WO1999050858A1 - Separation type transformer core - Google Patents

Separation type transformer core Download PDF

Info

Publication number
WO1999050858A1
WO1999050858A1 PCT/JP1999/001567 JP9901567W WO9950858A1 WO 1999050858 A1 WO1999050858 A1 WO 1999050858A1 JP 9901567 W JP9901567 W JP 9901567W WO 9950858 A1 WO9950858 A1 WO 9950858A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
core
magnetic material
mixed
ferrite
Prior art date
Application number
PCT/JP1999/001567
Other languages
French (fr)
Japanese (ja)
Other versions
WO1999050858A8 (en
Inventor
Dongzhi Jin
Fumihiko Abe
Hajime Mochizuki
Hideharu Yonehara
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Priority to DE69943179T priority Critical patent/DE69943179D1/en
Priority to JP54918399A priority patent/JP4278719B2/en
Priority to KR10-1999-7010918A priority patent/KR100533494B1/en
Priority to EP99912044A priority patent/EP0986073B1/en
Priority to CA2291104A priority patent/CA2291104C/en
Publication of WO1999050858A1 publication Critical patent/WO1999050858A1/en
Publication of WO1999050858A8 publication Critical patent/WO1999050858A8/en
Priority to US10/180,268 priority patent/US7106163B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/18Rotary transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • H01F19/08Transformers having magnetic bias, e.g. for handling pulses
    • H01F2019/085Transformer for galvanic isolation

Definitions

  • the present invention relates to a separated transformer core, and more particularly, to a separated transformer applicable to automobile parts. Background art
  • cores having coils are opposed to each other, and power and electric signals are exchanged in a non-contact manner by electromagnetic coupling between the opposed coils.
  • a separate type transformer for example, there is a single-ended transformer in which a primary core is fixed and a secondary core is rotatably disposed, and a rotary head for a video tape recorder is used. Evening transformers are commonly known.
  • the rotary transformer in order to increase the coupling coefficient between the coils in each core, a core having a high relative permeability is used, and the gap between the cores is suppressed to the order of several im. In this way, in a rotary transformer, if the coupling coefficient between the coils is extremely high, the self-inductance of the two opposing coils and the mutual inductance cancel each other, and the input / output impedance of the transformer can be reduced. . For this reason, the one-way transformer can easily design impedance matching with the load.
  • sintered ferrite cores have been frequently used as the cores of the above-mentioned one-way transformers.
  • This sintered ferrite core has the characteristics of extremely high relative magnetic permeability and extremely small eddy current loss, and is therefore excellent as a high frequency transformer core.
  • a rotary transformer for an automobile has a gap between cores that are used facing each other.
  • the sintered ferrite has the above-mentioned excellent characteristics, but has the brittleness which is a disadvantage inherent to the sintered oxide.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a separated transformer core that is reduced in fragility and easy to manufacture. Disclosure of the invention
  • the present inventors have conducted intensive studies as described below so that the instantaneous transformer can be applied to automotive parts, particularly to airbag connectors.
  • the transmission signal frequency must be a high frequency of several kHz or more.
  • the shaft diameter of the steering wheel is about 30 mm, and the inner diameter of the core center through hole must be larger than the shaft diameter. Therefore, the coil diameter must be designed to be about 45 mm or more. Since the inductance of a coil is proportional to the square of its diameter, the most effective way to keep the impedance low when transmitting high-frequency signals is to make the effective relative permeability of the magnetic circuit appropriately small. . Normally, the inductance of the two coils must be reduced to the order of several H (secondary load: the impedance of the detonating unit is about 2 ⁇ ). To achieve this, it is important to reduce the effective relative permeability of the magnetic circuit appropriately.
  • the ratio of the length of the entire magnetic circuit between the coils to the size of the gap between the cores is substantially the same as the relative permeability of the core material (for example, if the length of the magnetic circuit is 100 mm,
  • the gap between the cores is on the order of several tens / xm)
  • the effective relative permeability of the magnetic circuit greatly varies depending on the size of the gap. In other words, in this case, even if the magnitude of the gap between the cores slightly changes due to the vibration of the vehicle, the coupling state between the coils changes.
  • the effective relative permeability of the magnetic circuit almost depends on the size of the gap between the cores. Therefore, no matter how high the relative magnetic permeability of the core material, the effective relative magnetic permeability of the entire magnetic circuit is substantially determined by the size of the gap between the cores.
  • the effective relative permeability of the magnetic circuit formed between the coils is determined by the relative permeability of the core material and the size of the gap between the cores.
  • the size of the core-to-core gap is a factor that greatly affects the effective relative permeability of the magnetic circuit.
  • the present invention has been made based on such knowledge in order to obtain a separated transformer core suitable for a connector for an airbag mounted on an automobile and transmitting a large amount of power instantaneously.
  • the separated transformer core of the present invention has a coil and a core material, and the core material includes a mixed soft magnetic material having an insulating material having an electrical insulating property and a soft magnetic material.
  • the content of the soft magnetic material is preferably set to 10% by volume or more and 70% by volume or less.
  • the separated transformer core of the present invention it is preferable to use either soft magnetic ferrite or sender as the soft magnetic material. Furthermore, in the separation-type transformer core of the present invention, it is preferable to use any one of a thermoplastic resin, a thermoplastic rubber, a silicone rubber, a thermosetting resin, and an adhesive as the insulating material.
  • FIG. 1 is a cross-sectional view of the separated transformer core of the present invention.
  • FIG. 2 is a graph showing the relationship between the soft magnetic fiber content of the mixed soft magnetic material and the melt index value of the mixed soft magnetic material.
  • Fig. 4 is a graph showing the relationship between the soft magnetic ferrite content of the mixed soft magnetic material and the relative permeability of the obtained core material.
  • Fig. 4 is the soft magnetic ferrite content (volume) of the mixed soft magnetic material. %)
  • Figure 5 shows the relationship between the specific magnetic permeability and the specific magnetic permeability (volume%) of the soft magnetic materials soft magnetic ferrite, sendust and permalloy. It is a relative magnetic permeability characteristic diagram shown.
  • the separation type transformer core 1 of the present invention has a core material 2 and a coil 3.
  • the core material 2 is obtained by processing a mixed soft magnetic material obtained by mixing an insulating material having electrical insulation properties and a soft magnetic material into a desired core shape.
  • the relative permeability of the obtained core material becomes less than 2, and the required transmission efficiency is secured in the separation type transformer. It becomes difficult.
  • the ratio of the soft magnetic material exceeds 70% by volume, the relative magnetic permeability of the core material increases (the relative magnetic permeability may exceed 20 depending on the type and grain size of the soft magnetic material), and is of a separate type.
  • the transmission efficiency of the transformer is high, it is preferable, but the core itself is weak.
  • the insulating material when a synthetic resin as described later is used as the insulating material, the fluidity deteriorates and injection molding becomes difficult. For this reason, the ratio of the soft magnetic material in the mixed soft magnetic material is set in a range from 10% by volume to 70% by volume.
  • a synthetic resin as the insulating material in consideration of vibration resistance and moldability.
  • the synthetic resin include thermoplastic resins such as nylon 6, nylon 66, nylon 11, nylon 12, polypropylene, polyphenylene sulfide, and polyolefin; thermoplastic rubbers such as urethane, polyester, and olefin; and silicone.
  • thermosetting resins such as rubber, epoxy resin, phenol resin, and diaryl phthalate, and two-component adhesives.
  • the insulating material ceramics are preferably used in consideration of heat resistance and the like.
  • the ceramics include zirconia ceramics and silicon nitride ceramics having high strength and high toughness. Particularly, as the zirconia ceramic, partially stabilized zircon air is preferable.
  • powdery ceramics are prepared, and a powdery soft magnetic material is also added to and mixed with the ceramic to form a mixed soft magnetic material. Then, after forming the mixed soft magnetic material into a desired shape, a desired separated transformer core is manufactured by press sintering or HIP (hot isostatic pressing). The separated transformer core thus obtained has excellent heat resistance and wear resistance due to the action of the ceramics.
  • nylon has the features of being inexpensive, having good compatibility with soft magnetic materials, and having good fluidity during injection molding. It is preferable to use nylon.
  • soft magnetic material examples include soft magnetic ferrite, sendust, permalloy, and an amorphous high-permeability material.
  • the soft magnetic ferrite for example, the general formula, MO 'F e 2 0 3 ( however, M is at least one of Z n, Mn, N i, Cu, F e) spinel type ferrite represented by And ferrites that combine several types of these.
  • Mn-Zn ferrite, Ni-Zn ferrite, or Ni-Zn-Cu ferrite preferable.
  • the soft magnetic ferrite is used in the form of a powder, and preferably has a maximum particle size of 100 / m or less. More preferably, it is a powdery soft magnetic filler having an average particle size of 3.8 im.
  • the sender is Fe-Si-A1 alloy, where Si is about 6-11% by weight, A1 has a composition range of about 4 to 6% by weight, and particularly preferably 9.62% by weight Si—5.38% by weight A1-bal.Fe.
  • Sendust is used in powder form, and preferably has an average particle size of 10 / m or less.
  • Permalloy includes Fe-Ni alloys containing 35 to 80% by weight of Ni, including 78% by weight Ni permalloy, 48% by weight Ni permalloy, and Supermalloy (79% by weight Nm). i—5% by weight Mo—0.3% by weight Mn—bal.Fe) is preferred. Permalloy is used in the form of powder, and preferably has a maximum particle size of 100 im or less.
  • amorphous high-permeability material examples include a Fe-based amorphous material and a Co-based amorphous material, and these are also used in the form of powder having an average particle diameter of 1 to 500 m.
  • an insulating material and a soft magnetic material are mixed and melted to produce a mixed soft magnetic material 2.
  • the mixed soft magnetic material 2 is made of synthetic resin as an insulating material, it has excellent fluidity during heating and melting. Therefore, the desired shape by injection molding, for example, as shown in FIG. In addition to having the through-hole 2a, it can be easily formed into a disk-shaped core material 2 having a coil groove 2b for disposing the coil 3 on the board surface.
  • a coil 3 wound around a coil groove 2 for a predetermined turn is disposed, and a separated transformer core 1 is formed.
  • the separated transformer core may be formed by molding a mixed soft magnetic material into a coil that has been wound in a predetermined turn in advance.
  • the separated type transformer core in which the coils are disposed, is arranged to face each other, and is used as a separated type transformer.
  • the separated transformer is used, for example, as an airbag connector.
  • the primary transformer core Is attached to the fixed part (column side), and the secondary transformer core is attached to the rotating part (steering part).
  • the primary transformer core and the secondary transformer core are designed so as to face each other with a gap of lmm ⁇ 0.5mm in consideration of vibrations applied to the vehicle.
  • the primary coil is connected to a control unit that controls the airbag detonation unit, and the secondary coil is connected to the airbag detonation unit.
  • the relative permeability is relatively low (e.g., prepared from a soft magnetic Blow wells (Mn F e 2 ⁇ 4-Z n F e 2 ⁇ 4) a mixed soft magnetic material comprising nylon 6
  • the relative magnetic permeability is about 3 to 12. Therefore, the inductance of the coil is small, and the consistency with the load of the detonating unit can be easily obtained. Therefore, the separated transformer using the separated transformer core made of the core material is suitable for transmitting large power instantaneously.
  • the soft magnetic material As the soft magnetic material, the maximum particle size of 50 / zm Mn- Z n soft magnetic ferrite (Mn F e 2 0 4 - Z n F e 2 0 4) powder and N i-Z n soft magnetic ferrite (N i O- Z nO-F e 2 0 3) was prepared and powder.
  • nylon pellets nylon 6
  • melt index value (Ml value) of a mixed soft magnetic material obtained by mixing nylon 6 as an insulating material was measured by a melt index test shown in JISK7210.
  • the measurement conditions were as follows: measurement temperature: 270 T :, load: 10. Okg'f.
  • the Ml value is less affected by the soft magnetic ferrite content, and when the content is 70 vol% or more, the obtained mixed soft magnetic material is obtained. It is difficult to mix You.
  • the MI value was measured when the soft magnetic ferrite content was in the range of 5% by volume to 65% by volume, and the results are shown in FIG.
  • the mixed soft magnetic material is molded by an injection molding machine into a disk shape having a through hole 2a in the center and an annular coil groove 2b on the disk surface as shown in FIG. Was manufactured.
  • This injection molding was carried out under the injection conditions normally used for nylon 6 for a mixed soft magnetic material using nylon 6 as an insulating material.
  • the injection was performed under the injection conditions usually used for polypropylene.
  • the relative permeability of the obtained core material was measured in accordance with JIS C2561.
  • the results are shown in Fig. 3 as the relationship between the soft magnetic ferrite content (% by volume) and the relative magnetic permeability of the core material using nylon (black circles) or polypropylene (open circles) as the insulating material.
  • the volume resistivity of the mixed soft magnetic material was measured in accordance with JIS H505.
  • the results are shown in Fig. 4 as the relationship between the soft magnetic ferrite content (% by volume) and the volume resistivity ( ⁇ ⁇ cm) of the mixed soft magnetic material.
  • the Mn-Zn ferrite is indicated by a black circle
  • the Ni-Zn ferrite is indicated by a white circle.
  • soft magnetic ferrite which is a soft magnetic material
  • Fig. 5 shows the relationship between the content (% by volume) of Sendust and Permalloy and the relative magnetic permeability.
  • the relative magnetic permeability of the core material increased as the soft magnetic fiber content (vol.%) Increased. Also, the insulating element mixed with the mixed soft magnetic material It was found that the material did not affect the magnetic permeability. Furthermore, it was found that when the content (vol%) of the soft magnetic ferrite increases, the fluidity of the mixed soft magnetic material decreases.
  • the content of the soft magnetic ferrite exceeds 70% by volume, mixing becomes difficult and the fluidity becomes low, so that injection molding becomes difficult.
  • the ferrite component having high hardness increases, the injection molding die becomes severely worn after the injection molding, and the mechanical strength of the obtained separated type transformer core is remarkably reduced. It becomes difficult, and it becomes a big hindrance in use.
  • the content of the soft magnetic ferrite is less than 10% by volume, the relative permeability of the core material is reduced, and in the separated transformer using the separated transformer core using the core material, the power is efficiently used. It is difficult to transmit well.
  • the soft magnetic ferrite content is in the range of 60% by volume to 70% by volume, the relative permeability of the obtained core material is high, but the mixed soft magnetic material has slightly lower fluidity. It has been found that the mixed soft magnetic material in this range is preferably used when the core is used for a separated type transformer having a slightly higher transmission efficiency requirement and the core shape is not so complicated. .
  • the soft magnetic ferrite content is in the range of 10% by volume to 60% by volume, the relative permeability of the obtained core material is relatively low, but the mixed soft magnetic material has good fluidity.
  • the mixed soft magnetic material in this range is a core used for a separation type transformer with a low requirement for transmission efficiency, and it can be manufactured only with a material with a complicated core shape and excellent fluidity. It turned out to be suitable.
  • Fig. 4 shows the following.
  • the volume resistivity ( ⁇ ⁇ cm) of the mixed soft magnetic material decreases as the soft magnetic ferrite content (vol%) increases. It was also found that the mixed soft magnetic material mixed with Ni—Zn ferrite had high volume resistivity. However, the mixed soft magnetic material obtained by mixing the Ni—Zn ferrite is expensive. On the other hand, the mixed soft magnetic material mixed with Mn-Zn ferrite If the ratio could not be satisfied, it was found that it was desirable to use a mixed soft magnetic material in which Ni-Zn ferrite was mixed.
  • the mixed soft magnetic material has a low volume resistivity
  • the insulating property between the particles constituting the mixed soft magnetic material is reduced, and eddy currents are easily induced by an AC magnetic field. Efficiency cannot be obtained.
  • Sendust and Permalloy also have the performance that can be used for a separate transformer core, like the soft magnetic ferrite.
  • mixed soft magnetic ferrite with Mn-Zn soft magnetic ferrite content 50% by volume ⁇ 3% by volume. It is preferable to use a material.
  • the mixed soft magnetic material has good fluidity, a relatively high Ml value, easy injection molding, and a relative permeability of the obtained core material of about 10. For this reason, in the separation type transformer core using the mixed soft magnetic material, even if the gap between the two cores facing each other is about 1 mm, and the gap fluctuates ⁇ 0.5 mm, it is instantaneous. Suitable for airbag connectors that reliably transmit large power. Industrial applicability
  • the core material is formed from a mixed soft magnetic material obtained by mixing an insulating material having electrical insulation properties and a soft magnetic material, so that vibration resistance is improved and brittleness is reduced. be able to.
  • the relative permeability is reduced to some extent, making it suitable for transmitting large power instantaneously with a gap of about 1 mm.
  • the separated transformer core of the present invention has a relative magnetic permeability necessary for instantaneously transmitting large electric power by setting the content of the soft magnetic material to 10% by volume or more and 70% by volume or less.
  • the mechanical strength can be improved as compared with a sintered ferrite core alone.
  • the separated transformer core of the present invention uses either soft magnetic ferrite or sendust as the soft magnetic material. It is suitable for such transformers, and when using a sendast, there is an advantage that the core size can be reduced because the saturation magnetic flux density is high (about twice that of ferrite).
  • the separation type transformer core of the present invention uses any of a thermoplastic resin, a thermoplastic rubber, a silicone rubber, a thermosetting resin or an adhesive which is flexible and has excellent moldability as an insulating material. As a result, it has excellent impact resistance and can be easily manufactured even in complex shapes. For this reason, the vibration resistance of the core can be significantly improved, and the manufacturing cost can be reduced.

Abstract

A separation type transformer core (1) having a coil (3) and a core material (2), wherein the core material (2) includes an insulating material having an electric insulating property and a mixed soft magnetic material having a soft magnetic material, the content of the soft magnetic material being not less than 10 vol.% and not more than 70 vol.%.

Description

明 細 書 分離型トランスコア 技術分野  Description Separate transformer core Technical field
本発明は、 分離型トランスコアに関し、 より詳しくは自動車部品に適用 できる分離型トランスに関する。 背景技術  The present invention relates to a separated transformer core, and more particularly, to a separated transformer applicable to automobile parts. Background art
分離型トランスは、 コイルを有するコアが対向配置され、 対向するコイル 相互間の電磁気的結合により電力や電気信号を非接触でやりとりする。  In a separate type transformer, cores having coils are opposed to each other, and power and electric signals are exchanged in a non-contact manner by electromagnetic coupling between the opposed coils.
このような分離型トランスとしては、 例えば、 1次側コアが固定され、 2 次側コアが回転可能に配設された口一タリ トランスがあり、 ビデオテープレ コーダの回転へッド用口一夕リ トランスが一般的に知られている。  As such a separate type transformer, for example, there is a single-ended transformer in which a primary core is fixed and a secondary core is rotatably disposed, and a rotary head for a video tape recorder is used. Evening transformers are commonly known.
前記ロータリ トランスにおいては、 各コアにおけるコイル間の結合係数を 高めるために、 比透磁率の高いコアを用いるとともに、 コア間のギャップを 数 i mオーダに抑えている。 このように、 ロータリ トランスは、 コイル間の 結合係数を非常に高くすると、 対向する 2つのコイルの自己インダクタンス と相互ィンダク夕ンスとが互いに打ち消し合い、 トランスの入出力インピー ダンスを小さくすることができる。 このため、 口一タリ トランスは、 負荷と のインピーダンスマッチングの設計が簡単にできる。  In the rotary transformer, in order to increase the coupling coefficient between the coils in each core, a core having a high relative permeability is used, and the gap between the cores is suppressed to the order of several im. In this way, in a rotary transformer, if the coupling coefficient between the coils is extremely high, the self-inductance of the two opposing coils and the mutual inductance cancel each other, and the input / output impedance of the transformer can be reduced. . For this reason, the one-way transformer can easily design impedance matching with the load.
上記口一タリ トランスのコアには、 従来から焼結フェライ トコアが多用さ れている。 この焼結フェライ トコアは、 比透磁率が極めて高く、 渦電流損が 非常に小さいという特性を有しているので、 高周波数用トランスコアとして 優れている。  Conventionally, sintered ferrite cores have been frequently used as the cores of the above-mentioned one-way transformers. This sintered ferrite core has the characteristics of extremely high relative magnetic permeability and extremely small eddy current loss, and is therefore excellent as a high frequency transformer core.
ところで、 ロータリ トランスでは、 1次側コアと 2次側コアとが相対回転 するため、 コア間のギャップの大きさが製造コストに直接影響する。 すなわ ち、 コイル間の結合係数が大きいロータリ トランスでは、 前記ギャップを数By the way, in the rotary transformer, since the primary core and the secondary core rotate relatively, the size of the gap between the cores directly affects the manufacturing cost. Sand That is, in a rotary transformer having a large coupling coefficient between coils, the gap is
/^ mオーダにするには、 構成部品の製作精度や部品相互間の組立て精度を高 くすることが要求され、 製造コストが高くなる。 特に、 自動車の場合、 製造 コストの制約が厳しく、 かつ、 走行中の振動が非常に強い。 このため、 自動 車用のロータリ トランスは、 対向配置して用いるコア相互間のギャップが 0.In order to achieve the order of / ^ m, it is required to increase the manufacturing accuracy of the component parts and the assembly accuracy between the parts, which increases the manufacturing cost. In particular, in the case of automobiles, manufacturing costs are severely restricted and vibration during driving is very strong. For this reason, a rotary transformer for an automobile has a gap between cores that are used facing each other.
5 mm以上必要である。 5 mm or more is required.
一方、 前記焼結フェライ トは、 前記した優れた特性を有する反面、 焼結酸 化物に固有の欠点である脆さを有している。  On the other hand, the sintered ferrite has the above-mentioned excellent characteristics, but has the brittleness which is a disadvantage inherent to the sintered oxide.
このため、 焼結フェライ トを用いたコアは、 自動車用コネクタ、 例えば、 エアバッグ用コネクタのコアとして用いるには、 防振対策、 固定方法等、 種々 の工夫が必要となり、 製造コスト的にも自動車部品への採用が難しいという 問題があった。  For this reason, using a core made of sintered ferrite requires various devices such as anti-vibration measures and fixing methods to be used as a core for automotive connectors, for example, airbag connectors. There was a problem that it was difficult to use it for automotive parts.
本発明は、 上記の点に鑑みてなされたもので、 脆さを低減し、 製造が容易 な分離型トランスコアを提供することを目的とする。 発明の開示  The present invention has been made in view of the above points, and an object of the present invention is to provide a separated transformer core that is reduced in fragility and easy to manufacture. Disclosure of the invention
本発明者らは、 口一タリ トランスを自動車用部品、 特にエアバッグ用コネ クタに応用できるよう、 以下に示すように鋭意検討を行った。  The present inventors have conducted intensive studies as described below so that the instantaneous transformer can be applied to automotive parts, particularly to airbag connectors.
まず、 エアバッグ用コネクタに用いられる分離型トランスにおいては、 ェ ァバッグ起爆ユニットに、 1 2 V (自動車用バッテリ) という低電圧のもと で大電流を流し、 大容量となる電力を高速で伝送する必要がある。 この場合、 分離型トランスにおいては、 コイルと負荷との間におけるインピーダンスマ ッチングが非常に重要となる。  First, in the separation type transformer used for airbag connectors, a large current flows through the airbag detonation unit at a low voltage of 12 V (automotive battery), and high-capacity power is transmitted at high speed. There is a need to. In this case, the impedance matching between the coil and the load is very important for the separated transformer.
ここで、 エアバッグの起爆ユニットに瞬間的に大電力を伝送するには、 以 下の条件を満足することが必要である。  Here, the following conditions must be satisfied in order to instantaneously transmit high power to the airbag detonation unit.
( 1 ) 最大遅れ時間の許容値は約 l msecであるため、 伝送信号周波数は数 k H z以上の高周波数にする必要がある。 ( 2 ) 自動車の場合、 ハンドルのシャフト径は約 3 0 mmであり、 コアの中 心貫通孔の内径は必ずそのシャフト径より大きくしなければならない。 その ためコイルの径は約 4 5 mm以上に設計する必要がある。 コイルのィンダク 夕ンスはその径の二乗に比例するので、 高周波数信号を伝送する場合、 その インピーダンスを小さく抑えるには、 磁気回路の実効比透磁率を適当に小さ くすることが最も有効である。 通常は、 2つのコイルのインダクタンスを数 Hオーダに小さくする必要がある (2次側の負荷:起爆ュニッ 卜のインピ 一ダンスは約 2 Ωである) 。 これを実現するには、 磁気回路の実効比透磁率 を適当に小さくすることが重要である。 (1) Since the allowable value of the maximum delay time is about 1 msec, the transmission signal frequency must be a high frequency of several kHz or more. (2) In the case of a car, the shaft diameter of the steering wheel is about 30 mm, and the inner diameter of the core center through hole must be larger than the shaft diameter. Therefore, the coil diameter must be designed to be about 45 mm or more. Since the inductance of a coil is proportional to the square of its diameter, the most effective way to keep the impedance low when transmitting high-frequency signals is to make the effective relative permeability of the magnetic circuit appropriately small. . Normally, the inductance of the two coils must be reduced to the order of several H (secondary load: the impedance of the detonating unit is about 2 Ω). To achieve this, it is important to reduce the effective relative permeability of the magnetic circuit appropriately.
ついで、 分離型トランス (例えば、 通常よく使われている焼結フェライ ト (比透磁率:約 3 0 0 0〜 1 0 0 0 0 ) を用いたもの) について、 そのコィ ル間の実効比透磁率について検討を行った。  Next, for a separated transformer (for example, a sintered ferrite that is commonly used (with a relative magnetic permeability of about 30000 to 10000)), the effective relative permeability between the coils is used. The susceptibility was examined.
第 1に、 コイル間の全磁気回路の長さとコア間ギャップの大きさとの比が コア材の比透磁率と略同じオーダである場合 (例えば、 1 0 0 mmの磁気回 路の長さに対して、 コア間ギャップが数十/ x mのオーダである場合) 、 磁気 回路の実効比透磁率はギヤップの大きさによって大きく変動する。 つまり、 この場合、 自動車の振動によりコア間ギヤップの大きさが僅かに変動しても コィル間の結合状況が変化してしまうということである。  First, when the ratio of the length of the entire magnetic circuit between the coils to the size of the gap between the cores is substantially the same as the relative permeability of the core material (for example, if the length of the magnetic circuit is 100 mm, On the other hand, when the gap between the cores is on the order of several tens / xm), the effective relative permeability of the magnetic circuit greatly varies depending on the size of the gap. In other words, in this case, even if the magnitude of the gap between the cores slightly changes due to the vibration of the vehicle, the coupling state between the coils changes.
第 2に、 コイル間の全磁気回路の長さとコア間ギヤップの大きさとの比が コア材の比透磁率よりも大分小さいオーダである場合 (例えば、 1 0 0 mm の磁気回路の長さに対して、 コア間ギャップが mmのオーダである場合) 、 磁気回路の実効比透磁率はほとんどそのコア間ギャップの大きさに依存する。 このため、 コア材の比透磁率がいくら高くても全磁気回路の実効比透磁率は ほぼそのコア間ギヤップの大きさによって決まる。  Second, when the ratio of the length of the entire magnetic circuit between the coils to the size of the gap between the cores is on the order of much smaller than the relative magnetic permeability of the core material (for example, if the length of the magnetic circuit is 100 mm) On the other hand, when the gap between the cores is on the order of mm), the effective relative permeability of the magnetic circuit almost depends on the size of the gap between the cores. Therefore, no matter how high the relative magnetic permeability of the core material, the effective relative magnetic permeability of the entire magnetic circuit is substantially determined by the size of the gap between the cores.
つまり、 コイル間に形成される磁気回路の実効比透磁率は、 コア材の比透 磁率とコア間ギャップの大きさによって決まる。 特に、 コア間ギャップの大 きさは、 磁気回路の実効比透磁率に対して大きな影響を与えるファクタであ ることがわかる。 That is, the effective relative permeability of the magnetic circuit formed between the coils is determined by the relative permeability of the core material and the size of the gap between the cores. In particular, the size of the core-to-core gap is a factor that greatly affects the effective relative permeability of the magnetic circuit. You can see that
以上より、 比透磁率の低い磁性材 (例えば、 混合磁性材) で製作したコア を用い、 コア間ギャップを大きくした分離型トランスを組み立てると、 コィ ル間の磁気回路の実効比透磁率が従来の焼結フェライ トコァを採用した場合 よりやや低くなる。 しかし、 当該分離型トランスは、 瞬間的に大電力を伝送 する用途に適しているとともに、 耐振動性の改善、 製造コストダウン (大量 生産に向く) などのメリッ卜がもたらされるという知見を得た。  From the above, when a separation type transformer with a large gap between cores is assembled using a core made of a magnetic material with a low relative magnetic permeability (for example, a mixed magnetic material), the effective relative magnetic permeability of the magnetic circuit between the coils is reduced to the conventional value. Slightly lower than when a sintered ferrite core is used. However, it has been found that this separated type transformer is suitable for applications that transmit large power instantaneously, and has advantages such as improved vibration resistance and reduced manufacturing costs (suitable for mass production). .
本発明は、 このような知見のもとに、 自動車へ搭載する、 瞬間的に大電力 を伝送するエアバッグ用コネクタに適した分離型トランスコアを得るために 成されたものである。  The present invention has been made based on such knowledge in order to obtain a separated transformer core suitable for a connector for an airbag mounted on an automobile and transmitting a large amount of power instantaneously.
すなわち、 本発明の分離型トランスコアは、 コイルとコア材とを有してお り、 当該コア材が電気絶縁性を有する絶縁素材と軟質磁性材とを有する混合 軟質磁性材を含むことを特徴とする。  That is, the separated transformer core of the present invention has a coil and a core material, and the core material includes a mixed soft magnetic material having an insulating material having an electrical insulating property and a soft magnetic material. And
また、 本発明の分離型トランスコアにおいては、 前記軟質磁性材の含有量 を 1 0体積%以上、 7 0体積%以下とすることが好ましい。  Further, in the separated transformer core of the present invention, the content of the soft magnetic material is preferably set to 10% by volume or more and 70% by volume or less.
更に、 本発明の分離型トランスコアにおいては、 前記軟質磁性材として、 軟磁性フェライ トまたはセンダス卜のいずれかを用いることが好ましい。 更にまた、 本発明の分離型トランスコアにおいては、 前記絶縁素材として、 熱可塑性樹脂、 熱可塑性ゴム、 シリコーンゴム、 熱硬化性樹脂または接着剤 のいずれかを用いることが好ましい。 図面の簡単な説明  Further, in the separated transformer core of the present invention, it is preferable to use either soft magnetic ferrite or sender as the soft magnetic material. Furthermore, in the separation-type transformer core of the present invention, it is preferable to use any one of a thermoplastic resin, a thermoplastic rubber, a silicone rubber, a thermosetting resin, and an adhesive as the insulating material. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の分離型トランスコアの断面図、 第 2図は、 混合軟質磁性 材の軟磁性フヱライ ト含有量と混合軟質磁性材のメルトインデックス値との 関係を示すグラフ、 第 3図は、 混合軟質磁性材の軟磁性フェライ ト含有量と 得られたコア材の比透磁率との関係を示すグラフ、 第 4図は、 混合軟質磁性 材の軟磁性フェライ トの含有量 (体積%) と混合軟質磁性材の体積抵抗率 ( Ω · c m) との関係を示す体積抵抗率特性図、 第 5図は、 軟質磁性材であ る軟磁性フェライ ト, センダスト及びパーマロイの含有量 (体積%) と比透 磁率との関係を示す比透磁率特性図である。 発明を実施するための最良の形態 FIG. 1 is a cross-sectional view of the separated transformer core of the present invention. FIG. 2 is a graph showing the relationship between the soft magnetic fiber content of the mixed soft magnetic material and the melt index value of the mixed soft magnetic material. Fig. 4 is a graph showing the relationship between the soft magnetic ferrite content of the mixed soft magnetic material and the relative permeability of the obtained core material. Fig. 4 is the soft magnetic ferrite content (volume) of the mixed soft magnetic material. %) And volume resistivity of the mixed soft magnetic material Figure 5 shows the relationship between the specific magnetic permeability and the specific magnetic permeability (volume%) of the soft magnetic materials soft magnetic ferrite, sendust and permalloy. It is a relative magnetic permeability characteristic diagram shown. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の分離型トランスコア 1は、 第 1図に示すように、 コア材 2と、 コ ィル 3とを有している。 コア材 2は、 電気絶縁性を有する絶縁素材と軟質磁 性材とを混合した混合軟質磁性材を所望のコア形状に加工したものである。 このとき、 混合軟質磁性材中の軟質磁性材の含有量が 1 0体積%未満とな ると、 得られるコア材の比透磁率が 2未満となり、 分離型トランスにおいて 所要の伝送効率を確保することが難しくなる。 逆に、 軟質磁性材の割合が 7 0体積%を超えるとコア材の比透磁率は高くなり (軟質磁性材の品種及び粒 径により比透磁率は 2 0を超える場合もある) 、 分離型トランスの伝送効率 が高くなり好ましいが、 コア自体が脆弱となる。 しかも、 絶縁素材に後述す るような合成樹脂を使用した場合、 流動性が悪くなり射出成形が困難になる。 このため、 混合軟質磁性材中の軟質磁性材の割合は、 1 0体積%以上、 7 0 体積%以下の範囲に設定される。  As shown in FIG. 1, the separation type transformer core 1 of the present invention has a core material 2 and a coil 3. The core material 2 is obtained by processing a mixed soft magnetic material obtained by mixing an insulating material having electrical insulation properties and a soft magnetic material into a desired core shape. At this time, when the content of the soft magnetic material in the mixed soft magnetic material is less than 10% by volume, the relative permeability of the obtained core material becomes less than 2, and the required transmission efficiency is secured in the separation type transformer. It becomes difficult. Conversely, when the ratio of the soft magnetic material exceeds 70% by volume, the relative magnetic permeability of the core material increases (the relative magnetic permeability may exceed 20 depending on the type and grain size of the soft magnetic material), and is of a separate type. Although the transmission efficiency of the transformer is high, it is preferable, but the core itself is weak. In addition, when a synthetic resin as described later is used as the insulating material, the fluidity deteriorates and injection molding becomes difficult. For this reason, the ratio of the soft magnetic material in the mixed soft magnetic material is set in a range from 10% by volume to 70% by volume.
前記絶縁素材としては、 耐振動性および成形性を考慮した場合、 合成樹脂 を用いることが好ましい。 この合成樹脂としては、 例えば、 ナイロン 6 , ナ ィロン 6 6 , ナイロン 1 1 , ナイロン 1 2 , ポリプロピレン, ポリフエニレ ンサルファイ ド, ポリオレフイン等の熱可塑性樹脂、 ウレタン, ポリエステ ル, ォレフィン等の熱可塑性ゴム、 シリコーンゴム、 エポキシ樹脂, フエノ ール樹脂, ジァリルフタレート等の熱硬化性樹脂、 2液混合型接着剤などが あげられる。 絶縁素材として、 このような合成樹脂を用いると、 射出成形や モールド成形をすることができ、 簡単に所望形状のコア材を製造することが できる。 また、 合成樹脂は柔軟性を有しているので得られたコア材の耐衝撃 性を向上させることができ、 分離型卜ランスコア自体の耐振動性を改善する ことができる。 It is preferable to use a synthetic resin as the insulating material in consideration of vibration resistance and moldability. Examples of the synthetic resin include thermoplastic resins such as nylon 6, nylon 66, nylon 11, nylon 12, polypropylene, polyphenylene sulfide, and polyolefin; thermoplastic rubbers such as urethane, polyester, and olefin; and silicone. Examples include thermosetting resins such as rubber, epoxy resin, phenol resin, and diaryl phthalate, and two-component adhesives. When such a synthetic resin is used as the insulating material, injection molding or molding can be performed, and a core material having a desired shape can be easily produced. In addition, since the synthetic resin has flexibility, it is possible to improve the impact resistance of the obtained core material, and to improve the vibration resistance of the separable-type trans-core. be able to.
また、 前記絶縁素材としては、 耐熱性等を考慮した場合、 セラミックスを 用いることが好ましい。 このセラミックスとしては、 高強度、 高靱性を有す るジルコ二アセラミックスまたは窒化珪素セラミックスがあげられる。 特に ジルコ二アセラミックスとしては部分安定化ジルコエアが好ましい。 絶縁素 材としてセラミックスを用いる場合、 当該セラミックスは、 粉末状のものを 用意し、 これに同じく粉末状の軟質磁性材を添加混合して混合軟質磁性材と する。 そして、 この混合軟質磁性材を所望形状に成形したのち、 プレス焼結 または H I P (hot isostatic press ing)処理などにより所望の分離型トラン スコアを製造する。 このようにして得られた分離型トランスコアは、 セラミ ックスの働きにより優れた耐熱性、 耐摩耗性を有する。  In addition, as the insulating material, ceramics are preferably used in consideration of heat resistance and the like. Examples of the ceramics include zirconia ceramics and silicon nitride ceramics having high strength and high toughness. Particularly, as the zirconia ceramic, partially stabilized zircon air is preferable. When ceramics are used as the insulating material, powdery ceramics are prepared, and a powdery soft magnetic material is also added to and mixed with the ceramic to form a mixed soft magnetic material. Then, after forming the mixed soft magnetic material into a desired shape, a desired separated transformer core is manufactured by press sintering or HIP (hot isostatic pressing). The separated transformer core thus obtained has excellent heat resistance and wear resistance due to the action of the ceramics.
ここで、 上記した絶縁素材中、 ナイロンは価格が安く、 軟質磁性材との融 合性がよく、 射出成形加工時の流動性も良好であるという特徴を持っている ことから、 絶縁素材には、 ナイロンを用いることが好ましい。  Here, among the insulating materials mentioned above, nylon has the features of being inexpensive, having good compatibility with soft magnetic materials, and having good fluidity during injection molding. It is preferable to use nylon.
前記軟質磁性材としては、 例えば、 軟磁性フェライ ト、 センダスト、 パ一 マロイ、 アモルファス系高透磁率材料等があげられる。  Examples of the soft magnetic material include soft magnetic ferrite, sendust, permalloy, and an amorphous high-permeability material.
軟磁性フェライ トとしては、 例えば、 一般式、 MO ' F e 203 (ただし、 Mは、 Z n、 Mn、 N i、 Cu、 F eのうちの少なくとも一種) で表される スピネル型フェライ ト、 または、 これらのうち数種類を複合させたフェライ トがあげられ、 特に、 Mn— Z n系フェライ ト、 N i— Z n系フェライ ト、 または N i— Z n—C u系フェライ トが好ましい。 ここで、 Mn— Z n系フ ェライ 卜の配合比については、 Mn F e 204: Z n F e 204= 1 : 1 (モル% 比) が、 N i - Z n系の配合比については、 N i〇 : Z nO : F e 23= l 5 : 3 5 : 50 (モル%比) が好適である。 軟磁性フェライ トは、 粉末状の ものが使用され、 最大粒径 1 00 /m以下のものが好ましい。 より好ましく は、 平均粒径 3. 8 imの粉末状軟磁性フヱライ トである。 As the soft magnetic ferrite, for example, the general formula, MO 'F e 2 0 3 ( however, M is at least one of Z n, Mn, N i, Cu, F e) spinel type ferrite represented by And ferrites that combine several types of these. In particular, Mn-Zn ferrite, Ni-Zn ferrite, or Ni-Zn-Cu ferrite preferable. Here, Mn- Z for n type full Erai Bok compounding ratio, Mn F e 2 0 4: Z n F e 2 0 4 = 1: 1 ( mol% ratio), N i - blending of Z n system the ratio, N I_〇: Z nO: F e 23 = l 5: 3 5: 50 ( mol% ratio) is preferable. The soft magnetic ferrite is used in the form of a powder, and preferably has a maximum particle size of 100 / m or less. More preferably, it is a powdery soft magnetic filler having an average particle size of 3.8 im.
センダス卜としては、 F e— S i — A 1系合金で、 S iが約 6〜 1 1重量%、 A 1が約 4〜 6重量%の組成範囲のものがあげられ、 特に、 9 . 6 2重量% S i— 5 . 3 8重量%A 1 - ba l. F eのものが好ましい。 センダストは、 粉 末状のものが使用され、 平均粒径 1 0 / m以下のものが好ましい。 The sender is Fe-Si-A1 alloy, where Si is about 6-11% by weight, A1 has a composition range of about 4 to 6% by weight, and particularly preferably 9.62% by weight Si—5.38% by weight A1-bal.Fe. Sendust is used in powder form, and preferably has an average particle size of 10 / m or less.
パーマロイとしては、 N i を 3 5〜8 0重量%含む F e一 N i合金があげ られ、 7 8重量%N iパーマロイ、 4 8重量%N iパーマロイ、 スーパーマ ロイ (7 9重量%N i— 5重量%M o— 0 . 3重量% M n— ba l . F e ) が好 ましい。 パーマロイは、 粉末状のものが使用され、 最大粒径 1 0 0 i m以下 のものが好ましい。  Permalloy includes Fe-Ni alloys containing 35 to 80% by weight of Ni, including 78% by weight Ni permalloy, 48% by weight Ni permalloy, and Supermalloy (79% by weight Nm). i—5% by weight Mo—0.3% by weight Mn—bal.Fe) is preferred. Permalloy is used in the form of powder, and preferably has a maximum particle size of 100 im or less.
アモルファス系高透磁率材料としては、 F e系アモルファス材料、 C o系 アモルファス材料があげられ、 これらも、 平均粒径 1〜 5 0 0 mの粉末状 のものが用いられる。  Examples of the amorphous high-permeability material include a Fe-based amorphous material and a Co-based amorphous material, and these are also used in the form of powder having an average particle diameter of 1 to 500 m.
本発明においては、 まず、 絶縁素材と軟質磁性材とを混合し、 溶融させて 混合軟質磁性材 2を作製する。 そして、 混合軟質磁性材 2は、 絶縁素材とし て合成樹脂を用いた場合、 加熱溶融時の流動性に優れるので、 射出成形によ り所望形状、 例えば、 第 1図に示すように、 中心に貫通孔 2 aを有するとと もに、 盤面にコイル 3を配設するコイル溝 2 bを有する円盤状のコア材 2に 簡単に成形することができる。  In the present invention, first, an insulating material and a soft magnetic material are mixed and melted to produce a mixed soft magnetic material 2. When the mixed soft magnetic material 2 is made of synthetic resin as an insulating material, it has excellent fluidity during heating and melting. Therefore, the desired shape by injection molding, for example, as shown in FIG. In addition to having the through-hole 2a, it can be easily formed into a disk-shaped core material 2 having a coil groove 2b for disposing the coil 3 on the board surface.
成形されたコア材 2においては、 コイル溝 2 に所定ターン巻回されたコ ィル 3が配設され、 分離型トランスコア 1が形成される。 尚、 予め所定ター ン巻回されたコイルに混合軟質磁性材をモールドして分離型トランスコアを 形成してもよい。  In the molded core material 2, a coil 3 wound around a coil groove 2 for a predetermined turn is disposed, and a separated transformer core 1 is formed. The separated transformer core may be formed by molding a mixed soft magnetic material into a coil that has been wound in a predetermined turn in advance.
このように分離型トランスコアは、 コイルが配設されたものが対向配置さ れ、 分離型トランスとされて使用される。 当該分離型トランスは、 例えば、 エアバッグ用コネクタとして用いられる。  As described above, the separated type transformer core, in which the coils are disposed, is arranged to face each other, and is used as a separated type transformer. The separated transformer is used, for example, as an airbag connector.
ここで、 本発明の分離型トランスコアをエアバッグ用コネクタに採用する 際の態様について以下に説明する。  Here, an embodiment in which the separated transformer core of the present invention is used for an airbag connector will be described below.
すなわち、 まず、 自動車のステアリング部において、 一次側トランスコア が固定部 (コラム側) に取り付けられ、 二次側トランスコアが回転部 (ステ ァリング部) に取り付けられる。 このとき、 一次側トランスコアと二次側ト ランスコアとは、 自動車に加わる振動等を考慮し、 lmm±0. 5mmのギヤ ップをあけて対向配置されるように設計している。 ここで、 一次側コイルに はエアバッグの起爆ユニッ トを制御する制御ユニットが接続され、 二次側コ ィルには、 エアバッグの起爆ュニッ卜が接続されている。 That is, first, in the steering section of the car, the primary transformer core Is attached to the fixed part (column side), and the secondary transformer core is attached to the rotating part (steering part). At this time, the primary transformer core and the secondary transformer core are designed so as to face each other with a gap of lmm ± 0.5mm in consideration of vibrations applied to the vehicle. The primary coil is connected to a control unit that controls the airbag detonation unit, and the secondary coil is connected to the airbag detonation unit.
本発明におけるコア材は、 比透磁率が比較的低い (例えば、 軟磁性フェラ イ ト (Mn F e 24ー Z n F e 24) とナイロン 6とを含む混合軟質磁性材 より作製したコア材の場合、 比透磁率は 3〜 1 2程度である。 ) ので、 コィ ルのインダク夕ンスが小さくなり、 起爆ユニッ トの負荷との整合性が簡単に とれる。 従って、 当該コア材による分離型トランスコアを用いた分離型トラ ンスは、 瞬間的に大電力を伝送するのに適している。 The core material in the present invention, the relative permeability is relatively low (e.g., prepared from a soft magnetic Blow wells (Mn F e 24-Z n F e 24) a mixed soft magnetic material comprising nylon 6 In the case of the core material, the relative magnetic permeability is about 3 to 12.) Therefore, the inductance of the coil is small, and the consistency with the load of the detonating unit can be easily obtained. Therefore, the separated transformer using the separated transformer core made of the core material is suitable for transmitting large power instantaneously.
【実施例】  【Example】
軟質磁性材として、 最大粒径が 50 /zmの Mn— Z n系軟磁性フェライ ト (Mn F e 204 - Z n F e 204) 粉末と N i— Z n系軟磁性フェライ ト (N i O- Z nO-F e 203) 粉末とを用意した。 一方、 絶縁性を有する絶縁素 材として、 通常の射出成形等で用いられているナイロンペレッ ト (ナイロン 6) 及びポリプロピレンペレットを用意した。 そして、 これらを、 軟磁性フ ェライ ト粉末の含有量が変化するように混合させて混合粉末を各種調製した。 その後、 混合粉末を溶融させ、 軟磁性フェライ トの含有量が異なる混合軟質 磁性材を各種調製した。 As the soft magnetic material, the maximum particle size of 50 / zm Mn- Z n soft magnetic ferrite (Mn F e 2 0 4 - Z n F e 2 0 4) powder and N i-Z n soft magnetic ferrite (N i O- Z nO-F e 2 0 3) was prepared and powder. On the other hand, nylon pellets (nylon 6) and polypropylene pellets used in ordinary injection molding and the like were prepared as insulating materials having insulating properties. These were mixed so that the content of the soft magnetic ferrite powder was changed to prepare various mixed powders. Thereafter, the mixed powder was melted to prepare various mixed soft magnetic materials having different soft magnetic ferrite contents.
絶縁素材としてナイロン 6を混合して得られた混合軟質磁性材について、 先ず、 J I S K 72 1 0に示されるメルトインデックス試験によりメル トインデックス値 (M l値) を測定した。 測定条件は、 測定温度: 2 70T:、 荷重: 1 0. Okg'fとした。 このとき、 軟磁性フェライ トの含有量が、 5体 積%以下の場合、 M l値は軟磁性フェライ 卜含有量の影響を受けにくくなり、 70体積%以上の場合、 得られる混合軟質磁性材を混合することが困難とな る。 このため、 メルトインデックス試験においては、 軟磁性フェライ ト含有 量が 5体積%〜 6 5体積%の範囲で M I値を測定し、 その結果を第 2図に示 した。 First, the melt index value (Ml value) of a mixed soft magnetic material obtained by mixing nylon 6 as an insulating material was measured by a melt index test shown in JISK7210. The measurement conditions were as follows: measurement temperature: 270 T :, load: 10. Okg'f. At this time, when the content of soft magnetic ferrite is 5 vol% or less, the Ml value is less affected by the soft magnetic ferrite content, and when the content is 70 vol% or more, the obtained mixed soft magnetic material is obtained. It is difficult to mix You. For this reason, in the melt index test, the MI value was measured when the soft magnetic ferrite content was in the range of 5% by volume to 65% by volume, and the results are shown in FIG.
次いで、 前記混合軟質磁性材を用い、 以下に示すようにしてコア材を作製 した。  Next, a core material was produced using the mixed soft magnetic material as described below.
すなわち、 混合軟質磁性材を射出成形機により、 第 1図に示すような、 中 心に貫通孔 2 aを有し、 盤面上に環状のコイル溝 2 bを有する円盤状に成形 し、 所定形状のコア材を作製した。 この射出成形は、 ナイロン 6を絶縁素材 とした混合軟質磁性材では、 ナイロン 6で通常行われる射出条件により実施 した。 同様に、 ポリプロピレンを絶縁素材とした混合軟質磁性材では、 ポリ プロピレンで通常行われる射出条件により実施した。  That is, the mixed soft magnetic material is molded by an injection molding machine into a disk shape having a through hole 2a in the center and an annular coil groove 2b on the disk surface as shown in FIG. Was manufactured. This injection molding was carried out under the injection conditions normally used for nylon 6 for a mixed soft magnetic material using nylon 6 as an insulating material. Similarly, in the case of a mixed soft magnetic material in which polypropylene was used as an insulating material, the injection was performed under the injection conditions usually used for polypropylene.
次いで、 得られたコア材について、 J I S C 2 5 6 1に準じて、 比透磁 率を測定した。 その結果を、 軟磁性フェライ トの含有量 (体積%) と絶縁素 材としてナイロン (黒丸) あるいはポリプロピレン (白丸) を用いたコア材 の比透磁率との関係として第 3図に示した。  Next, the relative permeability of the obtained core material was measured in accordance with JIS C2561. The results are shown in Fig. 3 as the relationship between the soft magnetic ferrite content (% by volume) and the relative magnetic permeability of the core material using nylon (black circles) or polypropylene (open circles) as the insulating material.
また、 混合軟質磁性材について、 J I S H 0 5 0 5に準じて、 体積抵 抗率を測定した。 その結果を、 軟磁性フェライ トの含有量 (体積%) と混合 軟質磁性材の体積抵抗率 (Ω · c m) との関係として第 4図に示した。 第 4 図においては、 用いた軟磁性フェライ トのうち、 M n— Z n系フェライ トを 黒丸で、 N i— Z n系フェライ トを白丸で、 それぞれ示した。  In addition, the volume resistivity of the mixed soft magnetic material was measured in accordance with JIS H505. The results are shown in Fig. 4 as the relationship between the soft magnetic ferrite content (% by volume) and the volume resistivity (Ω · cm) of the mixed soft magnetic material. In FIG. 4, among the soft magnetic ferrites used, the Mn-Zn ferrite is indicated by a black circle, and the Ni-Zn ferrite is indicated by a white circle.
更に、 第 3図に示す軟磁性フェライ トの含有量 (体積%) と比透磁率とに 関する測定結果に基づき、 センダスト及びパーマロイの一般値により計算し た軟質磁性材である軟磁性フェライ ト, センダスト及びパーマロイの含有量 (体積%) と比透磁率との関係を第 5図に示した。  Furthermore, based on the measurement results of the soft magnetic ferrite content (% by volume) and the relative magnetic permeability shown in Fig. 3, soft magnetic ferrite, which is a soft magnetic material, was calculated from the general values of Sendust and Permalloy. Fig. 5 shows the relationship between the content (% by volume) of Sendust and Permalloy and the relative magnetic permeability.
第 2図、 第 3図より以下のことがわかった。  2 and 3 reveal the following.
まず、 コア材の比透磁率は、 軟磁性フヱライ ト含有量 (体積%) が多くな ると、 高くなることが分かった。 また、 混合軟質磁性材に混合される絶縁素 材の材質は、 透磁率に影響を及ぼさないことが分かった。 更に、 軟磁性フエ ライ トの含有量 (体積%) が多くなると、 混合軟質磁性材の流動性が低くな ることが分かった。 First, it was found that the relative magnetic permeability of the core material increased as the soft magnetic fiber content (vol.%) Increased. Also, the insulating element mixed with the mixed soft magnetic material It was found that the material did not affect the magnetic permeability. Furthermore, it was found that when the content (vol%) of the soft magnetic ferrite increases, the fluidity of the mixed soft magnetic material decreases.
軟磁性フェライ 卜の含有量が 7 0体積%を超えると、 混合が難しくなり、 流動性が低くなるため、 射出成形が困難になる。 しかも、 硬度の高いフェラ イ ト成分が増えることから、 射出成形後、 射出成形金型の摩耗が激しくなり、 また、 得られる分離型トランスコアの機械的強度が著しく低下し、 コアの加 ェが困難になり、 使用上大きな支障となる。  If the content of the soft magnetic ferrite exceeds 70% by volume, mixing becomes difficult and the fluidity becomes low, so that injection molding becomes difficult. In addition, since the ferrite component having high hardness increases, the injection molding die becomes severely worn after the injection molding, and the mechanical strength of the obtained separated type transformer core is remarkably reduced. It becomes difficult, and it becomes a big hindrance in use.
逆に、 軟磁性フェライ トの含有量が 1 0体積%未満となると、 コア材の比 透磁率が低下し、 当該コア材による分離型トランスコアを用いた分離型トラ ンスにおいては、 電力を効率良く伝送することが困難となる。  Conversely, when the content of the soft magnetic ferrite is less than 10% by volume, the relative permeability of the core material is reduced, and in the separated transformer using the separated transformer core using the core material, the power is efficiently used. It is difficult to transmit well.
軟磁性フェライ ト含有量が 6 0体積%〜 7 0体積%の範囲の場合、 得られ るコア材の比透磁率は高くなるが、 混合軟質磁性材は流動性がやや低い。 こ の範囲の混合軟質磁性材は、 伝送効率に対する要求値がやや高い分離型トラ ンスに用いるコアであって、 しかも、 コアの形状があまり複雑ではない場合 に適用するのが好ましいことがわかった。  When the soft magnetic ferrite content is in the range of 60% by volume to 70% by volume, the relative permeability of the obtained core material is high, but the mixed soft magnetic material has slightly lower fluidity. It has been found that the mixed soft magnetic material in this range is preferably used when the core is used for a separated type transformer having a slightly higher transmission efficiency requirement and the core shape is not so complicated. .
軟磁性フェライ ト含有量が 1 0体積%〜6 0体積%の範囲の場合、 得られ るコア材の比透磁率は比較的低いが、 混合軟質磁性材は流動性が良好である。 この範囲の混合軟質磁性材は、 伝送効率に対する要求値が低い分離型トラン スに用いるコアであって、 しかも、 コア形状が複雑で流動性に優れている材 料でしか製作できないような場合に適していることがわかった。  When the soft magnetic ferrite content is in the range of 10% by volume to 60% by volume, the relative permeability of the obtained core material is relatively low, but the mixed soft magnetic material has good fluidity. The mixed soft magnetic material in this range is a core used for a separation type transformer with a low requirement for transmission efficiency, and it can be manufactured only with a material with a complicated core shape and excellent fluidity. It turned out to be suitable.
一方、 図 4より以下のことが分かった。  On the other hand, Fig. 4 shows the following.
即ち、 混合軟質磁性材の体積抵抗率 (Ω · c m) は、 軟磁性フェライ ト含 有量 (体積%) が多いほど低くなる。 また、 N i — Z n系フェライ トを混合 した混合軟質磁性材は、 体積抵抗率が高いことが分かった。 但し、 N i— Z n系フェライ 卜を混合して得られる混合軟質磁性材は、 高価である。 一方、 M n - Z n系フェライ トを混合した混合軟質磁性材が、 要求される体積抵抗 率を満たせない場合、 N i 一 Z n系フェライ トを混合した混合軟質磁性材を 使用することが望ましいことが分かった。 That is, the volume resistivity (Ω · cm) of the mixed soft magnetic material decreases as the soft magnetic ferrite content (vol%) increases. It was also found that the mixed soft magnetic material mixed with Ni—Zn ferrite had high volume resistivity. However, the mixed soft magnetic material obtained by mixing the Ni—Zn ferrite is expensive. On the other hand, the mixed soft magnetic material mixed with Mn-Zn ferrite If the ratio could not be satisfied, it was found that it was desirable to use a mixed soft magnetic material in which Ni-Zn ferrite was mixed.
また、 混合軟質磁性材は、 体積抵抗率が低いと、 混合軟質磁性材を構成す る粒子相互間の絶縁性が低下し、 交流磁界による渦電流が誘導され易く、 設 計されたトランスの伝送効率が得られない。  Also, when the mixed soft magnetic material has a low volume resistivity, the insulating property between the particles constituting the mixed soft magnetic material is reduced, and eddy currents are easily induced by an AC magnetic field. Efficiency cannot be obtained.
更に、 図 5より、 センダスト及びパーマロイも、 軟磁性フェライ トと同様 に、 分離型トランスコアに使用可能な性能を有することが分かった。  Furthermore, from Fig. 5, it was found that Sendust and Permalloy also have the performance that can be used for a separate transformer core, like the soft magnetic ferrite.
ここで、 特に、 自動車用部品としてのエアバッグ用コネクタに使われる分 離型トランスコアでは、 M n— Z n系軟磁性フェライ ト含有量が 5 0体積% ± 3体積%である混合軟質磁性材を用いることが好ましい。 この場合、 当該 混合軟質磁性材は、 流動性が良好で、 M l値が比較的高く、 射出成形加工が し易いうえ、 得られるコア材の比透磁率も 1 0程度である。 このため、 当該 混合軟質磁性材を用いた分離型トランスコアは、 対向配置する 2つのコア間 のギャップを 1 mm程度あけて、 そのギャップが ± 0. 5 mm変動しても、 瞬 間的に大きな電力を確実に伝送するエアバッグ用コネクタの用途に適してい る。 産業上の利用可能性  Here, in particular, in the separation type transformer core used for airbag connectors as automotive parts, mixed soft magnetic ferrite with Mn-Zn soft magnetic ferrite content of 50% by volume ± 3% by volume. It is preferable to use a material. In this case, the mixed soft magnetic material has good fluidity, a relatively high Ml value, easy injection molding, and a relative permeability of the obtained core material of about 10. For this reason, in the separation type transformer core using the mixed soft magnetic material, even if the gap between the two cores facing each other is about 1 mm, and the gap fluctuates ± 0.5 mm, it is instantaneous. Suitable for airbag connectors that reliably transmit large power. Industrial applicability
本発明の分離型トランスコアは、 電気絶縁性を有する絶縁素材と軟質磁性 材とを混合した混合軟質磁性材よりコア材が形成されているので、 耐振動性 が向上し、 脆さを低減させることができる。 また、 比透磁率がある程度低く なり、 1 mm程度のギヤップをあけて瞬間的に大電力を伝送するのに適して いる。  In the separated transformer core of the present invention, the core material is formed from a mixed soft magnetic material obtained by mixing an insulating material having electrical insulation properties and a soft magnetic material, so that vibration resistance is improved and brittleness is reduced. be able to. In addition, the relative permeability is reduced to some extent, making it suitable for transmitting large power instantaneously with a gap of about 1 mm.
また、 本発明の分離型トランスコアは、 軟質磁性材の含有量を 1 0体積% 以上、 7 0体積%以下とすることにより、 瞬間的に大電力を伝送する際に必 要な比透磁率を確保しつつ、 焼結フェライ ト単体のコアに比べ機械的強度を 向上させることができる。 更に本発明の分離型トランスコアは、 軟質磁性材として、 軟磁性フェライ トまたはセンダス卜のいずれかを用いており、 軟磁性フェライ トを用いた場 合は、 渦電流損失が少ないので高周波数用のトランスに適しており、 センダ ストを用いた場合は、 飽和磁束密度が高い (フェライ トの約 2倍) のでコア の寸法を小さくできるメリッ卜がある。 In addition, the separated transformer core of the present invention has a relative magnetic permeability necessary for instantaneously transmitting large electric power by setting the content of the soft magnetic material to 10% by volume or more and 70% by volume or less. As a result, the mechanical strength can be improved as compared with a sintered ferrite core alone. Furthermore, the separated transformer core of the present invention uses either soft magnetic ferrite or sendust as the soft magnetic material. It is suitable for such transformers, and when using a sendast, there is an advantage that the core size can be reduced because the saturation magnetic flux density is high (about twice that of ferrite).
また、 本発明の分離型トランスコアは、 絶縁素材として、 柔軟性があり、 成形加工性に優れる、 熱可塑性樹脂、 熱可塑性ゴム、 シリコーンゴム、 熱硬 化性樹脂または接着剤のいずれかを用いているので、 耐衝撃性に優れるとと もに、 複雑形状でも簡単に製造することができる。 このため、 コアの耐振動 性を大幅に向上させることができるとともに製造コストを下げることができ る。  Further, the separation type transformer core of the present invention uses any of a thermoplastic resin, a thermoplastic rubber, a silicone rubber, a thermosetting resin or an adhesive which is flexible and has excellent moldability as an insulating material. As a result, it has excellent impact resistance and can be easily manufactured even in complex shapes. For this reason, the vibration resistance of the core can be significantly improved, and the manufacturing cost can be reduced.

Claims

請 求 の 範 囲 The scope of the claims
1 . コイルとコア材とを有する分離型トランスコアであって、 前記コア材 が電気絶縁性を有する絶縁素材と軟質磁性材とを有する混合軟質磁性材を含 むことを特徴とする分離型トランスコア。 1. A separation type transformer core having a coil and a core material, wherein the core material includes a mixed soft magnetic material having an electrically insulating insulating material and a soft magnetic material. core.
2 . 前記軟質磁性材の含有量が 1 0体積%以上、 7 0体積%以下である請 求の範囲第 1項に記載の分離型トランスコア。  2. The separated transformer core according to claim 1, wherein the content of the soft magnetic material is 10% by volume or more and 70% by volume or less.
3 . 前記軟質磁性材が、 軟磁性フェライ トまたはセンダストのいずれかで ある、 請求の範囲第 1項又は第 2項に記載の分離型トランスコア。  3. The separated transformer core according to claim 1, wherein the soft magnetic material is one of soft magnetic ferrite and sendust.
4 . 前記絶縁素材が、 熱可塑性樹脂、 熱可塑性ゴム、 シリコーンゴム、 熱 硬化性樹脂または接着剤のいずれかである、 請求の範囲第 1項乃至第 3項い ずれかに記載の分離型  4. The separation mold according to any one of claims 1 to 3, wherein the insulating material is any one of a thermoplastic resin, a thermoplastic rubber, a silicone rubber, a thermosetting resin, and an adhesive.
PCT/JP1999/001567 1998-03-27 1999-03-26 Separation type transformer core WO1999050858A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE69943179T DE69943179D1 (en) 1998-03-27 1999-03-26 TRANSFORMER CORE WITH SEPARATE PARTS
JP54918399A JP4278719B2 (en) 1998-03-27 1999-03-26 Separate transformer
KR10-1999-7010918A KR100533494B1 (en) 1998-03-27 1999-03-26 Separation type transformer core
EP99912044A EP0986073B1 (en) 1998-03-27 1999-03-26 Separation type transformer core
CA2291104A CA2291104C (en) 1998-03-27 1999-03-26 Isolation transformer core
US10/180,268 US7106163B2 (en) 1998-03-27 2002-06-26 Core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8165198 1998-03-27
JP10/81651 1998-03-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US42410599A A-371-Of-International 1998-03-27 1999-03-26
US10/180,268 Continuation-In-Part US7106163B2 (en) 1998-03-27 2002-06-26 Core

Publications (2)

Publication Number Publication Date
WO1999050858A1 true WO1999050858A1 (en) 1999-10-07
WO1999050858A8 WO1999050858A8 (en) 1999-12-02

Family

ID=13752243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001567 WO1999050858A1 (en) 1998-03-27 1999-03-26 Separation type transformer core

Country Status (6)

Country Link
EP (1) EP0986073B1 (en)
JP (1) JP4278719B2 (en)
KR (1) KR100533494B1 (en)
CA (1) CA2291104C (en)
DE (1) DE69943179D1 (en)
WO (1) WO1999050858A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001067471A1 (en) * 2000-03-08 2001-09-13 The Furukawa Electric Co., Ltd. Method for diagnosing abnormal condition of isolation transformer and device therefor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2976152B1 (en) * 2011-05-31 2013-06-28 Renault Sa MAGNETIC SHIELDING SCREEN FOR NON-CONTACT LOADING OF A BATTERY OF A MOTOR VEHICLE
JPWO2015064694A1 (en) * 2013-11-01 2017-03-09 戸田工業株式会社 Soft magnetic ferrite resin composition, soft magnetic ferrite resin composition molded body, and power transmission device for non-contact power feeding system
KR102166881B1 (en) 2014-04-03 2020-10-16 엘지이노텍 주식회사 Wireless power transmitting apparatus
WO2015173196A1 (en) * 2014-05-14 2015-11-19 Dsm Ip Assets B.V. Soft magnetic material composition and component made from the material
KR102283168B1 (en) * 2014-11-17 2021-07-29 엘지이노텍 주식회사 Soft magnetic alloy, wireless power transmitting apparatus and wireless power receiving apparatus comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926214U (en) * 1982-08-11 1984-02-18 クラリオン株式会社 rotary transformer
JPH07307237A (en) * 1994-05-13 1995-11-21 Tokin Corp Manufacture of rotary transformer and magnetic material used for the manufacture

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2812445C2 (en) * 1978-03-22 1983-10-13 Robert Bosch Gmbh, 7000 Stuttgart Process for the production of molding compounds with soft magnetic properties
US4543208A (en) * 1982-12-27 1985-09-24 Tokyo Shibaura Denki Kabushiki Kaisha Magnetic core and method of producing the same
JPS62188303A (en) * 1986-02-14 1987-08-17 Shigeo Fukuda Manufacture of magnetic core of rotary transformer in video tape recorder
US5160447A (en) * 1988-02-29 1992-11-03 Kabushiki Kaisha Sankyo Seiki Seisakusho Compressed powder magnetic core and method for fabricating same
EP0587142B1 (en) * 1992-09-09 1996-11-06 Matsushita Electric Industrial Co., Ltd. A rotary transformer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926214U (en) * 1982-08-11 1984-02-18 クラリオン株式会社 rotary transformer
JPH07307237A (en) * 1994-05-13 1995-11-21 Tokin Corp Manufacture of rotary transformer and magnetic material used for the manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0986073A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001067471A1 (en) * 2000-03-08 2001-09-13 The Furukawa Electric Co., Ltd. Method for diagnosing abnormal condition of isolation transformer and device therefor
US6661238B2 (en) 2000-03-08 2003-12-09 The Furukawa Electric Co., Ltd. Abnormality diagnosis method and apparatus for separable transformer
JP4593053B2 (en) * 2000-03-08 2010-12-08 古河電気工業株式会社 Abnormality diagnosis method and apparatus for separate transformer

Also Published As

Publication number Publication date
KR20010012948A (en) 2001-02-26
EP0986073A4 (en) 2006-09-20
WO1999050858A8 (en) 1999-12-02
EP0986073A1 (en) 2000-03-15
EP0986073B1 (en) 2011-02-09
KR100533494B1 (en) 2005-12-06
DE69943179D1 (en) 2011-03-24
CA2291104A1 (en) 1999-10-07
CA2291104C (en) 2010-11-30
JP4278719B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
TW543044B (en) Magnetic material and inductor
JP6062676B2 (en) Composite magnetic core and magnetic element
US7106163B2 (en) Core
EP2482291B1 (en) Magnetic powder material and low-loss composite magnetic material containing same
US20060113849A1 (en) Motor having cores structure wherein magnetic circuit is designed in three dimensional configuration
US20130255836A1 (en) Soft magnetic powder, dust core, and magnetic device
EP0891955B1 (en) Ferrite and inductor
JPWO2004019352A1 (en) Multi-phase magnetic element and manufacturing method thereof
JP2004196632A (en) Mn-Zn-BASED FERRITE, MAGNETIC CORE FOR TRANSFORMER AND TRANSFORMER
JP2017059811A (en) Magnetic element
WO1999050858A1 (en) Separation type transformer core
JP3181560B2 (en) Ferrite oxide magnetic material
EP1091367A2 (en) Magnetic mixture
CN110785892B (en) Coil device and antenna
US4620933A (en) Deflecting yoke for electromagnetic deflection type cathode-ray tubes and method for manufacturing it
CN110226208A (en) Reactor
JP6436016B2 (en) Composite material molded body and reactor
WO2017047740A1 (en) Magnetic element
JP2004128455A (en) Magnetic material, its manufacturing method, magnetic sensor using magnetic material, and magnetic circuit component incorporated in magnetic sensor
CN111816405A (en) Inductance element
JP6525225B2 (en) Reactor
JP3717324B2 (en) Separation transformer
JP3426780B2 (en) Ferrite material
JP2002110413A (en) Magnetic mixture
WO2006077872A1 (en) Gap sheet and magnetic core having such gap sheet inserted therein

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09424105

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2291104

Country of ref document: CA

Kind code of ref document: A

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1999912044

Country of ref document: EP

Ref document number: 1019997010918

Country of ref document: KR

AK Designated states

Kind code of ref document: C1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WR Later publication of a revised version of an international search report
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999912044

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997010918

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997010918

Country of ref document: KR