WO1999058704A1 - Verfahren zur herstellung von mannit - Google Patents

Verfahren zur herstellung von mannit Download PDF

Info

Publication number
WO1999058704A1
WO1999058704A1 PCT/EP1999/002901 EP9902901W WO9958704A1 WO 1999058704 A1 WO1999058704 A1 WO 1999058704A1 EP 9902901 W EP9902901 W EP 9902901W WO 9958704 A1 WO9958704 A1 WO 9958704A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogenation
mannitol
invert sugar
carried out
isomerization
Prior art date
Application number
PCT/EP1999/002901
Other languages
English (en)
French (fr)
Inventor
Thomas Mohr
Peter Johannes Mackert
Eugen Schwarz
Thomas Koppe
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to AU41362/99A priority Critical patent/AU4136299A/en
Publication of WO1999058704A1 publication Critical patent/WO1999058704A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/24Preparation of compounds containing saccharide radicals produced by the action of an isomerase, e.g. fructose
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the invention relates to a multi-stage, continuously executable process for the production of mannitol starting from invert sugar by a combination of catalytic hydrogenation and enzymatic
  • 25 mannitol is hydrogenated.
  • the disadvantage of the described method is that, on the one hand, it is necessary to work under relatively mild conditions, ie low temperatures, in order to prevent the temperature-sensitive enzyme from decomposing.
  • the ideal reaction conditions for the enzyme are at 60-70 ° C, while the hydrogenation only proceeds at an appealing rate at 30 temperatures> 100 ° C.
  • the enzyme must be protected against poisoning by dissolved copper by adding EDTA. Due to detached enzyme parts again the copper catalyst is slowly deactivated. The combination of enzymatic isomerization and catalytic hydrogenation in a one-pot process is therefore not suitable for a production process.
  • the present object is achieved by a process for the preparation of mannitol in which an invert sugar solution is catalytically hydrogenated and isomerized enzymatically in a multistage process.
  • the hydrogenation takes place in the presence of a copper catalyst. It is carried out at a temperature of 80 to 120 ° C and a pressure of 120 to 200 bar.
  • Another feature of the process according to the invention is that it is carried out in the presence of 5 to 15% by weight of a copper catalyst, based on the amount of invert sugar contained in the reaction solution.
  • the isomerization in the process is carried out in the presence of immobilized glucose isomerase at a temperature of 55 to 65 ° C.
  • the present invention furthermore relates to a corresponding process in which the hydrogenation step and the isomerization are carried out repeatedly until the residual sugar is completely hydrogenated.
  • the invert sugar solution can be continuously circulated, partially hydrogenated on a copper catalyst, the glucose isomerized to fructose in the following step and part of the mannitol-containing reaction solution can be withdrawn continuously after the formation of mannitol, with new invert sugar solution being added to another in the same amount Place the system is fed back into the process.
  • the present invention also relates in particular to a ⁇ -
  • the residual sugar of the reaction solution drawn off is hydrogenated in a separate fixed bed hydrogenation stage.
  • invert sugar is used as the starting material, an inexpensive raw material that is available in large quantities is used for the production of mannitol.
  • Mutual poisoning of the catalysts is also prevented and long service lives for the catalysts used can be achieved.
  • the fructose provides the appropriate proportions of mannitol and sorbitol depending on the selectivity of the catalyst used.
  • an unselective catalyst e.g. Raney nickel
  • the hydrogenation of invert sugar provides approximately 25% of mannitol.
  • a selective copper-based hydrogenation catalyst more than 25% mannitol can be obtained from the 20 fructose fraction of invert sugar: With a selectivity of 65%, about 33% mannitol is obtained from the fructose.
  • the process according to the invention can be carried out by hydrogenating a 40-70% invert sugar solution at a temperature of 80-120 ° C. at a pressure of 120 to 200 bar in the presence of a
  • Copper catalysts have proven to be particularly selective in this reaction. These can have dopings of different transition metals or main group elements. In the suspension process, this catalyst is used in an amount of 5 to 15% by weight, based on the amount of sugar contained in the invert sugar solution.
