WO1999047902A1 - Capacitive pressure sensor - Google Patents

Capacitive pressure sensor Download PDF

Info

Publication number
WO1999047902A1
WO1999047902A1 PCT/JP1998/001093 JP9801093W WO9947902A1 WO 1999047902 A1 WO1999047902 A1 WO 1999047902A1 JP 9801093 W JP9801093 W JP 9801093W WO 9947902 A1 WO9947902 A1 WO 9947902A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
electrode
pressure sensor
temperature
thin film
Prior art date
Application number
PCT/JP1998/001093
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Moriya
Akio Yasukawa
Satoshi Shimada
Atsushi Miyazaki
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2000537048A priority Critical patent/JP3489563B2/en
Priority to PCT/JP1998/001093 priority patent/WO1999047902A1/en
Publication of WO1999047902A1 publication Critical patent/WO1999047902A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0073Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a semiconductive diaphragm

Definitions

  • the present invention relates to a capacitive pressure sensor, and more particularly to a capacitive pressure sensor that suppresses output fluctuation due to temperature change.
  • FIG. 4 is a cross-sectional view showing a capacitor structure of a general capacitive pressure sensor disclosed in Japanese Patent Application Laid-Open No. 3-180826.
  • a vacuum chamber 5 is formed between a Si diaphragm base 8 and a plate 6, and electrodes 3 and 4 are formed on the inner wall surface facing the Si diaphragm base 8 and the plate 6. It is equipped with a main body of a mounted configuration and a package 9 with a pressure inlet 10 fixed to the Si diaphragm base 8 side.
  • This capacitance type pressure sensor measures the absolute pressure by utilizing the fact that the Si diaphragm 1 is distorted by the pressure applied from the pressure inlet 10 and changes the electric capacitance between the opposing electrodes. .
  • Fig. 5 shows the case where the linear expansion coefficient of the material composing the electrode 3 is larger than the linear expansion coefficient of the silicon composing the diaphragm 1, and the temperature rises as a temperature change. The state of deformation of the diaphragm is shown.
  • An object of the present invention is to provide a capacitive pressure sensor that prevents a pressure output fluctuation due to a temperature change.
  • FIG. 1 is a cross-sectional view showing an example of a main structure of a capacitive semiconductor pressure sensor according to one embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining the principle of preventing the temperature effect of the capacitive semiconductor pressure sensor shown in FIG.
  • FIG. 3 is a schematic diagram for explaining the principle of preventing the temperature effect of the capacitive semiconductor pressure sensor shown in FIG.
  • FIG. 4 is a cross-sectional view showing a main structure of a conventional capacitive semiconductor pressure sensor.
  • FIG. 5 is a schematic diagram for explaining that the pressure output of the conventional capacitive semiconductor pressure sensor shown in FIG. 4 is affected by temperature.
  • FIG. 6 is a schematic diagram for explaining that the pressure output of the conventional capacitive semiconductor pressure sensor shown in FIG. 4 is affected by temperature.
  • FIG. 7 is an FEM analysis model for explaining that the pressure output of a conventional capacitive semiconductor pressure sensor is affected by temperature.
  • FIG. 8 is a modified view of the FEM analysis model shown in FIG.
  • FIG. 9 is a modified view of the FEM analysis model shown in FIG.
  • FIG. 10 is an FEM analysis model for explaining the principle of preventing the temperature effect of the capacitive semiconductor pressure sensor according to one embodiment of the present invention.
  • FIG. 11 is a modified view of the FEM analysis model shown in FIG.
  • FIG. 12 is a modified view of the FEM analysis model shown in FIG.
  • FIG. 13 is a diagram showing an analysis result of the FEM analysis model shown in FIG.
  • FIG. 14 is a diagram showing an analysis result of the FEM analysis model shown in FIG.
  • FIG. 15 is an FEM analysis model for explaining the principle of preventing the temperature effect of the capacitive semiconductor pressure sensor according to one embodiment of the present invention.
  • FIG. 16 is a diagram showing an analysis result of the FEM analysis model shown in FIG.
  • FIG. 17 is a diagram showing an analysis result of the FEM analysis model shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a cross-sectional view of the capacitor part of the capacitive pressure sensor of the present invention.
  • the diaphragm 1 is made of silicon and has a linear expansion coefficient of ai, and the linear expansion coefficient formed on the upper surface of the diaphragm 1 is ⁇ . 2, a base 7 for holding the diaphragm 1 on a diaphragm base 8, a plate 6 forming the outer wall of the vacuum chamber 5 together with the diaphragm base 8, and the electrode 3 on the lower surface of the plate 6.
  • the coefficient of linear expansion ⁇ 3 of the thin film 2 on the base of the diaphragm is 1 1> ⁇ 3 when ⁇ 2 > ⁇ ⁇ and when ⁇ ⁇ ⁇ ⁇ 1> ⁇ 2 .
  • FIG. 2 is a diagram for explaining the principle of preventing a change in electric capacity caused by thermal stress when a temperature change occurs in the capacitive pressure sensor of the present invention.
  • it is the deformation of the diaphragm 1 and the electrode 3 and thin film 2 shown in FIG. 2, alpha 2, a temperature rise in the case of alpha 3> ai, by temperature decrease in the case of alpha 2, alpha 3 ⁇ ai Has occurred.
  • d 0 is the distance of the initial temperature, is the spacing in the vicinity of the center of the electrode surface, d 2 represents the distance in the vicinity of the outer periphery of the electrode.
  • FIG. 3 is a diagram illustrating the principle of preventing a change in electric capacity caused by thermal stress when a temperature change occurs in the capacitive pressure sensor of the present invention.
  • alpha 2 at a temperature falling in the case of ⁇ 3> ai, ⁇ 2, the temperature rise in the case of alpha 3 rather alpha Has occurred.
  • d 0 is the distance of the initial temperature, is the spacing in the vicinity of the center of the electrode surface, d 2 represents the distance in the vicinity of the outer periphery of the electrode.
  • a linear expansion coefficient a 3 forces thin film 2 of a thickness , And by adjusting the area, ( ⁇ ⁇ ( ⁇ Can, even if the diaphragm 1 is deformed by a temperature change, it is possible to reduce a change amount of the capacitance c. That is, it is possible to reduce the temperature effects of capacitive pressure sensor for detecting a change in pressure.
  • Fig. 7 shows the finite element method (Finite element method) of the main part of the conventional capacitive pressure sensor shown in Fig. 4. It is an Element Method (FEM) model and shows a cross-sectional view modeled axially symmetrically.
  • FEM Element Method
  • the above model consists of a diaphragm 1 with a radius of R 2 and a thickness of D 2 , an electrode 3 with a radius of 2 and a thickness, and a diaphragm base 8.
  • Table 1 shows an example of the rigidity when the diaphragm 1 is made of silicon and the electrode 3 is made of an electrical conductor such as polysilicon whose surface is coated with an insulating film such as silicon oxide or silicon nitride.
  • Fig. 8 shows a deformation diagram when the temperature of the FEM analysis model shown in Fig. 7 and Table 1 is increased from the initial temperature of 20 ° C to 120 ° (100 ° C).
  • Fig. 9 shows a deformation diagram when the temperature of the FEM analysis model shown in Fig. 7 and Table 1 is lowered from the initial temperature of 20 to 180 ° C (100 ° C). The deformation display is enlarged in Figs. 8 and 9 to make the deformation state easier to understand.
  • the diaphragm deforms convexly downward due to thermal expansion due to the temperature rise (100 ° C) from the initial temperature of 20 ° C to 120 ° C. Due to the above deformation, the distance d (x, y) between the electrode 3 and the upper electrode surface is the distance d at the initial temperature over the entire area of the electrode. Be larger.
  • the electric capacity is expressed by the following equation (3).
  • the diaphragm 1 is deformed to be convex upward due to heat shrinkage caused by a temperature decrease (100 ° C.) from an initial temperature of 20 ° C. to ⁇ 80 ° C. Due to the above deformation, the distance d (X, y) between the electrode 3 and the upper electrode surface is the distance d at the initial temperature over the entire area of the electrode. Smaller. As a result, the electric capacity C 2 is given by the following equation (4)
  • the diaphragm is greatly deformed by the temperature change, and the temperature change affects the output.
  • FIG. 10 shows an FEM model of a main part of the capacitive pressure sensor of the present invention, and shows a cross-sectional view modeled in an axially symmetric manner.
  • the above model, radius and diaphragm 1 having a thickness D 2 in R 2, an electrode 3 of the radius of the thickness, a thin film of thickness D 3 at the width L formed on the base of Daiafu ram, and the diaphragm earth The distance between the electrode 3 and the surface of the upper electrode is d. It is.
  • Table 2 shows an example of the present invention in which the diaphragm 1 and the diaphragm support 7 are made of silicon, and the electrode 3 is made of an electric conductor such as polysilicon whose surface is coated with an insulating film such as silicon oxide or silicon nitride.
  • the rigidity of the thin film 2 is the same as that of the electrode 3 in this case.
  • Fig. 11 shows the deformation diagram when the temperature of the FEM analysis model shown in Fig. 10 and Table 2 was raised from the initial temperature of 20 ° C to 120 ° C (100 ° C).
  • Fig. 12 is a deformation diagram when the temperature of the FEM analysis model shown in Fig. 10 and Table 2 is lowered (100.C) from the initial temperature of 20 to 180 ° C. ing.
  • D 3 l [m]
  • Fig. 11 which is the result of FEM analysis of the capacitive pressure sensor according to one embodiment of the present invention
  • the thermal expansion due to the temperature rise (100 ° C) from the initial temperature of 20 ° C to 120 ° C is shown.
  • the electrode deforms convex downward.
  • the coefficient of linear expansion is smaller than that of the diaphragm, and since the thin film 2 is on the base of the diaphragm, the base of the diaphragm is deformed downward.
  • electrode 3 moves upward as a whole, and d (x, y)> d at the distance d (X, y) between electrode 3 and the upper electrode surface. Area And (x, y) ⁇ d.
  • Fig. 12 which is the result of FEM analysis of the capacitive pressure sensor according to one embodiment of the present invention.
  • the contraction deforms the electrode upwardly.
  • the coefficient of linear expansion is smaller than that of the diaphragm, and the thin film 2 is on the base of the diaphragm, the base of the diaphragm is deformed upward.
  • the electrode 3 is wholly moved down, the distance between the electrode 3 and the upper electrode surface d (x, y), d (x, y)> d Q and ing area and d (x, y ) ⁇ d.
  • the amount of change in the capacitance C can be reduced. That is, the temperature effect of the capacitive pressure sensor can be reduced.
  • FIG. 13 shows that the influence of temperature on the electric capacity when no pressure is applied (hereinafter, the zero point effect) is reduced.
  • Fig. 13 shows the dependence of the electric capacity of the pressure sensor of Fig. 10 shown in Example 2 on the thickness of the thin film 3, where no pressure was applied.
  • the point where the film thickness is 0 [ ⁇ m] in Fig. 13 is the capacitance value in the FEM analysis model shown in Fig. 7.
  • Fig. 14 shows the temperature change of the capacitance at various film thicknesses.
  • Fig. 13 by increasing the thickness of the thin film 3 from 0 [m], the amount of change in the electric capacity due to the temperature change becomes small, and the effect of the zero point becomes about 1.2 [ ⁇ (optimum film thickness).
  • FIGS. Fig. 15 is a cross-sectional view of the FEM model of the main part of the capacitive pressure sensor of the present invention, in which the pressure P is applied to the FEM model of Fig. 10 shown in the second embodiment. It is the same as the model in Figure 10.
  • the first 6 figure is a calculation result of the FEM analysis model shown in the first 5 figures and Table 2, the thickness D 3 of the thin film 2 is 0 [m] in the case of i.e. a thin film 2 is not formed, the temperature - It shows the pressure characteristics of electric capacitance at 80 ° C, 20 ° C, and 120 ° C.
  • the first 7 drawing is a calculation result of the FEM analysis model shown in the first 5 figures and Table 2, the thickness D 3 of the thin film 1 [/ zm], the temperature _ 8 0 ° C, 2
  • the pressure characteristics of the electric capacitance at 0 ° C and 120 ° C are shown. From Fig. 16, it can be seen that the electric capacity greatly differs depending on the temperature, and that the pressure output greatly affects the temperature change.
  • Fig. 17 unlike the Fig. 16, the line showing the pressure characteristic of the capacitance is almost on the same line. This indicates that the effect of the pressure output can be reduced by forming the thin film 2 at the base of the diaphragm.
  • a thin film made of a material different from the linear expansion coefficient of the supporting portion is formed on the supporting portion that supports the diaphragm on the body of the capacitive pressure sensor. Even if a temperature change occurs, the change in the distance between the opposing electrodes is suppressed to a small value, thereby preventing the capacitance from being changed due to the temperature change, and reducing the temperature effect of the pressure output.

Abstract

A capacitive pressure sensor the output of which is prevented from fluctuating even when the temperature fluctuates. In the pressure sensor in which counter electrodes are formed on both sides of a cavity, with one electrode being formed on a diaphragm, and which detects the capacitance fluctuation between the electrodes as a pressure signal, a thin film made of a material having a coefficient of linear expansion which is different from that of the material constituting a support section for supporting the diaphragm on the main body of the pressure sensor is formed on the supporting section.

Description

明 細 書  Specification
容量型圧力センサ  Capacitive pressure sensor
技術分野 Technical field
本発明は、 容量型圧力センサに関し, 特に, 温度変化による出力変動を抑 えた容量型圧力センサに関する。  The present invention relates to a capacitive pressure sensor, and more particularly to a capacitive pressure sensor that suppresses output fluctuation due to temperature change.
背景技術 Background art
第 4図は特開平 3— 1 7 0 8 2 6号公報に開示されている一般的な容量型 圧力センサのコンデンサ構造を示す断面図である。 この容量型圧力センサは, S iダイアフラム土台 8とプレ—ト 6との間に真空室 5が形成され, これら S iダイアフラム土台 8とプレ—ト 6が対向する内壁面に電極 3 , 4を装着 した構成の本体と, S iダイアフラム土台 8側に固定された圧力導入口 1 0 を備えたパッケージ 9とを具備している。  FIG. 4 is a cross-sectional view showing a capacitor structure of a general capacitive pressure sensor disclosed in Japanese Patent Application Laid-Open No. 3-180826. In this capacitive pressure sensor, a vacuum chamber 5 is formed between a Si diaphragm base 8 and a plate 6, and electrodes 3 and 4 are formed on the inner wall surface facing the Si diaphragm base 8 and the plate 6. It is equipped with a main body of a mounted configuration and a package 9 with a pressure inlet 10 fixed to the Si diaphragm base 8 side.
この容量型圧力センサは, S iダイアフラム 1が圧力導入口 1 0から印加 される圧力によってひずみ, これにより対向電極間の電気容量が変化するこ とを利用して絶対圧力を測定するものである。  This capacitance type pressure sensor measures the absolute pressure by utilizing the fact that the Si diaphragm 1 is distorted by the pressure applied from the pressure inlet 10 and changes the electric capacitance between the opposing electrodes. .
発明の開示 Disclosure of the invention
上記の容量型圧力センサに温度変化が生じると, ダイアフラム 1を主に構 成しているシリコンとそのダイアフラム上に形成されている電極 3を構成し ている材料の線膨張係数の違し、により, ダイアフラム 1にたわみが生じる。 その結果, 温度変化により圧力の出力が変動するという欠点があった。 例と して第 5図は, 電極 3を構成している材料の線膨張係数がダイアフラム 1を 主に構成しているシリコンの線膨張係数に比べ大きく, また温度変化として 温度が上昇した場合のダイァフラムの変形の様子を示している。 また, 第 6 図は, 電極 3を構成している材料の線膨張係数がダイアフラム 1を主に構成 しているシリコンの線膨張係数に比べ小さく, また温度変化として温度が上 昇した場合のダイァフラムの変形の様子を示している。 第 5図, 第 6図から, 電極 3とダイアフラム 1との熱膨張差により電極 3と電極 4との間隔が変化 し, 電気容量が変化することがわかる。 これにより従来の容量型圧力センサ では, 温度変化が圧力出力に影響する。 When a temperature change occurs in the capacitive pressure sensor described above, the difference in the linear expansion coefficient between the silicon that mainly forms the diaphragm 1 and the material that forms the electrode 3 formed on the diaphragm 1 occurs. , Deflection of diaphragm 1 occurs. As a result, there was a disadvantage that the pressure output fluctuated due to temperature changes. As an example, Fig. 5 shows the case where the linear expansion coefficient of the material composing the electrode 3 is larger than the linear expansion coefficient of the silicon composing the diaphragm 1, and the temperature rises as a temperature change. The state of deformation of the diaphragm is shown. Fig. 6 shows that the linear expansion coefficient of the material composing the electrode 3 is smaller than the linear expansion coefficient of the silicon composing the diaphragm 1 and that the temperature rises as a temperature change. 3 shows the state of deformation. From Figs. 5 and 6, It can be seen that the distance between electrode 3 and electrode 4 changes due to the difference in thermal expansion between electrode 3 and diaphragm 1, and the capacitance changes. As a result, the temperature change affects the pressure output in the conventional capacitive pressure sensor.
本発明は, 温度変化による圧力の出力変動を防止した容量型圧力センサを 提供することを目的とする。  An object of the present invention is to provide a capacitive pressure sensor that prevents a pressure output fluctuation due to a temperature change.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明の一実施例に係る容量型半導体圧力センサの要部構造例を 示す断面図である。  FIG. 1 is a cross-sectional view showing an example of a main structure of a capacitive semiconductor pressure sensor according to one embodiment of the present invention.
第 2図は第 1図に示した容量型半導体圧力センサの温度影響が防止される 原理を説明するための摸式図である。  FIG. 2 is a schematic diagram for explaining the principle of preventing the temperature effect of the capacitive semiconductor pressure sensor shown in FIG.
第 3図は第 1図に示した容量型半導体圧力センザの温度影響が防止される 原理を説明するための摸式図ある。  FIG. 3 is a schematic diagram for explaining the principle of preventing the temperature effect of the capacitive semiconductor pressure sensor shown in FIG.
第 4図は従来の容量型半導体圧力センサの要部構造を示す断面図である。 第 5図は第 4図で示した従来の容量型半導体圧力センサの圧力出力が温度 に影響されることを説明するための模式図である。  FIG. 4 is a cross-sectional view showing a main structure of a conventional capacitive semiconductor pressure sensor. FIG. 5 is a schematic diagram for explaining that the pressure output of the conventional capacitive semiconductor pressure sensor shown in FIG. 4 is affected by temperature.
第 6図は第 4図で示した従来の容量型半導体圧力センサの圧力出力が温度 に影響されることを説明するための模式図である。  FIG. 6 is a schematic diagram for explaining that the pressure output of the conventional capacitive semiconductor pressure sensor shown in FIG. 4 is affected by temperature.
第 7図は従来の容量型半導体圧力センサの圧力出力が温度に影響されるこ とを説明するための FEM解析モデルである。  FIG. 7 is an FEM analysis model for explaining that the pressure output of a conventional capacitive semiconductor pressure sensor is affected by temperature.
第 8図は第 7図で示した FEM解析モデルの変形図である。  FIG. 8 is a modified view of the FEM analysis model shown in FIG.
第 9図は第 7図で示した FEM解析モデルの変形図である。  FIG. 9 is a modified view of the FEM analysis model shown in FIG.
第 1 0図は本発明の一実施例に係る容量型半導体圧力センサの温度影響が 防止される原理を説明するための FEM解析モデルである。  FIG. 10 is an FEM analysis model for explaining the principle of preventing the temperature effect of the capacitive semiconductor pressure sensor according to one embodiment of the present invention.
第 1 1図は第 1 0図で示した FEM解析モデルの変形図である。  FIG. 11 is a modified view of the FEM analysis model shown in FIG.
第 1 2図は第 1 0図で示した FEM解析モデルの変形図である。  FIG. 12 is a modified view of the FEM analysis model shown in FIG.
第 1 3図は第 1 0図で示した FEM解析モデルの解析結果を示す図である。 第 1 4図は第 1 0図で示した FEM解析モデルの解析結果を示す図である。 第 1 5図は本発明の一実施例に係る容量型半導体圧力センサの温度影響が 防止される原理を説明するための FEM解析モデルである。 FIG. 13 is a diagram showing an analysis result of the FEM analysis model shown in FIG. FIG. 14 is a diagram showing an analysis result of the FEM analysis model shown in FIG. FIG. 15 is an FEM analysis model for explaining the principle of preventing the temperature effect of the capacitive semiconductor pressure sensor according to one embodiment of the present invention.
第 1 6図は第 1 5図で示した FEM解析モデルの解析結果を示す図である。 第 1 7図は第 1 5図で示した FEM解析モデルの解析結果を示す図である。 発明を実施するための最良の形態  FIG. 16 is a diagram showing an analysis result of the FEM analysis model shown in FIG. FIG. 17 is a diagram showing an analysis result of the FEM analysis model shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本願発明を実施するための最良の形態を図面を用いて詳細に説明す る。  Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.
(実施例 1 )  (Example 1)
本発明の一実施例を第 1図から第 3図により説明する。 第 1図は本発明の 容量型圧力センサのコンデンサ部の断面図を示しており, シリコンからなる 線膨張係数が a iのダイアフラム 1と, このダイアフラム 1の上面に形成さ れた線膨張係数が α 2の電極 3と, 上記ダイアフラム 1をダイアフラム土台 8に保持するダイアフラム付け根部分 7と, ダイアフラム土台 8と共に真空 室 5の外壁を形成しているプレート 6と, このプレート 6の下面に前記電極 3と対向するように形成された電極 4と, 前記ダイアフラム付け根部分 7の 上面に形成された線膨張係数が α 3である薄膜 2と, 上記ダイアフラム土台 8を支持するパッケージ 9と外部圧力をダイアフラム 1に伝えるために形成 された圧力導入口 1 0を有している。 One embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view of the capacitor part of the capacitive pressure sensor of the present invention. The diaphragm 1 is made of silicon and has a linear expansion coefficient of ai, and the linear expansion coefficient formed on the upper surface of the diaphragm 1 is α. 2, a base 7 for holding the diaphragm 1 on a diaphragm base 8, a plate 6 forming the outer wall of the vacuum chamber 5 together with the diaphragm base 8, and the electrode 3 on the lower surface of the plate 6. an electrode 4 formed so as to be opposed, a thin film 2 linear expansion coefficient is formed on the upper surface of the diaphragm base portion 7 is alpha 3, the package 9 and external pressure for supporting the diaphragm base 8 to the diaphragm 1 It has a pressure inlet 10 formed to communicate.
ここで, ダイァフラムの付け根上の薄膜 2の線膨張係数 α 3は, α 2 > α λ のとき ^^ ぃ α 1 > α 2のとき《 1 > α 3とする。 Here, the coefficient of linear expansion α 3 of the thin film 2 on the base of the diaphragm is 1 1> α 3 when α 2 > α λ and when ^ ^ ぃ α 1> α 2 .
電極 3の面内座標 (x, y ) で, 電極 3と電極 4との間隔が d ( X , y ) の場合, 図 1で示す容量型圧力センサの電気容量 cは, 近似的に次の (1 ) 式になる。  When the distance between electrode 3 and electrode 4 is d (X, y) at the in-plane coordinates (x, y) of electrode 3, the capacitance c of the capacitive pressure sensor shown in Fig. 1 is approximately Equation (1) is obtained.
■dxdv ( 1 ) ■ dxdv (1)
d(x、,y) ここで, £。は真空誘電率で ε。= 8.8542 x 1 012 [F/m] であ る。 また, Sは電極面を示し, 上記 (1 ) 式の面積分は, 電極面 S内の座標 (X, y) で行う。 上記電極 3, 4の形状が円形で, その直径が 2R, また 特にダイアフラム 1が変形していな!/、状態での電気容量 C。は, その際の電 極 3, 4の間隔を d。とすると, 次の (2) 式になる。
Figure imgf000006_0001
このような容量型圧力センサに圧力導入口から圧力が加わると第 4図で示 した従来の容量型圧力センサと同様な原理により, 圧力を測定できる。
d (x ,, y) Where £. Is the vacuum permittivity ε. = 8.8542 x 1 0 12 [F / m] Ru der. S denotes the electrode surface, and the area in Eq. (1) is determined by the coordinates (X, y) in the electrode surface S. The electrodes 3 and 4 are circular in shape, the diameter is 2R, and especially the diaphragm 1 is not deformed! /, Electric capacity in the state C. Is the distance between electrodes 3 and 4 at that time. Then, the following equation (2) is obtained.
Figure imgf000006_0001
When pressure is applied to such a capacitive pressure sensor from the pressure inlet, the pressure can be measured according to the same principle as the conventional capacitive pressure sensor shown in Fig. 4.
第 2図は, 本発明の容量型圧力センサに温度変化が生じた場合, 熱応力に よって生じる電気容量の変化を防止する原理を説明する図である。 ここで第 2図で示しているダイアフラム 1と電極 3そして薄膜 2の変形は, α2, α3 > a iの場合には温度上昇で, α2, α3< a iの場合には温度下降によって 生じている。 また, d0は, 初期温度の間隔であり、 は, 電極面内の中心 付近での間隔であり, d2は電極の外周付近での間隔を示している。 第 2図 で示すように温度が変化した場合ダイアフラムを形成している S iの線膨張 係数 とダイァフラムの上面に形成されている電極との線膨張係数 2との 差から, 例えば a2a iで温度が上昇した場合, ダイアフラムは上に凸に歪 む。 しかし, ダイァフラムの付け根上の薄膜の線膨張係数 α3が, α3α ι であるのでダイアフラム付け根部分も上に凸に歪むためダイアフラム 3は薄 膜 2が無い場合 (第 5図) に比べ下に移動する。 薄膜の線膨張係数がより大 きい場合, または膜厚が厚い場合, 膜の面積が広い場合には, 上記ダイァフ ラムの下への移動量は, 大きくなる。 その結果, 膜 2が無い場合, 電極 3と 電極 4との間隔は d。 >d2>d ,であるが, 薄膜 2の線膨張係数 α 3と厚さ, そして面積を調整することにより, d 2〉 d。〉d 1とすることができ, 温度 変化によりダイアフラム 1が変形しても, 電気容量 Cの変化量を小さくする ことが可能である。 すなわち, 圧力の変化として検出する容量式圧力センサ の温度影響を小さくすることができる。 FIG. 2 is a diagram for explaining the principle of preventing a change in electric capacity caused by thermal stress when a temperature change occurs in the capacitive pressure sensor of the present invention. Here it is the deformation of the diaphragm 1 and the electrode 3 and thin film 2 shown in FIG. 2, alpha 2, a temperature rise in the case of alpha 3> ai, by temperature decrease in the case of alpha 2, alpha 3 <ai Has occurred. Furthermore, d 0 is the distance of the initial temperature, is the spacing in the vicinity of the center of the electrode surface, d 2 represents the distance in the vicinity of the outer periphery of the electrode. From the difference between the linear expansion coefficient 2 of the electrode formed on the upper surface of the linear expansion coefficient and Daiafuramu of S i that forms the diaphragm when the temperature changes as shown in FIG. 2, for example, a 2> ai When the temperature rises at, the diaphragm is distorted upward. However, thin linear expansion coefficient alpha 3 of the base of Daiafuramu is, the diaphragm 3 for distorted in a convex above the diaphragm base portion are the alpha 3> alpha iota compared to when there is no thin film 2 (FIG. 5) Move down. When the coefficient of linear expansion of the thin film is larger, or when the film thickness is large, or when the film area is large, the amount of movement below the diaphragm becomes large. As a result, when there is no membrane 2, the distance between electrode 3 and electrode 4 is d. > d 2 > d, but the coefficient of linear expansion α 3 and thickness of the thin film 2 are By adjusting the area, d 2 〉 d. > Can be d 1, even when the diaphragm 1 is deformed by a temperature change, it is possible to reduce a change amount of the capacitance C. In other words, the temperature effect of the capacitive pressure sensor that detects the change in pressure can be reduced.
第 3図は, 本発明の容量型圧力センサに温度変化が生じた場合, 熱応力に よって生じる電気容量の変化を防止する原理を説明する図である。 ここで第 3図で示しているダイアフラム 1と電極 3そして薄膜 2の変形は, α 2, α 3 > a iの場合には温度下降で, α 2 , α 3く α の場合には温度上昇によって 生じている。 また, d 0は, 初期温度の間隔であり、 は, 電極面内の中心 付近での間隔であり, d 2は電極の外周付近での間隔を示している。 第 3図 で示すように温度が変化した場合ダイアフラムを形成している S iの線膨張 係数 とダイァフラムの上面に形成されている電極との線膨張係数ひ 2との 差から, 例えば a s " で温度が下降した場合, ダイアフラムは下に凸に歪 む。 しかし, ダイァフラムの付け根上の薄膜の線膨張係数 a 3が, α 3 > α ι であるのでダイアフラム付け根部分も下に凸に歪むためダイァフラム 3は薄 膜 2が無い場合 (第 6図) に比べ上に移動する。 薄膜の線膨張係数がより大 きい場合, または膜厚が厚い場合, 膜の面積が広い場合には, 上記ダイァフ ラムの上への移動量は, 大きくなる。 その結果, 膜 2が無い場合, 電極 3と 電極 4との間隔は d i > d 2 > d。である力 薄膜 2の線膨張係数 a 3と厚さ, そして面積を調整することにより, (^ ^ (^とすることができ, 温度 変化によりダイアフラム 1が変形しても, 電気容量 cの変化量を小さくする ことが可能である。 すなわち, 圧力の変化として検出する容量式圧力センサ の温度影響を小さくすることができる。 FIG. 3 is a diagram illustrating the principle of preventing a change in electric capacity caused by thermal stress when a temperature change occurs in the capacitive pressure sensor of the present invention. Here it is the deformation of the diaphragm 1 and the electrode 3 and thin film 2 shown in FIG. 3 is, alpha 2, at a temperature falling in the case of α 3> ai, α 2, the temperature rise in the case of alpha 3 rather alpha Has occurred. Furthermore, d 0 is the distance of the initial temperature, is the spacing in the vicinity of the center of the electrode surface, d 2 represents the distance in the vicinity of the outer periphery of the electrode. As shown in Fig. 3, when the temperature changes, the difference between the linear expansion coefficient of Si forming the diaphragm and the linear expansion coefficient of the electrode formed on the upper surface of the diaphragm, 2 When the temperature drops, the diaphragm is distorted downward, but the coefficient of linear expansion a 3 of the thin film on the base of the diaphragm is α 3 > α ι. 3 moves upward compared to the case without the thin film 2 (Fig. 6) When the coefficient of linear expansion of the thin film is large, or when the film thickness is large, or when the film area is large, the above diaphragm is used. the amount of movement onto, increases. as a result, when the film 2 is no, and the distance between the electrode 3 and the electrode 4 di> d 2> d. a linear expansion coefficient a 3 forces thin film 2 of a thickness , And by adjusting the area, (^ ^ (^ Can, even if the diaphragm 1 is deformed by a temperature change, it is possible to reduce a change amount of the capacitance c. That is, it is possible to reduce the temperature effects of capacitive pressure sensor for detecting a change in pressure.
(実施例 2 )  (Example 2)
本発明の他の実施例を第 7図から第 1 7図により説明する。 第 7図は, 第 4図で示した従来の電気容量型圧力センサの要部の有限要素法 (Finite Element Method, 以下 FEM) モデルであり軸対称でモデル化した断面図 を示している。 上記モデルは, 半径が R2で厚さ D2のダイアフラム 1と, 半 径が で厚さ の電極 3と, ダイアフラム土台 8からなる。 Another embodiment of the present invention will be described with reference to FIGS. 7 to 17. Fig. 7 shows the finite element method (Finite element method) of the main part of the conventional capacitive pressure sensor shown in Fig. 4. It is an Element Method (FEM) model and shows a cross-sectional view modeled axially symmetrically. The above model consists of a diaphragm 1 with a radius of R 2 and a thickness of D 2 , an electrode 3 with a radius of 2 and a thickness, and a diaphragm base 8.
表 1は, ダイアフラム 1がシリコン, 電極 3は例えば表面が酸化シリコン, 窒化シリコンなどの絶縁膜で皮膜されたポリシリコンなどの電気伝導体から なる場合の剛性の一例である。 表 1  Table 1 shows an example of the rigidity when the diaphragm 1 is made of silicon and the electrode 3 is made of an electrical conductor such as polysilicon whose surface is coated with an insulating film such as silicon oxide or silicon nitride. table 1
Figure imgf000008_0001
Figure imgf000008_0001
ここでは, D)= l [ β m), D2 = 4 [ μ m], R , = 5 2 m] , R2= 1 1 2 [ μ m), d。= 1 [ μ m] としてある。 第 8図は, 第 7図と表 1で示し た FEM 解析モデルを初期温度 2 0 °Cから 1 2 0 まで温度上昇 ( 1 0 0°C) させた場合の変形図を示している。 また第 9図は, 第 7図と表 1で示 した FEM 解析モデルを初期温度 2 0 から一 8 0 °Cまで温度降下 ( 1 0 0°C) させた場合の変形図を示している。 変形状態をわかりやすくするため, 第 8図と第 9図において, 変形の表示は拡大している。 Here, D) = l [β m), D 2 = 4 [μ m], R, = 5 2 m], R 2 = 1 1 2 [μ m), d. = 1 [μm]. Fig. 8 shows a deformation diagram when the temperature of the FEM analysis model shown in Fig. 7 and Table 1 is increased from the initial temperature of 20 ° C to 120 ° (100 ° C). Fig. 9 shows a deformation diagram when the temperature of the FEM analysis model shown in Fig. 7 and Table 1 is lowered from the initial temperature of 20 to 180 ° C (100 ° C). The deformation display is enlarged in Figs. 8 and 9 to make the deformation state easier to understand.
第 8図では初期温度 2 0°Cから 1 2 0°Cまで温度上昇 ( 1 0 0 °C) による熱 膨張によってダイアフラムが下に凸に変形する。 上記変形によつて電極 3と 上部電極表面との距離 d ( x, y ) は電極の全領域において, 初期温度での 距離 d。より大きくなる。 その結果, 電気容量 は, 次の (3 ) 式
Figure imgf000009_0001
となり, 温度変化により電気容量が厶 C 1 == I C — C Q I〉 0だけ変化し, 出力が温度に影響される。
In Fig. 8, the diaphragm deforms convexly downward due to thermal expansion due to the temperature rise (100 ° C) from the initial temperature of 20 ° C to 120 ° C. Due to the above deformation, the distance d (x, y) between the electrode 3 and the upper electrode surface is the distance d at the initial temperature over the entire area of the electrode. Be larger. As a result, the electric capacity is expressed by the following equation (3).
Figure imgf000009_0001
The electric capacitance changes by C1 = = IC-CQI> 0 due to the temperature change, and the output is affected by the temperature.
第 9図では初期温度 2 0°Cから— 8 0°Cまでの温度下降 ( 1 0 0°C) による 熱収縮によつてダイァフラム 1が上に凸に変形する。 上記変形によつて電極 3と上部電極表面との距離 d (X, y) は電極の全領域において, 初期温度 での距離 d。より小さくなる。 その結果, 電気容量 C2は, 次の (4 ) 式 In FIG. 9, the diaphragm 1 is deformed to be convex upward due to heat shrinkage caused by a temperature decrease (100 ° C.) from an initial temperature of 20 ° C. to −80 ° C. Due to the above deformation, the distance d (X, y) between the electrode 3 and the upper electrode surface is the distance d at the initial temperature over the entire area of the electrode. Smaller. As a result, the electric capacity C 2 is given by the following equation (4)
C2 0 … ")C 2 0 … ")
Figure imgf000009_0002
となり, 温度変化により電気容量が A C2= I C 2— C。 I > 0だけ変化し, 出力が温度に影響される。
Figure imgf000009_0002
The electric capacity is AC 2 = IC 2 — C due to temperature change. It changes by I> 0, and the output is affected by temperature.
以上第 8図, 第 9図で示したように従来の容量型圧力センサでは, 温度変化 によりダイァフラムが大きく変形し, 温度変化が出力に影響する。 As shown in Figs. 8 and 9, in the conventional capacitive pressure sensor, the diaphragm is greatly deformed by the temperature change, and the temperature change affects the output.
これに対し, 第 1 0図は本発明の容量型圧力センサの要部の FEM モデルで あり軸対称でモデル化した断面図を示している。 上記モデルは, 半径が R2 で厚さ D2のダイアフラム 1と, 半径が で厚さ の電極 3と, ダイァフ ラムの付け根上に形成された幅 Lで厚さ D3の薄膜, そしてダイアフラム土 台 8をからなり, 電極 3と上部電極表面との距離は d 。である。 表 2は, 本 発明の一例として, ダイアフラム 1とダイアフラム支持部 7はシリコン, 電 極 3は例えば表面が酸化シリコン, 窒化シリコンなどの絶縁膜で皮膜された ポリシリコンなどの電気伝導体からなる場合の剛性の一例であり, また薄膜 2はここでは電極 3と同じ剛性の場合であり, 他の剛性でも各種の寸法を適 宜変えることによって, 以後説明する最適寸法を有した容量型圧力センサを 構成することができる, On the other hand, FIG. 10 shows an FEM model of a main part of the capacitive pressure sensor of the present invention, and shows a cross-sectional view modeled in an axially symmetric manner. The above model, radius and diaphragm 1 having a thickness D 2 in R 2, an electrode 3 of the radius of the thickness, a thin film of thickness D 3 at the width L formed on the base of Daiafu ram, and the diaphragm earth The distance between the electrode 3 and the surface of the upper electrode is d. It is. Table 2 shows an example of the present invention in which the diaphragm 1 and the diaphragm support 7 are made of silicon, and the electrode 3 is made of an electric conductor such as polysilicon whose surface is coated with an insulating film such as silicon oxide or silicon nitride. The rigidity of the thin film 2 is the same as that of the electrode 3 in this case. By changing various dimensions as appropriate for other rigidities, a capacitive pressure sensor having the optimal dimensions described below can be obtained. Can Be Configured,
表 2Table 2
Figure imgf000010_0001
Figure imgf000010_0001
本実施例では' D , = l 【 m], D2 = 4 [ β m) , R , = 5 2 m], R2 = 1 1 2 [〃 m], そして L = 3 0 【 m]とし, D 3は種々変えて計算を行つ た。 第 1 1図は, 第 1 0図と表 2で示した FEM 解析モデルを初期温度 2 0°Cから 1 2 0°Cまで温度上昇 ( 1 0 0 °C) させた場合の変形図を示してい る。 また第 1 2図は, 第 1 0図と表 2で示した FEM 解析モデルを初期温度 2 0てから一 8 0°Cまで温度降下 ( 1 0 0。C) させた場合の変形図を示して いる。 第 1 1図と第 1 2図では, D3= l 【 m] とし, また変形状態をわか りやすくするため, 変形の表示は拡大している。 In this embodiment, 'D, = l [m], D 2 = 4 [β m), R, = 52 m ], R 2 = 1 12 [〃 m ], and L = 30 [m] , D 3 were calculated with various changes. Fig. 11 shows the deformation diagram when the temperature of the FEM analysis model shown in Fig. 10 and Table 2 was raised from the initial temperature of 20 ° C to 120 ° C (100 ° C). ing. Fig. 12 is a deformation diagram when the temperature of the FEM analysis model shown in Fig. 10 and Table 2 is lowered (100.C) from the initial temperature of 20 to 180 ° C. ing. In the first 1 figure and first FIG. 2, and D 3 = l [m], and in order to Riyasuku divided the deformed state, the display of the deformation is expanding.
本発明の一実施例の容量型圧力センサの FEM解析結果である第 1 1図では, 初期温度 2 0 °Cから 1 2 0 Cまでの温度上昇 ( 1 0 0 °C) による熱膨張に よって電極が下に凸に変形する。 しかし, ダイァフラムより線膨張係数が小 さレ、薄膜 2がダイアフラ厶付け根上にあるため上記ダイアフラム付け根部分 が下に凸に変形する。 この結果, 電極 3は全体的に上に移動し, 電極 3と上 部電極表面との距離 d ( X, y ) において, d (x , y ) > d。となる領域 と (x, y) < d。となる領域が存在する。 その結果, 温度変化によりダ ィァフラム 1が変形しても, 電気容量 Cの変化量を小さくすることが可能で ある。 すなわち, 容量式圧力センサの温度影響を小さくすることができる。 また, 本発明の一実施例の容量型圧力センサの FEM 解析結果である第 1 2 図では, 初期温度 2 0°Cから— 8 0°Cまでの温度降下 (1 0 0°C) による熱 収縮によって電極が上に凸に変形する。 しかし, ダイァフラムより線膨張係 数が小さ 、薄膜 2がダイアフラム付け根上にあるため上記ダイアフラム付け 根部分が上に凸に変形する。 この結果, 電極 3は全体的に下に移動し, 電極 3と上部電極表面との距離 d (x, y) において, d (x, y ) > dQとな る領域と d (x, y) < d。となる領域が存在する。 その結果, 温度変化に よりダイアフラム 1が変形しても, 電気容量 Cの変化量を小さくすることが 可能である。 すなわち, 容量式圧力センサの温度影響を小さくすることがで さる。 In Fig. 11, which is the result of FEM analysis of the capacitive pressure sensor according to one embodiment of the present invention, the thermal expansion due to the temperature rise (100 ° C) from the initial temperature of 20 ° C to 120 ° C is shown. The electrode deforms convex downward. However, the coefficient of linear expansion is smaller than that of the diaphragm, and since the thin film 2 is on the base of the diaphragm, the base of the diaphragm is deformed downward. As a result, electrode 3 moves upward as a whole, and d (x, y)> d at the distance d (X, y) between electrode 3 and the upper electrode surface. Area And (x, y) <d. There is a region where As a result, even if the diaphragm 1 is deformed due to a temperature change, the amount of change in the capacitance C can be reduced. That is, the temperature effect of the capacitive pressure sensor can be reduced. Also, in Fig. 12, which is the result of FEM analysis of the capacitive pressure sensor according to one embodiment of the present invention, the heat due to the temperature drop (100 ° C) from the initial temperature of 20 ° C to −80 ° C is shown. The contraction deforms the electrode upwardly. However, since the coefficient of linear expansion is smaller than that of the diaphragm, and the thin film 2 is on the base of the diaphragm, the base of the diaphragm is deformed upward. As a result, the electrode 3 is wholly moved down, the distance between the electrode 3 and the upper electrode surface d (x, y), d (x, y)> d Q and ing area and d (x, y ) <d. There is a region where As a result, even if the diaphragm 1 is deformed due to a temperature change, the amount of change in the capacitance C can be reduced. That is, the temperature effect of the capacitive pressure sensor can be reduced.
(実施例 3 )  (Example 3)
本発明の他の実施例として, 圧力を印可していない場合の電気容量の温度に よる影響 (以下, 零点影響) が小さくなることを第 1 3図を用いて示す。 第 1 3図は, 実施例 2で示した第 1 0図の圧力センサの電気容量の薄膜 3の膜 厚依存性を示し, ここでは, 圧力は印可していない。 第 1 3図で膜厚が 0 [^m] の点は, 第 7図で示した FEM 解析モデルでの電気容量値である。 また, 第 1 4図に各種の膜厚での電気容量の温度変化を示す。 第 1 3図にお いて, 薄膜 3の膜厚を 0 [ m] から増すことによって, 温度変化による電 気容量の変化量が小さくなり約 1. 2 [βΐη (最適膜厚) で零点影響がほ ぼ無くなる。 また, 第 1 4図において, 膜厚 0 [ m] では温度変化による 電気容量の変化量が大きいが 1 [ "m] では小さくなり, 最適膜厚では, ほ とんど電気容量が温度に依存しないことがわかる。 よって, 本実施例から, 容量型圧力センサにおいて, ダイアフラムの付け根部分にダイァフラムと材 料物性値の違う薄膜を形成することにより, 温度影響の小さな圧力センサを 得ることができることがわかる。 As another embodiment of the present invention, FIG. 13 shows that the influence of temperature on the electric capacity when no pressure is applied (hereinafter, the zero point effect) is reduced. Fig. 13 shows the dependence of the electric capacity of the pressure sensor of Fig. 10 shown in Example 2 on the thickness of the thin film 3, where no pressure was applied. The point where the film thickness is 0 [^ m] in Fig. 13 is the capacitance value in the FEM analysis model shown in Fig. 7. Fig. 14 shows the temperature change of the capacitance at various film thicknesses. In Fig. 13, by increasing the thickness of the thin film 3 from 0 [m], the amount of change in the electric capacity due to the temperature change becomes small, and the effect of the zero point becomes about 1.2 [βΐη (optimum film thickness). It is almost gone. In Fig. 14, the change in electric capacity due to temperature change is large at a film thickness of 0 [m], but small at 1 ["m]. At the optimum film thickness, the electric capacity is almost dependent on temperature. Therefore, in this example, the diaphragm and the material were attached to the base of the diaphragm in the capacitive pressure sensor. It can be seen that by forming thin films with different material properties, a pressure sensor with a small temperature effect can be obtained.
(実施例 4 )  (Example 4)
本発明の他の実施例を第 1 5図から第 1 7図を用いて説明する。 第 1 5図は, 本発明の容量型圧力センサの要部の FEM モデルであり実施例 2で示した第 1 0図の FEM モデルに圧力 Pを印可するモデルの断面図を示し, 寸法は第 1 0図のモデルと同じである。 第 1 6図は, 第 1 5図と表 2で示した FEM 解析モデルの計算結果であり, 薄膜 2の膜厚 D 3は 0 [ m ] すなわち薄膜 2は形成されていない場合の, 温度— 8 0 °C, 2 0 °C, そして 1 2 0 °Cでの 電気容量の圧力特性を示している。 一方, 第 1 7図は, 第 1 5図と表 2で示 した FEM解析モデルの計算結果であり, 薄膜の膜厚 D 3は 1 [ /z m] で, 温 度 _ 8 0 °C, 2 0 °C, そして 1 2 0 °Cでの電気容量の圧力特性を示している。 図 1 6から温度の違いにより電気容量が大きく違い, 温度変ィヒに圧力出力が 大きく影響することがわかる。 一方, 第 1 7図では電気容量の圧力特性を示 す線が, 第 1 6図と違い, ほぼ同一線上にある。 このことから, ダイアフラ ムの付け根部分に薄膜 2を形成させることによって, 圧力の出力の影響を小 さくすることが可能であることがわかる。 Another embodiment of the present invention will be described with reference to FIGS. Fig. 15 is a cross-sectional view of the FEM model of the main part of the capacitive pressure sensor of the present invention, in which the pressure P is applied to the FEM model of Fig. 10 shown in the second embodiment. It is the same as the model in Figure 10. The first 6 figure is a calculation result of the FEM analysis model shown in the first 5 figures and Table 2, the thickness D 3 of the thin film 2 is 0 [m] in the case of i.e. a thin film 2 is not formed, the temperature - It shows the pressure characteristics of electric capacitance at 80 ° C, 20 ° C, and 120 ° C. On the other hand, the first 7 drawing is a calculation result of the FEM analysis model shown in the first 5 figures and Table 2, the thickness D 3 of the thin film 1 [/ zm], the temperature _ 8 0 ° C, 2 The pressure characteristics of the electric capacitance at 0 ° C and 120 ° C are shown. From Fig. 16, it can be seen that the electric capacity greatly differs depending on the temperature, and that the pressure output greatly affects the temperature change. On the other hand, in Fig. 17, unlike the Fig. 16, the line showing the pressure characteristic of the capacitance is almost on the same line. This indicates that the effect of the pressure output can be reduced by forming the thin film 2 at the base of the diaphragm.
本発明の容量型圧力センサによれば, ダイァフラムを容量型圧力センサの本 体に支持する支持部分上に, 前記支持部分の線膨張係数と異なる材料からな る薄膜が形成されていることにより, 温度変化が生じても, 対向する電極間 の間隔の変化が小さく抑えられ, これにより温度変化による電気容量の変ィ匕 が防止され, 圧力出力の温度影響を小さくできる。 According to the capacitive pressure sensor of the present invention, a thin film made of a material different from the linear expansion coefficient of the supporting portion is formed on the supporting portion that supports the diaphragm on the body of the capacitive pressure sensor. Even if a temperature change occurs, the change in the distance between the opposing electrodes is suppressed to a small value, thereby preventing the capacitance from being changed due to the temperature change, and reducing the temperature effect of the pressure output.

Claims

請求の範囲 The scope of the claims
1 . 圧力を受けることにより変形するダイアフラムを備えた第 1 の部材 と、 前記第 1 の部材のー主面側に固定された第 2の部材と、 前記第 1 の 部材の前記一主面側とは反対側に固定された第 3の部材と、 前記ダイァ フラムの一主面の中央部に設けられた第 1 の電極と、 前記第 2の部材の 前記第 1 の電極と対向する面に設けられた第 2の電極とを備えた容量型 圧力センサにおいて、  1. A first member having a diaphragm that is deformed by receiving a pressure, a second member fixed to a main surface side of the first member, and the one main surface side of the first member A third member fixed to the opposite side of the first member, a first electrode provided at the center of one main surface of the diaphragm, and a surface of the second member facing the first electrode. A capacitive pressure sensor comprising a second electrode provided
前記ダイァフラムには前記第 1 の電極の外縁部より も外側に薄膜が形成 されていることを特徴とする容量型圧力センサ。 A capacitive pressure sensor, wherein a thin film is formed on the diaphragm outside an outer edge of the first electrode.
2 . 圧力を受けることによ り変形するダイアフラムを備えた第 1 の部材 と、 前記第 1 の部材のー主面側に固定された第 2の部材と、 前記第 1 の 部材の前記一主面側とは反対側に固定された第 3の部材と、 前記ダイァ フラムの一主面の中央部に設けられた第 1 の電極と、 前記第 2の部材の 前記第 1 の電極と対向する面に設けられた第 2の電極とを備えた容量型 圧力センサにおいて、  2. A first member having a diaphragm that is deformed by receiving a pressure, a second member fixed to the main surface side of the first member, and a main member of the first member. A third member fixed to the side opposite to the surface side, a first electrode provided at the center of one main surface of the diaphragm, and facing the first electrode of the second member And a second electrode provided on the surface.
前記ダイァフラムには前記第 1 の電極の外縁部より も外側に薄膜が形成 されており、 前記ダイアフラムを形成している材料の線膨脹係数 α と、 前記第 1の電極を形成している材料の線膨脹係数 α 2と、 前記薄膜を形成 している材料の線膨脹係数 α 3との関係が 《 2〉 ^^ 及び a s ^^ で表されることを特徴とする容量型圧力センサ。 A thin film is formed on the diaphragm outside the outer edge of the first electrode, and a coefficient of linear expansion α of a material forming the diaphragm and a material of a material forming the first electrode are formed. capacitive pressure sensor, characterized in that the coefficient of linear expansion alpha 2, the relationship between the linear expansion coefficient alpha 3 of the material forming the thin film is represented by "2> ^^ and the as ^^.
3 . 圧力を受けることにより変形するダイアフラムを備えた第 1 の部材 と、 前記第 1 の部材のー主面側に固定された第 2の部材と、 前記第 1 の 部材の前記一生面側とは反対側に固定された第 3の部材と、 前記ダイァ フラムの一主面の中央部に設けられた第 1 の電極と、 前記第 2の部材の 前記第 1 の電極と対向する面に設けられた第 2の電極とを備えた容量型 圧力センサにおいて、 前記ダイァフラムには前記第 1の電極の外縁部より も外側に薄膜が形成 されており、 前記ダイァフラムを形成している材料の線膨脹係数 a iと、 前記第 1の電極を形成している材料の線膨脹係数 α 2と、 前記薄膜を形成 している材料の線膨脹係数 α 3との関係が α 2く a 及び α 3く で表されることを特徴とする容量型圧力センサ。 3. A first member provided with a diaphragm that is deformed by receiving pressure, a second member fixed to a main surface side of the first member, and a life surface side of the first member. Is a third member fixed to the opposite side, a first electrode provided at the center of one main surface of the diaphragm, and a third member provided on a surface of the second member facing the first electrode. A capacitive pressure sensor having a second electrode A thin film is formed on the diaphragm outside the outer edge of the first electrode, and a coefficient of linear expansion ai of a material forming the diaphragm and a material of a material forming the first electrode are formed. capacitive pressure sensor, characterized in that the coefficient of linear expansion alpha 2, the relationship between the linear expansion coefficient alpha 3 of the material forming the thin film is represented by alpha 2 rather a and alpha 3 wards.
4 . 前記ダイアフラムを形成している材料がシリコンであり、  4. The material forming the diaphragm is silicon,
前記第 1の電極および前記薄膜を形成している材料が表面が酸化シリ コ ンまたは窒化シリ コンにより被膜されたポリ シリ コンであることを特徴 とする請求項 1乃至 3のいずれかに記載の容量型圧力センサ。 4. The material according to claim 1, wherein the material forming the first electrode and the thin film is a polysilicon whose surface is coated with silicon oxide or silicon nitride. 5. Capacitive pressure sensor.
PCT/JP1998/001093 1998-03-16 1998-03-16 Capacitive pressure sensor WO1999047902A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000537048A JP3489563B2 (en) 1998-03-16 1998-03-16 Capacitive pressure sensor
PCT/JP1998/001093 WO1999047902A1 (en) 1998-03-16 1998-03-16 Capacitive pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/001093 WO1999047902A1 (en) 1998-03-16 1998-03-16 Capacitive pressure sensor

Publications (1)

Publication Number Publication Date
WO1999047902A1 true WO1999047902A1 (en) 1999-09-23

Family

ID=14207794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001093 WO1999047902A1 (en) 1998-03-16 1998-03-16 Capacitive pressure sensor

Country Status (2)

Country Link
JP (1) JP3489563B2 (en)
WO (1) WO1999047902A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337924A (en) * 2004-05-27 2005-12-08 Tokyo Electron Ltd Method for manufacturing pressure gauge, method for manufacturing gas treating apparatus, pressure gauge, and gas treating apparatus
WO2007107736A3 (en) * 2006-03-20 2009-09-11 Wolfson Microelectronics Plc Method for fabricating a mems microphone
JP2020153779A (en) * 2019-03-19 2020-09-24 株式会社東芝 Pressure sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239938A (en) * 1990-02-16 1991-10-25 Toyoda Mach Works Ltd Capacity type pressure sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239938A (en) * 1990-02-16 1991-10-25 Toyoda Mach Works Ltd Capacity type pressure sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337924A (en) * 2004-05-27 2005-12-08 Tokyo Electron Ltd Method for manufacturing pressure gauge, method for manufacturing gas treating apparatus, pressure gauge, and gas treating apparatus
JP4678752B2 (en) * 2004-05-27 2011-04-27 東京エレクトロン株式会社 Pressure gauge manufacturing method and gas processing apparatus manufacturing method
WO2007107736A3 (en) * 2006-03-20 2009-09-11 Wolfson Microelectronics Plc Method for fabricating a mems microphone
US7781249B2 (en) 2006-03-20 2010-08-24 Wolfson Microelectronics Plc MEMS process and device
US7856804B2 (en) 2006-03-20 2010-12-28 Wolfson Microelectronics Plc MEMS process and device
CN103096235B (en) * 2006-03-20 2015-10-28 思睿逻辑国际半导体有限公司 Prepare the method for MEMS condenser microphone
JP2020153779A (en) * 2019-03-19 2020-09-24 株式会社東芝 Pressure sensor

Also Published As

Publication number Publication date
JP3489563B2 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
KR0137931B1 (en) Capacitive semiconductor sensor with hinged diaphragm for planar motion
KR0137965B1 (en) Capacitive sensor with minimized dielectric drift
EP1316786B1 (en) Capacity type pressure sensor and method of manufacturing the pressure sensor
US6651506B2 (en) Differential capacitive pressure sensor and fabricating method therefor
KR0137939B1 (en) Capacitive pressure sensor and method for minimizing the parasitic capacitance in a capacitive pressure sensor
JP3114570B2 (en) Capacitive pressure sensor
US5381299A (en) Capacitive pressure sensor having a substrate with a curved mesa
TWI611167B (en) An improved pressure sensor
EP2994733B1 (en) An improved pressure sensor
JP2007225344A (en) Pressure sensor
JP4773630B2 (en) Diaphragm type semiconductor device and manufacturing method thereof
JP2007101222A (en) Pressure sensor
EP2796844B1 (en) Mems capacitive pressure sensor
WO1999047902A1 (en) Capacitive pressure sensor
JP5217163B2 (en) Pressure sensor
JP2005321257A (en) Capacitance type pressure sensor
JPH07174652A (en) Semiconductor pressure sensor and its manufacture as well as pressure detection method
JP2006200980A (en) Capacitance type pressure sensor and capacitance type actuator
CN212158891U (en) Pressure sensor chip, pressure sensor and electronic device
JP2002195903A (en) Pressure sensor
JP2004226294A (en) Static and dynamic pressure detection sensor
JP6889061B2 (en) Capacitive pressure sensor
TWI697999B (en) Mems devices and processes
JPH1183658A (en) Capacitive sensor
JP2000009573A (en) Capacitive pressure sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase