WO1999059179A1 - Phosphor-coated structure and luminous device having the same - Google Patents

Phosphor-coated structure and luminous device having the same Download PDF

Info

Publication number
WO1999059179A1
WO1999059179A1 PCT/JP1999/002411 JP9902411W WO9959179A1 WO 1999059179 A1 WO1999059179 A1 WO 1999059179A1 JP 9902411 W JP9902411 W JP 9902411W WO 9959179 A1 WO9959179 A1 WO 9959179A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
base member
support
structure according
light flux
Prior art date
Application number
PCT/JP1999/002411
Other languages
French (fr)
Japanese (ja)
Inventor
Tadashi Yano
Kazuaki Okubo
Makoto Inohara
Kenjiro Hashimoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO1999059179A1 publication Critical patent/WO1999059179A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence

Definitions

  • the present invention relates to a structure coated with a fluorescent object, that is, a phosphor coated structure that can be used in various light emitting devices (light emitting devices, lighting lamps, display devices, and the like). Further, the present invention relates to various light-emitting devices (light-emitting devices and light-emitting devices, such as lighting lamps and plasma display panels) having such a phosphor coating structure.
  • a structure coated with a fluorescent object that is, a phosphor coated structure that can be used in various light emitting devices (light emitting devices, lighting lamps, display devices, and the like).
  • various light-emitting devices light-emitting devices and light-emitting devices, such as lighting lamps and plasma display panels
  • fluorescent light ⁇ is used in many products (light emitting devices) such as fluorescent lamps and displays.
  • the role of the phosphor in these products is self-emission due to ultraviolet excitation or electron beam excitation, and increasing the amount of emitted light and emission luminance is one of the important issues. Therefore, research and development of a method of applying a phosphor have been conducted as one of means for increasing the light emission amount and light emission luminance of the phosphor.
  • the fluorescent coating film by applying a phosphor solution in multiple layers, adjusting the drying speed of the phosphor solution, and applying several types of phosphor solutions separately.
  • improvements have been made to the method of applying a phosphor to obtain a high light emission amount and high light emission luminance.
  • the phosphor solution is applied to the concave portions of the irregular glass paste, but the phosphor is optimized by optimizing the performance and shape of the phosphor used.
  • the method of applying the phosphor to obtain high emission luminance has been improved.
  • the improvement of the method of applying the phosphor in the conventional technique is, in other words, excessive
  • the main method is to develop a coating method that maximizes the performance of the phosphor by changing the type of phosphor used for the processes that have been performed.
  • the present invention has been made in consideration of the above problems, and has the following objects.
  • a phosphor coating film was regarded as a macroscopic plane (that is, two-dimensionally).
  • a new phosphor coating structure that increases the amount of light emission and emission luminance by grasping the phosphor coating film macroscopically as a three-dimensional structure (ie, three-dimensional), and (2) ) To provide a light emitting device having the above-described phosphor coating structure.
  • the phosphor coating structure of the present invention comprises: a base member; and at least one support disposed on the base member, wherein the support includes a phosphor, whereby the phosphor is provided. Constitutes a three-dimensional structure arranged three-dimensionally to provide at least an improved transmitted light flux, thereby achieving the object mentioned above.
  • the phosphor may be coated on the surface of the support, or the support may be formed with the phosphor as a main component.
  • the phosphor is applied to the base member at a thickness of 1. ⁇ to 20 im.
  • the applied weight of the phosphor on the base member was 0.001 g Z It may be a cm 2 ⁇ 0. 005 g / cm 2.
  • the phosphor is applied to the base member, and the transmitted light flux emitted from the base member is T 1, and the transmitted light flux emitted from the support and transmitted through the base member is ⁇ T 2
  • the transmitted light flux emitted from the base member when the support is not arranged on the base member is ⁇ TB,
  • the base member is not coated with a phosphor, and the transmitted light flux radiated from the support and transmitted through the base member is ⁇ T 2, and the support is formed on the base member.
  • the transmitted light flux radiated from the base member when not arranged is ⁇ TB,
  • Another phosphor coating structure of the present invention includes: a base member on which a phosphor is coated; and at least one support disposed on the base member.
  • the support includes the phosphor. Accordingly, the phosphor forms a three-dimensional structure in which the phosphors are arranged three-dimensionally, and the reflected light flux radiated from the base member is radiated from the side surface of the support (i> R 1).
  • the reflected light flux is 0R2
  • the reflected light flux emitted from the upper surface of the support is R3
  • the reflected light flux emitted from the base member when the support is not disposed on the base member is ⁇ i. > RB
  • the phosphor may be coated on the surface of the support, or the support may be formed with the phosphor as a main component.
  • the base member is coated with the phosphor at a thickness of .0 m to 100 xm. Have been. At this time, the application weight of the phosphor on the base member may be 0.001 lg Zcm 2 to 0.01 gZcm 2 .
  • Still another phosphor coating structure of the present invention includes: a base member on which a phosphor is coated; and at least one support disposed on the base member, wherein the support is formed of the phosphor. And a three-dimensional structure in which the phosphors are arranged three-dimensionally.
  • the reflected light flux R radiated from the base member is reflected, and the reflected light radiated from the side surface of the support is formed.
  • the light flux is ⁇ R 2 and the reflected light flux emitted from the base member when the support is not arranged on the base member is (i> RB)
  • the phosphor may be coated on the surface of the support, or the support may be formed with the phosphor as a main component.
  • the phosphor is applied to the base member in a thickness of 10 m to 100 m.
  • the coating weight of the phosphor on the base member may be 0.001 lg / cm 2 to 0.01 gZcm 2 .
  • the phosphor is applied to the base member, and the transmitted light flux radiated from the base member is ⁇ 1, and the transmitted light flux radiated from the support and transmitted through the base member is ⁇ ).
  • the transmitted light flux radiated from the base member when the support is not disposed on the base member ⁇ the reflected light flux R1 radiated from the base member again by the structure on the ceiling surface.
  • the base member and transmitting the transmitted light flux i> RT 1
  • the reflected light beam ⁇ R 2 radiated from the side surface of the support returns to the base member again by the structure on the ceiling surface.
  • the transmitted light flux passing therethrough is ⁇ RT 2
  • the reflected light flux (i> R 3 radiated from the upper surface of the support returns to the base member again by the structure on the ceiling surface, and the transmitted light flux transmitted therethrough is 0RT 3, if the support is not placed on the base member
  • the reflected light beam RB that is from the base plate member radiant
  • the transmitted light flux returned to the base member again by the structure of the ceiling surface and transmitted therethrough is ⁇ i) RTB
  • the base member is not coated with a phosphor
  • the transmitted light flux radiated from the support and transmitted through the base member is * T2
  • the support is provided on the base member.
  • the transmitted light flux emitted from the base member when it is not arranged is ⁇ ⁇
  • the reflected light flux ⁇ R2 emitted from the side surface of the support returns to the base member again by the structure of the ceiling surface.
  • the transmitted light flux passing through the support ⁇ R ⁇ 2, and the reflected light flux ⁇ R 3 radiated from the upper surface of the support returns to the base member again by the structure on the ceiling surface and is transmitted therethrough.
  • the light flux is ⁇ R ⁇ 3, and the reflected light flux 0RB radiated from the base member when the support is not placed on the base member returns to the base member again by the structure on the ceiling surface.
  • the support is coated with the phosphor at a thickness of 10 im-100 / xm.
  • the coating weight of the phosphor on the support may be 0.001 gZcm 2 0.0 ⁇ g / cm 2 .
  • the relationship between the height a of the support and the arrangement interval c is 0. Meet 6.
  • the height a of the support may be 0.1 / _im or more.
  • a thickness b of a portion of the support that contacts the base member may be 0.001 mm ⁇ b ⁇ 5 mm.
  • the base member is made of glass or quartz glass.
  • the base member is made of ceramic or metal.
  • the support is made of glass, quartz glass, ceramic, or metal.
  • the base member and the support may be formed integrally.
  • a light-emitting device having a three-dimensional structure coated with a phosphor, wherein the three-dimensional structure has the above-described characteristics.
  • the light-emitting device is provided, whereby the above-mentioned object is achieved.
  • a fluorescent lamp having a three-dimensional structure coated with a phosphor, wherein the three-dimensional structure has the above-mentioned features.
  • a fluorescent lamp having a structure is provided, whereby the object mentioned above is achieved.
  • FIG. 1 is a diagram schematically showing a basic configuration of a phosphor coating structure configured in the present invention.
  • FIG. 2 is a diagram showing the relationship between the phosphor application weight per unit area and the transmission luminance and the reflection luminance.
  • Figure 3 shows the relationship between the phosphor coating weight per unit area and the diffuse transmittance and diffuse reflectance.
  • FIG. 4 is a diagram schematically illustrating a transmitted light beam.
  • FIG. 5 is a diagram schematically illustrating a reflected light beam.
  • FIG. 6 is a diagram schematically illustrating a luminous flux.
  • FIG. 7 is a diagram showing the relationship between the aZc value and the transmission luminance increase rate in the phosphor coating structure of the present invention.
  • FIG. 8 is a diagram showing the relationship between the aZc value and the transmission luminance increase rate in the phosphor coating structure of the present invention.
  • FIG. 9 is a diagram showing the relationship between the aZc value and the reflection luminance increase rate in the phosphor coating structure of the present invention.
  • FIG. 10 is a diagram showing the relationship between the aZc value and the reflection luminance increase rate in the phosphor coating structure of the present invention.
  • FIG. 11 is a diagram showing the relationship between the aZc value and the emission luminance increase rate in the phosphor coating structure of the present invention.
  • FIG. 12 is a diagram showing the relationship between the aZc value and the emission luminance increase rate in the phosphor coating structure of the present invention.
  • FIG. 13 is a diagram schematically showing a configuration of a phosphor coating structure according to one embodiment of the present invention.
  • FIG. 14 is a diagram showing the relationship between the height of the microphone opening glass plate constituting the support included in the configuration of the phosphor coating structure of the present invention and the measured reflection luminance and transmission luminance.
  • FIG. 15 is a diagram showing the relationship between the height of the microphone opening glass plate constituting the support included in the structure of the phosphor coating structure of the present invention, and the total of the measured reflection luminance and transmission luminance.
  • FIGS. 16 (a) to (c) are a top view, a front view, and a top view, respectively, of an embodiment of the phosphor coating structure of the present invention.
  • FIGS. 17 (a) to 17 (c) are a top view, a front view, and a side view, respectively, of an embodiment of the phosphor coating structure of the present invention.
  • FIGS. 19 (a) to (c) are a top view, a front view, and a side view, respectively, of an embodiment of the phosphor coating structure of the present invention.
  • 20 (a) to 20 (c) are a top view, a front view, and a side view, respectively, of an embodiment of the phosphor coating structure of the present invention.
  • FIGS. 21 (a) to 21 (c) are a top view, a front view, and a side view, respectively, of an embodiment of the phosphor coating structure of the present invention.
  • FIGS. 22 (a) to 22 (c) are a top view, a front view, and a side view, respectively, of an embodiment of the phosphor coating structure of the present invention.
  • FIGS. 23A to 23C are a top view, a front view, and a side view, respectively, of an embodiment of the phosphor coating structure of the present invention.
  • FIGS. 24A to 24C are a top view, a front view, and a side view, respectively, of an embodiment of the phosphor coating structure of the present invention.
  • FIG. 25 is a diagram schematically showing an example of the shape of a support that can be included in the configuration of the phosphor coating structure of the present invention.
  • FIG. 26 is a diagram schematically showing another example of the shape of the support that can be included in the configuration of the phosphor coating structure of the present invention.
  • FIG. 27 is a diagram schematically showing still another example of the shape of the support that can be included in the configuration of the phosphor coating structure of the present invention.
  • FIG. 28 is a diagram schematically showing a configuration of a light emitting device having the phosphor coating structure of the present invention.
  • FIG. 29 is a diagram schematically showing the configuration of another light emitting device having the phosphor coating structure of the present invention.
  • FIG. 30 is a diagram schematically showing a configuration of still another light emitting device having the phosphor coating structure of the present invention.
  • FIG. 31 (a) is a diagram showing a configuration of an electrodeless fluorescent lamp to which the phosphor coating structure of the present invention is applied
  • FIG. 31 (b) is a configuration of FIG. 31 (a).
  • Outer tube included in It is sectional drawing which shows the inner surface of a valve.
  • FIG. 32 (a) is a diagram showing the configuration of a certain discharge fluorescent lamp to which the phosphor coating structure of the present invention is applied
  • FIG. 32 (b) is the outer bulb included in the configuration of FIG. 32 (a). It is sectional drawing which shows the inner surface of a bush.
  • FIG. 33 (a) is a diagram showing a configuration of a flat fluorescent lamp to which the phosphor coating structure of the present invention is applied
  • FIG. 33 (b) is an outer tube included in the configuration of FIG. 33 (a). It is sectional drawing which shows the inner surface of a valve.
  • FIG. 34 (a) is a diagram showing a configuration of another flat fluorescent lamp to which the phosphor coating structure of the present invention is applied
  • FIG. 34 (b) is a diagram showing the configuration included in the configuration of FIG. 34 (a). It is sectional drawing which shows the inner surface of a pipe valve.
  • FIG. 35 (a) is a diagram showing a configuration of a plasma display panel (PDP) to which the phosphor coating structure of the present invention is applied, and FIG. 35 (b) is included in the configuration of FIG. 35 (a). It is sectional drawing of a partition structure. BEST MODE FOR CARRYING OUT THE INVENTION
  • the phosphor coating structure In order to improve the luminous flux and emission luminance with a three-dimensional phosphor coating structure, the phosphor coating structure must be a three-dimensional structure that increases the phosphor coating area from the viewpoint of adding the amount of light emission. is important. Furthermore, in the case of using the transmitted light flux and the transmitted luminance among the emitted light flux and the emitted luminance, the phosphor coated structure is changed to a three-dimensional structure in which the transmittance is hardly reduced from the viewpoint of extracting the maximum amount of emitted light. There is a need to. In addition, in order to improve the emitted light flux and emission luminance, it is important to optimize the thickness of the phosphor coating film together with the phosphor coating structure.
  • the phosphor coating weight per unit area As the characteristics of the light emission luminance when the thickness of the phosphor coating film is changed, the phosphor coating weight per unit area and the reflection luminance The relationship between the fluorescent substance application weight per unit area and the diffuse transmittance and diffuse reflectance was determined by experiments. I did.
  • a single film of green phosphor was uniformly applied by screen printing onto soda glass measuring 5 cm by 5 cm and a thickness of 1 mm to prepare an evaluation sample.
  • a plurality of samples were prepared by changing the thickness of the phosphor film by changing the number of times of screen printing.
  • Each sample having a different thickness of the phosphor film is irradiated with ultraviolet light from a germicidal lamp under the condition that the irradiance on the irradiation surface of the sample is constant, and the sample is obtained by fluorescence emission of the phosphor The reflection luminance and transmission luminance were measured.
  • FIG. 2 shows the relationship between the phosphor application weight per unit area and the transmission luminance and the reflection luminance.
  • the horizontal axis represents the phosphor coating weight per unit area (gZcm 2 ) of the uniformly applied phosphor film, and the vertical axis represents the luminance (cdZm 2 ).
  • a circle ( ⁇ ) is a plot of reflection luminance, and a triangle ( ⁇ ) is a plot of transmission luminance.
  • the transmission luminance is high when the phosphor weight per unit area is in the range of 0.005 gZcm 2 to 0.02 gZcm 2 , and a value around 60 cd Zm 2 is obtained.
  • the thickness of the phosphor film at this time was measured by an electron microscope, and was found to be about 2 / m to about 6 zm.
  • the phosphor used above is a green phosphor as an example, and when another phosphor is used, the preferable range of the phosphor weight varies somewhat depending on the type and specific gravity of the phosphor.
  • phosphor coating weight in the range of preferred per unit area in order to obtain a high transmission brightness 0. 0 0 0 1 gZcm 2 ⁇ 0.
  • the thickness of the phosphor film is preferably: L m to 20 ⁇ .
  • the reflection brightness was high when the phosphor weight per unit area was 0.06 gZcm 2 or more, and the highest value was about 1: L 0 cdZm 2 .
  • the thickness of the phosphor film at this time was measured by an electron microscope and was found to be about 10 jtzm to about 20 cm.
  • the phosphor used above is a green phosphor as an example, and when another phosphor is used, the preferable range of the phosphor weight varies somewhat depending on the type and specific gravity of the phosphor. Therefore, in general, the preferable range of the phosphor coating weight per unit area for obtaining high reflection luminance is 0.000] gZcm 2 to 0. Olg Zcm 2 . Further, the thickness of the phosphor film is preferably 10 im to 100 / m.
  • the maximum value of the reflection luminance (about] l O c dZm 2 ) is about twice as large as the transmission luminance value (about 60 cdZn 2 ). This is because when considering a three-dimensional phosphor coating structure, it is better to use the reflected luminance emitted from the three-dimensional structure in order to improve the overall light emission amount and emission brightness of the phosphor coating structure. Indicates that Therefore, in the following, a three-dimensional phosphor coating structure is devised assuming that the three-dimensional structure is a reflector.
  • Fig. 3 shows the relationship between the phosphor coating weight per unit area and the diffuse transmittance and diffuse reflectance.
  • FIG. 1 schematically shows a basic configuration of a phosphor coating structure configured in the present invention.
  • this phosphor-coated structure includes a plurality of square pillars 200 each having a height a, a thickness b, and a length d on the surface of the base member 100, that is, the base surface. That is, a three-dimensional structure obtained by arranging the supports 200 at an interval c.
  • the base member 100 is coated with a phosphor, and the base member 100 is provided with at least one support 200 coated with the phosphor or mainly composed of the phosphor itself. .
  • each square pillar 200 that is, the base surface ((c-b) Xd) on which the support body 200 (aXbXd) is not arranged is defined as the surface A1, and the area of the surface A1 is defined as A1 '.
  • the reflected light flux (luminous divergence) per unit area of the surface A 1 is M l
  • the transmitted light flux per unit area of the surface A 1 is M 1 ′
  • the diffuse reflectance of the surface A 1 is R 1
  • the side surface (a X ci) of the support 200 is the surface A 2
  • the area of the surface A 2 is A 2 ′
  • the reflected light flux per unit area of the surface A 2 is M 2
  • the diffuse reflectance of A 2 is R 2
  • the upper surface (b X d) of the support 200 is surface A 3
  • the area of surface A 3 is A 3 ′
  • the reflected light flux per unit area of surface A 3 is M 3
  • the diffuse reflectance of A 3 is R 3, the plane (ax (c—b)) perpendicular to the support 200 (abxd) and the plane A 1 is the plane As, the area of the plane As is As', and the planes A 1 and 2 R
  • the transmitted light flux and the transmitted luminance are used,
  • the excess light flux is ⁇
  • the transmitted light emitted from the base member 100 is measured, the transmitted light emitted from the support member 200 and transmitted through the base member 100 is ⁇ 2, and the support member 200 is completely disposed on the base member 100.
  • the phosphor coating structure that satisfies the following relationship improves the transmitted light flux.
  • the transmitted luminance when the transmitted light can be regarded as completely diffused light, the transmitted luminance is obtained by dividing the transmitted light flux by ⁇ and the light emitting area. That is, since the conversion from the transmitted light flux to the transmitted luminance impairs the numerator and denominator of equation (1) with the same light emitting area and ⁇ , respectively, the relational expression for improving the transmitted luminance is also expressed by (1) ) Expression.
  • ⁇ 22 M2 XA2 'X F 2 ⁇ 2' XR2 XF 2 ' ⁇ 1 XT 1 X2
  • the phosphor coating structure that satisfies the relationship ⁇ 2 / ⁇ > 1.0 (2) improves the transmitted light flux.
  • the transmitted luminance when the transmitted light can be regarded as completely diffused light, the transmitted luminance can be obtained by dividing the transmitted light flux by 7 mm and the light emitting area. That is, since the conversion from the transmitted light flux to the transmitted luminance is performed by dividing the numerator and denominator of equation (2) by the same light emitting area and 7 mm, respectively, the relational expression for improving the transmitted luminance is expressed by equation (2). Is equivalent to
  • the total reflected light beam is ci) R
  • the reflected light beam emitted from the base member 100 is (i) R1
  • the reflected light beam emitted from the side surface of the support 200 is (i) R1
  • the reflected light flux emitted from the side surface of the support 200 is ⁇ R 3
  • ⁇ i) RB is the reflected light flux radiated from the base member 100 when there is no support body
  • the phosphor coating structure that satisfies the relationship of (1) improves the reflected light flux.
  • the reflected luminance when the reflected light can be regarded as completely diffused light, the reflected luminance is obtained by dividing the reflected light flux by C and the light emitting area.
  • the relational expression for improving the reflected luminance is expressed by Equation (3).
  • ⁇ - (0R10R2 + (i) R3) and 0RB are simply calculated as follows.
  • ⁇ i) R ⁇ iRl + (i) R2 + 0R3 is a reflected light beam that is emitted from the surface A1 and directly radiated to the ceiling surface A4.
  • the surface A2 emits light and directly ceiling surface Reflected light flux ⁇ i> R 21 illuminated on A 4
  • the reflected light flux ⁇ 23 radiated from ceiling A 4 after the light emitted from surface A 2 is reflected by facing surface A 2, the reflected light flux c /) R 3 emitted by surface A 3 itself, and surface A:
  • I 2 M 1 XA 1' XF 1 ⁇ 2 XR 2 XF 2 ⁇ 4 X 2
  • ⁇ ⁇ 23 M2 XA2 'X F 2 ⁇ 2' X R 2 X F 2 ⁇ 4 X 2
  • the reflected light flux 0RS is expressed by the following recurrence formula.
  • i l
  • the reflected light flux ⁇ i> RA is represented by the following recurrence formula.
  • the reflected light flux 0RB is
  • ⁇ RB M 1 (A 1 '+ A 3') 1 x ⁇ c X d ⁇
  • 0RS ⁇ (M I X A: 1 'XF l- s XR s X 2>
  • ⁇ RA ⁇ (M 1 X A 1 '+ M 2 X A 2' X 2)
  • the condition under which the reflection brightness is improved by 20% or more over the current PDP is ((I + ⁇ 2) ⁇ ⁇ > I.0 (5).
  • the reflected luminance is obtained by dividing the reflected light flux by U and the light emitting area.
  • the conversion from the reflected light flux to the reflected luminance is obtained by dividing the numerator and denominator of Equation (4) or (5) by the same light-emitting area and 7 mm, respectively. , (4) or (5).
  • the transmitted light flux radiated from the base member 100 is ⁇ .].
  • the transmitted light flux radiated from the support body 200 and transmitted through the base member 100 is 2.
  • the transmitted light flux radiated from the base member 100 is ⁇ , and the reflected light flux R1 radiated from the base member L 0 0 exists on the ceiling surface.
  • Some kind of structure returns to the base member '100 again, and the transmitted light flux passing through it is ⁇ RT1, and the reflected light flux radiated from the side of the support body 200 (i) R2 is placed on the ceiling surface.
  • Any transmitted structure returns to the base member 100 again due to any existing structure, and the transmitted light flux transmitted therethrough is denoted by RT 2, and the reflected light flux emitted from the upper surface of the support body 200 (i> R 3 exists on the ceiling surface) Due to some structure, it returns to the base member 100 again, and the transmitted light flux passing therethrough is ⁇ RT3, base member].
  • the base member 1 when no support body 200 is placed on the base member.
  • the reflected light flux (i> RB) radiated from 00 returns to the base member 100 again by some structure existing on the ceiling surface, and the transmitted light flux passing through it is ⁇ i> RTB, ,
  • the phosphor coating structure that satisfies the following relationship enhances the emitted light beam using the transmitted light beam and the reflected light beam.
  • the emission luminance can be obtained by dividing the emitted light beam by ⁇ and the emission area.
  • the relational expression for improving the emitted light luminance is expressed by equation (6) Is equivalent to
  • the total transmitted luminous flux is the sum of ⁇ and (i> RT, where ⁇ is the transmitted luminous flux emitted from surface A 1 ⁇ ) ⁇ 1 and the light emitted from surface A 2 Is the sum of the transmitted luminous flux ⁇ 21 transmitted through the surface A 1 and the transmitted luminous flux ⁇ ⁇ 22 transmitted through the surface A 1 when the light emitted from the surface A 2 is reflected by the opposite surface A 2 ( That is, the sum of transmitted light flux shown in Fig. 4).
  • (i RT emits light from the surface A1 and directly irradiates the ceiling surface A4.
  • Reflected light flux ⁇ > R 1 l returns to surface A 1 again by some structure existing on ceiling surface A 4, and transmitted light flux transmitted through surface A 1 ⁇ RT: 11; surface A 1 emits light
  • the reflected light beam R 1 2 irradiating on the ceiling surface A 4 after being reflected on A 2 returns to the surface A 1 again by some structure existing on the ceiling surface A 4 and the transmitted light beam transmitted through the surface AI 0RT 1 2,
  • Reflected light beam emitted from surface A 2 and directly illuminated on ceiling surface A 4 i> R 2 1 returns to surface A 1 again by some structure existing on ceiling surface A 4 and surface A Transmitted light beam passing through 1 * RT2 1, light emitted from surface A2 is reflected by surface A1 and then reflected light beam 22 illuminated on ceiling surface A4 is applied to some structure existing on ceiling surface A4.
  • the transmitted light flux ⁇ i> RT22 which returns to the surface A1 again and passes through the surface A1, is reflected on the ceiling surface A4 after the light emitted from the surface A2 is reflected by the facing surface A2.
  • Luminous flux ⁇ R 23 returns to surface A1 again by some structure existing on ceiling surface A4, and transmitted light beam RT23 transmitted through surface A1 and reflected light beam R3 emitted from surface A3 exist on ceiling surface A4.
  • the reflected light beam ⁇ applied to A4 returns to surface A1 again by some structure existing on ceiling surface A4, and the transmitted light beam transmitted through surface A1 ci) RTA, and surface A].
  • the reflected luminous flux ⁇ RS that is emitted in the space other than the space surrounded by the surface A2 and irradiates the ceiling surface A4 after mutual reflection in the above space, and the reflected beam ⁇ RS is again reflected on the surface A1 by some structure existing on the ceiling surface A4
  • the sum of the transmitted light flux ⁇ i RTB, which returns and passes through the surface A 1 The sum of the transmitted light beam that).
  • ⁇ 2- ⁇ 2 1 + ⁇ 22
  • RT 1 2 M 1 X A 1 'XF l- 2 XR 2 XF 2-> 4 X 2 XR a XT l
  • the transmitted light flux (i) RTS is expressed by the following recurrence formula.
  • ⁇ 1 ⁇ (M 1 X A 1 'X F 1 ⁇ S XR S X 2)
  • RTA Transmitted light flux
  • ⁇ 1 ⁇ (M 1 X A 1 '+ M2 XA 2' X 2) ⁇
  • ⁇ j ( ⁇ j-1 / F 2 ⁇ 4-j-1) R 2 XF 2 ⁇ 4
  • the transmitted light flux ⁇ and ⁇ i RTB are identical.
  • the phosphor coating structure that satisfies the relationship described above enhances the emitted light beam using the transmitted light beam and the reflected light beam.
  • the luminous luminance is obtained by dividing the luminous flux by C and the luminous area.
  • the relational expression for improving the emitted light luminance is also given by equation (7).
  • FIGS. 7 and 8 show the relationship between the aZc ratio and the transmission luminance when the transmission luminance is used and the phosphor is applied to the surface A1 and when it is not. Shown respectively.
  • FIGS. 9 and 10 show the relationship between the aZc ratio and the reflection luminance when the reflection luminance is used and the light emission of the phosphor on the surface A3 is used or not.
  • Fig. 11 and Fig. 11 show the relationship between the a Zc ratio and the sum of the emission luminances when both the transmission luminance and the reflection luminance are used, and when the surface AU phosphor is coated and not applied.
  • Figure 12 shows each.
  • micro glass plates having a thickness of 0.2 mm are used as the support 200 disposed on the base member 100, and 0.000 lg Zcm 2 to 0.01 g gZc is formed on the surface of these micro glass plates.
  • the phosphor was applied within the range of m 2 .
  • the base member 100 a soda glass plate having a thickness of 1 mm and a size of 5 cm ⁇ 5 cm was used, and a phosphor of 0.003 gZcm 2 was screen-printed on the surface of the soda glass plate. It was applied uniformly. Next, as shown in FIG.
  • a base member made of a soda-glass plate coated with a phosphor] 00 is placed on each of micro-glasses coated with a phosphor.
  • Three support plates 200 made of metal plates were fixed with an adhesive.
  • Four types of micro glass plates were used: 2 mm, 4 mm, 6 mm, and 8 mm.
  • the thus obtained phosphor-coated structure having a configuration as shown in FIG. 13 is irradiated with ultraviolet light from a germicidal lamp, and the reflection luminance and the transmission luminance obtained by the fluorescent light emission of the phosphor are shown in FIG. The measurement was performed for the measurement range shown in FIG.
  • FIG. 14 shows the relationship between the height of the micro glass plate constituting the support 200 and the measured reflection luminance and transmission luminance.
  • FIG. 15 shows the relationship between the height of the micro glass plate constituting the support 200 and the total of the measured reflection luminance and transmission luminance. 14 and 15, the horizontal axis indicates the height of the micro glass plate, the vertical axis in FIG. 14 indicates the reflection luminance and the transmission luminance, and the vertical axis in FIG. 15 indicates the sum of the reflection luminance and the transmission luminance.
  • the phosphor coating structure as a three-dimensional structure according to the present invention, it was possible to increase the emission luminance.
  • AZc 0.5, 0.95, 1.43, and for each of 6 mm, and 8 mm 1. It becomes 90. These are included in the numerical value range of the above-mentioned parameters that bring about the favorable effects in the three-dimensional phosphor coating structure, and the improvement of the emission luminance by the phosphor coating structure of the present embodiment is achieved. Has been demonstrated.
  • a three-dimensional structure in which a plurality of quadrangular prism supports are arranged on a base member is described as the shape of the phosphor coating structure.
  • the shape of the phosphor coating structure of the present invention is not limited to this.
  • a phosphor coating structure that satisfies the relationship between the shapes and arrangements described above even in other shapes is included in the present invention and has the above-described effects.
  • FIGS. 16 (a) to 16 (c) show that the thickness of the area 210 near the contact point with the base member 100 in each of the supports 20 () is gradually reduced.
  • 1 shows a top view, a front view, and a side view of an embodiment of the phosphor coating structure of the present invention.
  • each support 200 is the thinnest at the portion in contact with the base member: L00, and the thickness at this location is described in FIG. B.
  • the support 200 has a large volume that hinders light emission on the base surface (the base member: the surface of # 00). It may be difficult to be performed.
  • the contact point between the support 200 and the base member 100 is small, it is possible to reduce the influence of unevenness of transmitted luminance due to the arrangement of the support 200 on the base member] 00. .
  • 17 (a) to 17 (c) show that the thickness of the region 210 of each of the supports 200 in the vicinity of the contact point with the base member 100 is reduced stepwise.
  • 3 shows a top view, a front view, and a side view of an embodiment of the phosphor coating structure of FIG.
  • the thinner one of the thicknesses b1 and b2 of each support 200 is b described in FIG. Further, the length from the upper surface of the base member 100 to the uppermost part of the support 200 is the height a of the support 200 described in FIG.
  • the support 200 placed on the base member 100 as shown in Fig. 17 (a) to (c).
  • the influence of the unevenness of the transmission luminance due to the arrangement of the support 200 can be greatly reduced.
  • the support 200 having a region where the thickness is reduced in a stepwise manner (that is, the “leg”) near the contact point with the base member 100
  • the longer the length of the leg is, the lower the luminance irradiated from the support 200 to the surface of the base member 100, that is, the base surface ⁇ (c ⁇ b) Xd ⁇ .
  • FIGS. 18 (a) to 18 (c) show that a plurality of supports 230 to 260 having different shapes from each other are disposed on a base member: 100 as a support 200.
  • FIG. 3 shows a top view, a front view, and a side view of one embodiment of a bright phosphor coating structure.
  • the heights al to a4, the widths bl to b4, and the arrangement intervals c1 to c3 of the supports 230 to 260 are (Each collectively referred to as "ai”, "bi", and "cc").
  • the relational expression for obtaining a favorable effect found according to the present invention the relation is satisfied.
  • an increase in light emission amount and light emission luminance is realized.
  • the more the number of supports (three-dimensional structures) 200 having a shape satisfying the relationship of the present invention the more favorable effects can be obtained.
  • FIGS. 19 (a) to 19 (c) show that as a support 200, a plurality of supports 270 to 290 having different lengths d1 to d3 are arranged on a base member 100, 1 shows a top view, a front view, and a side view of an embodiment of a phosphor coating structure of the present invention.
  • each support 2 70 to 290 d L ⁇ (! 3 (also referred to collectively as “di”) is the length of the surface of the base member 100, that is, the length of the base surface ⁇ (c-b). ]]] ⁇ ,
  • the relative luminance radiated from the side surface (a Xd i) of the three-dimensional structure to the base surface increases.
  • a support (three-dimensional structure) 200 having a length di equivalent to the length d B is placed. Is desirable.
  • FIGS. 20 (a) to (c) show that each support 310 arranged on the surface of the base member 100 is constituted by arranging a plurality of columnar structures.
  • 1 shows a top view, a front view, and a side view of an embodiment of the phosphor coating structure of the present invention.
  • FIGS. 21 (a) to (c) show that each support member 320 disposed on the surface of the base member 1 () 0 is configured as a wavy plate-like structure.
  • FIG. 3 shows a top view, a front view, and a side view of an embodiment of the phosphor coating structure of the present invention. Further, in FIGS.
  • each support member 330 disposed on the surface of the base member 100 is provided with a ⁇ U-shaped '' shape continuously.
  • FIG. 3 shows a top view, a front view, and a side view of an embodiment of the phosphor coating structure of the present invention, which is configured as a plate-like structure.
  • FIGS. 23 (a) to (c) show that the support 340 arranged on the surface of the base member 100 has a lattice-like structure (the area of reference numeral 345 is FIG. 3 shows a top view, a front view, and a side view of an embodiment of the phosphor coating structure of the present invention, which is configured as a space.
  • Each of the bases 310 to 340 has a shape in which the area of the side surface is increased.
  • the brightness of the base member 100 can be increased.
  • the parameters related to the shape of the support (three-dimensional structure) described with reference to Fig. 1, ie, the height a, the width b, and the arrangement interval c are shown in Figs. 20 to 23. For each configuration, measurements are made as described in the respective figures.
  • the thinner of the widths b 1 and b 2 of the wall portions separating the adjacent spaces 345 is b described in FIG. It is to be noted that more favorable effects can be obtained as the widths bl and b2 are both thinner. Also, if even one of these widths b 1 and b 2 satisfies the relational expression for obtaining a favorable effect found according to the present invention, the light emission amount and the emission at the part where the relation is satisfied. An increase in light brightness is realized. However, if the relationship of the present invention is satisfied with respect to both the widths b1 and b2, more favorable effects can be obtained.
  • FIGS. 24 (a) to (c) show that the support 350 arranged on the surface of the base member 100 is configured as a structure having a plurality of through holes 355 in the thickness direction.
  • 1 shows a top view, a front view, and a side view of an embodiment of the phosphor coating structure of the present invention.
  • Such a configuration is also included in the scope of the present invention, and the effects described above can be obtained.
  • the surface area of the support 350 is greatly reduced, the increase in the amount of light emission and the luminance is rather small. Therefore, it is better that the through hole 350 provided in the support 350 is small or a hole is provided. It is more desirable that it is not done.
  • FIG. A configuration in which a rectangular pillar-shaped support is arranged or a configuration in which a lattice-shaped support shown in FIG. 23 is arranged is suitable.
  • the point of the present invention is to realize the improvement of the luminance by configuring the phosphor coating structure as a three-dimensional structure.
  • each has a hollow space 365.
  • a support (three-dimensional structure) 360 composed of an aggregate of a plurality of triangular prism structures, or a honeycomb configuration having a hollow space 375 as shown in Fig. 26
  • a three-dimensional structure (support) having an arbitrary polygonal shape or the like, such as a support (three-dimensional structure) 370 having the same may be used. Even in the case of a phosphor-coated structure having another shape, an increase in the amount of emitted light and luminance can be realized if the relational expression for producing a favorable effect found according to the present invention is satisfied.
  • the transmission luminance is improved is included in the scope of the present invention.
  • the phosphor-coated structure of the present invention is applied to a light-emitting device used indoors, the thickness of the phosphor-coated structure, that is, the minimum range of the thickness of the support is generally a thin film that can be formed. Of 0.01 mm.
  • the maximum limit is about 5 mm when a plurality of supports are provided and the thickness does not hinder light emission from the base surface (the surface of the base member).
  • a transparent material As a constituent material of the base member / support, a transparent glass or a quartz glass that transmits ultraviolet light is useful.
  • a transparent glass or a quartz glass that transmits ultraviolet light is useful.
  • reflection luminance not only glass but also ceramics and metals are useful as constituent materials of the base member / support.
  • the base member and the support may have a unitary structure instead of being provided separately as separate members.
  • FIG. 28 schematically shows the configuration of a certain light emitting device 400 having the phosphor coating structure of the present invention.
  • the case 4I0 contains the phosphor coating structure 420 configured according to the present invention.
  • Phosphor coating structure 420 configured according to the present invention.
  • an ultraviolet light emitting section 4300 is provided.
  • the ultraviolet light from the ultraviolet light emitting section 4300 is applied to the phosphor coating structure 420.
  • Irradiation causes the phosphor applied to the phosphor coating structure 420 to emit light, and emits visible light 460 to the outside of the case 410.
  • FIG. 29 schematically shows the configuration of another light emitting device 500 having the phosphor coating structure of the present invention.
  • the ultraviolet light emitting portion 5300 attached to the base 5100 is inserted into the hollow portion provided in the phosphor coating structure 5200 constructed according to the present invention.
  • the ultraviolet light emitting section 530 is driven by a predetermined power supply circuit (not shown),
  • the ultraviolet light from 530 is applied to the phosphor coating structure 520, whereby the phosphor coating structure is irradiated. Visible light is emitted from the phosphor applied to the cloth structure 520.
  • the ultraviolet light-emitting portions 430 and 530 included in the structures of the light-emitting devices 400 and 500 shown in FIGS. 28 and 29 are not limited to those having a specific configuration or shape.
  • Various light emitting units can be used.
  • a germicidal lamp may be used as the ultraviolet light emitting section 4300 or 5300.
  • FIG. 30 schematically shows a configuration of a light emitting device 600 having the phosphor coating structure of the present invention.
  • the phosphor coating structure 62 constructed in accordance with the present invention is provided integrally on the inner surface of the case 6100.
  • ultraviolet rays by irradiating each of the phosphor-coated structures 62 with ultraviolet rays, visible light is emitted from the phosphor applied to the phosphor-coated structures 62.
  • an ultraviolet light source not shown
  • a light source such as a mercury lamp or a germicidal lamp, or an ultraviolet light emitter may be appropriately arranged.
  • an illumination lamp can be configured. At this time, as long as it has the phosphor coating structure having the relationship of the three-dimensional structure found by the present invention, there is no limitation on the light emission principle or the overall shape of the illumination lamp.
  • the present invention can be applied to an electrodeless fluorescent lamp, a discharge fluorescent lamp, or a flat fluorescent lamp.
  • FIG. 3] (a) is a diagram showing a configuration of a certain electrodeless fluorescent lamp 700 to which the phosphor coating structure of the present invention is applied.
  • This electrodeless fluorescent lamp 700 has an outer bulb 730 attached to a base 70 ⁇ 0, and the inner surface of the outer bulb 730 has the structure shown in FIG.
  • a phosphor structure 720 is arranged.
  • FIG. 32 (a) is a diagram showing a configuration of a certain discharge fluorescent lamp 800 to which the phosphor coating structure of the present invention is applied.
  • This discharge fluorescent lamp 800 has an outer bulb 830 attached to a base 810, and a pair of outer bulbs 8 A discharge tube 850 having an electrode 840 is provided. Further, a phosphor structure 820 is arranged on the inner surface of the outer tube pulp 830, as shown in the vertical (longitudinal) cross-sectional view of FIG. 32 (b).
  • the luminance of the discharge fluorescent lamp 800 can be improved.
  • FIG. 33 (a) is a diagram showing a configuration of a flat fluorescent lamp 900 to which the phosphor coating structure of the present invention is applied.
  • This flat-type fluorescent lamp 900 has an outer bulb 930 provided with a pair of electrodes 940 at both ends.
  • the phosphor structure 920 is arranged.
  • FIG. 34 (a) is a diagram showing a configuration of another flat fluorescent lamp 950 to which the phosphor coating structure of the present invention is applied.
  • a pair of electrodes 945 are provided on the upper and lower surfaces of the outer bulb 930. These electrodes 9
  • the phosphor structure 920 Is arranged.
  • the brightness of the flat fluorescent lamp 950 can be improved.
  • FIG. 35 (a) is a diagram showing a configuration of a plasma display panel (PDP) 100 to which the phosphor coating structure of the present invention is applied.
  • PDP plasma display panel
  • FIG. 35 (b) is a cross-sectional view of the partition structure 100 (a cross-sectional view in a plane parallel to the upper and lower surfaces of the partition structure 100).
  • Phosphors are arranged on the inner surface and the bottom surface of the partition structure 100 that separates the individual cavities (pixels) 160.
  • the partition structure 102 on which such a phosphor is disposed as the phosphor coating structure of the present invention the improvement of the brightness of PDP] .000 in FIG. 35 is realized.
  • a three-dimensional structure is formed by arranging a support mainly composed of the phosphor itself on the base member, where the phosphor is applied.
  • a phosphor coating structure with at least improved transmission luminance is configured. This provides a new phosphor coating structure that increases the amount of light emitted and the luminance emitted.
  • various light-emitting devices (light-emitting devices and light-emitting devices, such as lighting lamps and plasma display panels, etc.) having such a phosphor coating structure are provided.

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

A structure coated with phosphor applicable to luminous devices (luminous apparatus, illumination lamp, display, and so forth), i.e., a phosphor-coated structure has a base member, and at least one support disposed on the base member. A phosphor is applied to the surface of the support, or the support is made mainly of a phosphor, so that the phosphor constitutes a three-dimensional structure disposed three-dimensionally, and at least an improved transmitted luminous flux is provided.

Description

明 細 書 蛍光体塗布構造及びそれを有する発光装置 技術分野  TECHNICAL FIELD Phosphor coating structure and light emitting device having the same
本発明は、 各種の発光装置 (発光器具、 照明ランプ、 ディスプレイ装置など) において使用され得る、 蛍光性物体が塗布された構造、 すなわち蛍光体塗布構造 に関する。 更に本発明は、 そのような蛍光体塗布構造を有する各種の発光装置 (発光器具や発光デバイス、 例えば, 照明ランプやプラズマディスプレイパネル など) に関する。 背景技術  The present invention relates to a structure coated with a fluorescent object, that is, a phosphor coated structure that can be used in various light emitting devices (light emitting devices, lighting lamps, display devices, and the like). Further, the present invention relates to various light-emitting devices (light-emitting devices and light-emitting devices, such as lighting lamps and plasma display panels) having such a phosphor coating structure. Background art
現在、 蛍光 ^は、 蛍光ランプ、 ディスプレイなどの多くの製品 (発光装置) に て使用されている。 これらの製品における蛍光体の役割は、 紫外線励起や電子線 励起による自己発光であり、 その発光量や発光輝度の増加が、 重要な課題の一つ である。 そこで、 蛍光体の発光量や発光輝度を増加させる手段の一つとして、 蛍 光体の塗布方法の研究開発が行われている。  At present, fluorescent light ^ is used in many products (light emitting devices) such as fluorescent lamps and displays. The role of the phosphor in these products is self-emission due to ultraviolet excitation or electron beam excitation, and increasing the amount of emitted light and emission luminance is one of the important issues. Therefore, research and development of a method of applying a phosphor have been conducted as one of means for increasing the light emission amount and light emission luminance of the phosphor.
例えば、 蛍光ランプに関しては、 蛍光体溶液を多層塗りしたり、 蛍光体溶液の 乾燥速度を調節したり、 数種類の蛍光体溶液を別々に塗布したりすることによつ て、 蛍光塗布膜の最適化を図ることで、 高い発光量や高い発光輝度を得るための 蛍光体の塗布方法の改善が行われている。 一方、 プラズマ 'ディスプレイ 'パネ ル (P D P ) においては、 凹凸状のガラスペーストの凹状部分に蛍光体溶液が塗 布されているが、 使用する蛍光体の性能や形状などの最適化によつて蛍光体塗布 膜の最適化を図ることで、 高い発光輝度を得るための蛍光体の塗布方法の改善が 行われている。  For example, in the case of fluorescent lamps, it is possible to optimize the fluorescent coating film by applying a phosphor solution in multiple layers, adjusting the drying speed of the phosphor solution, and applying several types of phosphor solutions separately. By applying this technology, improvements have been made to the method of applying a phosphor to obtain a high light emission amount and high light emission luminance. On the other hand, in the plasma 'display' panel (PDP), the phosphor solution is applied to the concave portions of the irregular glass paste, but the phosphor is optimized by optimizing the performance and shape of the phosphor used. By optimizing the body coating film, the method of applying the phosphor to obtain high emission luminance has been improved.
このような従来技術における蛍光体の塗布方法の改善とは、 言い換えれば、 過 去に行われてきた工程に対して、 使用する蛍光体の種類を変えることによって、 蛍光体の性能の最大限の利用を図ろうとする塗布方法の開発が主である。 In other words, the improvement of the method of applying the phosphor in the conventional technique is, in other words, excessive The main method is to develop a coating method that maximizes the performance of the phosphor by changing the type of phosphor used for the processes that have been performed.
しかし、 上記のように蛍光体の性能を最大限に利用するための蛍光体の塗布方 法の開発のみでは、 発光量や発光輝度を更に大幅に向上させることは非常に難し い。 これは、 蛍光体の量子効率が高いこと、 並びに, 特に蛍光ランプでは、 蛍光 体発光の光取り出し効率が、 従来技術において既に非常に高いためである。 そこで、 蛍光体の発光量や発光輝度を更に増加させるためには、 使用する蛍光 体の種類の変更を通じて蛍光体の性能を最大限に利用することに主眼をおいた従 来の塗布方法の開発を抜本的に見直し、 蛍光体の新しい塗布方法を開発する必要 性がでてきた。 発明の開示  However, as described above, it is very difficult to further improve the light emission amount and the light emission luminance only by developing a method of applying the phosphor to maximize the performance of the phosphor. This is because the quantum efficiency of the phosphor is high, and the light extraction efficiency of the phosphor emission, especially in a fluorescent lamp, is already very high in the prior art. Therefore, in order to further increase the light emission amount and light emission luminance of the phosphor, development of a conventional coating method focused on maximizing the performance of the phosphor by changing the type of phosphor used. It has become necessary to drastically review the technology and develop a new coating method for the phosphor. Disclosure of the invention
本発明は、 上記の課題を考慮してなされたものであり、 その目的は、 ( 1 ) 従 来では、 蛍光体塗布膜をマクロ的には平面として (すなわち 2次元的に) 捉えて いたことに対して、 蛍光体塗布膜をマクロ的に 3次元構造として (すなわち 3次 元的に) 捉えることにより、 発光量や発光輝度を増加させる新しい蛍光体塗布構 造を提供すること、 並びに (2 ) 上記のような蛍光体塗布構造を有する発光装置 を提供すること、 である。  The present invention has been made in consideration of the above problems, and has the following objects. (1) Conventionally, a phosphor coating film was regarded as a macroscopic plane (that is, two-dimensionally). In order to provide a new phosphor coating structure that increases the amount of light emission and emission luminance by grasping the phosphor coating film macroscopically as a three-dimensional structure (ie, three-dimensional), and (2) ) To provide a light emitting device having the above-described phosphor coating structure.
本発明の蛍光体塗布構造は、 基盤部材と、 該基盤部材の上に配置された少なく とも一つの支持体と、 を備え、 該支持体は蛍光体を備えており、 それによつて該 蛍光体が 3次元的に配置された 3次元構造を構成して、 少なくとも向上された透 過光束を提供し、 そのことによって、 前述の目的が達成される。  The phosphor coating structure of the present invention comprises: a base member; and at least one support disposed on the base member, wherein the support includes a phosphor, whereby the phosphor is provided. Constitutes a three-dimensional structure arranged three-dimensionally to provide at least an improved transmitted light flux, thereby achieving the object mentioned above.
前記蛍光体は、 前記支持体の表面に塗布されていてもよく、 或いは、 前記支持 体が前記蛍光体を主成分として形成されていてもよい。  The phosphor may be coated on the surface of the support, or the support may be formed with the phosphor as a main component.
例えば、 前記基盤部材には、 前記蛍光体が、 厚さ: 1. μ πι〜 2 0 i mで塗布され ている。 このときの前記基盤部材の前記蛍光体の塗布重量は、 0 . 0 0 0 1 g Z cm2〜0. 005 g/cm2であり得る。 For example, the phosphor is applied to the base member at a thickness of 1. μπι to 20 im. At this time, the applied weight of the phosphor on the base member was 0.001 g Z It may be a cm 2 ~0. 005 g / cm 2.
ある実施形態では、 前記基盤部材に前記蛍光体が塗布されており、 該基盤部材 から放射される透過光束を T 1、 前記支持体から放射されて該基盤部材を透過 する透過光束を Φ T 2、 該基盤部材の上に前記支持体が配置されていないときの 該基盤部材から放射される透過光束を Φ T Bとしたときに、  In one embodiment, the phosphor is applied to the base member, and the transmitted light flux emitted from the base member is T 1, and the transmitted light flux emitted from the support and transmitted through the base member is Φ T 2 When the transmitted light flux emitted from the base member when the support is not arranged on the base member is Φ TB,
( Τ 1 + Τ 2) / TB> 1. 0  (Τ 1 + Τ 2) / TB> 1.0
なる関係が満たされ、 それによつて、 前記透過光束の向上が実現される。 The following relationship is satisfied, thereby improving the transmitted light flux.
他の実施形態では、 前記基盤部材には蛍光体が塗布されておらず、 前記支持体 から放射されて該基盤部材を透過する透過光束を Φ T 2、 該基盤部材の上に前記 支持体が配置されていないときの該基盤部材から放射される透過光束を φ T Bと したときに、  In another embodiment, the base member is not coated with a phosphor, and the transmitted light flux radiated from the support and transmitted through the base member is Φ T 2, and the support is formed on the base member. When the transmitted light flux radiated from the base member when not arranged is φ TB,
Τ TB> 1. 0  Τ TB> 1.0
なる関係が満たされ、 それによつて、 前記透過光束の向上が実現される。 The following relationship is satisfied, thereby improving the transmitted light flux.
本発明の他の蛍光体塗布構造は、 蛍光体が塗布されている基盤部材と、 該基盤 部材の上に配置された少なくとも一つの支持体と、 を備え、 該支持体は該蛍光体 を備えており、 それによつて該蛍光体が 3次元的に配置された 3次元構造を構成 して、 該基盤部材から放射される反射光束を (i>R 1、 該支持体の側面から放射さ れる反射光束を 0R 2、 該支持体の上面から放射される反射光束を R 3、 該基 盤部材の上に該支持体が配置されていないときの該基盤部材から放射される反射 光束を <i>RBとしたときに、  Another phosphor coating structure of the present invention includes: a base member on which a phosphor is coated; and at least one support disposed on the base member. The support includes the phosphor. Accordingly, the phosphor forms a three-dimensional structure in which the phosphors are arranged three-dimensionally, and the reflected light flux radiated from the base member is radiated from the side surface of the support (i> R 1). The reflected light flux is 0R2, the reflected light flux emitted from the upper surface of the support is R3, and the reflected light flux emitted from the base member when the support is not disposed on the base member is <i. > RB
( R l +(i)R2 + (i R3) /(i)RB〉l. 1  (R l + (i) R2 + (i R3) / (i) RB〉 l. 1
なる関係を満たし、 それによつて反射光束の向上を提供し、 そのことによって、 前述の目的が達成される。 Satisfies the following relationship, thereby providing an improvement in the reflected light flux, thereby achieving the foregoing objectives.
前記蛍光体は、 前記支持体の表面に塗布されていてもよく, 或いは、 前記支持 体が前記蛍光体を主成分として形成されていてもよい。  The phosphor may be coated on the surface of the support, or the support may be formed with the phosphor as a main component.
例えば、 前記基盤部材には、 前記蛍光体が、 厚さ ].0 m〜 100 xmで塗布 されている。 このときの前記基盤部材の前記蛍光体の塗布重量は、 0. 00 l g Zcm2〜0. 0 1 gZcm2であり得る。 For example, the base member is coated with the phosphor at a thickness of .0 m to 100 xm. Have been. At this time, the application weight of the phosphor on the base member may be 0.001 lg Zcm 2 to 0.01 gZcm 2 .
本発明の更に他の蛍光体塗布構造は、 蛍光体が塗布されている基盤部材と、 該 基盤部材の上に配置された少なくとも一つの支持体と、 を備え、 該支持体は該蛍 光体を備えており, それによつて該蛍光体が 3次元的に配置された 3次元構造を 構成して、 該基盤部材から放射される反射光束を Rし 該支持体の側面から放 射される反射光束を Φ R 2、 該基盤部材の上に該支持体が配置されていないとき の該基盤部材から放射される反射光束を (i>RBとしたときに、  Still another phosphor coating structure of the present invention includes: a base member on which a phosphor is coated; and at least one support disposed on the base member, wherein the support is formed of the phosphor. And a three-dimensional structure in which the phosphors are arranged three-dimensionally. The reflected light flux R radiated from the base member is reflected, and the reflected light radiated from the side surface of the support is formed. When the light flux is Φ R 2 and the reflected light flux emitted from the base member when the support is not arranged on the base member is (i> RB),
( R 1 + R 2) Z(i>RB〉0. 9  (R 1 + R 2) Z (i> RB> 0.9
なる関係を満たし、 それによつて反射光束の向上を提供し、 そのことによって、 前述の目的が達成される。 Satisfies the following relationship, thereby providing an improvement in the reflected light flux, thereby achieving the foregoing objectives.
前記蛍光体は、 前記支持体の表面に塗布されていてもよく、 或いは、 前記支持 体が前記蛍光体を主成分として形成されていてもよい。  The phosphor may be coated on the surface of the support, or the support may be formed with the phosphor as a main component.
例えば, 前記基盤部材には、 前記蛍光体が、 厚さ 10 m〜 :100 mで塗布 されている。 このときの前記基盤部材の前記蛍光体の塗布重量は、 0. 00 l g /cm2〜0. 0 1 gZcm2であり得る。 For example, the phosphor is applied to the base member in a thickness of 10 m to 100 m. At this time, the coating weight of the phosphor on the base member may be 0.001 lg / cm 2 to 0.01 gZcm 2 .
ある実施形態では、 前記基盤部材に前記蛍光体が塗布されており、 該基盤部材 から放射される透過光束を ΦΤ 1、 前記支持体から放射されて該基盤部材を透過 する透過光束を <ί)Τ2、 該基盤部材の上に該支持体が配置されていないときの該 基盤部材から放射される透過光束を ΤΒ、 該基盤部材から放射される反射光束 R 1が天井面の構造体によって再び該基盤部材に戻ってきてこれを透過する透 過光束を (i>RT 1 , 該支持体の側面から放射される反射光束 φ R 2が該天井面の 構造体によって再び該基盤部材に戻ってきてこれを透過する透過光束を Φ RT 2、 該支持体の上面から放射される反射光束 (i>R 3が該天井面の構造体によって再び 該基盤部材に戻ってきてこれを透過する透過光束を 0RT 3、 該基盤部材の上に 該支持体が配置されていないときの該基盤部材から放射される反射光束 R Bが 該天井面の構造体によって再び該基盤部材に戻ってきてこれを透過する透過光束 を <i)RTBとしたときに、 In one embodiment, the phosphor is applied to the base member, and the transmitted light flux radiated from the base member is ΦΤ1, and the transmitted light flux radiated from the support and transmitted through the base member is <ί). Τ2, the transmitted light flux radiated from the base member when the support is not disposed on the base member, を the reflected light flux R1 radiated from the base member again by the structure on the ceiling surface. Returning to the base member and transmitting the transmitted light flux (i> RT 1, the reflected light beam φ R 2 radiated from the side surface of the support returns to the base member again by the structure on the ceiling surface. The transmitted light flux passing therethrough is Φ RT 2, and the reflected light flux (i> R 3 radiated from the upper surface of the support returns to the base member again by the structure on the ceiling surface, and the transmitted light flux transmitted therethrough is 0RT 3, if the support is not placed on the base member The reflected light beam RB that is from the base plate member radiant When the transmitted light flux returned to the base member again by the structure of the ceiling surface and transmitted therethrough is <i) RTB,
X 1/Y 1> 1 - 0  X 1 / Y 1> 1-0
但し、 X l= Tl +ci)T2 + <i)RT l +<i)RT2+<i)RT3  Where X l = Tl + ci) T2 + <i) RT l + <i) RT2 + <i) RT3
Y 1 <i TB + 0RTB  Y 1 <i TB + 0RTB
なる関係を満たし、 それによつて、 透過光束及び反射光束の利用による発光光束 の向上を提供する。 The following relationship is satisfied, thereby providing an improvement in the emitted light beam by using the transmitted light beam and the reflected light beam.
他の実施形態では、 前記基盤部材に蛍光体が塗布されておらず、 前記支持体か ら放射されて該基盤部材を透過する透過光束を * T 2、 該基盤部材の上に該支持 体が配置されていないときの該基盤部材から放射される透過光束を ΦΤΒ、 該支 持体の側面から放射される反射光束 Φ R 2が該天井面の構造体によって再び該基 盤部材に戻ってきてこれを透過する透過光束を Φ R Τ 2、 該支持体の上面から放 射される反射光束 Φ R 3が該天井面の構造体によつて再び該基盤部材に戻ってき てこれを透過する透過光束を φ R Τ 3、 該基盤部材の上に該支持体が配置されて いないときの該基盤部材から放射される反射光束 0RBが該天井面の構造体によ つて再び該基盤部材に戻ってきてこれを透過する透過光束を RTBとしたとき  In another embodiment, the base member is not coated with a phosphor, and the transmitted light flux radiated from the support and transmitted through the base member is * T2, and the support is provided on the base member. When the transmitted light flux emitted from the base member when it is not arranged is φ を, the reflected light flux φ R2 emitted from the side surface of the support returns to the base member again by the structure of the ceiling surface. The transmitted light flux passing through the support Φ R Τ2, and the reflected light flux Φ R 3 radiated from the upper surface of the support returns to the base member again by the structure on the ceiling surface and is transmitted therethrough. The light flux is φRΤ3, and the reflected light flux 0RB radiated from the base member when the support is not placed on the base member returns to the base member again by the structure on the ceiling surface. When the transmitted light beam that passes through this is RTB
X 2/Υ 2> 1. 0 X 2 / Υ 2> 1.0
但し、 Χ2 = ΦΤ2 + <i>RT2 +<i)RT3  Where Χ2 = ΦΤ2 + <i> RT2 + <i) RT3
Y2 = TB + 0RTB  Y2 = TB + 0RTB
なる関係を満たし、 それによつて、 透過光束及び反射光束の利用による発光光束 の向上を提供する。 The following relationship is satisfied, thereby providing an improvement in the emitted light beam by using the transmitted light beam and the reflected light beam.
例えば、 前記支持体には、 前記蛍光体が、 厚さ 1 0 im~ 100 /xmで塗布さ れている。 このときの前記支持体の前記蛍光体の塗布重量は、 0. O O l gZc m2 0. 0丄 g/cm2であり得る。 For example, the support is coated with the phosphor at a thickness of 10 im-100 / xm. At this time, the coating weight of the phosphor on the support may be 0.001 gZcm 2 0.0 丄 g / cm 2 .
好ましくは, 前記支持体の高さ aと配置間隔 cとの関係は、 0. 】 aZc≤ 6を満たす。 Preferably, the relationship between the height a of the support and the arrangement interval c is 0. Meet 6.
例えば、 前記支持体の高さ aは 0 . 1 /_i m以上であり得る。  For example, the height a of the support may be 0.1 / _im or more.
例えば、 前記支持体のうちで前記基盤部材に接する箇所の厚さ bは、 0 . 0 0 1 mm≤ b≤ 5 mmであり得る。  For example, a thickness b of a portion of the support that contacts the base member may be 0.001 mm≤b≤5 mm.
例えば、 前記基盤部材はガラス或いは石英ガラスで構成されている。  For example, the base member is made of glass or quartz glass.
或いは、 例えば、 前記基盤部材は、 セラミック或いは金属で構成されている。 例えば、 前記支持体は、 ガラス、 石英ガラス、 セラミック、 或いは金属で構成 されている。  Alternatively, for example, the base member is made of ceramic or metal. For example, the support is made of glass, quartz glass, ceramic, or metal.
前記基盤部材と前記支持体とは、 一体的に形成されていてもよい。  The base member and the support may be formed integrally.
本発明の他の局面によれば、 蛍光体が塗布された 3次元構造を有する発光装置 であって、 該 3次元構造が、 上記で述べたような特徴を有する本発明の蛍光体塗 布構造である発光装置が提供され、 そのことによって、 前述の目的が達成される。 本発明の更に他の局面によれば、 蛍光体が塗布された 3次元構造を有する蛍光 ランプであって、 該 3次元構造が、 上記で述べたような特徴を有する本発明の蛍 光体塗布構造である蛍光ランプが提供され、 そのことによって、 前述の目的が達 成される。 図面の簡単な説明  According to another aspect of the present invention, there is provided a light-emitting device having a three-dimensional structure coated with a phosphor, wherein the three-dimensional structure has the above-described characteristics. Thus, the light-emitting device is provided, whereby the above-mentioned object is achieved. According to still another aspect of the present invention, there is provided a fluorescent lamp having a three-dimensional structure coated with a phosphor, wherein the three-dimensional structure has the above-mentioned features. A fluorescent lamp having a structure is provided, whereby the object mentioned above is achieved. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明において構成される蛍光体塗布構造の基本的な構成を模式的に 示す図である。  FIG. 1 is a diagram schematically showing a basic configuration of a phosphor coating structure configured in the present invention.
図 2は、 単位面積当たりの蛍光体塗布重量と透過輝度及び反射輝度との関係を 示す図である。  FIG. 2 is a diagram showing the relationship between the phosphor application weight per unit area and the transmission luminance and the reflection luminance.
図 3は, 単位面積当たりの蛍光体塗布重量と拡散透過率及び拡散反射率との関 係を示す図である。  Figure 3 shows the relationship between the phosphor coating weight per unit area and the diffuse transmittance and diffuse reflectance.
図 4は、 透過光束を模式的に説明する図である。  FIG. 4 is a diagram schematically illustrating a transmitted light beam.
図 5は、 反射光束を模式的に説明する図である。 図 6は、 発光光束を模式的に説明する図である。 FIG. 5 is a diagram schematically illustrating a reflected light beam. FIG. 6 is a diagram schematically illustrating a luminous flux.
図 7は、 本発明の蛍光体塗布構造における a Zc値と透過輝度増加率との関係 を示す図である。  FIG. 7 is a diagram showing the relationship between the aZc value and the transmission luminance increase rate in the phosphor coating structure of the present invention.
図 8は、 本発明の蛍光体塗布構造における aZc値と透過輝度増加率との関係 を示す図である。  FIG. 8 is a diagram showing the relationship between the aZc value and the transmission luminance increase rate in the phosphor coating structure of the present invention.
図 9は、 本発明の蛍光体塗布構造における aZc値と反射輝度増加率との関係 を示す図である。  FIG. 9 is a diagram showing the relationship between the aZc value and the reflection luminance increase rate in the phosphor coating structure of the present invention.
図 1 0は、 本発明の蛍光体塗布構造における aZc値と反射輝度増加率との関 係を示す図である。  FIG. 10 is a diagram showing the relationship between the aZc value and the reflection luminance increase rate in the phosphor coating structure of the present invention.
図 1 1は, 本発明の蛍光体塗布構造における aZc値と発光輝度増加率との関 係を示す図である。  FIG. 11 is a diagram showing the relationship between the aZc value and the emission luminance increase rate in the phosphor coating structure of the present invention.
図 12は、 本発明の蛍光体塗布構造における aZc値と発光輝度増加率との関 係を示す図である。  FIG. 12 is a diagram showing the relationship between the aZc value and the emission luminance increase rate in the phosphor coating structure of the present invention.
図 1 3は、 本発明の一実施形態における蛍光体塗布構造の構成を模式的に示す 図である。  FIG. 13 is a diagram schematically showing a configuration of a phosphor coating structure according to one embodiment of the present invention.
図 14は、 本発明の蛍光体塗布構造の構成に含まれる支持体を構成するマイク 口ガラス板の高さと、 測定された反射輝度及び透過輝度との関係を示す図である。 図 1 5は、 本発明の蛍光体塗布構造の構成に含まれる支持体を構成するマイク 口ガラス板の高さと、 測定された反射輝度及び透過輝度の総和との関係を示す図 である。  FIG. 14 is a diagram showing the relationship between the height of the microphone opening glass plate constituting the support included in the configuration of the phosphor coating structure of the present invention and the measured reflection luminance and transmission luminance. FIG. 15 is a diagram showing the relationship between the height of the microphone opening glass plate constituting the support included in the structure of the phosphor coating structure of the present invention, and the total of the measured reflection luminance and transmission luminance.
図 1 6 (a) 〜 (c) は、 それぞれ、 本発明の蛍光体塗布構造のある実施形態 の上面図、 正面図、 及ぴ «面図である。  FIGS. 16 (a) to (c) are a top view, a front view, and a top view, respectively, of an embodiment of the phosphor coating structure of the present invention.
図 1 7 (a) 〜 (c) は、 それぞれ、 本発明の蛍光体塗布構造のある実施形態 の上面図、 正面図、 及び側面図である。  FIGS. 17 (a) to 17 (c) are a top view, a front view, and a side view, respectively, of an embodiment of the phosphor coating structure of the present invention.
図 1 8 (a:) 〜 (c) は, それぞれ、 本発明の蛍光体塗布構造のある実施形態 の上面図、 正面図、 及び側面図である。 図 1 9 (a) 〜 (c) は、 それぞれ、 本発明の蛍光体塗布構造のある実施形態 の上面図、 正面図 > 及び側面図である。 18 (a) to 18 (c) are a top view, a front view, and a side view, respectively, of an embodiment of the phosphor coating structure of the present invention. FIGS. 19 (a) to (c) are a top view, a front view, and a side view, respectively, of an embodiment of the phosphor coating structure of the present invention.
図 20 (a) 〜 (c) は、 それぞれ、 本発明の蛍光体塗布構造のある実施形態 の上面図、 正面図、 及び側面図である。  20 (a) to 20 (c) are a top view, a front view, and a side view, respectively, of an embodiment of the phosphor coating structure of the present invention.
図 2 1 (a) 〜 (c) は、 それぞれ、 本発明の蛍光体塗布構造のある実施形態 の上面図、 正面図、 及び側面図である。  FIGS. 21 (a) to 21 (c) are a top view, a front view, and a side view, respectively, of an embodiment of the phosphor coating structure of the present invention.
図 22 (a) 〜 (c) は、 それぞれ、 本発明の蛍光体塗布構造のある実施形態 の上面図、 正面図、 及び側面図である。  FIGS. 22 (a) to 22 (c) are a top view, a front view, and a side view, respectively, of an embodiment of the phosphor coating structure of the present invention.
図 23 (a) 〜 (c) は、 それぞれ、 本発明の蛍光体塗布構造のある実施形態 の上面図、 正面図、 及び側面図である。  FIGS. 23A to 23C are a top view, a front view, and a side view, respectively, of an embodiment of the phosphor coating structure of the present invention.
図 24 (a) 〜 (c) は、 それぞれ、 本発明の蛍光体塗布構造のある実施形態 の上面図、 正面図, 及び側面図である。  FIGS. 24A to 24C are a top view, a front view, and a side view, respectively, of an embodiment of the phosphor coating structure of the present invention.
図 25は、 本発明の蛍光体塗布構造の構成に含まれ得る支持体の形状の一例を 模式的に示す図である。  FIG. 25 is a diagram schematically showing an example of the shape of a support that can be included in the configuration of the phosphor coating structure of the present invention.
図 26は、 本発明の蛍光体塗布構造の構成に含まれ得る支持体の形状の他の例 を模式的に示す図である。  FIG. 26 is a diagram schematically showing another example of the shape of the support that can be included in the configuration of the phosphor coating structure of the present invention.
図 27は、 本発明の蛍光体塗布構造の構成に含まれ得る支持体の形状の更に他 の例を模式的に示す図である。  FIG. 27 is a diagram schematically showing still another example of the shape of the support that can be included in the configuration of the phosphor coating structure of the present invention.
図 28は、 本発明の蛍光体塗布構造を有するある発光装置の構成を模式的に示 す図である。  FIG. 28 is a diagram schematically showing a configuration of a light emitting device having the phosphor coating structure of the present invention.
図 29は、 本発明の蛍光体塗布構造を有する他の発光装置の構成を模式的に示 す図である。  FIG. 29 is a diagram schematically showing the configuration of another light emitting device having the phosphor coating structure of the present invention.
図 30は、 本発明の蛍光体塗布構造を有する更に他の発光装置の構成を模式的 に示す図である。  FIG. 30 is a diagram schematically showing a configuration of still another light emitting device having the phosphor coating structure of the present invention.
図 3 1 (a) は, 本発明の蛍光体塗布構造が適用されたある無電極型蛍光ラン プの構成を示す図であり、 図 3 1 (b) は、 図 3 1 (a) の構成に含まれる外管 バルブの内面を示す断面図である。 FIG. 31 (a) is a diagram showing a configuration of an electrodeless fluorescent lamp to which the phosphor coating structure of the present invention is applied, and FIG. 31 (b) is a configuration of FIG. 31 (a). Outer tube included in It is sectional drawing which shows the inner surface of a valve.
図 32 (a) は, 本発明の蛍光体塗布構造が適用されたある放電蛍光ランプの 構成を示す図であり、 図 32 (b) は、 図 32 (a) の構成に含まれる外管バル ブの内面を示す断面図である。  FIG. 32 (a) is a diagram showing the configuration of a certain discharge fluorescent lamp to which the phosphor coating structure of the present invention is applied, and FIG. 32 (b) is the outer bulb included in the configuration of FIG. 32 (a). It is sectional drawing which shows the inner surface of a bush.
図 33 (a) は、 本発明の蛍光体塗布構造が適用されたある平面型蛍光ランプ の構成を示す図であり、 図 33 (b) は、 図 33 (a) の構成に含まれる外管バ ルブの内面を示す断面図である。  FIG. 33 (a) is a diagram showing a configuration of a flat fluorescent lamp to which the phosphor coating structure of the present invention is applied, and FIG. 33 (b) is an outer tube included in the configuration of FIG. 33 (a). It is sectional drawing which shows the inner surface of a valve.
図 34 (a) は、 本発明の蛍光体塗布構造が適用された他の平面型蛍光ランプ の構成を示す図であり、 図 34 (b) は、 図 34 (a) の構成に含まれる外管バ ルブの内面を示す断面図である。  FIG. 34 (a) is a diagram showing a configuration of another flat fluorescent lamp to which the phosphor coating structure of the present invention is applied, and FIG. 34 (b) is a diagram showing the configuration included in the configuration of FIG. 34 (a). It is sectional drawing which shows the inner surface of a pipe valve.
図 35 (a) は、 本発明の蛍光体塗布構造が適用されたあるプラズマディスプ レイパネル (PDP) の構成を示す図であり、 図 35 (b) は、 図 35 (a) の 構成に含まれる隔壁構造の断面図である。 発明を実施するための最良の形態  FIG. 35 (a) is a diagram showing a configuration of a plasma display panel (PDP) to which the phosphor coating structure of the present invention is applied, and FIG. 35 (b) is included in the configuration of FIG. 35 (a). It is sectional drawing of a partition structure. BEST MODE FOR CARRYING OUT THE INVENTION
3次元の蛍光体塗布構造で発光光束や発光輝度を向上させるためには、 発光量 を付加するという観点から、 蛍光体塗布構造が、 蛍光体の塗布面積を拡大する 3 次元構造であることが重要である。 更に、 発光光束や発光輝度のうちで、 特に透 過光束や透過輝度を用いる場合は、 発光量を最大限に取り出すという観点から、 蛍光体塗布構造を、 透過率が減少し難い 3次元構造にする必要がある。 また、 発 光光束や発光輝度を向上させるためには、 蛍光体の塗布構造とともに、 蛍光体塗 布膜の厚さを最適化することが重要である。  In order to improve the luminous flux and emission luminance with a three-dimensional phosphor coating structure, the phosphor coating structure must be a three-dimensional structure that increases the phosphor coating area from the viewpoint of adding the amount of light emission. is important. Furthermore, in the case of using the transmitted light flux and the transmitted luminance among the emitted light flux and the emitted luminance, the phosphor coated structure is changed to a three-dimensional structure in which the transmittance is hardly reduced from the viewpoint of extracting the maximum amount of emitted light. There is a need to. In addition, in order to improve the emitted light flux and emission luminance, it is important to optimize the thickness of the phosphor coating film together with the phosphor coating structure.
そこで、 好ましい蛍光体塗布構造の構成条件を明らかにするために、 まず始め に、 蛍光体塗布膜の厚さを変えたときの発光輝度の特性として、 単位面積当たり の蛍光体塗布重量と反射輝度及び透過輝度との関係、 並びに、 単位面積当たりの 蛍光体塗布重量と拡散透過率及び拡散反射率との関係を、 それぞれ実験により求 めた。 Therefore, in order to clarify the constituent conditions of the preferred phosphor coating structure, first, as the characteristics of the light emission luminance when the thickness of the phosphor coating film is changed, the phosphor coating weight per unit area and the reflection luminance The relationship between the fluorescent substance application weight per unit area and the diffuse transmittance and diffuse reflectance was determined by experiments. I did.
具体的には、 大きさ 5 c mx 5 c mで厚さ 1 mmのソーダガラスの上に、 スク リーン印刷法により均一に単一膜の緑色蛍光体を塗布して、 評価用試料を作成し た。 このとき、 スクリーン印刷の塗布回数を変えることにより蛍光体膜の厚さを 変化させて、 複数の試料を作成した。 これら異なる厚さの蛍光体膜を有する各試 料に対して、 殺菌灯の紫外線を、 試料の照射面上での放射照度を一定とした条件 で照射して、 蛍光体の蛍光発光により得られる反射輝度及び透過輝度を、 測定し た。  Specifically, a single film of green phosphor was uniformly applied by screen printing onto soda glass measuring 5 cm by 5 cm and a thickness of 1 mm to prepare an evaluation sample. . At this time, a plurality of samples were prepared by changing the thickness of the phosphor film by changing the number of times of screen printing. Each sample having a different thickness of the phosphor film is irradiated with ultraviolet light from a germicidal lamp under the condition that the irradiance on the irradiation surface of the sample is constant, and the sample is obtained by fluorescence emission of the phosphor The reflection luminance and transmission luminance were measured.
図 2に、 単位面積当たりの蛍光体塗布重量と透過輝度及び反射輝度との関係を 示す。 横軸は、 均一に塗布された蛍光体膜についての単位面積当たりの蛍光体塗 布重量 (gZcm2) であり、 縦軸は、 輝度 (c dZm2) を示す。 また、 丸印 (〇) は反射輝度のプロットであり、 三角印 (△) は、 透過輝度のプロットであ る。 FIG. 2 shows the relationship between the phosphor application weight per unit area and the transmission luminance and the reflection luminance. The horizontal axis represents the phosphor coating weight per unit area (gZcm 2 ) of the uniformly applied phosphor film, and the vertical axis represents the luminance (cdZm 2 ). A circle (〇) is a plot of reflection luminance, and a triangle (△) is a plot of transmission luminance.
図 2を参照すると、 透過輝度は、 単位面積当たりの蛍光体重量が 0. 0 0 0 5 gZcm2〜 0. 0 0 2 gZcm2の範囲で高く、 6 0 c d Zm2前後の値が得ら れた。 また、 このときの蛍光体膜の厚さを電子顕微鏡で測定した結果、 約 2 / m 〜約 6 zmであった。 Referring to FIG. 2, the transmission luminance is high when the phosphor weight per unit area is in the range of 0.005 gZcm 2 to 0.02 gZcm 2 , and a value around 60 cd Zm 2 is obtained. Was. The thickness of the phosphor film at this time was measured by an electron microscope, and was found to be about 2 / m to about 6 zm.
但し、 上記で使用した蛍光体は、 一例としての緑色蛍光体であり、 他の蛍光体 を使用する場合は、 蛍光体の種類や比重によって、 好ましい蛍光体重量の範囲が 幾らか変化する。 従って、 より一般的には、 高い透過輝度を得るために好ましい 単位面積当たりの蛍光体塗布重量の範囲は、 0. 0 0 0 1 gZcm2〜0. 0 0 5 gZcm2である。 また、 蛍光体膜の厚さは、 : L m〜 2 0 μιτηが好ましい。 一方、 反射輝度は、 単位面積当たりの蛍光体重量が 0. 0 0 6 gZcm2以上 の範囲で高く、 最高値として約 1 : L 0 c dZm2という値が得られた。 また、 こ のときの蛍光体膜の厚さを電子顕微鏡で測定した結果、 約 1 0 jtzm〜約 2 0 cm であった。 但し、 上記で使用した蛍光体は、 一例としての緑色蛍光体であり、 他の蛍光体 を使用する場合は、 蛍光体の種類や比重によって、 好ましい蛍光体重量の範囲が 幾らか変化する。 従って、 より一般的には、 高い反射輝度を得るために好ましい 単位面積当たりの蛍光体塗布重量の範囲は、 0. 00 ]. gZcm2〜0. O l g Zcm2である。 また、 蛍光体膜の厚さは、 1 0 im〜; 1 00 / mが好ましい。 次に透過輝度と反射輝度とを比較すると、 透過輝度の値 (約 60 c dZn 2) に対して、 反射輝度の最高値 (約] l O c dZm2) は約 2倍である。 これは、 3次元の蛍光体塗布構造を考える場合、 蛍光体塗布構造の全体の発光量や発光輝 度を向上させるためには、 3次元構造体から発光する反射輝度を利用した方がよ いことを示す。 従って、 以下では、 3次元構造体が反射体であるとして、 3次元 の蛍光体塗布構造を考案する。 However, the phosphor used above is a green phosphor as an example, and when another phosphor is used, the preferable range of the phosphor weight varies somewhat depending on the type and specific gravity of the phosphor. Thus, more generally, phosphor coating weight in the range of preferred per unit area in order to obtain a high transmission brightness, 0. 0 0 0 1 gZcm 2 ~0. A 0 0 5 gZcm 2. Further, the thickness of the phosphor film is preferably: L m to 20 μιτη. On the other hand, the reflection brightness was high when the phosphor weight per unit area was 0.06 gZcm 2 or more, and the highest value was about 1: L 0 cdZm 2 . The thickness of the phosphor film at this time was measured by an electron microscope and was found to be about 10 jtzm to about 20 cm. However, the phosphor used above is a green phosphor as an example, and when another phosphor is used, the preferable range of the phosphor weight varies somewhat depending on the type and specific gravity of the phosphor. Therefore, in general, the preferable range of the phosphor coating weight per unit area for obtaining high reflection luminance is 0.000] gZcm 2 to 0. Olg Zcm 2 . Further, the thickness of the phosphor film is preferably 10 im to 100 / m. Next, when comparing the transmission luminance and the reflection luminance, the maximum value of the reflection luminance (about] l O c dZm 2 ) is about twice as large as the transmission luminance value (about 60 cdZn 2 ). This is because when considering a three-dimensional phosphor coating structure, it is better to use the reflected luminance emitted from the three-dimensional structure in order to improve the overall light emission amount and emission brightness of the phosphor coating structure. Indicates that Therefore, in the following, a three-dimensional phosphor coating structure is devised assuming that the three-dimensional structure is a reflector.
図 3には、 単位面積当たりの蛍光体塗布重量と拡散透過率及び拡散反射率との 関係を示す。  Fig. 3 shows the relationship between the phosphor coating weight per unit area and the diffuse transmittance and diffuse reflectance.
図 3より、 前述のように高い透過輝度を得るために適した単位面積当たりの蛍 光体重量である 0. 0005 g/cm2~0. 002 g c rn^では、 拡散透過 率及び拡散反射率ともに約 50%である。 また、 高い反射輝度を得るために適し た単位面積当たりの蛍光体重量の範囲 (0. 006 gZcm2以上) では、 拡散 反射率が約 60〜 75 %である。 From FIG. 3, 0. 0005 g / cm 2 ~ a fluorescent body weight per unit area that is suitable for obtaining a high transmission luminance as described above 0. 002 gc rn in ^, diffuse transmittance and diffuse reflectance Both are about 50%. Also, in the range of phosphor weight per unit area suitable for obtaining high reflection luminance (0.006 gZcm 2 or more), the diffuse reflectance is about 60 to 75%.
以上が、 本願発明者らによって得られた、 蛍光体塗布膜の塗布量と膜厚との関 係に関する検討結果である。  The above is the result of the study on the relationship between the coating amount and the film thickness of the phosphor coating film obtained by the present inventors.
次に、 発光光束及び発光輝度の向上を実現する 3次元の蛍光体塗布構造を、 明 らかにする。  Next, a three-dimensional phosphor coating structure for realizing an improvement in luminous flux and luminous brightness will be clarified.
3次元の蛍光体塗布構造の基本的特徴は、 3次元に配置される 3次元構造体の 高さ、 厚さ、 及び長さ、 並びに、 それらの 3次元構造体の配置間隔に依存する。 図 1には、 本発明において構成される蛍光体塗布構造の基本的な構成を、 模式 的に示す。 具体的には、 この蛍光体塗布構造は、 基盤部材 1 00の表面、 すなわちベース 面の上に、 各々が高さ a、 厚さ b、 及び長さ dを有する複数の四角柱 200、 す なわち支持体 200を、 間隔 cにて配置して得られる 3次元構造である。 基盤部 材 1 00には蛍光体が塗布されており、 その基盤部材 100の上には、 蛍光体が 塗布された或いは主に蛍光体自身からなる支持体 200力 少なくとも 1つ以上 配置されている。 The basic features of the three-dimensional phosphor coating structure depend on the height, thickness, and length of the three-dimensionally arranged three-dimensional structures, and the spacing between the three-dimensional structures. FIG. 1 schematically shows a basic configuration of a phosphor coating structure configured in the present invention. Specifically, this phosphor-coated structure includes a plurality of square pillars 200 each having a height a, a thickness b, and a length d on the surface of the base member 100, that is, the base surface. That is, a three-dimensional structure obtained by arranging the supports 200 at an interval c. The base member 100 is coated with a phosphor, and the base member 100 is provided with at least one support 200 coated with the phosphor or mainly composed of the phosphor itself. .
ここで、 個々の四角柱 200、 すなわち支持体 200 ( a X b X d) を配置し ていないベース面 ( (c一 b) X d) を面 A 1、 面 A 1の面積を A 1 ' 、 面 A 1 の単位面積当たりの反射光束 (光束発散度) を M l , 面 A 1の単位面積当たりの 透過光束を M 1 ' 、 面 A 1の拡散反射率を R 1、 面 A :1の拡散透過率を T 1、 支 持体 200の側面 (a X ci) を面 A 2、 面 A 2の面積を A 2 ' 、 面 A 2の単位面 積当たりの反射光束を M 2、 面 A 2の拡散反射率を R 2、 支持体 200の上面 (b X d) を面 A 3、 面 A 3の面積を A 3 ' 、 面 A 3の単位面積当たりの反射光 束を M3、 面 A 3の拡散反射率を R 3、 支持体 200 (a bxd) と面 A 1に 垂直な面 (ax (c— b) ) を面 As、 面 Asの面積を As ' 、 面 A 1と 2つの 面 A 2とで囲まれた空間の外にでた光が再び該空間内に戻ってくる実効的な拡散 反射率を R s、 面 A 3と同一平面上で面 A 1の上方に位置する天井面を面 A 4、 面 A 4の面積を A 4' 、 面 A 1から面 A 2への形態係数を F 1— 2、 面 A 1から 面 A 4への形態係数を F 1—4、 面 A 1から面 Asへの形態係数を F i→s、 面 A2から面 A 1への形態係数を F 2—し 面 A2から対面の面 A2 (面 A 2 ' ) への形態係数を F 2→2' 、 面 A 2から面 A 4への形態係数を F 2→4、 面 A 2 から面 A sへの形態係数を F 2→s、 面 A 2 ' から面 A 1への形態係数を F 2 ' →1、 及び、 面 A sから面 A4への形態係数を F s→4とする。 更に、 蛍光体塗 布構造からの反射光束が、 天井面 A 4に存在する何らかの構造体によって再び面 A 1に戻ってくる実効的な拡散反射率を、 Raとする。  Here, each square pillar 200, that is, the base surface ((c-b) Xd) on which the support body 200 (aXbXd) is not arranged is defined as the surface A1, and the area of the surface A1 is defined as A1 '. The reflected light flux (luminous divergence) per unit area of the surface A 1 is M l, the transmitted light flux per unit area of the surface A 1 is M 1 ′, the diffuse reflectance of the surface A 1 is R 1, and the surface A: 1 Is the diffuse transmittance of T 1, the side surface (a X ci) of the support 200 is the surface A 2, the area of the surface A 2 is A 2 ′, the reflected light flux per unit area of the surface A 2 is M 2, The diffuse reflectance of A 2 is R 2, the upper surface (b X d) of the support 200 is surface A 3, the area of surface A 3 is A 3 ′, the reflected light flux per unit area of surface A 3 is M 3, The diffuse reflectance of A 3 is R 3, the plane (ax (c—b)) perpendicular to the support 200 (abxd) and the plane A 1 is the plane As, the area of the plane As is As', and the planes A 1 and 2 R s is the effective diffuse reflectance at which light exiting the space surrounded by the two surfaces A 2 and returns to the space again, and A 3 is the surface The ceiling surface located above plane A1 on one plane is plane A4, the area of plane A4 is A4 ', the view factor from plane A1 to plane A2 is F1-2, and plane A1 is plane The view factor from plane A4 to F1-4, the view factor from plane A1 to plane As is Fi → s, the view factor from plane A2 to plane A1 is F2—the plane from plane A2 to the opposite plane The view factor for A2 (face A 2 ') is F 2 → 2', the view factor for face A 2 to face A 4 is F 2 → 4, and the view factor for face A 2 to face A s is F 2 → s, the view factor from face A 2 ′ to face A 1 is F 2 ′ → 1, and the view factor from face A s to face A4 is F s → 4. Further, the effective diffuse reflectance at which the reflected light flux from the phosphor-coated structure returns to the surface A1 again by some structure existing on the ceiling surface A4 is defined as Ra.
本願発明者らによる検討の結果、 透過光束及び透過輝度を利用する場合、 全透 過光束を ΦΤ、 基盤部材 100から放射される透過光朿を し 支持体 200 から放射されて基盤部材 100を透過する透過光束を Τ 2、 基盤部材 100の 上に支持体 200が全く配置されていないときに基盤部材 100から放射される 透過光束を ΦΤΒとしたとき、 As a result of the study by the inventors of the present invention, when the transmitted light flux and the transmitted luminance are used, The excess light flux is ΦΤ, the transmitted light emitted from the base member 100 is measured, the transmitted light emitted from the support member 200 and transmitted through the base member 100 is Τ2, and the support member 200 is completely disposed on the base member 100. When the transmitted light flux emitted from the base member 100 when there is no
φΤ/φΤΒ>1. 0 (1) 但し、 Φτ = ^τ :ι + ΦΤ2  φΤ / φΤΒ> 1.0 (1) where Φτ = ^ τ: ι + ΦΤ2
なる関係を満たす蛍光体塗布構造は、 透過光束を向上させる。 The phosphor coating structure that satisfies the following relationship improves the transmitted light flux.
このとき、 透過輝度については、 透過光が完全拡散光と見なせるとき、 透過光 束を πと発光面積とで割ることにより、 透過輝度が得られる。 すなわち、 透過光 束から透過輝度への換算は、 (1) 式の分子及び分母をそれぞれ同一の発光面積 と πとで害 ijることになるので、 透過輝度を向上させる関係式も、 (1 ) 式と同等 になる。  At this time, regarding the transmitted luminance, when the transmitted light can be regarded as completely diffused light, the transmitted luminance is obtained by dividing the transmitted light flux by π and the light emitting area. That is, since the conversion from the transmitted light flux to the transmitted luminance impairs the numerator and denominator of equation (1) with the same light emitting area and π, respectively, the relational expression for improving the transmitted luminance is also expressed by (1) ) Expression.
図 1の基本図形に従えば、 φτ= (ΦΤ 1 +ΦΤ2) 及び ΦΤΒは、 以下のよ うにして簡易計算される。  According to the basic figure in Fig. 1, φτ = (ΦΤ 1 + ΦΤ2) and ΦΤΒ can be simply calculated as follows.
すなわち、 φΤ=^Τ] +φΤ2は、 図 4に示すように、 面 A 1が発光する透 過光束^ T 1と、 面 A 2から発光する光が面 A :1を透過する透過光束 φΤ 21と、 面 A 2から発光する光が対面の面 A 2に反射された後に面 A 1を透過する透過光 束 ΦΤ22と、 の総和となる。  That is, φΤ = ^ Τ] + φΤ2 is, as shown in FIG. 4, a transmitted light flux ^ T 1 emitted from the surface A 1 and a transmitted light flux φΤ emitted from the surface A 2 passing through the surface A: 1. 21 and the transmitted light flux ΦΤ22 transmitted through the surface A1 after the light emitted from the surface A2 is reflected by the facing surface A2.
ここで、 φΤ = ^Τ ΐ +φΤ2 = φΤ 1 +φΤ21 + φΤ22であり、  Where φΤ = ^ Τ ΐ + φΤ2 = φΤ 1 + φΤ21 + φΤ22,
φΤ 1 =Μ 1 ' X A 1 ' =M 1 ' X { (c— b) X d} φΤ 1 = Μ 1 'X A 1' = M 1 'X {(c— b) X d}
Τ2 1 -M2 X A 2 ' XF 2- 1 XT1 X 2  Τ2 1 -M2 X A 2 'XF 2- 1 XT1 X 2
=-M 2 x{a Xd}XF 2→l XT l x 2  = -M 2 x {a Xd} XF 2 → l XT l x 2
ΦΤ22=M2 XA2 ' X F 2→ 2 ' XR2 XF 2' →1 XT 1 X2  ΦΤ22 = M2 XA2 'X F 2 → 2' XR2 XF 2 '→ 1 XT 1 X2
=M2 X {a Xd}xF 2→2' x R 2 X F 2 ' - 1 x T 1 x 2 である。  = M2 X {a Xd} xF 2 → 2 'x R 2 X F 2'-1 x T 1 x 2.
また、 透過光束 TBは、 ΦΤΒ = Μ 1 ' X (A 1 ' +A 3 ' ) =M 1 ' ic X d} である。 Also, the transmitted light flux TB is ΦΤΒ = Μ1′X (A1 ′ + A3 ′) = M1′icXd}.
また、 図 2及び図 3で示した透過光束や透過輝度が向上するような条件、 及び 計算が簡単になるための近似条件は、  The conditions for improving the transmitted luminous flux and transmitted luminance shown in FIGS. 2 and 3 and the approximate conditions for simplifying the calculation are as follows:
M 2 ^ 2 X M 1 ' 、 T 1 ^ 0. 5、 R 1 = 0. 7、 F 2 ' →1 -F 2→1 である。  M2 ^ 2XM1 ', T1 ^ 0.5, R1 = 0.7, F2' → 1 -F2 → 1.
以上は、 基盤部材 100に蛍光体が塗布されている場合の結果であるが、 透過 光束及び透過輝度に関して、 基盤部材 1 00に蛍光体が塗布されていないときに は、 前述の ( 1) 式において Φ T 1 = 0となるので、 The above is the result when the phosphor is applied to the base member 100. Regarding the transmitted luminous flux and the transmitted luminance, when the base member 100 is not coated with the phosphor, the above-described formula (1) is used. Since Φ T 1 = 0 at
Τ2/ ΤΒ>1. 0 (2) の関係を満たす蛍光体塗布構造が、 透過光束を向上させる。  The phosphor coating structure that satisfies the relationship Τ2 / ΤΒ> 1.0 (2) improves the transmitted light flux.
このとき、 透過輝度については、 透過光が完全拡散光と見なせるとき、 透過光 束を 7Τと発光面積とで割ることにより、 透過輝度が得られる。 すなわち、 透過光 束から透過輝度への換算は、 (2) 式の分子及び分母をそれぞれ同一の発光面積 と 7Τとで割ることになるので、 透過輝度を向上させる関係式も、 (2) 式と同等 になる。  At this time, regarding the transmitted luminance, when the transmitted light can be regarded as completely diffused light, the transmitted luminance can be obtained by dividing the transmitted light flux by 7 mm and the light emitting area. That is, since the conversion from the transmitted light flux to the transmitted luminance is performed by dividing the numerator and denominator of equation (2) by the same light emitting area and 7 mm, respectively, the relational expression for improving the transmitted luminance is expressed by equation (2). Is equivalent to
また、 図 2及び図 3で透過光束や透過輝度が向上するような条件、 及び計算が 簡単になるための近似条件は、  In addition, in Fig. 2 and Fig. 3, the conditions for improving the transmitted light flux and the transmitted luminance and the approximate conditions for simplifying the calculation are as follows.
Μ 2 = 2 ΧΜ 1 ' , Τ 1 = 0. 9、 R 2 = 0. 7、 F 2 ' →1 =F 2→1 である。  Μ 2 = 2 ΧΜ 1 ', Τ 1 = 0.9, R 2 = 0.7, F 2' → 1 = F 2 → 1.
一方、 反射光束及び反射輝度を利用する場合は、 デバイスの構成から、 面 A 3 の蛍光体の発光を利用する場合と利用しない場合とがある。 そのため、 面 A 3の 蛍光体の発光利用の有無で、 場合分けする必要がある。  On the other hand, when the reflected light flux and the reflected luminance are used, there are cases where the light emission of the phosphor on the surface A 3 is used and cases where it is not used depending on the device configuration. For this reason, it is necessary to categorize cases according to whether or not the phosphor of the surface A3 uses light emission.
面 A 3の蛍光体の発光を利用するとき、 全反射光束を ci)R、 基盤部材 1 00か ら放射される反射光束を (i)R 1、 支持体 200の側面から放射される反射光束を φ R 2、 支持体 200の上面から放射される反射光束を φ R 3、 基盤部材 1 00 の上に支持体 2 0◦が全く配置されていないときの基盤部材 1 0 0から放射され る反射光束を <i)RBとしたとき、When using the light emission of the phosphor on the surface A3, the total reflected light beam is ci) R, the reflected light beam emitted from the base member 100 is (i) R1, the reflected light beam emitted from the side surface of the support 200. Is φ R 2, and the reflected light flux emitted from the upper surface of the support 200 is φ R 3, and the base member 1 00 Where <i) RB is the reflected light flux radiated from the base member 100 when there is no support body
/ R B> 1. 1 (3) 但し、 <i)R = <i)R 1 +(i>R 2 + <i>R 3  / R B> 1.1 (3) where <i) R = <i) R 1 + (i> R 2 + <i> R 3
の関係を満たす蛍光体塗布構造が、 反射光束を向上させる。 The phosphor coating structure that satisfies the relationship of (1) improves the reflected light flux.
このとき、 反射輝度については、 反射光が完全拡散光と見なせるとき、 反射光 束を Cと発光面積とで割ることにより、 反射輝度が得られる。 すなわち、 反射光 束から反射輝度への換算は、 (3) 式の分子及び分母をそれぞれ同一の発光面積 と 7Tとで割ることになるので、 反射輝度を向上させる関係式も、 (3) 式と同等 になる。  At this time, regarding the reflected luminance, when the reflected light can be regarded as completely diffused light, the reflected luminance is obtained by dividing the reflected light flux by C and the light emitting area. In other words, since the conversion from the reflected light flux to the reflected luminance is obtained by dividing the numerator and denominator of Equation (3) by the same light emitting area and 7T, the relational expression for improving the reflected luminance is expressed by Equation (3). Is equivalent to
図 1の基本図形に従えば, Φϋ- (0 R 1十 R 2 + (i)R 3) と 0RBとは、 以下のように簡易計算される。  According to the basic figure in Fig. 1, Φϋ- (0R10R2 + (i) R3) and 0RB are simply calculated as follows.
すなわち、 <i)R = <i R l +(i)R 2 + 0 R 3は、 図 5に示すように、 面 A 1が発 光して直接に天井面 A 4に照射される反射光束 <i>R 1 1と、 面 A 1が発光して面 A 2に反射した後に天并面 A4に照射される反射光束 </)R 】 2と、 面 A2が発光 して直接に天井面 A 4に照射される反射光束 <i>R 2 1と、 面 A 2から発光する光 が面 A 1で反射された後に天井面 A 4に照射される反射光束 R 2 2と、 面 A 2 から発光する光が対面の面 A 2で反射された後に天井面 A 4に照射される反射光 束 ΦΚ 2 3と、 面 A 3自身が発光する反射光束 c/)R 3と、 面 A :1と 2つの面 A 2 とで囲まれた空間で発光し相互反射後に天井面 A 4に照射される反射光束 φ R A と、 面 A 1と 2つの面 A 2とで囲まれた空間以外で発光し上記空間内で相互反射 後に天井面 A 4に照射される反射光束 Φ R Sと、 の総和となる。  That is, as shown in FIG. 5, <i) R = <iRl + (i) R2 + 0R3 is a reflected light beam that is emitted from the surface A1 and directly radiated to the ceiling surface A4. <i> R 11 and the reflected light flux that illuminates the surface A4 after the surface A 1 emits light and reflects off the surface A </) R] 2, and the surface A2 emits light and directly ceiling surface Reflected light flux <i> R 21 illuminated on A 4, reflected light flux R 22 illuminated on ceiling A 4 after light emitted from surface A 2 is reflected on surface A 1, and surface A 2 The reflected light flux ΦΚ 23 radiated from ceiling A 4 after the light emitted from surface A 2 is reflected by facing surface A 2, the reflected light flux c /) R 3 emitted by surface A 3 itself, and surface A: The reflected light beam φ RA emitted in the space surrounded by the first and two surfaces A 2 and radiated to the ceiling surface A 4 after mutual reflection, and the space other than the space surrounded by the first surface A 2 and the two surfaces A 2 The sum of the reflected light flux Φ RS that emits light and is reflected on the ceiling surface A 4 after being interreflected in the above space.
ここで、  here,
<i) R l +<i)R 2 = {0 R :i 1 + Κ 1 2} + {φΚ 2 1 + Φ R 2 2 + R 2 3 }  <i) R l + <i) R 2 = {0 R: i 1 + Κ 1 2} + {φΚ 2 1 + Φ R 2 2 + R 2 3}
+ R A+ R S  + R A + R S
であり、 Κ Ι 1 =M 1 X A 1 ' XF 1→4=M 1 X { (c— b) X d} X F 1→4 I 2 =M 1 X A 1 ' XF 1→2 XR 2 X F 2→4 X 2 And Κ Ι 1 = M 1 XA 1 'XF 1 → 4 = M 1 X {(c-- b) X d} XF 1 → 4 I 2 = M 1 XA 1' XF 1 → 2 XR 2 XF 2 → 4 X 2
=M l X{a Xd}XF 2— 1 XR 2 XF 2— 4 X 2  = M l X {a Xd} XF 2— 1 XR 2 XF 2— 4 X 2
ci>R 2 1 =M2 X A 2 ' XF 2→4 X 2=M2 X {a X d} XF 2→4 X 2 φ R 2 2 =M 2 X A 2 ' X F 2→ 1 X R 1 X F 1→ 4 X 2  ci> R 2 1 = M2 XA 2 'XF 2 → 4 X 2 = M2 X {a X d} XF 2 → 4 X 2 φ R 2 2 = M 2 XA 2' XF 2 → 1 XR 1 XF 1 → 4 X 2
=M 2 X{a Xd}XF 2-> l xR l XF l→4 X 2  = M 2 X {a Xd} XF 2-> l xR l XF l → 4 X 2
Φ Κ 23=M2 XA2 ' X F 2→2 ' X R 2 X F 2→4 X 2  Φ Κ 23 = M2 XA2 'X F 2 → 2' X R 2 X F 2 → 4 X 2
= M2 X {a X d}XF 2→2 ' XR 2 XF 2→4 X 2 となる。  = M2 X {a X d} XF 2 → 2 ′ XR 2 XF 2 → 4 X 2
また、 反射光束 0RSは、 以下の漸化式にて表される。
Figure imgf000018_0001
ここで、 i = lのときは、
The reflected light flux 0RS is expressed by the following recurrence formula.
Figure imgf000018_0001
Here, when i = l,
1 ={ (M 1 X A 1 ' XF l→s XR s X 2)  1 = {(M 1 X A 1 'XF l → s XR s X 2)
+ (M 1 X A 1 ' XF l→2 XR2 X 2 XF 2→s XR s X 2) + (M 2 X A 2 ' XF 2→s X 2 XR s X 2)  + (M 1 X A 1 'XF l → 2 XR2 X 2 XF 2 → s XR s X 2) + (M 2 X A 2' XF 2 → s X 2 XR s X 2)
+ (M2 X A2 ' X F 2→1 X R 1 X F 1- S X 2 X R S X 2) 十 (M2 X A 2 ' XF 2→2 ' XR 2 XF 2→s X 2 XR s X 2) } X F s→4  + (M2 X A2 'X F 2 → 1 X R 1 X F 1- S X 2 X R S X 2) Ten (M2 X A 2' XF 2 → 2 'XR 2 XF 2 → s X 2 XR s X 2)} X F s → 4
であり、 i≥ 2のときは、 And when i≥2,
i = (Φ i - l/F≤→4- i - 1) XR s XF s→4  i = (Φ i-l / F≤ → 4- i-1) XR s XF s → 4
である。 It is.
また、 反射光束 <i>RAは、 以下の漸化式にて表される。  The reflected light flux <i> RA is represented by the following recurrence formula.
ΦΗΑ=∑Φ ΦΗΑ = ∑Φ
j=1  j = 1
ここで、 j = 1のときには、 ( . = { (M 1 A 1 ' + M 2 X A 2 ' X 2) Here, when j = 1, (. = {(M 1 A 1 '+ M 2 XA 2' X 2)
一 (<i>R l l +0R 1 2 + (i)R 2 l +ti)R22 +(i)R23 +(i R s) } X R 2 X F 2→4  One (<i> R l l + 0R 12 + (i) R 2 l + ti) R22 + (i) R23 + (i R s)} X R 2 X F 2 → 4
であり、 j≥ 2のときには、 And when j≥2,
j = j - 1 /F 2→4 - Φ j - ] ) XR 2 XF 2→4  j = j-1 / F 2 → 4-Φ j-]) XR 2 XF 2 → 4
である。 It is.
また、 反射光束 0RBは、  Also, the reflected light flux 0RB is
Φ RB=M 1 (A 1 ' + A 3 ' ) 1 x {c X d}  Φ RB = M 1 (A 1 '+ A 3') 1 x {c X d}
である。 It is.
なお、 反射光束 ci)RS及び <i)RAを求める上記の漸化式は、 それぞれ、 以下の 近似式:  Note that the above recurrence formulas for calculating the reflected light flux ci) RS and <i) RA are respectively the following approximate formulas:
0RS = { (M I X A:1 ' XF l- s XR s X 2>  0RS = {(M I X A: 1 'XF l- s XR s X 2>
+ (M 1 X A 1 ' X F 1→2 X R 2 X 2 X F 2^S X R S X 2) + (M2 XA2 ' XF 2→s X 2 XR s X 2)  + (M 1 X A 1 'X F 1 → 2 X R 2 X 2 X F 2 ^ S X R S X 2) + (M2 XA2' XF 2 → s X 2 XR s X 2)
+ (M 2 X A 2 ' XF 2→l R l XF l→s X 2 XR s X 2) + (M 2 X A 2 'XF 2 → l R l XF l → s X 2 XR s X 2)
+ (M 2 X A 2 ' XF 2— 2 ' XR2 xF 2→s X 2 XR s X 2) } X { 0. 9 I (a + 0. 8) } + (M 2 X A 2 'XF 2— 2' XR2 xF 2 → s X 2 XR s X 2)} X {0.9 I (a + 0.8)}
φ RA = { (M 1 X A 1 ' + M 2 X A 2 ' X 2)  φ RA = {(M 1 X A 1 '+ M 2 X A 2' X 2)
一 ((/>R l l + R l 2 + <i)R2 1卞 <i R 22 + <i)R23 + <i)R s) } X { 0. 9 1 Z ( a + 0. 8 ) }  I ((/> R ll + R l 2 + <i) R2 1 Byon <i R 22 + <i) R23 + <i) R s)} X {0.91 Z (a + 0.8)}
に、 簡素化できる。 Can be simplified.
また、 図 2及び図 3で透過光束や透過輝度が向上するような条件、 及び計算が 簡単になるための近似条件は、  In addition, in Fig. 2 and Fig. 3, the conditions for improving the transmitted light flux and the transmitted luminance and the approximate conditions for simplifying the calculation are as follows.
M 1 =Λ42 =M3 , R l =R 2=R s = 0. 7、 及び  M 1 = Λ42 = M3, R l = R 2 = R s = 0.7, and
F 1→2-F 2→1 XA2 ' ΧΑ Ι '  F 1 → 2-F 2 → 1 XA2 'ΧΑ Ι'
である。 一方、 反射光束及び反射輝度を利用する場合であって面 A 3の蛍光体の発光を 利用しないデバイスとして、 プラズマ ·ディスプレイ 'パネル (PDP) が存在 する。 この場合には、 先の (3) 式にて (ί> R 3 = 0となる。 It is. On the other hand, there is a plasma display panel (PDP) as a device that uses the reflected light flux and the reflected luminance and does not use the light emission of the phosphor on the surface A3. In this case, (ί> R 3 = 0) in the above equation (3).
この条件下で、 現行の P DPよりも 1 0 %以上の反射輝度の向上が実現される 条件を求めると、  Under these conditions, the conditions that can achieve a 10% or more improvement in reflection luminance over the current PDP are obtained.
(Φ Ι + Κ 2 /Φ Β> 0. 9 (4) となる。  (Φ Ι + Κ 2 / Φ Β> 0.9 (4).
同様に、 現行の PDPよりも 2 0 %以上の反射輝度の向上が実現される条件は、 ( Κ I + Φ Κ 2) Φ Κ Β> I . 0 (5) となる。  Similarly, the condition under which the reflection brightness is improved by 20% or more over the current PDP is ((I + Φ 2) Φ Κ> I.0 (5).
このとき、 反射輝度については、 反射光が完全拡散光と見なせるとき、 反射光 束を Uと発光面積とで割ることにより、 反射輝度が得られる。 すなわち、 反射光 束から反射輝度への換算は、 (4) 式或いは (5) 式の分子及び分母をそれぞれ 同一の発光面積と 7Τとで割ることになるので、 反射輝度を向上させる関係式も、 (4) 式或いは (5) 式と同等になる。  At this time, when the reflected light can be regarded as completely diffused light, the reflected luminance is obtained by dividing the reflected light flux by U and the light emitting area. In other words, the conversion from the reflected light flux to the reflected luminance is obtained by dividing the numerator and denominator of Equation (4) or (5) by the same light-emitting area and 7 mm, respectively. , (4) or (5).
また、 図 2及び図 3で透過光束や透過輝度が向上するような条件、 及び計算が 簡単になるための近似条件は、  In addition, in Fig. 2 and Fig. 3, the conditions for improving the transmitted light flux and the transmitted luminance and the approximate conditions for simplifying the calculation are as follows.
M 1 =M2、 R 1 =R 2 = R s = 0. 7、 及び  M 1 = M2, R 1 = R 2 = R s = 0.7, and
F 1-*2 = F 2→ 1 XA 2 ' /A 1 '  F 1- * 2 = F 2 → 1 XA 2 '/ A 1'
である。 It is.
更に、 透過光束と反射光束、 及び透過輝度と反射輝度とを両方とも利用する場 合、 すなわち、 発光光束及び発光輝度を利用する場合を、 以下にて検討する。 このとき、 基盤部材 1 0 0から放射される透過光束を φΤ ].、 支持体 2 0 0か ら放射されて基盤部材 1 0 0を透過した透過光束を 2、 基盤部材: I 0 0の上 に支持体 2 0 0が全く配置されていないときの基盤部材 1 0 0から放射される透 過光束を ΦΤΒ, 基盤部材: L 0 0から放射される反射光束 R 1が天井面に存在 する何らかの構造体によって再び基盤部材' 1 0 0に戻ってきてこれを透過する透 過光束を Φ R T 1、 支持体 2 0 0の側面から放射された反射光束 (i) R 2が天井面 に存在する何らかの構造体によって再び基盤部材 1 0 0に戻ってきてこれを透過 する透過光束を RT 2、 支持体 2 0 0の上面から放射された反射光束 (i>R 3が 天井面に存在する何らかの構造体によって再び基盤部材 1 0 0に戻ってきてこれ を透過する透過光束を Φ R T 3、 基盤部材 ].0 0の上に支持体 2 0 0が全く配置 されていないときの基盤部材 1 0 0から放射される反射光束 (i>RBが、 天井面に 存在する何らかの構造体によって再び基盤部材 1 0 0に戻ってきてこれを透過す る透過光束を <i>RTB、 としたときに、Further, the case where both the transmitted light beam and the reflected light beam, and the transmitted luminance and the reflected luminance are used, that is, the case where the emitted light beam and the emitted luminance are used will be discussed below. At this time, the transmitted light flux radiated from the base member 100 is φ.]. The transmitted light flux radiated from the support body 200 and transmitted through the base member 100 is 2. When the support member 200 is not placed at all, the transmitted light flux radiated from the base member 100 is ΦΤΒ, and the reflected light flux R1 radiated from the base member L 0 0 exists on the ceiling surface. Some kind of structure returns to the base member '100 again, and the transmitted light flux passing through it is ΦRT1, and the reflected light flux radiated from the side of the support body 200 (i) R2 is placed on the ceiling surface. Any transmitted structure returns to the base member 100 again due to any existing structure, and the transmitted light flux transmitted therethrough is denoted by RT 2, and the reflected light flux emitted from the upper surface of the support body 200 (i> R 3 exists on the ceiling surface) Due to some structure, it returns to the base member 100 again, and the transmitted light flux passing therethrough is ΦRT3, base member]. The base member 1 when no support body 200 is placed on the base member. When the reflected light flux (i> RB) radiated from 00 returns to the base member 100 again by some structure existing on the ceiling surface, and the transmitted light flux passing through it is <i> RTB, ,
Τ- Τ Ι +ΦΎ 3  Τ- Τ Ι + ΦΎ 3
(</)T l +(i>T 2 + <i RT l +^RT 2 + RT 3) Ζ ( ΤΒ + φΚΤΒ) (</) T l + (i> T 2 + <i RT l + ^ RT 2 + RT 3) Ζ (ΤΒ + φΚΤΒ)
> Ι . 0 (6) なる関係を満たす蛍光体塗布構造が、 透過光束及び反射光束を利用して発光光束 を向上させる。  > (6) The phosphor coating structure that satisfies the following relationship enhances the emitted light beam using the transmitted light beam and the reflected light beam.
ここで、 発光光束の各方向に対する強度が一定のとき、 発光光束を πと発光面 積とで割ることにより、 発光輝度が得られる。 すなわち、 発光光束から発光輝度 への換算は、 (6) 式の分子及び分母をそれぞれ同一の発光面積と πとで割るこ とになるので、 発光輝度を向上させる関係式も、 (6) 式と同等になる。  Here, when the intensity of the emitted light beam in each direction is constant, the emission luminance can be obtained by dividing the emitted light beam by π and the emission area. In other words, since the conversion from the emitted light flux to the emitted light luminance is performed by dividing the numerator and denominator of equation (6) by the same light emitting area and π, respectively, the relational expression for improving the emitted light luminance is expressed by equation (6) Is equivalent to
図 ].の基本図形に従えば、 (ΦΤ _ + Φ Τ 2 + Φ Ι¾Τ 1十 ci) RT 2 + (i) RT According to the basic figure in [Fig.], (ΦΤ _ + Φ Τ 2 + Φ Ι¾Τ 110 ci) RT 2 + (i) RT
3) 、 及び ((/)TB十 ci)RTB) は、 以下のように簡易計算される。 3), and ((/) TB10 ci) RTB) are calculated as follows.
図 6を参照すると、 全透過光束は、 ΦΤと (i>RTとの和となる。 ここで、 φΤ は, 面 A 1が発光する透過光束 <ί)Τ 1、 面 A 2から発光する光が面 A 1を透過す る透過光束 ΦΤ 2 1、 及び、 面 A 2から発光する光が対面の面 A 2に反射されて 面 A 1を透過する透過光束 ΦΤ 2 2、 の総和である (すなわち、 図 4に示す透過 光束の総和) 。 一方、 (i RTは、 面 A 1が発光し直接に天井面 A 4に照射される 反射光束 <ί> R 1 lが天井面 A 4に存在する何らかの構造体によって再び面 A 1に 戻ってきて面 A 1を透過する透過光束 Φ RT :1 1、 面 A 1が発光して面 A 2に反 射した後に天井面 A 4に照射される反射光束 R 1 2が天井面 A 4に存在する何 らかの構造体によって再び面 A 1に戻ってきて面 A Iを透過する透過光束 0RT 1 2、 面 A 2が発光し直接に天井面 A 4に照射される反射光束 (i>R 2 1が天井面 A 4に存在する何らかの構造体によって再び面 A 1に戻ってきて面 A 1を透過す る透過光束 *RT2 1、 面 A 2から発光する光が面 A 1で反射された後に天井面 A 4に照射される反射光束 22が天井面 A 4に存在する何らかの構造体によ つて再び面 A 1に戻ってきて面 A 1を透過する透過光束 <i>RT22、 面 A 2から 発光する光が対面の面 A 2で反射された後に天井面 A 4に照射される反射光束 φ R 23が天井面 A 4に存在する何らかの構造体によって再び面 A 1に戻ってきて 面 A 1を透過する透過光束 RT 23、 面 A 3が発光する反射光束 R 3が天井 面 A 4に存在する何らかの構造体によって再び面 A 1に戻ってきて面 A 1を透過 する透過光束 ΦΙ¾Τ3、 面 A 1と 2つの面 A 2とで囲まれた空間で発光し上記空 間内で相互反射後に天井面 A 4に照射される反射光束 φϋΑが天井面 A 4に存在 する何らかの構造体によって再び面 A 1に戻ってきて面 A 1を透過する透過光束 ci)RTA、 並びに、 面 A ].と 2つの面 A 2とで囲まれた空間以外で発光し上記空 間内で相互反射後に天井面 A 4に照射される反射光束 φ R Sが天井面 A 4に存在 する何らかの構造体によって再び面 A 1に戻ってきて面 A 1を透過する透過光束 <i RTB、 の総和である (すなわち、 図 5に示す各反射光束に起因する透過光束 の総和) 。 Τ 2-= Τ2 1 + ΦΤ 22 Referring to Fig. 6, the total transmitted luminous flux is the sum of ΦΤ and (i> RT, where φΤ is the transmitted luminous flux emitted from surface A 1 <ί) Τ 1 and the light emitted from surface A 2 Is the sum of the transmitted luminous flux ΦΤ 21 transmitted through the surface A 1 and the transmitted luminous flux Φ Τ 22 transmitted through the surface A 1 when the light emitted from the surface A 2 is reflected by the opposite surface A 2 ( That is, the sum of transmitted light flux shown in Fig. 4). On the other hand, (i RT emits light from the surface A1 and directly irradiates the ceiling surface A4. Reflected light flux <ί> R 1 l returns to surface A 1 again by some structure existing on ceiling surface A 4, and transmitted light flux transmitted through surface A 1 Φ RT: 11; surface A 1 emits light The reflected light beam R 1 2 irradiating on the ceiling surface A 4 after being reflected on A 2 returns to the surface A 1 again by some structure existing on the ceiling surface A 4 and the transmitted light beam transmitted through the surface AI 0RT 1 2, Reflected light beam emitted from surface A 2 and directly illuminated on ceiling surface A 4 (i> R 2 1 returns to surface A 1 again by some structure existing on ceiling surface A 4 and surface A Transmitted light beam passing through 1 * RT2 1, light emitted from surface A2 is reflected by surface A1 and then reflected light beam 22 illuminated on ceiling surface A4 is applied to some structure existing on ceiling surface A4. Therefore, the transmitted light flux <i> RT22, which returns to the surface A1 again and passes through the surface A1, is reflected on the ceiling surface A4 after the light emitted from the surface A2 is reflected by the facing surface A2. Luminous flux φ R 23 returns to surface A1 again by some structure existing on ceiling surface A4, and transmitted light beam RT23 transmitted through surface A1 and reflected light beam R3 emitted from surface A3 exist on ceiling surface A4. The transmitted light flux ΦΙ¾Τ3, which returns to the surface A1 again through some structure and passes through the surface A1, emits light in the space surrounded by the surface A1 and the two surfaces A2, and after being interreflected in the above space, the ceiling surface The reflected light beam φϋΑ applied to A4 returns to surface A1 again by some structure existing on ceiling surface A4, and the transmitted light beam transmitted through surface A1 ci) RTA, and surface A]. The reflected luminous flux φ RS that is emitted in the space other than the space surrounded by the surface A2 and irradiates the ceiling surface A4 after mutual reflection in the above space, and the reflected beam φRS is again reflected on the surface A1 by some structure existing on the ceiling surface A4 The sum of the transmitted light flux <i RTB, which returns and passes through the surface A 1 The sum of the transmitted light beam that). Τ 2- = Τ2 1 + ΦΤ 22
<i>RT 1 + (^RT2 =  <i> RT 1 + (^ RT2 =
{*RT l l +*RT l 2} + {(i)RT2 l +<i)RT22 + <i)RT23} {* RT l l + * RT l 2} + {(i) RT2 l + <i) RT22 + <i) RT23}
+ RTA+ Φ RTS T 1 =Μ 1 ' A 1 ' =Μ 1 ' X { (c一 b) X d} + RTA + Φ RTS T 1 = Μ 1 'A 1' = Μ 1 'X {(c-b) X d}
ΦΤ 2 1 =M2 XA 2 ' X F 2— I XT 1 X 2  ΦΤ 2 1 = M2 XA 2 'X F 2— I XT 1 X 2
=M2 X{a X d}XF 2→1 XT 1 X 2  = M2 X {a X d} XF 2 → 1 XT 1 X 2
2 2 =M2 X A 2 ' X F 2→2 ' X R 2 X F 2 ' - x T 1 x 2 =M 2 X《 a X d} X F 2→2 ' X R 2 X F 2 ' 1 XT 1 X 2 RT 1 1 =M 1 X A .1 ' F l- 4 XR a XT i  2 2 = M2 XA 2 'XF 2 → 2' XR 2 XF 2 '-x T 1 x 2 = M 2 X << a X d} XF 2 → 2' XR 2 XF 2 '1 XT 1 X 2 RT 1 1 = M 1 XA .1 'F l- 4 XR a XT i
=M 1 X { (c - b) X d} XF l→4 XR a XT l  = M 1 X {(c-b) X d} XF l → 4 XR a XT l
<i)RT 1 2 =M 1 X A 1 ' XF l- 2 XR 2 XF 2->4 X 2 XR a XT l  <i) RT 1 2 = M 1 X A 1 'XF l- 2 XR 2 XF 2-> 4 X 2 XR a XT l
= M l x {a X d}XF 2→ l XR l X F 2→4 X 2 XR a XT l Φ RT 2 1 =M 2 A 2 ' X F 2→4 X 2 X R a XT 1  = M l x {a X d} XF 2 → l XR l X F 2 → 4 X 2 XR a XT l Φ RT 2 1 = M 2 A 2 'X F 2 → 4 X 2 XR a XT 1
= M2 X{a Xd}XF 2→4 X 2 XR a XT l XR a XT l Φ RT 2 2 =M2 X A 2 ' XF 2→ l XR l XF I→4 X 2 XR a XT l  = M2 X {a Xd} XF 2 → 4 X 2 XR a XT l XR a XT l Φ RT 2 2 = M2 X A 2 'XF 2 → l XR l XF I → 4 X 2 XR a XT l
=M2 x{a Xd}x.F 2→l XR 1 x F 1→4 X 2 XR a XT 1 φ RT 2 3 =M 2 X A 2 ' X F 2 -→ 2 ' XR 2 XF 2-→4 X 2 XR a XT l  = M2 x {a Xd} xF 2 → l XR 1 xF 1 → 4 X 2 XR a XT 1 φ RT 2 3 = M 2 XA 2 'XF 2-→ 2' XR 2 XF 2- → 4 X 2 XR a XT l
=M 2 X {a Xd} XF 2- 2 ' X R 2 X F 2— 4 X 2 X R a X T 1 である。  = M2X {aXd} XF2-2'XR2XF2—4X2XRaXT1.
透過光束 (i)RTSは、 以下の漸化式で表される。  The transmitted light flux (i) RTS is expressed by the following recurrence formula.
<^RTS=RaxXT1X∑<ii <^ RTS = RaxXT1X∑ <ii
i=1  i = 1
ここで、 i = lのとき、  Where, when i = l,
Φ 1 ={ (M 1 X A 1 ' X F 1→S XR S X 2)  Φ 1 = {(M 1 X A 1 'X F 1 → S XR S X 2)
+ (M 1 X A 1 ' xF l-*2 XR 2 X 2 XF 2→s XR s X 2) 十 (M2 XA2 ' xF 2→s X 2 X.R s X 2)  + (M 1 X A 1 'xF l- * 2 XR 2 X 2 XF 2 → s XR s X 2) Ten (M2 XA2' xF 2 → s X 2 X.R s X 2)
十 (M2 X A 2 ' X F 2→ 1 X R 1 X F 1→S X 2 XR S X 2) Ten (M2 X A 2 'X F 2 → 1 X R 1 X F 1 → S X 2 XR S X 2)
+ (M 2 X A 2 ' x F 2→ 2 ' XR 2 XF 2→s X 2 XR s X 2) }+ (M 2 X A 2 'x F 2 → 2' XR 2 XF 2 → s X 2 XR s X 2)}
XF s→4 であり、 i≥2のとき、 XF s → 4 And when i≥2,
i = (φ i - 1 /F s→4 - φ i - 1 ) XR s XF s-*4  i = (φ i-1 / F s → 4-φ i-1) XR s XF s- * 4
である。 It is.
透過光束 (i)RTAは、 以下の漸化式で表される。 </>RTA=RaxXT1X∑*j j = 1のとき、  Transmitted light flux (i) RTA is represented by the following recurrence formula. </> When RTA = RaxXT1X∑ * j j = 1,
φ 1 ={ (M 1 X A 1 ' +M2 XA 2 ' X 2) ―  φ 1 = {(M 1 X A 1 '+ M2 XA 2' X 2) ―
((i>R l l +<i)R 1 2 + ^R 2 1 +(/)R 2 2 +(/)R 2 3 + <i) R s) } X R 2 X F 2→4  ((i> R l l + <i) R 1 2 + ^ R 2 1 + (/) R 2 2 + (/) R 2 3 + <i) R s)} X R 2 X F 2 → 4
であり、 j ≥2のとき、 And when j ≥2,
Φ j = (φ j - 1/F 2→4 - j - 1) R 2 XF 2→4  Φ j = (φ j-1 / F 2 → 4-j-1) R 2 XF 2 → 4
である。 It is.
更に、 透過光束 ΦΤΒ及び <i RTBは、  Furthermore, the transmitted light flux ΦΤΒ and <i RTB are
ΦΤΒ=Μ 1 ' X (A 1 ' + A 3 ' ) =M 1 ' X {c X d}  ΦΤΒ = Μ 1 'X (A 1' + A 3 ') = M 1' X {c X d}
0RTB M I X (A 1 ' 十 A 3 ' ) X R a XT 1  0 RTB M I X (A 1 '10 A 3 ') X R a XT 1
=M ! X {c X d} XR a XT l  = M! X {c X d} XR a XT l
である。 It is.
なお、 透過光束 fi) RTS及び (i>RTAを求める上記の漸化式は、 以下の近似 式:  Note that the above recurrence equation for obtaining the transmitted light flux fi) RTS and (i> RTA) is the following approximate equation:
<i>RS½{ (M 1 X A 1 ' XF l-→s XR s x 2)  <i> RS½ {(M 1 X A 1 'XF l- → s XR s x 2)
+ (M 1 X A 1 ' XF l→2 XR ] X 2 XF 2→s XR s X 2) + (M 2 X A 2 ' X F 2-→s X 2 XR s X 2)  + (M 1 X A 1 'XF l → 2 XR] X 2 XF 2 → s XR s X 2) + (M 2 X A 2' X F 2- → s X 2 XR s X 2)
+ (M2 X A2 ' XF 2→ 1 XR 1 X F 1 -→S X 2 XR S X 2) + (M2 X A 2 ' X F 2 -→ 2 ' XR 2 XF 2→s X 2 XR s X 2) } + (M2 X A2 'XF 2 → 1 XR 1 XF 1-→ S X 2 XR S X 2) + (M2 X A 2' X F 2-→ 2 'XR 2 XF 2 → s X 2 XR s X 2)}
X{0. 9 1/ (a + 0. 8 ) } X R a X T ] Α = [ (M 1 X A:1 ' +M2 XA2 ' X 2) X {0.91 / (a + 0.8)} XRaXT] Α = [(M 1 XA: 1 '+ M2 XA2' X 2)
一 (t/)R :L l +*R 1 2十 R 2 1 +<i)R 2 2 + <i) R 2 3 + (i)R s) } x {0. 9 1 / ( a + 0. 8) } XR a XT 1  1 (t /) R: L l + * R 1 20 R 2 1 + <i) R 2 2 + <i) R 2 3 + (i) R s)} x {0.91 / (a + 0.8)} XR a XT 1
に、 簡素化できる。 Can be simplified.
また、 図 2及び図 3で発光光束や発光輝度が向上するような条件、 及び計算が 簡単になるための近似条件は、  In addition, in FIGS. 2 and 3, the conditions under which the luminous flux and the luminous brightness are improved and the approximate conditions for simplifying the calculation are as follows:
2 M 1 = 2 M 1 ' =M2 ^M3、 R 1 = 0. 4、 R 2 =R s ^ 0. 7、 及び R a = 0. 5、 T 1 = 0. 5、  2 M 1 = 2 M 1 '= M2 ^ M3, R1 = 0.4, R2 = Rs ^ 0.7, and Ra = 0.5, T1 = 0.5,
である。 面 A 3がごく狭いときは、 Μ3 0としても近似できる。 It is. When the surface A 3 is very narrow, it can be approximated as Μ30.
以上は、 基盤部材: 1 0 0に蛍光体が塗布されている場合の結果であるが、 透過 光束を利用する場合と同様に、 基盤部材 1 0 0に蛍光体が塗布されていないとき、 すなわち、 面 A ]が発光しなぃときには、 (6) 式において (i)T 1 =*RT ] = 0であるので、  The above is the result in the case where the base member: 100 is coated with the phosphor. As in the case where the transmitted light flux is used, when the base member 100 is not coated with the phosphor, When the surface A] does not emit light, since (i) T 1 = * RT] = 0 in equation (6),
(0T 2 + 0RT2 + <i>RT 3) / (φΤΒ + ΚΤΒ) > 1. ひ  (0T 2 + 0RT2 + <i> RT 3) / (φΤΒ + ΚΤΒ)> 1.
の関係を満たす蛍光体塗布構造が、 透過光束と反射光束とを利用して発光光束を 向上させる。 The phosphor coating structure that satisfies the relationship described above enhances the emitted light beam using the transmitted light beam and the reflected light beam.
このとき、 発光輝度については、 発光光束が各方向に対して強度一定のとき、 発光光束を Cと発光面積とで割ることにより、 発光輝度が得られる。 すなわち、 発光光束から発光輝度への換算は、 (7) 式の分子及び分母をそれぞれ同一の発 光面積と 7ϋとで割ることになるので、 発光輝度を向上させる関係式も、 (7) 式 と同等になる。  At this time, when the luminous flux is constant in each direction, the luminous luminance is obtained by dividing the luminous flux by C and the luminous area. In other words, since the conversion from the emitted light flux to the emitted light luminance is performed by dividing the numerator and denominator of equation (7) by the same light emitting area and 7ϋ, respectively, the relational expression for improving the emitted light luminance is also given by equation (7). Is equivalent to
また、 図 2及び図 3で発光光束や発光輝度が向上するような条件、 及び計算が 簡単になるための近似条件は、  In addition, in FIGS. 2 and 3, the conditions under which the luminous flux and the luminous brightness are improved and the approximate conditions for simplifying the calculation are as follows:
2M 1 =M2=M3、 R 1 0、 R 2 =R s = 0. 7、 R a = 0. 5、 及び T 1 = 0. 9  2M 1 = M2 = M3, R 10, R 2 = R s = 0.7, Ra = 0.5, and T 1 = 0.9
である。 面 A3がごく狭いときは、 M3 = 0としても近似できる。 以上が、 本願発明者らによって確認された, 3次元の蛍光体塗布構造による発 光輝度が増加する条件である。 It is. When the surface A3 is very narrow, it can be approximated as M3 = 0. The above is the condition confirmed by the inventors of the present invention to increase the emission luminance by the three-dimensional phosphor coating structure.
次に、 これらの式を用いて、 3次元構造体の高さと透過輝度、 反射輝度、 及び 発光輝度との関係について、 aZc比と発光輝度との関係を示す。  Next, using these equations, the relationship between the aZc ratio and the emission luminance will be described for the relationship between the height of the three-dimensional structure and the transmission luminance, the reflection luminance, and the emission luminance.
具体的には、 透過輝度を利用する場合であって、 面 A 1に蛍光体が塗布されて いる場合及びいない場合の a Z c比と透過輝度との関係を図 7及び図 8に、 それ ぞれ示す。 また、 反射輝度を利用する場合であって、 面 A 3の蛍光体の発光を利 用する場合及びしない場合の aZc比と反射輝度との関係を図 9及び図 10に, それぞれ示す。 更に、 透過輝度及び反射輝度を両方とも使用する場合であって、 面 A Uこ蛍光体が塗布されている場合及びいない場合の a Zc比と発光輝度の総 和との関係を図 1 1及び図 12に、 それぞれ示す。  Specifically, FIGS. 7 and 8 show the relationship between the aZc ratio and the transmission luminance when the transmission luminance is used and the phosphor is applied to the surface A1 and when it is not. Shown respectively. FIGS. 9 and 10 show the relationship between the aZc ratio and the reflection luminance when the reflection luminance is used and the light emission of the phosphor on the surface A3 is used or not. Fig. 11 and Fig. 11 show the relationship between the a Zc ratio and the sum of the emission luminances when both the transmission luminance and the reflection luminance are used, and when the surface AU phosphor is coated and not applied. Figure 12 shows each.
図 7から図 12の各々では、 3次元構造体の長さ dをパラメ一夕として、 複数 の曲線を描いている。 なお, 3次元構造体の幅 bはごく狭いので、 図 7から図: 1 2の各々を算出する過程では、 b = 0と仮定した。  In each of FIGS. 7 to 12, a plurality of curves are drawn with the length d of the three-dimensional structure as a parameter. In addition, since the width b of the three-dimensional structure is very small, it was assumed that b = 0 in the process of calculating each of Figs.
図 7から図 12より、 aZc = 6のときに曲線が X軸にほぼ平行になることか ら、 0. 1≤ aZc≤ 6の範囲が好ましい。 特に、 2 aZc≤6の範囲で, 発 光輝度は徐々に増加する。  According to FIGS. 7 to 12, since the curve is almost parallel to the X axis when aZc = 6, the range of 0.1 ≦ aZc ≦ 6 is preferable. In particular, the emission brightness gradually increases in the range of 2 aZc ≤ 6.
以下には、 上記の様な検討結果に基づレ ^て行われた本発明の蛍光体塗布構造の 実施形態について、 図面を参照して説明する。  Hereinafter, embodiments of the phosphor coating structure of the present invention performed based on the above-described study results will be described with reference to the drawings.
基盤部材 100の上に配置する支持体 200として、 厚さ 0. 2 mmの 3枚の マイクロガラス板を使用し、 これらのマイクロガラス板の表面に、 0. 00 l g Zcm2〜0. 01 gZc m2の範囲内で蛍光体を塗布した。 一方, 基盤部材 1 00としては、 厚さ 1mmで大きさ 5 cmX 5 c mのソ一ダガラス板を用いて、 このソーダガラス板の表面に、 0. 003 gZc m2の蛍光体をスクリーン印刷 法で均一に塗布した。 次に、 図 1 3に示すように、 蛍光体が塗布されたソーダガ ラス板ならなる基盤部材 ] 00の上に、 各々が蛍光体が塗布されたマイクロガラ ス板からなる 3枚の支持板 200を、 接着剤で固定した。 マイクロガラス板の高 さは、 2mm、 4mm、 6mm、 及び 8 mmの 4種類を使用した。 Three micro glass plates having a thickness of 0.2 mm are used as the support 200 disposed on the base member 100, and 0.000 lg Zcm 2 to 0.01 g gZc is formed on the surface of these micro glass plates. The phosphor was applied within the range of m 2 . On the other hand, as the base member 100, a soda glass plate having a thickness of 1 mm and a size of 5 cm × 5 cm was used, and a phosphor of 0.003 gZcm 2 was screen-printed on the surface of the soda glass plate. It was applied uniformly. Next, as shown in FIG. 13, a base member made of a soda-glass plate coated with a phosphor] 00 is placed on each of micro-glasses coated with a phosphor. Three support plates 200 made of metal plates were fixed with an adhesive. Four types of micro glass plates were used: 2 mm, 4 mm, 6 mm, and 8 mm.
このようにして得られる図 13のような構成を有する蛍光体塗布構造に対して、 殺菌灯の紫外線を照射し、 これにより蛍光体が蛍光発光して得られる反射輝度及 び透過輝度を、 図 13に示す測定範囲について測定した。  The thus obtained phosphor-coated structure having a configuration as shown in FIG. 13 is irradiated with ultraviolet light from a germicidal lamp, and the reflection luminance and the transmission luminance obtained by the fluorescent light emission of the phosphor are shown in FIG. The measurement was performed for the measurement range shown in FIG.
図 14に、 支持体 200を構成するマイクロガラス板の高さと、 測定された反 射輝度及び透過輝度との関係を示す。 また、 図 1 5には、 支持体 200を構成す るマイクロガラス板の高さと、 測定された反射輝度及び透過輝度の総和との関係 を示す。 図 14及び図 15の横軸は、 マイクロガラス板の高さを示し、 図 14の 縦軸は反射輝度及び透過輝度を、 図 1 5の縦軸は反射輝度及び透過輝度の総和を 示す。  FIG. 14 shows the relationship between the height of the micro glass plate constituting the support 200 and the measured reflection luminance and transmission luminance. FIG. 15 shows the relationship between the height of the micro glass plate constituting the support 200 and the total of the measured reflection luminance and transmission luminance. 14 and 15, the horizontal axis indicates the height of the micro glass plate, the vertical axis in FIG. 14 indicates the reflection luminance and the transmission luminance, and the vertical axis in FIG. 15 indicates the sum of the reflection luminance and the transmission luminance.
図 14より、 支持体 200を構成するマイクロガラス板の高さが高くなるにつ れて、 透過輝度は徐々に減少するものの、 反射輝度は飛躍的に高くなる。 また、 図 15より、 反射輝度と透過輝度との総和は、 支持体 200を構成するマイク口 ガラス板の高さが高くなるにつれて、 増加する。  As shown in FIG. 14, as the height of the micro glass plate constituting the support 200 increases, the transmission luminance decreases gradually, but the reflection luminance increases dramatically. Further, from FIG. 15, the sum of the reflected luminance and the transmitted luminance increases as the height of the microphone opening glass plate constituting the support 200 increases.
これより、 本発明に従つて蛍光体塗布構造を 3次元構造体として構成すること により、 発光輝度を増加させることができた。  Thus, by configuring the phosphor coating structure as a three-dimensional structure according to the present invention, it was possible to increase the emission luminance.
マイクロガラス板を利用して構成されている図 13に示す本実施形態の蛍光体 塗布構造の構成を、 図 1に示す基本構造と対比させると、 図 1に示す 3次元構造 体の高さ aは、 支持板 200を構成するマイクロガラス板 200の高さである 2 mm、 4mm、 6mm、 及び 8mmに相当する。 また、 図 13のマイクロガラス 板 200の配置間隔が約 4. 2mmであるので、 図]の cは c = 4. 2 mmであ り、 図 13のマイクロガラス板 200の厚さが約 0. 2 mmであるので、 図 1の bは b=0. 2mmである。  Comparing the configuration of the phosphor coating structure of the present embodiment shown in FIG. 13 using a micro glass plate with the basic structure shown in FIG. 1, the height of the three-dimensional structure shown in FIG. Corresponds to the height of the micro glass plate 200 constituting the support plate 200, ie, 2 mm, 4 mm, 6 mm, and 8 mm. Also, since the arrangement interval of the micro glass plate 200 in FIG. 13 is about 4.2 mm, c in FIG. 13 is c = 4.2 mm, and the thickness of the micro glass plate 200 in FIG. Since it is 2 mm, b in Fig. 1 is b = 0.2 mm.
従って、 図 1 3の構成では b/c = 0. 05であり, 且つ a = 2mm、 4 mm. Therefore, in the configuration of Fig. 13, b / c = 0.05 and a = 2mm, 4mm.
6 mm, 及び 8mmの各々に対して aZc = 0. 5、 0. 95、 1. 43、 及び 1. 90となる。 これらは、 3次元の蛍光体塗布構造において、 先に述べた、 好 ましい効果をもたらすパラメ一夕の数値範囲内に含まれており、 本実施形態の蛍 光体塗布構造による発光輝度の向上が実証された。 AZc = 0.5, 0.95, 1.43, and for each of 6 mm, and 8 mm 1. It becomes 90. These are included in the numerical value range of the above-mentioned parameters that bring about the favorable effects in the three-dimensional phosphor coating structure, and the improvement of the emission luminance by the phosphor coating structure of the present embodiment is achieved. Has been demonstrated.
なお、 本実施形態及び先述のシミュレーションでは、 蛍光体塗布構造の形状と して、 複数の四角柱の支持体が基盤部材の上に配置されている 3次元構造体を述 ベているが、 本発明の蛍光体塗布構造の形状はこれに限定されるものではない。 これ以外の形状でも、 以上に説明した形状及び配置の関係を満たす蛍光体塗布構 造は本発明に含まれて、 上記のような効果を奏する。  In the present embodiment and the simulation described above, a three-dimensional structure in which a plurality of quadrangular prism supports are arranged on a base member is described as the shape of the phosphor coating structure. The shape of the phosphor coating structure of the present invention is not limited to this. A phosphor coating structure that satisfies the relationship between the shapes and arrangements described above even in other shapes is included in the present invention and has the above-described effects.
例えば、 図 1 6 (a) 〜 ( c ) には、 各々の支持体 20 ()のうちで基盤部材 1 00との接触箇所の近傍の領域 2 1 0の厚さが次第に薄くなつている、 本発明の 蛍光体塗布構造のある実施形態の上面図、 正面図、 及び側面図を示す。  For example, FIGS. 16 (a) to 16 (c) show that the thickness of the area 210 near the contact point with the base member 100 in each of the supports 20 () is gradually reduced. 1 shows a top view, a front view, and a side view of an embodiment of the phosphor coating structure of the present invention.
図 1 6 (a) 〜 (c) の構成では、 各々の支持体 200の厚さは、 基盤部材: L 00に接する部分で最も薄くなつており、 この箇所の厚さが、 図 1で説明した b となる。 この場合には、 bZc値は小さくなるにも関わらず、 支持体 200がべ ース面 (基盤部材: ί 00の表面) での発光を妨げる体積が大きいため、 発光輝度 の十分な増加が得られ難くなる可能性がある。 しかし、 その一方で、 支持体 20 0と基盤部材 1 00とが接する箇所が小さいため、 支持体 200の基盤部材 ] 0 0の上への配置による透過輝度のむらの影響を、 減少させることができる。 図 1 7 (a) 〜 (c) には、 各々の支持体 200のうちで基盤部材 1 00との 接触箇所の近傍の領域 2 1 0の厚さがステップ的に薄くなつている、 本発明の蛍 光体塗布構造のある実施形態の上面図、 正面図、 及び側面図を示す。  In the configurations of FIGS. 16 (a) to (c), the thickness of each support 200 is the thinnest at the portion in contact with the base member: L00, and the thickness at this location is described in FIG. B. In this case, although the bZc value is small, the support 200 has a large volume that hinders light emission on the base surface (the base member: the surface of # 00). It may be difficult to be performed. However, on the other hand, since the contact point between the support 200 and the base member 100 is small, it is possible to reduce the influence of unevenness of transmitted luminance due to the arrangement of the support 200 on the base member] 00. . FIGS. 17 (a) to 17 (c) show that the thickness of the region 210 of each of the supports 200 in the vicinity of the contact point with the base member 100 is reduced stepwise. 3 shows a top view, a front view, and a side view of an embodiment of the phosphor coating structure of FIG.
図 1 7 (a) 〜 (c) の構成では. 各々の支持体 200に関する厚さ b 1及び b 2のうちで薄い方が、 図: Lで説明した bとなる。 また、 基盤部材 1 00の上面 から支持体 200の最上部までの長さが、 図 1で説明した支持体 200の高さ a となるである。  In the configurations of FIGS. 17 (a) to (c), the thinner one of the thicknesses b1 and b2 of each support 200 is b described in FIG. Further, the length from the upper surface of the base member 100 to the uppermost part of the support 200 is the height a of the support 200 described in FIG.
図 1 7 (a) 〜 (c) のように支持体 200を基盤部材 100の上に配置すれ ば、 支持体 200の配置による透過輝度のむらの影響を、 大きく減少させること ができる。 また、 図 1 7 (a) 〜 (c) のように、 厚さがステップ的に薄くなつ ている領域 (すなわち 「脚部」 ) を基盤部材 100との接触箇所の近傍に有する 支持体 200の形状では、 脚部の長さを長くするほど、 支持体 200から基盤部 材 1 00の表面、 すなわちベース面 { (c - b) X d}へ照射される輝度は、 低下 する。 Place the support 200 on the base member 100 as shown in Fig. 17 (a) to (c). For example, the influence of the unevenness of the transmission luminance due to the arrangement of the support 200 can be greatly reduced. Also, as shown in FIGS. 17 (a) to 17 (c), the support 200 having a region where the thickness is reduced in a stepwise manner (that is, the “leg”) near the contact point with the base member 100 In the shape, the longer the length of the leg is, the lower the luminance irradiated from the support 200 to the surface of the base member 100, that is, the base surface {(c−b) Xd}.
図 1 8 (a) 〜 (c) には、 支持体 200として、 お互いに異なる形状を有す る複数の支持体 230〜260が、 基盤部材: 1 00の上に配置されている、 本発 明の蛍光体塗布構造のある実施形態の上面図、 正面図、 及び側面図を示す。  FIGS. 18 (a) to 18 (c) show that a plurality of supports 230 to 260 having different shapes from each other are disposed on a base member: 100 as a support 200. FIG. 3 shows a top view, a front view, and a side view of one embodiment of a bright phosphor coating structure.
図 1 8 (a) 〜 (c) の構成の場合には、 各々の支持体 230〜260の高さ a l〜a 4、 幅 b l〜b4、 及びそれらの間の配置間隔 c 1〜 c 3が様々である (それぞれ、 総称的に 「a i」 、 「b i」 、 及び 「c 〖」 とも称する) 。 しかし、 これらの高さ a 〗、 幅 b i、 及び配置間隔 c iのうちの 1ケ所でも、 本発明に従 つて見い出された好ましい効果をもたらす関係式を満たしていれば、 その関係が 満たされている箇所で、 発光量や発光輝度の増加が実現される。 これより、 本発 明の関係を満たす形状の支持体 (3次元構造体) 200が多いほど、 より好まし い効果が得られる。  In the case of the configuration of Fig. 18 (a) to (c), the heights al to a4, the widths bl to b4, and the arrangement intervals c1 to c3 of the supports 230 to 260 are (Each collectively referred to as "ai", "bi", and "cc"). However, if at least one of the height a〗, the width bi, and the arrangement interval ci satisfies the relational expression for obtaining a favorable effect found according to the present invention, the relation is satisfied. In some places, an increase in light emission amount and light emission luminance is realized. Thus, the more the number of supports (three-dimensional structures) 200 having a shape satisfying the relationship of the present invention, the more favorable effects can be obtained.
図 1 9 (a) 〜 (c) には、 支持体 200として、 お互いに異なる長さ d 1〜 d 3を有する複数の支持体 270〜 290力 基盤部材 1 00の上に配置されて いる、 本発明の蛍光体塗布構造のある実施形態の上面図、 正面図、 及び側面図を 示す。  FIGS. 19 (a) to 19 (c) show that as a support 200, a plurality of supports 270 to 290 having different lengths d1 to d3 are arranged on a base member 100, 1 shows a top view, a front view, and a side view of an embodiment of a phosphor coating structure of the present invention.
個々の支持体 2 70〜2 90の長さ d :L〜(! 3 (総称的に 「d i」 とも称す る) が、 基盤部材 1 00の表面、 すなわちベース面〖 (c一 b) の長さ ]^ と同等であるほど、 3次元構造体の側面 (a Xd i ) からベース面へ照射される 相対輝度は増加する。 従って、 発光量や発光輝度を増加させるためには、 ベース 面の長さ d Bと同等の長さ d iを有する支持体 ( 3次元構造体) 200を配置す ることが望ましい。 The length d of each support 2 70 to 290 d: L ~ (! 3 (also referred to collectively as “di”) is the length of the surface of the base member 100, that is, the length of the base surface 〖(c-b). ]] ^, The relative luminance radiated from the side surface (a Xd i) of the three-dimensional structure to the base surface increases. A support (three-dimensional structure) 200 having a length di equivalent to the length d B is placed. Is desirable.
更に、 図 2 0 ( a ) 〜 ( c ) には、 基盤部材 1 0 0の表面に配置される各々の 支持体 3 1 0が、 複数の円柱状の構造体を配置することで構成されている、 本発 明の蛍光体塗布構造のある実施形態の上面図、 正面図、 及び側面図を示す。 また, 図 2 1 ( a ) 〜 (c ) には、 基盤部材 1 () 0の表面に配置される各々の支持体 3 2 0が、 波打った板状の構造体として構成されている、 本発明の蛍光体塗布構造 のある実施形態の上面図、 正面図、 及び側面図を示す。 更に、 図 2 2 ( a ) 〜 ( c ) には、 基盤部材 1 0 0の表面に配置される各々の支持体 3 3 0が、 「コ字 状」 の形状が連続的に設けられている板状の構造体として構成されている、 本発 明の蛍光体塗布構造のある実施形態の上面図、 正面図、 及び側面図を示す。 一方、 図 2 3 ( a ) 〜 ( c ) には、 基盤部材 1 0 0の表面に配置される支持体 3 4 0が, 格子状の形状を有する構造体 (参照番号 3 4 5の領域は空間になっている) とし て構成されている、 本発明の蛍光体塗布構造のある実施形態の上面図、 正面図, 及び側面図を示す。  Further, FIGS. 20 (a) to (c) show that each support 310 arranged on the surface of the base member 100 is constituted by arranging a plurality of columnar structures. 1 shows a top view, a front view, and a side view of an embodiment of the phosphor coating structure of the present invention. Further, FIGS. 21 (a) to (c) show that each support member 320 disposed on the surface of the base member 1 () 0 is configured as a wavy plate-like structure. FIG. 3 shows a top view, a front view, and a side view of an embodiment of the phosphor coating structure of the present invention. Further, in FIGS. 22 (a) to (c), each support member 330 disposed on the surface of the base member 100 is provided with a `` U-shaped '' shape continuously. FIG. 3 shows a top view, a front view, and a side view of an embodiment of the phosphor coating structure of the present invention, which is configured as a plate-like structure. On the other hand, FIGS. 23 (a) to (c) show that the support 340 arranged on the surface of the base member 100 has a lattice-like structure (the area of reference numeral 345 is FIG. 3 shows a top view, a front view, and a side view of an embodiment of the phosphor coating structure of the present invention, which is configured as a space.
これらの図 2 0、 図 2 1、 図 2 2、 及び図 2 3にそれぞれ描かれている支持体 The supports depicted in FIGS. 20, 21, 22 and 23, respectively.
3 1 0〜3 4 0では、 その側面の面積が増大された形状を有しており、 それによ つて、 各支持体 3 1 0〜 3 4 0の側面からの光で照射されるベース面 (基盤部材 1 0 0の表面) の輝度を増加させることができる。 ここで、 図: 1を参照して説明 した支持体 (3次元構造体) の形状に関するパラメ一夕、 すなわち、 高さ a、 幅 b、 及び配置間隔 cは、 図 2 0〜図 2 3の各々の構成に対して、 それぞれの図の 中に記載されるように測定される。 Each of the bases 310 to 340 has a shape in which the area of the side surface is increased. The brightness of the base member 100 can be increased. Here, the parameters related to the shape of the support (three-dimensional structure) described with reference to Fig. 1, ie, the height a, the width b, and the arrangement interval c are shown in Figs. 20 to 23. For each configuration, measurements are made as described in the respective figures.
このうちの図 2 3の構成に関しては、 隣接する空間 3 4 5を隔てる壁部分の幅 b 1及び b 2のうちで薄い方が、 図 1で説明した bとなる。 なお、 この幅 b l及 び b 2は、 何れも薄いほど、 より好ましい効果が得られる。 また、 これらの幅 b 1及び b 2のうちの 1ケ所でも、 本発明に従って見い出された好ましい効果をも たらす関係式を満たしていれば、 その関係が満たされている箇所で、 発光量や発 光輝度の増加が実現される。 但し、 幅 b 1及び b 2の両方に関して、 本発明の関 係が満たされていれば、 より好ましい効果が得られる。 Of the configurations in FIG. 23, the thinner of the widths b 1 and b 2 of the wall portions separating the adjacent spaces 345 is b described in FIG. It is to be noted that more favorable effects can be obtained as the widths bl and b2 are both thinner. Also, if even one of these widths b 1 and b 2 satisfies the relational expression for obtaining a favorable effect found according to the present invention, the light emission amount and the emission at the part where the relation is satisfied. An increase in light brightness is realized. However, if the relationship of the present invention is satisfied with respect to both the widths b1 and b2, more favorable effects can be obtained.
一方、 図 2 4 ( a ) 〜 (c ) には、 基盤部材 1 0 0の表面に配置される支持体 3 5 0が、 厚さ方向に複数の貫通孔 3 5 5を有する構造体として構成されている、 本発明の蛍光体塗布構造のある実施形態の上面図、 正面図、 及び側面図を示す。 このような構成でも本発明の範囲に含まれ、 先に述べた効果が得られる。 但し、 支持体 3 5 0の表面積が大きく減ると、 発光量や発光輝度の増加がむしろ小さく なるので、 支持体 3 5 0に設けられる貫通孔 3 5 5は小さい方が良く、 或いは穴 が設けられていないことが、 より望ましい。  On the other hand, FIGS. 24 (a) to (c) show that the support 350 arranged on the surface of the base member 100 is configured as a structure having a plurality of through holes 355 in the thickness direction. 1 shows a top view, a front view, and a side view of an embodiment of the phosphor coating structure of the present invention. Such a configuration is also included in the scope of the present invention, and the effects described above can be obtained. However, when the surface area of the support 350 is greatly reduced, the increase in the amount of light emission and the luminance is rather small. Therefore, it is better that the through hole 350 provided in the support 350 is small or a hole is provided. It is more desirable that it is not done.
以上のように、 図 ί 6〜図 2 4を参照して、 本発明による蛍光体塗布構造が有 し得る幾つかの形状を示したが、 作成の容易さの観点からは、 図 1に示した四角 柱の支持体が配置されている構成や、 図 2 3に示した格子状の支持体が配置され ている構成が、 適している。  As described above, with reference to FIG. 6 to FIG. 24, several shapes that the phosphor coating structure according to the present invention can have are shown, but from the viewpoint of easiness of preparation, FIG. A configuration in which a rectangular pillar-shaped support is arranged or a configuration in which a lattice-shaped support shown in FIG. 23 is arranged is suitable.
更に、 本発明は, 蛍光体塗布構造を 3次元構造体として構成することによって 輝度の向上を実現することがポイントであり、 図 2 5に示すように、 各々が中空 の空間 3 6 5を有する複数の三角柱状の構造体の集合体として構成されている支 持体 (3次元構造体) 3 6 0、 或いは、 図 2 6に示すように、 中空の空間 3 7 5 を有するハニカム状の構成を有する支持体 (3次元構造体) 3 7 0など、 任意の 多角形状などの形状を有する 3次元構造体 (支持体) を使用してもよい。 その他 の形状を有する蛍光体塗布構造であっても、 本発明に従って見い出された好まし い効果をもたらす関係式を満たしていれば, 発光量や発光輝度の増加が実現され る。 また, どのような構成を使用する場合であっても、 少なくとも透過輝度が向 上される場合には、 本発明の範囲に含まれる。 例えば、 図 2 7に示されるように、 単一の 3次元構造体 (支持体) 3 8 0が基盤部材 (不図示) の上に配置されてい る場合であっても、 発光量や発光輝度の増加をもたらす前述の条件が満たされて いれば、 本発明に含まれる。 本発明の蛍光体塗布構造を屋内に使用する発光装置に適用する場合には、 蛍光 体塗布構造の厚さ、 すなわち支持体の厚さの範囲の最小限度は、 一般的に形成さ れ得る薄膜の厚さである 0 . 0 0 l mmとなる。 一方、 最大限度は、 複数の支持 体を設ける場合であって且つベース面 (基盤部材の表面) からの発光を妨げない 厚さを考えると、 約 5 mmである。 Further, the point of the present invention is to realize the improvement of the luminance by configuring the phosphor coating structure as a three-dimensional structure. As shown in FIG. 25, each has a hollow space 365. A support (three-dimensional structure) 360 composed of an aggregate of a plurality of triangular prism structures, or a honeycomb configuration having a hollow space 375 as shown in Fig. 26 A three-dimensional structure (support) having an arbitrary polygonal shape or the like, such as a support (three-dimensional structure) 370 having the same may be used. Even in the case of a phosphor-coated structure having another shape, an increase in the amount of emitted light and luminance can be realized if the relational expression for producing a favorable effect found according to the present invention is satisfied. Regardless of the configuration used, at least the case where the transmission luminance is improved is included in the scope of the present invention. For example, as shown in FIG. 27, even when a single three-dimensional structure (support) 380 is arranged on a base member (not shown), the light emission amount and light emission luminance If the above-mentioned condition that causes an increase is satisfied, the invention is included in the present invention. When the phosphor-coated structure of the present invention is applied to a light-emitting device used indoors, the thickness of the phosphor-coated structure, that is, the minimum range of the thickness of the support is generally a thin film that can be formed. Of 0.01 mm. On the other hand, the maximum limit is about 5 mm when a plurality of supports are provided and the thickness does not hinder light emission from the base surface (the surface of the base member).
基盤部材ゃ支持体の構成材料として、 透過^^度を得たいときには、 透過性のあ るガラス、 或いは紫外線を透過する石英ガラスが、 有用である。 一方、 反射輝度 を得たいときには、 ガラスだけでなくセラミックや金属も、 基盤部材ゃ支持体の 構成材料として有用である。  When it is desired to obtain a transparent material as a constituent material of the base member / support, a transparent glass or a quartz glass that transmits ultraviolet light is useful. On the other hand, when it is desired to obtain reflection luminance, not only glass but also ceramics and metals are useful as constituent materials of the base member / support.
また、 基盤部材と支持体とは、 別々の部材として分離して設ける代わりに、 一 体構造であってもよいことはいうまでもない。  Also, it goes without saying that the base member and the support may have a unitary structure instead of being provided separately as separate members.
更に、 図 2 8には、 本発明の蛍光体塗布構造を有する、 ある発光装置 4 0 0の 構成を、 模式的に示す。  Further, FIG. 28 schematically shows the configuration of a certain light emitting device 400 having the phosphor coating structure of the present invention.
具体的には、 図 2 Sの発光装置 4 0 0の構成では、 ケース 4 I 0の中に、 本発 明に従って構成された蛍光体塗布構造 4 2 0が収納されている。 蛍光体塗布構造 Specifically, in the configuration of the light emitting device 400 in FIG. 2S, the case 4I0 contains the phosphor coating structure 420 configured according to the present invention. Phosphor coating structure
4 2 0に対向する位置には、 紫外線発光部 4 3 0が設けられている。 このような 構成で、 安定器 4 4 0を介して電源 4 5 0によって紫外線発光部 4 3 0を駆動す ることで, 紫外線発光部 4 3 0からの紫外線を蛍光体塗布構造 4 2 0に照射し、 これによつて蛍光体塗布構造 4 2 0に塗布された蛍光体を発光させて、 ケース 4 1 0の外部に可視光 4 6 0を発光させる。 At a position facing 420, an ultraviolet light emitting section 4300 is provided. In such a configuration, by driving the ultraviolet light emitting section 4300 by the power supply 450 through the ballast 450, the ultraviolet light from the ultraviolet light emitting section 4300 is applied to the phosphor coating structure 420. Irradiation causes the phosphor applied to the phosphor coating structure 420 to emit light, and emits visible light 460 to the outside of the case 410.
図 2 9は、 本発明の蛍光体塗布構造を有する他の発光装置 5 0 0の構成を、 模 式的に示す。 図 2 9の発光装置 5 0 0の構成では、 口金 5 1 0に取り付けられた 紫外線発光部 5 3 0力 本発明に従って構成される蛍光体塗布構造 5 2 0に設け られた中空部分に挿入するように配置されている。 この構成において、 所定の電 源回路 (不図示) によって紫外線発光部 5 3 0を駆動することで、 紫外線発光部 FIG. 29 schematically shows the configuration of another light emitting device 500 having the phosphor coating structure of the present invention. In the configuration of the light emitting device 500 in FIG. 29, the ultraviolet light emitting portion 5300 attached to the base 5100 is inserted into the hollow portion provided in the phosphor coating structure 5200 constructed according to the present invention. Are arranged as follows. In this configuration, the ultraviolet light emitting section 530 is driven by a predetermined power supply circuit (not shown),
5 3 0からの紫外線を蛍光体塗布構造 5 2 0に照射し、 これによつて、 蛍光体塗 布構造 5 2 0に塗布された蛍光体から可視光を発光させる。 The ultraviolet light from 530 is applied to the phosphor coating structure 520, whereby the phosphor coating structure is irradiated. Visible light is emitted from the phosphor applied to the cloth structure 520.
なお、 図 2 8及び図 2 9に示した発光装置 4 0 0及び 5 0 0の構成に含まれる 紫外線発光部 4 3 0及び 5 3 0としては、 特定の構成或いは形状を有するものに 限られず、 様々な発光部を使用することができる。 例えば、 紫外線発光部 4 3 0 或いは 5 3 0として、 殺菌灯を使用しても良い。  It should be noted that the ultraviolet light-emitting portions 430 and 530 included in the structures of the light-emitting devices 400 and 500 shown in FIGS. 28 and 29 are not limited to those having a specific configuration or shape. Various light emitting units can be used. For example, a germicidal lamp may be used as the ultraviolet light emitting section 4300 or 5300.
また、 図 3 0は、 本発明の蛍光体塗布構造を有する発光装置 6 0 0の構成を、 模式的に示す。 この発光装置 6 0 0の構成では、 本発明に従って構成される蛍光 体塗布構造 6 2 0が、 ケース 6 1 0の内面に一体的に設けられている。 この構成 においても、 各々の蛍光体塗布構造 6 2 0が紫外線で照射されることによって、 蛍光体塗布構造 6 2 0に塗布された蛍光体から可視光が発光される。 なお、 この 場合の紫外線源 (不図示) としては、 水銀灯や殺菌灯などの光源や、 紫外線発光 体などを適切に配置すればよい。  FIG. 30 schematically shows a configuration of a light emitting device 600 having the phosphor coating structure of the present invention. In the configuration of the light emitting device 600, the phosphor coating structure 62 constructed in accordance with the present invention is provided integrally on the inner surface of the case 6100. Also in this configuration, by irradiating each of the phosphor-coated structures 62 with ultraviolet rays, visible light is emitted from the phosphor applied to the phosphor-coated structures 62. In this case, as an ultraviolet light source (not shown), a light source such as a mercury lamp or a germicidal lamp, or an ultraviolet light emitter may be appropriately arranged.
本発明の蛍光体塗布構造を有する発光装置として、 例えば、 照明ランプが構成 され得る。 このとき、 本発明によって見い出された 3次元構造体の関係を有する 蛍光体塗布構造を有している限りは、 照明ランプの発光原理や全体形状には、 全 く制限が存在しない。 具体的には、 例えば、 無電極型蛍光ランプ、 放電蛍光ラン プ、 或いは平面型蛍光ランプに、 本発明を適用することが可能である。  As the light emitting device having the phosphor coating structure of the present invention, for example, an illumination lamp can be configured. At this time, as long as it has the phosphor coating structure having the relationship of the three-dimensional structure found by the present invention, there is no limitation on the light emission principle or the overall shape of the illumination lamp. Specifically, for example, the present invention can be applied to an electrodeless fluorescent lamp, a discharge fluorescent lamp, or a flat fluorescent lamp.
図 3 ]. ( a ) は、 本発明の蛍光体塗布構造が適用された、 ある無電極型蛍光ラ ンプ 7 0 0の構成 示す図である。 この無電極型蛍光ランプ 7 0 0は, 口金 7 丄 0に取り付けられた外管バルブ 7 3 0を有しており、 外管バルブ 7 3 0の内面に は、 図 3 :1 ( b ) の縦方向断面図に示すように、 蛍光体構造 7 2 0が配置されて いる。 この蛍光体構造 7 2 0を、 本発明の蛍光体塗布構造を有するように設ける ことによって、 無電極型蛍光ランプ 7 0 0の輝度の向上が実現される。  FIG. 3] (a) is a diagram showing a configuration of a certain electrodeless fluorescent lamp 700 to which the phosphor coating structure of the present invention is applied. This electrodeless fluorescent lamp 700 has an outer bulb 730 attached to a base 70 丄 0, and the inner surface of the outer bulb 730 has the structure shown in FIG. As shown in the longitudinal sectional view, a phosphor structure 720 is arranged. By providing this phosphor structure 720 so as to have the phosphor coating structure of the present invention, the luminance of the electrodeless fluorescent lamp 700 can be improved.
図 3 2 ( a ) は、 本発明の蛍光体塗布構造が適用された、 ある放電蛍光ランプ 8 0 0の構成を示す図である。 この放電蛍光ランプ 8 0 0は、 口金 8 1 0に取り 付けられた外管バルブ 8 3 0を有しており、 外管バルブ 8 3 0の内部に、 一対の 電極 8 4 0を有する放電管 8 5 0が設けられている。 更に、 外管パルプ 8 3 0の 内面には、 図 3 2 ( b ) の縦方向 (長手方向) の断面図に示すように、 蛍光体構 造 8 2 0が配置されている。 この蛍光体構造 8 2 0を、 本発明の蛍光体塗布構造 を有するように設けることによって、 放電蛍光ランプ 8 0 0の輝度の向上が実現 される。 FIG. 32 (a) is a diagram showing a configuration of a certain discharge fluorescent lamp 800 to which the phosphor coating structure of the present invention is applied. This discharge fluorescent lamp 800 has an outer bulb 830 attached to a base 810, and a pair of outer bulbs 8 A discharge tube 850 having an electrode 840 is provided. Further, a phosphor structure 820 is arranged on the inner surface of the outer tube pulp 830, as shown in the vertical (longitudinal) cross-sectional view of FIG. 32 (b). By providing the phosphor structure 82 so as to have the phosphor coating structure of the present invention, the luminance of the discharge fluorescent lamp 800 can be improved.
図 3 3 ( a ) は、 本発明の蛍光体塗布構造が適用された、 ある平面型蛍光ラン プ 9 0 0の構成を示す図である。 この平面型蛍光ランプ 9 0 0は、 両端に一対の 電極 9 4 0が設けられた外管バルブ 9 3 0を有しており、 外管バルブ 9 3 0の内 面には、 図 3 3 ( b ) の断面図 (外管バルブ 9 3 0の上下面に平行な平面での断 面図) に示すように、 蛍光体構造 9 2 0が配置されている。 この蛍光体構造 9 2 0を、 本発明の蛍光体塗布構造を有するように設けることによって、 平面型蛍光 ランプ 9 0 0の輝度の向上が実現される。  FIG. 33 (a) is a diagram showing a configuration of a flat fluorescent lamp 900 to which the phosphor coating structure of the present invention is applied. This flat-type fluorescent lamp 900 has an outer bulb 930 provided with a pair of electrodes 940 at both ends. As shown in the cross-sectional view of b) (a cross-sectional view in a plane parallel to the upper and lower surfaces of the outer bulb 930), the phosphor structure 920 is arranged. By providing the phosphor structure 920 so as to have the phosphor coating structure of the present invention, the brightness of the flat fluorescent lamp 900 can be improved.
図 3 4 ( a ) は、 本発明の蛍光体塗布構造が適用された、 他の平面型蛍光ラン プ 9 5 0の構成を示す図である。 この平面型蛍光ランプ 9 5 0では、 外管バルブ 9 3 0の上面及び下面に、 一対の電極 9 4 5が設けられている。 これらの電極 9 FIG. 34 (a) is a diagram showing a configuration of another flat fluorescent lamp 950 to which the phosphor coating structure of the present invention is applied. In the flat fluorescent lamp 950, a pair of electrodes 945 are provided on the upper and lower surfaces of the outer bulb 930. These electrodes 9
4 5の一方を透明電極とすることによって、 光が外部に発光される。 外管バルブ 9 3 0の内面には、 図 3 4 ( b ) の断面図 (外管バルブ 9 3 0の上下面に平行な 平面での断面図) に示すように、 蛍光体構造 9 2 0が配置されている。 この蛍光 体構造 9 2 0を、 本発明の蛍光体塗布構造を有するように設けることによって、 平面型蛍光ランプ 9 5 0の輝度の向上が実現される。 Light is emitted to the outside by making one of 45 a transparent electrode. As shown in the cross-sectional view of FIG. 34 (b) (a cross-sectional view in a plane parallel to the upper and lower surfaces of the outer pipe valve 930), the phosphor structure 920 Is arranged. By providing the phosphor structure 920 so as to have the phosphor coating structure of the present invention, the brightness of the flat fluorescent lamp 950 can be improved.
図 3 5 ( a ) は, 本発明の蛍光体塗布構造が適用された、 プラズマ,ディスプ レイ .パネル (P D P ) 1 0 0 0の構成を示す図である。  FIG. 35 (a) is a diagram showing a configuration of a plasma display panel (PDP) 100 to which the phosphor coating structure of the present invention is applied.
この P D P 1 0 0 0では、 外囲器 (図 3 5 ( a ) には不図示、 図 3 5 ( b ) の 参照番号 1 0 3 0の部材) の内部に隔壁構造 1 0 2 0が設けられており、 この隔 壁構造] 0 2 0によって隔てられている個々のキヤビティ 1 0 6 0の各々力 画 素を形成する。 隔壁構造 1 0 2 0の下面には、 電極 1 0 4 0が全面的に形成され ており、 一方、 隔壁構造 1 0 2 0の上面には、 複数のライン状の透明電極 1 0 4 5力^ キヤビティ (画素) 1 0 6 0の各々の列に対応するように設けられている。 図 3 5 ( b ) は、 隔壁構造 1 0 2 0の断面図 (隔壁構造 1 0 2 0の上下面に平 行な平面での断面図) である。 個々のキヤビティ (画素) 1 0 6 0を隔てる隔壁 構造 1 0 2 0の内面及び底面には、 蛍光体が配置されている。 このような蛍光体 が配置された隔壁構造 1 0 2 0を、 本発明の蛍光体塗布構造として設けることに よって、 図 3 5の P D P ]. 0 0 0の輝度の向上が実現される。 In this PDP 100, a partition structure 100 is provided inside an envelope (not shown in FIG. 35 (a), reference numeral 100 in FIG. 35 (b)). Each of the individual cavities 1. 0 0 0 0 0 0 0 0 separated by this partition structure 0 0 0 0 forms a force pixel. On the lower surface of the partition wall structure 100, an electrode 140 is formed entirely. On the other hand, on the upper surface of the partition structure 102, a plurality of linear transparent electrodes 145 are provided so as to correspond to the columns of the cavities (pixels) 160. . FIG. 35 (b) is a cross-sectional view of the partition structure 100 (a cross-sectional view in a plane parallel to the upper and lower surfaces of the partition structure 100). Phosphors are arranged on the inner surface and the bottom surface of the partition structure 100 that separates the individual cavities (pixels) 160. By providing the partition structure 102 on which such a phosphor is disposed as the phosphor coating structure of the present invention, the improvement of the brightness of PDP] .000 in FIG. 35 is realized.
なお、 本発明の蛍光体塗布構造が適用され得る発光装置 (例えば照明ランプや P D P ) の構成は、 上記で添付の図面を参照しながら説明した構成に限られるわ けではない。 産業上の利用可能性  The configuration of a light emitting device (for example, an illumination lamp or a PDP) to which the phosphor coating structure of the present invention can be applied is not limited to the configuration described above with reference to the accompanying drawings. Industrial applicability
以上に述べたように、 本発明によれば、 基盤部材の上に、 蛍光体を塗布した或 レ ^は主に蛍光体自身からなる支持体を配置して 3次元構造を形成することにより、 少なくとも透過輝度を向上させた蛍光体塗布構造が構成される。 これによつて、 発光量や発光輝度の増加を実現する、 新しい蛍光体塗布構造が提供される。  As described above, according to the present invention, a three-dimensional structure is formed by arranging a support mainly composed of the phosphor itself on the base member, where the phosphor is applied. A phosphor coating structure with at least improved transmission luminance is configured. This provides a new phosphor coating structure that increases the amount of light emitted and the luminance emitted.
更に、 そのような蛍光体塗布構造を有する各種の発光装置 (発光器具や発光デ バイス、 例えば、 照明ランプやプラズマディスプレイパネルなど) が. 提供され る。  Further, various light-emitting devices (light-emitting devices and light-emitting devices, such as lighting lamps and plasma display panels, etc.) having such a phosphor coating structure are provided.

Claims

請求の範囲 The scope of the claims
1. 基盤部材と、 該基盤部材の上に配置された少なくとも一つの支持体と、 を備え、 該支持体が蛍光体を備えており、 それによつて該蛍光体が 3次元的に配 置された 3次元構造を構成して、 少なくとも向上された透過光束を提供する、 蛍 光体塗布構造。 1. a base member, and at least one support disposed on the base member, wherein the support includes a phosphor, whereby the phosphor is three-dimensionally arranged. A phosphor-coated structure that comprises a three-dimensional structure that provides at least an improved transmitted light flux.
2. 前記基盤部材に前記蛍光体が塗布されており、 2. The phosphor is applied to the base member,
該基盤部材から放射される透過光束を ci) T:し 前記支持体から放射されて該基 盤部材を透過する透過光束を Φ T 2、 該基盤部材の上に前記支持体が配置されて いないときの該基盤部材から放射される透過光束を ΦΤΒとしたときに、  The transmitted light flux radiated from the base member is ci) T: The transmitted light flux radiated from the support and transmitted through the base member is ΦT2, and the support is not disposed on the base member. When the transmitted light flux emitted from the base member at this time is ΦΤΒ,
( Τ 1 + Τ2) / ΤΒ> I . 0  (Τ 1 + Τ2) / ΤΒ> I. 0
なる関係が満たされ、 それによつて、 前記透過光束の向上が実現される、 請求項 1に記載の蛍光体塗布構造。 The phosphor coating structure according to claim 1, wherein the following relationship is satisfied, whereby the transmitted light flux is improved.
3. 前記基盤部材には蛍光体が塗布されておらず、 3. The base member is not coated with phosphor,
前記支持体から放射されて該基盤部材を透過する透過光束を φ Τ 2、 該基盤部 材の上に前記支持体が配置されていないときの該基盤部材から放射される透過光 束を ΦΤΒとしたときに、  The transmitted light flux emitted from the support and transmitted through the base member is φ φ2, and the transmitted light flux emitted from the base member when the support is not disposed on the base member is φΤΒ. When you do
ΦΊ 2 φΎΒ> 1. 0  ΦΊ 2 φΎΒ> 1.0
なる関係が満たされ、 それによつて、 前記透過光束の向上が実現される、 請求項 1に記載の蛍光体塗布構造。 The phosphor coating structure according to claim 1, wherein the following relationship is satisfied, whereby the transmitted light flux is improved.
4. 蛍光体が塗布されている基盤部材と、 該基盤部材の上に配置された少な くとも一つの支持体と、 を備え、 該支持体は該蛍光体を備えており、 それによつ て該蛍光体が 3次元的に配置された 3次元構造を構成して、 該基盤部材から放射される反射光朿を^ Rし 該支持体の側面から放射される 反射光束を Φ R 2、 該支持体の上面から放射される反射光束を Φ R 3、 該基盤部 材の上に該支持体が配置されていないときの該基盤部材から放射される反射光束 を <i RBとしたときに、 4. A base member on which the phosphor is applied, and at least one support disposed on the base member, wherein the support includes the phosphor, and Forming a three-dimensional structure in which the phosphors are three-dimensionally arranged, The reflected light flux emitted from the base member is RR, the reflected light flux emitted from the side surface of the support is ΦR2, the reflected light flux emitted from the upper surface of the support is ΦR3, the base material When the reflected light flux radiated from the base member when the support is not disposed on the surface is <i RB,
(0R l +<i)R2 + (i)R3) Z(i RB〉:L. 1  (0R l + <i) R2 + (i) R3) Z (i RB>: L. 1
なる関係を満たし、 それによつて反射光束の向上を提供する、 蛍光体塗布構造。 A phosphor coating structure that satisfies the following relationship, thereby providing an improvement in reflected light flux.
5. 蛍光体が塗布されている基盤部材と、 該基盤部材の上に配置された少な くとも一つの支持体と、 を備え、 該支持体は該蛍光体を備えており、 それによつ て該蛍光体が 3次元的に配置された 3次元構造を構成して、 5. A base member on which the phosphor is applied, and at least one support disposed on the base member, wherein the support includes the phosphor, and Forming a three-dimensional structure in which the phosphors are three-dimensionally arranged,
該基盤部材から放射される反射光束を Φ R 1、 該支持体の側面から放射される 反射光束を R 2、 該基盤部材の上に該支持体が配置されていないときの該基盤 部材から放射される反射光束を <i>RBとしたときに,  The reflected light flux emitted from the base member is Φ R 1, the reflected light flux emitted from the side surface of the support is R 2, and the reflected light flux is emitted from the base member when the support is not disposed on the base member When the reflected light flux is <i> RB,
(Φ R 1 + R 2) /Φ R B> 0. 9  (Φ R 1 + R 2) / Φ R B> 0.9
なる関係を満たし、 それによつて反射光束の向上を提供する、 蛍光体塗布構造。 A phosphor coating structure that satisfies the following relationship, thereby providing an improvement in reflected light flux.
6. 前記基盤部材に前記蛍光体が塗布されており、 6. The phosphor is applied to the base member,
該基盤部材から放射される透過光束を Φ丁 :1、 前記支持体から放射されて該基 盤部材を透過する透過光束を ΦΤ2, 該基盤部材の上に該支持体が配置されてい ないときの該基盤部材から放射される透過光束を ΦΤΒ、 該基盤部材から放射さ れる反射光束 Φ R 1が天井面の構造体によって再び該基盤部材に戻ってきてこれ を透過する透過光束を (i)RT 1、 該支持体の側面から放射される反射光束 R 2 が該天井面の構造体によって再び該基盤部材に戻ってきてこれを透過する透過光 束を <i)RT2、 該支持体の上面から放射される反射光束 <i>R 3が該天井面の構造 体によって再び該基盤部材に戻ってきてこれを透過する透過光束を RT 3、 該 基盤部材の上に該支持体が配置されていないときの該基盤部材から放射される反 射光束 ) R Bが該天井面の構造体によって再び該基盤部材に戻ってきてこれを透 過する透過光束を 0RTBとしたときに、 The transmitted light flux radiated from the base member is Φ 丁: 1, the transmitted light flux radiated from the support and transmitted through the base member is ΦΤ2, when the support is not disposed on the base member. The transmitted light flux radiated from the base member is ΦΤΒ, and the reflected light flux Φ R 1 radiated from the base member returns to the base member again by the structure on the ceiling surface, and the transmitted light flux transmitted therethrough is (i) RT 1.The reflected light flux R 2 radiated from the side surface of the support returns to the base member again by the structure on the ceiling surface, and the transmitted light flux transmitted therethrough is <i) RT2, from the upper surface of the support. The emitted reflected light beam <i> R 3 returns to the base member again by the structure on the ceiling surface, and the transmitted light beam transmitted therethrough is RT 3, and the support is not disposed on the base member. When the radiation radiated from the base member When the RB is returned to the base member again by the structure on the ceiling surface and the transmitted luminous flux passing therethrough is set to 0RTB,
X 1 /Y 1 > 1. 0  X 1 / Y 1> 1.0
但し、 X ]. =(i>Tl +<i)T2 + (i RT l +c/)RT2十 φΙ¾Τ3、  Where X]. = (I> Tl + <i) T2 + (i RTl + c /) RT2 ten φΙ¾Τ3,
Ύ 1= ΤΒ+ ΚΤΒ  Ύ 1 = ΤΒ + ΚΤΒ
なる関係を満たし、 それによつて、 透過光束及び反射光束の利用による発光光束 の向上を提供する、 請求項 1の記載の蛍光体塗布構造。 The phosphor coating structure according to claim 1, wherein the phosphor application structure satisfies the following relationship, thereby providing an improvement in emitted light flux by utilizing a transmitted light beam and a reflected light beam.
7. 前記基盤部材に蛍光体が塗布されておらず、 7. The base member is not coated with a phosphor,
前記支持体から放射されて該基盤部材を透過する透過光束を 2、 該基盤部 材の上に該支持体が配置されていないときの該基盤部材から放射される透過光束 を ΤΒ、 該支持体の側面から放射される反射光束 <i>R 2が該天井面の構造体に よつて再び該基盤部材に戻ってきてこれを透過する透過光束を φ R T 2、 該支持 体の上面から放射される反射光束 Φ R 3が該天井面の構造体によって再び該基盤 部材に戻ってきてこれを透過する透過光束を *RT 3、 該基盤部材の上に該支持 体が配置されていないときの該基盤部材から放射ざれる反射光束 (i> R Bが該天井 面の構造体によつて再び該基盤部材に戻ってきてこれを透過する透過光束を R ΤΒとしたときに,  The transmitted light flux radiated from the support and transmitted through the base member; the transmitted light flux radiated from the base member when the support is not disposed on the base member; The reflected light flux <i> R 2 radiated from the side surface of the base member returns to the base member again by the structure of the ceiling surface, and the transmitted light flux transmitted therethrough is radiated from the upper surface of the support by φ RT 2. The reflected luminous flux Φ R3 returns to the base member again by the structure on the ceiling surface, and the transmitted luminous flux transmitted therethrough is referred to as * RT3, when the support is not placed on the base member. The reflected light flux emitted from the base member (i> RB is returned to the base member by the structure of the ceiling surface again, and the transmitted light flux transmitted through the base member is denoted by R ,.
X 2/Υ 2> 1. 0  X 2 / Υ 2> 1.0
但し、 X2=<i)T2 + <i)RT2 + </)RT3、  Where X2 = <i) T2 + <i) RT2 + </) RT3,
Υ2 = φΤΒ十( RTB  Υ2 = φΤΒ10 (RTB
なる関係を満たし、 それによつて、 透過光束及び反射光束の利用による発光光束 の向上を提供する, 請求項 1の記載の蛍光体塗布構造。 2. The phosphor coating structure according to claim 1, wherein the phosphor coating structure satisfies the following relationship, thereby providing an improvement in emitted light beam by utilizing transmitted light beam and reflected light beam.
8. 前記基盤部材には、 前記蛍光体が、 厚さ 1 m〜 20 Aimで塗布されて いる、 請求項 1に記載の蛍光体塗布構造。 8. The phosphor coating structure according to claim 1, wherein the base member is coated with the phosphor with a thickness of 1 m to 20 Aim.
9. 前記基盤部材には 前記蛍光体が、 厚さ 1 0 im 1 0 0 mで塗布さ れている、 請求項 4に記載の蛍光体塗布構造。 9. The phosphor application structure according to claim 4, wherein the phosphor is applied to the base member with a thickness of 100 im 100 m.
1 0. 前記基盤部材には, 前記蛍光体が、 厚さ:1. 0 〜 .1 0 0 imで塗布 δ されている、 請求項 5に記載の蛍光体塗布構造。 10. The phosphor coating structure according to claim 5, wherein the phosphor is applied to the base member at a thickness of 1.0 to 0.10 im.
1 1. 前記支持体には、 前記蛍光体が、 厚さ 1 0 m~ 1 0 0 で塗布さ れている、 請求項: Iに記載の蛍光体塗布構造。 0 1 2. 前記支持体には、 前記蛍光体が、 厚さ 1 0 fim〜 1 0 0 mで塗布さ れている, 請求項 4に記載の蛍光体塗布構造。 1 1. The phosphor-coated structure according to I, wherein the support is coated with the phosphor in a thickness of 10 m to 100 m. 0 12. The phosphor-coated structure according to claim 4, wherein the phosphor is applied to the support with a thickness of 10 fim to 100 m.
1 3. 前記支持体には、 前記蛍光体が、 厚さ 1 0 xm ]. 0 0 で塗布さ れている、 請求項 5に記載の蛍光体塗布構造。13. The phosphor-coated structure according to claim 5, wherein the phosphor is coated on the support with a thickness of 10xm] .00.
5 Five
1 4. 前記基盤部材の前記蛍光体の塗布重量は、 0. O O O l gZcm2 0. 0 0 5 gZcm2である、 請求項 8に記載の蛍光体塗布構造。 14. The phosphor coating structure according to claim 8, wherein a coating weight of the phosphor on the base member is 0.001 g gZcm 2 0.05 gZcm 2 .
1 5. 前記基盤部材の前記蛍光体の塗布重量は、 0. 0 0 1 g,cm2 00 0 1 gZc m2である、 請求項 9に記載の蛍光体塗布構造。 1 5. The phosphor application structure according to claim 9, wherein the application weight of the phosphor on the base member is 0.001 g, cm 2 001 gZcm 2 .
1 6. 前記基盤部材の前記蛍光体の塗布重量は、 0. 0 0 1 gZcm2 0 0 .1 gZcm2である、 請求項' 1 0に記載の蛍光体塗布構造。 5 :1 7. 前記支持体の前記蛍光体の塗布重量は、 0. 0 0 1 g c m2 0. 1 6. coating weight of the phosphor of the base member, 0. 0 0 1 gZcm 2 is 0 0 .1 gZcm 2, phosphor coating structure according to claim '1 0. 5: 1 7.The coating weight of the phosphor on the support is 0.01 gcm 20 .
O l gZcm2である、 請求項 1 1に記載の蛍光体塗布構造。 WO 99/59179 PCT/JP99/02411 Is O l gZcm 2, phosphor coating structure according to claim 1 1. WO 99/59179 PCT / JP99 / 02411
1 8. 前記支持体の前記蛍光体の塗布重量は、 0. 001 gZcm2〜0. 0 I gZcm2である、 請求項: L 2に記載の蛍光体塗布構造。 1 8. coating weight of the phosphor of the support is, 0. 001 gZcm 2 ~0 a 0 I gZcm 2, claim:. Phosphor coating structure according to L 2.
19. 前記支持体の前記蛍光体の塗布重量は、 0. 00 1 gZcm2〜0. δ O l gZcm2である、 請求項 13に記載の蛍光体塗布構造。 19. coating weight of the phosphor of the support is, 0. 00 1 gZcm 2 ~0. Δ O l gZcm is 2, the phosphor coating structure of claim 13.
20. 前記支持体の高さ aと配置間隔 cとの関係は、 0. l≤a/c≤6を 満たす、 請求項 1に記載の蛍光体塗布構造。 20. The phosphor-coated structure according to claim 1, wherein a relationship between a height a of the support and an arrangement interval c satisfies 0.1 l≤a / c≤6.
10 21. 前記支持体の高さ aと配置間隔 cとの関係は、 0. l≤aZc≤6を 満たす、 請求項 4に記載の蛍光体塗布構造。 10 21. The phosphor coating structure according to claim 4, wherein the relationship between the height a of the support and the arrangement interval c satisfies 0.1 l≤aZc≤6.
22. 前記支持体の高さ aと配置間隔 cとの関係は、 0. l≤aZc≤6を 満たす、 請求項 5に記載の蛍光体塗布構造。 22. The phosphor-coated structure according to claim 5, wherein the relationship between the height a of the support and the arrangement interval c satisfies 0.1 l≤aZc≤6.
23. 前記支持体の高さ aは 0. 1 //m以上である、 請求項〗に記載の蛍光 体 fejg。 23. The phosphor fejg according to claim 1, wherein the height a of the support is 0.1 // m or more.
24. 前記支持体の高さ aは 0. 1 im以上である、 請求項 4に記載の蛍光 体塗布構造。 24. The phosphor-coated structure according to claim 4, wherein the height a of the support is 0.1 im or more.
25. 前記支持体の高さ aは 0. 1 im以上である、 請求項 5に記載の蛍光 体塗布構造。
Figure imgf000040_0001
26. 前記支持体のうちで前記基盤部材に接する箇所の厚さ bは、 0. 00
25. The phosphor coated structure according to claim 5, wherein the height a of the support is 0.1 im or more.
Figure imgf000040_0001
26. The thickness b of the portion of the support that contacts the base member is 0.00
1 mm≤b≤ 5 mmである、 請求項 1に記載の蛍光体塗布構造。 The phosphor-coated structure according to claim 1, wherein 1 mm≤b≤5 mm.
27. 前記支持体のうちで前記基盤部材に接する箇所の厚さ bは、 0. 00 I:1101^13≤ 5111171でぁる、 請求項 4に記載の蛍光体塗布構造。 27. The phosphor coating structure according to claim 4, wherein a thickness b of a portion of the support that comes into contact with the base member is 0.001: 1101 ^ 13≤5111171.
28. 前記支持体のうちで前記基盤部材に接する箇所の厚さ bは、 0. 00 1111111^ 13≤ 5111111でぁる、 請求項 5に記載の蛍光体塗布構造。 28. The phosphor coating structure according to claim 5, wherein a thickness b of a portion of the support that is in contact with the base member is 0.001111111 ^ 13≤5111111.
29. 前記基盤部材はガラス或いは石英ガラスで構成されている、 請求項 1 に記載の蛍光体塗布構造。 29. The phosphor application structure according to claim 1, wherein the base member is made of glass or quartz glass.
30. 前記基盤部材はガラス或いは石英ガラスで構成されている、 請求項 4 に記載の蛍光体塗布構造。 30. The phosphor coating structure according to claim 4, wherein the base member is made of glass or quartz glass.
3 1. 前記基盤部材はガラス或いは石英ガラスで構成されている、 請求項 5 に記載の蛍光体塗布構造。 3 1. The phosphor coating structure according to claim 5, wherein the base member is made of glass or quartz glass.
32. 前記基盤部材は, セラミック或いは金属で構成されている、 請求項 4 に記載の蛍光体塗布構造。 32. The phosphor application structure according to claim 4, wherein the base member is made of ceramic or metal.
33. 前記基盤部材は, セラミック或いは金属で構成されている、 請求項 5 に記載の蛍光体塗布構造。 33. The phosphor coating structure according to claim 5, wherein the base member is made of ceramic or metal.
34. 前記支持体は, ガラス、 石英ガラス、 セラミック、 或いは金属で構成 されている、 請求項 1に記載の蛍光体塗布構造。 34. The phosphor coating structure according to claim 1, wherein the support is made of glass, quartz glass, ceramic, or metal.
35. 前記支持体は, ガラス、 石英ガラス、 セラミック、 或いは金属で構成 されている. 請求項 4に記載の蛍光体塗布構造。 - « I 35. The phosphor coating structure according to claim 4, wherein the support is made of glass, quartz glass, ceramic, or metal. -«I
5  Five
WO 99/59179 PCT/JP99/02411  WO 99/59179 PCT / JP99 / 02411
3 6 . 前記支持体は、 ガラス、 石英ガラス、 セラミック、 或いは金属で構成 されている、 請求項 5に記載の蛍光体塗布構造。 36. The phosphor coated structure according to claim 5, wherein the support is made of glass, quartz glass, ceramic, or metal.
5 3 7 . 前記基盤部材と前記支持体とは一体的に形成されている、 請求項 1に 記載の蛍光体塗布構造。 53. The phosphor coating structure according to claim 1, wherein the base member and the support are integrally formed.
3 8 . 前記基盤部材と前記支持体とは一体的に形成されている、 請求項 4に 記載の蛍光体塗布構造。 38. The phosphor coating structure according to claim 4, wherein the base member and the support are integrally formed.
10 3 9 . 前記基盤部材と前記支持体とは一体的に形成されている、 請求項 5に 記載の蛍光体塗布構造。  10 39. The phosphor coating structure according to claim 5, wherein the base member and the support are integrally formed.
4 0 . 前記蛍光体は、 前記支持体の表面に塗布されている、 請求項: 1に記載 の蛍光体塗布構造。 40. The phosphor coating structure according to claim 1, wherein the phosphor is coated on a surface of the support.
4 1 . 前記蛍光体は、 前記支持体の表面に塗布されている、 請求項 4に記載 の蛍光体塗布構造。 41. The phosphor application structure according to claim 4, wherein the phosphor is applied to a surface of the support.
4 2 . 前記蛍光体は、 前記支持体の表面に塗布されている、 請求項 5に記載42. The phosphor according to claim 5, wherein the phosphor is applied to a surface of the support.
20 の蛍光体塗布構造。 20 phosphor coating structures.
4 3 . 前記支持体が前記蛍光体を主成分として形成されている、 請求項 1に 記載の蛍光体塗布構造。 43. The phosphor coating structure according to claim 1, wherein the support is formed with the phosphor as a main component.
25 4 4 . 前記支持体が前記蛍光体を主成分として形成されている、 請求項 4に 記載の蛍光体塗布構造。 25 44. The phosphor coating structure according to claim 4, wherein the support is formed with the phosphor as a main component.
4 5 . 前記支持体が前記蛍光体を主成分として形成されている、 請求項 5に 記載の蛍光体塗布構造。 45. The phosphor coating structure according to claim 5, wherein the support is formed with the phosphor as a main component.
4 6 . 蛍光体が塗布された 3次元構造を有する発光装置であって、 該 3次元 構造が、 請求項 1に記載の前記蛍光体塗布構造である、 発光装置。 46. A light-emitting device having a three-dimensional structure coated with a phosphor, wherein the three-dimensional structure is the phosphor-coated structure according to claim 1.
4 7 . 蛍光体が塗布された 3次元構造を有する発光装置であって、 該 3次元 構造が、 請求項 4に記載の前記蛍光体塗布構造である、 発光装置。 47. A light-emitting device having a three-dimensional structure coated with a phosphor, wherein the three-dimensional structure is the phosphor-coated structure according to claim 4.
4 8 . 蛍光体が塗布された 3次元構造を有する発光装置であって、 該 3次元 構造が、 請求項 5に記載の前記蛍光体塗布構造である、 発光装置。 48. A light-emitting device having a three-dimensional structure coated with a phosphor, wherein the three-dimensional structure is the phosphor-coated structure according to claim 5.
4 9 . 蛍光体が塗布された 3次元構造を有する蛍光ランプであって、 該 3次 元構造が、 請求項 1に記載の前記蛍光体塗布構造である、 蛍光ランプ。 49. A fluorescent lamp having a three-dimensional structure coated with a phosphor, wherein the three-dimensional structure is the phosphor-coated structure according to claim 1.
5 0 . 蛍光体が塗布された 3次元構造を有する蛍光ランプであって、 該 3次 元構造が、 請求項 4に記載の前記蛍光体塗布構造である、 蛍光ランプ。 50. A fluorescent lamp having a three-dimensional structure coated with a phosphor, wherein the three-dimensional structure is the phosphor-coated structure according to claim 4.
5 1 . 蛍光体が塗布された 3次元構造を有する蛍光ランプであって、 該 3次 元構造が、 請求項 5に記載の前記蛍光体塗布構造である、 蛍光ランプ。 51. A fluorescent lamp having a three-dimensional structure coated with a phosphor, wherein the three-dimensional structure is the phosphor-coated structure according to claim 5.
PCT/JP1999/002411 1998-05-11 1999-05-10 Phosphor-coated structure and luminous device having the same WO1999059179A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP12714098 1998-05-11
JP10/127140 1998-05-11

Publications (1)

Publication Number Publication Date
WO1999059179A1 true WO1999059179A1 (en) 1999-11-18

Family

ID=14952617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002411 WO1999059179A1 (en) 1998-05-11 1999-05-10 Phosphor-coated structure and luminous device having the same

Country Status (1)

Country Link
WO (1) WO1999059179A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159246A (en) * 1974-06-12 1975-12-23
JPS58220348A (en) * 1982-06-16 1983-12-21 Hitachi Ltd Nonlinear discharge lamp
JPH05217511A (en) * 1992-02-06 1993-08-27 Noritake Co Ltd Color plasma display panel
JPH07272632A (en) * 1994-03-30 1995-10-20 Dainippon Printing Co Ltd Gas electric discharge panel and its manufacture
JPH08162069A (en) * 1994-12-09 1996-06-21 Stanley Electric Co Ltd Flat type fluorescent lamp
JPH08203439A (en) * 1995-01-26 1996-08-09 Matsushita Electric Ind Co Ltd Plasma display panel and manufacture thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159246A (en) * 1974-06-12 1975-12-23
JPS58220348A (en) * 1982-06-16 1983-12-21 Hitachi Ltd Nonlinear discharge lamp
JPH05217511A (en) * 1992-02-06 1993-08-27 Noritake Co Ltd Color plasma display panel
JPH07272632A (en) * 1994-03-30 1995-10-20 Dainippon Printing Co Ltd Gas electric discharge panel and its manufacture
JPH08162069A (en) * 1994-12-09 1996-06-21 Stanley Electric Co Ltd Flat type fluorescent lamp
JPH08203439A (en) * 1995-01-26 1996-08-09 Matsushita Electric Ind Co Ltd Plasma display panel and manufacture thereof

Similar Documents

Publication Publication Date Title
JP3856473B2 (en) Incoherent radiation source lighting method and illumination device suitable therefor
CN100530520C (en) Field emission backlight device
US20020030437A1 (en) Light-emitting device and backlight for flat display
JP2009506489A (en) Coplanar discharge flat lamp and its use
WO1990009676A1 (en) Radiation-emitting panels and display assemblies
US6294867B1 (en) Flourescent lamp with uniform output
US7663298B2 (en) Light source apparatus using field emission cathode
KR100444904B1 (en) Back-light Unit Utilizing Flat Fluorescent Lamp
US3525864A (en) Lighting means excited by ultra-violet radiation
WO1999059179A1 (en) Phosphor-coated structure and luminous device having the same
JP2003178717A5 (en)
EP1909307A3 (en) Light-emitting apparatus
JP2005521998A (en) Flat fluorescent lamp
JPH07326327A (en) Flat fluorescent lamp
JP2000036288A (en) Phosphor coated structure and light emitting device having the same
EP1783801A2 (en) Display device
JP4784118B2 (en) Flat type lamp
KR100444293B1 (en) Back ligt
EP1746633A2 (en) Surface light source device and backlight unit having the same
JPH0737551A (en) Flated fluorescent lamp
JP4890343B2 (en) Light source device
JP2003517707A (en) Flat lighting system
KR100604078B1 (en) Flat fluorescent lamp
JP2006054126A (en) Surface light source device
JP2000164018A (en) Luminescent panel device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN ID KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase