generator has a low frequency, so when it is used as a power source for a floodlight or a welding machine, a high-frequency generator 44 is used separately. The engine output section of the engine generator, that is, the engine output extraction section 3b at the end of the crankshaft 3 opposite the flywheel side. Therefore, the soundproof case 39 'needs to be long in the axial direction of the crankshaft 3 to accommodate the combined length of the engine generator and the length of the generator connected thereto. . Also, on the side opposite to the flywheel when viewed from the engine 1 in the soundproof case 3 9 ′, it is necessary to arrange the exhaust muffler 35 5 ′ of the engine 1 along with the high frequency generator 44 on the left and right (3 6 ′ However, it is a wind collecting cover that surrounds the exhaust muffler 35 '.) In this connection, the axis of the exhaust muffler 35' must also be parallel to the axis of the crankshaft 3. Therefore, if the length of the high-frequency generator 44 (in the direction of the axis of the crankshaft 3) is reduced to shorten the length of the soundproof case 39 ', the length of the exhaust muffler 35' will be adjusted accordingly. It must be shortened, which reduces the soundproofing effect. In other words, the arrangement of the exhaust muffler causes a trade-off between the compacting factor of the generator unit and the soundproofing factor.
また、 従来より、 防音ケース 3 9 ' 内の上部に燃料タンク 3 8 ' を配設し、 該 燃料タンク 3 8 ' のキャップ付き給油口 3 8 ' aが該防音ケース 3 9 ' の上端よ り上方に突出していた。 また、 本従来技術では、 吊持部材 3 9 ' bを燃料タンク 3 8 ' に上方突出状に形成しているが、 このように、 発電機ユニットをクレーン のフック等にて吊持するための吊持部材が防音ケース 3 9 ' の上端より上方に突 出していた。 従って、 これらが干渉するため、 従来、 発電機ュニットを上下に段 積みすることができなかった。  Further, conventionally, a fuel tank 38 'is disposed at the upper part of the soundproof case 39', and the fuel filler port 38'a of the fuel tank 38 'is located at a position higher than the upper end of the soundproof case 39'. It protruded upward. Further, in the prior art, the suspension member 39'b is formed in the fuel tank 38 'so as to protrude upward. However, in this manner, the generator unit is suspended by a crane hook or the like. The suspension member protruded upward from the upper end of the soundproof case 39 '. Therefore, since these interfere with each other, it has not been possible to stack the generator units vertically in the past.
次に、 本発明の高周波発電機 Dをフライホイール 4に備えてなるエンジン発電 機を有する発電機ュニッ 卜について説明する。 第 2 7図乃至第 2 9図の如く、 防 音ケース 3 9の底部に左右軸芯方向の車軸 4 0 · 4 0が前後に平行状に軸支され ていて、 各車軸 4 0の左右先端にそれぞれ車輪 4 1を固設している。 防音ケース 3 9の中は、 上下二室に仕切られていて、 上室は動力室 3 9 a、 下室は通風ダク ト 3 9 bとなっている。 また、 防音ケース 3 9の上端面より上方に吊持部材 4 2 が突出しており (本実施例では、 燃料タンクではなく、 防音ケース 3 9に直接的 に取り付け、 或いは形成している。 ) 、 クレーンのフック等に掛けて本発電機ュ ニッ トを吊持可能としている。 Next, a generator unit having an engine generator provided with the high-frequency generator D of the present invention on the flywheel 4 will be described. As shown in FIGS. 27 to 29, axles 40 and 40 extending in the left-right axis direction are supported at the bottom of the soundproof case 39 in parallel to the front and rear, and the left and right ends of each axle 40 are provided. The wheels 41 are fixed to each of them. The inside of the soundproof case 39 is divided into upper and lower rooms, the upper room is a power room 39a, and the lower room is a ventilation duct. G 3 9b. In addition, a hanging member 42 protrudes above the upper end surface of the soundproof case 39 (in the present embodiment, the hanging member 42 is directly attached to or formed on the soundproof case 39 instead of the fuel tank). The generator unit can be hung on hooks of a crane.
動力室 3 9 a内においては、 前記のエンジン E及び発電機 Dよりなるエンジン 発電機が設置されている。 なお、 エンジン E即ちエンジン本体 1の底部は、 防音 ケース 3 9 aの床面より浮かせてあり、 第 2 7図のように、 該床面との間に防振 支持部材 3 7を介装している。 このエンジン本体 4の底面と防音ケース 3 9 aの 床面との間に、 後に詳述するように、 導風ダクト 1 5を介装できる。 エンジン発 電機の上方には燃料タンク 3 8が配設されており、 そのキャップ付き給油口 3 9 aが防音ケース 3 9の上端面の開口部より上方に突出している。  In the power room 39a, an engine generator including the engine E and the generator D is installed. The bottom of the engine E, that is, the bottom of the engine body 1 is raised above the floor of the soundproof case 39a, and a vibration isolating support member 37 is interposed between the engine E and the floor as shown in FIG. ing. As will be described in detail later, a wind guide duct 15 can be interposed between the bottom of the engine body 4 and the floor of the soundproof case 39a. A fuel tank 38 is provided above the engine generator, and a fuel filler port 39 a with a cap thereof protrudes upward from an opening at an upper end surface of the soundproof case 39.
エンジン Eを介してフライホイール 4の配設側とは反対側に集風用の覆レ、 3 6 が配設されており、 その中にエンジン 1の排気マフラー 3 5が配設されている。 該覆い 3 6内には、 前記の冷却風 W 1を主とする (冷却風 W 2も合流している) シリンダ部 1 a等を経た冷却風の流れが導入され、 排気マフラ 3 5の冷却及び消 音効果を促進し、 第 2 7図のように、 防音ケース 3 9の側面の一部に開口した排 風口 3 9 jより排風される。  A wind collecting cover 36 is disposed on the opposite side of the flywheel 4 via the engine E, and the exhaust muffler 35 of the engine 1 is disposed therein. Into the cover 36, a flow of cooling air mainly through the cooling air W1 (the cooling air W2 is also merged) is introduced through the cylinder portion 1a and the like, and cools the exhaust muffler 35. As shown in Fig. 27, the air is exhausted from the air outlet 39j which is opened on a part of the side surface of the soundproof case 39.
本実施例においては、 フライホイール 4に内装した高周波発電機 Dにより所望 の高周波電力を得られるので、 エンジン Eの反フライホイール 4側には、 排気マ フラー 3 5以外に負荷等を配設することもなく、 該排気マフラ一 3 5は、 クラン ク軸 3の軸芯方向と水平面上にて直交する方向に横設されている。 また、 発電機 Dは、 該フライホイール 4に形成された凹部 4 a内の空間を利用して内装されて いるため、 エンジン Eと発電機 Dよりなるエンジン発電機がクランク軸 3の軸芯 方向に長くなることなく、 発電機 Dを設けない場合のエンジン Eの、 フライホイ ール 4の外端部から反フライホイール 4側の端部までの長さと略同一である。 更 に、 前記のように、 エンジン Eの反フライホイール 4側では、 排気マフラー 3 5 をクランク軸 3の軸芯と直交方向に配設しているため、 クランク軸 3方向におい て、 排気マフラ一 3 5のエンジン Eより最も遠い部分からその反対側のフライホ ィール 4の配設側におけるエンジン発電機の端部までの長さを短く抑えることが 7 P In the present embodiment, since a desired high-frequency power can be obtained by the high-frequency generator D provided in the flywheel 4, a load, etc., other than the exhaust muffler 35 is disposed on the side of the engine E opposite to the flywheel 4. Without being exhausted, the exhaust muffler 35 is provided horizontally in a direction orthogonal to the axis of the crank shaft 3 on a horizontal plane. Further, since the generator D is installed using the space in the recess 4 a formed in the flywheel 4, the engine generator including the engine E and the generator D is arranged in the axial direction of the crankshaft 3. The length from the outer end of the flywheel 4 to the end on the side opposite to the flywheel 4 of the engine E without the generator D is almost the same. Further, as described above, on the side opposite to the flywheel 4 of the engine E, the exhaust muffler 35 is disposed in a direction orthogonal to the axis of the crankshaft 3, so that the exhaust muffler is not provided in the direction of the crankshaft 3. 3 The length from the furthest part of the engine E to the end of the engine generator on the opposite side of the flywheel 4 from the engine E can be kept short. 7 P
でき、 従って、 防音ケース 3 9の該方向における長さ、 即ち前後長も短くするこ とができる。 Therefore, the length of the soundproof case 39 in this direction, that is, the front-back length can also be reduced.
また、 クランク軸 3に対し略水平直交方向における排気マフラー 3 5の長さは エンジン Eの左右幅 (クランク軸 3の水平直交方向) と略同一なので、 防音ケー ス 3 9の左右幅も、 エンジン Eの左右幅のみに合わせて設定すればよく、 それ以 上長くする必要はない。 し力、し、 エンジン Eの左右幅方向、 即ちクランク軸 3に 対して水平直交方向の長さは十分に大きいので、 排気マフラー 3 5の長さは、 ェ ンジン Eの左右幅内に抑えるとしても、 所望の排気消音効果を得られる程度に十 分確保できる。  Also, since the length of the exhaust muffler 35 in a direction substantially perpendicular to the crankshaft 3 is substantially the same as the left-right width of the engine E (horizontal perpendicular direction of the crankshaft 3), the left-right width of the soundproof case 39 is also small. It only needs to be set according to the left and right width of E, and it is not necessary to make it longer. Since the length of the engine E in the left-right direction, that is, the direction perpendicular to the crankshaft 3 is sufficiently large, the length of the exhaust muffler 35 is assumed to be within the left-right width of the engine E. Can be secured to the extent that the desired exhaust noise silencing effect can be obtained.
以上の如く構成することにより、 本発明のエンジン発電機は、 高出力であるに もかかわらず、 発電機ユニッ トを構成する上で、 これをコンパク トかつ低騒音に することが可能であり、 該発電機ュニットの使用時における移動や設置が容易と なるとともに、 保管時の収納スペースを削減することができる。  By configuring as described above, the engine generator of the present invention can be made compact and low noise when configuring a generator unit, despite having high output. The generator unit can be easily moved and installed when used, and the storage space for storage can be reduced.
次に、 通風ダクト 3 9 bによる動力室 3 9 aやエンジン E内への冷却風の採り 入れ構成について、 第 2 8図及び第 2 9図より説明する。 該通風ダクト 3 9 bの 一側面 (本実施例では前面) には複数の導風口 3 9 dが開口しており、 該導風口 3 9 dから冷却風としての外気を通風ダクト 3 9 b内に取り込むように構成して いる。  Next, the configuration of introducing the cooling air into the power chamber 39a and the engine E by the ventilation duct 39b will be described with reference to FIGS. 28 and 29. On one side (the front in this embodiment) of the ventilation duct 39 b, a plurality of ventilation openings 39 d are opened, and outside air as cooling air flows from the ventilation opening 39 d inside the ventilation duct 39 b. It is configured to take in
また、 通風ダクト 3 9 bの天井面 (即ち、 動力室 3 9 aの床面) には、 導風口 3 9 dから遠い順に、 該通風ダクト 3 9 bと動力室 3 9 aとを連通するための通 気口 3 9 e · 3 9 f · 3 9 gを開口しており、 該通気口 3 9 f 内には、 エンジン E底部の前記底部冷却風導入口 1 f より下方に延設される導風ダクト 1 5が内嵌 されている。 更に、 該通風ダクト 3 9 b内において、 該通気口 3 9 e · 3 9 f · 3 9 gの両側、 及び該通気口 3 9 gと該吸入口 3 9 dとの間を遮閉するように、 第 2 9図の如く、 仕切板 4 3が配設されている。  The ceiling of the ventilation duct 39 b (that is, the floor of the power room 39 a) communicates the ventilation duct 39 b with the power room 39 a in order from the air guiding port 39 d. The opening of the cooling air inlet 3 9 e · 39 f · 39 g is provided, and the ventilation opening 39 f extends downward from the bottom cooling air inlet 1 f at the bottom of the engine E. A ventilation duct 15 is fitted inside. Further, in the ventilation duct 39b, both sides of the ventilation port 39e.39f.39g and between the ventilation port 39g and the suction port 39d are closed. Further, as shown in FIG. 29, a partition plate 43 is provided.
導風口 3 9 dから通風ダク卜 3 9 b内に導入された外気は、 仕切板 4 3の両外 側に沿って反導風口 3 9 d側に流れ、 該仕切板 4 3の端部で折り返して、 まず最 初に一部が通気口 3 9 eを介して動力室 3 9 a内に流入して、 前記のエンジン E におけるエンジン本体 1の側壁に形成した側部冷却風通路 1 e内に、 その反フラ ィホイール側に開口する入口を経て導入されて、 前記冷却風 W 2となる。 なお、 該側部冷却風通路 1 eに導入される前に、 該通気口 3 9 eの上方に配設される排 気マフラー 3 5、 或いはそれを覆う覆い 3 6を冷却可能である。 The outside air introduced into the ventilation duct 39 b from the ventilation duct 39 d flows along the outer sides of the partition 43 to the counter-vent 39 d side, and at the end of the partition 43. First, a part of the air flows into the power chamber 39a through the ventilation port 39e, and the air flows into the side cooling air passage 1e formed on the side wall of the engine body 1 of the engine E. The anti-fra The cooling air W 2 is introduced through an inlet opening on the wheel side, and becomes the cooling air W 2. Before being introduced into the side cooling air passage 1e, the exhaust muffler 35 disposed above the ventilation port 39e or the cover 36 covering the exhaust muffler 35 can be cooled.
通風ダクト 3 9 b内にて、 通気口 3 9 eに導入されずに通過した風は、 次いで 該仕切板 4 3の反吸入口 3 9 d側の切欠部より該仕切板 4 3内に囲まれた空間内 に導入されて、 その一部が、 該通気口 3 9 f とその丁度上方に位置するエンジン 本体 1の底部の底部冷却風底部導入口 1 f との間に介装した導風ダクト 1 5を介 して、 底部冷却風通路 1 g内に流入して冷却風 W 2となり、 冷却ファン 5により 発電機 Dへと導かれて、 エンジン Eのオイルパン 1 d及び発電機 Dのステ一夕コ ィル 7 a等を冷却する。 最後の通気口 3 9 gは、 仕切板 4 3に沿うように大きく 開口していて、 ここまで到達した吸入口 3 9 dからの冷却風を動力室 3 9 a内へ と導入して、 ファンケース 1 4やその周辺に配設される部材を下方より冷却し、 また、 該フマンケース 1 4の導風口 1 4 aよりファンケース 1 4内に導入される 冷却風 W 1として活用される。  In the ventilation duct 39 b, the wind that has passed without being introduced into the ventilation port 39 e is then surrounded by the notch on the anti-suction port 39 d side of the partition plate 43 inside the partition plate 43. A part of which is introduced between the ventilation opening 39 f and the bottom cooling air bottom introduction opening 1 f at the bottom of the engine body 1 located just above the ventilation opening 39 f. The cooling air flows into the bottom cooling air passage 1 g via the duct 15 and becomes the cooling air W 2, which is guided to the generator D by the cooling fan 5, and is connected to the oil pan 1 d of the engine E and the generator D. Station overnight cool 7 a etc. to cool. The last ventilation opening 39 g has a large opening along the partition plate 43, and the cooling air from the suction opening 39 d arriving so far is introduced into the power room 39 a and the fan The case 14 and the members arranged therearound are cooled from below, and are used as cooling air W 1 introduced into the fan case 14 from the air guide port 14 a of the human case 14.
第 3 0図及び第 3 1図は、 前記のような防音ケース 3 9にエンジン発電機を収 納してなる発電機ュニットを上下段積み可能とする構成を開示している。 なお、 前記の発電機ュニッ卜の実施例の説明に用いた第 2 7図は、 本実施例に共通の説 明図として使用する。 本実施例では、 通風ダクト 3 9 b内の空間を利用して、 防 音ダクト 3 9 bの底面中央付近を上向きに凹設して、 給油口収納用凹部 3 9 hと 掛止部材収納用凹部 3 9 iとを形成している。 両凹部 3 9 h · 3 9 iは、 それぞ れに給油口 3 8 a及び吊持部材 4 2が嵌入可能なように、 位置、 広さ、 及び深さ が設定されており、 発電機ュニットを上下段積みした時に、 下側の発電機ュニッ 卜の上部に配設されている給油口 3 8 a及び吊持部材 4 2がそれぞれ凹部 3 9 h • 3 9 iに嵌入する。 両凹部 3 9 h · 3 9 iは、 それぞれ給油口 3 8 a及び吊持 部材 4 2と略同じ大きさか若干大きい程度に形成しており、 発電機ュニットを上 下段積みした場合には、 給油口 3 8 aと吊持部材 4 2 、 それぞれ凹部 3 9 h · 3 9 i内にて係止された状態になり、 上段に積み重ねた発電機ュニッ卜が水平方 向に移動することを防止している。  FIGS. 30 and 31 disclose a configuration in which a generator unit having an engine generator stored in the soundproof case 39 described above can be stacked vertically. FIG. 27 used in the description of the embodiment of the generator unit is used as an explanatory diagram common to the present embodiment. In the present embodiment, the bottom of the soundproof duct 39 b is recessed upward near the center of the bottom of the soundproof duct 39 b using the space inside the ventilation duct 39 b, and the recess 39 h for the oil supply port and A recess 39 i is formed. The positions, widths, and depths of the recesses 3 9 h and 39 i are set so that the oil supply port 38 a and the suspension member 42 can be fitted into them, respectively. When they are stacked one on top of the other, the refueling port 38a and the suspending member 42 provided at the top of the lower generator unit fit into the recesses 39h and 39i, respectively. The recesses 39 h and 39 i are formed to be approximately the same size or slightly larger than the lubrication port 38 a and the suspension member 42, respectively. The opening 38a and the suspension member 42 are locked in the recesses 39h and 39i, respectively, to prevent the generator units stacked on the upper stage from moving in the horizontal direction. ing.
また、 防音ケース 3 9の上端左右縁部は、 第 2 7図の如く、 上方窄まり状の面 取り部 3 9 c · 3 9 cを形成しており、 下側の発電機ュニットの防音ケース 3 9 の面取り部 3 9 c · 3 9 cは、 左右車輪 4 1 - 4 1の内側下端に当接されて左右 の車輪 4 1 · 4 1間に挟まれるように収まり、 下側の発電機ュニットの防音ケー ス 3 9の上端面が、 上側の発電機ュニッ卜の防音ケース 3 9の底面、 或いは車輪 4 0 · 4 0下端に当接する状態となって、 上下段積みした状態の両発電機ュニッ トの間が空かず、 上下高を抑えることができるとともに、 左右にぐらつかないよ うになつている。 The left and right edges of the upper end of the soundproof case 39 are, as shown in FIG. The chamfers 39 c · 39 c of the soundproof case 39 of the lower generator unit correspond to the inner lower ends of the left and right wheels 4 1-4 1. The upper and lower wheels of the soundproof case 39 of the lower generator unit are attached to the bottom of the upper soundproof case 39 of the upper generator unit. Alternatively, the wheels come into contact with the lower ends of the wheels 40 and 40, so that there is no space between the two generator units in the vertically stacked state, so that the vertical height can be suppressed and the wheels do not wobble left and right. I have.
このように、 個々の発電機ュニット自体の前後長 (クランク軸方向の長さ) が 小さい上に、 上下多段にコンパクトかつ安定して積み重ねることができるので、 限られたスペースで多くの発電機ユニットを保管することが可能となる。  As described above, the length of each generator unit itself (length in the direction of the crankshaft) is small, and it can be stacked compactly and stably in multiple stages up and down. Can be stored.
なお、 この上下段積みを可能とする凹部 3 9 h · 3 9 iは、 前記の第 2 8図及 び第 2 9図のように通気口 3 9 e · 3 9 f · 3 9 gや仕切板 4 3を具備する通風 ダク卜 3 9 b内においても形成可能'である。 即ち、 これら通気口 3 9 e · 3 9 f • 3 9 g及び仕切板 4 3力、 凹部 3 9 h · 3 9 iを避ける位置に形成されている のである。  The recesses 39 h and 39 i that allow the stacking of the upper and lower parts are provided with the ventilation holes 39 e and 39 f and 39 g as shown in Figs. 28 and 29 described above. It can be formed even in the ventilation duct 39 b provided with the plate 43. That is, the vent holes 39 e · 39 f · 39 g, the partition plate 43 force, and the concave portions 39 h · 39 i are formed at positions avoiding these concave portions.
次に、 該ェンジン発電機のェンジン出力部に様々な負荷を連結する実施例を第 3 4図乃至第 4 1図にて説明する。 第 3 4図において、 反フライホイール 4側に おけるクランク軸 3の端部に形成した前記のェンジン出力取出部 3 bには、 補助 発電機 4 5が連結され、 エンジン Eにより発電機 Dと同時に駆動可能とされてい る。 補助発電機 4 5は、 例えば、 商用電源の如く 1 0 0 V ' 5 0 H z / 6 0 H z の電力を出力する交流発電機に構成されている。  Next, an embodiment in which various loads are connected to the engine output section of the engine generator will be described with reference to FIGS. 34 to 41. FIG. In FIG. 34, an auxiliary generator 45 is connected to the engine output extraction portion 3b formed at the end of the crankshaft 3 on the side opposite to the flywheel 4, and is connected to the generator D by the engine E at the same time. It can be driven. The auxiliary generator 45 is configured as, for example, an AC generator such as a commercial power supply that outputs 100 V'50 Hz / 60 Hz power.
こうして、 該エンジン発電機における高周波交流発電機 D (この場合、 前記の 図 3図示の発電機 D 1 ) を屋外での夜間の作業時等に広範囲を照射する第 3 5図 等の如き投光機の電源として使用する場合に、 該ェンジン発電機に接続した商用 電源としての補助発電機 4 5に補助照明を接続し、 投光機による作業場の照射に 加えて、 作業を行う手元等をスポット的に照らして更に作業を行い易くして作業 効率を向上させることができる。  In this way, the high-frequency AC generator D in the engine generator (in this case, the generator D 1 shown in FIG. 3 described above) is irradiated with light over a wide area during nighttime work outdoors, as shown in FIG. When used as a power source for the projector, auxiliary lighting is connected to the auxiliary generator 45 as a commercial power source connected to the engine generator, and in addition to irradiating the workplace with the floodlight, spotting the work area etc. The work can be further facilitated in light of the objective, and the work efficiency can be improved.