  • the glucose contained in the solution is characterized by
  • glucose isomerase preferably immobilized isomerase, at one
  • a magnesium (II) salt for example magnesium sulfate
  • the rate of hydrogenation of fructose when using a copper catalyst is significantly higher than that of glucose. This fact is used in the process described to increase the mannitol yield: if 50% invert sugar solutions with 10% catalyst content (based on invert sugar) are hydrogenated at 100 ° C and a hydrogen pressure of 150 bar up to a conversion of 50%, the hydrogenation solution contains approx. 10% fructose, 40% glucose in addition to 26% mannitol and 24% sorbitol.
  • the hydrogenation solution purified via ion exchanger is isomerized after addition of 50 ppm magnesium sulfate (Mg 2+ as cofactor) and adjustment of the pH to 7-7.5 using immobilized glucose isomerase (Sweetzyme T / Novo Nordisk) at approx. 60 ° C. Due to the equilibrium between glucose and fructose, the reaction solution contains about 25% fructose, 25% glucose, 26% mannitol and 24% sorbitol after the isomerization.
  • Mg 2+ magnesium sulfate
  • immobilized glucose isomerase Sweetzyme T / Novo Nordisk
  • the sugar / polyol mixture is hydrogenated with a selective catalyst under the conditions described above until conversion is complete.
  • the hydrogenation solution contains approx. 42% mannitol and 58% sorbitol.
  • the reaction solution can be worked up by the customary methods.
  • the invention therefore relates to a multistage process for the preparation of mannitol starting from invert sugar by a combination of catalytic hydrogenation and enzymatic isomerization.
  • Hydrogenation of invert sugar with a selective copper catalyst up to a conversion of approx. 50% can be carried out on powder as well as fixed bed catalysts.
  • Invert sugar solution with a concentration of 40-70% can be used to carry out the process.
  • Invert sugar solution with a concentration of 50% is preferably used.
  • Pressure range 100-200 bar (preferably 160-180 bar)
  • Temperature range 80-160 ° C (preferably 100-120 ° C)
  • the hydrogenation solution is enzymatically isomerized using an immobilized glucose isomerase.
  • a suitable enzyme can be used 7
  • isomerase can be used, e.g. B. Sweetzyme T / Novo Nordisk.
  • the pH is adjusted to 7.0-7.5 with the aid of dilute sodium hydroxide solution.
  • magnesium sulfate as a cofactor, the solution thus prepared is passed over a fixed bed of immobilized glucose isomerase. This process step can be carried out analogously to the regulation given by Novo Nordisk.
  • polyol components can be obtained from invert sugar using the process described:
  • the selectivity of the catalyst is variable and depends on both its structure and its doping. Copper / SiO 2 (EP 6313) or Raney copper show a selectivity of 60-65%, copper / CPG (controlled pore glass), on the other hand, selectivities of 80-90% (M. Hegedüs, S. Göbölös, JL Margitfaivi in M. Guisnet et al. (Editors) Heterogeneous Catalysis and Fine Chemicals III, 1993, Elsevier Science Publishers, 187-194).
  • the core plant consists of a hydrogenation and an isomerization section.
  • the reaction solution is partially hydrogenated over a selective fixed bed catalyst.
  • the fact that the selective copper catalyst fructose hydrogenates much faster than glucose is used here by experiments.
  • the reaction solution becomes poor in fructose compared to glucose. This is subsequently supplied from glucose in the subsequent isomerization step.
  • the isomerization solution is then passed through the hydrogenation stage again, and the newly formed fructose can again be selectively hydrogenated.
  • the invert sugar solution is fed into the circuit before the hydrogenation stage, and the same part of the reaction solution is again fed out after the isomerization stage.
  • the turnover rate within the cycle is kept at 80-90%.
  • the residual sugar hydrogenation takes place in a subsequent separate fixed bed reactor hydrogenation stage over a selective copper catalyst.
  • the continuously alternating partial hydrogenation and isomerization advantageously provides the hydrogenated fructose from the reaction mixture continuously. Due to the spatial separation of the hydrogenation and isomerization stages, mutual poisoning of the two catalysts can be avoided and the optimal reaction conditions for the individual steps can be maintained.
  • Yield of mannitol can be obtained. By optimizing the catalyst used and the set process conditions, these yields can be easily increased.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

Die Erfindung betrifft ein mehrstufiges, kontinuierlich durchführbares Verfahren zur Herstellung von Mannit ausgehend von Invertzucker durch eine Kombination von katalytischer Hydrierung und enzymatischer Isomerisierung.

Description

Verfahren zur Herstellung von Mannit
Die Erfindung betrifft ein mehrstufiges, kontinuierlich durchführbares Verfahren zur Herstellung von Mannit ausgehend von Invertzucker durch eine Kombination von katalytischer Hydrierung und enzymatischer
Isomerisierung.
Aus der Literatur sind Verfahren zur Herstellung von Mannit bekannt, die von reiner Fructose als Ausgangsverbindung ausgehen. In der europäischen Patentanmeldung EP-A-0 006 313 wird die Hydrierung von ι n Fructose an einem selektiven Kupfer/SiO2-Katalysator beschrieben. Hierbei werden Mannit/Sorbit-Mischungen mit einem Mannitanteil von ca. 65% erhalten. Der Nachteil dieses Verfahrens besteht darin, daß eine relativ teurer Rohstoff eingesetzt werden muß.
Durch Hydrierung von Invertzucker an einem unseiektiven Raney-Nickel Katalysator, werden Mannit/Sorbit-Mischungen mit einem Mannitanteil von
15 ca. 23-24% erhalten (Ullmann's Enzyclopedia of Industrial Chemistry, Vol. A25, S. 424, VCH Verlagsgesellschaft, Weinheim, 1994). Die Ausbeute am Zielprodukt Mannit ist sehr gering.
Die Kombination von Hydrierung und enzymatischer Isomerisierung wurde von A.P.G. Kieboom und H. van Bekkum beschrieben (Recl. Chim. Pays-
20 Bas 1984, 103, 1-12). Ausgehend von Invertzucker wird in Gegenwart von auf Kieselgel immobilisierter Glucoseisomerase an einem auf Kieselgel trägergebundenen Kupferkatalysator hydriert. Hierbei macht man sich zunutze, daß Fructose deutlich schneller hydriert wird als Glucose. Durch das Enzym wird das Verhältnis Fructose/Glucose konstant gehalten, während die Fructose am Kupferkatalysator mit ca. 65%-iger Selektivität zu
25 Mannit hydriert wird. Der Nachteil des beschriebenen Verfahrens liegt darin, daß zum einen bei relativ schonenden Bedingungen, d.h. niedrigen Temperaturen, gearbeitet werden muß, um das temperaturempfindliche Enzym vor der Zersetzung zu bewahren. Bei 60-70°C liegen für das Enzym die idealen Reaktionsbedingungen, während die Hydrierung erst bei 30 Temperaturen >100°C in einer ansprechenden Geschwindigkeit abläuft. Weiterhin muß das Enzym durch Zusatz von EDTA vor der Vergiftung durch gelöstes Kupfer geschützt werden. Durch abgelöste Enzymteile wird wiederum der Kupferkatalysator langsam deaktiviert. Die Kombination von enzymatischer Isomerisierung und katalytischer Hydrierung in einem Eintopfverfahren ist somit nicht für einen Produktionsprozeß geeignet.
Aufgabe der vorliegenden Erfindung ist es daher, ausgehend von einem günstigen Rohstoff ein preiswertes, mit einfachen Mitteln durchführbares Verfahren zur Herstellung von Mannit zur Verfügung zu stellen.
Die Lösung der vorliegenden Aufgabe erfolgt durch ein Verfahren zur Herstellung von Mannit, indem eine Invertzuckerlösung in einem mehrstufigen Verfahren katalytisch hydriert und enzymatisch isomerisiert wird. Die Hydrierung erfolgt erfindungsgemäß in Gegenwart eines Kupferkatalysators. Sie wird bei einer Temperatur von 80 bis 120°C und einem Druck von 120 bis 200 bar durchgeführt.
Ein weiteres Merkmal des erfindungsgemäßen Verfahrens ist, daß es in Gegenwart von 5 bis 15 Gew.-% eines Kupferkatalysators bezogen auf die in der Reaktionslösung enthaltene Invertzuckermenge durchgeführt wird. Die im Verfahren erfolgende Isomerisierung wird in Gegenwart von immobilisierter Glucoseisomerase bei einer Temperatur von 55 bis 65°C durchgeführt.
Diese Isomerisierung erfolgt nach Zusatz einer geringen Menge Magnesiumsulfat als Cofaktor und der Einstellung des pH-Werts auf 7 - 7,5. Gegenstand der vorliegenden Erfindung ist weiterhin ein entsprechendes Verfahren, worin der Hydrierungsschritt und die Isomerisierung wiederholt bis zum vollständigen Hydrierung des Restzuckers durchgeführt werden. Erfindungsgemäß kann die Invertzuckerlösung kontinuierlich im Kreis geführt, an einem Kupferkatalysator teilhydriert werden, die Glucose im folgenden Schritt zu Fructose isomerisiert werden und kontinuierlich nach erfolgter Bildung des Mannits ein Teil der Mannit-haltigen Reaktionslösung abgezogen werden, wobei in gleicher Menge neue Invertzuckerlösung an einer anderen Stelle der Anlage wieder in das Verfahren eingespeist wird. Gegenstand der vorliegenden Erfindung ist insbesondere auch ein ~
entsprechendes Verfahren, in dem die Hydrierung an einem Festbettkupferkatalysator erfolgt.
In einer besonderen Ausführungsform des Verfahrens wird der Restzucker der abgezogenen Reaktionslösung in einer separaten Festbett-Hydrierstufe hydriert.
Bei Verwendung von Invertzucker als Ausgangsmaterial wird ein kostengünstiger und in großen Mengen verfügbarer Rohstoff für die Produktion von Mannit herangezogen. Durch räumliche Trennung der enzymatischen Isomerisierung und der Hydrierung kann jeder einzelne <.Q Reaktionsschritt unter den optimalen Bedingungen geführt und damit eine hohe Reaktionsgeschwindigkeit und ein hoher Durchsatz der Produktionsanlage garantiert werden. Weiterhin wird eine gegenseitige Vergiftung der Katalysatoren verhindert und hohe Standzeiten für die eingesetzten Katalysatoren können realisiert werden.
Die Hydrierung des Glucose-Anteiles des Invertzuckers führt zu Sorbit,
15 während die Fructose in Abhängigkeit von der Selektivität des verwendeten Katalysators die entsprechenden Anteile an Mannit und Sorbit liefert. Bei Verwendung eines unselektiven Katalysators, wie z.B. Raney-Nickel, liefert die Hydrierung von Invertzucker ca. 25% an Mannit. Durch Verwendung eines selektiven Hydrierkatalysators auf Kupferbasis kann aus dem 20 Fructoseanteii von Invertzucker mehr als 25% Mannit erhalten werden: Mit einer Selektivität um 65% erhält man aus der Fructose ca. 33% Mannit.
Das erfindungsgemäße Verfahren kann durchgeführt werden, indem die Hydrierung einer 40 - 70%igen Invertzuckerlösung bei einer Temperatur von 80 - 120°C bei einem Druck von 120 bis 200 bar in Gegenwart eines
05 selektiven Katalysators erfolgt. Als besonders selektiv in dieser Reaktion haben sich Kupferkatalysatoren erwiesen. Diese können Dotierungen verschiedener Übergangsmetalle oder Hauptgruppenelemente aufweisen. Im Suspensionsverfahren wird dieser Katalysator in einer Menge von 5 bis 15 Gew.-% bezogen auf die in der Invertzuckerlösung enthaltenen Zucker- Menge eingesetzt. Die in der Lösung enthaltene Glucose wird durch
30 Glucoseisomerase, vorzugsweise immobilisierte Isomerase, bei einer
Temperatur von 55 bis 65°C, insbesondere bei 60°C isomerisiert. Es hat sich als besonders vorteilhaft herausgestellt, wenn vor der Isomerisierung dem Reaktionsgemisch eine geringe Menge eines Magnesium(ll)salzes, z.B. Magnesiumsulfat hinzugefügt wird. Weiterhin ist es von Vorteil, wenn der pH-Wert vor diesem Reaktionsschritt auf 7 - 7,5 eingestellt wird.
Die Hydriergeschwindigkeit von Fructose bei Verwendung eines Kupfer- Katalysators ist wesentlich höher als diejenige von Glucose. Diese Tatsache wird im beschriebenen Verfahren zu einer Steigerung der Mannitausbeute genutzt: Hydriert man 50%ige Invertzuckerlösungen mit 10% Katalysatoranteil (bezogen auf Invertzucker) bei 100°C und einem Wasserstoffüberdruck von 150 bar bis zu einem Umsatz von 50%, so enthält die Hydrierlösung ca. 10% Fructose, 40% Glucose neben 26% Mannit und 24% Sorbit.
Die über lonentauscher gereinigte Hydrierlösung wird nach Zusatz von 50 ppm Magnesiumsulfat (Mg2+ als Cofaktor) und Einstellen des pH-Wertes auf 7-7.5 mit Hilfe von immobilisierter Glucoseisomerase (Sweetzyme T/Novo Nordisk) bei ca. 60°C isomerisiert. Durch die Gleichgewichtseinstellung zwischen Glucose und Fructose enthält die Reaktionslösung nach der Isomerisierung ca. 25% Fructose, 25% Glucose, 26% Mannit und 24% Sorbit.
In einem erneuten Hydrierungsschritt wird das Zucker/Polyol-Gemisch bis zum vollständigen Umsatz mit einem selektiven Katalysator unter den oben beschriebenen Bedingungen hydriert. Die Hydrierlösung enthält ca. 42% Mannit und 58% Sorbit. Die Reaktionslösung kann nach den üblichen Verfahren aufgearbeitet werden.
Einer der Vorteile des beschriebenen Verfahrens liegt darin, daß durch die Kombination der partiellen Hydrierung mit einem Isomerisierungsschritt gegenüber der reinen Hydrierung die Ausbeute an Mannit deutlich gesteigert werden kann.
Durch die Trennung des Isomerisierungs- und des Hydrierungsschrittes kann die gegenseitige Vergiftung der beiden Katalysatorsysteme Kupfer und Glucoseisomerase verhindert werden, welche bei einem Eintopfprozeß die Standzeiten der Katalysatoren begrenzt. - b -
NOT TO BE TAKEN INTO ACCOUNT FOR THE PURPOSE OF INTERNATIONAL PROCESSING
NO TENER EN CUENTA A LOS EFECTOS DE LA TRAMITACION INTERNACIONAL
NE PAS PRENDRE EN COMPTE AUX FINS DU TRAITEMENT INTERNATIONAL
6 -
Fließbild (<, >, = geben die relativen Verhältnisse an)
Invertzucker Mannit + Sorbit
Hydrierung Hydrierung
Fructose < Glucose Isomerisierung Fructose = Glucose
+ +
Mannit > Sorbit Mannit > Sorbit
Figure imgf000008_0001
Gegenstand der Erfindung ist daher ein mehrstufiges Verfahren zur Herstellung von Mannit ausgehend von Invertzucker durch eine Kombination von katalytischer Hydrierung und enzymatischer Isomerisierung.
Es wurde gefunden, daß sich die Kombination der Verfahrensschritte in unterschiedlicher Reihenfolge und Ausgestaltung kontinuierlich durchführen läßt.
Variante 1 :
1. Schritt:
Hydrierung von Invertzucker mit einem selektiven Kupferkatalysator bis zu einem Umsatz von ca. 50%. Der Hydrierungsschritt kann sowohl an Pulver- wie auch Festbettkatalysatoren durchgeführt werden. Zur Durchführung des Verfahrens kann Invertzuckerlösung mit einer Konzentration von 40-70% verwendet werden. Bevorzugt wird Invertzuckerlösung mit einer Konzentration von 50% verwendet.
Druckbereich: 100-200 bar (bevorzugt 160-180 bar) Temperaturbereich: 80-160°C (bevorzugt 100-120°C)
2. Schritt:
Es folgt eine enzymatische Isomerisierung der Hydrierlösung mit Hilfe einer immobilisierten Glucoseisomerase. Als Enzym kann eine geeignete 7
handelsübliche Isomerase eingesetzt werden, z. B. Sweetzyme T / Novo Nordisk. Nach Aufreinigung der Hydrierlösung über lonentauscher zur Entfernung gelöster Metallspuren, welche das Enzym schädigen können, wird der pH-Wert mit Hilfe von verdünnter Natronlauge auf 7.0-7.5 eingestellt. Nach Zusatz von 50 ppm Magnesiumsulfat als Cofaktor wird die so vorbereitete Lösung über ein Festbett aus immobilisierter Glucoseisomerase geleitet. Dieser Verfahrensschritt kann analog der von Novo Nordisk gegebenen Vorschrift erfolgen.
Temperatur: 60°C pH-Wert: 7.0-7.5
Cofaktor: ca. 50 ppm Mg 2+
Figure imgf000009_0001
3. Schritt:
Vollständige Hydrierung des Restzuckers über einen selektiven Kupferkatalysator (bevorzugt Festbettkatalysator); Reaktionsbedingungen analog zum ersten Hydrierschritt. Vor der Hydrierung wird die Isomerisierungslösung von Enzymspuren, welche den Hydrierkatalysator mit der Zeit deaktivieren, befreit. Dies kann z.B. mit Hilfe gängiger Membranfiltrationsverfahren erreicht werden. Die Aufreinigung der Hydrierlösung und die Trennung der beiden Produkte Sorbit und Mannit erfolgt nach den gängigen, dem Fachmann bekannten Verfahren.
Je nach Selektivität des Hydrierkatalysators können nach dem beschriebenen Verfahren ausgehend von Invertzucker folgende Polyol- Anteile erhalten werden:
Selektivität des Katalysators Mannit-Anteil Sorbit-Anteil bzgl. Mannit [%1 r%ι
60 39 61
65 41 59
70 46 54
75 49 51
Figure imgf000009_0002
80 52 49 8 -
Anmerkung:
Die Selektivität des Katalysators ist variabel und sowohl von seinem Aufbau und seiner der Dotierung abhängig. Kupfer/SiO2 (EP 6313) oder Raney- Kupfer zeigen eine Selektivität von 60-65%, Kupfer/CPG (controlled pore glass) dagegen Selektivitäten von 80-90% (M. Hegedüs, S. Göbölös, J.L. Margitfaivi in M. Guisnet et al. (Editors) Heterogeneous Catalysis and Fine Chemicals III, 1993, Elsevier Science Publishers, 187-194).
Variante 2:
Fließbild
Figure imgf000010_0002
Isomerisierung Hydrierung
Aufreinigung
Figure imgf000010_0001
Die Kernanlage besteht aus einem Hydrierungs- und einem Isomerisierungsteil. Die Reaktionslösung wird über einen selektiven Festbettkatalysator teilhydriert. Hierbei wird die durch Versuche gefundene Tatsache ausgenutzt, daß der selektive Kupferkatalysator Fructose wesentlich schneller hydriert als Glucose. Die Reaktionslösung verarmt gegenüber der Glucose an Fructose. Diese wird im darauf folgenden Isomerisierungsschritt aus Glucose nachgeliefert. Die Isomerisierungslösung wird anschließend wieder über die Hydrierungsstufe geleitet, die neugebildete Fructose kann nun wiederum selektiv hydriert werden.
Die Invertzuckerlösung wird in den Kreislauf vor der Hydrierungsstufe eingespeist, der gleiche Teil an Reaktionslösung wiederum nach der Isomerisierungsstufe ausgespeist. Die Umsatzrate innerhalb des Kreislaufes wird auf 80-90% gehalten.
Die Restzuckerhydrierung erfolgt in einer anschließenden separaten Festbettreaktor-Hydrierstufe über einen selektiven Kupfer-Katalysator.
Vorteilhafterweise wird durch die kontinuierlich abwechselnde Teilhydrierung und Isomerisierung zum einen die hydrierte Fructose aus dem Reaktionsgemisch ständig nachgeliefert. Durch die räumliche Trennung der Hydrierungs- und der Isomerisierungsstufe können zum anderen gegenseitige Vergiftungen der beiden Katalysatoren vermieden und die optimalen Reaktionsbedingungen für die Einzelschritte eingehalten werden.
Die Ausbeute an Mannit kann auf diese Weise gegenüber der reinen Hydrierung von Invertzucker deutlich gesteigert werden.
Je nach Selektivität des Hydrierkatalysators werden dadurch bis zu 60%
Ausbeute an Mannit erhalten werden. Durch Optimierung des eingesetzten Katalysators und der eingestellten Verfahrensbedingungen lassen sich diese Ausbeuten ohne weiteres noch steigern.

Claims

-10-PATENTANSPRÜCHE
1. Verfahren zur Herstellung von Mannit, dadurch gekennzeichnet, daß eine Invertzuckerlösung in einem mehrstufigen Verfahren katalytisch hydriert und enzymatisch isomerisiert wird.
2. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, daß die Hydrierung in Gegenwart eines Kupferkatalysators erfolgt.
3. Verfahren gemäß der vorhergehenden Ansprüche, daß die Hydrierung bei einer Temperatur von 80 bis 120°C und einem Druck von 120 bis o 200 bar durchgeführt wird.
4. Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Hydrierung in Gegenwart von 5 bis 15 Gew.-% eines Kupferkatalysators bezogen auf die in der Reaktionslösung enthaltene Invertzuckermenge durchgeführt wird.
5 5. Verfahren gemäß einem oder mehreren der vorhergehenden
Ansprüche, dadurch gekennzeichnet, daß die Isomerisierung in Gegenwart von immobilisierter Glucoseisomerase bei einer Temperatur von 55 bis 65°C durchgeführt wird.
6. Verfahren gemäß einem oder mehreren der vorhergehenden 0 Ansprüche, dadurch gekennzeichnet, daß die Isomerisierung nach
Zusatz einer geringen Menge Magnesiumsulfat als Cofaktor und der Einstellung des pH-Werts auf 7 - 7,5 erfolgt.
7. Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Hydrierungsschritt und 5 die Isomerisierung wiederholt bis zum vollständigen Hydrierung des
Restzuckers durchgeführt werden.
8. Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß kontinuierlich eine im Kreis geführte Invertzuckerlösung an einem Kupferkatalysator teilhydriert Q wird, Glucose im folgenden Schritt zu Fructose isomerisiert wird, kontinuierlich nach erfolgter Bildung des Mannits ein Teil der Mannit- haltigen Reaktionslösung abgezogen wird und in gleicher Menge neue - 11 -
Invertzuckerlösung an einer anderen Stelle der Anlage wieder in das Verfahren eingespeist wird.
9. Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche 1 - 8, dadurch gekennzeichnet, daß die Hydrierung an einem Festbettkupferkatalysator erfolgt.
10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, daß der Restzucker der abgezogenen Reaktionslösung in einer separaten Festbett-Hydrierstufe hydriert wird.
PCT/EP1999/002901 1998-05-11 1999-04-29 Verfahren zur herstellung von mannit WO1999058704A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU41362/99A AU4136299A (en) 1998-05-11 1999-04-29 Method for producing mannite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1998120957 DE19820957A1 (de) 1998-05-11 1998-05-11 Verfahren zur Herstellung von Mannit
DE19820957.6 1998-05-11

Publications (1)

Publication Number Publication Date
WO1999058704A1 true WO1999058704A1 (de) 1999-11-18

Family

ID=7867333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/002901 WO1999058704A1 (de) 1998-05-11 1999-04-29 Verfahren zur herstellung von mannit

Country Status (3)

Country Link
AU (1) AU4136299A (de)
DE (1) DE19820957A1 (de)
WO (1) WO1999058704A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7118765B2 (en) 2001-12-17 2006-10-10 Spi Pharma, Inc. Co-processed carbohydrate system as a quick-dissolve matrix for solid dosage forms
US8617588B2 (en) 2009-03-09 2013-12-31 Spi Pharma, Inc. Highly compactable and durable direct compression excipients and excipient systems
CN108579747A (zh) * 2018-02-28 2018-09-28 浙江工业大学 一种果糖加氢铜基催化剂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173514A (en) * 1977-06-02 1979-11-06 Ici Americas Inc. High mannitol process (enzymatic isomerization)
HU209875B (en) * 1990-12-21 1994-11-28 Mta Koezponti Kemiai Kutato In Process for production of mannit0l with stereoselective catalytic hydrogenation on raney-copper catalysts
HU211111B (hu) * 1993-03-01 1995-10-30 Mta Koezponti Kemiai Kutato In Eljárás mannit előállítására sztereoszelektív hidrogénezéssel kontrollált pórusú üveghordozós rézkatalizátoron
US5466795A (en) * 1992-07-22 1995-11-14 Roquette Freres Process for the manufacture of mannitol

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173514A (en) * 1977-06-02 1979-11-06 Ici Americas Inc. High mannitol process (enzymatic isomerization)
HU209875B (en) * 1990-12-21 1994-11-28 Mta Koezponti Kemiai Kutato In Process for production of mannit0l with stereoselective catalytic hydrogenation on raney-copper catalysts
US5466795A (en) * 1992-07-22 1995-11-14 Roquette Freres Process for the manufacture of mannitol
HU211111B (hu) * 1993-03-01 1995-10-30 Mta Koezponti Kemiai Kutato In Eljárás mannit előállítására sztereoszelektív hidrogénezéssel kontrollált pórusú üveghordozós rézkatalizátoron

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 102, no. 24, 17 June 1985, Columbus, Ohio, US; abstract no. 205679, MAKKEE, M. ET AL: "Production methods of D-mannitol" XP002114559 *
CHEMICAL ABSTRACTS, vol. 118, no. 11, 15 March 1993, Columbus, Ohio, US; abstract no. 102391, GOBOLOS, SANDOR ET AL: "Process for the production of mannite via stereoselective catalytic hydrogenation over Raney copper" XP002114557 *
CHEMICAL ABSTRACTS, vol. 123, no. 7, 14 August 1995, Columbus, Ohio, US; abstract no. 83941, BELICZANE, BOJTAS KATALIN ET AL: "Process for producing mannitol by stereoselective hydrogenation of fructose using copper catalyst supported on controlled-pore-size glass" XP002114558 *
CHEMICAL ABSTRACTS, vol. 94, no. 7, 16 February 1981, Columbus, Ohio, US; abstract no. 47652, MAKKEE, MICHIEL ET AL: "Combined action of enzyme and metal catalyst, applied to the preparation of D-mannitol" XP002114556 *
CHEMICAL ABSTRACTS, vol. 96, no. 17, 26 April 1982, Columbus, Ohio, US; abstract no. 143206, RUDDLESDEN, JANE F. ET AL: "Simultaneous action of RuY zeolite and glucose isomerase in the production of D-mannitol from D-glucose" XP002114555 *
J. CHEM. RES., SYNOP. (1981), (12), 378-9 *
J. CHEM. SOC., CHEM. COMMUN. (1980), (19), 930-1 *
STARCH/STAERKE (1985), 37(4), 136-41 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7118765B2 (en) 2001-12-17 2006-10-10 Spi Pharma, Inc. Co-processed carbohydrate system as a quick-dissolve matrix for solid dosage forms
US8545889B2 (en) 2001-12-17 2013-10-01 Spi Pharma, Inc. Co-processed carbohydrate system as a quick-dissolve matrix for solid dosage forms
US9138413B2 (en) 2001-12-17 2015-09-22 Spi Pharma, Inc. Co-processed carbohydrate system as a quick-dissolve matrix for solid dosage forms
US10702605B2 (en) 2001-12-17 2020-07-07 Spi Pharma, Inc. Co-processed carbohydrate system as a quick-dissolve matrix for solid dosage forms
US8617588B2 (en) 2009-03-09 2013-12-31 Spi Pharma, Inc. Highly compactable and durable direct compression excipients and excipient systems
US9358212B2 (en) 2009-03-09 2016-06-07 Spi Pharma, Inc. Highly compactable and durable direct compression excipients and excipient systems
US11672763B2 (en) 2009-03-09 2023-06-13 Spi Pharma, Inc. Highly compactable and durable direct compression excipients and excipient systems
CN108579747A (zh) * 2018-02-28 2018-09-28 浙江工业大学 一种果糖加氢铜基催化剂的制备方法

Also Published As

Publication number Publication date
AU4136299A (en) 1999-11-29
DE19820957A1 (de) 1999-11-25

Similar Documents

Publication Publication Date Title
DE60010893T2 (de) Katalytische hydrierung von 3-hydroxypropanal zu 1,3-propandiol
EP0857709B1 (de) Verfahren zur Herstellung von 1,3-Propandiol
EP1765751B1 (de) Verfahren zur herstellung von 1,6-hexandiol in einer reinheit von über 99,5%
DE10311075A1 (de) Verfahren zur Erzeugung eines Esters
DE3632397A1 (de) Verfahren zur reinigung von propandiol-1,3
EP0071787A2 (de) Neue Ruthenium/Kohle-Hydrierkatalysatoren, deren Herstellung und Verwendung zur selektiven Hydrierung von ungesättigten Carbonylverbindungen
WO1999058704A1 (de) Verfahren zur herstellung von mannit
EP0949233B1 (de) Verfahren zur Herstellung von Zuckeralkoholen
EP0482445A2 (de) Verfahren zur Hydrierung von Acetylenalkoholen
CH662112A5 (de) Verfahren zur herstellung von 4-alkoxyanilinen.
EP0177912B1 (de) Verfahren zur Herstellung von Alkandiolen
DE10236675A1 (de) Verfahren zur Herstellung von Isophorondiamin(IPDA, 3-Aminomethyl-3,5,5-trimethylcyclohexylamin) mit einem hohen cis/trans-Isomerenverhältnis
EP1189858B1 (de) Verfahren zur herstellung von mannit
DE2437221B2 (de) Verfahren zur Herstellung von 1,4-Naphthochinon
DE69916465T2 (de) Verfahren zur kontinuierlichen herstellung von einem wässerigen gemisch von epsilon-caprolactam und epsilon-caprolactamvorläufern
DE2309051C3 (de) Verfahren zur Herstellung von 2,3,5-Trimethylhydrochinon
DE60005654T2 (de) Herstellung von carvon
EP0778261B1 (de) Verfahren zur Herstellung eines Gemisches aus Cyclohexylamin und Dicyclohexylamin
EP0316761A2 (de) Verfahren zur Herstellung von N,N-Dimethyldiaminopropan
DE19938622A1 (de) Verfahren zur Herstellung von N-(Phosphonomethyl)glycin
DE1468779C3 (de)
EP1029862B1 (de) Verfahren zum Herstellen von endo-Nortropin unter Verwendung von 8-Benzyl-nortropan-3-on-perchlorat als Zwischenprodukt, sowie letzteres Salz selbst
EP1345875B1 (de) Verfahren zur herstellung von cis-2-tertiär butylcyclohexanol durch katalytische hydrierung von 2-tertiär-butylphenol
DE3137092A1 (de) Verfahren zur herstellung von 4-aminomethyl-cyclohexancarbonsaeure oder eines mineralsaeuresalzes derselben
EP0549618B1 (de) Verfahren zur herstellung von trans-3,3,5-trimethylcyclohexylethylether

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

NENP Non-entry into the national phase

Ref country code: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase