WO1999048884A1 - Procedimiento de epoxidacion de compuestos olefinicos con peroxido de hidrogeno - Google Patents

Procedimiento de epoxidacion de compuestos olefinicos con peroxido de hidrogeno Download PDF

Info

Publication number
WO1999048884A1
WO1999048884A1 PCT/ES1998/000078 ES9800078W WO9948884A1 WO 1999048884 A1 WO1999048884 A1 WO 1999048884A1 ES 9800078 W ES9800078 W ES 9800078W WO 9948884 A1 WO9948884 A1 WO 9948884A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen peroxide
catalyst
titanium
epoxidation
reaction
Prior art date
Application number
PCT/ES1998/000078
Other languages
English (en)
French (fr)
Inventor
Pilar De Frutos Escrig
José Miguel CAMPOS MARTIN
Original Assignee
Repsol Quimica, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Repsol Quimica, S.A. filed Critical Repsol Quimica, S.A.
Priority to US09/424,572 priority Critical patent/US6160138A/en
Priority to ES98910745T priority patent/ES2178825T3/es
Priority to JP54779899A priority patent/JP2001509821A/ja
Priority to KR10-1999-7010900A priority patent/KR100429675B1/ko
Priority to PT98910745T priority patent/PT987259E/pt
Priority to EP98910745A priority patent/EP0987259B1/en
Priority to PCT/ES1998/000078 priority patent/WO1999048884A1/es
Priority to DE69806155T priority patent/DE69806155T2/de
Publication of WO1999048884A1 publication Critical patent/WO1999048884A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms

Definitions

  • Epoxides such as ethoxy oxide, propylene oxide, glycidol, ethic, are intermediate products in the preparation of a wide range of products.
  • epoxides can be used to give glycols used in fluid formulation.
  • antifreeze or as monomers in the preparation of condensation polymers for example, polyester Polyols, generated by the polymerization with opening of the epoxy ring, are widely used in the preparation of polyurethane foams, sealing elastomers, coatings, etc.
  • the reaction with alcohols it provides gl ⁇ co! ⁇ cos ethers that are used as polar solvents in numerous applications
  • the epoxidized ionic saturated compounds can be carried out with a wide range of reagents. It is particularly interesting the epoxidaoon of liquid phase definas with organic hydroperoxides, a process used indiscriminately despite the fact that in these reactions the co-products are formed as alcohols derived from the hydroperoxides used In camoio, catalytic epoxidation with peroxide ⁇ e hi ⁇ roge ⁇ o has not had such a good success due to economic factors and the lack of efficient catalysts
  • an Italian group developed catalysts called titanium silicates, microporous solids with MF1 type structure, in which titanium atoms occupy positions in the structure of the crystalline lattice
  • HG 0P SHSmi I ⁇ N mra A e ⁇ The effect can be achieved when epoxidation is carried out in the presence of small quantities of non-basic salts such as mine, sodium nitrate, etc.
  • 526947 is a process for producing epoxides where hydrogen peroxide is generated "go, yes, by reacting oxygen or air with a redox system consisting of an alkohydroanthraqi-inone and reacts with olefin in the presence of a sihcalite titanium catalyst and a specific solvent mixture, consisting of one or more aromatic hydrocarbons, one or more polar organic compounds of high point ⁇ e eDUiiicion and an alcohol low weight moiecuiar (methanol!
  • titanium catalysts supported on themselves are effective in the epoxidation of definas with organic hydroperoxides see for example US Pat. Nos. 3642833 3923843 4021454 and 4367342 It is generally believed that these catalysts are not effective in the epoxidation of olefins with peroxide of hydrogen
  • silica patent WO 94/23834 silica and titanium based calyalizers are described and their use in a wide variety of chemical oxidation reactions in particular the epoxidation of olefins with hydrogen peroxide or organic hydroperoxides
  • These catalysts are synthesized impregnating in certain experimental conditions amorphous silica with titanium fluorides although they have moderate epoxide selectivity, for example not exceeding 72%, see example 26 in WO 94/23834
  • the object of the invention is an epoxidation process of unsaturated compounds defined with hydrogen peroxide in the presence of titanium catalysts supported on silica prepared by impregnating a silica with a specific surface area of 50-900 m 2 / g with a solution of a titanium alkoxide or ⁇ e a titanocene in an organic solvent, followed by the separation of!
  • the solid catalyst isolated in this way can optionally be subjected to a drying operation and preferably to a pretreatment and activation operation before being used in the process.
  • epoxidation according to the invention
  • the precise method of pretreatment ⁇ depends on the nature of the titanium alkoxide or the titanocene and the solvent used but, in general, the pretreatment consists in heating the catalyst initially prepared in the presence of an inert gas such as argon nitrogen or carbon dioxide or in the presence of a gas containing oxygen, eg air or a successive treatment in an inert and oxidizing atmosphere.
  • a pretreatment function is the conversion of the organic titanium compound used in the impregnation into the corresponding oxide.
  • the c Miciary components of the catalyst such as titanium isopropoxide or titanium butoxide are transformed into titanium oxide in the oxidizing or inert atmosphere.
  • the pretreatment temperature is not critical and can vary between 200 and 1000 ° C, lasting between 1 and 48 hours.
  • organic solvents used in the impregnation of the silica according to the invention compounds containing at least one oxygen atom in their molecule that are liquid under normal conditions and generally contain between 1 and 8 carbon atoms in S are preferably used.
  • suitable solvents are alcohols and glycols, ketones, ethers and esters Glycols such as ethylene glycol and propylene glycol, ketones such as dimethyl ketone methyl ethyl ketone, ethers such as diisopropyl ether, methyl ether butyl tetrahydrofuran, and esters such as methyl and esters are suitable
  • ketones such as dimethyl ketone methyl ethyl ketone
  • ethers such as diisopropyl ether, methyl ether butyl tetrahydrofuran
  • esters such as methyl and esters
  • Especially preferred butyl acetate are s alcohols between 1 and 8 carbon atoms such as methane !, ethanol, isopropane !, n-butanoi tert-butanoi, cyclohexanoi, and ios met ⁇ !
  • the impregnating solution should preferably be constituted by solutions of titanium alkoxide (with alkoxide groups containing between 1 and 8 carbon atoms; or solutions of titanoc ⁇ nes (with substituted cyclopetadienyl or cyclopentadienyl groups of 5-10 carbon atoms) in a C ⁇ -C 8 alcohol with titanium concentrations between 0 05 and 10 moles / liter
  • the titanium concentration of the solution and the amount of the same should be chosen so that concentration of titanium in the final catalyst is approximately between 0 1 and 10% by weight.
  • the impregnation can be carried out in one or several stages, in the latter case if desired, with intermediate drying and calcination according to known procedures.
  • epoxidation of unsaturated definite compounds it may be advisable to incorporate into the catalyst, as a promoter, small amounts of alkali or alkaline earth metal salts, for example lithium, sodium, potassium, magnesium or calcium.
  • silica can be previously impregnated with a solution, aqueous or in an organic solvent, of the promoter and then impregnate the silica with the titanium solution or perform the impregnation of the silica in a single stage with a solution of the promoter and the titanium compound in the oxygenated organic solvent
  • the amount of promoter a use is small and is generally between 0.01% and 1% by weight (mass of promoter per 100 g of catalyst)
  • the function of the promoter is to avoid reactions of opening of the oxygen ring, which can lead to unwanted products and which are usually catalyzed by surface acid centers of the catalyst, and to improve the selectivity in this way. Concerning the formation of epoxides
  • the catalysts prepared in accordance with this invention are especially suitable for the liquid phase epoxidation of carbon-carbon double bonds of olefinic compounds by reaction with hydrogen peroxide.
  • the carbon-carbon double bonds of olefinic compounds that can be epoxylated according to the invention. can be written with the formula
  • Ri R 2 , R 3 and R 4 may be hydrogen atoms or halogen radicals, alkyl master cycium alkyd, a ⁇ lalkyl or carboxylic groups, suiphonic anhydrous ester, nitrite or ether.
  • the radicals cyclic alkyl aquyl and radical may also contain carboxylic groups.
  • esters, sulfonic acids, nitrite, hydroxyl halogen and ketone groups It can be seen that our invention is applicable to a wide variety of oiefinic compounds
  • all olefinic compounds containing non-aromatic double bonds can be epoxidated with hydrogen peroxide
  • a large group of olefinic compounds that can be oxidized with hydrogen peroxide according to the invention are alkenes containing between 2 and 18 carbon atoms, such as ethylene, propylene, 1-butene, 2-butene, isobutylene, 1-hexene , 1- ocene, 1-hexadecene
  • propyne and you define C are particularly preferred.
  • the substituted cycloalkenes and cycloalkenes constitute another class of olefinic compounds that can be oxidized in accordance with this invention.
  • Suitable cycloalkenes are for example cyclopentene cyclohexene, cyclooctene and cyclododecene.
  • viniiciciohexene Alkenes with arylic substituents can be used, for example styrene, divinylbenzene, etc.
  • olefinic compounds due to their bulkiness cannot be oxidized with other microporous catalysts, such as norbomeno
  • the olefinic compounds that can be used according to the invention may contain other functional groups attached or not directly to the carbon-carbon double bond.
  • aiyl alcohol, and its esters for example, aiyl alcohol, and its esters, chloride of allyl bromide, acrylic and methacrylic acids and their esters, fumá ⁇ co and maleteo acids and their esters, etc.
  • the epoxidation reaction temperature is preferably between 30 and 140 ° C (more preferably between 60-100 ° C), which are sufficient to achieve selective conversions of olefins to epoxide in short reaction times with a non-selective decomposition of peroxide. of minimum hydrogen
  • the optimum reaction temperature is determined among other factors by the concentration of catalyst, the reactivity of the olefinic compound and its concentration, and by the type of solvent.
  • the reaction is preferably carried out at atmospheric pressure or at elevated pressure (typically between 0.1 and 10 MPa) to maintain the components of the reaction mixture in liquid phase.
  • elevated pressure typically between 0.1 and 10 MPa
  • an olefin is epoxidated having a boiling point at atmospheric pressure.
  • propyne it is necessary to operate at a sufficient pressure to keep the propylene in liquid phase
  • the epoxidation reaction according to the invention can be carried out e-discontinuously, semicontinuously, or continuously, using a suitable reactor type, for example fixed catalyst bed, a stirred tank type reactor with a suspension of particles of catalyst, etc.
  • a suitable reactor type for example fixed catalyst bed, a stirred tank type reactor with a suspension of particles of catalyst, etc.
  • reactanids can be added to the reactor in combination or sequentially. For example, hydrogen peroxide and / or oiefine can be added incrementally. to! reactor.
  • the epoxidation should be carried out in the presence of suitable solvents capable of dissolving or dispersing the reactants and facilitating the control of the reaction temperature.
  • suitable solvents are Ce-Ce aromatic alcohols such as 1-ten-yletane-2-phenaletane or aliphatic C- ⁇ -C aicohoies - 6 such as methane! ethanol, n-butanol, hexane !, but more preferably 2-methyl-2-propane!
  • the catalyst may be separated from the reaction mixture by different methods known as filtration if cataltza ⁇ or suspen ⁇ ido in ⁇ me ⁇ io reaction is used for further reuttiization
  • filtration if cataltza ⁇ or suspen ⁇ ido in ⁇ me ⁇ io reaction is used for further reuttiization
  • Suitable regeneration techniques are well known and include, calcination and solvent treatment
  • the epoxide can be separated from the reaction mixture resulting from the ⁇ e! catalyst by methods known as, for example, fractional distillation, extractive distillation, liquid-liquid extraction etc.
  • a titanium catalyst on silica was prepared according to the following procedure, 1.43 g of isopropyl orthotitanoate was added to 300 ml of 1-hexanol, stirred, and the mixture was heated to 150 ° C, then 9 were added g ⁇ e Grace silica (specific surface area of 210 m 2 / g and a pore volume of 1.43 cm 3 / g), stirring and temperature were maintained for 2 h. It was allowed to cool and filtered by washing the solid with the solvent used in the preparation. Finally it was calcined at 500 ° C for 5 h.
  • Example 2 A catalyst was prepared by operating in the same manner as in Example 1, but 1-fen ⁇ letanoi was used as solvent instead of 1-hexanoi.
  • a catalyst was prepared operating in the same manner as in Example 1, but cyclohexanol was used as solvent instead of 1-hexanol. This catalyst was named as
  • a catalyst was prepared operating in the same manner as in Example 1, but toluene, a non-oxygenated solvent, was used as the solvent instead of 1-hexanol
  • a titanium catalyst on silica was prepared using TiF 4 as a titanium precursor according to the method described in example 1 of WO 94/23834. The content of the solid in titanium was 1.2% by weight. This catalyst was named as T1F / YES 2 .
  • a titanium catcher on silica was prepared using TiC! according to the method described in example 1 of the US 392384 ⁇ patent and the titanium content of! solid was 1.2% by weight This catalyst was named as T: C! / Si0 2 Examples 4-7
  • the catalyst prepared in Example 3 was used in epoxidacton ⁇ e norbomeno a voluminous define that cannot be epoxidated on TS-1.
  • 02 moles of define, 1 C 4 g of dig me and 1 g of catanza ⁇ or La were introduced into the reactor.
  • the mixture was heated to ⁇ d ° C and 4.36 g of a hydrogen peroxide solution was added dropwise over 30 minutes: obtained from 0 36 g of 70% wt of H 2 0 2 in water and 4 g of dig me
  • After a reaction lady from the beginning of the addition of the hydrogen peroxide a conversion of hydrogen peroxide of 93% and a selectivity to the epoxy ⁇ 98% were obtained
  • Example 9 The catalyst of example 3 (T ⁇ / S, O t ) was tested in the reaction of cyclohexene epoxidation with hydrogen peroxide 0.2 moles of olefin were introduced into the reactor 10
  • the catalyst T ⁇ / S ⁇ 0 2 (prepared according to Example 3) was proooled in the reaction of edoxidation of 1-octene with hydrogen peroxide. 02 moles of define 11 g of 2-methyl-2-propanol and 1 g were introduced into the reactor. g catalyst the mixture was heated to 80 ° C. and 4 g of a 6% wt of H ⁇ 0 2 in 1-fen ⁇ letanol was obtained after one hour of reaction from the start was added dropwise during 30 minutes Addition of peroxide ⁇ e hydrogen, a conversion of H 2 0 ⁇ e> /% and a selectivity to epoxide ⁇ e ⁇ 95% TaD'a 3
  • a hydrogen peroxide solution was prepared by oxidation of 1- phenyethanol as described in Example 1 1 of Spanish Patent No. 9603201. This solution with an H content ; 0 2 of 4.24% ⁇ . It was used in the epoxidation of 1- oethene without any type of prior purification. 0.2 moles of olefin, 11 g of 2-methyl-2-propanol and 1 g of catalyst prepared according to the example were introduced into the reactor
  • Example 12 30 g of catalyst were prepared starting from a silica in pellets (Grace SP9-
  • a batch tank agitated tank reactor was used to operate with a solid catalyst in which 12 g was introduced into the basket and the remaining volume of it was filled with glass beads. Then 192 g of 2 were added. -met ⁇ l-2 -propanol and 147 2 g ⁇ e propiiene and the mixture under stirring, was heated to reach the reaction temperature 70 ° C At that time nitrogen was introduced until reaching a pressure of 34 MPa, to ensure that the propylene is in the liquid phase To the reaction mixture, 104 g of an ai 3 2% wt solution of hydrogen peroxide in MBA and 2-methyl-2-propanoi in 30 minutes were added after one hour of reaction, from the At the beginning of the addition of hydrogen peroxide, a conversion of H 2 0 2 96.5% and a selectivity to epoxide of 92% were obtained

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Compounds (AREA)

Abstract

Procedimiento de epoxidación de compuestos olefínicos con peróxido de hidrógeno en presencia de disolventes, preferentemente alcoholes C1-C8, utilizando catalizadores de titanio soportado sobre sílice, preparados por impregnación de la sílice con disoluciones de alcóxidos de titanio y/o titanocenos en disolventes orgánicos oxigenados.

Description

PROCEDIMIENTO DE EPOXIDACION DE COMPUESTOS OLEFINICOS CON PERÓXIDO DE HIDROGENO
Estado dei Arte Los epóxidos tales como óxiαo de etiieπo, óxiαo de propileno, glicidol, eíc, son productos intermedios en la preparacón de una amplia gama αe productos Por ejemplo, los epóxidos pueden h'dro zarse para dar glicoies utilizados en la formulación de fluidos anticongelantes o como monómeros en la preparación de polímeros de condensación, por ejemplo, poliesteres Los polioles, generados mediante la polimerización con apertura del anillo de los epóxidos, se utilizan ampliamente en la preparación de espumas de poliuretanos, elastomeros sellantes, recubrimientos, etc La reacción con alcoholes proporciona éteres glιco!ιcos que se utilizan como disolventes polares en numerosas aplicaciones
La epoxída ón de compuestos iπsaturados oíefinicos puede realizarse con una arπpl.a gama de reactivos Es particularmente interesante la epoxidaoon de definas en fase liquida con hidrope- roxidos orgánicos, proceso ut' zado industπaimente a pesar ce que en estas reaccones se forman como coproductos los alcoholes derivados de los hidroperóxidos utilizados En camoio, la epoxidacion catalítica con peróxiαo αe hiαrogeπo no ha teniσo tantc éxito αeoido a factores económicos y a la carencia de catalizadores eficientes Sin embargo en ios años ochenta un grupo italiano desarrolló catalizadores denominados silicaiitas de titanio, sólidos microporosos con estructura tipo MF1, en los que los átomos de titanio ocupan posiciones en la estructura de la red cristalina, patentes U S números 4410501 , 4666692, 4701428, 4824976 y 4833260 Estos compuestos de titanio y silicio se conocen como TS-1 , y son catalizadores efectivos para la epoxidación de compuestos olefinicos con peroxiαo αe hidrógeno en presencia o en ausencia de disolventes Aunque la selectividad a epóxido es elevada cuando la epoxidación se realiza en un medio prótico tal como un alcohol o agua es muy importante tanto por motivos cinéticos como de selectividad, la utilización de cantidades importantes de eranoi como disolvente Es'e alcohol es consiσeraαo como un cocatalizador ( G Cieπci et al J Catal 123 159 (1991), M G Cleπci et al en Green Chemistry ACS Pub Services, 1936 p 58) La utilización de este disolvente presenta un problema en la epoxidación de propileno, ya que se dificultan las posteriores etapas de purificación del producto por el próximo punto de ebullición entre el óxido de propileno y el metanol (Solicitud de Patente Europea n° 673935 A2) Aunque la selectividad a epóxido es relati amente alta, se produce la apertura no selectiva dei anillo oxιránιco durante la reacción oe epox'dación Para aumentar la selectividad a epoxido se puede tratar el catalizador con un agente neutralizante de los centros ácidos superfic.aies de' catalizador responsab'es de la formación de estos subproductos no deseados (Patente USA n° 4824296, Patente Europea n° 230949) Posteriormente, en la solicitud de Patente Europea n° 712352 A1 se indica que este mismo
HG 0P SHSmi IΠΠN mra A e\ 2 efecto se puede conseguir con cuando la epoxidaαon se realiza en presencia de pequeñas cantidaαes de sales no básicas tales como cloruro αe mío, nitrato sódico, etc
Por otra parte como consecuencia del pequeño tamaño de poro de las sincantas αe titanio (5 6 x 5 3 A), existe una gran variedad αe olefiπas que no se oueαen epox.αar coi . estos catalizadores ya que las olefinas voluminosas no pueden alcanzar los centros act.vos
Para poder evitar estas limitaciones vanos autores han σrocedido a la síntesis de zεohtas de tamaño de poro mayor con titanio en la red como por ejemplo la estructura de zeolita beta (Tiβ) (Solicitud de patente española n° 9101798 Camblor et al en J Chem Soc Chem Commun página 589 (1992) y Patente USA n° 5412122) pero se obtuvo muy oaja selectividad a epoxido debido a la presencia de centros ácidos (aluminio) en la red que favorecen la apertura del anillo oxirano Debido a estos oroblemas ciertos autores reclaman la síntesis de compuestos Tiβ sin la presencia de aluminio en la red (Patentes USA n° 5S74747 y 5621122 y Patente Europea n° 659685 y Camblor ei al en Chem Commun pág.r.a 1339 (1996)) pero a pesar de ello sigue presentando muy baja selectividad a epóxido El precio relativamente elevado del peróxido de hidrógeno en disolución acuosa comercial y la dificultad de transporte αe disoluciones concentradas han αado lugar a la propuesta dei uso de estos catalizadores en procesos conjuntos de obtención de epoxidos y de peróxido de hidrógeno Así, por ejemplo, la Patente Europea n° 526947 αescnbe un proceso para producir epóxidos donde el peróxido de hidrógeno se genera "ir, s.íJ por reacción de oxígeno o aire con un sistema redox constituido por una alquihidroantraqi-inona y reacciona con la olefína en presencia de un catalizador sihcalita de titanio y una mezcla especifica de disolventes, constituida por uno o vanos hidrocarburos aromáticos uno o mas compuestos orgánicos polares de alto punto αe eDUiiicion y un alcohol de bajo peso moiecuiar (metanol! Las razones precisas de ¡a utilización αe mezclas comolejas de disolventes no se indican en la citada publicación pero es conocido que las aiquilantraqumonas y las alαuilhidroantraquinonas presentan una baja solubilidad en disolventes comunes limitando ia cantidad máxima de peróxido de hidrógeno que puede generarse en un determinado volumen de reactor La Patente Europea n° 549013 describe asimismo un proceso de epoxidacion de definas con peróxido de hidrogeno en presencia αe silicalita de titanio que utiliza una mezcla de disolventes agua-aicohol para extraer el H202 proveniente de un proceso de oxicacion αei sistema redox de alquilhidroantraquinona Como se ha indicado anteriormente las aiquiihidroantraαuinonas utilizadas poseen bajas solubilidades en disolventes lo αue limita significativamente la utilidad comercial del proceso En la Patente USA n° 5453093 se describe un proceso integrado para la proαuccion σe epoxidos casado en la oxiαacion αe sales de alquilhidroantraquinonas con un sustituyeme acido sulfonico para dar una mezcla compleja de reacción que contiene peróxido de hidrógeno El producto de la reacción de oxiαaσón se utiliza en ia epoxidación de olefinas en presencia de silicalita de titanio como catalizador De esta forma se postulo que la solubilidad de las sales de alquilhidroantraqumonas en diferentes disolventes disminuye sustanciaimen-e el tamaño deí reactor En las Patentes USA números 5214168 y 5384418 y Europeas números 588336 y
732327 se describen procesos para la epoxidación de definas en los que mediante la oxidación de alcoholes secundarios con oxígeno o aire se obtiene peróxido de hidrógeno y las correspondientes cetonas La disolución de H202 obtenida, o con un tratamiento posterior, se utiliza en la epoxidación de olefinas utilizando silicalita αe titanio como catalizador y metanoi como disolvente Todos estos procesos de epoxidación utilizan en la etapa de epoxiαaciόn catalizadores tipo tamiz molecular con titanio en ia red, los cuales debido a su dificultad de síntesis presentan un elevado precio Estos catalizadores se desactivan rápidamente en el medio de reacción por lo que para su uso a escala industrial y fácil reutilización es necesario ¡a utilización de aglomerantes inertes (Patente Europea n° 200260) o una modificación deí método de preparación (Patente Europea π° 638362), lo que resta Tase activa ai catalizador empleado
Es conocido que los catalizadores de titanio soportados sobre si ce son efectivos en la epoxidación de definas con hidroperóxidos orgánicos ver por ejemplo las Patentes USA números 3642833 3923843 4021454 y 4367342 Se cree generalmente que estos catalizadores no son efectivos en ia epoxidación de olefinas con peróxido de hidrogeno No obstante, en la patente WO 94/23834 se describen caíalizaαores a base de sílice y de titanio y su utilización en una gran variedad de reacciones químicas de oxidación en particular ia epoxidación de olefinas con peróxido de hidrógeno o hidroperóxidos orgánicos Estos catalizadores se sintetizan impregnando en ciertas condiciones experimentales sílices amorfas con fluoruros de titanio aunque presentan selectividad a epoxido moderadas, por ejemplo no superiores al 72%, ver ejemplo 26 en la patente WO 94/23834
Asi pues, en la actualiαaα ia técnica siente la necesidad αe αisponer de nuevos catalizadores activos y selectivos en la epoxidación de compuestos insa-uraαos oieíínicos con peróxido de hidrógeno, más económicos, fáciles de preparar fácilmente regenerables capaces de operar a temperaturas relativamente elevadas con altas velocidades de reacción y que no requieran el uso de metano! como disolvente
Por nuestra parte, y σe una manera totalmente inesperada hemos αescubierto que estos problemas de¡ arte anterιo¡ se pueden evitar y/o minimizar utilizando catalizaαores de titanio soportados sobre sílice preoarados de acuerαo con ia invención Descripción de la invención El objeto de la invención es un procedimiento de epoxidaαón de compuestos insaturados definióos con peróxido de hidrógeno en presencia de catalizadores de titanio soportados sobre sílice preparados mediante la impregnación de una sílice con una superficie específica de 50-900 m2/g con una disolución de un aicóxido de titanio o αe un titanoceno en un disolvente orgánico, seguido de la separación de! exceso de disolución mediante procedimientos conocidos, por ejemplo mediante filtración, decantación, centrifugación o evaporación El catalizador sólido aislado de esta manera puede someterse, opcionalmente, a una operación de secado y preferentemente a una operación de pretratamiento αe activación antes de ser utilizado en el procedimiento de epoxidacion de acuerdo con la invención Ei método preciso de pretratamiento αepende de ia naturaleza dei alcóxido de titanio o del titanoceno y del disolvente utilizado pero, en general, el pretratamiento consiste en el calentamiento del catalizador inicialmente preparado en presencia de un gas inerte tal como nitrógeno argón o dióxido de carbono o en presencia de un gas que contenga oxigeno, p e aire o bien un tratamiento sucesivo en una atmosfera inerte y oxidante Una función del pretratamiento es ia conversión del compuesto orgánico de titanio utilizado en la impiegnación en el óxido correspondiente Así por ejemplo, los componentes miciaies del catalizador tales como isopropóxido de titanio o butóxido de titanio se transforman en óxido de titanio en ia atmósfera oxidante o inerte La temperatura de pretratamiento no es critica y puede variar entre 200 y 1000° C, con duración comprendida entre 1 y 48 horas Como disolventes orgánicos utilizados en la impregnación de la sílice de acuerdo con ia invención se utilizan preferentemente compuestos que contienen ai menos un átomo de oxígeno en su molécula que son líquidos en condiciones normales y que en general contienen entre 1 y 8 átomos de carbono en S molécula Por ejemplo son disolventes adecuados ios alcoholes y ios glicoles, las cetonas los éteres y los esteres Pueden utilizarse glicoies tales como etilénglicol y propilénglicol, cetonas tales como dimetilcetona metiletilcetona, éteres tales como diisopropiléter, metiltercbutiléter y tetrahidrofurano, y esteres como acetato de metilo y acetato de butilo Especialmente preferidos son los alcoholes entre 1 y 8 átomos de carbono tales como metano!, etanol, isopropano!, n-butanoi terc-butanoi, ciclohexanoi, y ios metí! y dimetil clohexanoles De acuerdo con ia invención, la disolución impregnadora debe estar constituida preferentemente por disoluciones de alcóxido de titanio (con grupos aicóxido conteniendo entre 1 y 8 átomos de carbono; o disoluciones de titanocεnos (con grupos ciclopetadienilos o ciclopentadienilos sustituidos de 5-10 átomos de carbono) en un alcohol Cι-C8 con concentraciones de titanio comprendidas entre 0 05 y 10 moles/litro La concentración de titanio de ia disolución y la cantidad de la m¡sma deben elegirse de manera que ¡a concentración de titanio en el catalizador final este aproximadamente comprendida entre 0 1 y 10 % en peso La impregnación puede realizarse en una sola o en vanas etapas, en este último caso si se desea, con secado y calcinación intermedios de acuerdo con procedimientos conocidos En la epoxidación de compuestos definióos insaturados puede ser recomendable la incorporación al catalizador, como promotor, de pequeñas cantidades de sales de metales alcalinos o alcalinotérreos, por ejemplo litio, sodio, potasio, magnesio o calcio Para ello se puede impregnar previamente la sílice con una disolución, acuosa o en un disolvente orgánico, del promotor y a continuación impregnar la sílice con la disolución de titanio o realizar la impregnación de la sílice en una sola etapa con una disolución dei promotor y dei compuesto de titanio en el disolvente orgánico oxigenado La cantidad de promotor a utilizar es pequeña y está comprendida generalmente entre 0,01 % y 1% en peso (masa de promotor por cada 100 g de catalizador) La función del promotor es evitar reacciones de apertura del anillo oxiránico, que puedan dar lugar a productos no deseados y que suelen estar catalizadas por centros ácidos superficiales dei catalizador, y mejorar αe esta forma la selectividad en lo que respecta a ia formación de epóxidos
Los catalizadores preparados de acuerdo con esta invención son especialmente adecuados para la epoxidación en fase iíquida de dobles enlaces carbono-carbono de compuestos olefínicos por reacción con peróxido de hidrógeno Los dobles enlaces carbono-carbono de compuestos olefínicos que pueden ser epoxiαados de acuerdo con la invención pueαen αescπbirse con la formula
Figure imgf000007_0001
Figure imgf000007_0002
donde Ri R2, R3 y R4 pueden ser átomos de hidrógeno o halógenos radicales alquilo amo cicioaiquiio, aπlalquilo o grupos carboxilicos, ester anhiαro suifonico, nitrito o éter Los radicales aiquiio cicioalquilo aπiahlo y anlo pueden también contener grjpos carboxílicos. esteres, ácidos sulfónicos, nitrito, halógeno hidroxilo y grupos cetónicos Puede apreciarse que nuestra invención es aplicable a una gran variedad de compuestos oiefínicos En general pueden epoxidarse con peróxido de hidrógeno todos los compuestos olefínicos que contienen dobles enlaces no aromáticos Un gran grupo de compuestos olefínicos que pueden epoxidarse con peróxido de hidrógeno de acuerdo con la invención son los alquenos que contienen entre 2 y 18 átomos de carbono, tales como etiteno, propileno, 1-buteno, 2-buteno, isobutileno, 1-hexeno, 1- ocíeno, 1-hexadeceno Sin embargo, en ia práctica se prefieren particularmente propiieno y definas C .
Los cicloalquenos y cicloalquenos sustituidos constituyen otra clase de compuestos olefínicos que pueden epoxidarse de acuerdo con esta invención Cicloalquenos adecuados son por ejemplo ciclopenteno ciclohexeno, cicloocteno y ciclododeceno También pueden utilizarse compuestos olefinicos cíclicos con más de un doble enlace en su molécula, pot ejemplo díciclopentadieno cicíooctadieno, y viniiciciohexeno Pueden utilizarse aiquenos con sustituyentes aríiicos, por ejemplo estireno, divinilbenceno, etc También se deben ¡nclu;r compuestos olefínicos que debido a su voluminosidad no se pueden epoxidar con otros catalizadores de naturaleza microporosa, como por ejemplo norbomeno
Los compuestos olefínicos que pueden utilizarse de acuerdo con la invención pueden contener otros grupos funcionales unidos o no directamente al doble enlace carbono-carbono
Por ejemplo, alcohol aiílico, y sus esteres, cloruro bromuro de alílo, ios ácidos acrílico y metacrílico y sus esteres, los ácidos fumáπco y maleteo y sus esteres, etc.
El peróxido de hidrógeno comercial en disoluciones acuosas de aproximadamente 30% es un producto estándar del mercado pero presenta como desventaja su precio relativamente alto Sin embargo, el proceso objeto de la invención presenta la ventaja de la utilización de disoluciones diluidas de peróxiαo de hidrógeno en disolventes orgánicos Las concentraciones en peróxido de hidrógeno preferidas están comprendidas entre el y e! 15% Estas disoluciones diluidas de peróxido de hidrogeno en disolventes orgánicos pueder, obtenerse a bajo precio, por ejemplo mediante oxidación con oxígeno molecular de aleonóles secundarios tales como alcohol isopropílico, 1-feniletanol aiquiihidroantraqumonas etc , de acuerdo con procedimientos conocidos, pero preferentemente como se describe en la Patente Española n°9603201 , y ser utilizados directamente en ¡a epox¡αacιon de ios compuestos olefínicos sin purificación o extracción previa de peróxido de hidrógeno
La temperatura de reacción de epoxidación se encuentra preferiblemente entre 30 y 140°C (más preferiblemente entre 60-100°C), que son suficientes para conseguir conversiones selectivas de las olefinas a epóxido en tiempos cortos de reacción con una descomposición no selectiva del peróxido de hidrógeno mínima En general, es ventajoso llevar a cabo ia conversión del peróxido de hiαrogeno 10 mas completa pos¡Die, preferibiemen-e por encima dei 90% y más preferiblemente por encima dei 95% para eviíai riesgos asociados a la presencia de peróxido de hidrogene er, los productos a la salida de! reactor, en las etapas de aislamiento y purificación del epóxido. La temperatura de reacción óptima viene determinada entre otros factores por la concentración de catalizador, la reactividad del compuesto olefínico y su concentración, y por el tipo de disolvente Generalmente son adecuados tiempos de residencia comprendidos entre 10 y 30G minutos en función de las variables anteriormente mencionadas. La reacción se lleva a cabe preferentemente a presión atmosférica o a presión elevada (típicamente entre 0.1 y 10 MPa) para mantener los componentes de la mezcla de reacción en fase líquida Por ejemplo, cuando se epoxida una olefina que posee un punto de ebullición a presión atmosférica inferior a la temperatura de reacción de epoxidación por ejemplo propiieno, se necesita operar a una presión suficiente para mantener el propileno en fase líquida
La reacción de epoxidación de acuerdo con la invención puede llevarse a cabo e- discontinuo, semicontinuo, o en continuo, utilizando un tipo de reactor adecuado, por ejemplo de lecho fijo de catalizador, un reactor de tipo tanque agitado con una suspensión de partículas de catalizador, etc Pueden utilizarse ios métodos generalmente conocíaos para realizar epoxiαaciones con peróxido de hidrógeno con catalizadores metálicos Asi, los reactaníes se pueden adicionar al reactor en forma combinada o secuenciaimente Por ejemplo, el peróxido de hidrógeno y/o la oiefina se pueden adicionar incremeníai ente a! reactor.
La epoxidación debe realizarse en presencia de disolventes adecuados capaces de disolver o dispersar ios reactantes y facilitar el control de ia temperatura de reacción Los disolventes preferidos son alcoholes aromáticos Ce-Ce tales como 1-tenιletanoι 2-fenιletanoι o aicohoies alifáticos C-ι-C-6 tales como metano! etanol, n-butanol, hexano!, pero más preferentemente 2-metιl-2-propano!.
Una vez que en ia reacción de epoxidación se ha conseguido el grade αeseado de conversión, el catalizador se puede separar de la mezcla de reacción mediante diferentes métodos conocidos por ejemplo filtración si se utiliza el cataltzaαor suspenαido en e¡ meαio de reacción, para su posterior reuttiizacion Cuando ia reacción se íieva a cabo en continuo puede ser deseable regenerar periódicamente o continuamente todo o una porc¡c~ α'ei catalizador usado para mantener los valores óptimos de actividad y selectividad Las técnicas de regeneración adecuadas son bien conocidas ε incluyen, la calcinación y el tratamiento con disolventes El epóxido puede ser separado de la mezcla de reacción resultante de la separación αe! catalizador mediante métodos conocidos como por ejempto, destilación fraccionada, destilación extractiva, extracción liquido-uquido etc
Con la descripción anterior cualquier experto puede establecer las características esenciales de la invención, sin apartarse de' espvit y objetivo de la misma, introducir los cambios y modificaciones para adaptarla a la epoxidación de olefinas en diferentes condiciones.
Ejemplos
Ejemplo 1
Se preparó un catalizador de titanio sobre sílice según el siguiente procedimiento se adicionaron 1 ,43 g de ortotitanoato de isopropilo a 300 mi de 1-hexanol, se pusieron en agitación, y la mezcla se calentó a 150°C, a continuación se adicionaron 9 g αe sílice Grace (superficie especifica de 210 m2/g y un volumen de poro de 1.43 cm3/g), la agitación y la temperatura se mantuvieron durante 2 h. Se dejó enfriar y se filtró lavando el sólido con el disolvente empleado en la preparación. Por último se calcinó a 500°C durante 5 h.
Ejemplo 2 Se preparó un catalizador operando de la misma forma que en el ejemplo 1 , pero se utilizó 1-fenιletanoi como disolvente en lugar de 1-hexanoi.
Ejemplo 3
Se preparó un catalizador operando de la misma forma que en el ejemplo 1 , pero se utilizó ciclohexanol como disolvente en lugar de 1-hexanol. Este catalizador se nombró como
Ti/Sι02
Ejemplo Comparativo 1
Se preparó un catalizador operando de la misma forma que er eí ejemplo 1 , pero se utilizó tolueno, disolvente no oxigenado, como disolvente en lugar de 1-hexanol
Ejemplo Comparativo 1 b
Se preparó un catalizador de titanio sobre sílice utilizando como precursor de titanio TiF4 según el método descrito en el ejemplo 1 de la patente WO 94/23834 El contenido en, titanio del sólido fue del 1 ,2 % en peso Este catalizador se nombró como T1F/SÍO2.
Ejemplo Comparativo 1 c
Se preparó un catanzador de titanio sobre sílice utilizando como precursor de titanio TiC! según el método descrito en el ejemplo 1 de ia patente US 392384Ξ Ei contenido en titanio de! sólido fue del 1 ,2 % en peso Este catalizador se nombró como T:C!/Si02 Ejemplos 4-7
Los catauzaαores αe los ejemplos 1 al 3 y el comparativo 1 se probaron en ¡a reacción de epoxidación de 1-octeno con peróxido de hidrógeno Se introdujeron en el reactor 0 2 moles de defina, 11 g de 1-fenιletanol y 1 g de catalizado- La mezcla se calentó a 80°C y se añadió gota a gota durante 30 minutos 4 g de una disolución 6 % wt de H 02 en -fenιietanol Los resultados obtenidos tras una hora de reacción desde el inicio de la adición del peróxido de hidrogeno se recogen en la Tabla 1 , de los que se deduce la necesidad de utilizar en la síntesis de ios catalizadores un disolvente orgánico oxigenado
Tabla 1
Efecto de! disolvente utilizado en la síntesis del catalizador sobre el comDortamier.tc en la reacción de epoxidación de 1-octeno (1 h) (condiciones de reacción en el texto)
Disolvente en la
Ejemplo % Co H20^ °Ó Sel % Sel
Síntesis Epoxido Acetofenona
4 Tolueno 97 36 17
5 1-Hexanol 96 53 8
6 1-Femletanol 98 56 6
7 Ciclohexanol 98 68 6
Figure imgf000011_0001
Ejemplo 8
El catalizaαor preparado en el ejemplo 3 se empleo en ¡a epoxidacton αe norbomeno una defina voluminosa que no se puede epoxidar soore TS-1 Se introdujeron en ei reactor 02 moles de defina, 1 C 4 g de dig me y 1 g de catanzaαor La mezcia se calentó a δd°C y se añadió gota a gota durante 30 minutos 4,36 g de una disolución de peróxido de hidrógen: obtenida a partir de 0 36 g de 70 % wt de H202 en agua y 4 g de dig me Tras una ñora de reacción desde el inicio de la adición del peróxido de hidrogeno se obtuvo una conversión de peróxido de hidrogeno del 93 % y una selectividad ai epoxiαo αel 98 %
Ejemplo 9 El catalizador del ejemplo 3 (Tι/S,Ot) se probo en la reacción de epoxidaoión de cicíohexeno con peróxido de hidrógeno Se introdujeron er el reactor 0.2 moles de olefina 10
10,4 g de d'glime y 1 g de catalizador La mezcla se calentó a 80υ C y se añadieron gota a gota durante 30 minutos 4,36 g de una disolución αe peróxido de hiαrogeno obteniαa a partir de 0,36 q de 70 % wt de H202 en agua y 4 g αe αiglime Tras una hora de reacción αesde el inicio de la aαición dei peróxido de hiαrogeno se ootuvo una conversión αe¡ 90 % con una selectividad a epoxido del 77 % Tabla 2
Ejemplo comparativo 9
Se procedió de igual forma que en el ejempío 9, pero utilizando el catalizador preparado según el ejemplo comparativo 1 Los resultados obtenidos recogidos en la tabla 2 muestran que el catalizaαor de la presente invención es más activo y selectivo a epoxiαo que los utilizados en el arte anterior
Tabla 2
Epoxidación de ciclohexeno a 80° C (1 h de reacción; conαiciones de reacción αel ejempio 3
Ejemplo Catalizador % Conv % Sel % Sei j % Sel H202 Epoxido DIOI i Otros
T1/S1O2
9 90 77 16 ; 7
(Ejem 3)
I
Comparativo 9 TιF/Sι02 I I
84 60 36 (Comparativo 1 b) I 2
Figure imgf000012_0001
otros = 3-cιclohexen-1-d
Ejemplo 10
El catalizador Tι/Sι02 (preparado según e! ejemplo 3) se prooo en la reacción de eDOxidacion de 1-octeno con peróxido de hidrogeno Se introdujeron en el reactor 02 moles de defina 11 g de 2-metιl-2-propanol y 1 g de catalizador La mezcla se calentó a 80°C y se añadieron gota a gota durante 30 minutos 4 g de una disolución 6 % wt de H¿02 en 1-fenιletanol Se obtuvo, tras una hora de reacción desde el inicio de la adición de peróxido σe hidrogeno, una conversión del H20¿ αe> / % y una selectividad a epoxido αe¡ 95 % TaD'a 3
Eiemoio Comparativo 10
Operando de forma idéntica al ejemplo 10 pero utilizando et catalizador de! ejemplo comparativo 1 b se realizo la epoxiαacion αe 1-octeno LOS resuitaαos ooteniαos a 1 h de 11 reacción se recogen en ia tabla 3. El catalizador de la presente invención es más activo y selectivo a epóxido que los utilizados en ei arte anterior (WO 94/23834).
Ejemplo Comparativo 10b
Operando de forma idéntica al ejemplo 10 pero utilizando el catalizador del ejemplo comparativo 1c se realizó la epoxidación de 1 -octeno. Los resultados, obtenidos a 1 h de reacción y recogidos en la tabla 3, muestran que el catalizador de la presente invención es más activo y selectivo a epóxido que los utilizados en el arte anterior
Tabla 3
Epoxidación de 1-octeno (1 h de reacción), condiciones αe reacción dei ejempio 11.
Ejemplo Catalizador % Conv. % Sel. % Sel. % Sel. H202 Epóxido Otros ACP
TÍ/SÍO2
10 97 95 2 0
(Ejem. 3)
TιF SiO2
Comparativo 10 76 65 4 7 (Comparativo Ib)
TiCL/Si02
Comparativo 10b 91 68 1 3 (Comparativo le)
Figure imgf000013_0001
Otros = compuestos de apertura del anillo oxirano (glicoi y giicoi éter) ACP = acetofenona
Ejemplo 11
Se preparó una disolución de peróxido de hidrógeno por oxidación de 1- feniietanol según se describe en el ejemplo 1 1 de la Patente Española n°9603201. Esta disolución con un contenido en H;02 del 4,24% í. se utilizo en la epoxidacion de 1- oeteno sin ningún tipo dε purificación previa. Se introdujeron en el reactor 0,2 moles de olefina, 11 g de 2 -metil-2 -propanol y 1 g dε catalizador preparado según el ejemplo
3. La mezcla se calentó a 80°C y se añadieron gota a gota durante 30 minutos 6 g de la disolución del LLQ . La conversión del H20: obtenida fue del 95 % v la selectividad a 12 epoxido del 97 %, tras una hora de reacción, desde el inicio de la adición del peróxido de hidrogeno
Ejemplo 12 Se prepararon 30 g de catalizador partiendo de una sílice en granza (Grace SP9-
10214 con una superficie específica de 301 m2/g) Se adicionaron 5 85 g de ortotiíanoato αe isoproptlo a 900 mi de ciclohexanol, se pusieron en agitación y la mezcla se calentó a 150°C, a continuación se adicionaron 30 g de sílice La agitación y la temperatura se mantuvieron durante 2 h Se dejo enfriar y se filtro lavando el solido con el disolvente empleado en ia ptβparacion poi ultimo se calcino a 500°C durante 5 h Este catanzaαor se prooo en la reacción de epoxidacion de propiieno con peróxido de hidrógeno Para ello se utilizo un reactor discontinuo de tanque agitado con cesta para operar con catalizador sólido en el cual se introdujeron 12 g en la cestilla y el resto de' volumen de ésta se relleno con perlas de vidrio A continuación se añadieron 192 g de 2-metιl-2 -propanol y 147 2 g αe propiieno y la mezcla en agitación, se calentó hasta alcanzar la temperatura de reacción 70°C En ese instante se introdujo nitrógeno hasta alcanzar una presión de 34 MPa, para asegurar que el propileno se encuentre en fase líquida A la mezcla reactiva se adicionaron 104 g de una disolución ai 3 2 % wt de agua oxigenada en MBA y 2-metιl-2-propanoi en 30 minutos Tras una hora de reacción, desde el inicio de la adición del peróxido de hidrogeno se obtuvo una conversión del H202 96,5 % y una selectividad a epoxido del 92 %

Claims

13
Reivindicaciones
I - Procedimiento de epoxidacion en fase liquida de dobles eniaces carbono-carbono de compuestos olefinicos con peróxido de hidrogeno en presencia de disolventes, a temperaturas comprendidas entre aproximadamente 50° y 140CC caracterizado por ia utilización de catalizadores de titanio soportado sobre sílice en el que dichos catalizadores se preparan por impregnación de sílices con una superficie específica comprendida entre aproximadamente 50 y 900 mJg con disoluciones de aicóxidos de titanio y/o de titanocenos en disolventes orgánicos oxigenados seguido αe la separación del exceso αe disolución y de disolvente 2 - Procedimiento de acuerdo con la reivindicación 1 caracterizado porque e disolvente orgánico oxigenado es un alcohol C-i-C-β
3 - Procedimiento de acuerdo con las reivindicaciones 1 y 2 caracterizado por adicionar mediante impregnación al catalizador sales de metales alcalinos o alcalinoterreos en cantidades comprendiαas entre aproximadamente 0 01 y 0 1 % en peso (peso de metales alcalinos o alcalinoterreos por cada 100 g de catalizador)
4 - Procedimiento de acuerdo con ¡as reivindicaciones 1 a 3 caracterizado por utilizar disoluciones de peróxido de hidrógeno en disolventes orgánicos con concentraciones comprendidas entre aproximadamente 1 y 15 % en peso
5 - Procedimiento de acuerdo con la reivindicación 4 caracterizado por utilizar disoluciones de peróxido de hidrogeno obtenidas mediante oxidación de alcoholes secunαaπos con oxigeno molecular o aire
6 - Proceαimiento de acuerαo con las reivinαicaciones 1 a 5 caracterizado porαue eι compuesto defínico es un alqueno o cicloalquenc
7 - Procedimiento de acuerdo con la reivindicación 6 caracterizado porque el aiqueno es propiieno
8 - Procedimiento de acuerdo con la reivindicación 6 caracterizado porque ei cicloaiqueno es ciclonexeno
9 - Procedimiento de acuerdo con la reivindicación 6 caracterizado porque e' compuesto olefinico es un alcohol alílico 10 - Procedimiento de acuerdo con la reivindicación 6 caracteπzaαo porque el compuesto olefinico es el acido fumaπco o el acido maleteo o alguno de sus esteres, annidπdos o sus mezclas
I I - Procedimiento ce acuerαo con ias reivindicaciones 1 a 10 caracterizado por ut. zar en la reacción de epoxidacion como disolventes aicohoies aromáticos Cs-Cg o alcoholes aíifaíicos C1-C6 14
12.- Procedimiento de acuerdo con la reivindicación 11 caracterizado porque el disolvente orgánico es 2-metil-2-propaπoi o mezclas de disolventes orgánicos conteniendo 2-metii-2-propaπoi
PCT/ES1998/000078 1998-03-26 1998-03-26 Procedimiento de epoxidacion de compuestos olefinicos con peroxido de hidrogeno WO1999048884A1 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US09/424,572 US6160138A (en) 1998-03-26 1998-03-26 Process for epoxydation of olefinic compounds with hydrogen peroxide
ES98910745T ES2178825T3 (es) 1998-03-26 1998-03-26 Procedimiento de eposidacion de compuestos olefinicos con peroxido de hidrogeno.
JP54779899A JP2001509821A (ja) 1998-03-26 1998-03-26 溶媒の存在下での過酸化水素によるオレフィン性化合物のエポキシ化方法
KR10-1999-7010900A KR100429675B1 (ko) 1998-03-26 1998-03-26 올레핀계 화합물을 과산화수소로 에폭시화시키는 방법
PT98910745T PT987259E (pt) 1998-03-26 1998-03-26 Processo de epoxidacao de compostos olefinicos com peroxido de hidrogenio
EP98910745A EP0987259B1 (en) 1998-03-26 1998-03-26 Process for epoxydation of olefinic compounds with hydrogen peroxide
PCT/ES1998/000078 WO1999048884A1 (es) 1998-03-26 1998-03-26 Procedimiento de epoxidacion de compuestos olefinicos con peroxido de hidrogeno
DE69806155T DE69806155T2 (de) 1998-03-26 1998-03-26 Verfahren zur epoxidierung von olefinen mit wasserstoffperoxid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES1998/000078 WO1999048884A1 (es) 1998-03-26 1998-03-26 Procedimiento de epoxidacion de compuestos olefinicos con peroxido de hidrogeno

Publications (1)

Publication Number Publication Date
WO1999048884A1 true WO1999048884A1 (es) 1999-09-30

Family

ID=8302428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1998/000078 WO1999048884A1 (es) 1998-03-26 1998-03-26 Procedimiento de epoxidacion de compuestos olefinicos con peroxido de hidrogeno

Country Status (8)

Country Link
US (1) US6160138A (es)
EP (1) EP0987259B1 (es)
JP (1) JP2001509821A (es)
KR (1) KR100429675B1 (es)
DE (1) DE69806155T2 (es)
ES (1) ES2178825T3 (es)
PT (1) PT987259E (es)
WO (1) WO1999048884A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000076989A2 (de) * 1999-06-11 2000-12-21 Basf Aktiengesellschaft Verfahren zur umsetzung organischer verbindungen mit wasserstoffperoxid
EP1074548A1 (en) * 1999-08-06 2001-02-07 Repsol Quimica S.A. A method for continuous production of propylene oxide and other alkene oxides
JP2002145872A (ja) * 2000-11-01 2002-05-22 Maruzen Petrochem Co Ltd エポキシ化合物の製造方法
EP1443020A1 (en) 2003-02-03 2004-08-04 Repsol Quimica S.A. Integrated process for selective oxidation of organic compounds
US7179440B2 (en) 2002-03-14 2007-02-20 Repsol Quimica, S.A. Process to obtain hydrogen peroxide

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6369245B1 (en) * 1999-08-13 2002-04-09 Colorado State University Research Foundation Epoxidation of olefins
US6686483B2 (en) 1996-10-08 2004-02-03 Colorado State University Research Foundation Catalytic asymmetric epoxidation
AU3567399A (en) 1998-04-16 1999-11-01 Colorado State University Research Foundation Kinetic resolution of olefins
IT1313572B1 (it) * 1999-07-27 2002-09-09 Enichem Spa Procedimento per la preparazione di epossidi.
JP3920020B2 (ja) * 1999-12-24 2007-05-30 株式会社日本触媒 含酸素有機化合物製造用触媒および含酸素有機化合物の製造方法
EP1195368A3 (en) 2000-09-25 2002-05-15 Haldor Topsoe A/S Process for the catalytic selective oxidation of a hydrocarbon compound in presence of mesoporous zeolite
JP4694712B2 (ja) * 2001-01-15 2011-06-08 丸善石油化学株式会社 チタン含有固体触媒及びこれを用いたエポキシ化合物の製造法
US6485949B1 (en) * 2001-01-29 2002-11-26 The United States Of America As Represented By The Secretary Of Agriculture Epoxidation of carbon-carbon double bond with membrane bound peroxygenase
DE10247495A1 (de) 2002-10-11 2004-04-22 Degussa Ag Verfahren zur Epoxidierung cyclischer Alkene
DE10247496A1 (de) 2002-10-11 2004-04-22 Degussa Ag Verwendung eines Absatzbeschleunigers bei der Epoxidierung
US20050277542A1 (en) * 2004-06-14 2005-12-15 Kaminsky Mark P Catalyst regeneration process
WO2006087874A1 (ja) * 2005-02-18 2006-08-24 Japan Science And Technology Agency 光学活性なエポキシ化合物の製造方法、並びに該方法に用いる錯体及びその製造方法
TWI523689B (zh) * 2010-03-25 2016-03-01 陶氏全球科技公司 使用預處理環氧催化劑製備環氧丙烷之方法
CN103288991B (zh) * 2013-05-29 2015-10-28 西北师范大学 以环氧基为功能基团的共价连接载体及其制备方法
EA033968B1 (ru) * 2015-11-26 2019-12-16 Эвоник Дегусса Гмбх Способ эпоксидирования олефина
US10858456B1 (en) 2019-06-12 2020-12-08 Chevron Phillips Chemical Company Lp Aqueous titanation of Cr/silica catalysts by the use of acetylacetonate and another ligand
US11242416B2 (en) 2019-06-12 2022-02-08 Chevron Phillips Chemical Company Lp Amino acid chelates of titanium and use thereof in aqueous titanation of polymerization catalysts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023834A1 (fr) * 1993-04-22 1994-10-27 Elf Atochem S.A. Catalyseur a base de silice et de titane et son utilisation dans l'epoxydation d'olefines
EP0712852A1 (en) * 1994-11-16 1996-05-22 ARCO Chemical Technology, L.P. Improved process for titanium silicalite-catalyzed epoxidation
EP0734764A2 (en) * 1995-03-30 1996-10-02 Sumitomo Chemical Company Limited Catalyst and process for producing oxirane compound
EP0781602A1 (fr) * 1995-12-27 1997-07-02 Elf Atochem S.A. Procédé d'obtention d'un solide à base de silice et de titane et utilisation de ce solide notamment dans l'époxydation des oléfines

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367342A (en) * 1969-04-02 1983-01-04 Shell Oil Company Olefin epoxidation
US3923843A (en) * 1972-03-13 1975-12-02 Shell Oil Co Epoxidation process with improved heterogeneous catalyst
IT1127311B (it) * 1979-12-21 1986-05-21 Anic Spa Materiale sintetico,cristallino,poroso costituito da ossidi di silicio e titanio,metodo per la sua preparazione e suoi usi
IT1187661B (it) * 1985-04-23 1987-12-23 Enichem Sintesi Catalizzatore a base di silicio e titanio ad elevata resistenza meccanica
EP0230949B1 (en) * 1986-01-28 1992-07-22 ENIRICERCHE S.p.A. A process for the epoxydation of olefinic compounds
US5214168A (en) * 1992-04-30 1993-05-25 Arco Chemical Technology, L.P. Integrated process for epoxide production
US5262550A (en) * 1992-04-30 1993-11-16 Arco Chemical Technology, L.P. Epoxidation process using titanium-rich silicalite catalysts
US5453511A (en) * 1993-12-23 1995-09-26 Arco Chemical Technology, L.P. Bis-piperidinium compounds
US5374747A (en) * 1993-12-23 1994-12-20 Arco Chemical Technology, L.P. Epoxidation process and catalyst therefore
US5463090A (en) * 1994-10-27 1995-10-31 Arco Chemical Technology, L.P. Integrated process for epoxide production
US5693834A (en) * 1995-03-15 1997-12-02 Arco Chemical Technology, L.P. Integrated process for epoxidation
US5753576A (en) * 1995-05-18 1998-05-19 Arco Chemical Technology, L.P. Regeneration of a titanium-containing molecular sieve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023834A1 (fr) * 1993-04-22 1994-10-27 Elf Atochem S.A. Catalyseur a base de silice et de titane et son utilisation dans l'epoxydation d'olefines
EP0712852A1 (en) * 1994-11-16 1996-05-22 ARCO Chemical Technology, L.P. Improved process for titanium silicalite-catalyzed epoxidation
EP0734764A2 (en) * 1995-03-30 1996-10-02 Sumitomo Chemical Company Limited Catalyst and process for producing oxirane compound
EP0781602A1 (fr) * 1995-12-27 1997-07-02 Elf Atochem S.A. Procédé d'obtention d'un solide à base de silice et de titane et utilisation de ce solide notamment dans l'époxydation des oléfines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
E- JORDA ET AL.: "New TiF4/Si02 Catalysts por Liqui-phase Epoxidations with Aqueous H202", J. CHEM. SOC. CHEM. COMMUN.,, 1995, pages 1775 - 1776 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000076989A2 (de) * 1999-06-11 2000-12-21 Basf Aktiengesellschaft Verfahren zur umsetzung organischer verbindungen mit wasserstoffperoxid
WO2000076989A3 (de) * 1999-06-11 2001-07-12 Basf Ag Verfahren zur umsetzung organischer verbindungen mit wasserstoffperoxid
EP1074548A1 (en) * 1999-08-06 2001-02-07 Repsol Quimica S.A. A method for continuous production of propylene oxide and other alkene oxides
JP2002145872A (ja) * 2000-11-01 2002-05-22 Maruzen Petrochem Co Ltd エポキシ化合物の製造方法
US7179440B2 (en) 2002-03-14 2007-02-20 Repsol Quimica, S.A. Process to obtain hydrogen peroxide
EP1443020A1 (en) 2003-02-03 2004-08-04 Repsol Quimica S.A. Integrated process for selective oxidation of organic compounds
US6822103B2 (en) 2003-02-03 2004-11-23 Repsol Quimica, S.A. Integrated process for selective oxidation of organic compounds

Also Published As

Publication number Publication date
DE69806155T2 (de) 2003-02-06
KR100429675B1 (ko) 2004-05-03
DE69806155D1 (de) 2002-07-25
EP0987259B1 (en) 2002-06-19
US6160138A (en) 2000-12-12
EP0987259A1 (en) 2000-03-22
JP2001509821A (ja) 2001-07-24
KR20010012932A (ko) 2001-02-26
PT987259E (pt) 2002-11-29
ES2178825T3 (es) 2003-01-01

Similar Documents

Publication Publication Date Title
WO1999048884A1 (es) Procedimiento de epoxidacion de compuestos olefinicos con peroxido de hidrogeno
US5684170A (en) Epoxidation process
US5262550A (en) Epoxidation process using titanium-rich silicalite catalysts
US5527520A (en) Method of making a titanium-containing molecular sieve
US5214168A (en) Integrated process for epoxide production
ES2219565T3 (es) Procedimiento para la produccion continua de un oxido de olefina.
EP0677518B1 (en) Integrated process for epoxide production
US5412122A (en) Epoxidation process
JP3049086B2 (ja) 飽和炭化水素鎖の酸化
JPH04352771A (ja) プロピレンオキシドの製法
Beckman Production of H 2 O 2 in CO 2 and its use in the direct synthesis of propylene oxide
ES2195836T5 (es) Procedimiento para la preparacion de epoxidos.
US6429323B1 (en) Method for continuous production of propylene oxide and other alkene oxides
JPS5850990B2 (ja) オレフインのエポキシ化法
ZA200004992B (en) Method for making an oxirane.
US20030109726A1 (en) Oxirane production using peroxidized compound
US5840934A (en) Process for producing epoxidized product of olefins
CN106966862B (zh) 一种同时制备丙二醇和碳酸丙烯酯的方法
JP2004508285A (ja) オキシラン化合物の製造方法
JP2011016759A (ja) エポキシ化合物の製造法
US5808114A (en) Preparation of epoxides by means of aromatic peroxycarboxylic acids
ES2205839T3 (es) Procedimiento de peroxidacion en presencia de dioxido de carbono supercritico.
JPH06211821A (ja) オレフィン化合物のエポキシ化方法
JP2007031449A (ja) 溶媒の存在下での過酸化水素によるオレフィン性化合物のエポキシ化方法
Xia et al. Titanosilicate‐Based Alkene Epoxidation Catalysis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998910745

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019997010900

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1999 547798

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09424572

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998910745

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997010900

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998910745

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997010900

Country of ref document: KR