また、 作業に電動工具を使用する場合は、 補助発電機 4 5に電動工具を接続す れば別途電源を用意する必要がなくなって、 作業準備等の手間を省けて作業効率 が向上し、 コスト低減を図ることもできる。 When using a power tool for work, connecting a power tool to the auxiliary generator 45 eliminates the need for a separate power supply, and saves time and labor for work preparation, thus improving work efficiency. Can be improved, and costs can be reduced.
さらに、 水際での作業を行う場合等では水中ポンプを補助発電機 4 5に接続し て使用することもできる。  In addition, when performing work at the water's edge, the submersible pump can be connected to the auxiliary generator 45 for use.
このように、 投光機を利用しての様々な作業には、 本来の高周波発電機 Dに加 えて補助発電機 4 5を備えたエンジン発電機を一つ用意するだけで、 該発電機 D を投光機の照灯に利用する一方で、 該補助発電機 4 5に商用電源用の様々な負荷 を接続してこれらの負荷を使用することができ、 投光機を使用しての作業に必要 な駆動源を多数用意する手間が省けるのである。  As described above, for various operations using the floodlight, only one engine generator having the auxiliary generator 45 in addition to the original high-frequency generator D is required. Can be used for the floodlight of the floodlight, while various loads for commercial power can be connected to the auxiliary generator 45 to use these loads. This eliminates the need to prepare a large number of drive sources necessary for the operation.
また、 該エンジン発電機の発電機 D (この場合は、 図 4に示す発電機 D 2 ) に て溶接機を駆動する際にも、 補助発電機 4 5に照明を接続して作業の手元を照ら して溶接作業を行い易くしたり、 溶接後のバリや力エリを除去する電動工具を接 続して、 溶接と同時に後処理を行ったりすることができる。 これにより、 溶接作 業を流れ作業的に行うことができ、 作業効率を向上することが可能となる。 この ように、 発電機 Dに溶接機を接続するとともに、 補助発電機 4 5に商用電源用の 様々な負荷を接続することで、 溶接作業の作業性を向上することができるのであ る。  Also, when driving the welding machine with the generator D of the engine generator (in this case, the generator D2 shown in Fig. 4), the lighting is connected to the auxiliary generator 45 to save the work. This makes it easier to perform welding work in the light, and it is possible to connect a power tool that removes burrs and force after welding, and perform post-processing simultaneously with welding. As a result, the welding work can be performed in a flow work, and the work efficiency can be improved. Thus, by connecting the welding machine to the generator D and connecting various loads for the commercial power supply to the auxiliary generator 45, the workability of the welding operation can be improved.
第 3 5図の実施例は、 エンジン発電機のエンジン出力部に油圧ポンプ 4 7を連 結したものである。 本実施例のエンジン Eにおいては、 クランク室 1 c内にてク ランク軸 3にギア嚙合する動弁駆動用のカム軸 4 6の反フライホイール 4配設側 端部を外部に突出させて、 負荷を駆動連結可能にエンジン出力取出部 4 6 aを形 成しており、 本実施例では、 負荷として油圧ポンプ 4 7を連結している。  In the embodiment shown in FIG. 35, a hydraulic pump 47 is connected to the engine output section of the engine generator. In the engine E of the present embodiment, the camshaft 46 for driving the valve train, which is geared with the crankshaft 3 in the crankcase 1c, has the end on the side opposite to the flywheel 4 on which the flywheel 4 is disposed protruding to the outside. The engine output extraction section 46a is formed so that the load can be connected to the drive. In this embodiment, a hydraulic pump 47 is connected as the load.
第 3 6図及び第 3 7図は、 油圧ポンプ 4 7を連結した本発明のエンジン発電機 (この場合、 発電機 D 1を備えている。 ) を、 自走式投光機の電源 ·動力源とし て利用した実施例を示している。 この投光機は、 前後に左右一対の車輪 4 9を具 備する台車フレーム 4 8上に油圧ポンプ 4 7を接続した該エンジン発電機を搭載 し、 防音ケース 5 0にて覆っており、 台車フレーム 4 8より伸縮可能な支柱 5 1 を立設し、 該支柱 5 1にて、 複数のメタルハラィドランプ (放電ランプ) 5 2を 支持している。 また、 ハンドル 5 3を台車フレーム 4 8に立設して、 作業者がハ ンドル 5 3を手押しすることにより投光機を移動させることができ、 該ハンドル 5 3の上部に走行レバー 5 6を具備している。 ハンドル 5 3の下端部には回動可 能に左右一対のスタンド部材 5 4を取り付けており、 投光機の停止中にはこれを 降ろして接地させる。 FIGS. 36 and 37 show an engine generator of the present invention (in this case, provided with a generator D 1) to which a hydraulic pump 47 is connected, and a power source and a power source of a self-propelled floodlight. The example used as a source is shown. This floodlight is equipped with an engine generator connected to a hydraulic pump 47 on a bogie frame 48 having a pair of left and right wheels 49 at the front and back, and is covered with a soundproof case 50. An extendable column 51 is erected from the frame 48, and the column 51 supports a plurality of metal halide lamps (discharge lamps) 52. In addition, the handle 53 is erected on the bogie frame 48, and the operator can move the floodlight by manually pushing the handle 53. A traveling lever 56 is provided above 53. A pair of left and right stand members 54 are attached to the lower end of the handle 53 so as to be rotatable. When the projector is stopped, it is lowered to ground.
防音ケース 5 0内には、 エンジン Eと高周波交流発電機 D ( D 1 ) よりなるェ ンジン発電機に油圧ポンプ 4 7を連結してなる電源'動力源や、 その上方にて燃 料タンク 3 8等を配設している。 発電機 D 1はメタルハラィドランプ 5 2の照灯 用電源として、 油圧ポンプ 4 7は後記の走行用油圧モータ 5 5やランプ昇降用油 圧モータ 5 7等の動力源として使用される。  Inside the soundproof case 50, there is a power source that connects a hydraulic pump 47 to an engine generator consisting of an engine E and a high-frequency AC generator D (D1), and a fuel tank 3 above it. 8 mag is provided. The generator D 1 is used as a power source for the illumination of the metal halide lamp 52, and the hydraulic pump 47 is used as a power source for a hydraulic motor 55 for traveling and a hydraulic motor 57 for raising and lowering the lamp described later.
車輪 4 9 · 4 9 · · 'のうち、 前後いずれか一対には左右それぞれの車輪 4 9 に走行用油圧モータ 5 5が駆動連結され、 第 3 9図のように、 油圧ポンプ 4 7に 流体連結されている。 前記走行レバ一 5 6にて走行用制御バルブ 6 1を操作して 両走行用油圧モータ 5 5の出力を制御し、 車輪 4 9を正転 '逆転'停止させるも のである。 支柱 5 1の途中部には、 ランプ昇降用油圧モータ 5 7が取り付けられ ていて、 第 3 9図のように、 油圧ポンプ 4 7に流体接続されており、 該ランプ昇 降用油圧モータ 5 7より上方に突設されるランプ昇降用レバー 5 8によりランプ 昇降用制御バルブ 6 2を操作して、 該ランプ昇降用油圧モータ 5 7の出力を制御 し、 支柱 5 1を伸縮制御してメタルハライドランプ 5 2の高さを調節するもので あ 。  The driving hydraulic motor 55 is connected to the left and right wheels 49 of one of the front and rear wheels of the wheels 49, 49, and 49 ', and as shown in FIG. 39, the fluid is supplied to the hydraulic pump 47. Are linked. The traveling control valve 61 is operated by the traveling lever 56 to control the output of the two traveling hydraulic motors 55, thereby stopping the wheels 49 in the normal rotation and the reverse rotation. A hydraulic motor 57 for raising and lowering the ramp is mounted in the middle of the column 51, and is fluidly connected to a hydraulic pump 47 as shown in FIG. By operating the lamp elevating control valve 62 by means of the lamp elevating lever 58 projecting upward, the output of the lamp elevating hydraulic motor 57 is controlled, and the column 51 is extended and contracted to control the metal halide lamp. It adjusts the height of 52.
メタルハラィドランプ 5 2の昇降機構について、 第 3 8図より説明する。 支柱 5 1は、 下端を台車フレーム 4 8に固定した第一筒 5 1 aに第二筒 5 1 bを上方 に摺動進退可能に内嵌し、 第二筒 5 1 bに第三筒 5 1 cを上方に摺動進退可能に 内嵌し、 第三茼 5 1 cに第四筒 5 1 dを上方に摺動進退可能に内嵌して構成され ている。  The lifting mechanism of the metal halide lamp 52 will be described with reference to FIG. The support 51 has a first cylinder 51a having a lower end fixed to a bogie frame 48, and a second cylinder 51b is fitted inside the second cylinder 51b to be slidable forward and backward, and a third cylinder 5 is fitted to the second cylinder 51b. 1c is fitted inside so that it can slide forward and backward, and the fourth cylinder 51d can be fitted inside the third 茼 51c so that it can slide forward and backward.
第四筒 5 1 dの内部にてワイヤ 5 9の一端を連結し、 他端を第一筒 5 1 aの外 側面に取り付けた昇降用油圧モータ 5 7の出力端に設けたウィンチ 5 7 aに連結 して、 昇降用油圧モータ 5 7の駆動によるウィンチ 5 7 aの正逆回転により、 該 ウィンチ 5 7 aに対してワイヤ 5 9が巻り取られ、 また、 繰り出される。  One end of a wire 59 is connected inside the fourth cylinder 51d, and the other end is provided at the output end of a hydraulic motor 57 for lifting and lowering mounted on the outer surface of the first cylinder 51a. The wire 59 is wound around the winch 57a by the forward / reverse rotation of the winch 57a driven by the lifting hydraulic motor 57, and is fed out.
該ウィンチ 5 7 aのやや上方における第一筒 5 1 aの外部、 第二筒 5 1 b及び 第三筒 5 1 cの内部に、 それぞれ滑車 6 0を配設して、 ワイヤ 5 9を係回してい る。 なお、 第三筒 5 1 c及び第四筒 5 1 dには、 第二筒 5 1 b及び第三筒 5 1 c 内にそれぞれ配設した滑車 6 0と干渉しないように溝を形成している。 Slightly above the winch 57a, pulleys 60 are arranged outside the first cylinder 51a, inside the second cylinder 51b and the third cylinder 51c, respectively, and wires 59 are engaged. Turning You. Grooves are formed in the third cylinder 51c and the fourth cylinder 51d so as not to interfere with the pulleys 60 provided in the second cylinder 51b and the third cylinder 51c, respectively. I have.
このような構成において、 ランプ昇降用油圧モ一夕 5 7の駆動によりウインチ 5 7 aにワイヤ 5 9を巻き取ると、 第四筒 5 1 d、 第三筒 5 1 c、 及び、 第二筒 5 1 bが順に上方に摺動進出して、 支持柱 5 1が伸長し、 メタルハライドランプ 5 2が上昇する。 ランプ昇降用油圧モータ 5 7を逆転して、 ウィンチ 5 7 aより ワイヤ 5 9を繰り出すと、 第二筒 5 1 b、 第三筒 5 1 c、 及び、 第四筒 5 1 dが 順に下降して支持柱 5 1が収縮し、 メタルハライドランプ 5 2が下降する。 なお、 上述の構成に加えて、 メタルハライドランプ 5 2の支持部に油圧モータ を配設することで、 該メタルハライドランプ 5 2の照射角度を上下左右に自動で 変化させることも可能である。  In such a configuration, when the wire 59 is wound around the winch 57 a by driving the hydraulic motor 57 for raising and lowering the ramp, the fourth cylinder 51 d, the third cylinder 51 c, and the second cylinder 5 1 b sequentially slides upward, the support column 51 extends, and the metal halide lamp 52 rises. When the hydraulic motor 57 for raising and lowering the ramp is reversed and the wire 59 is pulled out from the winch 57a, the second cylinder 51b, the third cylinder 51c, and the fourth cylinder 51d descend in order. The support column 51 contracts, and the metal halide lamp 52 descends. Note that, in addition to the above-described configuration, by arranging a hydraulic motor on the support portion of the metal halide lamp 52, it is possible to automatically change the irradiation angle of the metal halide lamp 52 vertically and horizontally.
以上のように、 エンジン Eの動力によって、 メタルハライ ドランプ 5 2の照灯 の他、 投光機の走行操作レバー 5 6による自動走行操作、 メタルハライ ドランプ 5 2のランプ昇降操作レバー 5 8による自動昇降操作、 場合によってはその照射 角度の自動調節操作が可能であり、 重い投光機を手で押して運搬したり、 メタル ハライ ドランプ 5 2の高さを手で調節したりといった労力を省くことができる。 このような投光機により、 作業をするのに適切な範囲を迅速に照射することがで きて、 作業効率を向上することが可能となる。  As described above, by the power of the engine E, in addition to the illumination of the metal halide lamp 52, the automatic traveling operation by the traveling operation lever 56 of the floodlight, and the automatic elevating operation by the lamp elevation operation lever 58 of the metal halide lamp 52 However, in some cases, the operation of automatically adjusting the irradiation angle can be performed, and labor such as pushing a heavy projector by hand and adjusting the height of the metal halide lamp 52 by hand can be omitted. With such a floodlight, it is possible to quickly irradiate an appropriate area for work, and to improve work efficiency.
第 4 0図のエンジン発電機においては、 エンジン Eのカム軸 4 6端におけるェ ンジン出力取出部 4 6 aに、 負荷としてエアコンプレッサ 6 3を靴動連結してい る。 例えば、 溶接作業に際し、 発電機 Dを前記の第 4図に示した溶接機用の高周 波交流発電機 D 2としたェンジン発電機にこのようなエアコンプレッサ 6 3を連 結しておき、 発電機 Dには溶接機を接続して駆動させ、 エアコンプレッサ 6 3に はエア駆動される工具を接続して、 溶接と同時に該工具によるバリ取り等の作業 を行ったり、 或いは塗装器具を接続して、 溶接後すぐに塗装を行ったりすること ができる。 これにより、 溶接作業を流れ作業的に行うことができ、 作業効率を向 上することが可能となる。  In the engine generator of FIG. 40, an air compressor 63 as a load is shoe-connected to an engine output take-out portion 46a at the end of the cam shaft 46 of the engine E. For example, in the welding operation, such an air compressor 63 is connected to an engine generator in which the generator D is a high-frequency AC generator D2 for a welding machine shown in FIG. A generator is connected and driven by a welding machine, and an air-driven tool is connected to the air compressor 63 to perform welding and other deburring work at the same time as welding, or to connect painting equipment. In this way, painting can be performed immediately after welding. As a result, the welding operation can be performed in a flow operation, and the operation efficiency can be improved.
或いは、 発電機 Dとして、 前記の第 3図の投光機用の高周波交流発電機 D 1を 備えたエンジン発電機にこのようなエアコンプレッサ 6 3を接続しておき、 発電 機 D 1には投光機を接続してこれを照灯し、 作業場を照射するとともに、 ェアコ ンプレッサ 6 3にエア駆動される工具等を接続し、 該工具により作業を行うこと ができる。 即ち、 エンジン発電機を投光機照灯用として使用しながら、 エンジン Eに直結したエアコンプレッサ 6 3に工具を接続して使用でき、 該工具の駆動源 を別途用意する必要がなく、 作業準備等の手間が省け、 作業効率を向上し、 コス ト低減が可能となる。 Alternatively, such an air compressor 63 is connected to an engine generator having the high-frequency AC generator D 1 for the floodlight shown in FIG. A projector can be connected to the machine D1 to illuminate it, irradiate the work place, and connect a tool or the like driven by air to the air compressor 63, so that work can be performed by the tool. In other words, a tool can be connected to the air compressor 63 directly connected to the engine E while using the engine generator for the floodlight, and there is no need to prepare a separate drive source for the tool. This saves time and labor, improves work efficiency and reduces costs.
第 4 1図のエンジン発電機においては、 エンジン出力取出部 4 6 aに、 負荷と して高圧水ポンプ 6 4を接続している。 このエンジン発電機は、 発電機 Dとして 例えば第 4図の発電機 D 1を備え、 これにより投光機を照灯して建設現場を照射 し、 作業終了後、 高圧水ポンプ 6 4にて水を噴射して作業を終えた建設機械等を 洗浄するのに用いることができる。 或いは、 塗装作業に際してこのエンジン発電 機を使用し、 発電機 D 1にて投光機を照灯しながら、 高圧水ポンプ 6 4からの噴 射水で、 塗装対象物の表面を塗装前に洗浄したり、 塗り替えのために、 古い塗装 を剝離させることができる。 本エンジン発電機以外に高圧水ポンプ 6 4の駆動源 を別途用意する必要がなくなり、 作業準備等の手間を省くことができて、 作業効 率の向上を図るとともに、 コストを低減することができる。  In the engine generator shown in FIG. 41, a high-pressure water pump 64 is connected as a load to the engine output extraction section 46a. This engine generator is equipped with, for example, a generator D1 shown in Fig. 4 as a generator D, which illuminates the floodlight and irradiates the construction site. It can be used to wash construction machinery and the like that has completed work by spraying water. Alternatively, the surface of the object to be painted is washed before painting with the spray water from the high-pressure water pump 64 while using this engine generator for painting work and illuminating the floodlight with the generator D1. Or remove old paint for repainting. There is no need to separately prepare a drive source for the high-pressure water pump 64 other than the engine generator, which saves time and effort for work preparation, etc., thereby improving work efficiency and reducing costs. .
エンジン出力取出部 4 6 aに接続された第 3 5図の油圧ポンプ 4 7、 第 4 0図 のエアコンプレッサ 6 3、 第 4 1図の高圧水ポンプ 6 4は、 いずれも圧力を供給 する装置 (圧力供給装置) であり、 該装置にて供給される圧力を様々に利用でき るのである。 これ以外にも、 エンジン出力取出部 3 b或いは 4 6 aにモータ等、 様々な負荷を接続可能である。 産業上の利用可能性  The hydraulic pump 47 shown in Fig. 35, the air compressor 63 shown in Fig. 40, and the high-pressure water pump 64 shown in Fig. 41 connected to the engine output port 46a all supply pressure. (Pressure supply device), and the pressure supplied by the device can be used in various ways. In addition, various loads, such as a motor, can be connected to the engine output extraction part 3b or 46a. Industrial applicability
以上のように、 本発明に係るエンジン発電機は、 高周波発電を可能とするコン パクトな構成となっており、 保管性、 搬送性に優れ、 投光機や溶接機の他、 高周 波電源を必要とする様々な負荷を使用するのに際しては、 そのコンパク卜な構成 や、 他に高周波発電機を用意する必要がない点、 更には、 他の動力源を用意する ことなく、 該ェンジン発電機におけるエンジン出力を利用して他に様々な負荷を 接続することも可能である点等から、 低コスト性ゃ設置場所の制限等が求められ る作業において需要が高レ、であろう。 As described above, the engine generator according to the present invention has a compact configuration that enables high-frequency power generation, is excellent in storage and transportability, and has a high frequency power supply in addition to a floodlight and a welding machine. When using a variety of loads that require power, the compact configuration and the need to prepare other high-frequency generators are not required. It is possible to connect various other loads by using the engine output of the machine, so it is low cost. Demand will be high in such work.

Claims

請 求 の 範 囲 The scope of the claims
1 . エンジンのクランク軸に同一軸状に付設したフライホイールに、 該,軸芯を中 心として周状に凹部を形成し、 該凹部内において、 該フライホイールの内周面に 強磁性永久磁石よりなるロータ磁石を固設するとともに、 該フライホイールと一 体に回転する該ロー夕磁石に対向すベく、 ェンジン本体側に複数の電機子極を配 置したことを特徴とするエンジン発電機。 1. A concave portion is formed circumferentially around the shaft center on a flywheel provided coaxially with the crankshaft of the engine, and a ferromagnetic permanent magnet is formed in the concave portion on the inner peripheral surface of the flywheel. An engine generator having a rotor magnet comprising a plurality of armature poles arranged on the engine body side facing the rotor magnet rotating integrally with the flywheel. .
2 . 前記ロータ磁石を希土類磁石により構成したことを特徴とする請求の範囲第 1項記載のエンジン発電機。  2. The engine generator according to claim 1, wherein said rotor magnet is made of a rare earth magnet.
3 . 高周波出力特性を有すべく、 前記電機子極の極数を設定したことを特徴とす る請求の範囲第 1項記載のエンジン駆動型発電機構。  3. The engine-driven power generating mechanism according to claim 1, wherein the number of the armature poles is set so as to have high-frequency output characteristics.
4 . 前記ロータ磁石を取り付けたままの前記フライホイールを、 該ロータ磁石と 前記電機子極との間の吸着力に抗しながら前記クランク軸と同一軸上に移動させ るフライホイール着脱手段を設けたことを特徴とする請求の範囲第 1項記載のェ ンジン発電機。  4. A flywheel attaching / detaching means is provided for moving the flywheel with the rotor magnet attached thereto on the same axis as the crankshaft while resisting the attraction force between the rotor magnet and the armature pole. The engine generator according to claim 1, wherein:
5 . 前記ェンジン本体の反フライホイ一ル側にェンジン出力取出部を構成したこ とを特徴とする請求の範囲第 1項記載のエンジン発電機。  5. The engine generator according to claim 1, wherein an engine output extracting portion is formed on a side of the engine main body opposite to the flywheel.
6 . 前記エンジン出力取出部に商用電源用発電機を接続したことを特徵とする請 求の範囲第 5項記載のェンジン発電機。  6. The engine generator according to claim 5, wherein a commercial power generator is connected to the engine output extracting section.
7 . 前記ェンジン出力取出部に圧力供給装置を接続したことを特徴とする請求の 範囲第 5項記載のェンジン発電機。  7. The engine generator according to claim 5, wherein a pressure supply device is connected to the engine output extraction unit.
8 . 前記エンジン本体の反フライホイール側において、 排気マフラーを前記クラ ンク軸に略直交する略水平方向に配設することを特徴とすることを特徴とする請 求の範囲第 1項記載のェンジン発電機。  8. The engine according to claim 1, wherein an exhaust muffler is arranged in a substantially horizontal direction substantially orthogonal to the crankshaft on a side opposite to the flywheel of the engine body. Generator.
9 . エンジンのクランク軸の外端部周りに、 該クランク軸と一体に回転する強磁 性永久磁石よりなるァウタロータを配設し、 ァウタロータの内側に、 高周波電力 特性を有するのに必要な極数の電機子極を具備したステ一夕を配設し、 巻線を独 立集合させて、 高周波発電機を構成したことを特徴とするエンジン発電機。 9. Around the outer end of the crankshaft of the engine, an outer rotor made of a ferromagnetic permanent magnet that rotates integrally with the crankshaft is arranged, and inside the outer rotor, the number of poles required to have high-frequency power characteristics. An engine generator comprising a high-frequency generator comprising a set of stators having armature poles and windings independently assembled.
1 0 . エンジンのクランク軸に同一軸状に付設したフライホイールに、 該軸芯を 中心として周状に凹部を形成し、 該凹部内において該フライホイ一ルに固設され る回転子とエンジン本体に固設される固定子とを配設して発電機を構成し、 該フ ラィホイールの反ェンジン側に複数の送風羽根を配設して冷却ファンを構成する とともに、 該フライホイールに、 一開口端を少なくとも該凹部内に連通させる貫 通孔を形成し、 エンジン本体側より、 該凹部内及び該貫通孔を経て、 該冷却ファ ンに至る送風を可能とすることを特徴とするエンジン発電機。 10. The flywheel attached coaxially to the crankshaft of the engine A concave portion is formed circumferentially around the center, and a rotor fixed to the flywheel and a stator fixed to the engine body are disposed in the concave portion to constitute a generator; A plurality of blower blades are arranged on the opposite side of the engine to form a cooling fan, and a through hole is formed in the flywheel so that at least one open end communicates with the recess. An engine generator, wherein air can be blown to the cooling fan through the inside of the recess and through the through hole.
1 1 . 前記フライホイールの外側に補助送風羽根を配設したことを特徴とする請 求の範囲第 1 0項記載のエンジン発電機。  11. The engine generator according to claim 10, wherein an auxiliary blower blade is provided outside the flywheel.
1 2 . 前記フライホイールの内側に補助送風羽根を配設したことを特徴とする請 求の範囲第 1 0項記載のエンジン発電機。  12. The engine generator according to claim 10, wherein an auxiliary blower blade is provided inside the flywheel.
1 3 . 前記フライホイールの前記送風羽根配設側に、 エンジン本体側から前記貫 通孔を通過した冷却風を前記冷却ファンに向けて案内する冷却風ガイド部材を配 設したことを特徴とする請求の範囲第 1 0項記載のエンジン発電機。  13. A cooling air guide member for guiding cooling air passing through the through hole from the engine body toward the cooling fan is provided on the side of the flywheel where the blower blades are provided. The engine generator according to claim 10.
1 4 . 前記冷却風ガイド部材は、 前記送風羽根の回転軌跡外周端部付近まで延設 され、 前記フライホイールの外側空間を該フライホイールの表面に略平行状に仕 切る構造としたことを特徴とする請求の範囲第 1 3項記載のエンジン発電機。 14. The cooling air guide member is extended to near the outer peripheral end of the rotation trajectory of the blower blade, and has a structure that partitions an outer space of the flywheel in a substantially parallel shape to a surface of the flywheel. The engine generator according to claim 13, wherein:
1 5 . 前記冷却ファンの反フライホイール側端部に、 該送風羽根同士の間の空間 を閉塞すベく、 該フライホイール表面と略平行状の閉塞部材を配設したことを特 徵とする請求の範囲第 1 0項記載のエンジン発電機。 15. A feature in which a closing member substantially parallel to the surface of the flywheel is disposed at an end of the cooling fan on a side opposite to the flywheel so as to close a space between the blower blades. The engine generator according to claim 10.
1 6 . 前記固定子をエンジン本体に取付固定するための支持部材に、 放熱フィ ン を形成したことを特徴とする請求の範囲第 1 0項記載のェンジン発電機。  16. The engine generator according to claim 10, wherein a radiator fin is formed on a support member for attaching and fixing the stator to an engine body.
1 7 . 前記凹部を前記フライホイールにおける反エンジン本体側に形成して、 該 凹部内の発電機と該エンジン本体との間に該フライホイールが介在する状態とし たことを特徴とする請求の範囲第 1 0項記載のエンジン発電機。  17. The concave portion is formed on the flywheel opposite to the engine main body side, and the flywheel is interposed between the generator in the concave portion and the engine main body. Item 10. The engine generator according to Item 10.
1 8 . 前記エンジン本体内に、 前記フライホイールに向けて出口を有する冷却風 通路を形成し、 該冷却風通路を通過した冷却風が、 前記フライホイールの凹部内 と前記貫通孔とを経て、 該フライホイールの該送風羽根配設側空間に送風される ことを特徴とする請求の範囲第 1 0項記載のエンジン発電機。  18. A cooling air passage having an outlet toward the flywheel is formed in the engine body, and the cooling air that has passed through the cooling air passage passes through the inside of the recess of the flywheel and the through hole, The engine generator according to claim 10, wherein air is blown into the space on the flywheel side of the flywheel where the blower blades are arranged.
1 9 . 前記冷却ファンの外周部周りにおける冷却風の高圧空間と、 低圧となる前 記のエンジン本体内の冷却風通路との間を連通させ、 該高圧空間内の冷却風の一 部を該冷却風通路に再循環させることを特徴とする請求の範囲第 1 8項記載のェ 1 9. The high pressure space of the cooling air around the outer periphery of the cooling fan and before the low pressure 19. The method according to claim 18, wherein the cooling air passage in the engine body is communicated with the cooling air passage, and a part of the cooling air in the high-pressure space is recirculated to the cooling air passage.
2 0 . 前記冷却風通路の出口からの排風を前記凹部内または前記貫通孔に案内す るための案内板材を設けたことを特徴とする請求の範囲第 1 8項記載のェンジン 20. The engine according to claim 18, further comprising a guide plate for guiding exhaust air from an outlet of said cooling air passage into said recess or said through hole.
2 1 . エンジン本体にクランク軸方向で見て傾斜状にシリンダを形成している場 合において、 該エンジン本体にて、 該シリンダの傾斜下面から、 その下のクラン ク室の側方にかけて、 肉厚部を形成し、 該肉厚部に、 前記冷却風通路を、 該ェン ジン本体の反フライホイ一ル側とフライホイ一ル側との間を貫通するように形成 したことを特徴とする請求の範囲第 1 8項記載のエンジン発電機。 21. In the case where the cylinder is formed in the engine main body at an angle when viewed in the direction of the crankshaft, the engine main body extends from the inclined lower surface of the cylinder to the side of the crank chamber below the cylinder. A thick portion is formed, and the cooling air passage is formed in the thick portion so as to penetrate between a side opposite to the flywheel and a side of the flywheel of the engine body. An engine generator according to item 18 of the above.
2 2 . エンジン本体のオイルパン直下に前記冷却風通路を形成し、 その入口をェ ンジン本体底部に開口させたことを特徴とする請求の範囲第 1 8項記載のェンジ ン発電機。 22. The engine generator according to claim 18, wherein the cooling air passage is formed immediately below an oil pan of the engine body, and an inlet thereof is opened at a bottom of the engine body.
2 3 . フライホイールの凹部に発電機を形成してなるエンジン発電機を防音ケー スにて覆い、 該防音ケース下方には通風ダクトを形成し、 該通風ダクトより前記 のェンジン本体底部に開口した前記冷却風通路の入口に冷却風を導入可能とした ことを特徴とする請求の範囲第 2 2項記載のエンジン発電機。  23. An engine generator formed by forming a generator in the recess of the flywheel was covered with a soundproof case, a ventilation duct was formed below the soundproof case, and an opening was formed at the bottom of the engine body from the ventilation duct. The engine generator according to claim 22, wherein cooling air can be introduced into an inlet of the cooling air passage.
PCT/JP1999/002580 1998-05-26 1999-05-17 Engine generator WO1999062167A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP10/144293 1998-05-26
JP10/144292 1998-05-26
JP14429398A JPH11341742A (en) 1998-05-26 1998-05-26 Cooling structure for flywheel type power generator
JP14429298A JPH11341767A (en) 1998-05-26 1998-05-26 Flywheel type generator
JP10/147912 1998-05-28
JP14791398A JPH11343860A (en) 1998-05-28 1998-05-28 Engine generator
JP14791298A JPH11341768A (en) 1998-05-28 1998-05-28 Flywheel type generator
JP10/147913 1998-05-28
JP11/11250 1999-01-20
JP11/11249 1999-01-20
JP11011249A JP2000217307A (en) 1999-01-20 1999-01-20 Cooling structure of flywheel type generator
JP11011250A JP2000213362A (en) 1999-01-20 1999-01-20 Cooling device for flywheel-type generator

Publications (1)

Publication Number Publication Date
WO1999062167A1 true WO1999062167A1 (en) 1999-12-02

Family

ID=27548328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002580 WO1999062167A1 (en) 1998-05-26 1999-05-17 Engine generator

Country Status (1)

Country Link
WO (1) WO1999062167A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2226920A3 (en) * 2009-03-06 2012-04-04 LichtBlick ZuhauseKraftwerk GmbH Co-generation unit with a combustion piston engine and an electric machine
CN102678305A (en) * 2011-03-10 2012-09-19 湖南华强电气有限公司 Automotive engine
CN103023209A (en) * 2012-12-18 2013-04-03 重庆吉力芸峰实业(集团)有限公司 Variable frequency electric generator
US20130169118A1 (en) * 2011-12-30 2013-07-04 Kawasaki Jukogyo Kabushiki Kaisha Electric Generator and Hybrid Vehicle Incorporating Electric Generator
CN112814805A (en) * 2020-12-31 2021-05-18 重庆鼎工机电有限公司 Power assembly for variable frequency generator

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113104A (en) * 1973-03-03 1974-10-29
JPS5176605U (en) * 1974-12-13 1976-06-16
JPS51118028A (en) * 1975-04-10 1976-10-16 Kubota Ltd Instalation serves as generator and prime mover
JPS5721266U (en) * 1980-07-08 1982-02-03
JPH0213136U (en) * 1988-06-30 1990-01-26
JPH04331441A (en) * 1991-04-30 1992-11-19 Yamaha Motor Co Ltd Magnetic ac generator of engine
JPH04368455A (en) * 1991-06-14 1992-12-21 Moriyama Kogyo Kk Stator coil
JPH0561424U (en) * 1992-01-28 1993-08-13 ヤンマーディーゼル株式会社 Cooling structure for generator with engine
JPH071975A (en) * 1993-06-17 1995-01-06 Honda Motor Co Ltd Hybrid electric power supply device for motor-driven travel vehicle
JPH08223854A (en) * 1995-02-14 1996-08-30 Yamaha Motor Co Ltd Engine generator
JPH08322198A (en) * 1995-05-29 1996-12-03 Denyo Kk Engine driven permanent magnet generator for welding
JPH0946991A (en) * 1995-07-27 1997-02-14 Oppama Kogyo Kk Rotor of permanent-magnet generator and rotor pull-out tool
JPH10127025A (en) * 1996-10-15 1998-05-15 Yanmar Diesel Engine Co Ltd Engine generator

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113104A (en) * 1973-03-03 1974-10-29
JPS5176605U (en) * 1974-12-13 1976-06-16
JPS51118028A (en) * 1975-04-10 1976-10-16 Kubota Ltd Instalation serves as generator and prime mover
JPS5721266U (en) * 1980-07-08 1982-02-03
JPH0213136U (en) * 1988-06-30 1990-01-26
JPH04331441A (en) * 1991-04-30 1992-11-19 Yamaha Motor Co Ltd Magnetic ac generator of engine
JPH04368455A (en) * 1991-06-14 1992-12-21 Moriyama Kogyo Kk Stator coil
JPH0561424U (en) * 1992-01-28 1993-08-13 ヤンマーディーゼル株式会社 Cooling structure for generator with engine
JPH071975A (en) * 1993-06-17 1995-01-06 Honda Motor Co Ltd Hybrid electric power supply device for motor-driven travel vehicle
JPH08223854A (en) * 1995-02-14 1996-08-30 Yamaha Motor Co Ltd Engine generator
JPH08322198A (en) * 1995-05-29 1996-12-03 Denyo Kk Engine driven permanent magnet generator for welding
JPH0946991A (en) * 1995-07-27 1997-02-14 Oppama Kogyo Kk Rotor of permanent-magnet generator and rotor pull-out tool
JPH10127025A (en) * 1996-10-15 1998-05-15 Yanmar Diesel Engine Co Ltd Engine generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2226920A3 (en) * 2009-03-06 2012-04-04 LichtBlick ZuhauseKraftwerk GmbH Co-generation unit with a combustion piston engine and an electric machine
CN102678305A (en) * 2011-03-10 2012-09-19 湖南华强电气有限公司 Automotive engine
US20130169118A1 (en) * 2011-12-30 2013-07-04 Kawasaki Jukogyo Kabushiki Kaisha Electric Generator and Hybrid Vehicle Incorporating Electric Generator
US8766498B2 (en) * 2011-12-30 2014-07-01 Kawasaki Jukogyo Kabushiki Kaisha Electric generator with cooling system and hybrid vehicle incorporating electric generator
CN103023209A (en) * 2012-12-18 2013-04-03 重庆吉力芸峰实业(集团)有限公司 Variable frequency electric generator
CN112814805A (en) * 2020-12-31 2021-05-18 重庆鼎工机电有限公司 Power assembly for variable frequency generator

Similar Documents

Publication Publication Date Title
CN1117919C (en) Engine driving type electric generator unit
CN1117920C (en) Engine-generator set
KR101919478B1 (en) Generator motor and electric vehicle using same
US7557458B2 (en) Soundproof type engine generator
CN1131936C (en) Driven generator set for engine
CN1328491C (en) Driving device for motor
US7492050B2 (en) Cooling system for a portable generator
JP5285310B2 (en) Engine driven generator
CN1206787A (en) Electricity generator driven by engine
CN1103406C (en) Engine operated working machine
CN104847488B (en) A kind of engine-driven generating set
CN103025967B (en) Construction machine
JPH1136880A (en) Engine generator
WO1999062167A1 (en) Engine generator
CN1154220C (en) Permanent-magnetic rotary electric machine
JP3859537B2 (en) Mobile power car
CN109038921A (en) A kind of high-efficient heat-dissipating magneto of built-in jet
CN112943436B (en) Air duct type cooling frequency conversion unit and layout method thereof
JP2019507291A (en) Portable generator unit
CN202395631U (en) Permanent magnet synchronous external rotor gasoline engine generator
CN209687752U (en) A kind of direct current air-introduced machine
CN209654122U (en) Fuel electric generator and generating set
WO2023157220A1 (en) Outer rotor type engine-driven dc output unit
JPH11341768A (en) Flywheel type generator
JP2001221047A (en) Engine generator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase