WO1999049559A2 - Verfahren und vorrichtung zur entstörung von umrichtern - Google Patents

Verfahren und vorrichtung zur entstörung von umrichtern Download PDF

Info

Publication number
WO1999049559A2
WO1999049559A2 PCT/AT1999/000073 AT9900073W WO9949559A2 WO 1999049559 A2 WO1999049559 A2 WO 1999049559A2 AT 9900073 W AT9900073 W AT 9900073W WO 9949559 A2 WO9949559 A2 WO 9949559A2
Authority
WO
WIPO (PCT)
Prior art keywords
converter
connection
voltage
reference potential
winding
Prior art date
Application number
PCT/AT1999/000073
Other languages
English (en)
French (fr)
Other versions
WO1999049559A3 (de
Inventor
Lutz Erhartt
Karl Edelmoser
Original Assignee
Lutz Erhartt
Karl Edelmoser
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lutz Erhartt, Karl Edelmoser filed Critical Lutz Erhartt
Priority to AU30175/99A priority Critical patent/AU3017599A/en
Publication of WO1999049559A2 publication Critical patent/WO1999049559A2/de
Publication of WO1999049559A3 publication Critical patent/WO1999049559A3/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to a device and a method for avoiding common mode interference or earth leakage currents in converters, as described in the preambles of claims 1 and 2.
  • a voltage source is interposed between the DC-side positive and negative supply lines of the converter on the one hand and the connections of the DC system on the other hand, so that the DC voltage between the connections of the DC system rests against the earth potential, although the DC voltage between the supply lines of the converter moves with respect to the earth potential.
  • Pulse rectifier circuits take up sine-like mains currents and thus reduce the system perturbations, but represent a major source of interference.
  • the converter connected to the three-phase network generates a DC voltage which, compared to the ground potential, moves at least with switching frequency and switching speed by voltage values that are in the range of the DC link voltage.
  • the alternating component of the voltage generated by the converter between the DC supply lines of the converter and a reference potential of the other system, preferably the neutral point potential of a three-phase system, is referred to below as common mode interference voltage. It leads to problems especially at higher switching frequencies.
  • inverters frequency converters
  • IGBT inverters 6 kHz is already achieved.
  • Higher Switching frequencies are aimed at reducing torque pulsations and noise, but are currently not possible due to the high stress on the insulation in the machines.
  • the filter costs for reducing the output overvoltage of a converter are, depending on their quality, between 10% and 100% of the converter costs and increase the power loss by 1% -1.5% of the nominal power of the converter.
  • Inverters are preferably used to exchange energy between a three-phase system and a direct current system.
  • the largest areas of application are drive converters and uninterruptible power supplies.
  • New, rapidly growing areas of application are reactive power compensators and network equalizers, as well as inverters for feeding renewable energy (solar and wind power) into the public three-phase network and direct current supplies with sinusoidal input currents (pulse rectifier, PFC).
  • All areas of application are becoming increasingly important, with the switching frequency of the converters generally increasing. In the case of pulse rectifiers, too, higher switching frequencies are desirable because of the lower network effects.
  • a converter for example as shown in FIG. 1, is shown in the equivalent circuit diagram of FIG. 3 as a common-mode gate voltage source with internal impedance for the earth capacitors.
  • the common-mode interference voltage is a step function with four voltage levels of the converter is twice the DC voltage or DC link voltage.
  • the internal impedance is one third of the phase impedance of the converter.
  • the phase impedances of the converter are coils with a correspondingly high inductance and as such its large and cost-determining elements.
  • Converter, phase impedances and earth capacitance in Fig. 3 form a series resonant circuit that is excited with the common mode noise voltage. It is obvious that
  • the resonant circuit is only very slightly vaporized by the line resistances and the internal resistances of the phase impedances,
  • the interference voltage which excites the resonant circuit has a broad spectrum from 300 Hz (B6 ripple) to the switching frequency up to the narrow megahertz (switching edges),
  • the differential choke is also an essential component in the common mode interference suppression filters US 4,888,675 A and JP 09 233 854 A.
  • the present invention has for its object to provide a method and an apparatus for interference suppression of converter structures, which is applicable to all structures and which exceeds the previous solutions in terms of economy, operational safety and effectiveness.
  • An advantage of this solution is that due to the compensation of the common mode interference voltage, the resonant circuit formed from the internal impedance of the converter and the earth capacitance is no longer excited and resonance peaks can no longer occur.
  • the device described in the characterizing part of claim 1 consists of a three-winding transformer, which can advantageously be designed only for the switching frequency of the converter.
  • the design of claim 2 prevents the magnetization of the three-winding interference suppressor transformer.
  • FIG. 3 equivalent circuit diagram of a converter compared to the earth capacitance of the intermediate circuit and the load (s) connected to it;
  • Fig. 4 block diagram of the method for common mode interference suppression;
  • Fig.5 Three winding transformer for common mode interference suppression
  • Fig.6 Device for largely avoiding a DC magnetization of the three-winding transformer.
  • the converters 1 in Fig.la and b allow the energy flow in only one direction. These are controlled rectifiers with low mains feedback for supplying a direct current consumer or a direct current or direct voltage intermediate circuit, for example. a drive system.
  • the converter 1 in FIG. 1c can control the energy flow in both directions.
  • the phase voltages of a three-phase system are connected to terminals 2,3,4 of the converter.
  • Terminal 5 is connected to the star point 22 of the three-phase system. This is usually at ground potential or is made potential-free using a mains transformer.
  • a three-phase load can also be connected to the terminals 2-5. Is it eg.
  • phase inductances 6, 7 and 8 of the converter are dimensioned very small or are formed at all by the winding inductances of the machine connected in a triangle or star.
  • the housing of the machine and the star point 22 are usually connected to the earth potential in accordance with regulations.
  • the DC voltage connections of the converter are the terminals 9 and 10.
  • the terminal 16 is connected to the center 15. All elements connected to the DC voltage intermediate circuit, that is, capacitors, filters, consumers, lines, power semiconductors.
  • there can also be a DC voltage source for example. a solar panel, a Wind generator or the like, etc., have an earth capacity.
  • the sum of these earth capacitances is summarized in the capacitance 17, which is connected on the one hand to the node 15 and on the other hand is connected to the earth potential 30.
  • the earth leakage resistance 24 is parallel to the earth capacitance 17.
  • FIG. 2 shows the control signals 18, 19, 20 for the changeover switches 27, 28, 29 of the bidirectional converter in FIG. 1c with the star point 22 at ground potential and the resulting common mode interference voltage 21 between the terminals 5 and 16 without taking into account the ground impedances 17 and 24
  • the positive amplitude 25 and the negative amplitude 26 are half the DC voltage between the terminals 9 and 10.
  • the system shows that the converter acts with respect to the terminals 5 and 16 like the series connection from the ideal interference voltage source 21 with an internal impedance 23 , which results from the phase impedances 6,7,8.
  • FIG. 3 shows the equivalent circuit diagram for all inverters with regard to terminals 5 and 16 when the earth capacitance 17 is small compared to the intermediate circuit capacitors 11 and 12. It is a weakly damped series resonant circuit consisting of the coil 23 and the earth capacitance 17, which is excited by the common mode interference voltage 21. Due to the resonant voltage peaks, 5 or 16 large voltages occur at the ungrounded terminal, which lead, among other things, to insulation problems.
  • FIG. 4 shows the basic circuit diagram of the method for common mode interference suppression.
  • Inverter 1 is connected to the three-phase system with terminals 2-5.
  • the common mode interference filter 31 is connected to its DC-side connection terminals 9, 10. It consists of the voltage sources 34, 35, which compensate for the common mode interference voltage 21 over any earth impedance 40 between the terminals 5 and 16. They are each between a connecting terminal 9, 10 of the converter and a connecting terminal 32, 33 of the intermediate circuit. When the compensation is complete, there is between the. Terminal 5 and terminals 32 and 33, which are at ground potential, only apply direct voltages. No current flows through the earth capacitance of the intermediate circuit connected to terminals 32 and 33, including the consumer.
  • a device according to the invention is shown in FIG.
  • the transformer 31 consists of the transformer 31, the primary winding 37 of which is connected to the terminals 5 and 16.
  • the common mode interference voltage 21 present at the primary winding 37 is transmitted to the secondary winding 38 between the terminals 9 and 32 and to the secondary winding 36 between the terminals 10 and 33.
  • the primary winding 37 has a capacitor 40 connected in series in order to decouple a DC component of the common mode interference voltage that may be present on the common mode interference voltage 21 from the filter transformer 31.
  • circuit elements described can be replaced by any other circuit parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

Die Erfindung beschreibt ein Verfahren zur Gleichtaktentstörung von Umrichtern (1), mit denen verlustarm der Energiefluß zwischen zwei verschiedenen elektrischen Systemen, von denen eines ein Gleichstromsystem ist, geregelt werden kann. Der Umrichter erzeugt dabei die Gleichtaktstörspannung (21), die zwischen den Bezugspotentialen der beiden elektrischen Systeme auftritt. Das Bezugspotential des Gleichstromsystems liegt an der Klemme (16), das des anderen Systems, vorzugsweise das Sternpunktpotential eines Drehstromsystems, liegt an der Klemme (5). An die Klemmen (5 und 16) wird nun die Primärwicklung (37) des Entstörtransformators (31) angeschlossen, dessen Sekundärwicklungen (36, 38) in die positive und die negative Versorgungsleitung des Gleichstromsystems geschaltet sind, bzw. an die gleichstromseitigen Umrichterklemmen (9, 10) und den Klemmen (32, 33) des Gleichstromsystems angeschlossen sind. Die an der Wicklung (37) auftretende Gleichtaktstörspannung (21) liegt auch an den Sekundärwicklungen (36, 38) und wird dadurch kompensiert, sodaß zwischen einem geeigneten Bezugspotential des Gleichstromsystems und dem Potential an der Klemme (5) des anderen elektrischen Systems, das vorzugsweise erdpotential ist, keine Wechselspannung mehr anliegt.

Description

VERFAHREN UND VORRICHTUNG ZUR ENTSTÖRUNG VON UMRICHTERN
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Vermeidung der Gleichtaktstörungen bzw. der Erdableitströme in Umrichtern, wie sie in den Oberbegriffen der Patentansprüche 1 und 2 beschrieben sind. Dabei wird zwischen den gleichspannungsseitigen positiven und negativen Versorgungsleitungen des Umrichters einerseits und den Anschlüssen des Gleichstromsystems andererseits jeweils eine Spannungsquelle zwischengeschaltet, sodaß die Gleichspannung zwischen den Anschlüssen des Gleichstromsystems gegenüber dem Erdpotential ruht, obwohl sich die Gleichspannung zwischen den Versorgungsleitungen des Umrichters gegenüber dem Erdpotential bewegt.
Pulsgleichrichterschaltungen nehmen sinusähnliche Netzströme auf und reduzieren somit die Netzrückwirkungen, stellen jedoch eine große Störquelle dar. Der an das Drephasennetz angeschlossene Umrichter erzeugt eine Gleichspannung, die sich gegenüber dem Erdpotential mindestens mit Schaltfrequenz und Schaltgeschwindigkeit um Spannungswerte, die im Bereich der Zwischenkreisspannung liegen, bewegt. Der Wechselanteil der vom Umrichter erzeugten Spannung zwischen den gleichstromseitigen Versorgungsleitungen des Umrichters und einem Bezugspotential des anderen Systems, vorzugsweise dem Sternpunktpotential eines Drehstromsystems, wird im folgenden als Gleichtaktstörspannung bezeichnet. Vor allem bei höheren Schaltfrequenzen führt sie zu Problemen.
Im Bereich der Antriebssysteme setzen sich beispielsweise aufgrund der Entwicklung in der Leistungselektronik und der einfacheren Maschinen sowie der steigenden Anforderungen an die Drehzahlstellbarkeit zunehmend mit Wechselrichtern (Frequenzumrichtern) gespeiste Drehfeldmaschinen durch. Mit IGBT-Umrichtern werden bereits 6 kHz erreicht. Höhere Schaltfrequenzen werden zur Herabsetzung von Drehmomentpulsationen und Geräuschentwicklungen angestrebt, sind derzeit wegen der hohen Beanspruchung der Isolation in den Maschinen jedoch nicht möglich. Die Filterkosten zur Reduktion der Ausgangsüberspannung eines Umrichters betragen dabei bereits je nach deren Güte zwischen 10% und 100% der Umrichterkosten und erhöhen die Verlustleistung um 1%-1,5% der Nennleistung des Umrichters. Die Anforderungen an die Isolation sowie die Filterkosten vervielfachen sich, wenn zur Erzielung von sinusförmigen Netzströmen und zur Rückspeisung der Bremsenergie der Zwischenkreis ebenfalls von einem Umrichter versorgt wird, da sich die Gleichtaktstörspannung des netzseitigen Umrichters zur Ausgangsspannung des maschinenseitigen Umrichters addiert.
Umrichter dienen vorzugsweise dem Energieaustausch zwischen einem Drehstromsystem und einem Gleichstromsystem. Die größten Anwendungsgebiete sind Antriebsumrichter und unterbrechungsfreie Stromversorgungen. Neue, stark wachsende Anwendungsgebiete sind Blindleistungskompensatoren und Netzentzerrer, sowie Wechselrichter zur Einspeisung erneuerbarer Energie (Solar- und Windkraft) in das öffentliche Drehstromnetz und Gleichstromversorgungen mit sinusförmigen Eingangsströmen (Pulsgleichrichter, PFC). Sämtliche Anwendungsgebiete nehmen an Bedeutung zu, wobei generell die Schaltfrequenz der Umrichter steigt. Auch bei Pulsgleichrichtern sind wegen der geringeren Netzrückwirkungen höhere Schaltfrequenzen wünschenswert.
Ein Umrichter, z B wie in Fig 1 dargestellt, wird im Ersatzschaltbild der Fig 3 gegenüber den Erdkapazitaten als Gleichtaktstorspannungsquelle mit Innenimpedanz dargestellt Für die gebräuchlichste Umπchterstruktur, dem bidirektionalen B6 Umrichter, ist die Gleichtaktstörspannung eine Treppenfunktion mit vier Spannungsniveaus Die Summe der Spannungssprunge innerhalb einer Schaltperiode des Umrichters betragt das zweifache der Gleichspannung oder Zwischenkreisspannung Die Innenimpedanz betragt ein Drittel der Phasenimpedanz des Umrichters Die Phasenimpedanzen des Umrichters sind Spulen mit entsprechend hoher Induktivität und als solche seine großen- und kostenbestimmenden Elemente Umrichter, Phasenimpedanzen und Erdkapazitat in Fig 3 bilden einen Serienschwingkreis, der mit der Gleichtaktstörspannung angeregt wird Es ist offensichtlich, daß
• der Schwingkreis nur sehr schwach durch die Leitungswiderstande und die Innenwiderstande der Phasenimpedanzen bedampft ist,
• die den Schwingkreis anregende Storspannung ein breites Spektrum von 300 Hz (B6- Rippel) über die Schaltfrequenz bis zu eimgen Megaherz (Schaltflanken) aufweist,
• und die Entstörung mittels Differentialdrossel (Gleichtaktentstorfilter) mit oder ohne Fixierung der Gleichspannung gegenüber Erde sehr teuer kommt, da dιese(s), um wirksam zu werden, in der gleichen Größenordnung egt, wie die Phasenimpedanzen
Die Differentialdrossel ist auch in den Gleichtaktentstorfiltern US 4,888,675 A und JP 09 233 854 A ein wesentlicher Bestandteil
Alexander Rokhvarg gibt im US Patent 5,502,630 der Firma Transistor Devices vom März 1996 eine Umπchterstruktur an, deren Gleichspannungsseite sich gegenüber Erde im wesentlichen nicht bewegen soll Das ist angesichts der über die Erdleitung fließenden Pulsstrome Hf-maßig nicht zu erreichen Zudem benotigt die Schaltung ein Symmetπerungsnetzwerk für die Zwischenkreiskondensatoren und ist relativ aufwendig
Eine weit verbreitete Losung besteht in der Potentialtrennung zum Netz und der Fixierung des Zwischenkreises gegenüber Erde Der erforderliche Netztransformator ist für die Netzfrequenz auszulegen und entsprechend groß Mit dem Aufkommen der modernen und nahezu leistungslos steuerbaren Leistungsschalter, wie dem IGBT und dem MCT und der rasanten Entwicklung auf dem Sektor der Mikroelektronik steigen die erreichbaren Schaltfrequenzen in leistungselektronischen Anwendungen und damit auch die Anforderungen an die Systeme, insbesonders in den neuen Anwendungsgebieten. Mit der vorliegenden Erfindung wird mit einer sehr preiswerten und äußerst betriebssicheren Vorrichtung das grundlegende Problem der von Umrichtern erzeugten Gleichtaktstörungen gelöst. Damit kann beispielsweise der Zwischenkreis eines Antriebssystemes von einem Umrichter gespeist werden, ohne daß dabei eine wesentlich höhere Maschinenisolation erforderlich wäre. Vor allem in den neuen Anwendungsgebieten für das Dreiphasennetz und bei Umrichterlösungen für UPS-Anlagen vereinfachen sich die Strukturen und erhöht sich die Betriebssicherheit, weil aufgrund der Gleichtaktstörspannung keine zusätzliche Potentialtrennung erforderlich ist.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zur Entstörung von Umrichterstrukturen zu schaffen, das auf alle Strukturen anwendbar ist und das bezüglich Wirtschaftlichkeit, Betriebssicherheit und Wirksamkeit die bisherigen Lösungen übertrifft.
Diese Aufgabe der Erfindung wird durch die Merkmale im Kennzeichenteil des Patentanspruches 3 gelöst. Vorteilhaft bei dieser Lösung ist, daß aufgrund der Kompensation der Gleichtaktstörspannung der aus der Innenimpedanz des Umrichters und der Erdkapazität gebildete Schwingkreis nicht mehr angeregt wird und keine Resonanzüberhöhungen mehr auftreten können.
Die im Kennzeichenteil des Patentanspruches 1 beschriebene Vorrichtung besteht aus einem Dreiwicklungstransformator, der vorteilhafter Weise nur auf die Schaltfrequenz des Umrichters ausgelegt werden kann.
Durch die Ausgestaltung nach Patentanspruch 2 wird im Falle von Unsymmetrien und Pulsmusterfehlern des Umrichters die Gleichmagnetisierung des Dreiwicklungsentstörtransformators verhindert.
Die Erfindung wird im nachfolgenden anhand der in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
Fig. 1 Umrichterstrukturen;
Fig. 2 Schaltzustände und Gleichtaktstörspannung des B6-Umrichters;
Fig. 3 Ersatzschaltbild eines Umrichters gegenüber der Erdkapazitäten des Zwischenkreises und der daran angeschlossenen Last(en); Fig. 4 Prinzipschaltbild des Verfahrens zur Gleichtaktentstörung;
Fig.5 Drei Wicklungstransformator zur Gleichtaktentstörung;
Fig.6 Vorrichtung zur weitgehenden Vermeidung einer Gleichmagnetisierung des Dreiwicklungstransformators.
Fig. 1 zeigt Umrichterstrukturen. Die Umrichter 1 in Fig.la und b erlauben den Energiefluß nur in eine Richtung. Es handelt sich hierbei um gesteuerte Gleichrichter mit geringer Netztrückwirkung zur Versorgung eines Gleichstromverbrauchers oder eines Gleichstromoder Gleichspannungszwischenkreises zB. eines Antriebssystemes. Der Umrichter 1 in Fig. lc kann den Energiefluß in beiden Richtungen steuern. An die Klemmen 2,3,4 der Umrichter sind die Phasenspannungen eines Drehstromsystems angeschlossen. Die Klemme 5 ist an den Stempunkt 22 des Drehstromsystems angeschlossen. Dieser befindet sich zumeist auf Erdpotential oder ist mittels Netztransformator potentialfrei gemacht. Im Falle des bidirektionalen Umrichters 1 in Fig. lc kann an die Klemmen 2-5 auch ein Drehstromverbraucher angeschlossen sein. Handelt es sich dabei zB. um eine Maschine, so sind die Phaseninduktivitäten 6,7 und 8 des Umrichters sehr klein dimensioniert oder überhaupt durch die im Dreieck oder Stern geschaltenen Wicklungsinduktivitäten der Maschine gebildet. Das Gehäuse der Maschine sowie der Sternpunkt 22 sind vorschriftsgemäß zumeist mit dem Erdpotential verbunden.
Die Gleichspannungsanschlüsse der Umrichter sind die Klemmen 9 und 10. Die an die positive Versorgungsleitung 13 und an die negative Versorgungsleitung 14 angeschlossenen Zwi schenkreiskondensatoren 11 und 12 bilden den Mittelpunkt 15, dessen Potential das Bezugspotential des Gleichspannungssystemes sei. Die Klemme 16 ist an den Mittelpunkt 15 angeschlossen. Sämtliche an den Gleichspannungszwischenkreis angeschlossenen Elemente, das sind Kondensatoren, Filter, Verbraucher, Leitungen, Leistungshalbleiter, im Falle des Umrichters 1 in Fig. lc kann es auch eine Gleichspannungsquelle, zB. ein Solarpanel, ein Windgenerator oder ähnliches sein, etc., weisen eine Erdkapazität auf. Die Summe dieser Erdkapazitäten ist in der Kapazität 17 zusammengefaßt, die einerseits am Knoten 15 angeschlossen ist und andererseits mit dem Erdpotential 30 verbunden ist. Parallel zur Erdkapazität 17 liegt der Erdableitwiderstand 24.
Fig.2 zeigt die Ansteuersignale 18,19,20 für die Umschalter 27,28,29 des bidirektionalen Umrichters in Fig.lc bei auf Erdpotential befindlichem Sternpunkt 22 und die resultierende Gleichtaktstörspannung 21 zwischen den Klemmen 5 und 16 ohne Berücksichtigung der Erdimpedanzen 17 und 24. Die positive Amplitude 25 und die negative Amplitude 26 betragen die Hälfte der Gleichspannung zwischen den Klemmen 9 und 10. In der Anlage wird gezeigt, daß der Umrichter bezüglich der Klemmen 5 und 16 wie die Serienschaltung aus der idealen Störspannungsquelle 21 mit einer Innenimpedanz 23 wirkt, die sich aus den Phasenimpedanzen 6,7,8 ergibt.
Fig.3 zeigt das sich für alle Umrichter ergebende Ersatzschaltbild bezüglich der Klemmen 5 und 16, wenn die Erdkapazität 17 klein gegenüber den Zwischenkreiskondensatoren 11 und 12 ist. Es handelt sich dabei um einen schwach gedämpften Serienschwingkreis bestehend aus der Spule 23 und der Erdkapazität 17, der von der Gleichtaktstörspannung 21 angeregt wird. Aufgrund der resonanten Spannungsüberhöhungen treten an der nicht geerdeten Klemme 5 oder 16 große Spannungen auf, die unter anderem zu Isolationsproblemen fuhren.
Fig.4 zeigt das Prinzipschaltbild des Verfahrens zur Gleichtaktentstörung. Der Umrichter 1 ist mit den Klemmen 2-5 an das Drehstromsystem angeschlossen. An seine gleichspannungsseitigen Anschlußlemmen 9,10 wird das Gleichtaktentstörfilter 31 angeschlossen. Es besteht aus den Spannungsquellen 34,35, die die Gleichtaktstörspannung 21 über einer beliebigen Erdimpedanz 40 zwischen den Klemmen 5 und 16 kompensieren. Sie liegen jeweils zwischen einer Anschlußklemme 9,10 des Umrichters und einer Anschlußklemme 32,33 des Zwischenkreises. Bei vollständiger Kompensation liegen zwischen der zB. auf Erdpotential befindlichen Klemme 5 und den Klemmen 32 bzw. 33 nur mehr Gleichspannungen an. Über die Erdkapazitäten des an die Klemmen 32 und 33 angeschlossenen Zwischenkreises inklusive Verbraucher fließt kein Strom. In Fig.5 ist eine erfindungsgemäße Vorrichtung dargestellt. Sie besteht aus dem Transformator 31 , dessen Primärwicklung 37 an die Klemmen 5 und 16 angeschlossen ist. Die an der Primärwicklung 37 anliegende Gleichtaktstörspannung 21 wird an die Sekundärwicklung 38 zwischen den Klemmen 9 und 32 und an die Sekundärwicklung 36 zwischen den Klemmen 10 und 33 übertragen.
In Fig.6 ist der Primärwicklung 37 ein Kondensator 40 in Serie geschaltet, um einen auf der Gleichtaktstörspannung 21 eventuell befindlichen Gleichanteil der Gleichtaktstörspannung vom Filtertransformator 31 abzukoppeln.
Selbstverständlich ist es im Rahmen der Erfindung auch möglich, daß die beschriebenen Schaltungselemente durch beliebige andere Schaltungsteile ersetzt werden können.

Claims

Patentansprüche
1. Vorrichtung zur Gleichtaktentstörung von leistungselektronischen Umrichtern zur verlustarmen Kopplung eines elektrischen Versorgungssystem.es und eines elektrischen Verbrauchersystemes, von denen mindestens ein System ein Gleichstromsystem ist, in denen die Verbindung zwischen dem Versorgungssystem und dem Verbrauchersystem mittels einem oder mehrerer steuerbarer Schaltelemente taktweise unterbrochen und/oder umgepolt wird, wobei der Umrichter zwischen einem Bezugspotential des Versorgungssystems und einem Bezugspotential des Verbrauchersystems eine Gleichtaktstörspannung erzeugt, dadurch gekennzeichnet, daß zwischen dem positiven Gleichstromanschluß (9) des Umrichters und dem positiven Anschluß (32) des Gleichstromsystems die Wicklung (38), zwischen dem negativen Gleichstromanschluß (10) des Umrichters und dem negativen Anschluß (33) des Gleichstromsystemes die Wicklung (36) und zwischen der Klemme (16), die auf einem Bezugspotential des Gleichstromsystems liegt und der Klemme (5), die sich auf einem Bezugspotential des anderen elektrischen Systems befindet, die Wicklung (37) des Dreiwicklungstransformators (31) angeordnet ist und die Wicklungen (36,37,38) des Entstörtransformators (31) so gekoppelt sind, daß der Wechselanteil der Gleichtaktstörspannung (21) an der Wicklung (37) durch die in die Wicklungen (36,38) eingekoppelten Spannungen kompensiert wird.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Wicklung (37) eine Kapazität (39) in Serie geschaltet ist.
3. Verfahren zur Gleichtaktentstörung von leistungselektronischen Umrichtern zur verlustarmen Kopplung eines elektrischen Versorgungssystemes und eines elektrischen Verbrauchersystemes, von denen mindestens eines ein Gleichstromsystem ist, in denen die Verbindung zwischen dem Versorgungssystem und dem Verbrauchersystem mittels einem oder mehrerer steuerbarer Schaltelemente taktweise unterbrochen und/oder umgepolt wird, wobei der Umrichter zwischen einem Bezugspotential des Versorgungssystems und einem Bezugspotential des Verbrauchersystems eine Gleichtaktstörspannung erzeugt und zwischen dem positiven Gleichstromanschluß (9) des Umrichters und dem positiven Anschluß (32) des Gleichstromsystems die Kompensationsquelle (34) und zwischen dem negativen Gleichstromsanschluß (10) des Umπchters und dem negativen Anschluß (33) des Gleichstromsystemes die Kompensationsquelle (35) angeordnet ist, dadurch gekennzeichnet, daß der Wechselanteil der Gleichtaktstörspannung (21) zwischen den Bezugspotentialen der gekoppelten Systeme am Umrichter, zB zwischen der Klemme (16) des Gleichstromsystems und der Klemme (5) des Drehstromsystems, mittels der Spannungsquellen (34,35) kompensiert wird, sodaß sich die Potentiale an den Anschlüssen (32,33) des Gleichstromsystems gegenüber dem Bezugspotential des anderen Systemes zB an Klemme (5) zeitlich nicht mehr andern
PCT/AT1999/000073 1998-03-20 1999-03-19 Verfahren und vorrichtung zur entstörung von umrichtern WO1999049559A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU30175/99A AU3017599A (en) 1998-03-20 1999-03-19 Method and device for suppressing interference in frequency converters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA490/98 1998-03-20
AT0049098A ATA49098A (de) 1998-03-20 1998-03-20 Verfahren und vorrichtung zur entstörung von umrichtern

Publications (2)

Publication Number Publication Date
WO1999049559A2 true WO1999049559A2 (de) 1999-09-30
WO1999049559A3 WO1999049559A3 (de) 2000-02-03

Family

ID=3492002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT1999/000073 WO1999049559A2 (de) 1998-03-20 1999-03-19 Verfahren und vorrichtung zur entstörung von umrichtern

Country Status (3)

Country Link
AT (1) ATA49098A (de)
AU (1) AU3017599A (de)
WO (1) WO1999049559A2 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1553699A1 (de) * 2002-08-19 2005-07-13 TDK Corporation Gleichtaktsignalunterdrückungsschaltung und normalmodus-signalunterdrückungsschaltung
DE10353192A1 (de) * 2003-11-13 2005-08-04 Schüler, Uwe, Dipl.-Ing.(FH) Verfahren zur Kompensation eines Erdableitstromes bei elektrischen Betriebsmitteln und Vorrichtung zur Kompensation eines Erdableitstromes beim Betrieb von elektrischen Betriebsmitteln
EP1692758A2 (de) * 2003-10-30 2006-08-23 The Regents of the University of California Universelle dreiphasenregler für stromwandler
WO2008134206A2 (en) * 2007-04-23 2008-11-06 Raytheon Company Methods and apparatus for three-phase rectifier with lower voltage switches
DE102005050842B4 (de) * 2005-10-24 2011-06-09 Siemens Ag Verfahren zum Betrieb eines Umrichters sowie Schaltungsanordnung
DE102014210562A1 (de) * 2014-06-04 2015-12-17 Robert Bosch Gmbh Vorrichtung und verfahren für ein anriebssystem mit einem ein-/ rückspeisefähigen umrichter
EP2367272A3 (de) * 2010-02-25 2017-06-21 Kostal Industrie Elektrik GmbH Wechselrichter
EP3916980A1 (de) * 2020-05-26 2021-12-01 Delta Electronics (Shanghai) Co., Ltd. Umwandlungsvorrichtung
US11509239B2 (en) 2020-05-26 2022-11-22 Delta Electronics (Shanghai) Co., Ltd Conversion device having reduced size and cost

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0186524A2 (de) * 1984-12-28 1986-07-02 Kabushiki Kaisha Toshiba Netzfilter
US4888675A (en) * 1987-08-26 1989-12-19 Harris Corporation Switching power supply filter
US5502630A (en) * 1994-07-19 1996-03-26 Transistor Devices, Inc. Power factor corrected rectification
DE19736786A1 (de) * 1997-08-23 1999-02-25 Asea Brown Boveri U-Umrichter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0186524A2 (de) * 1984-12-28 1986-07-02 Kabushiki Kaisha Toshiba Netzfilter
US4888675A (en) * 1987-08-26 1989-12-19 Harris Corporation Switching power supply filter
US5502630A (en) * 1994-07-19 1996-03-26 Transistor Devices, Inc. Power factor corrected rectification
DE19736786A1 (de) * 1997-08-23 1999-02-25 Asea Brown Boveri U-Umrichter

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1553699A4 (de) * 2002-08-19 2008-03-05 Tdk Corp Gleichtaktsignalunterdrückungsschaltung und normalmodus-signalunterdrückungsschaltung
EP1553699A1 (de) * 2002-08-19 2005-07-13 TDK Corporation Gleichtaktsignalunterdrückungsschaltung und normalmodus-signalunterdrückungsschaltung
US7796411B2 (en) 2003-10-30 2010-09-14 The Regents Of The University Of California Universal three phase controllers for power converters
EP1692758A2 (de) * 2003-10-30 2006-08-23 The Regents of the University of California Universelle dreiphasenregler für stromwandler
US8279647B2 (en) 2003-10-30 2012-10-02 The Regents Of The University Of California Universal three phase controllers for power converters
EP1692758A4 (de) * 2003-10-30 2009-09-16 Univ California Universelle dreiphasenregler für stromwandler
DE10353192A1 (de) * 2003-11-13 2005-08-04 Schüler, Uwe, Dipl.-Ing.(FH) Verfahren zur Kompensation eines Erdableitstromes bei elektrischen Betriebsmitteln und Vorrichtung zur Kompensation eines Erdableitstromes beim Betrieb von elektrischen Betriebsmitteln
DE10353192B4 (de) * 2003-11-13 2007-03-08 Schüler, Uwe, Dipl.-Ing. Schaltungsanordnungen zur Kompensation eines kapazitiven Erdableitstroms bei elektrischen Betriebsmitteln
DE102005050842B4 (de) * 2005-10-24 2011-06-09 Siemens Ag Verfahren zum Betrieb eines Umrichters sowie Schaltungsanordnung
US7751212B2 (en) 2007-04-23 2010-07-06 Raytheon Company Methods and apparatus for three-phase rectifier with lower voltage switches
WO2008134206A3 (en) * 2007-04-23 2008-12-18 Raytheon Co Methods and apparatus for three-phase rectifier with lower voltage switches
WO2008134206A2 (en) * 2007-04-23 2008-11-06 Raytheon Company Methods and apparatus for three-phase rectifier with lower voltage switches
EP2367272A3 (de) * 2010-02-25 2017-06-21 Kostal Industrie Elektrik GmbH Wechselrichter
DE102014210562A1 (de) * 2014-06-04 2015-12-17 Robert Bosch Gmbh Vorrichtung und verfahren für ein anriebssystem mit einem ein-/ rückspeisefähigen umrichter
DE102014210562A8 (de) * 2014-06-04 2016-04-14 Robert Bosch Gmbh Vorrichtung und verfahren für ein antriebssystem mit einem ein-/ rückspeisefähigen umrichter
EP3916980A1 (de) * 2020-05-26 2021-12-01 Delta Electronics (Shanghai) Co., Ltd. Umwandlungsvorrichtung
US11509239B2 (en) 2020-05-26 2022-11-22 Delta Electronics (Shanghai) Co., Ltd Conversion device having reduced size and cost
US11515806B2 (en) 2020-05-26 2022-11-29 Delta Electronics (Shanghai) Co., Ltd Conversion device having reduced common-mode current

Also Published As

Publication number Publication date
AU3017599A (en) 1999-10-18
WO1999049559A3 (de) 2000-02-03
ATA49098A (de) 1999-09-15

Similar Documents

Publication Publication Date Title
EP2815497B1 (de) Netzeinspeisevorrichtung, energieeinspeisesystem sowie verfahren zum betrieb einer netzeinspeisevorrichtung
WO2006094952A1 (de) Zwölfpuls-hochspannungsgleichstromübertragung
DE102004052700B4 (de) Mehrphasen-Netzfilter
DE19630284A1 (de) Antriebssystem für ein Schienenfahrzeug und Ansteuerverfahren hierzu
DE10143279A1 (de) Frequenzumrichter
DE102019130838A1 (de) Eine Filteranordnung
DE102005019215B4 (de) Ausgangsfilter für einen gepulsten Stromrichter
WO2016066484A2 (de) Wechselrichter und drossel zur unterdrückung von gleichtaktstörungen
EP0212172A1 (de) Verfahren und Kompensationseinrichtung zur Kompensation von Stromschwingungen
WO1999049559A2 (de) Verfahren und vorrichtung zur entstörung von umrichtern
EP0416050B1 (de) Vorrichtung mit mehrphasiger last, statischem umrichter und drosselspulen
CH693524A5 (de) Einrichtung zur Begrenzung der Aenderungsgeschwindigkeit der Ausgangsgrössen eines über einen Gleichspannungszwischenkreis selbstgeführten mehrphasigen Umrichters.
DE10059331A1 (de) Verringerung von Systemeigenschwingungen bei einem an einem Umrichter mit Spannungszwischenkreis betriebenen elektrischen Motor durch periodisches Abkoppeln des Zwischenkreises vom Netz sowie korrespondierender Spannungszwischenkreis-Umrichter
CH641610A5 (de) Rundsteueranlage.
DE102019005476A1 (de) Ladevorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers eines Fahrzeugs
CH693523A5 (de) Einrichtung zur Begrenzung der Aenderungsgeschwindigkeit der ausgangsseitigen Spannung eines selbstgeführten mehrphasigen Umrichters.
DE19941170A1 (de) Selbstsymmetrierende Einspeiseschaltung
EP3513475B1 (de) Anlage zum übertragen elektrischer leistung mit filtereinheit
WO2004064240A1 (de) Verfahren zur verringerung von common-mode-störströmen in einem elektrischen antriebssystem sowie entsprechendes elektrisches antriebssystem
WO1990010339A1 (de) Saugdrehdrossel und verfahren zum parallelbetrieb zweier stromrichter
DE3213778C2 (de)
DE2433825C3 (de) Vorrichtungen zur Energieversorgung und Verbesserung des Leistungsfaktors von Wechselstromnetzen
EP3526889B1 (de) Umrichteranordnung mit sternpunktbildner
EP0447392B1 (de) Mehrphasen-stromrichter mit glättungsdrossel
DE202006018439U1 (de) Vorrichtung zur Verringerung von Erdableitströmen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AL AM AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase