WO1999024837A1 - Kugellager mit integriertem sensor - Google Patents

Kugellager mit integriertem sensor Download PDF

Info

Publication number
WO1999024837A1
WO1999024837A1 PCT/DE1998/003189 DE9803189W WO9924837A1 WO 1999024837 A1 WO1999024837 A1 WO 1999024837A1 DE 9803189 W DE9803189 W DE 9803189W WO 9924837 A1 WO9924837 A1 WO 9924837A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball bearing
bearing according
sensor
substrate
magnet wheel
Prior art date
Application number
PCT/DE1998/003189
Other languages
English (en)
French (fr)
Inventor
Wolfgang Scharrer
Edwin Vogel
Original Assignee
Wolfgang Scharrer
Edwin Vogel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wolfgang Scharrer, Edwin Vogel filed Critical Wolfgang Scharrer
Priority to EP98961061A priority Critical patent/EP1027610A1/de
Publication of WO1999024837A1 publication Critical patent/WO1999024837A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets

Definitions

  • the present invention relates to a ball bearing with an integrated sensor for detecting the relative movement of the two bearing rings of a ball bearing in relation to one another according to the preamble of patent claim 1.
  • Ball bearings with an integrated sensor also known as “sensor bearings” support rotating shafts and measure the relative movements of the two bearing rings. The speed and direction of rotation can be recorded. From this, rotational acceleration and the number of revolutions are derived. The information in question is required to an increasing extent in control technology to electronically monitor and operate systems automatically.
  • ball bearings with an integrated sensor of a conventional type include a pole wheel in the form of a toothed ring with constant recesses recurring along the circumference.
  • the toothed ring must have a particularly exact shape in the region of the recesses, so that the most exact possible sinusoidal curve can be achieved when evaluating the measurement signals. Since the magnet is also mounted on the sensor in conventional sensor bearings, errors result due to the indirect measurement that is justified as a result.
  • the object of the present invention is to provide a new type of sensor bearing which, on the one hand, is particularly simple and is inexpensive to manufacture, on the other hand ensures increased measurement accuracy.
  • the magnet wheel consists of a permanently magnetizable material and magnetic markings are provided on the magnet wheel which can be scanned by the sensor.
  • the invention ensures the possibility of a magnet wheel in a simple annular geometry, i.e. without additional post-processing steps.
  • the magnetic markings along the circumference of the magnet wheel can be introduced in a technically simple manner and with the greatest accuracy.
  • the use of magnetic markings achieves an optimal signal in the sense of a sinusoidal curve, which is independent of additional processing, whereby the accuracy of the detection can be optimized.
  • the invention makes it possible to provide more markings (codes) than was possible with the previously known mechanical designs. This also results in higher accuracy. In addition, there is no need to go through an indirect measurement, which makes the measurement more accurate and cheaper.
  • the magnet wheel expediently consists of ferrite or a ferritic material.
  • the marking or coding is carried out by N / S markings provided on the magnet wheel, which are arranged locally defined along the circumference of the magnet wheel and are scanned by the sensor.
  • the number of markings (e.g. 64 along the circumference) determines the number of pulses to be generated for the incremental recording.
  • a substrate is also provided as a carrier for one or a plurality of sensors.
  • the substrate ensures that the sensor is in close proximity to the magnet wheel and additional components on the substrate, such as temperature measurement sensors, electronic parts, a bus connection, can be provided at the same time.
  • the substrate consists of temperature-resistant material, in particular ceramic.
  • the substrate can also be made of plastic instead.
  • the sensor or sensors and the substrate are accommodated within a housing, preferably on the side of the ball bearing. This has the advantage of also accommodating the electronics close to the ball bearing.
  • the respective sensor is expediently accommodated in cutouts on the substrate. This makes it possible to reduce the distance between the substrate and the magnet wheel to the smallest distances (1/10 mm range), which improves the sealing of the ball bearing.
  • Substrate and sensors can also be used as a prefabricated unit.
  • the magnet wheel expediently extends over the entire circumference of the ball bearing.
  • the substrate carries electronic switching parts according to a further embodiment, the substrate with the associated components can be preassembled in an advantageous manner. In addition, it is even possible without difficulty to provide a bus connection on the substrate for connection to a PC or a PLC.
  • the ball bearing comprises several sensors.
  • the sensors are e.g. half a division period arranged offset to each other to obtain two 90 ° electrically offset signals (sine curve; cosine curve).
  • the two sensors are expediently arranged offset by half a division period or else by a plurality of division periods (n + 0.5).
  • an additional sensor for the zero pulse is also provided. It may also be expedient to accommodate several sensors as a sensor module in a common housing. Housing, substrate and sensors can form a prefabricated unit.
  • the sensor is a magnetic field-dependent component, in particular a semiconductor component, e.g. a Hall sensor or an MR sensor.
  • the additional sensor for temperature detection is located in the housing.
  • Another expedient embodiment of the present invention is characterized in that the rotational position of the ball bearing can be determined by means of the N / S markings located on the magnet wheel. In this way, an exact determination of the position can be made for restart, for example in the event of a power failure.
  • the determination of the rotational position is expediently carried out via a parallel code or serial code which is dependent on the type and arrangement of the N / S markings.
  • Figure 1 is a sectional view of the ball bearing according to the invention with an integrated sensor.
  • FIG. 2 shows a view according to viewing angle A in FIG. 1 without the housing
  • 3 shows a plan view of the magnet wheel with N / S markings and the associated position of sensors
  • 4 shows a plan view of the magnet wheel with N / S markings and associated different positions of sensors
  • Fig. 5 shows a highly simplified schematic representation of several tracks on the magnet wheel (Fig. 5a) and the parallel code obtained therefrom (Fig. 5b) and
  • Fig. 6 is a highly simplified schematic representation of the magnet wheel for generating a serial code (Fig. 6a) and the resulting serial code (Fig. 6b).
  • Reference number 1 in Fig. 1 designates the ball bearing with integrated sensor ("sensor bearing") in its entirety.
  • Reference number 2 designates the outer ring of the ball bearing, which is only shown for the sake of clarity on the upper side of Fig. 1 In between there is a large number of balls 4.
  • a substrate 7 Arranged laterally offset from the balls 4 there is a substrate 7 which carries sensors 8.
  • a magnet wheel 5 is connected to the inner ring 3 and is directly adjacent to the sensors 8.
  • Substrate 7, sensors 8 and magnet wheel 5 are located in a housing 11 which is connected to the outer ring 2.
  • the substrate 7 consists of temperature-resistant material, e.g. Ceramic and carries (not shown) electronic switching parts and a bus connection 15 for a PC or PLC.
  • the sensors 6, 8 and 9 are located on the substrate 7 in the immediate vicinity of the magnet wheel 5.
  • the magnet wheel 5 comprises arranged over its entire circumference, the position of which is exactly fixed North / south pole markings, which are scanned by sensors 6, 8 and 9.
  • the two sensors 6 and 8 are arranged offset with respect to the circumference. The same applies to the sensor 9.
  • the offset arrangement ensures the possibility of obtaining phase-shifted signals (for example a sine curve and a cosine curve).
  • the additional sensor 9 is provided to carry out temperature sensing in the interior of the housing 11.
  • FIG. 3 shows, in a highly simplified form, a section of the magnet wheel 5 with the individual locally defined N / S codes, only one of which is labeled in FIG. 3 for the sake of clarity. Furthermore, the respective position of the individual sensors 6, 8 and 9 in relation to the magnet wheel 5 can be seen from FIG. 3.
  • the sensors 6 and 8 are arranged offset from one another by a division. In this way two signals are shifted by 90 ° (sine curve; cosine curve).
  • the third sensor 9 is outside the influence of the codes on the magnet wheel 5. It is only used to set a zero point.
  • sensors 6 and 8 are laterally offset in the embodiment according to FIG. 4 and are accommodated in a single, common housing.
  • the division of the magnet wheel 5 can be carried out down to the smallest technically possible N / S markings, as a result of which the accuracy of the measurement can be considerably increased.
  • the magnet wheel 5 expediently consists of a ferrite ring into which the individual N / S markings are introduced. No further revisions are required. 5a, the magnet wheel 5 comprises a total of four tracks 18, each with different information, which are detected by individual sensors 6 assigned to the respective track 18. This makes it possible, for example, to generate four-digit parallel codes 16 according to FIG. 5b and to determine the position of the ball bearing 1, ie the substrate 7 or outer ring 2 relative to the magnet wheel 5 or inner ring 3, in addition to the information mentioned at the beginning.
  • the ball bearing 1 according to the invention is thus also able to provide information as to where the inner ring 3 is in comparison to the outer ring 2.
  • the information regarding the rotational position can also be generated by generating a serial code 17, as shown in FIG. 6a.
  • different N / S markings 10 are arranged along a track 18 and queried by individual associated sensors 6. This results in the generation of a serial code 17, as shown in FIG. 6b.
  • serial codes 16 can even be combined with serial codes 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Kugellager mit integriertem Sensor zur Erfassung der Relativbewegung der beiden Lagerringe des Kugellagers (1) zueinander, mit einem zumindest abschnittsweise ausgebildeten Polrad (5) sowie mindestens einem Sensor zur Abtastung des Polrads (5). Zur Vereinfachung der Herstellung bei gleichzeitiger Erhöhung der Meßgenauigkeit wird erfindungsgemäß vorgeschlagen, das Polrad (5) aus einem magnetisierbaren Material bereitzustellen und am Polrad (5) magnetische Markierungen, d.h. N/S-Markierungen vorzusehen, die vom Sensor (6, 8 oder 9) abtastbar sind.

Description

Kugellager mit integriertem Sensor
BESCHREIBUNG
Die vorliegende Erfindung betrifft ein Kugellager mit integriertem Sensor zur Erfassung der Relativbewegung der beiden Lagerringe eines Kugellagers zueinander gemäß dem Oberbegriff des Patentanspruchs 1.
Kugellager mit integriertem Sensor oder auch „Sensorlager" genannt, stützen rotierende Wellen ab und messen die relativen Bewegungen der beiden Lagerringe zueinander. Erfaßt werden können Drehzahl und Drehrichtung. Daraus werden Drehbeschleunigung und die Anzahl der Umdrehungen abgeleitet. Die betreffenden Informationen benötigt man in zunehmenden Maße in der Steuerungs- und Regelungstechnik, um Anlagen elektronisch überwachen und automatisch betreiben zu können. Gemäß Firmenschrift „Der Relusolver - Das Prinzip zur Messung von Bewegung" der Gesellschaft für integrierte Antriebssysteme mbH umfassen Kugellager mit integriertem Sensor herkömmlicher Art, ein Polrad in Form eines Zahnrings mit gleichbleibenden, entlang des Umfangs wiederkehrenden Ausnehmungen. Der Zahnring muß im Bereich der Ausnehmungen eine besonders exakte Formgebung besitzen, damit bei der Auswertung der Meßsignale eine möglichst exakte sinusförmige Kurve erzielt werden kann. Da bei den herkömmlichen Sensorlagern desweiteren der Magnet auf dem Sensor montiert ist, ergeben sich Fehler aufgrund der hierdurch begründeten indirekten Messung.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein neuartiges Sensorlager zur Verfügung zu stellen, welches einerseits besonders einfach und kostengünstig herstellbar ist, andererseits eine erhöhte Meßgenauigkeit gewährleistet.
Diese Aufgabe wird bei dem gattungsgemäßen Kugellager mit integriertem Sensor dadurch gelöst, daß das Polrad aus einem dauerhaft magnetisierbaren Material besteht und am Polrad magnetische Markierungen vorgesehen sind, die vom Sensor abtastbar sind. Die Erfindung gewährleistet die Möglichkeit, ein Polrad in einfacher ringförmiger Geometrie, d.h. ohne zusätzliche Nachbearbeitungsschritte einzusetzen. Demgegenüber können die magnetischen Markierungen entlang des Umfangs des Polrads technisch einfach und mit höchster Genauigkeit eingebracht werden. Durch den Einsatz von magnetischen Markierungen wird ein von zusätzlichen Bearbeitungen unabhängiges optimales Signal im Sinne einer sinusförmigen Kurve erzielt, wodurch die Genauigkeit der Erfassung optimiert werden kann. Die Erfindung erlaubt es, mehr Markierungen (Codes) vorzusehen, als dies bei den bisher bekannten mechanischen Ausführungen möglich war. Auch hierdurch ergibt sich eine höhere Genauigkeit. Darüber hinaus entfällt der Umweg über eine indirekte Messung, wodurch die Messung genauer und kostengünstiger wird.
Das Polrad besteht zweckmäßigerweise aus Ferrit oder einem ferritischem Material. Die Markierung oder Codierung erfolgt durch am Polrad vorgesehen N/S-Markierungen, die entlang des Umfangs des Polrad lokal definiert angeordnet sind und vom Sensor abgetastet werden. Durch die Anzahl der Markierungen (z.B. 64 entlang des Umfangs) wird die Menge der für die In- krementalaufzeichnung notwendigen zu erzeugenden Impulse festgelegt.
Erfindungsgemäß ist desweiteren ein Substrat als Träger eines Sensors oder einer Mehrzahl von Sensoren vorgesehen. Das Substrat gewährleistet, daß der Sensor in unmittelbarer Nähe zu dem Polrad sich befindet und gleich- zeitig noch zusätzliche Komponenten am Substrat, wie z.B. Temperaturmeßsensoren, Elektronikteile, ein Busanschluß, vorgesehen sein können.
Das Substrat besteht bei einer besonderen Ausgestaltung der Erfindung aus temperaturbeständigem Material, insbesondere aus Keramik. Hierdurch kann das Sensorlager bei erhöhten Betriebstemperaturen problemlos betrieben werden.
Ist ein Betrieb bei erhöhten Temperaturen nicht erforderlich, kann anstelle davon das Substrat auch aus Kunststoff bestehen. In Anbetracht der Verwendung eines Substrats sind der Sensor oder die Sensoren sowie das Substrat innerhalb eines Gehäuses, vorzugsweise seitlich am Kugellager untergebracht. Dies bringt den Vorteil, die Elektronik ebenfalls nahe am Kugellager unterzubringen.
Zweckmäßigerweise ist der jeweilige Sensor in Aussparungen am Substrat untergebracht. Hierdurch wird es möglich, den Abstand zwischen Substrat und Polrad bis auf kleinste Abstände (1/10 mm Bereich) zu reduzieren, wodurch eine verbesserte Abdichtung des Kugellagers erreicht wird. Substrat und Sensoren können ferner bereits als vorgefertigte Einheit eingesetzt werden.
Das Polrad erstreckt sich zweckmäßigerweise über den gesamten Umfang des Kugellagers.
Dadurch, daß das Substrat gemäß einer weiteren Ausgestaltung Elektronikschaltteile trägt, kann das Substrat mit den dazugehörigen Komponenten in vorteilhafter Weise vormontiert werden. Darüber hinaus ist es sogar ohne Schwierigkeiten möglich, auf dem Substrat einen Busanschluß zur Verbindung mit einem PC oder einer SPS vorzusehen.
Gemäß einer weiteren Ausgestaltung der vorliegenden Erfindung umfaßt das Kugellager mehrere Sensoren. Zweckmäßigerweise sind die Sensoren um z.B. eine halbe Teilungsperiode zueinander versetzt angeordnet, um zwei 90° elektrisch versetzte Signale (Sinuskurve; Cosinuskurve) zu erhalten. Die beiden Sensoren sind zweckmäßigerweise um eine halbe Teilungsperiode versetzt angeordnet oder aber um mehrere Teilungsperioden (n + 0,5) entfernt.
Gemäß der Erfindung ist zudem ein zusätzlicher Sensor für den Nullimpuls vorgesehen. Auch kann es zweckmäßig sein, mehrere Sensoren als Sensormodul in einem gemeinsamen Gehäuse unterzubringen. Gehäuse, Substrat sowie Sensoren können hierbei eine vorgefertigte Einheit bilden.
Beim Sensor handelt es sich um ein magnetfeldabhängiges Bauelement, insbesondere um ein Halbleiterbauelement, z.B. um einen Hall-Sensor oder einem MR-Sensor. Der zusätzliche Sensor zur Temperaturerfassung befindet sich im Gehäuse.
Eine weitere zweckmäßige Ausgestaltung der vorliegenden Erfindung ist darin gekennzeichnet, daß mittels der auf dem Polrad befindlichen N/S- Markierungen die Drehstellung des Kugellagers feststellbar ist. Hierdurch kann eine exakte Feststellung der Position bei z.B. Stromausfall für den Wiederanlauf vorgenommen werden. Zweckmäßigerweise wird die Feststellung der Drehstellung über einen von der Art und Anordnung der N/S-Markierungen abhängigen Parallelcode oder seriellen Code durchgeführt.
Zur Erzeugung von Parallelcodes sind in vorteilhafterweise mehrere Spuren mit entsprechenden N/S-Markierungen vorgesehen. Beispielsweise sind zur Erzeugung eines 4Bit-Parallelcodes zusätzlich vier Spuren vorhandenen.
Alternativ kann auch eine einzige Spur mit jeweils unterschiedlichen N/S- Markierungen vorgesehen sein, wobei die einzelnen Markierungen von einzelnen zugehörigen Sensoren erfaßt werden und hierbei ein serieller Code erzeugbar ist.
Bei einem 16Bit seriellen Code ist jedem Bit ein separater Sensor zugeordnet. Bei Bedarf können sowohl Parallelcodes als auch serielle Codes erzeugt werden.
Besondere Ausgestaltungen der vorliegenden Erfindung werden anhand der Zeichnungsfiguren näher erläutert. Es zeigen:
Fig. 1 eine Schnittdarstellung des erfindungsgemäßen Kugellagers mit integriertem Sensor;
Fig. 2 eine Ansicht gemäß Blickwinkel A in Fig. 1 ohne Gehäuse;
Fig. 3 eine Draufsicht auf das Polrad mit N/S-Markierungen sowie der zugeordneten Lage von Sensoren; Fig. 4 eine Draufsicht auf das Polrad mit N/S-Markierungen sowie zugeordneten, unterschiedlichen Lage von Sensoren;
Fig. 5 eine stark vereinfachte schematische Darstellungsweise mehrerer Spuren auf dem Polrad (Fig. 5a) sowie den daraus erhaltenen Parallelcode (Fig. 5b) sowie
Fig. 6 eine stark vereinfachte schematische Darstellungsweise des Polrads zur Erzeugung eines seriellen Codes (Fig. 6a) sowie den daraus resultierenden seriellen Code (Fig. 6b).
Bezugsziff. 1 in Fig. 1 bezeichnet das Kugellager mit integriertem Sensor („Sensorlager") in seiner Gesamtheit. Bezugsziff. 2 bezeichnet den Außenring des Kugellagers, welcher lediglich der Übersichtlichkeit halber an der Oberseite von Fig. 1 dargestellt ist. Bezugsziff. 3 bezeichnet demgegenüber den Innenring. Dazwischen befindet sich eine Vielzahl von Kugeln 4.
Seitlich zu den Kugeln 4 versetzt angeordnet befindet sich ein Substrat 7, welches Sensoren 8 trägt. Mit dem Innenring 3 verbunden ist ein Polrad 5, welches unmittelbar an die Sensoren 8 angrenzt. Substrat 7, Sensoren 8 sowie Polrad 5 befinden sich in einem Gehäuse 11 , welches mit dem Außenring 2 verbunden ist.
Das Substrat 7 besteht aus temperaturbeständigem Werkstoff, z.B. Keramik und trägt (nicht dargestellte) Elektronikschaltteile sowie einen Busanschluß 15 für einen PC bzw. SPS.
Wie aus Fig. 2 ersichtlich ist, befinden sich die Sensoren 6, 8 sowie 9 am Substrat 7 in unmittelbarer Nähe zum Polrad 5. Das Polrad 5 umfaßt über dessen gesamten Umfang angeordnete, in ihrer Position exakte festgelegte Nord-/Südpol-Markierungen, die von den Sensoren 6, 8 sowie 9 abgetastet werden. In Fig. 2 sind die beiden Sensoren 6 und 8 zueinander in bezug auf den Umfang versetzt angeordnet. Gleiches gilt für den Sensor 9. Die versetzte Anordnung gewährleistet die Möglichkeit, phasenverschobene Signale (z.B. eine Sinuskurve sowie eine Cosinuskurve) zu erhalten. Der zusätzliche Sensor 9 ist dazu vorgesehen, eine Temperaturfühlung im Inneren des Gehäuses 11 vorzunehmen.
Die Fig. 3 zeigt in stark vereinfachter Form einen Abschnitt des Polrads 5 mit den einzelnen lokal definierten N/S-Codierungen, von den der Übersichtlichkeit halber lediglich eine in Fig. 3 beschriftet ist. Desweiteren ist aus Fig. 3 die jeweilige Position der einzelnen Sensoren 6, 8 sowie 9 in bezug auf das Polrad 5 zu erkennen. Die Sensoren 6 sowie 8 sind zueinander um eine Teilung versetzt angeordnet. Hierdurch werden zwei um 90° phasenverschobene Signale (Sinuskurve; Cosinuskurve) erhalten. Der dritte Sensor 9 befindet sich außerhalb des Einflusses der Codierungen auf dem Polrad 5. Mit ihm wird lediglich eine Nullpunktsetzung vorgenommen.
Alternativ zu der Ausgestaltung gemäß Fig. 3 sind bei der Ausgestaltung gemäß Fig. 4 die Sensoren 6 sowie 8 seitlich versetzt sowie in einem einzigen, gemeinsamen Gehäuse untergebracht.
Die Einteilung des Polrads 5 kann bis zur kleinsten technisch möglichen N/S- Markierungen vorgenommen werden, wodurch die Genauigkeit der Messung erheblich gesteigert werden kann.
Das Polrad 5 besteht zweckmäßigerweise aus einem Ferritring, in den die einzelnen N/S-Markierungen eingebracht sind. Weitere Überarbeitungen sind hierbei nicht erforderlich. Gemäß Fig. 5a umfaßt das Polrad 5 insgesamt vier Spuren 18, mit jeweils unterschiedlichen Informationen, die von einzelnen, der jeweiligen Spur 18 zugeordneten Sensoren 6 erfaßt werden. Hierdurch ist es möglich, beispielsweise vierstellige Parallelcodes 16 gemäß Fig. 5b zu erzeugen und hierbei neben den eingangs erwähnten Informationen auch die Position des Kugellagers 1, d.h. des Substrats 7 bzw. Außenrings 2 zum Polrad 5 bzw. Innenring 3 festzustellen.
Das erfindungsgemäße Kugellager 1 ist damit in der Lage, auch Informationen zu liefern, wo sich der Innenring 3 im Vergleich zum Außenring 2 jeweils befindet.
Alternativ oder zusätzlich hierzu kann die Information hinsichtlich der Drehstellung auch unter Erzeugung eines seriellen Codes 17 erfolgen, wie dies in Fig. 6a dargestellt ist. Hierzu werden unterschiedliche N/S- Markierungen 10 entlang einer Spur 18 angeordnet und von jeweils einzelnen zugehörigen Sensoren 6 abgefragt. Daraus resultiert die Erzeugung eines seriellen Codes 17, wie er in Fig. 6b dargestellt ist.
Bei Bedarf können Parallelcodes 16 mit seriellen Codes 17 sogar kombiniert werden. Die obigen Ausgestaltungen der Erfindung gewährleisten den Vorteil, daß ohne zusätzliche Anbaumaßnahmen die Drehstellung des Kugellagers 1 in einfacher Weise feststellbar ist.
Alles in allem stellt die Erfindung daher eine erhebliche Bereicherung auf dem einschlägigen technischen Gebiet dar.

Claims

PATENTANSPRUCHE
1. Kugellager mit integriertem Sensor zur Erfassung der Relativbewegung der beiden Lagerringe des Kugellagers zueinander, mit einem zumindest abschnittsweise ausgebildeten Polrad sowie mindestens einem Sensor zur Abtastung des Polrads,
dadurch gekennzeichnet, daß
das Polrad (5) aus einem dauerhaft magnetisierbaren Material besteht und am Polrad (5) magnetische Markierungen vorgesehen sind, die vom Sensor (6, 8 oder 9) abtastbar sind.
2. Kugellager nach Anspruch 1 ,
dadurch gekennzeichnet, daß
das Polrad (5) aus Ferrit oder zumindest ferritischem Material besteht.
3. Kugellager nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß
das Polrad (5) N/S-Markierungen entlang mindestens eines Teils, vorzugsweise entlang des gesamten Umfangs desselben aufweist.
4. Kugellager nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß
der Sensor (6, 8 oder 9) von einem Substrat (7) getragen wird.
Kugellager nach Anspruch 4,
dadurch gekennzeichnet, daß
das Substrat (7) aus temperaturbeständigem Material, insbesondere aus Keramik besteht.
6. Kugellager nach einem der Ansprüche 1 - 4,
dadurch gekennzeichnet, daß
das Substrat (7) aus Kunststoff besteht.
7. Kugellager nach einem der Ansprüche 4 - 6,
dadurch gekennzeichnet, daß
der Sensor (6, 8 oder 9) sowie das Substrat (7) innerhalb eines Gehäuses (11), insbesondere seitlich, am Kugellager (1) angeordnet sind.
8. Kugellager nach einem der vorhergehenden Ansprüche 4 - 7,
dadurch gekennzeichnet, daß
der Sensor (6, 8 oder 9) in einer Aussparung (12, 13, 14) am Substrat (7) untergebracht ist.
9. Kugellager nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß
das Polrad (5) aus magnetischem Material sich über den gesamten Umfang des Polrads (5) erstreckt.
10. Kugellager nach einem der Ansprüche 4 - 9,
dadurch gekennzeichnet, daß
in radialer Richtung gesehen Substrat (7), Sensor (6, 8 oder 9) sowie Polrad (5) schichtförmig aber seitlich zum Außenring (2) sowie Innenring (3) des Kugellagers (1) versetzt angeordnet sind.
11. Kugellager nach einem der vorhergehenden Ansprüche 4 - 10,
dadurch gekennzeichnet, daß das Substrat (7) Elektronikschaltteile trägt.
12. Kugellager nach Anspruch 11 ,
dadurch gekennzeichnet, daß
das Substrat (7) einen Busanschluß (15) für Leittechnik trägt.
13. Kugellager nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß
mehrere Sensoren (6, 8, 9) vorgesehen sind.
14. Kugellager nach Anspruch 13 ,
dadurch gekennzeichnet, daß
Sensoren (6, 8, 9) zueinander versetzt angeordnet sind, um zwei phasenverschobene Signale zu erhalten.
15. Kugellager nach Anspruch 13 oder 14,
dadurch gekennzeichnet, daß
ein zusätzlicher Sensor (9) für den Nullimpuls vorgesehen ist.
16. Kugellager nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß
mehrere Sensoren (6, 8 und 9) als Sensormodul in einem gemeinsamen Gehäuse untergebracht sind.
17. Kugellager nach einem der vorhergehenden Ansprüche 4 - 16,
dadurch gekennzeichnet, daß
das Gehäuse (11), das Substrat (7) sowie der oder die Sensoren (6, 8 sowie 9) eine vorgefertigte Einheit bilden.
18. Kugellager nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß
der Sensor (6, 8 oder 9) ein magnetfeldabhängiges Bauelement, insbesondere Halbleiterbauelement, ist.
19. Kugellager nach Anspruch 18 ,
dadurch gekennzeichnet, daß das magnetfeldabhängige Halbleiterbauelement ein Hall-Sensor oder ein MR-Sensor ist.
20. Kugellager nach einem der vorhergehenden Ansprüche 13 - 19,
dadurch gekennzeichnet, daß
ein zusätzlicher Sensor zur Temperaturerfassung im Gehäuse (11) vorgesehen ist.
21. Kugellager nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß
mittels der auf dem Polrad (5) befindlichen N/S-Markierungen (10) die Drehstellung des Kugellagers feststellbar ist.
22. Kugellager nach Anspruch 21 ,
dadurch gekennzeichnet, daß
die Drehstellung durch einen über die N/S-Markierungen (10) von Sensoren erfaßbaren Parallelcode (16) oder seriellen Code (17) feststellbar ist.
23. Kugellager nach Anspruch 21 oder 22,
dadurch gekennzeichnet, daß
mehrere Spuren mit N/S-Markierungen (10) vorgesehen sind, wodurch ein Parallelcode (16) erzeugbar ist.
24. Kugellager nach Anspruch 21 oder 22,
dadurch gekennzeichnet, daß
eine Spur mit unterschiedlichen N/S-Markierungen vorgesehen sind, die von einzelnen Sensoren erfaßt werden und hierdurch ein serieller Code (17) erzeugbar ist.
25. Kugellager nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß
sowohl Parallelcode (16) als auch serieller Code (17) erfaßbar sind
PCT/DE1998/003189 1997-11-06 1998-10-31 Kugellager mit integriertem sensor WO1999024837A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP98961061A EP1027610A1 (de) 1997-11-06 1998-10-31 Kugellager mit integriertem sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19748996.6 1997-11-06
DE1997148996 DE19748996C1 (de) 1997-11-06 1997-11-06 Kugellager mit integriertem Sensor

Publications (1)

Publication Number Publication Date
WO1999024837A1 true WO1999024837A1 (de) 1999-05-20

Family

ID=7847768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/003189 WO1999024837A1 (de) 1997-11-06 1998-10-31 Kugellager mit integriertem sensor

Country Status (3)

Country Link
EP (1) EP1027610A1 (de)
DE (1) DE19748996C1 (de)
WO (1) WO1999024837A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1447579A1 (de) * 2001-11-22 2004-08-18 NSK Ltd., Mit sensor ausgestattetes rollenlager und vorrichtung zur erfassung des drehzustands

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6429647B1 (en) * 2000-03-17 2002-08-06 Delphi Technologies, Inc. Angular position sensor and method of making
FR2845212B1 (fr) * 2002-09-27 2005-03-18 Roulements Soc Nouvelle Dispositif de pilotage d'un moteur a commutation electronique au moyen d'un signal de position
DE102009044542B3 (de) 2009-11-16 2011-05-19 Ina - Drives & Mechatronics Gmbh & Co. Ohg Wälzlager mit einer Sensoreinheit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250275A1 (de) * 1986-06-10 1987-12-23 S.N.R. Roulements Lager mit Sensor
FR2660028A1 (fr) * 1990-03-20 1991-09-27 Roulements Soc Nouvelle Roulement a capteur de position angulaire.
EP0464404A1 (de) * 1990-07-04 1992-01-08 Skf Industrie S.P.A. Vorrichtung zur Erfassung der Relativgeschwindigkeit zwischen dem Innen- und dem Aussenring eines Wälzlagers
WO1993014372A1 (de) * 1992-01-20 1993-07-22 Alfred Teves Metallwarenfabrik Gmbh & Co Ohg Sensor
EP0558364A1 (de) * 1992-02-28 1993-09-01 S.N.R. Roulements Magnetstruktur für einen Verschiebungssensor
EP0631112A1 (de) * 1993-06-24 1994-12-28 Firma Carl Freudenberg Dichtung
EP0669534A1 (de) * 1994-02-15 1995-08-30 TRW SIPEA S.p.A. Verfahren zur Herstellung einer Messaufnehmeranordnung für eine elektromagnetische Detektorvorrichtung sowie nach diesem Verfahren hergestellte Messaufnehmeranordnung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US406943A (en) * 1889-07-16 Linger
US3742243A (en) * 1971-09-27 1973-06-26 Veeder Industries Inc Pulse generator
AU497248B2 (en) * 1975-08-05 1978-12-07 Newall Engineering Co. Ltd., The Position detector
JPS61180110A (ja) * 1985-02-06 1986-08-12 Alps Electric Co Ltd 磁気式コ−ドホイ−ル
JP2550049B2 (ja) * 1987-02-23 1996-10-30 株式会社日立製作所 磁気的に位置や速度を検出する装置
JPS63210617A (ja) * 1987-02-27 1988-09-01 Yaskawa Electric Mfg Co Ltd 磁気抵抗効果素子
FR2694082B1 (fr) * 1992-07-23 1994-09-16 Skf France Codeur annulaire composite pour roulement et roulement à capteur d'informations, comportant un tel codeur.
DE9311045U1 (de) * 1993-07-23 1993-11-18 Birner Karl Vorrichtung zur berührungslosen Erfassung eines Weges oder von Umdrehung
DE19533393C2 (de) * 1995-09-09 1998-02-05 Kostal Leopold Gmbh & Co Kg Sensoreinrichtung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250275A1 (de) * 1986-06-10 1987-12-23 S.N.R. Roulements Lager mit Sensor
FR2660028A1 (fr) * 1990-03-20 1991-09-27 Roulements Soc Nouvelle Roulement a capteur de position angulaire.
EP0464404A1 (de) * 1990-07-04 1992-01-08 Skf Industrie S.P.A. Vorrichtung zur Erfassung der Relativgeschwindigkeit zwischen dem Innen- und dem Aussenring eines Wälzlagers
WO1993014372A1 (de) * 1992-01-20 1993-07-22 Alfred Teves Metallwarenfabrik Gmbh & Co Ohg Sensor
EP0558364A1 (de) * 1992-02-28 1993-09-01 S.N.R. Roulements Magnetstruktur für einen Verschiebungssensor
EP0631112A1 (de) * 1993-06-24 1994-12-28 Firma Carl Freudenberg Dichtung
EP0669534A1 (de) * 1994-02-15 1995-08-30 TRW SIPEA S.p.A. Verfahren zur Herstellung einer Messaufnehmeranordnung für eine elektromagnetische Detektorvorrichtung sowie nach diesem Verfahren hergestellte Messaufnehmeranordnung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHMIDT K ET AL: "EINSATZ VON SENSORLAGERN IN DER INDUSTRIEAUTOMATISIERUNG", VDI Z, April 1997 (1997-04-01), pages 88 - 90, XP000659771 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1447579A1 (de) * 2001-11-22 2004-08-18 NSK Ltd., Mit sensor ausgestattetes rollenlager und vorrichtung zur erfassung des drehzustands
EP1447579A4 (de) * 2001-11-22 2006-04-12 Nsk Ltd Mit sensor ausgestattetes rollenlager und vorrichtung zur erfassung des drehzustands
US7290938B2 (en) 2001-11-22 2007-11-06 Nsk Ltd. Sensor-equipped rolling bearing, and rotation state detecting device
US7481583B2 (en) 2001-11-22 2009-01-27 Nsk Ltd. Rolling bearing with sensor and rotary state detecting device

Also Published As

Publication number Publication date
DE19748996C1 (de) 1999-07-15
EP1027610A1 (de) 2000-08-16

Similar Documents

Publication Publication Date Title
EP1364186B1 (de) Multiturn-codedrehgeber
DE10158223B4 (de) Drehwinkel-Messgerät
EP1666836B1 (de) Drehmomentsensor und Drehsensor
EP1408305B9 (de) Vorrichtung zum Erfassen des Absolutwinkels einer Welle
EP1445494B1 (de) Stellelement mit Lageerkennung
EP2182330B1 (de) Positions-/Wegmesssystem mit kodiertem Masskörper
EP2748053B1 (de) Kombinierter lenkmoment-lenkwinkelsensor
EP1357365A2 (de) Einrichtung zur Positionserfassung
EP2180296A1 (de) Drehwinkelbestimmungsvorrichtung, insbesondere für die Lenkungswelle eines Kraftfahrzeugs
DE102012109787B4 (de) Lenkwinkelsensor für Kraftfahrzeuge
EP1876422A1 (de) Vorrichtung zur Erfassung von rotatorischen und translatorischen Bewegungen
EP1925533B1 (de) Kombinierter Lenkwinkel- und Drehmomentsensor
EP2325654A1 (de) Wälzlageranordnung mit einer Sensoreinheit
DE102004010948B4 (de) Winkelmesseinrichtung
DE102019127297A1 (de) Sensorvorrichtung zur Erfassung der Drehwinkelstellung einer drehbeweglichen Welle sowie Lenkungsanordnung eines Fahrzeugs
EP2101157A2 (de) Magnetischer Drehwinkelsensor
EP1600737B1 (de) Vorrichtung zur rotativen Winkelmessung
DE202008018076U1 (de) Drehwinkelbestimmungsvorrichtung, insbesondere für die Lenkungswelle eines Kraftfahrzeuges
WO1999024837A1 (de) Kugellager mit integriertem sensor
DE102005061347A1 (de) Anordnung zur Messung des absoluten Drehwinkels einer Welle
DE102005055905A1 (de) Längenmessanordnung mit einem magnetischen Maßstab mit gegenläufiger Magnetisierung
DE4115244A1 (de) Winkelsensor zur bestimmung der drehlage einer welle
EP1770375B1 (de) Positionsmesseinrichtung mit zwei Massverkörperungen deren Codespuren sich gegenseitig überlappen
EP1610095B1 (de) Drehgeber zur Bestimmung des absoluten Drehwinkels einer Welle
EP3128294B1 (de) Sensor zur bestimmung der winkelposition eines motors sowie ein motor mit einem sensor zur bestimmung der winkelposition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1998961061

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998961061

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998961061

Country of ref document: EP