WO1999047583A1 - Derivatisierte kohlenmonoxidcopolymerisate - Google Patents

Derivatisierte kohlenmonoxidcopolymerisate Download PDF

Info

Publication number
WO1999047583A1
WO1999047583A1 PCT/EP1999/001408 EP9901408W WO9947583A1 WO 1999047583 A1 WO1999047583 A1 WO 1999047583A1 EP 9901408 W EP9901408 W EP 9901408W WO 9947583 A1 WO9947583 A1 WO 9947583A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon monoxide
copolymers
monoxide copolymers
compounds
derivatized
Prior art date
Application number
PCT/EP1999/001408
Other languages
English (en)
French (fr)
Inventor
Joachim Queisser
Michael GEPRÄGS
Bernhard Rieger
Roland Wursche
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AU27279/99A priority Critical patent/AU2727999A/en
Priority to JP2000536772A priority patent/JP2002506899A/ja
Priority to US09/623,711 priority patent/US6306979B1/en
Priority to EP99907594A priority patent/EP1064317A1/de
Publication of WO1999047583A1 publication Critical patent/WO1999047583A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F281/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having carbon-to-carbon triple bonds as defined in group C08F38/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G67/00Macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing oxygen or oxygen and carbon, not provided for in groups C08G2/00 - C08G65/00
    • C08G67/02Copolymers of carbon monoxide and aliphatic unsaturated compounds

Definitions

  • the present invention relates to derivatized carbon monoxide copolymers.
  • the invention further relates to a process for the preparation of these carbon monoxide copolymers and their use for the production of graft copolymers.
  • the invention relates to graft copolymers, a process for the preparation of these copolymers and their use for the production of moldings, fibers, films and coatings and their use as phase mediators in polymer mixtures or as a coating component.
  • the invention relates to the use of functionalized carbon monoxide copolymers for the production of derivatized carbon monoxide copolymers.
  • Carbon monoxide copolymers can now be produced from carbon monoxide and ⁇ -olefins such as ethene or propene in the form of strictly alternating linear copolymers catalyzed by transition metals.
  • Suitable catalyst systems are based on palladium complexes chelated with bidentate phosphine ligands (cf. EP-A-0 121,965 and J. Organomet. Chem., 1991, 417, p. 235).
  • Conventional carbon monoxide / ethene or carbon monoxide / ethene / propene copolymers can generally be understood as polymeric materials with a range of thermoplastic properties. They are characterized by good mechanical properties e.g. in impact resistance and abrasion as well as good chemical resistance.
  • Japanese patent applications JP-A 22 32 338 and JP-A 62 26 925 describe the catalytic reduction of alternating carbon monoxide copolymers to 1,4-polyalcohols.
  • the reaction with nitrogen-containing nucleophiles to carbon monoxide / ethene / propene terpolymers with 2,5-pyrrole units is known from the publication US 1346-H.
  • the Mannich reaction can also be carried out on carbon monoxide copolymers 2 as the halogenation of the methylene unit (cf. US 4,424,317 and US 4,616,072).
  • the object of the present invention was therefore to find carbon monoxide copolymers which can be derivatized without problems, without side reactions and molecular weight degradation occurring.
  • the invention was also based on the object of developing derivatized carbon monoxide copolymers which are also suitable for further subsequent reactions.
  • derivatized carbon monoxide copolymers obtainable by reacting functionalized linear strictly alternating carbon monoxide copolymers from carbon monoxide, have at least one 1-alkene (A), where (A) is an aryl compound substituted with at least one terminal allyl or homoallyne unit and at least one hydroxyl or amino group, or an ⁇ represents olefinically unsaturated aliphatic alcohol, and optionally at least one C 1 -C 4 -alkene (B) with an organic compound (C) which has at least one reactive electrophilic group, found in an aprotic organic solvent.
  • graft copolymers Furthermore, graft copolymers, a process for the preparation of these copolymers and their use for the production of moldings, fibers, films and coatings and their 3
  • Suitable functionalized carbon monoxide copolymers which are available here for derivatization reactions, are based on linear alternating carbon monoxide copolymers made of carbon monoxide, at least one 1-alkene (A), one with at least one terminal allyl and / or homoallyne unit and with at least one hydroxy and / or amino group substituted aryl compound or an ⁇ -olefinically unsaturated aliphatic alcohol, and optionally at least one C 2 - to C 20 -1-alkene (B).
  • A 1-alkene
  • B optionally at least one C 2 - to C 20 -1-alkene
  • Y is a compound of the general formula (II)
  • R 1 is hydrogen, linear and branched C 1 to C 10 alkyl, preferably C 1 to C 6 alkyl, such as methyl, ethyl, n-propyl, i-propyl, n-butyl or t-butyl, in particular methyl, C 3 - to Cio-cycloalkyl, preferably C 3 to C 6 cycloalkyl, such as cyclopropyl or cyclohexyl, C 6 to Cio-aryl, preferably C 6 to Cio-aryl, in particular phenyl, and
  • R 2 independently of one another hydrogen, linear and branched C 1 -C 10 -alkyl, preferably C 1 -C 6 -alkyl, such as methyl, ethyl, n-propyl, i-propyl, n-butyl or t-butyl, in particular methyl, C 3 - to Cio-cycloalkyl, preferably C 3 - to C ö -cycloalkyl, such as cyclopropyl or cyclohexyl, C $ - to Ci 4 -aryl, preferably C 6 - to Cio-aryl, especially phenyl, or halogen, such as fluorine, Chlorine, bromine, iodine mean and
  • Q is independently linear or branched C ⁇ ⁇ bis
  • Cio-alkyl preferably C 1 ⁇ to C ⁇ -alkyl, such as methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl or t-butyl, in particular methyl, i-propyl or t-butyl, C 3 - to Cio-cycloalkyl, preferably C 3 - to C 6 cycloalkyl, such as cyclopropyl or cyclohexyl, C 6 ⁇ C to 4 ⁇ aryl, preferably C 6 - to C ⁇ 0 aryl, especially phenyl, aralkyl having from 1 to 6, preferably 1 to 3 C atoms in the alkyl part, and 6 to 14, preferably 6 to 10 C atoms in the aryl part, for example benzyl, or C 3 - to C 3 o ⁇ organosilyl, for example trimethyl, triethyl, tri isopropyl
  • o an integer from 0 to 4 mean with
  • p denotes an integer from 0 to 6
  • Particularly suitable are those compounds (A) which have a terminal allyl unit, i.e. Compounds of the formulas (Ia) and (Ib) in which q 1.
  • these olefinic monomers preference is again given to those whose terminal allyl unit is located in the ortho position to a hydroxyl or amino group.
  • Naphthyl compounds with an allyl unit in the 1-position and one of the polar groups mentioned in the 2-position or with an allyl unit in the 2-position and a polar group in the 1- and / or 3-position and in particular allylphenyl compounds with one or two orthostane polar groups to the allyl unit.
  • the polar groups X are the hydroxyl and the primary amino group.
  • Suitable compounds are e.g. 2-allylphenol, 2-allyl-p-hydroquinone, 3-allyl-o-hydroquinone, 2-allylaniline, 2-allyl-4-aminophenol or 3-allyl-4-aminophenol, in particular 2-allylphenol.
  • compounds (A) which have more than two or three polar groups X on the phenyl ring (compounds of the formula (Ia)) and more than three or four polar groups on the naphthyl ring (compounds of the formula (Ib)), as long as there is a terminal allyl or homoallyne unit in the aryl derivative.
  • a plurality of allyl or homoallyne units, preferably allyl units can also be bound to the aryl derivative at the same time (a maximum of 5 for compounds of the formula (Ia) and a maximum of 7 for compounds (Ib)), provided that the aromatic skeleton still has a polar group X.
  • Terminal allyl or homoallyne units also include those radicals whose hydrogen radicals, apart from the terminal ones, are independent of one another, for example by Alkyl groups such as methyl, ethyl or isopropyl, aryl groups such as phenyl, aralkyl groups such as benzyl or halogens such as fluorine or chlorine are substituted. Examples include isopropylidene or isobutylidene units. However, unsubstituted allyl and homoallyne units, in particular allyl units, are preferred.
  • the compounds (A) can have further radicals on the aromatic system.
  • the radicals Q described at the outset can be used as substituents.
  • the residues Q in (A) can be identical or different. If the valences on the aromatic ring systems of the formulas (Ia) and (Ib) are not already saturated by the radicals X, Y or Q, they are saturated by hydrogen atoms (CH bonds).
  • Suitable compounds (A) therefore also include 2-allyl-4-methylphenol, 2-allyl-4-t- 6 butylphenol, 2-allyl-6-methylphenol, 2-allyl-4-phenylphenol, 2-allyl-4, 6-dimethylphenol, 2, 6-dimethyl-4-allylphenol, 2-allyl-4-t -butyl-6-methyl-phenol, 2,6-di-t-butyl-4-allyl-phenol, 2-allyl-6-methylaniline, 2-allyl-4-methylaniline or 2-allyl-4-t-5 butylaniline.
  • Suitable 1-alkenes (A) are ⁇ -olefinically unsaturated aliphatic alcohols. These are, in particular, terminal alcohols with a substituted or unsubstituted one
  • 10 C 2 - to Co ⁇ alkylene chain for example allyl alcohol, 3-butene-l-ol, 4-pentene-l-ol, 5-hexen-l-ol, 6-heptene-l-ol, 10-undecene-l -ol or 15-hexadecen-l-ol.
  • Particularly suitable are ⁇ -olefinically unsaturated alcohols with a C to Cis alkylene chain, in particular with a C to Cio alkylene chain such as allyl alcohol or
  • ⁇ -olefins 25 bonds of this class of compounds, for example ⁇ -olefins or diolefins with at least one terminal double bond in question.
  • Suitable ⁇ -olefins are, for example, C 2 - to C 2 ol-alkenes, such as ethene, propene, 1-butene, isobutene, 4-methyl-1-pentene, 1-hexene, 1-octene and mixtures thereof.
  • 1-alkenes 1-alkenes
  • Suitable are e.g. Styrene, ⁇ -methylstyrene, p-methylstyrene or 2-methylstyrene, styrene is preferred.
  • heteroatom-containing compounds such as (meth) acrylic acid esters or amides or vinyl esters such as vinyl acetate are also used as 1-alkenes.
  • Ethene, propene, 1-butene and styrene, in particular propene, are preferred.
  • the aforementioned 1-alkenes can of course also be used in a mixture.
  • functionalized carbon monoxide terpolymers 40 preference is given to using those composed of carbon monoxide, propene and component (A) and of carbon monoxide, ethene and component (A), in which a terminal allyl unit and a hydroxyl or amino group are present in ortho position in (A).
  • the binary functionalized carbon monoxide copolymers are generally regular poly-1, ketones. Especially when using arylderi- 7 vaten (A), in which the allyl and hydroxy units are ortho, the carbon monoxide copolymers obtained can also have semiketal units. These, in turn, can occur both in blocks and statistically distributed along the linear polymer chain.
  • the ratio of ketone to ketal fragments in these cases is usually in the range from 10: 1 to 1: 5, preferably in the range 4: 1 to 1: 1.
  • the structure of the functionalized carbon monoxide copolymers can be determined by means of 1 H-NMR and 13 C-NMR spectroscopy.
  • the average molecular weights M w of the binary carbon monoxide copolymers are usually in the range from 1000 to 3500000 g / mol, preferably in the range from 3000 to 250000 g / mol and in particular in the range from 5000 to 200000 g / mol (measured by the method of gel permeation chromatography (GPC ) at 25 ° C with Microstyragel (Waters) as column material and chloroform as solvent against polystyrene standard).
  • GPC gel permeation chromatography
  • the binary carbon monoxide copolymers are generally distinguished by narrow molecular weight distributions M w / M n (weight average / number average), measured using the gel permeation chromatography (GPC) method analogous to the previous description.
  • M w / M n values are preferably in the range from 1.1 to 3.5 and in particular assume values ⁇ 2.5.
  • Carbon monoxide copolymers with M w / M n values in the range from 1.1 to 2.2 are particularly preferred.
  • the glass transition temperature values (T g values) of the binary carbon monoxide copolymers are usually in the range from 0 to 120 ° C., preferably in the range from 20 to 100 ° C. and in particular from 30 to 85 ° C.
  • the average molecular weights M w are generally in the range from 5000 to 500000 g / mol, preferably from 20,000 to 300,000 g / mol and in particular from 50,000 to 250,000 g / mol.
  • the T g values of the terpolymers are usually in the range from 0 to 150 ° C., preferably in the range below 90 ° C.
  • the proportion attributable to compound (A) in the terpolymers is generally in the range from 0.1 to 60 mol%, based on the carbon monoxide units in the copolymer (determined on the basis of 1 H-NMR spectra). Suitable terpolymers generally have a proportion of 2 to 50, in particular 3 to 40 mol% of component (A) incorporated. In the terpolymers as well as in higher copolymers as well as in the binary systems 8 In addition to pure 1,4-polyketone units, statistically distributed or block-like, but preferably statistically distributed semiketal structures can also be present. This phenomenon is preferably observed when the polar group in (A) is a hydroxy group.
  • the binary and ternary carbon monoxide copolymers described are generally readily soluble in tetrahydrofuran (THF), toluene, dichloromethane or chloroform.
  • the molar ratio of carbon monoxide to the sum of the structural units in the binary or higher carbon monoxide copolymers attributable to the olefinically unsaturated monomers is generally 1: 1.
  • the functionalized carbon monoxide copolymers can also be prepared according to the methods described in EP-A 0 463 689 and in Sen et al. , Macromolecules, 1996, 29, pp. 5852 -5858. The manufacturing processes described in the cited documents are hereby expressly included in the present disclosure.
  • Suitable organic compounds (C) which have one or more reactive electrophilic groups are, for example, aliphatic or aromatic carboxylic acid chlorides or anhydrides.
  • anhydrides both symmetrical such as hexane or heptanoic anhydride, and also mixed anhydrides such as benzoic acid anhydride or propionic acetic anhydride or cyclic carboxylic acid anhydrides such as glutaric anhydride, succinic anhydride, maleic anhydride, succinic anhydride or amine hydroxylated amide or phthalic anhydride, To derivatize carbon monoxide copolymer.
  • Possible reactants for the amide or ester formation include acidic chlorides such as aromatic acid chlorides such as benzoyl chloride and saturated or unsaturated, linear or branched aliphatic acid chlorides such as acetyl, hexanoyl or (meth) acroyl chloride.
  • Acid chlorides of di- or polycarboxylic acids such as oxalyl chloride or hexanedicarboxylic acid dichloride can also be used.
  • the carboxylic acid group itself can also be used as an electrophilic group 9 occur, especially if suitable coupling reagents or reaction mediators are also used.
  • the amide or ester formation between the functionalized carbon monoxide copolymer and the organic compound (C) can be carried out in a weakly acidic or in a weakly basic medium.
  • Basic compounds include Triethylamine, tributylamine, pyridine, quinoline or ammonium hydroxide in question.
  • reaction mediators such as 4-dimethylaminopyridines, imidazolides such as carbonyldimidazole, dicyclyclohexylcarbodimides, 2, 2'-dipyridyldisulfide / triphenylphosphine or 2-pyrididylthiochlorine can also be added.
  • Aromatic as well as aliphatic or cycloaliphatic isocyanates are suitable. Examples include phenyl, cyclohexyl, isopropyl and 1-phenylethyl isocyanate.
  • the reaction with isocyanates is suitably carried out in the presence of Lewis acids or Lewis bases, which are preferably present in catalytic amounts. In general, all compounds which come under this class can be used as Lewis acids, for example weak and also strong Lewis acids.
  • organometallic compounds of the 4th and 5th main group of the Periodic Table of the Elements are described as Lewis acids, e.g.
  • Tin dioctoate di-butyltin-bis-dodecyl mercaptide, bis (tri-n-butyltin) oxide, dibutyltin oxide, tri-n-butyl-antimony oxide and bismuth oxide, in particular dibutyltin dilaurate, are suitable, for example.
  • Tertiary amines such as diazabicyclooctane (DABCO) are suitable as Lewis bases.
  • DABCO diazabicyclooctane
  • Suitable organic solvents for the derivatization reactions according to the invention are polar aprotic solvents, for example halogenated hydrocarbons such as dichloromethane, 1, 2-dichloroethane or chloroform, furthermore ethers such as diethyl ether or tetrahydrofuran as well as dimethylformamide, dimethyl sulfoxide, hexamethyl phosphoric acid triamide or mixtures of the aforementioned solvents. 10
  • Acid chlorides or isocyanates obtainable derivatized carbon monoxide copolymers according to the invention can generally be obtained with degrees of derivatization greater than 10%, preferably greater than 15% and in particular greater than 20%, the degree of derivatization also depending on the amount of organic compound (C) used.
  • the degree of derivatization based on the free hydroxyl or amino groups in the starting copolymer, reflects the proportion of coupled electrophilic reagent.
  • the degree of derivatization can be determined by means of X H NMR spectroscopy.
  • the molecular weights M w of the derivatized carbon monoxide copolymers according to the invention are generally above 1000 g / mol, preferably above 10000 g / mol and particularly preferably above 25000 g / mol.
  • the derivatized carbon monoxide copolymers differ from the starting compounds, i.e. the functionalized carbon monoxide copolymers over one and possibly also several glass transition temperatures. These are generally above 20, preferably above 30 and particularly preferably above 40 ° C.
  • carbon monoxide copolymers which are derivatized with organic compounds (C) which have two or more electrophilic groups.
  • C organic compounds
  • These compounds include, for example, acid chlorides or anhydrides of dicarboxylic acids such as adipic, glutaric or fumaric acid.
  • this also includes diisocyanate compounds.
  • diisocyanates e.g.
  • 2,4- or 2,6-tolylene diisocyanate isophorone diisocyanate, 4,4'-diisocyanate diphenylmethane, 1,6-hexamethylene diisocyanate, 1,4-cyclohexyl diisocyanate or 1,5-naphthyl diisocyanate in question, 2, 4-tolylene diisocyanate and 1 , 6-hexamethylene diisocyanate are preferred.
  • the carbon monoxide copolymers derivatized with the bifunctional or polyfunctional compounds mentioned thus have at least one free electrophilic group.
  • nucleophilic organic compounds In addition to aliphatic or aromatic mono- or polyhydroxy compounds or amino compounds such as methanol, ethanol, i-propanol, n-butanol, t-butanol, 1,4-butanediol, cyclohexanol, phenol, methylamine, dimethylamine, ethylamine, ethylenediamine, di- i-propylamine or cyclohexylamine are in particular also macromers with at least one nucleophilic end group.
  • macromers should be understood to mean oligomers 11 which have an average molar mass M w greater than 100 g / mol and preferably less than 10,000 g / mol.
  • amino- or hydroxy-functionalized macromers are used.
  • suitable macromers are the polyethers derived from polyethylene glycol or poly-1,4-butanediol, such as polyethylene glycol monobutyl ether or poly (1,4-butanediol) bis (4-aminobenzoate).
  • Polymers with functional end or side groups for example polyamides, polybutylene terephthalate, polyphenylene ethers, polyether sulfones or polycarbonates, each with at least one hydroxyl or amino end group, are also suitable for coupling.
  • polymers mentioned which as a rule already have functional end groups or side groups in conventional form, in particular also modified polymers into which hydroxy- or amino-functional groups have been incorporated in a targeted manner.
  • polyamide such as Ultramid ® or Ultramid T
  • polybutylene terephthalate as Ultradur
  • polyethersulfone as Ultra- son ® E
  • polyphenylene ether as Noryl ® (GE Plastics)
  • polycarbonate such as Lexan ⁇ (GE Plastics).
  • Preferred among the aforementioned compounds are the polyamides and polybutylene terephthalate.
  • Polyphenylene ethers with hydroxy end groups can be found, for example, in JE McGrath et al., Poly. Closely. Be. 1977, 17, p. 647.
  • polar aprotic solvents for example halogenated hydrocarbons such as dichloromethane, 1, 2-dichloroethane or chloroform
  • ethers such as diethyl ether or tetrahydrofuran and dimethylformamide, dimethyl sulfoxide, hexamethylphosphoric triamide or mixtures of the abovementioned solvents.
  • Reaction times for the derivatization and for the grafting reactions are usually in the range from 1 to 2 hours to several days.
  • the reaction temperatures in the processes according to the invention mentioned are generally in the range from -10 to 100, preferably in the range from 0 to 80 and particularly preferably from 10 to 60 ° C.
  • the acidic or basic systems described in the derivatization reaction can be used for the grafting reaction.
  • Basic compounds include triethylamine, tributylamine, pyridine, quinoline or ammonium hydroxide 12 the formation of an ester or amide bond in question.
  • reaction mediators such as 4-dimethylaminopyridines, imidazolides such as carbonyldiidazole, dicyclyclohexylcarbodiimides, 2, 2'-dipyridyldisulfide / triphenylphosphine or 2-pyrididylthiochloroform can also be used in the acylation with carboxylic acid chlorides, anhydrides or carboxylic acids.
  • the Lewis acids and Lewis bases used for the derivatization of the functionalized carbon monoxide copolymers can also be used to mediate the reaction.
  • the derivatized carbon monoxide copolymer advantageously, without isolating or purifying it, sets it directly with the nucleophilic organic one
  • reaction components can generally be mixed with one another in any order, but the reaction solution of the derivatized carbon monoxide copolymer is preferred to give a solution of, for example, a macromer bearing a hydroxyl or amino group.
  • the derivatized carbon monoxide copolymers according to the invention can also be carried out with macromers or polymers bearing hydroxyl or amino groups under the conditions of reaction extrusion, as described in the monograph "Reactive Exrusion, Principles and Practice” by M. Xanthos, Carl Hanser Verlag, Kunststoff, 1992 become.
  • Carbon monoxide copolymers derivatized with isocyanates or carboxylic acid chlorides can be obtained by precipitation in, for example, petroleum ether or methanol. Isolation and purification are achieved using conventional techniques by redissolving and re-controlled precipitation of the derivatized product.
  • the graft copolymers according to the invention can be precipitated in e.g. Win methanol or diethyl ether. If appropriate, the grafted products can be taken up again, for example in dichloromethane, in order then to be obtained in a highly pure form by precipitation, free of impurities.
  • the degree of grafting ie the proportion of coupled nucleophile, for example macromer, based on, for example, the free isocyanate groups in the starting compound, is generally above 10%, preferably above 15%.
  • the molecular weights of the graft copolymers depend both on the molecular weights of the derivatized carbon monoxide copolymers and on the coupling component, for example the macro 13 he, as well as the degree of derivatization. As a rule, the graft copolymers according to the invention have molecular weights greater than 10,000 g / mol.
  • the graft copolymers according to the invention are suitable for the production of moldings, fibers, films or coatings and as phase mediators in polymer mixtures. They can also include coating components, e.g. can be used in multilayer film systems.
  • the processes according to the invention for producing the derivatized carbon monoxide copolymers and also the graft copolymers are distinguished, inter alia, by: characterized in that side reactions do not occur and thus chain cleavage or molecular weight reduction are not observed.
  • the acid chlorides and isocyanates and dibutyltin dilaurate (Bu 2 SnLau 2 ) used in the derivatization reactions were obtained from Fluka, poly (ethylene glycol) monobutyl ether and poly (1,4-butanediol) bis (4-aminobenzoate) from Aldrich based. These products were used without further purification.
  • Dichloromethane was dried over CaH and then distilled. All implementations were carried out under standard Schlenk conditions.
  • the 1 H and 13 C NMR spectra were recorded using a Bruker AMX 500 spectrometer.
  • a Perkin-Elmer DSC-7 (heating rate 20 ° / minute) was used for the DSC measurement.
  • the glass transition temperature was determined from the second run after cooling to -50 ° C.
  • the GPC measurements were carried out relative to a standard of linear polystyrene in chloroform or tetrahydrofuran (THF), using a Waters device equipped with Microstyragel columns and an RI detector.
  • the alternating copolymer of CO and 2-allylphenol (APCO) was produced in accordance with the specification of the German patent application 19727271.1. It had an average molecular weight M w of 22,700 g / mol and a polydispersity of 2.2, measured in chloroform. 14

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyethers (AREA)

Abstract

Verfahren zur Herstellung von derivatisierten Kohlenmonoxidcopolymerisaten, bei dem funktionalisierte lineare, streng alternierende Kohlenmonoxidcopolymere aus Kohlenmonoxid, mindestens einem 1-Alken (A), wobei (A) eine mit mindestens einer endständigen Allyl- oder Homoallyleinheit und mindestens einer Hydroxy- oder Aminogruppe substituierte Arylverbindung oder einen α-olefinisch ungesättigten aliphatischen Alkohol darstellt, und gegebenenfalls mindestens einem C2- bis C20-1-Alken (B) mit einer organischen Verbindung (C), die über mindestens eine elektrophile Gruppe verfügt, in einem aprotischen organischen Lösungsmittel umgesetzt werden.

Description

Derivatisierte Kohlenmonoxidcopolymerisate
Beschreibung
Die vorliegende Erfindung betrifft derivatisierte Kohlenmonoxidcopolymerisate. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung dieser Kohlenmonoxidcopolymerisate sowie deren Verwendung für die Herstellung von Pfropfcopolymeren. Außerdem betrifft die Erfindung Pfropfcopolymere, ein Verfahren zur Herstellung dieser Copolymere und deren Verwendung für die Herstellung von Formteilen, Fasern, Folien und Beschichtungen sowie deren Verwendung als Phasenvermittler in Polymermischungen oder als Beschichtungskomponente. Schließlich betrifft die Erfindung die Verwendung von funktionalisierten Kohlenmonoxidcopolymeren für die Herstellung derivatisierter Kohlenmonoxidcopolymerisate.
Kohlenmonoxidcopolymere können mittlerweile Übergangsmetall-kata- lysiert aus Kohlenmonoxid und α-Olefinen wie Ethen oder Propen in Form streng alternierender linearer Copolymere hergestellt werden. Geeignete Katalysatorsysteme gehen zurück auf mit bidentaten Phosphinliganden chelatisierte Palladiumkomplexe (vgl. EP-A-0 121,965 sowie J. Organomet. Chem. , 1991, 417, S. 235). Herkömmliche Kohlenmonoxid/Ethen- oder Kohlenmonoxid/Ethen/Propen-Copoly- mere können in der Regel als polymere Werkstoffe mit thermoplastischem Eigenschaftsspektrum aufgefaßt werden. Sie zeichnen sich durch gute mechanische Eigenschaften z.B. bei der Schlagzähigkeit und beim Abrieb sowie durch eine gute chemische Beständigkeit aus.
Neben Versuchen, die Polymereigenschaften von Kohlenmonoxidcopolymeren, wie die Glasübergangstemperatur, über die Wahl der Ole- finkomponente zu variieren (vgl. Jiang et al., J. Am. Chem. Soc, 1995, 117, S. 4455), sind ebenfalls Ansätze bekannt, neuartige Polymere über eine Funktionalisierung der Carbonylgruppe im Kettengerüst, d.h. mittels polymeranaloger Reaktionen zugänglich zu mache .
In den japanischen Patentanmeldungen JP-A 22 32 338 und JP-A 62 26 925 wird z.B. die katalytische Reduktion von alternierenden Kohlenmonoxidcopolymeren zu 1, 4-Polyalkoholen beschrieben. Die Umsetzung mit stickstoffhaltigen Nucleophilen zu Kohlenmonoxid/ Ethen/Propen-Terpolymeren mit 2 , 5-Pyrroleinheiten ist aus der Veröffentlichung US 1346-H bekannt. Weiterhin kann an Kohlenmon- oxidcopolymeren die Mannich-Reaktion ebenso durchgeführt werden 2 wie die Halogenierung der Methyleneinheit (vgl. US 4,424,317 und US 4,616,072) .
Wird als Substrat für die genannten polymeranalogen Reaktionen das Kohlenmonoxid/Ethen-Copolymer, das unter den bekannten Kohlenmonoxidcopolymeren relativ unproblematisch in größeren Mengen herstellbar ist, eingesetzt, bildet dessen Unlöslichkeit in allen herkömmlichen Lösungsmitteln eine erhebliche Einschränkung für eine praktikable Anwendung von Folgereaktionen.
Weiterhin stehen Nebenreaktionen einer wirkungsvollen Derivati- sierung von Kohlenmonoxidcopolymeren entgegen. Hierzu zählen beispielsweise radikalische Folgereaktionen vom Typ Norrish I und II. In gleicher Weise kann auch die Addition von N-Nucleophilen an die Carbonylgruppe zu einer Spaltung des Polymerrückgrats und damit zum Molekulargewichtsabbau des Copolymeren führen.
Es wäre demnach wünschenswert, polymeranaloge Reaktionen an Kohlenmonoxidcopolymeren vornehmen zu können, ohne Nebenreaktionen und Kettenabbau in Kauf nehmen zu müssen.
Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, Koh- lenmonoxidcopolymere zu finden, die sich unproblematisch deriva- tisieren lassen, ohne daß Nebenreaktionen und Molekulargewichts - abbau auftreten. Des weiteren lag der Erfindung die Aufgabe zugrunde, derivatisierte Kohlenmonoxidcopolymerisate zu entwickeln, die sich auch für weitere Folgereaktionen eignen.
Demgemäß wurden derivatisierte Kohlenmonoxidcopolymerisate, erhältlich durch Umsetzung funktionalisierter linearer streng alternierender Kohlenmonoxidcopolymere aus Kohlenmonoxid, mindestens einem 1-Alken (A) , wobei (A) eine mit mindestens einer endständigen Allyl- oder Homoallyleinheit und mindestens einer Hydroxy- oder Aminogruppe substituierte Arylverbindung oder einen α-olefinisch ungesättigten aliphatischen Alkohol darstellt, und gegebenenfalls mindestens einem C- bis C o-l-Alken (B) mit einer organischen Verbindung (C) , die über mindestens eine reaktionsfähige elektrophile Gruppe verfügt, in einem aprotischen organischen Lösungsmittel, gefunden.
Des weiteren wurde ein Verfahren zur Herstellung von derivati- sierten Kohlenmonoxidcopolymerisaten sowie deren Verwendung für die Herstellung von Pfropfcopolymeren gefunden.
Weiterhin wurden Pfropfcopolymere, ein Verfahren zur Herstellung dieser Copolymere und deren Verwendung für die Herstellung von Formteilen, Fasern, Folien und Beschichtungen sowie deren 3
Verwendung als Phasenvermittler in Polymermischungen oder als Be- schichtungskomponente gefunden.
Schließlich wurde die Verwendung funktionalisierter linearer alternierender Kohlenmonoxidcopolymere aus Kohlenmonoxid, mindestens einem 1-Alken (A) , wobei (A) eine mit mindestens einer endständigen Allyl- oder Homoallyleinheit und mindestens einer Hydroxy- oder Aminogruppe substituierte ArylVerbindung oder einen α-olefinisch ungesättigten aliphatischen Alkohol darstellt, und gegebenenfalls mindestens einem C - bis C o~l-Alken (B) für die Herstellung von derivatisierten Kohlenmonoxidcopolymerisaten gefunden.
Geeignete funktionalisierte Kohlenmonoxidcopolymere, die vorlie- gend für Derivatisierungsreaktionen in Frage kommen, gehen zurück auf lineare alternierende Kohlenmonoxidcopolymere aus Kohlenmonoxid, mindestens einem 1-Alken (A) , das eine mit mindestens einer endständigen Allyl- und/oder Homoallyleinheit und mit mindestens einer Hydroxy- und/oder Aminogruppe substituierte ArylVerbindung oder einen α-olefinisch ungesättigten aliphatischen Alkohol darstellt, und gegebenenfalls mindestens einem C2- bis C20-1-Alken (B) .
Als 1-Alkene (A) werden bevorzugt Verbindungen der allgemeinen Formeln (Ia) oder (Ib) eingesetzt
Figure imgf000005_0002
(Y.n
Figure imgf000005_0001
in denen die Substituenten und Indizes die folgende Bedeutung haben:
X OH oder NH2,
Y eine Verbindung der allgemeinen Formel (II)
CH2=C(Rl) (C(R2)2)q)- (II)
worin 4
R1 Wasserstoff, lineares und verzweigtes Cι~ bis Cio-Alkyl, bevorzugt Cι~ bis C6-Alkyl, wie Methyl, Ethyl, n-Propyl, i- Propyl, n-Butyl oder t-Butyl, insbesondere Methyl, C3- bis Cio-Cycloalkyl, bevorzugt C3- bis C6-Cycloalkyl, wie Cyclo- propyl oder Cyclohexyl, C6- bis Cio-Aryl, bevorzugt C6- bis Cio-Aryl, insbesondere Phenyl, und
R2 unabhängig voneinander Wasserstoff, lineares und verzweigtes Cι~ bis C10-Alkyl, bevorzugt Ci- bis C6-Alkyl, wie Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl oder t-Butyl, insbesondere Methyl, C3- bis Cio-Cycloalkyl, bevorzugt C3- bis Cö-Cycloalkyl, wie Cyclopropyl oder Cyclohexyl, C$- bis Ci4-Aryl, bevorzugt C6- bis Cio-Aryl, insbesondere Phenyl, oder Halogen, wie Fluor, Chlor, Brom, lod bedeuten und
1 oder 2,
Q unabhängig voneinander lineares oder verzweigtes Cχ~ bis
Cio-Alkyl, bevorzugt Cι~ bis Cε-Alkyl, wie Methyl, Ethyl, n- Propyl, i-Propyl, n-Butyl, s-Butyl oder t-Butyl, insbesondere Methyl, i-Propyl oder t-Butyl, C3- bis Cio-Cycloalkyl, bevorzugt C3- bis C6-Cycloalkyl, wie Cyclopropyl oder Cyclohexyl, C6~ bis Ci4~Aryl, bevorzugt C6- bis Cι0-Aryl, insbesondere Phenyl, Aralkyl mit 1 bis 6, bevorzugt 1 bis 3 C- Atomen im Alkylteil, und 6 bis 14, bevorzugt 6 bis 10 C-Ato- men im Arylteil, beispielsweise Benzyl, oder C3- bis C3o~Or- ganosilyl, z.B. Trimethyl-, Triethyl-, Tri-iso-propyl-, Tri- phenyl-, t-Butyldiphenyl- oder Thexyldimethylsilyl, bevorzugt Trimethylsilyl,
wobei für Verbindungen der Formel (Ia)
k, 1 ganze Zahlen von 1 bis 5 und
o eine ganze Zahl von 0 bis 4 bedeuten mit
k + 1 + o < 6
und für Verbindungen der Formel (Ib)
m, n ganze Zahlen von 1 bis 7 und
p eine ganze Zahl von 0 bis 6 bedeuten mit
m + n + p < 8. 5
Besonders geeignet sind solche Verbindungen (A) , die über eine endständige Allyleinheit verfügen, d.h. Verbindungen der Formeln (Ia) und (Ib) , in denen q = 1 ist. Unter diesen olefinischen Monomeren sind wiederum diejenigen bevorzugt, deren endständige Allyleinheit sich in ortho-Position zu einer Hydroxy- oder Aminogruppe befindet. Genannt seien z.B. Naphthylverbindungen mit einer Allyleinheit in 1-Position und einer der genannten polaren Gruppen in 2-Position oder mit einer Allyleinheit in 2-Position und einer polaren Gruppe in 1- und/oder 3-Position sowie ins- besondere Allylphenylverbindungen mit ein oder zwei orthostän- digen polaren Gruppen zur Allyleinheit.
Als polare Gruppen X kommen die Hydroxy- und die primäre Aminogruppe in Betracht. Geeignete Verbindungen sind z.B. 2-Allylphe- nol, 2-Allyl-p-hydrochinon, 3-Allyl-o-hydrochinon, 2-Allylanilin, 2-Allyl-4-aminophenol oder 3-Ally-4-aminophenol, insbesondere 2-Allylphenol.
Im allgemeinen können auch Verbindungen (A) eingesetzt werden, die mehr als zwei oder drei polare Gruppen X am Phenylring (Verbindungen gemäß Formel (Ia)) und mehr als drei oder vier polare Gruppen am Naphthylring (Verbindungen gemäß Formel (Ib) ) aufweisen, solange eine endständige Allyl- oder Homoallyleinheit im Arylderivat vorliegt. Ebenso können auch mehrere Allyl- oder Homoallyleinheiten, bevorzugt Allyleinheiten, gleichzeitig am Arylderivat gebunden sein (maximal 5 für Verbindungen gemäß Formel (Ia) und maximal 7 für Verbindungen (Ib) ) , sofern das aromatische Gerüst noch eine polare Gruppe X aufweist.
Unter endständige Allyl- oder Homoallyleinheiten fallen auch solche Reste, deren Wasserstoffradikale, bis auf die endständigen, unabhängig voneinander durch z.B. Alkylgruppen wie Methyl, Ethyl, oder Iso-propyl, Arylgruppen wie Phenyl, Aralkylgruppen wie Benzyl oder Halogene wie Fluor oder Chlor substituiert sind. Exemplarisch seien Isopropyliden- oder Isobutylideneinhei en genannt. Bevorzugt sind allerdings unsubstituierte Allyl- und Homoallyleinheiten, insbesondere Allyleinheiten.
Die Verbindungen (A) können neben einer Allyl- bzw. Homoallyl - gruppe Y und einer polaren Gruppe X weitere Reste am aromatischen System aufweisen. Als Substituenten kommen die eingangs beschriebenen Reste Q in Frage. Die Reste Q in (A) können identisch oder verschieden sein. Soweit die Valenzen an den aromatischen Ring- systemen der Formeln (Ia) und (Ib) nicht bereits durch die Reste X, Y oder Q abgesättigt sind, werden diese durch Wasserstoffatome (C-H-Bindungen) abgesättigt. Unter geeignete Verbindungen (A) fallen demnach also auch 2-Allyl-4-methylphenol, 2-Allyl-4-t- 6 butylphenol, 2-Allyl-6-methyl-phenol, 2-Allyl-4-phenylphenol , 2-Allyl-4 , 6-dimethylphenol , 2 , 6-Dimethyl-4-allyl-phenol , 2-Allyl-4-t-butyl-6-methyl-phenol, 2, 6-Di-t-butyl-4-allyl-phenol, 2-Allyl-6-methylanilin, 2-Allyl-4-methylanilin oder 2-Allyl-4-t- 5 butylanilin.
Als 1-Alkene (A) kommen des weiteren α-olefinisch ungesättigte aliphatische Alkohle in Frage. Dieses sind insbesondere end- ständige Alkohole mit einer substituierten oder unsubstituierten
10 C2- bis Co~Alkylenkette, also z.B. Allylalkohol , 3-Buten-l-ol, 4-Penten-l-ol, 5-Hexen-l-ol, 6-Hepten-l-ol, 10-Undecen-l-ol oder 15-Hexadecen-l-ol. Besonders geeignet sind α-olefinisch ungesättigte Alkohole mit einer C- bis Cis-Alkylenkette, insbesondere mit einer C - bis Cio-Alkylenkette wie Allylalkohol oder
15 10-Undecen-l-ol. In der Alkylenkette können einzelne Alkylen-, z.B. Methyleneinheiten auch durch Etherbrücken ersetzt sein. Selbstverständlich können auch beliebige Monomermischungen aus einer mit mindestens einer endständigen Allyl- oder Homoallyleinheit und mindestens einer Hydroxy- oder Aminogruppe substi-
20 tuierten Arylverbindung und einem α-olefinisch ungesättigten aliphatischen Alkohol eingesetzt werden.
Als Monomere (B) für nicht-binäre Kohlenmonoxidcopolymere, insbesondere ternäre Copolymere kommen grundsätzlich alle Ver-
25 bindungen dieser Verbindungsklasse, z.B. α-Olefine oder Diolefine mit mindestens einer endständigen Doppelbindung in Frage. Geeignete α-Olefine sind z.B. C2- bis C2o-l-Alkene, wie Ethen, Propen, 1-Buten, Isobuten, 4-Methyl-l-penten, 1-Hexen, 1-Octen sowie Mischungen derselben. Selbstverständlich können auch 1-Alkene,
30 die einen aromatischen Rest tragen, eingesetzt werden. Geeignet sind z.B. Styrol, α-Methylstyrol, p-Methylstyrol oder 2-Methyl- styrol, bevorzugt ist Styrol. Daneben finden als 1-Alkene auch heteroatomhaltige Verbindungen wie (Meth) acrylsäureester oder -amide oder Vinylester wie Vinylacetat Verwendung. Besonders
35 bevorzugt sind Ethen, Propen, 1-Buten und Styrol, insbesondere Propen. Die vorgenannten 1-Alkene können natürlich auch im Gemisch eingesetzt werden.
Bevorzugt werden als funktionalisierte Kohlenmonoxidterpolymere 40 solche aus Kohlenmonoxid, Propen und Komponente (A) sowie aus Kohlenmonoxid, Ethen und Komponente (A) eingesetzt, bei denen in (A) eine endständige Allyleinheit und eine Hydroxy- oder Aminogruppe ortho-ständig vorliegen.
45 Bei den binären f nktionalisierten Kohlenmonoxidcopolymeren handelt es sich im allgemeinen um regulär aufgebaute Poly-1 , -ketone. Insbesondere bei Verwendung von Arylderi- 7 vaten (A) , bei denen die Allyl- und Hydroxyeinheiten ortho-stän- dig vorliegen, können die erhaltenen Kohlenmonoxidcopolymere auch Semiketaleinheiten aufweisen. Diese können wiederum sowohl block- weise als auch statistisch verteilt entlang der linearen Polymer - kette auftreten. Das Verhältnis von Keton- zu Ketalfragmenten liegt in diesen Fällen üblicherweise im Bereich von 10 : 1 bis 1 : 5, bevorzugt im Bereich 4 : 1 bis 1 : 1.
Die Struktur der funktionalisierten Kohlenmonoxidcopolymere kann mittels 1H-NMR- und 13C-NMR-Spektroskopie bestimmt werden.
Die mittleren Molekulargewichte Mw der binären Kohlenmonoxidcopolymere liegen üblicherweise im Bereich von 1000 bis 3500000 g/mol, bevorzugt im Bereich von 3000 bis 250000 g/mol und insbesondere im Bereich von 5000 bis 200000 g/mol (gemessen mit der Methode der Gelpermeationschromatographie (GPC) bei 25°C mit Microstyragel (Waters) als Säulenmaterial und Chloroform als Lösungsmittel gegen Polystyrol-Standard) .
Die binären Kohlenmonoxidcopolymere zeichnen sich im allgemeinen durch enge Molekulargewichtsverteilungen Mw/Mn (Gewichtsmittel/ Zahlenmittel) aus, gemessen mit der Methode der Gelpermeationschromatographie (GPC) analog vorangegangener Beschreibung. Die Mw/Mn-Werte liegen bevorzugt im Bereich von 1,1 bis 3,5 und nehmen insbesondere Werte < 2,5 an. Besonders bevorzugt sind Kohlenmonoxidcopolymere mit Mw/Mn-Werten im Bereich von 1,1 bis 2,2.
Die Glasübergangstemperaturwerte (Tg-Werte) der binären Kohlenmonoxidcopolymere liegen, sofern ermittelbar, üblicherweise im Be- reich von 0 bis 120°C, bevorzugt im Bereich von 20 bis 100°C und insbesondere von 30 bis 85°C.
Bei den funktionalisierten Kohlenmonoxidterpolymeren liegen die mittleren Molekulargewichte Mw in der Regel im Bereich von 5000 bis 500000 g/mol, bevorzugt von 20000 bis 300000 g/mol und insbesondere von 50000 bis 250000 g/mol.
Die Tg-Werte der Terpolymere liegen üblicherweise im Bereich von 0 bis 150°C, bevorzugt im Bereich unterhalb von 90°C.
Der Anteil, der in den Terpolymeren auf die Verbindung (A) zurückgeht, liegt im allgemeinen im Bereich von 0,1 bis 60 mol-%, bezogen auf die Kohlenmonoxideinheiten im Copolymer (bestimmt auf der Grundlage von 1H-NMR-Spektren) . Geeignete Terpolymere verfügen in der Regel über einen Anteil von 2 bis 50, insbesondere 3 bis 40 mol-% an eingebauter Komponente (A) . In den Terpolymeren sowie in höheren Copolymeren können ebenso wie bei den binären Systemen 8 neben reinen 1, 4-Polyketoneinheiten auch statistisch verteilte oder blockartige, bevorzugt aber statistisch verteilte Semiketal- strukturen enthalten sein. Dieses Phänomen wird vorzugsweise dann beobachtet, wenn die polare Gruppe in (A) eine Hydroxygruppe ist.
Die beschriebenen binären und ternären Kohlenmonoxidcopolymere sind i.a. gut löslich in Tetrahydrofuran (THF) , Toluol, Dichlor- methan oder Chloroform.
Das molare Verhältnis von Kohlenmonoxid zur Summe der auf die olefinisch ungesättigten Monomeren zurückzuführenden Srukturein- heiten in den binären oder höheren Kohlenmonoxidcopolymeren liegt im allgemeinen bei 1 : 1.
Hinsichtlich der Herstellung der funktionalisierten linearen binären und höheren Kohlenmonoxidcopolymere sei hier ausdrücklich auf die deutsche Patentanmeldung 19727271.1 verwiesen. Werden als Monomere (A) α-olefinisch ungesättigte aliphatische Alkohole eingesetzt, kann die Herstellung der funktionalisierten Kohlenmon- oxidcopolymere auch nach den in der EP-A 0 463 689 sowie den bei Sen et al . , Macromolecules, 1996, 29, S. 5852 -5858 beschriebenen Verfahren durchgeführt werden. Die in den genannten Dokumenten beschriebenen Herstellungsverfahren werden hiermit ausdrücklich mit in die vorliegende Offenbarung aufgenommen.
Als organische Verbindungen (C) , die über eine oder mehrere reaktionsfähige elektrophile Gruppen verfügen, sind z.B. aliphatische oder aromatische Carbonsäurechloride oder -anhydride geeignet. Unter den Anhydriden können sowohl symmetrische wie Hexan- oder Heptansäureanhydrid, als auch gemischte Anhydride wie Benzoe- säureessigsäureanhydrid oder Propionsäureessigsäureanhydrid oder cyclische Carbonsäureanhydride wie Glutarsäureanhydrid, Succin- säureanhydrid, Maleinsäureanhydrid, Bernsteinsäureanhydrid oder Phthalsäureanhydrid verwendet werden, um die freie Amino- oder Hydroxygruppe X im funktionalisierten Kohlenmonoxidcopolymer zu derivatisieren. Als Reaktanden für die Amid- oder Esterbildung kommen unter den Säurechloriden z.B. aromatische Säurechloride wie Benzoylchlorid sowie gesättigte oder ungesättigte, lineare oder verzweigte aliphatische Säurechloride wie Acetyl-, Hexanoyl- oder (Meth) acroylchlorid in Frage. Es können auch langkettige gesättigte oder Doppelbindungen enthaltende Verbindungen mit einer Cβ~ bis C24-Alkyleneinheit , deren Endgruppe eine elektrophile Gruppe darstellt verwendet werden. Exemplarisch seien Decenoyl-, Undecenoyl- und Octadecenoylchlorid genannt. Auch Säurechloride von Di- oder Poylcarbonsäuren wie Oxalylchlorid oder Hexandicar- bonsäuredichlorid können verwendet werden. Selbstverständlich kann auch die Carbonsäuregruppe selber als elektrophile Gruppe 9 auftreten, vor allem wenn geeignete Kupplungsreagenzien bzw. Reaktionsvermittler mitverwendet werden.
Die Amid- bzw. Esterbildung zwischen dem funktionalisiertem Kohlenmonoxidcopolymer und der organischen Verbindung (C) kann im schwach sauren oder im schwach basischen Milieu durchgeführt werden. Als basische Verbindungen kommen u.a. Triethylamin, Tri- butylamin, Pyridin, Quinolin oder Ammoniumhydroxid in Frage. Bei der Acylierung mit Carbonsäurechloriden, -anhydriden oder Carbon- säuren können auch Reaktionsvermittler wie 4-Dimethylaminopyri- dine, Imidazolide wie Carbonyldimidazol, Dicyclyclohexylcarbo- diimide, 2 , 2 ' -Dipyridyldisulfid/Triphenylphosphin oder 2-Pyri- dylthiochloroformiat zugesetzt werden.
Als organische Verbindungen (C) mit reaktionsfähiger elektrophi- ler Gruppe kommen weiterhin Isocyanate (R-N=C=0) in Betracht. Sowohl aromatische als auch aliphatische oder cycloaliphatische Isocyanate sind geeignet. Exemplarisch seien Phenyl-, Cyclohexyl-, Isopropyl- und 1-Phenylethylisocyanat genannt. Geeig- neterweise wird die Umsetzung mit Isocyanaten in Gegenwart von Lewis-Säuren oder Lewis-Basen, die vorzugsweise in katalytischen Mengen vorliegen, durchgeführt. Als Lewis-Säuren können im allgemeinen alle Verbindungen, die unter diese Klasse fallen, verwendet werden, also beispielsweise schwache und auch starke Lewis-Säuren. Vorzugsweise wird auf metallorganische Verbindungen der 4. und 5. Hauptgruppe des Periodensystems der Elemente als Lewis-Säuren, z.B. Verbindungen des Zinns, Antimons oder Bismuts zurückgegriffen. Geeignet sind beispielsweise Zinndioctoat, Di- butylzinn-bis-dodecylmercaptid, Bis (tri-n-butylzinn)oxid, Dibutylzinnoxid, Tri-n-butyl-antimonoxid und Bismutoxid, insbesondere Dibutylzinndilaurat . Als Lewis-Basen kommen tertiäre Amine wie Diazabicyclooctan (DABCO) in Frage. Die erfindungs- gemäße Umsetzung der funktionalisierten Kohlenmonoxidcopolymere mit Isocyanaten auf die vorgehend beschriebene Art und Weise liefert mit Urethaneinheiten derivatisierte Kohlenmonoxidcopolymerisate.
Geeignete organische Lösungsmittel für die erfindungsgemäßen Derivatisierungsreaktionen sind polare aprotische Lösungsmittel, also zum Beispiel halogenierte Kohlenwasserstoffe wie Dichlor- methan, 1, 2-Dichlorethan oder Chloroform, weiterhin Ether wie Diethylether oder Tetrahydrofuran sowie Dimethylformamid, Dirnethylsulfoxid, Hexamethylphosphorsäuretriamid oder Gemische der vorgenannten Lösungsmittel. 10
Die über die Umsetzung mit z.B-. Säurechloriden oder Isocyanaten erhältlichen erfindungsgemäßen derivatisierten Kohlenmonoxidcopolymerisate können in der Regel mit Derivatisierungsgraden größer 10 %, bevorzugt größer 15 % und insbesondere größer 20 % erhalten werden, wobei der Derivatisierungsgrad auch von der Menge an eingesetzter organischer Verbindung (C) abhängt. Der Derivatisierungsgrad gibt, bezogen auf die freien Hydroxy- oder Aminogruppen im Ausgangscopolymer , den Anteil an gekoppeltem elektrophilen Reagenz wieder. Der Derivatisierungsgrad kann mittels XH-NMR-Spek- troskopie bestimmt werden.
Die Molekulargewichte Mw der erfindungsgemäßen derivatisierten Kohlenmonoxidcopolymerisate liegen im allgemeinen oberhalb von 1000 g/mol, bevorzugt oberhalb von 10000 g/mol und besonders bevorzugt oberhalb von 25000 g/mol.
Die derivatisierten Kohlenmonoxidcopolymerisate verfügen im Unterschied zu den Ausgangsverbindungen, d.h. den funktionalisierten Kohlenmonoxidcopolymeren über eine und gegebenenfalls auch mehrere Glasübergangstemperaturen. Diese liegen in der Regel oberhalb von 20, bevorzugt oberhalb von 30 und besonders bevorzugt oberhalb von 40°C.
In einer weiteren, bevorzugten Ausführungsform liegen Kohlenmon- oxidcopolymere vor, die mit organischen Verbindungen (C) deriva- tisiert sind, die zwei oder mehr elektrophile Gruppen aufweisen. Zu diesen Verbindungen zählen zum Beispiel Säurechloride oder -anhydride von Dicarbonsäuren wie Adipin-, Glutar- oder Fumar- säure. Insbesondere fallen hierunter auch Diisocyanatverbin- düngen. Als Diisocyanate kommen z.B. 2,4- oder 2 , 6-Toluylendiiso- cyanat, Isophorondiisocyanat, 4, 4' -Diisocyanatdiphenylmethan, 1, 6-Hexamethylendiisocyanat, 1, 4-Cyclohexyldiisocyanat oder 1, 5-Naphthyldiisocyanat in Frage, wobei 2 , 4-Toluylendiisocyanat und 1, 6-Hexamethylendiisocyanat bevorzugt sind. Die mit den genannten bi- oder polyfunktionellen Verbindungen derivatisierten Kohlenmonoxidcopolymerisate verfügen somit über mindestens eine freie elektrophile Gruppe.
Es wurde gefunden, daß sich diese freie Funktionalität für Kopp- lungsreaktionen mit nucleophilen organischen Verbindungen eignet. Neben aliphatischen oder aromatischen Mono- oder Polyhydroxy- verbindungen oder -aminoverbindungen wie Methanol, Ethanol, i-Propanol, n-Butanol, t-Butanol, 1, 4-Butandiol, Cyclohexanol, Phenol, Methylamin, Dimethylamin, Ethylamin, Ethylendiamin, Di-i-propylamin oder Cyclohexylamin sind dieses insbesondere auch Makromere mit mindestens einer nucleophilen Endgruppe. Unter dem Begriff Makromere sollen vorliegend Oligomere verstanden werden, 11 die eine mittlere Molmasse Mw größer 100 g/mol und vorzugsweise kleiner 10000 g/mol aufweisen. In einer besonderen Ausführungs- form werden amino- oder hydroxyfunktionalisierte Makromere eingesetzt. Als Beispiele für geeignete Makromere seien die von Poly- ethylenglykol oder Poly-1, 4-butandiol abgeleiteten Polyether wie Polyethylenglykolmonobutylether oder Poly- (1 , 4-butandiol) -bis- (4-aminobenzoat) genannt.
Zur Ankopplung eignen sich ebenfalls Polymere mit funktionellen End- oder Seitengruppen, beispielsweise Polyamide, Polybutylen- terephthalat, Polyphenylenether, Polyethersulfone oder Poly- carbonate mit jeweils mindestens einer Hydroxy- oder Aminoend- gruppe. In Frage kommen neben den genannten Polymeren, die in der Regel bereits in herkömmlicher Form über funktionelle End- bzw. Seitengruppen verfügen insbesondere auch modifizierte Polymere, in die gezielt hydroxy- oder aminofunktionelle Gruppen eingebaut wurden. Exemplarisch seien als geeignete herkömmliche Polymere kommerziell erhältliches Polyamid wie Ultramid® oder Ultramid T, Polybutylenterphthalat wie Ultradur , Polyethersulfon wie Ultra- son® E (die vorgenannten Marken sind Produkte der BASF AG) , Polyphenylenether wie Noryl® (GE Plastics) oder Polycarbonat wie Lexan^ (GE Plastics) . Bevorzugt unter den vorgenannten Verbindungen sind die Polyamide und Polybutylenterephthalat . Polyphenylenether mit Hydroxyendgruppen finden sich z.B. bei J.E. McGrath et al., Poly . Eng. Sei. 1977, 17, S. 647 beschrieben.
Als Lösungsmittel für die erfindungsgemäßen Pfropfreaktion sind ebenso wie für die Derivatisierung der funktionalisierten Kohlen- monoxideopolymere polare aprotische Lösungsmittel, also zum Beispiel halogenierte Kohlenwasserstoffe wie Dichlormethan, 1, 2-Dichlorethan oder Chloroform, weiterhin Ether wie Diethyl- ether oder Tetrahydrofuran sowie Dimethylformamid, Dimethyl- sulfoxid, Hexamethylphosphorsäuretriamid oder Gemische der vorge- nannten Lösungsmittel geeignet.
Reaktionszeiten für die Derivatisierungs- und für die Pfropfungs- reaktionen liegen üblicherweise im Bereich von 1 bis 2 Stunden bis zu mehreren Tagen. Die Reaktionstemperaturen liegen bei den genannten erfindungsgemäßen Verfahren im allgemeinen im Bereich von -10 bis 100, bevorzugt im Bereich von 0 bis 80 und besonders bevorzugt von 10 bis 60°C.
Für die Pfropf ngsreaktion kann auf die bei der Derivatisierungs - reaktion beschriebenen sauren oder basischen Systeme zurückgegriffen werden. Als basische Verbindungen kommen u.a. Triethyl- amin, Tributylamin, Pyridin, Quinolin oder Ammoniumhydroxid für 12 die Bildung einer Ester- oder Amidbindung in Frage. Ebenso können bei der Acylierung mit Carbonsäurechloriden, -anhydriden oder Carbonsäuren auch Reaktionsvermittler wie 4-Dimethylaminopyri- dine, Imidazolide wie Carbonyldi idazol, Dicyclyclohexylcarbo- diimide, 2 , 2 ' -Dipyridyldisulfid/Triphenylphosphin oder 2-Pyri- dylthiochloroformiat verwendet werden. Handelt es sich bei der für die Pfropfung zur Verfügung stehenden Gruppe um eine Isocya- nateinheit, können zur Reaktionsvermittlung ebenfalls die für die Derivatisierung der funktionalisierten Kohlenmonoxidcopolymere verwendeten Lewis-Säuren und Lewis-Basen, insbesondere Dibutyl- zinndilaurat, herangezogen werden.
Vorteilhafterweise setzt für die Pfropfungsreaktion das derivatisierte Kohlenmonoxidcopolymerisat unmittelbar, ohne es zu isolie- ren oder aufzureinigen, mit der nucleophilen organischen
Verbindungen um. Die Reaktionskomponenten können im allgemeinen in beliebiger Reihenfolge miteinander vermengt werden, bevorzugt wird jedoch die Reaktionslösung des derivatisierten Kohlenmon- oxidcopolymerisates zu einer Lösung an z.B. eine Hydroxy- oder Aminogruppe tragendes Makromer gegeben.
Die er indungsgemäßen derivatisierten Kohlenmonoxidcopolymerisate können auch mit Hydroxy- oder Aminogruppen tragenden Makromeren oder Polymeren unter den Bedingungen der Reaktionsextrusion, wie in der Monographie "Reactive Exrusion, Principles and Practice" von M. Xanthos, Carl Hanser Verlag, München, 1992, beschrieben, durchgeführt werden.
Die mit z.B. Isocyanaten oder Carbonsäurechloriden derivati- sierten Kohlenmonoxidcopolymerisate können durch Ausfällung in beispielsweise Petrolether bzw. Methanol gewonnen werden. Die Isolierung und Aufreinigung gelingt nach herkömmlichen Techniken durch Wiederauflösen und erneute, kontrollierte Ausfällung des derivatisierten Produktes. Auf die gleiche Weise lassen sich die erfindungsgemäßen Pfropfcopolymere durch Ausfällung in z.B. Methanol oder Diethylether gewinnen. Gegebenenfalls können die gepfropften Produkte erneut aufgenommen werden, beispielsweise in Dichlormethan, um dann, befreit von Verunreinigungen, durch Aus- fällung hochrein erhalten zu werden.
Bei den erfindungsgemäßen Pfropfcopolymeren liegt der Pfropfgrad, d.h. der Anteil an gekoppeltem Nucleophil, z.B. Makromer, bezogen auf zum Beispiel die freien Isocyanatgruppen in der Ausgangs - Verbindung, im allgemeinen oberhalb von 10 %, bevorzugt oberhalb von 15 %. Die Molekulargewichte der Pfropfcopolymere hängen sowohl von den Molekulargewichten der derivatisierten Kohlenmonoxidcopolymerisate und der Kopplungskomponente, z.B. dem Makro- 13 er, als auch vom Derivatisierungsgrad ab. In der Regel weisen die erfindungsgemäßen Pfropfcopolymere Molekulargewichte größer 10 000 g/mol auf.
Die erfindungsgemäßen Pfropfcopolymere eignen sich für die Herstellung von Formteilen, Fasern, Folien oder Beschichtungen sowie als Phasenvermittler in Polymermischungen. Außerdem können sie Beschichtungskomoponente, z.B. in Mehrschichtfoliensystemen eingesetzt werden.
Die erfindungsgemäßen Verfahren zur Herstellung der derivatisierten Kohlenmonoxidcopolymerisate wie auch der Pfropfcopolymere zeichnen sich u.a. dadurch aus, daß Nebenreaktionen nicht auftreten und somit Kettenspaltung bzw. Molekulargewichtsabbau nicht beobachtet werden.
Die vorliegende Erfindung wird anhand der folgenden Beispiele näher erläutert.
Beispiele
Die bei den Derivatisierungsreaktionen verwendeten Säurechloride und Isocyanate sowie Dibutylzinndilaurat (Bu2SnLau2) wurden über die Fa. Fluka, Poly (ethylenglykol)monobutylether und Poly (1 , 4-butandiol) -bis- (4-aminobenzoat) über die Fa. Aldrich bezogen. Diese Produkte wurden ohne weitere Aufreinigung eingesetzt.
Dichlormethan wurde über CaH getrocknet und dann destilliert. Alle Umsetzungen erfolgten unter Standard-Schlenk-Bedingungen.
Die 1H- und 13C-NMR-Spektren wurden mittels eines Bruker AMX 500 Spektrometers aufgenommen. Für die DSC-Messung wurde ein Perkin- Elmer DSC-7 (Heizrate 20°/Minute) verwendet. Die Glasübergangs- Temperatur wurde aus dem zweiten Lauf nach Abkühlen auf -50°C bestimmt. Die GPC-Messungen wurden relativ zu einem Standard aus linearem Polystyrol in Chloroform oder Tetrahydrofuran (THF) durchgeführt, wobei ein Gerät der Firma Waters, ausgerüstet mit Microstyragel-Säulen und einem RI-Detektor, verwendet wurde.
Das alternierende Copolymer aus CO und 2-Allylphenol (APCO) wurde gemäß der Vorschrift der deutschen Patentanmeldung 19727271.1 hergestellt. Es wies ein mittleres Molekulargewicht Mw von 22 700 g/mol und eine Polydispersität von 2,2, gemessen in Chloroform, auf. 14
Allgemeine Vorschrift für die Reaktion von funktionalisierten Kohlenmonoxidcopolymeren aus Kohlenmonoxid und 2-Allyl- phenol (APCO) mit Carbonsäurechloriden
APCO (0,45 g) in Dichlormethan (20 ml) wurde mit Pyridin (3 ml) und dem Carbonsäurechlorid (30 mmol) bei 0°C versetzt. Es wurde 48 h bei Raumtemperatur gerührt, das Reaktionsprodukt durch Gießen des Reaktionsgemisches in Methanol (500 ml) ausgefällt, filtriert und im Hochvakuum getrocknet. Die Ergebnisse sind in Tabelle 1 zusammengefaßt.
Tabelle 1
5 Carbonsäurechlorid Mw a'-b' (g/mol) Deriv. -grad (%) c»
1 Benzoylchlorid 35 000 24
Figure imgf000016_0001
2 Undecenoylchlorid 42 700 23
Molekulargewicht des derivatisierten Kohlenmonoxidcopolymeren 0 b) Bestimmt mittels Gelpermeationschromatographie in Chloroform gegen einen Polystyrolstandard c) Bestimmt mittels lH-NMR-Spektroskopie
5 II. Allgemeine Vorschrift für die Reaktion von APCO mit Isocyanaten
APCO (0,45 g) in Dichlormethan (20 ml) wurde mit Isocyanat (R-N=C=0) (30 mmol) sowie Bu2SnLau2 (0,5 ml) versetzt. Im Fall von Q aromatischen Isocyanaten wurde 24 h bei Raumtemperatur, bei aliphatischen Isocyanaten 24 h bei 40°C gerührt. Das Reaktionsprodukt wurde durch Eintragen der Reaktionslösung in Petrolether 40/60 (500 ml) ausgefällt und abfiltriert. Das erhaltene Rohprodukt wurde in Dichlormethan gelöst, von schwerlöslichen Anteilen ge- 5 trennt und aus Methanol ausgefällt, anschließend filtriert und im Hochvakuum getrocknet. Die Ergebnisse sind in Tabelle 2 zusammengefaßt.
Tabelle 2 0
R Mw b><c> Deriv. -grad Tg (°C) (g/mol) (%) d>
3 Phenyl- 36 900 25 53,7
4 Cyclohexyl- 30 800 27 n.b. 5 5 Isopropyl- 29 300 28 n.b.
Figure imgf000016_0002
6 R (+) -1-Phenylethyla» 28 300 5 n.b. 15 a) Die Menge an eingesetztem R(+) -1-Phenylethyl-isocyanat betrug 3 mmol
b) Molekulargewicht des derivatisierten Kohlenmonoxidcopolymeren 5 c) Bestimmt mittels Gelpermeationschromatographie in Chloroform gegen einen Polystyrolstandard
d) Bestimmt mittels lH-NMR-Spektroskopie 10
III. Allgemeine Vorschrift für die Reaktion von APCO mit Diiso- cyanaten
APCO (0,45 g) in Dichlormethan (10 ml) wurde mit 2, 4-Toluylen- ^ diisocyanat (5,6 mmol) und Bu2SnLau (0,5 ml) versetzt und für 24 h bei Raumtemperatur gerührt. Die erhaltene Reaktionslösung wurde als solche, oder aber filtriert, für Folgederivatisierungen verwendet.
20
IV. Herstellung von Pfropfcopolymeren
a) Umsetzung mit Poly (ethylenglykol)monobutylether
25 Zu Poly (ethylenglykol) monobutylether (11,7 ml; Mn = 206 g/mol) in Dichlormethan (20 ml) tropfte man unter Rühren bei Raumtemperatur die gemäß III. erhaltene Reaktionslösung. Es wurden weitere 0,5 ml Bu2SnLau2 zugegeben und für 24 h bei Raumtemperatur gerührt. Die Reaktionslösung wurde in Methanol (500 ml) eingetragen, das
30 ausgefallene Produkt abfiltriert und im Hochvakuum von letzten Lösungsmittelresten befreit (Ausbeute: 0,3 g; Molekulargewicht Mw = 54 600 g/mol; Derivatisierungsgrad: 21 %) .
b) Umsetzung mit Poly (1 , 4-butandiol) -bis- (4-aminobenzoat)
35
Zu Poly (1, 4-butandiol) -bis- (4-aminobenzoat) (3 mmol; Mn = 1200 g/mol) in Dichlormethan (20 ml) tropfte man unter Rühren bei Raumtemperatur die gemäß III. erhaltene Reaktionslösung und rührte für 24 h. Die Reaktion wurde durch Zugabe von n-Butylamin 0 (2 ml) abgebrochen, das Reaktionsgemisch in Diethylether ausgefällt, abgetrennt und gegebenenfalls zur weiteren Reinigung erneut in Dichlormethan aufgenommen und in Diethylether ausgefällt. Das abfiltrierte Produkt wurde im Hochvakuum von letzten Lösungs- mittelresten befreit (Ausbeute: 1 g; Molekulargewicht Mw =
45 14 800 g/mol) .

Claims

16Patentansprüche
1. Verfahren zur Herstellung von derivatisierten Kohlenmonoxid- copolymerisaten, dadurch gekennzeichnet, daß man funktionali- sierte lineare, streng alternierende Kohlenmonoxidcopolymere aus Kohlenmonoxid, mindestens einem 1-Alken (A) , wobei (A) eine mit mindestens einer endständigen Allyl- oder Homoallyl- einheit und mindestens einer Hydroxy- oder Aminogruppe substituierte ArylVerbindung oder einen α-olefinisch ungesättigten aliphatischen Alkohol darstellt, und gegebenenfalls mindestens einem C - bis C2o-l-Alken (B) mit einer organischen Verbindung (C) , die über mindestens eine elektrophile Gruppe verfügt, in einem aprotischen organischen Lösungsmittel umsetzt.
2. Verfahren zur Herstellung von derivatisierten Kohlenmonoxid- copolymerisaten nach Anspruch 1, dadurch kennzeichnet, daß als 1-Alkene (A) Verbindungen der allgemeinen Formeln (Ia) oder (Ib) eingesetzt werden
(X)k
Figure imgf000018_0002
Figure imgf000018_0001
in denen die Substituenten und Indizes die folgende Bedeutung haben:
X OH oder NH2,
Y eine Verbindung der allgemeinen Formel (II)
CH^CtR1) (C(R2) 2) (II)
worin
R1 Wasserstof f , lineares und verzweigtes Cι~ bis Cio-Alkyl , C3- bis Cio-Cycloalkyl , Cς- bis Cio-Aryl , und 17
R2 unabhängig voneinander Wasserstoff , lineares und verzweigtes Ci- bis Cio-Alkyl , C3- bis Cι0-Cycloalkyl, C6- bis C 4-Aryl oder Halogen bedeuten und
q 1 oder 2 ,
Q unabhängig voneinander lineares oder verzweigtes Cι~ bis Cio-Alkyl, C3- bis Cio-Cycloalkyl, Cβ- bis Cι4-Aryl, Aralkyl mit 1 bis 6 C-Atomen im Alkylteil und 6 bis 14 C-Atomen im Arylteil oder C3- bis C o-Organosilyl,
wobei für Verbindungen der Formel (Ia)
k, 1 ganze Zahlen von 1 bis 5 und
o eine ganze Zahl von 0 bis 4 bedeuten mit
k + 1 + o < 6
und für Verbindungen der Formel (Ib)
m, n ganze Zahlen von 1 bis 7 und
p eine ganze Zahl von 0 bis 6 bedeuten mit
m + n + p < 8.
3. Verfahren zur Herstellung von derivatisierten Kohlenmonoxidcopolymerisäten nach den Ansprüchen 1 oder 2, dadurch gekenn- zeichnet, daß man organische Verbindungen (C) verwendet, die zwei oder mehr elektrophile Gruppen aufweisen.
4. Derivatisierte Kohlenmonoxidcopolymerisate, erhältlich nach dem Verfahren gemäß den Ansprüchen 1 oder 2.
5. Derivatisierte Kohlenmonoxidcopolymerisate, erhältlich nach dem Verfahren gemäß Anspruch 3.
6. Verwendung der derivatisierten Kohlenmonoxidcopolymerisate gemäß Anspruch 5 für die Herstellung von Pfropfcopolymeren.
7. Verfahren zur Herstellung von Pfropfcopolymeren, dadurch gekennzeichnet, daß man derivatisierte Kohlenmonoxidcopolymerisate gemäß Anspruch 5 mit einer nucleophilen organischen Ver- bindung in einem aprotischen organischen Lösungsmittel umsetzt. 18
8. Verfahren zur Herstellung von Pfropfcopolymeren nach Anspruch 7, dadurch gekennzeichnet, daß man als nucleophile organische Verbindungen amino- oder hydroxyfunktionalisierte Makromere oder Polymere einsetzt.
5
9. Verfahren zur Herstellung von Pfropfcopolymeren nach Anspruch 8, dadurch gekennzeichnet, daß man als nucleophile organische Verbindungen amino- oder hydroxyfunktionalisierte Polyamide, Polybutylenterephthalate, Polycarbonate oder Poly-
10 sulfone einsetzt.
10. Pfropfcopolymere, erhältlich nach Verfahren gemäß den Ansprüchen 7 bis 9.
15 11. Verwendung von funktionalisierten linearen, alternierenden
Kohlenmonoxidcopolymeren aus Kohlenmonoxid, mindestens einem 1-Alken (A) , wobei (A) eine mit mindestens einer endständigen Allyl- oder Homoallyleinheit und mindestens einer Hydroxy- oder Aminogruppe substituierte Arylverbindung oder einen
20 α-olefinisch ungesättigten aliphatischen Alkohol darstellt, und gegebenenfalls mindestens einem C2- bis C20-1-Alken (B) für die Herstellung von derivatisierten Kohlenmonoxidcopoly- merisaten.
25 12. Verwendung der Pfropfcopolymere gemäß Anspruch 10 für die Herstellung von Formkörpern, Fasern, Folien und Beschichtungen.
13. Verwendung der Pfropfcopolymere gemäß Anspruch 10 als 30 Phasenvermittler in Polymermischungen oder als Beschichtungs- komponente .
35
40
45
PCT/EP1999/001408 1998-03-16 1999-03-04 Derivatisierte kohlenmonoxidcopolymerisate WO1999047583A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU27279/99A AU2727999A (en) 1998-03-16 1999-03-04 Derivatized carbon monoxide copolymers
JP2000536772A JP2002506899A (ja) 1998-03-16 1999-03-04 誘導体化された一酸化炭素コポリマー
US09/623,711 US6306979B1 (en) 1998-03-16 1999-03-04 Derivatized carbon monoxide copolymers
EP99907594A EP1064317A1 (de) 1998-03-16 1999-03-04 Derivatisierte kohlenmonoxidcopolymerisate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19811123A DE19811123A1 (de) 1998-03-16 1998-03-16 Derivatisierte Kohlenmonoxideopolymerisate
DE19811123.1 1998-03-16

Publications (1)

Publication Number Publication Date
WO1999047583A1 true WO1999047583A1 (de) 1999-09-23

Family

ID=7860906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/001408 WO1999047583A1 (de) 1998-03-16 1999-03-04 Derivatisierte kohlenmonoxidcopolymerisate

Country Status (6)

Country Link
US (1) US6306979B1 (de)
EP (1) EP1064317A1 (de)
JP (1) JP2002506899A (de)
AU (1) AU2727999A (de)
DE (1) DE19811123A1 (de)
WO (1) WO1999047583A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049060A1 (de) * 1999-02-16 2000-08-24 Basf Aktiengesellschaft Verfahren zur herstellung von funktionalisierten alternierenden kohlenmonoxidcopolymeren

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19906018A1 (de) * 1999-02-16 2000-08-17 Basf Ag Polymerblends aus funktionalisierten Kohlenmonoxidcopolymeren und Polyamiden

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243116A (ja) * 1984-05-16 1985-12-03 Kureha Chem Ind Co Ltd 熱可塑性接着性樹脂及びその製造方法
EP0272727A2 (de) * 1986-11-27 1988-06-29 Shell Internationale Researchmaatschappij B.V. Polymere von Kohlstoffmonoxid und alpha-äthylenisch ungesätigten Verbindungen
EP0358519A2 (de) * 1988-09-08 1990-03-14 Dupont-Mitsui Polychemicals Co., Ltd. Pfropfcopolymer
EP0463689A2 (de) * 1990-06-22 1992-01-02 Shell Internationale Researchmaatschappij B.V. Herstellung von Polymeren aus Kohlenmonoxid mit olefinisch ungesättigten Verbindungen
WO1998028354A1 (en) * 1996-12-23 1998-07-02 Shell Internationale Research Maatschappij B.V. Graft copolymerized compositions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424317A (en) 1982-12-06 1984-01-03 Standard Oil Company (Indiana) Mannich condensation product of ethylene/propylene/carbonyl polymers
EP0121965B1 (de) 1983-04-06 1989-12-27 Shell Internationale Researchmaatschappij B.V. Verfahren zur Herstellung von Polyketonen
US4616072A (en) 1985-06-03 1986-10-07 The Dow Chemical Company Halogenated ethylene-carbon monoxide interpolymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243116A (ja) * 1984-05-16 1985-12-03 Kureha Chem Ind Co Ltd 熱可塑性接着性樹脂及びその製造方法
EP0272727A2 (de) * 1986-11-27 1988-06-29 Shell Internationale Researchmaatschappij B.V. Polymere von Kohlstoffmonoxid und alpha-äthylenisch ungesätigten Verbindungen
EP0358519A2 (de) * 1988-09-08 1990-03-14 Dupont-Mitsui Polychemicals Co., Ltd. Pfropfcopolymer
EP0463689A2 (de) * 1990-06-22 1992-01-02 Shell Internationale Researchmaatschappij B.V. Herstellung von Polymeren aus Kohlenmonoxid mit olefinisch ungesättigten Verbindungen
WO1998028354A1 (en) * 1996-12-23 1998-07-02 Shell Internationale Research Maatschappij B.V. Graft copolymerized compositions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. SEN ET AL: "PALLADIUM(II)-CATALYZED ALTERNATING COPOLYMERIZATION AND TERPOLYMERIZATION OF CARBON MONOXIDE WITH A-OLEFINS: FORMATION OF SYNDIOTACTIC COPOLYMERS AS WELL AS TERPOLYMERS WITH BOTH SYNDIOTACTIC AND ATACTIC SEGMENTS", MACROMOLECULES, vol. 26, no. 26, 1 March 1993 (1993-03-01), pages 911 - 915, XP000345464 *
DATABASE WPI Section Ch Week 8603, Derwent World Patents Index; Class A17, AN 86-018552, XP002105082 *
S. KACKER ET AL.: "ALTERNATING COPOLYMERS OF FUNCTIONAL ALKENES WITH CARBON MONOXIDE", MACROMOLECULES, vol. 29, no. 18, 26 August 1996 (1996-08-26), pages 5852 - 5858, XP000625618 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049060A1 (de) * 1999-02-16 2000-08-24 Basf Aktiengesellschaft Verfahren zur herstellung von funktionalisierten alternierenden kohlenmonoxidcopolymeren

Also Published As

Publication number Publication date
US6306979B1 (en) 2001-10-23
JP2002506899A (ja) 2002-03-05
EP1064317A1 (de) 2001-01-03
DE19811123A1 (de) 1999-09-23
AU2727999A (en) 1999-10-11

Similar Documents

Publication Publication Date Title
DE2714544C2 (de)
US4888389A (en) Amphiphilic polymers and method of making said polymers
DE69915351T2 (de) Funktionalisierte polyallylamine und verfahren zur herstellung davon
EP1896523B1 (de) Kontinuierliche polymeranaloge umsetzung von reaktiven silanmonomeren mit funktionalisierten polymeren
DE69835846T2 (de) Modifizierte hydrogenierte Polymere, Verfahren und Verwendung
JP4772943B2 (ja) 新規ヒドロキシル基含有共重合体とその製造方法
DE112018005617B4 (de) Chemische verbindungen mit perfluorarylgruppen, welche eine funktionalisierung nach der synthese ermöglichen können
DE2033157A1 (de) Modifiziertes thermoplastisches Polymer
DE69821713T2 (de) Klebstoffpolymer und sein Herstellungsverfahren
EP0613910B1 (de) Polymethacrylsäureester, deren Estergruppen in alpha- und gegebenenfalls zusätzlich in omega-Stellung von den in der Kette befindlichen Estergruppen abweichen
EP0358892A2 (de) Schlagzähe thermoplastische Formmassen auf Basis von Polyphenylenether-Pfropfcopolymeren und Polyamiden sowie Verfahren zu ihrer Herstellung
WO1999047583A1 (de) Derivatisierte kohlenmonoxidcopolymerisate
EP0679675A1 (de) Polymethacrylsäureester-Polysiloxan-Blockmischpolymerisate, Verfahren zu ihrer Herstellung und ihre Verwendung als Modifizierungsmittel und als Lackadditive
DE112021001889T5 (de) Thermoplastisches elastomer, zusammensetzung und formprodukt
DE19649447B4 (de) Vinyl-4-t-butoxycarbonyloxybenzal-vinylalkohol-vinylacetat-Copolymer, Vinyl-4-t-butoxycarbonyloxybenzal-vinyl-4- hydroxybenzal-vinylalkohol-vinylacetat und deren Herstellungsverfahren
DE112005003756T5 (de) Ein Schmelz-Transurethanverfahren zur Herstellung von Polyurethanen
EP0096799B1 (de) Phosphorhaltige Polyarylenester und Verfahren zu ihrer Herstellung
EP0392464B1 (de) Amphiphile Monomere und Polymere und Film aus mindestens einer monomolekularen Schicht daraus
EP1042374B1 (de) Verfahren zur hydrierung aromatischer polymere
DE4110460A1 (de) Modifizierte polyarylenether mit verbesserter klebefestigkeit
EP0272536A2 (de) Thermoplastisch verarbeitbare, im wesentlichen lineare Poly-Vinylaren/Polyurethan-Block-copolymere, Verfahren zu deren Herstellung und deren Verwendung
DE68903915T2 (de) Verfahren zur herstellung von diorganopolysiloxan-gruppen enthaltenden thermostabilen copolyimidamiden.
DE3877461T2 (de) Verfahren zur herstellung von phenylenaetheramid-pfropfpolymeren.
DE4224248C2 (de) Nadimid-terminierte Polyarylate und gehärtete Polyarylatharze
DE60116799T2 (de) Herstellung amphiphiler fester träger für die peptidsynthese und die bioorganische und organische chemie

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BG BR BY CA CN CZ GE HU ID IL IN JP KR KZ LT LV MK MX NO NZ PL RO RU SG SI SK TR UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999907594

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09623711

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: KR

WWP Wipo information: published in national office

Ref document number: 1999907594

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1999907594

Country of ref document: EP