WO1999023262A1 - Method of operating blast furnace - Google Patents

Method of operating blast furnace Download PDF

Info

Publication number
WO1999023262A1
WO1999023262A1 PCT/JP1998/004951 JP9804951W WO9923262A1 WO 1999023262 A1 WO1999023262 A1 WO 1999023262A1 JP 9804951 W JP9804951 W JP 9804951W WO 9923262 A1 WO9923262 A1 WO 9923262A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot metal
furnace
furnace heat
blast furnace
temperature
Prior art date
Application number
PCT/JP1998/004951
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Oya
Shigeru Wakita
Yasukazu Hayasaka
Hajime Wakai
Original Assignee
Nkk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2556198A external-priority patent/JPH11222610A/en
Priority claimed from JP2556098A external-priority patent/JPH11222609A/en
Application filed by Nkk Corporation filed Critical Nkk Corporation
Priority to KR1020007004169A priority Critical patent/KR100362067B1/en
Priority to EP98950490A priority patent/EP1029931A4/en
Publication of WO1999023262A1 publication Critical patent/WO1999023262A1/en
Priority to US09/556,569 priority patent/US6302941B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • G01K11/3213Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering using changes in luminescence, e.g. at the distal end of the fibres
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • G01K1/12Protective devices, e.g. casings for preventing damage due to heat overloading
    • G01K1/125Protective devices, e.g. casings for preventing damage due to heat overloading for siderurgical use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2300/00Process aspects
    • C21B2300/04Modeling of the process, e.g. for control purposes; CII

Definitions

  • the present invention relates to a blast furnace operating method.
  • it relates to a furnace heat control method for a blast furnace.
  • iron ore as iron raw material, coke as fuel, and limestone as auxiliary raw materials are charged from the furnace top, and hot air is blown from the lower tuyere of the furnace to burn coke and produce it.
  • Iron ore is reduced by the reduced CO-based reducing gas and thermal energy.
  • the iron in the iron ore becomes the main component of the hot metal, while the gangue in the iron ore and the ash in the coke become slag together with the limestone, etc., and are periodically discharged from the tap hole and the slag port at the bottom of the furnace, respectively.
  • good furnace heat control is an essential condition.
  • the furnace heat of the blast furnace is divided into the furnace heat level and the furnace heat transition, and is one of the most important information that reflects the conditions inside the furnace such as the furnace reaction. Furnace heat levels and furnace heat transitions are inherently significant in the hot metal temperature. Therefore, it is not possible to accurately and accurately measure the hot metal temperature with a small time lag, control the furnace heat based on this temperature measurement information, and accurately and accurately adjust the hot metal temperature to a target level. It is extremely important to stabilize the operation of the blast furnace and to reduce the unit fuel consumption, improve the productivity and improve the quality of the hot metal.
  • the furnace heat of the blast furnace was evaluated by the furnace heat level based on the hot metal temperature after tapping, and the furnace heat transition was evaluated based on information from various sensors placed in the blast furnace, and this was inferred. ing.
  • hot metal blasts from a blast furnace at the tap hole and has a length of about 20 m. It flows into Skimma through a long tapping gutter.
  • a method has been adopted in which hot metal and slag are floated and separated on hot metal by a difference in specific gravity with a skinmer, and then the temperature of hot metal flow is measured.
  • An immersion thermocouple thermometer is used for temperature measurement.
  • a runner constructed of irregular refractories is constructed on the inner surface of the taphole. Therefore, the temperature of the hot metal that has been tapped is reduced due to heat removal due to heat conduction to the tapping gutter and heat radiation to the atmosphere while passing through the tapping gutter.
  • the tap hole during tapping is worn by the molten iron slag and its hole diameter increases, so that the tapping speed changes with the elapse of tapping time.
  • the hot metal temperature measured at the skinner is affected by the heat removal from the hot metal in the tapping gutter and the change in the tapping speed (t / min), and is from the start to the end of tapping. Greatly change. Normally, the temperature is low in the early stage of tapping and gradually rises to reach the maximum temperature at the end of tapping. Conventionally, this maximum temperature has been adopted as the hot metal temperature.
  • tapping from a given tap hole finishes in about 3 to 4 hours per time, closes the tap hole, and then waits until hot metal is formed and the hot metal accumulates near the tap hole again. Do it. However, during this waiting time, another tap hole is opened and tapping is performed in the same manner. Normally, tapping takes about 3 to 4 hours per shot from another tap hole on the opposite side of the furnace body.
  • the temperature of the tapping gutter provided at the specified taphole decreases, so when the hot metal temperature at the next tapping is measured at the skinner, Similar to the above, the transition follows a low temperature at the beginning of tapping and a maximum temperature at the end.
  • the transition of the hot metal temperature during tapping measured in this way is not constant, and as shown later in Fig. 11, the temperature transition fluctuates greatly from tapping to tapping.
  • Fig. 11 shows an example of measurement results of hot metal temperature by the conventional method.
  • the figure shows the collection of tapping that had a maximum temperature of 1500 to 1550 ° C, and the hot metal was measured 8 to 12 times with one tapping. ing.
  • the conventional hot metal temperature measurement method even if the maximum temperatures belong to the same level, there is a large variation in the first measurement temperature. Temperature pattern is not constant. Therefore, in each tapping, it is not only difficult to estimate the maximum temperature from the first temperature measurement, but also the temperature during the second and subsequent times. It is not easy to estimate the maximum temperature from the measured values.
  • the tap runners of tapping gutters constructed of irregular refractories are usually worn out every two to three weeks because they are worn by the slag flow.
  • the sensible heat of the hot tapping gutter is reduced, so the heat removal from the hot metal to the tapping gutter is even greater.
  • the decrease in the initial measurement value is further increased.
  • the hot metal temperature rises with the lapse of time from the start of tapping, and follows a transition in which it reaches the highest temperature at the end of the tapping. Fluctuates considerably.
  • the hot metal temperature at the skinmer in the initial stage of tapping greatly decreases from the hot metal temperature in the furnace, and the accuracy is also poor. It takes a considerable time for the hot metal temperature at the skinmer to approach and stabilize at the tapping temperature. Furthermore, it is difficult to accurately estimate the hot metal temperature in the furnace, even if the measured values at the skimmer are corrected by a large number of operations. It is also difficult to grasp the situation with little time delay.
  • the frequency of hot metal temperature at which the furnace heat level can be evaluated can only be obtained at one point every three to four hours, which is the time required for one run. Therefore, there is a problem as a means to evaluate furnace heat.
  • the transition pattern of the hot metal temperature described above for each tapping is not constant, and the variation in the pattern is large.
  • the hot metal temperature information at the measurement time at the skinner indicates that it takes time to estimate the furnace heat transition. Due to the delay, the furnace heat control action is delayed.
  • the information on only the hot metal temperature obtained by the conventional measurement method delays the action for blast furnace operation, so that stable furnace operation cannot be performed. Therefore, in order to prevent this action delay, information from various sensors is usually used for estimating furnace heat transfer.
  • the sensor there are an airfoil embedded sensor composed of a thermocouple embedded near a tuyere of a blast furnace, a furnace top exhaust gas sensor, and the like. This is to measure the temperature of the furnace near the tuyere and the composition of the furnace exhaust gas to detect changes in furnace heat at a rapid timing, and to measure the change in furnace heat without time delay. is there.
  • the temperature measured by this blade embedded sensor (hereinafter referred to as the blade embedded temperature)
  • the absolute value is much lower than the hot metal temperature.
  • the joint information with other sensor values enables early and continuous furnace heat information to be obtained.
  • An embedded sensor is indispensable. It is also considered to be effective in estimating the furnace heat level, although the degree varies depending on the type of sensor.
  • Fig. 12 (a) shows the results of measuring the hot metal temperature by the conventional method during the three successive tapping periods of the A tap, B tap, and C tap
  • Fig. 12 (b) An example of correspondence with the measurement results of the embedding temperature is shown below.
  • the furnace heat information based on the temperatures represented by points P1, P2, and P3 on the impregnation temperature curve is represented by Pi ', P2', and P It should be reflected corresponding to the furnace heat information based on the temperature represented by each point 3 '.
  • the embedding temperature which shows a trend of rising, naturally appears as a rising trend in the hot metal temperature after a certain period of time, and this is reflected in the measured value of the hot metal temperature by the conventional method.
  • furnace heat correction model that determines the operation amount is required.
  • FIG. 12 (a) and Fig. 12 (b) An example of a conventional furnace heat control method is shown in Fig. 12 (a) and Fig. 12 (b), the results of the hot metal temperature measurement by the conventional method, and the tuyere embedded thermocouple as a sensor. A description will be given using an example of correspondence with the measurement results of the used blade embedding temperature. However, it is assumed that the current point is at the end of B tap.
  • the correlation between the hot metal temperature measured at the skinner measured at the first tap and at the midpoint of the tap and the maximum hot metal temperature of the evening tap is determined in advance from past operation data. deep. Using this relationship, the furnace heat level is estimated from the hot metal temperature measured this time, for example, the measured value of the hot metal temperature at the point 'in Fig. 12 (a).
  • a predetermined weight is given to each furnace heat level estimated as described above, and the obtained value is regarded as the current furnace heat level. Then, several ranks are set in advance with the temperature category to which the target value of the furnace heat level belongs in the center, and the rank to which the current furnace heat level belongs is obtained.
  • the current furnace heat transition is determined as follows. Among the sensors, for the embedded sensor, the temperature gradient from point Ql to point Q2 in Fig. 12 (b) is determined by a statistical method. Similarly, for other sensors, the temperature gradient is calculated according to this. Then, a predetermined weighting is performed for each sensor to estimate the furnace heat transition. For the furnace heat transition, several ranks are set up in advance with the slope section having a slope of 0 (zero) as the center, and the rank to which the current slope belongs is calculated.
  • the correction of the current furnace heat deduced above is performed according to the position of the current furnace heat in the function matrix.
  • the action is performed based on the action correction rules obtained from the preset furnace heat correction model.
  • the compensation rules are mainly based on the rules of thumb of specialized elephants, and are uniquely defined. It is not possible.
  • the typical operation factor for the action correction is the amount of steam blown during tuyere blowing, and the amount of action varies depending on the specific operating conditions of the blast furnace, especially the raw materials used and the raw material charging conditions, etc. Can not be decided.
  • Japanese Examined Patent Publication No. 7-26127 proposes a method of estimating furnace heat level and furnace heat transition from hot metal temperature measurement value and sensor one-value information.
  • a method of inferring using a three-dimensional function having three axes of furnace heat level or furnace heat transition estimated from hot metal temperature, sensor value information, and certainty factor is disclosed.
  • the hot metal temperature is measured at the skinner, for the reasons described above, it is necessary to use the maximum hot metal temperature that appears at the end of the tap as the accurate furnace heat level. That is, since the exact hot metal temperature is not known until the end of each tap, a highly reliable furnace heat level can be obtained only once every 3 to 4 hours. Therefore, the accuracy of estimating the furnace heat level decreases.
  • the reliability of the measured hot metal temperature during the middle of the tap period is low, so it cannot be used as data to correct the furnace heat transition.
  • the frequency of obtaining reliable data for estimating the furnace heat level is low, the time delay for compensating for changes in the furnace heat is large. Therefore, it is not possible to use the conventional fluctuations in the measured hot metal temperature as a means for correcting the furnace heat transition.
  • An object of the present invention is to provide a blast furnace operating method capable of accelerating stabilization of a furnace condition and reducing hot metal production cost and stably producing low silicon hot metal.
  • the present invention provides a method for operating a blast furnace for producing hot metal comprising:
  • the furnace heat of the blast furnace is controlled based on the obtained hot metal temperature information.
  • the hot metal flow is a jet flow existing before falling from a tap hole to a tapping gutter.
  • the hot metal produced in the blast furnace is desirably a hot metal having a low silicon content.
  • the step of controlling the furnace heat may include a step of controlling the furnace heat to produce hot metal having a silicon content of 0.3 wt.% Or less. Further, the step of controlling the furnace heat may include a step of controlling the furnace heat and reducing the fuel ratio.
  • the process of controlling furnace heat may consist of the following steps:
  • the process of controlling the furnace heat may consist of the following steps:
  • the above blast furnace operating method may further include a step of detecting the activity of the core of the blast furnace based on the obtained hot metal temperature information.
  • the process of detecting the activity of the blast furnace core consists of the following steps:
  • the above blast furnace operating method may further include a step of controlling the pulverized coal injection amount based on the obtained hot metal temperature information.
  • one furnace heat control method selected from the furnace heat control methods described below is preferable.
  • the first furnace heat control method comprises the following steps:
  • the second furnace heat control method comprises the following steps:
  • the third furnace heat control method consists of automatically correcting the operating factors of the blast furnace using an artificial intelligence system and controlling the hot metal temperature.
  • the artificial intelligence system has the following steps:
  • the fourth furnace heat control method comprises the following steps:
  • the fifth furnace heat control method comprises the following steps:
  • the sixth furnace heat control method consists of automatically taking corrective action for blast furnace operating factors and controlling the hot metal temperature using an artificial intelligence system.
  • the artificial intelligence system has the following steps:
  • FIG. 1 is a cross-sectional view showing a structural example of an optical fiber coated with a metal tube used in a first embodiment.
  • FIG. 2 is a schematic diagram showing a configuration example of a temperature measuring device used in the first embodiment.
  • FIG. 3 is a conceptual diagram of the transition of the hot metal temperature for explaining an example of determining the core activation state in the first embodiment.
  • FIG. 4 is a conceptual diagram of the transition of hot metal temperature for explaining an example in the case of determining the core dead state in the best mode 1.
  • FIG. 5 is a diagram showing the time-dependent changes in the measured value of the hot metal temperature, the Si concentration in the hot metal, and the amount of moisture added in the hot air in the best mode 1.
  • FIG. 6 is a flowchart of furnace heat control according to the second embodiment.
  • Fig. 7 shows the measurement of hot metal temperature and blade embedding temperature measured by the method of best mode 2. It is an example of a result.
  • FIG. 8 is a graph showing the measured values of the hot metal temperature, the Si concentration in the hot metal, and the change over time in the amount of moisture added in the hot air in the best mode 2.
  • FIG. 9 is a graph showing the change over time of the measured value of hot metal temperature, the Si concentration in hot metal, and the amount of moisture added in hot air in the conventional method.
  • Fig. 10 is a graph showing the correspondence between the measured values of the hot metal temperature in the best mode 2 and the measured values of the hot metal temperature in the conventional method when stratification is performed between the initial and later stages of tapping. .
  • FIG. 11 is a graph showing the transition of the measured value of the hot metal temperature by the conventional method.
  • Fig. 12 is a graph showing an example of the correspondence between the measurement results of the hot metal temperature and the impeller embedding temperature during the three consecutive tapping periods according to the conventional method.
  • FIG. 13 is a flowchart of the furnace heat control according to the method of Best Mode 3.
  • FIG. 14 is an example of the measurement results of the hot metal temperature and the blade embedding temperature measured by the method of the best mode 3.
  • FIG. 15 is a flowchart illustrating a corrective action method in the best mode 3 when the furnace heat is in a steady state.
  • FIG. 16 is a flowchart illustrating a corrective action method when furnace heat is in an unsteady state in Best Mode 3.
  • FIG. 17 is a graph showing the measured value of the hot metal temperature, the Si concentration in the hot metal, and the change over time in the amount of moisture added in the hot air in the best mode 3.
  • FIG. 18 is a graph showing the change over time in the measured value of hot metal temperature, the Si concentration in hot metal, and the amount of moisture added in hot air in the conventional method.
  • Fig. 19 shows an example of abnormally low hot metal temperature, which indicates an abnormal state of furnace heat, detected when furnace heat control is performed according to Best Mode 3.
  • the present inventors have found that the reactor conditions can be stabilized by performing the following.
  • the optical fiber shall be reinforced with a metal tube to have rigidity, and a wire-shaped optical sensor unit shall be designed according to the state of the hot metal flow to be measured.
  • Best mode 1 is based on the above findings.
  • the operation of a blast furnace for producing hot metal of the best mode 1 consists of:
  • the furnace heat of the blast furnace is controlled based on the obtained hot metal temperature information.
  • the hot metal flow is a jet flow existing before falling from a tap hole to a tapping gutter.
  • the hot metal produced in the blast furnace is desirably a hot metal having a low silicon content.
  • Low silicon hot metal is hot metal whose Si concentration in hot metal is less than 0.3 wt.%.
  • a temperature sensor made of an optical fiber is inserted into the hot metal stream ejected from the blast furnace tap hole, receives the optical signal from the optical fiber, and uses the radiation thermometer to determine the temperature of the hot metal stream from the light energy and its wavelength distribution. Measure. Temperature measurement is performed continuously while the sensor is inserted into the hot metal stream and recorded on a temperature recorder. The temperature of the hot metal flow measured in this way is close to the temperature of the hot metal in the furnace. Therefore, in the present invention, the above method is adopted as a method for knowing the hot metal temperature in the furnace. During the tapping period from the blast furnace, the hot metal temperature is measured by the above method. The measurement is performed once, for example, continuously for about 10 to 20 seconds, and the temperature is measured several times during one tapping period. By measuring the temperature continuously for about 10 to 20 seconds each time with one optical fiber and one sensor, the hot metal temperature can be determined clearly. Next, a method for measuring the temperature of the hot metal flow ejected from the taphole described above will be described with reference to the drawings.
  • FIG. 1 is a schematic cross-sectional view showing a structural example of an optical fiber coated with a metal tube used in Best Mode 1.
  • 7 is an optical fiber
  • 8 is a metal inner tube
  • 9 is a metal outer tube.
  • the outer side of the optical fiber 17 is covered with a metal inner tube 8 and a metal outer tube 9.
  • Such a double-structured wire-type optical sensor unit 6 is configured.
  • FIG. 2 is a schematic diagram showing a configuration example of a temperature measuring device used in the embodiment of the present invention.
  • 1 is a blast furnace tap hole
  • 2 is a hot metal flow
  • 3 is a radiation thermometer
  • 10 is a delivery mechanism of an optical sensor unit.
  • An optical sensor unit 6 is inserted into the hot metal stream 2 ejected from the blast furnace tap hole 1.
  • the optical sensor unit 6 has the structure described in FIG. Since the optical sensor unit 6 is depleted by the hot metal flow 2, it is wound around the rotating drum 11 as a supply source, and is sent out at a required supply speed during temperature measurement.
  • the sending out of the optical sensor unit 6 is performed by a sending out mechanism 10 which adjusts the supply speed by a speed controller 13 and a sending out speed detector 14 by a pinch port 12.
  • a mechanism is provided for accurately inserting the optical sensor unit 6 into the hot metal stream 2 and a mechanism for holding the optical sensor unit 6 so that the optical sensor unit 6 is not ejected from the hot metal stream 2. .
  • the optical sensor unit 6 is fed through the guide pipe 15 so as to slide immediately before being inserted into the hot metal stream 2.
  • the guide pipe 15 is fixed to the tip guide 16 and the support frame 17.
  • the holding position of the tip guide 15 is positioned by the drive unit 18, the drive control unit 19, the object detection unit 20, and the support frame 17. And guide.
  • the tip of the optical sensor unit 6 when the tip of the optical sensor unit 6 is inserted into the hot metal stream 2, the radiated light in the hot metal stream 2 is incident on the optical fiber 7 from the tip, and the rotary light connected to the other end is provided. It reaches the radiation thermometer 3 via the connector, where it is converted into temperature, and the temperature of the hot metal stream 2 is recorded on the temperature recorder 21. In this way, the hot metal temperature is almost delayed Without this, the measurement can be performed accurately and accurately.
  • the first use for blast furnace operation is to lower the control temperature of hot metal temperature during normal operation.
  • Hot metal temperature control standards are important control items in blast furnace operation. Therefore, first, a target value for controlling hot metal temperature during normal operation is determined, and a predetermined temperature range is set up and down around this target value to make the hot metal temperature control range.
  • abnormal control lower limit value is the lower limit of the hot metal temperature control range during normal operation described above. Separately from the value, it is set separately in the lower temperature range.
  • control target value of the hot metal temperature in blast furnace operation is set to, for example, 150 ° C and the temperature of 152 ° C ⁇ 15 ° C is set. We assume management range.
  • the target value of temperature control is lowered by, for example, 25 ° C from the conventional one, and the control temperature range is narrowed from 15 to 10 to reduce the Set 10 ° C as the control temperature range.
  • the target value for controlling the hot metal temperature is set as low as possible within the range where stable operation of the blast furnace is possible, and the range of the control range is also narrowed. Therefore, it is advantageous in reducing the fuel ratio.
  • the control range of the set hot metal temperature is defined as Ta to Tb ° C (where Ta ⁇ Tb) and compared with the measured hot metal temperature Tm ° C obtained by the method of best mode 1. Deviations between the upper and lower limits of the control range and the measured values are calculated, and the operating conditions for the furnace heat control factors are corrected using these values so that the hot metal temperature falls within the control range.
  • the main factors controlling the furnace heat are as follows. 1 Moisture in hot air blown from tuyeres,
  • Correction factors are selected from among the above-mentioned furnace heat governing factors, taking into account the current and future estimation of furnace conditions and blast furnace operating conditions, and the amount of correction is determined.
  • the amount of correction to the furnace heat level is determined by a separate test and a table determined from Z or operational experience. For example, in the case of Tm to Ta, that is, when the hot metal temperature Tm ° C is lower than the target temperature range Ta to Tb ° C, the reduction of the amount of moisture added to the hot air and the hot air temperature
  • the operation factor for the action is selected as appropriate from the actions of increasing the PC ratio, increasing the PC ratio, and increasing the coke ratio. If T m> T b, take the corrective action in the opposite direction.
  • the determination of the furnace heat control factor and the correction amount thereof is performed based on a criterion that takes into account both the "furnace heat level" and the "furnace heat transition".
  • a judgment taking into account the furnace heat transition which indicates a tendency for the furnace heat to rise and fall, was taken to comprehensively judge the furnace heat situation.
  • the furnace heat transition is estimated from the temperature of the sensor set in the blast furnace body, that is, the temperature of the furnace sensor, information on the composition and flow rate of the furnace top exhaust gas, and the hot metal temperature information. Then, as with the furnace heat level, we incorporate the revised standards created based on data analysis and operational experience during operation.
  • the furnace body sensor which is conventionally used for furnace heat control and the like in blast furnace operation, is a furnace body sensor set in each part of the blast furnace furnace body, for example, an impeller embedded temperature sensor, a shaft part.
  • a furnace wall temperature sensor or a top gas temperature sensor is a furnace body sensor set in each part of the blast furnace furnace body, for example, an impeller embedded temperature sensor, a shaft part.
  • the correction action table is determined by incorporating both the furnace heat level and the furnace heat transition, and the furnace heat correction action is taken based on this. .
  • the furnace heat corrected in this way can be further controlled by continuing the corrective action for the operating conditions of the furnace heat controlling factor based on the hot metal temperature information after the corrective action and the information measured by the furnace body sensor. it can.
  • the measured value of the hot metal temperature falls within the lower control range than before.
  • the concentration of silicon in the hot metal depends on the temperature. The lower the temperature of the hot metal, the more the following reaction proceeds, and the lower the concentration of silicon in the hot metal.
  • the control target value of the hot metal temperature during normal operation can be reduced from the conventional level, for example, from 150 ° C to 1490 ° C.
  • a method for reducing the fuel ratio in blast furnace operation by reducing the temperature to about ° C will be described.
  • the initial stage of tapping is an external factor, that is, the influence of heat extraction due to heat conduction to the tapping gutter and heat radiation to the atmosphere while passing through the gutter.
  • the measurement results of the hot metal temperature are defective as a criterion for judgment.
  • the furnace heat function tends to be delayed, and the heat fluctuation between taps increases. Therefore, in the past, in order to avoid the occurrence of abnormal operation due to furnace cooling, the target value for controlling the hot metal temperature was set higher even during normal normal operation.
  • the hot metal temperature immediately after jetting at the taphole is measured with the optical fiber, so it is not easily affected by external factors.
  • the lower limit of the hot metal temperature control range during normal operation is set lower than before.
  • the lower limit of the hot metal temperature control range is reduced by about 30 to 35 ° C compared to the conventional hot metal temperature measurement in skinmers.
  • the furnace heat control method in this case also uses the above-mentioned action table.
  • the second application of blast furnace operation is to detect early deactivation of the core.
  • the furnace condition deteriorates. Therefore, it is necessary to detect the deadman inactivation at an early stage.
  • the core inertness could be determined by directly measuring the temperature of the hot metal discharged from the taphole directly using an optical fiber.
  • the mandrel when the mandrel is active, liquid permeability and air permeability are ensured and normal heat exchange is performed.
  • the mandrel is inactive, the furnace The temperature of the hot metal drops due to the heat removal from the furnace wall due to the occurrence of the annular flow of hot metal at the core.
  • this blast furnace operation method is to prevent the deterioration of the furnace condition such that an abnormally low temperature is judged.
  • the behavior of the hot metal temperature of the preceding hot metal, which requires 3-4 hours, and the subsequent hot metal temperature of the subsequent hot metal, which also requires 3-4 hours, are compared.
  • the inside situation is determined.
  • the operation factor to be corrected is selected by determining the behavior pattern of the hot metal temperature of the target tapping and comparing the behavior patterns as described above. This selection criterion is created based on operational experience and expertise. The following is an example of a method for preventing serious deterioration of the reactor conditions.
  • the hot metal temperature is measured by the method of the best mode 1.
  • Blast furnaces usually have 2 to 4 tap holes, of which tapping taps alternately from 2 tap holes.
  • Other One or two are for replacement tapping or spare.
  • the first tap hole is opened to start the first tapping and the hot metal temperature is measured.
  • the measurement is performed during the tapping period.
  • 3-4 hours are required for one tapping period, and the hot metal temperature is measured about 5-8 times during one tapping period.
  • one measurement is continuously performed for about 10 to 20 seconds, and one temperature measurement value is obtained based on the continuous measurement data.
  • the transition of hot metal temperature during one tapping period is grasped by using 5 to 8 temperature measurement values to determine the furnace heat level and the furnace heat transition.
  • the first tap hole is closed to stop tapping, and the second tap hole is opened to start the second tapping.
  • the temperature of the hot metal to be tapped is measured in the same way, and the transition of the hot metal temperature during the tapping period is grasped. The same applies to the subsequent tapping of the third, fourth and subsequent taps.
  • the above tapping mode is for tapping alternately from the first and second tap holes. Taking this as an example, an example of a method for determining the active / inactive state of the core in the lower part of the furnace will be described.
  • Transition of the hot metal temperature of the preceding hot tap (tap from the first tap) and the hot metal temperature of the subsequent hot tap (tap from the second tap) from different taps Compare with the transition of The transition of the melting temperature from both tapholes is compared, and the furnace heat level and the furnace heat transition are simultaneously grasped and judged based on the relative tendency of the transition.
  • FIG. 3 is a conceptual diagram of transition of hot metal temperature for explaining an example of a case where a core activation state is determined.
  • is defined as the value obtained by subtracting the minimum hot metal temperature during the tapping period from the initial hot metal temperature.
  • the core is determined to be active. . This is based on the operating hours and operating experience.
  • the magnitude of ⁇ should be set according to the operating conditions of the blast furnace, but it is usually better to set it to an appropriate value between 30 and 50 ° C.
  • the hot metal temperature of the tapping is within the control range. Judgment was made as to whether the average value of the measured values excluding the first two measured values of the tapping (for example, the measured values of * 1 and * 2 in Fig. 3) was within the control temperature range. Judge by whether or not. If the hot metal temperature is within the control range of the hot metal temperature during the normal operation, the operation is continued as it is. If the hot metal temperature is out of the control range, the operation is performed according to the low Si hot metal operation and low fuel ratio operation described above. Control furnace heat.
  • FIG. 4 is a conceptual diagram of the transition of hot metal temperature for explaining an example of a case where the core dead state is determined. As shown in Fig. 4, ⁇ ⁇ ⁇ 0 followed by ⁇ ⁇ ⁇ 0, or ⁇ ⁇ ⁇ 0 followed by ⁇ ⁇ ⁇ 0, between the leading tap and the subsequent tap. If tapping occurs, it is determined that the core is inactive in the lower part of the furnace. The corrective action for the furnace thermal operation factor in response is to take immediate action to return the core to the active state. For this purpose, the correction factor and the correction amount are determined according to the magnitude of the absolute value of the negative value ⁇ ⁇ and how many taps the ⁇ ⁇ ⁇ continues, and corrective action is taken according to this criterion.
  • tapping of 20 ° ⁇ ⁇ 0: continues for 3 taps reduce the amount of moisture added to the hot air blown from the tuyere according to the action table created in advance. . If tapping at 20 ° C continues for 3 taps, the amount of ore charged is reduced according to the action table created in advance. Perform the above-mentioned ore reduction action to restore the core activated state.
  • Such an early corrective action suppresses the formation of an annular flow of hot metal in the hearth, and also avoids defects in tapping slag due to inactivation of the core and prevents serious deterioration of the furnace condition. .
  • the furnace allows the furnace condition to be reestablished while the furnace core is inactive. Therefore, it is possible to recover the Ro ⁇ the T i 0 2 containing ores such as Irumenaito sinter to prevent damage to the furnace bottom and furnace wall without charging. Therefore, the component composition of the slag by-produced can also be used as a cement raw material by the tailing treatment.
  • the hot metal temperature can be accurately and quickly grasped, it is possible to detect the tendency of the core inactivation at an early stage based on the information of the drop in the hot metal temperature, and to set the lower limit of the abnormal control. It is possible to avoid the deterioration of the reactor condition, even if the temperature does not decrease to the minimum.
  • the target value of the hot metal temperature during normal operation it is possible to set the target value of the hot metal temperature during normal operation to be considerably lower than when measuring hot metal temperature with a conventional skinmer. It can further contribute to a reduction in fuel ratio.
  • the target value of hot metal temperature is set higher (for example, about +10 ° C base) and the temperature of hot air blown from tuyeres is set higher than during normal blast furnace operation.
  • the temperature during tapping is measured by the method described in Best Mode 1.
  • the form of the temperature information to be grasped is the same as that described in (b) or (c) above.
  • Types of operating factors that should be corrected in this action include, for example, pulverized coal injection Decrease the amount of moisture added to the hot air blown from the tuyere, raise the temperature of the hot air or use a high-strength coke. The amount of correction will be determined based on the operating experience and expertise specific to the blast furnace.
  • Example 1 Production of low silicon hot metal
  • the temperature of the hot metal was controlled at a low temperature using the information obtained by using the optical sensor unit and the temperature measuring device for the hot metal spout shown in Fig. 1 and Fig. 2.
  • a 125-m diameter silica glass optical fiber is used to connect a stainless steel cladding tube (inner tube) with an outer diameter of 1.2 mm, an inner diameter of 0.8 mm, and a thickness of 0.2 mm, and an outer diameter of 3 mm.
  • a double-layered wire-shaped optical sensor unit 6 covered with a stainless steel cladding tube (outer tube) with a thickness of 6 mm and an inner diameter of 3.011111, and a guide with an inner diameter of 6 mm and an outer diameter of 10 mm While sliding in the pipe 15, it was inserted into the hot metal stream 2 during tapping.
  • the supply speed of the optical sensor unit 6 was set to 40 OmmZ seconds. The time for each temperature measurement was about 10 to 20 seconds, and the temperature was measured continuously during this time.
  • the tapping time was 3 to 4 hours per time. During this time, the temperature of the hot metal stream 2 was measured 8 to 10 times.
  • the target value of the hot metal temperature was set to 1490 ° C, and the hot metal temperature was controlled by adjusting the moisture in the hot air.
  • FIG. 5 (a) shows the measured values of the hot metal temperature, the Si concentration in the hot metal, and the amount of moisture added in the hot air over time for the three tapping times in the above example. Since the hot metal temperature is controlled to be stable and low, the S i concentration in the hot metal is in the range of 0.15 to 0.23 wt.%, And the stable low S i concentration is 0.18 wt.% On average. Hot metal was produced.
  • Comparative Example 1 Production of low Si hot metal by conventional method
  • the hot metal temperature is measured with an immersion thermometer at a skinmer, and based on this measured value, the hot metal temperature in the hot metal is controlled to a target value of 1505 ° C. The minute was adjusted.
  • Fig. 5 (b) shows the changes over time in the measured values of the hot metal temperature, the Si concentration in the hot metal, and the amount of moisture added in the hot air in the skinner for four tapping operations in the conventional method.
  • the Si concentration in the hot metal fluctuated greatly, and it was not possible to produce low silicon hot metal stably. That is, in hot metal
  • Example 2 Low fuel operation
  • the temperature of the hot metal was controlled to a low temperature using the information obtained using the optical sensor unit and the temperature measuring device for the hot metal spout shown in Fig. 1 and Fig. 2.
  • the optical sensor unit used here, the temperature measuring device and the method of use thereof were the same as in Example 1, and the hot metal temperature was measured by inserting the optical sensor into the hot metal flow during tapping.
  • the target value of the hot metal temperature was set at 1485, and the hot metal temperature was controlled by adjusting the amount of moisture added to the hot air. After estimating that the furnace heat can be maintained in a steady state in this way, the target value of the hot metal temperature in the steady state is kept at 148 ° C, and the operation is continued using the coke ratio as the furnace heat control factor. Was.
  • the furnace heat was in a steady state during the test period of this example.
  • the distinction between the steady state and the non-steady state was based on the following. That is, first, the current furnace heat level and furnace heat transition are estimated.
  • the furnace heat level is estimated from the measured hot metal temperature level, and the furnace heat transition is estimated based on the information from the furnace sensors installed at various places in the blast furnace, that is, the blade embedded sensor.
  • several ranks are set in advance with the temperature category to which each set target value of the furnace heat level and the furnace heat transition belongs at the center, and it is determined to which rank the current furnace heat level and the furnace heat transition belong respectively. I asked.
  • a matrix of reactor heat level rank and transition rank (ie, action matrix) was created, the corresponding position on the action matrix was determined, and the current furnace heat was inferred.
  • the steady / unsteady region was determined based on the knowledge of experts, the empirical rules of blast furnace operators, and the results of past operation results.
  • Table 1 shows the operation results of low fuel ratio operation with the hot metal temperature target set at a low temperature. The operating results during normal operation in the same blast furnace are also shown as Comparative Example 2. Table 1
  • Example 2 was able to suppress the fluctuation range of the hot metal temperature to a smaller extent, thus enabling more stable furnace heat management.
  • furnace heat can be controlled stably. Therefore, the hot metal temperature can be controlled in a narrower range than before, so that the control target value of the hot metal temperature can be set lower than before.
  • high PCI operation is also possible. In this way, stabilization of the furnace condition is promoted, and the cost of hot metal production is reduced. Such a method for operating a blast furnace can be provided, and an industrially useful effect is brought about.
  • the present inventors considered that a method is needed that can accurately measure the hot metal temperature accurately and accurately, minimize the time delay, and measure continuously.
  • a new method capable of stably measuring hot metal spouting from a taphole at the time of tapping without causing a temperature drop.
  • the optical fiber covered with the metal tube that is, the optical fiber is reinforced with a metal tube to have rigidity, and appropriate depending on the state of the hot metal flow to be measured It was found that this could be achieved by measuring the hot metal temperature using a wire-shaped optical sensor unit designed in the same manner.
  • Control of the furnace heat of the first blast furnace consists of:
  • the furnace heat estimation model consists of a knowledge base for furnace heat estimation including hot metal temperature information using an optical fiber, and a knowledge base for furnace heat transition estimation including hot metal temperature measurement information using an optical fiber and measurement information using a blast furnace sensor.
  • Control of the furnace heat of the second blast furnace consists of:
  • the third control of the furnace heat in the blast furnace consists of automatically taking corrective action for the operating factors of the blast furnace using an artificial intelligence system and controlling the hot metal temperature.
  • the artificial intelligence system has the following steps:
  • the furnace heat estimation model consists of a knowledge base for furnace heat estimation including hot metal temperature information using an optical fiber, and a knowledge base for furnace heat transition estimation including hot metal temperature measurement information using an optical fiber and measurement information using a blast furnace sensor. .
  • a knowledge base for furnace heat estimation including hot metal temperature information using an optical fiber
  • a knowledge base for furnace heat transition estimation including hot metal temperature measurement information using an optical fiber and measurement information using a blast furnace sensor.
  • the method of controlling the heat of a blast furnace measures the temperature of the hot metal from a taphole, and the blast furnace operator corrects the blast furnace operation factor based on the obtained temperature information. Based on the obtained temperature information, or based on the obtained temperature information, an artificial intelligence system is used to correct the operating factors of the blast furnace.
  • the most significant features of the present invention reside in the position and method of measuring hot metal temperature. It is desirable to measure the hot metal temperature, which is considered to be representative of the furnace heat level, at the position closest to the hot metal temperature in the furnace, that is, hot metal spouting from the tap hole during tapping. However, it has been difficult to accurately and continuously measure the temperature of hot metal with such a violent flow in a stable state. Was inserted into such a hot metal stream, and the difficulty was solved by detecting the emitted light of the hot metal incident from the tip of the optical fiber.
  • the structure of the optical fiber coated with the metal tube used in the best mode 2 is the same as that shown in FIG. 1 of the best mode 1.
  • the temperature measuring device used in Best Mode 2 is the same as that shown in FIG. 2 of Best Mode 1.
  • impeller embedding temperature, furnace top gas temperature, furnace top exhaust gas analysis values as various sensor- 1 (that is, blast furnace sensor 1, furnace body sensor) value information, and hot metal S Collect measurement information such as i concentration and S concentration in hot metal. Using the various information obtained in this way, the furnace heat is inferred and controlled.
  • FIG. 6 shows a flowchart of the furnace heat control of the present invention. Using this, an example of the furnace heat control method of the present invention will be described.
  • a predetermined characteristic value is measured with each furnace body sensor (27) (28), and sensor information (29) is obtained.
  • the mode of measurement and the frequency of measurement differ depending on the type of sensor.
  • a thermocouple embedded in the furnace near the tuyere obtains the temperature of the blade embedded once per minute. In this way, based on each sensor's information, changes in the blade embedding temperature (30), changes in the furnace gas temperature (31), changes in the top gas analysis values (32)
  • Fig. 7 (a) shows an example of the measurement result of the hot metal temperature, and (b) shows an example of the measurement result of the embedding temperature.
  • the measured value of hot metal temperature is within a range of ⁇ 5 ° C from the initial stage to the final stage of tapping.
  • a blast furnace heat estimation model (35) should be prepared in advance using the empirical rules of blast furnace operation and Z or expertise. Based on the temperature levels and temperature transitions obtained in 1 and 2 above, the furnace heat level estimation (36) and the furnace heat transition estimation (37) are performed using the furnace heat estimation model (35). Based on the temperature level and temperature transition obtained in I and J above, Estimate the furnace heat level (36) and estimate the furnace heat transition (37) using the blast furnace furnace heat estimation model (35) created using the empirical rules of blast furnace operation and Z or expertise.
  • an action matrix (38) is created using the same furnace heat estimation model (35).
  • the action matrix evaluates the current level of the furnace heat based on the estimated results of the furnace heat level and the furnace heat transition, estimates the transition of the conventional furnace heat, approaches the target furnace heat level, This is one aspect of the criteria used to maintain this.
  • a rank is assigned to the current furnace heat level and furnace heat transition.
  • the furnace heat level is set to a rank of, for example, one set of the hot metal temperature in increments of 10, and three ranks above and below the rank including the target furnace heat level, for a total of seven ranks.
  • corrective measures are taken for the blast furnace operating factors in order to control the current furnace heat evaluated at the corresponding position in the action matrix to the target furnace heat.
  • This corrective action is performed by displaying the action matrix information on the display means (39) and by the operator (40) based on the information displayed on the display means. 9)
  • the action matrix information is fetched into, and it is divided into the case where it is automatically performed by mechanization.
  • a computer (46) uses a empirical rule in blast furnace operation and a furnace heat correction model (45) created in advance using Z or expert knowledge, The operation factor (43 ') and the amount of action (44') of the action target are determined (47). By executing the correction action determined in this way, (4
  • the main furnace heat controlling factors include moisture in hot air, hot air temperature, PC ratio (pulverized coal injection ratio), coke ratio (charge coke ratio), etc. However, it is convenient to adjust the moisture in the hot air. When raising the hot metal temperature, the amount of steam added should be reduced.
  • the blast furnace was operated by the furnace heat control method of the present invention using the hot metal temperature measuring device shown in FIG. 2 and the hot metal temperature measuring optical sensor unit having the structure shown in FIG.
  • the flow of furnace heat control is as shown in FIG.
  • the optical sensor unit 6 is composed of a quartz glass optical fiber 11 having a diameter of 125 m and a stainless steel cladding tube (inner tube having an outer diameter of 1.2 mm and an inner diameter of 0.8 mm and a wall thickness of 0.2 mm). ), And a double-layered wire covered with a 0.3 mm thick stainless steel cladding tube (outer tube) with an outer diameter of 3.6 mm and an inner diameter of 3.011111. This was inserted into the hot metal stream 8 during tapping while sliding in a guide pipe 15 having an inner diameter of 6 mm and an outer diameter of 10 mm.
  • the supply speed of the optical sensor unit 6 was set to 400 mm / sec.
  • the temperature per measurement was about 10 to 20 seconds, and the temperature was measured continuously during this time.
  • the tapping time was 3 to 4 hours per tap. During this time, the temperature of the hot metal stream 8 was measured about 8 to 10 times.
  • the target value of the hot metal temperature was 1505 ° C, and the hot metal temperature was controlled by adjusting the moisture in the hot air. (Test result 1):
  • FIG. 8 shows the time-dependent changes in the measured values of the hot metal temperature, the Si concentration in the hot metal, and the amount of moisture added in the hot air for the three tapping times in the above example. Since the hot metal temperature is controlled to be stable and low, the Si concentration in the hot metal is in the range of 0.15 to 0.21 wt.%, And is 0.18 wt.% On average. To produce low silicon hot metal.
  • the hot metal temperature is measured by an immersion thermometer at a skinmer, and based on the measured value, the hot metal temperature is controlled to a target value of 1505 ° C. The moisture in the hot air was adjusted.
  • Figure 9 shows the changes over time in the measured values of hot metal temperature, the hot metal Si concentration, and the amount of moisture added in hot air in skinmers for four tapping operations in the conventional method.
  • the Si concentration in the hot metal fluctuated greatly, and it was not possible to produce low silicon hot metal stably.
  • the Si concentration in the hot metal fluctuates between 0.10 and 0.30 wt.%. Therefore, it can be seen that the true hot metal temperature fluctuated greatly up and down.
  • FIG. 10 shows the correspondence between the measured value of the hot metal temperature in the method of the present invention and the measured value of the hot metal temperature in the conventional method, in the early stage of tapping ( ⁇ in the figure).
  • the measured values of the hot metal temperature in the next method are stratified with the data (Hata in the figure) when the measured value of the hot metal temperature shows a value close to the maximum temperature after the latter stage of tapping.
  • tapping temperature control standard is set higher than the actual required temperature level, and the furnace heat is controlled to a higher level on the safe side. If the hot metal temperature is controlled to be higher in this way, the amount of coke used as fuel must be increased, and the coke ratio will increase.
  • the furnace heat control method of the present invention since the furnace heat can be stably controlled, the control standard of the hot metal temperature can be reduced to the actually required target temperature level. Therefore, there is no need to use an extra coke.
  • the hot metal temperature can be controlled to be low, the Si concentration in the hot metal is also 0.15 to
  • furnace heat can be controlled stably. Therefore, stabilization of the furnace condition is promoted and hot metal production cost is reduced. Also, since the hot metal temperature can be controlled within a narrow range, the target value for controlling the hot metal temperature can be set low. Accordingly, low silicon hot metal can be stably manufactured. In addition, operation troubles due to abnormally low furnace heat are prevented.
  • the present inventors considered that a method capable of measuring the hot metal temperature accurately and accurately, with a time delay as short as possible, and capable of continuous measurement was required.
  • an appropriate furnace heat estimation model and a furnace heat correction model are incorporated, and the knowledge base of each model includes an artificial intelligence system that includes information on the measurement of hot metal temperature using an optical fiber and measurement information using a blast furnace sensor.
  • the present invention has been made based on the above findings.
  • the first control of the furnace heat of the blast furnace comprises:
  • the furnace heat estimation model consists of a knowledge base for furnace heat estimation including hot metal temperature information using an optical fiber, and a knowledge base for furnace heat transition estimation including hot metal temperature measurement information using an optical fiber and measurement information using a blast furnace sensor.
  • Control of the furnace heat of the second blast furnace consists of:
  • the furnace heat estimation model consists of a knowledge base for furnace heat estimation including hot metal temperature information using an optical fiber, and a knowledge base for furnace heat transition estimation including hot metal temperature measurement information using an optical fiber and measurement information using a blast furnace sensor.
  • the third control of the furnace heat in the blast furnace consists of automatically taking corrective action for the operating factors of the blast furnace using an artificial intelligence system and controlling the hot metal temperature.
  • the artificial intelligence system has the following steps:
  • the furnace heat estimation model consists of a knowledge base for furnace heat estimation including hot metal temperature information using an optical fiber, and a knowledge base for furnace heat transition estimation including hot metal temperature measurement information using an optical fiber and measurement information using a blast furnace sensor. .
  • the method of controlling the heat of a blast furnace measures the temperature of the hot metal from a taphole, and the blast furnace operator corrects the blast furnace operation factor based on the obtained temperature information. It is based on the process of taking an action or taking an action to correct the operating factor of the blast furnace using an artificial intelligence system based on the obtained temperature information.
  • the most significant features of the present invention reside in the position and method of measuring hot metal temperature. Based on the measured values, the furnace heat level and the furnace heat transition are estimated, and based on the measured values, it is determined whether the furnace heat state is steady or unsteady. This judgment (judgment) consists in automatically making use of a predetermined furnace heat transition model.
  • the hot metal temperature which is considered to be representative of the furnace heat level, at the position closest to the hot metal temperature in the furnace, which is the hot metal spouted from the tap hole during tapping.
  • the structure of the optical fiber covered with the metal tube used in the present Best Mode 3 is the same as that shown in FIG. 1 of the Best Mode 1.
  • the temperature measuring device used in Best Mode 3 is the same as that shown in FIG. 2 of Best Mode 1.
  • FIG. 13 shows a flowchart of the furnace heat control of the present invention. Using this, an example of the furnace heat control method of the present invention will be described.
  • An optical sensor unit (6) containing an optical fiber is inserted into the taphole jet hot metal (22) of the blast furnace for a predetermined time, and the temperature is measured (23) to obtain hot metal temperature information (24). ).
  • the hot metal temperature is measured continuously, and the tapping time per evening is about 3 to 4 hours.
  • the average value of one section is regarded as the representative hot metal temperature of the section, and this is defined as the hot metal level (25) of this section.
  • the change of the hot metal temperature from the immediately preceding section to the section is defined as the transition of the hot metal temperature in the section (26).
  • predetermined characteristic values are measured by various furnace sensors (27) (28) to obtain sensor information (29).
  • the mode of measurement and the frequency of measurement differ depending on the type of sensor. For example, with a blade embedded sensor, a thermocouple embedded in the furnace near the tuyere obtains the temperature of the blade embedded once per minute. In this way, based on each sensor information, the embedding temperature transition (30), the furnace gas temperature transition (31), the furnace gas analysis value transition
  • Fig. 14 shows an example of the measurement results of the hot metal temperature
  • (b) shows an example of the measurement results of the embedding temperature.
  • the measured value of hot metal temperature is within the range of ⁇ 5 from the beginning to the end of tapping.
  • a blast furnace heat estimation model (35) should be created in advance using the empirical rules of blast furnace operation and knowledge or expertise. Based on the temperature level and temperature estimation obtained in I and J above, the furnace heat level was calculated using the blast furnace operating rule and the blast furnace heat estimation model (35) created using Z or expert knowledge. Estimation (36) and estimation of furnace heat transition (37).
  • the method of estimating the furnace heat level, estimating the change in the furnace heat, and grasping the abnormal low temperature are as follows:
  • the temperature of hot metal in the furnace is considered to appear almost as it is.
  • the reliability of the measurement data is high and continuous measurement is possible, so that the measurement interval can be shortened. Therefore, even if the obtained hot metal temperature level is regarded as the furnace heat level, it is sufficiently accurate and accurate. Therefore, the obtained hot metal temperature is used as the current furnace heat level.
  • each sensor data value detects the furnace heat change earlier.
  • the first measured hot metal temperature after tapping from the tap, ⁇ 2 , ⁇ 3 ) is ⁇ , ⁇ If the temperature is abnormally low as shown in ( 2 ) (abnormally low temperature), the residual molten iron slag increases, the furnace wall deposits fall, unreduced ore drops, or high vapor pressure metal such as zinc deposits on the furnace wall. It is estimated that the material falls. In this case, urgent action is required.
  • the definition of abnormally low temperature shall be determined in advance based on empirical rules and ⁇ or tuyere observation results.
  • the action matrix evaluates the current level of furnace heat, estimates how the furnace heat will change in the future, and uses it as a criterion for approaching and maintaining the target furnace heat level. It is constructed in the form of a matrix of furnace heat level estimation results and furnace heat transition estimation results.
  • One of the features of the present invention is that the action matrix is created by dividing it into a steady state area and an unsteady state area.
  • each of the furnace heat level and the furnace heat transition is classified into several ranks.
  • the furnace heat level is set at one rank for the hot metal temperature in increments of 10 ° C
  • the furnace heat transition is set at one rank for every 10 ° CZ, for example.
  • a normal range and an abnormal range are determined for each of the furnace heat level and the furnace heat transfer using empirical rules and / or expertise.
  • the normal range of the furnace heat level is divided into seven ranks, with three ranks above and below the rank including the target furnace heat level, and the normal range of the furnace heat transition is the target furnace heat level. Suppose that two ranks above and below the rank including the heat transition correspond to five ranks.
  • the area of the 7 ⁇ 5 rank corresponding to the normal range is defined as a steady state area. Then, a region outside the steady state region is defined as a non-steady state region. Note that the size of the range of one rank is based on empirical rules and Z or Determined from gate knowledge.
  • FIGS. 15 and 16 show examples of the action matrix configured in this manner.
  • the area surrounded by the furnace heat level ranks 1 to 7 and the furnace heat transition ranks 1 to 5 is the steady state area
  • the outer peripheral area is the unsteady state area.
  • the action matrix information is displayed on the screen (39), and the operator (40) performs the action based on the information displayed on the screen.
  • the case is divided into the case where the function matrix information is imported into the artificial intelligence system (50) and automatically executed by a machine.
  • control is exercised to maintain the hot metal temperature at the target value, thus controlling the non-stationary furnace heat.
  • the main furnace heat controlling factors are moisture in hot air, hot air temperature, PC ratio (pulverized coal injection ratio Rate, and coke ratio (charge coke ratio), etc. It is convenient to adjust the hot water temperature by adjusting the moisture in the hot air. When raising the hot metal temperature, the amount of steam added should be reduced.
  • furnace heat was operated by the furnace heat control method of the present invention using the hot metal temperature measuring device shown in FIG. 2 and the hot metal temperature measuring optical sensor unit having the structure shown in FIG. According to the flow of furnace heat control shown in Fig. 13, Fig. 15 and Fig. 16, furnace heat was automatically controlled by a control system incorporating artificial intelligence. Details are as follows.
  • the optical sensor unit 6 is a stainless steel cladding tube with an outer diameter of 1.2 mm and an inner diameter of 0.8 mm and a thickness of 0.2 mm.
  • Fig. 17 shows the time-dependent changes in the measured values of the hot metal temperature, the Si concentration in the hot metal, and the amount of moisture added in the hot air for the three tapping times in the above example.
  • No abnormally low temperature is found in the initial hot metal temperature after the start of tapping of each tap. That is, it was determined that the furnace heat was in a steady state. Therefore, it is determined that the reactor heat is steady by the steady / unsteady determination (51) in Fig. 13 and the routine proceeds to the constant action system (S), and the artificial intelligence (50) system shown in the flowchart of Fig. 15 is used. , An action correction judgment is made (4 7) and executed (4 8).
  • the furnace heat was controlled by controlling the hot metal temperature.
  • the hot metal temperature during the tapping period is controlled within an extremely narrow temperature range of 1495-1515 ° C throughout the entire period.
  • the Si concentration in the hot metal during this period was in the range of 0.15 to 0.21 wt.%, And low silicon hot metal with an average value of 0.18 wt.% was produced stably.
  • the hot metal temperature is measured by an immersion thermometer at a skinmer, and based on the measured value, the hot metal temperature is controlled to a target value of 1505 ° C. The moisture in the hot air was adjusted.
  • Fig. 18 shows the changes over time in the measured values of the hot metal temperature, the Si concentration in the hot metal, and the amount of moisture added in the hot air in the skinner for four tapping operations in the conventional method.
  • Hot metal temperature in each tap varies greatly, and often reaches the highest temperature at the end of each tap. This temperature change in the tap is mainly due to the cooling of the hot metal in the drainage gutter, but it is not possible to judge the steady or unsteady state of the furnace heat from this result alone.
  • operators made comprehensive judgments based on empirical rules based on past operating results, abnormal behavior of various furnace sensor values, or observation of reactor conditions from tuyeres. . Therefore, it was not possible to judge the steady / unsteady judgment of the furnace heat automatically by the artificial intelligence system. In addition, early judgment as in the present invention could not be made. In addition, there were individual differences in judgment.
  • the tapping temperature management standard was set higher than the actually required temperature level, and the furnace heat was controlled to a higher level on the safe side. If the hot metal temperature is controlled to be so high, the amount of coke used as fuel must be increased, and the coke ratio will increase.
  • the furnace heat control method of the present invention since the furnace heat can be stably controlled, the control standard of the hot metal temperature can be reduced to the actually required target temperature level. Therefore, there is no need to use an extra coke.
  • the hot metal temperature can be controlled to be lowered, the Si concentration in the hot metal can be, for example, 0.1.
  • FIG. 19 shows the transition of the temperature when the initial hot metal temperature after tapping shows an abnormally low temperature in the operation of the blast furnace in which the furnace heat is controlled by the method of the above embodiment.
  • one plot of hot metal temperature divides the elapsed time after the start of tapping at intervals of 20 minutes, and sets the average value of one section as the representative hot metal temperature of that section.
  • only the initial hot metal temperature of the first tap and the second tap indicates abnormally low temperature.
  • the extremely low temperature is indicated by an increase in the residual molten iron slag, a fall in the furnace wall deposits, a fall in the unreduced ore, or a deposition of high vapor pressure metal such as zinc on the furnace wall.
  • the present invention has made it possible. Along with this, it has become possible to accurately and promptly determine the occurrence of ore fall and material fall in the remaining pig iron furnace, and to quantitatively determine the scale.
  • the hot metal temperature is targeted in the blast furnace operation. The temperature can be controlled accurately to a certain level and within a narrow temperature range, and the abnormal state of the furnace heat can be determined early, accurately and automatically. In this way, high-level stabilization of the furnace condition by good furnace heat control, which was not obtained conventionally, has become feasible. As a result, the following effects are exhibited.

Abstract

A method of operating a blast furnace for manufacturing molten iron, comprising the steps of providing an optical fiber coated with a metal pipe, obtaining information on the temperature of molten iron by measuring the temperature of a molten iron flow discharged from a tap hole of the blast furnace, by using the metal pipe-coated optical fiber, and controlling the heat of the blast furnace on the basis of the molten iron temperature information thus obtained, the controlling of the furnace heat being done by estimating a furnace heat level and furnace heat transition by using a furnace heat estimation model.

Description

明細書  Specification
高炉操業方法 技術分野 Blast furnace operation method Technical field
本発明は、 高炉操業方法に関する。 特に、 高炉の炉熱制御方法に関する。 背景技術  The present invention relates to a blast furnace operating method. In particular, it relates to a furnace heat control method for a blast furnace. Background art
高炉による溶銑の製造においては、 炉頂から鉄原料である鉄鉱石、 燃料である コークス、 及び副原料である石灰石等を装入し、 炉下部羽口から熱風を吹き込ん でコークスを燃焼させ、 生成した C O主体の還元性ガスと熱エネルギーとにより 鉄鉱石を還元する。 こうして鉄鉱石中の鉄分は溶銑の主成分となり、 一方、 鉄鉱 石中の脈石ゃコークス中の灰分は石灰石等と共にスラグとなり、 それぞれ炉下部 の出銑口及び出滓口から定期的に排出される。 このように高炉の炉内では、 原料 と還元性ガスとの高温反応プロセスにより溶銑が製造されるので、 物質収支及び 熱収支バランスを保ちつつ定常状態を維持することが特に重要であり、 炉況の安 定を維持することは高炉操業上強く望まれる。  In the production of hot metal using a blast furnace, iron ore as iron raw material, coke as fuel, and limestone as auxiliary raw materials are charged from the furnace top, and hot air is blown from the lower tuyere of the furnace to burn coke and produce it. Iron ore is reduced by the reduced CO-based reducing gas and thermal energy. Thus, the iron in the iron ore becomes the main component of the hot metal, while the gangue in the iron ore and the ash in the coke become slag together with the limestone, etc., and are periodically discharged from the tap hole and the slag port at the bottom of the furnace, respectively. You. As described above, in a blast furnace, hot metal is produced by a high-temperature reaction process between a raw material and a reducing gas, so that it is particularly important to maintain a steady state while maintaining a material balance and a heat balance. It is strongly desired that blast furnace operation be maintained.
このように、 高炉の炉況を安定して維持するためには、 良好な炉熱制御を行な うことが必須条件である。  Thus, in order to maintain a stable blast furnace condition, good furnace heat control is an essential condition.
高炉の炉熱は、 炉熱レベルと炉熱推移とに分けられ、 炉内反応等の炉内状況を 反映する情報として最も重視されるものの一つである。 そして、 炉熱レベルと炉 熱推移は、 本来、 溶銑の温度に顕著に現れる。 従って、 溶銑温度を正確に且つ精 度良く、 時間遅れを小さくして測定し、 この測温情報に基づき炉熱を制御し、 溶 銑温度を目標とするレベルに正確に精度よく調節することは、 高炉操業の安定化 を図り、 そして燃料原単位の低減、 生産性の向上及び溶銑の品質向上を図るため には極めて重要である。  The furnace heat of the blast furnace is divided into the furnace heat level and the furnace heat transition, and is one of the most important information that reflects the conditions inside the furnace such as the furnace reaction. Furnace heat levels and furnace heat transitions are inherently significant in the hot metal temperature. Therefore, it is not possible to accurately and accurately measure the hot metal temperature with a small time lag, control the furnace heat based on this temperature measurement information, and accurately and accurately adjust the hot metal temperature to a target level. It is extremely important to stabilize the operation of the blast furnace and to reduce the unit fuel consumption, improve the productivity and improve the quality of the hot metal.
これに対して従来、 高炉の炉熱は、 出銑後の溶銑温度で炉熱レベルを評価し、 高炉に配置された各種のセンサ一からの情報で炉熱推移を評価し、 これを推論し ている。  Conventionally, the furnace heat of the blast furnace was evaluated by the furnace heat level based on the hot metal temperature after tapping, and the furnace heat transition was evaluated based on information from various sensors placed in the blast furnace, and this was inferred. ing.
( 1 ) 炬熱レべノレ  (1) Hot fever
一般に、 高炉の出銑では溶銑が出銑口から噴出し、 そして長さが 2 0 m程度も ある長い出銑樋を通りスキンマに流入する。 従来、 溶銑温度の測定位置と方法は 、 スキンマで溶銑とスラグとを比重差によりスラグを溶銑上に浮上分離させた後 に、 溶銑流の温度を測定する方法が採られている。 そして、 測温にはイマ一ジョ ン型熱電対温度計が用いられている。 ところで、 上記出銑樋の内面には不定型耐 火物で施工された湯道が構築されている。 従って、 出銑された溶銑は、 上記出銑 樋を通過する途中で出銑樋への熱伝導と大気への熱放射とによる抜熱によりその 温度が低下する。 また、 出銑中の出銑口は、 溶銑滓により損耗されてその孔径が 拡大するので、 出銑時間の経過につれて出銑速度が変化する。 In general, hot metal blasts from a blast furnace at the tap hole and has a length of about 20 m. It flows into Skimma through a long tapping gutter. Conventionally, as a measuring position and method of hot metal temperature, a method has been adopted in which hot metal and slag are floated and separated on hot metal by a difference in specific gravity with a skinmer, and then the temperature of hot metal flow is measured. An immersion thermocouple thermometer is used for temperature measurement. By the way, a runner constructed of irregular refractories is constructed on the inner surface of the taphole. Therefore, the temperature of the hot metal that has been tapped is reduced due to heat removal due to heat conduction to the tapping gutter and heat radiation to the atmosphere while passing through the tapping gutter. In addition, the tap hole during tapping is worn by the molten iron slag and its hole diameter increases, so that the tapping speed changes with the elapse of tapping time.
このように、 スキンマ部で測定される溶銑温度は、 出銑樋での溶銑からの抜熱 と出銑速度 ( t /m i n ) の変化との影響を受けて、 出銑開始から終了までの間 に大きく変化する。 通常は出銑初期に低く、 次第に上昇して出銑末期に最高温度 に達する。 従来、 この最高温度が溶銑温度として採用されている。  In this way, the hot metal temperature measured at the skinner is affected by the heat removal from the hot metal in the tapping gutter and the change in the tapping speed (t / min), and is from the start to the end of tapping. Greatly change. Normally, the temperature is low in the early stage of tapping and gradually rises to reach the maximum temperature at the end of tapping. Conventionally, this maximum temperature has been adopted as the hot metal temperature.
高炉では、 通常、 炉内での溶銑生成速度よりも出銑速度の方が若千速くなるよ うに操業する。 従って、 所定の出銑口からの出銑は、 1回当たり 3〜4時間程度 で終え、 出銑口を閉塞し、 そして以後溶銑が生成して再び当該出銑口付近に溶銑 が溜まるまで待って行なう。 但し、 この待っている間に、 他の出銑口を開口して 同様に出銑する。 通常は、 炉体の反対側にある他の出銑口から、 同じく 1回当た り 3〜4時間程度の時間をかけて出銑をする。 上記他の出銑口からの出銑中に、 上記所定の出銑口に設けられた出銑樋の温度は低下するので、 次回の出銑時の溶 銑温度をスキンマ部で測定すると、 前回と同様、 出銑初期に低温で末期に最高温 度になるという推移をたどる。 しかしながら、 こうして測定された出銑中の溶銑 温度の推移は一定せず、 後に第 1 1図に示すように、 その温度推移は出銑 (タツ プ) 毎に大きく変動する。  In a blast furnace, the operation is usually performed so that the tapping speed is slightly higher than the hot metal production rate in the furnace. Therefore, tapping from a given tap hole finishes in about 3 to 4 hours per time, closes the tap hole, and then waits until hot metal is formed and the hot metal accumulates near the tap hole again. Do it. However, during this waiting time, another tap hole is opened and tapping is performed in the same manner. Normally, tapping takes about 3 to 4 hours per shot from another tap hole on the opposite side of the furnace body. During tapping from the other tapholes, the temperature of the tapping gutter provided at the specified taphole decreases, so when the hot metal temperature at the next tapping is measured at the skinner, Similar to the above, the transition follows a low temperature at the beginning of tapping and a maximum temperature at the end. However, the transition of the hot metal temperature during tapping measured in this way is not constant, and as shown later in Fig. 11, the temperature transition fluctuates greatly from tapping to tapping.
第 1 1図に、 従来法による溶銑温度の測定結果例を示す。 同図は、 最高温度の 実績が 1 5 0 0〜 1 5 1 0 °Cであった出銑のみを収集したものであり、 1回の出 銑で 8〜 1 2回の溶銑測温をしている。 これからもわかるように、 従来の溶銑温 度測定方法では、 最高温度が同じレベルに属する場合同士でも、 第 1回目の測定 温度に大きなバラツキがあり、 そして、 初期から末期の最高温度到達までの昇温 パターンが一定していない。 従って、 各出銑において、 第 1回目の温度測定値か ら最高温度を推定することが困難であるばかりか、 第 2回目以後の途中での温度 測定値から最高温度を推定することも容易でない。 Fig. 11 shows an example of measurement results of hot metal temperature by the conventional method. The figure shows the collection of tapping that had a maximum temperature of 1500 to 1550 ° C, and the hot metal was measured 8 to 12 times with one tapping. ing. As can be seen, in the conventional hot metal temperature measurement method, even if the maximum temperatures belong to the same level, there is a large variation in the first measurement temperature. Temperature pattern is not constant. Therefore, in each tapping, it is not only difficult to estimate the maximum temperature from the first temperature measurement, but also the temperature during the second and subsequent times. It is not easy to estimate the maximum temperature from the measured values.
また、 不定型耐火物で築造されている出銑樋の湯道は出铣滓流により損耗する ので、 通常 2〜 3週間毎に取り替えられる。 このような出銑樋補修後の最初の出 銑時には、 溶銑樋の顕熱が小さくなつているので、 溶銑から出銑樋への抜熱が一 層大きい。 こうして、 出銑樋築造後初回の出銑時の溶銑温度の測定では、 初期測 定値の低下量が更に大きくなる。  The tap runners of tapping gutters constructed of irregular refractories are usually worn out every two to three weeks because they are worn by the slag flow. At the time of the first tapping after such a tapping gutter repair, the sensible heat of the hot tapping gutter is reduced, so the heat removal from the hot metal to the tapping gutter is even greater. Thus, in the measurement of the hot metal temperature at the first tapping after the construction of the tapping gutter, the decrease in the initial measurement value is further increased.
従来のスキンマ部溶銑温度の測定によると、 出銑開始からの経過時間と共に溶 銑温度は上昇し、 末期に最高温度になるという推移をたどるが、 上記理由により 、 この温度上昇曲線は出銑毎でかなり大きく変動する。  According to the conventional measurement of the hot metal temperature in the skinner, the hot metal temperature rises with the lapse of time from the start of tapping, and follows a transition in which it reaches the highest temperature at the end of the tapping. Fluctuates considerably.
出銑初期のスキンマでの溶銑温度は炉内の溶銑温度からの低下が大きく、 また 精度も劣り、 スキンマでの溶銑温度が出銑温度に近づき安定するのにはかなり長 時間かかる。 更に、 多数の操業デ一夕によりスキンマでの測定値を補正しても、 炉内溶銑温度を正確に推定することが困難である。 また、 時間遅れの少ない状態 でそれを把握することも困難である。  The hot metal temperature at the skinmer in the initial stage of tapping greatly decreases from the hot metal temperature in the furnace, and the accuracy is also poor. It takes a considerable time for the hot metal temperature at the skinmer to approach and stabilize at the tapping temperature. Furthermore, it is difficult to accurately estimate the hot metal temperature in the furnace, even if the measured values at the skimmer are corrected by a large number of operations. It is also difficult to grasp the situation with little time delay.
上記理由により、 従来の溶銑温度の測定方法では炉熱レベルを評価し得る溶銑 温度の頻度は、 1回当たりの所要時間である 3〜 4時間に 1点のデータが得られ るだけである。 従って、 炉熱の評価をする手段としては問題がある。  For the above reasons, with the conventional method of measuring hot metal temperature, the frequency of hot metal temperature at which the furnace heat level can be evaluated can only be obtained at one point every three to four hours, which is the time required for one run. Therefore, there is a problem as a means to evaluate furnace heat.
( 2 ) 炉熱推移  (2) Changes in furnace heat
各出銑毎での上述した溶銑温度の推移パターンは一定せず、 パターンのバラッ キが大きいこと、 また、 スキンマ部での測定時刻の溶銑温度情報では、 炉熱推移 を推定するためには時間遅れを伴っているので、 炉熱制御ァクションが遅れる。 このように、 従来の測定方法による溶銑温度だけの情報では、 高炉操業に対する アクションが遅れるので、 炉況の安定した操業をすることはできない。 そこで、 このアクション遅れを防止するために、 通常、 各種センサーからの情報を炉熱推 移の推定に活用している。 ここで、 センサ一の代表例として、 高炉羽口近傍に埋 め込まれた熱電対からなる羽ロ埋込みセンサーや炉頂排ガスセンサ一等がある。 これは、 羽口近傍の炉体の温度や炉頂排ガスの成分組成を測定することにより、 炉熱の変化を迅速なタイミングで検出し、 炉熱の推移を時間遅れなく測定しょう とするものである。  The transition pattern of the hot metal temperature described above for each tapping is not constant, and the variation in the pattern is large.In addition, the hot metal temperature information at the measurement time at the skinner indicates that it takes time to estimate the furnace heat transition. Due to the delay, the furnace heat control action is delayed. As described above, the information on only the hot metal temperature obtained by the conventional measurement method delays the action for blast furnace operation, so that stable furnace operation cannot be performed. Therefore, in order to prevent this action delay, information from various sensors is usually used for estimating furnace heat transfer. Here, as typical examples of the sensor, there are an airfoil embedded sensor composed of a thermocouple embedded near a tuyere of a blast furnace, a furnace top exhaust gas sensor, and the like. This is to measure the temperature of the furnace near the tuyere and the composition of the furnace exhaust gas to detect changes in furnace heat at a rapid timing, and to measure the change in furnace heat without time delay. is there.
この羽ロ埋込みセンサ一で測定された温度 (以下、 羽ロ埋込み温度という) の 絶対値は溶銑温度に比較してはるかに低い力 他のセンサー値との共同情報によ り、 早期に且つ連続的に炉熱情報を得ることができるので、 炉熱推移を推定する ために羽ロ埋込みセンサ一は不可欠とされている。 また、 センサーの種類により 程度の差はあるが、 炉熱レベルの推定にも有効であるとされえいる。 The temperature measured by this blade embedded sensor (hereinafter referred to as the blade embedded temperature) The absolute value is much lower than the hot metal temperature. The joint information with other sensor values enables early and continuous furnace heat information to be obtained. (2) An embedded sensor is indispensable. It is also considered to be effective in estimating the furnace heat level, although the degree varies depending on the type of sensor.
第 1 2図 (a ) に、 Aタップ、 Bタップ及び Cタップの連続する 3回の出銑期 間中における、 従来法による溶銑温度の測定結果と、 第 1 2図 (b ) に羽ロ埋込 み温度の測定結果との対応例を示す。 同図中、 羽ロ埋込み温度曲線上の P 1 、 P 2 及び P 3 の各点が表わす温度に基づく炉熱情報は、溶銑温度測定曲線上におい ては、 P i ' 、 P 2 ' 及び P 3 ' の各点が表わす温度に基づく炉熱情報に対応 して反映されるべきである。 即ち、 上昇傾向の推移を示した羽ロ埋込み温度は本 来、 一定時間経過後の溶銑温度に上昇傾向となって現れるのであり、 従来法によ る溶銑温度測定値への反映にはこのように時間遅れを伴なうという問題がある。 しかも、 従来法による溶銑温度の測定方法で得られる温度曲線では、 通常は各夕 ップの末期にならないと溶銑温度が正確に測定されず、 中間時点には測定温度は 常に上昇傾向を示すので、 従来法による溶銑温度の測定結果では上昇傾向にある のか下降傾向にあるのか、 炉熱の推移を判断することはできない。 そこで、 炉熱 の推移を推定する手段として従来は、 各種炉体センセ一により得られた温度情報 を採用している。  Fig. 12 (a) shows the results of measuring the hot metal temperature by the conventional method during the three successive tapping periods of the A tap, B tap, and C tap, and Fig. 12 (b) An example of correspondence with the measurement results of the embedding temperature is shown below. In the figure, the furnace heat information based on the temperatures represented by points P1, P2, and P3 on the impregnation temperature curve is represented by Pi ', P2', and P It should be reflected corresponding to the furnace heat information based on the temperature represented by each point 3 '. In other words, the embedding temperature, which shows a trend of rising, naturally appears as a rising trend in the hot metal temperature after a certain period of time, and this is reflected in the measured value of the hot metal temperature by the conventional method. There is a problem that it is accompanied by a time delay. Moreover, in the temperature curve obtained by the conventional method of measuring hot metal temperature, the hot metal temperature is usually not accurately measured until the end of each evening, and the measured temperature always shows a rising tendency at the intermediate time. However, it is not possible to judge the trend of furnace heat based on the results of measurement of hot metal temperature by the conventional method, whether the temperature is increasing or decreasing. Therefore, as a means for estimating the change in furnace heat, temperature information obtained by various furnace body sensors has been conventionally used.
( 3 ) 従来の炉熱制御方法  (3) Conventional furnace heat control method
炉熱制御を行なうには、 溶銑温度の測定値情報や各種センサー値情報と、 これ らを利用した炉熱推定モデルと、 及び炉熱推定モデルで推定された炉熱から最適 な制御項目とその操作量を決める炉熱補正モデルとが必要である。  In order to perform furnace heat control, information on the measured values of hot metal temperature and various sensor values, the furnace heat estimation model using these, and the optimum control items and their optimum values based on the furnace heat estimated by the furnace heat estimation model are used. A furnace heat correction model that determines the operation amount is required.
従来行なわれている炉熱制御方法の例を、 上記第 1 2図 (a ) と第 1 2図 (b ) に示した従来法による溶銑温度の測定結果と、 センサーとして羽口埋込み熱電対 を使用した羽ロ埋込み温度の測定結果との対応例を用いて説明する。 但し、 現時 点は Bタップの終了時点にあるものと想定する。 An example of a conventional furnace heat control method is shown in Fig. 12 (a) and Fig. 12 (b), the results of the hot metal temperature measurement by the conventional method, and the tuyere embedded thermocouple as a sensor. A description will be given using an example of correspondence with the measurement results of the used blade embedding temperature. However, it is assumed that the current point is at the end of B tap.
下記方法により、 炉熱レベルと炉熱推移とを決定し、 それぞれが属するランク を求めて炉熱を推論し、 次いでァクション補正ルールに基づきアクションをとる  Determine the furnace heat level and furnace heat transition by the following method, find the rank to which each belongs, infer furnace heat, and then take action based on the action correction rule
①現在の炉熱レベルを次のようにして決定する。 過去の操業実績デ一夕より、 各種のセンサーによる計測情報、 例えば、 羽ロ埋込み温度や炉頂排ガス分析値と 、 当該タツプにおけるスキンマ部での溶銑温度測定値の最大値との相関関係を、 統計的手法、 例えばメンバ一シップ関数を用いて求めておく。 この相関関係によ り、 各センサー値が与えられると溶銑の最高温度、 即ち、 各炉熱レベルが推定さ れる。 そこで、 センサー値と炉熱レベルとの相関関係に基づき、 今回得られた各 センサ一値を用いてそれぞれに対応する炉熱レベルを推定する。 例えば、 羽ロ埋 め込みセンサ一については、 第 1 2図 (b ) の P〗 点の時点におけるセンサ一値 から炉熱レベルを推定する。 (1) Determine the current furnace heat level as follows. From the past operation results Statistical methods, such as a membership function, are used to determine the correlation between information measured by various sensors, for example, the blade embedding temperature and furnace top exhaust gas analysis value, and the maximum value of the hot metal temperature measurement value at the skin in the tap. Is determined using From this correlation, the maximum temperature of the hot metal, that is, the furnace heat level is estimated when each sensor value is given. Therefore, based on the correlation between the sensor value and the furnace heat level, the furnace heat level corresponding to each sensor is estimated using each sensor value obtained this time. For example, for the embedded sensor, the furnace heat level is estimated from the sensor value at the point P〗 in Fig. 12 (b).
同様に、 過去の操業実績データより、 タップの第 1回目及びタップの中間時点 に測定されたスキンマ部での溶銑温度測定値と当該夕ップの最高溶銑温度との相 関関係を予め求めておく。 この関係を用いて、 今回測定された溶銑温度、 例えば 第 1 2図 (a ) の ' 点の時点における溶銑温度の測定値から炉熱レベルを推 定する。  Similarly, the correlation between the hot metal temperature measured at the skinner measured at the first tap and at the midpoint of the tap and the maximum hot metal temperature of the evening tap is determined in advance from past operation data. deep. Using this relationship, the furnace heat level is estimated from the hot metal temperature measured this time, for example, the measured value of the hot metal temperature at the point 'in Fig. 12 (a).
以上のようにして推定された各炉熱レベルに対して、 所定の重み付けを行ない 、 こうして得られた値を現在の炉熱レベルとみなす。 そして、 炉熱レベルの目標 値が属する温度区分を中央にして、 いくつかのランクを予め設けておき、 現在の 炉熱レベルがどのランクに属するかを求める。  A predetermined weight is given to each furnace heat level estimated as described above, and the obtained value is regarded as the current furnace heat level. Then, several ranks are set in advance with the temperature category to which the target value of the furnace heat level belongs in the center, and the rank to which the current furnace heat level belongs is obtained.
②現在の炉熱推移は次のようにして決定する。 各センサ一の内、 羽ロ埋込みセ ンサ一については、 第 1 2図 (b ) の Q l 点から Q 2点までの温度の傾きを統計 的手法で求める。 同様に他のセンサーについてもこれに準じて温度の傾きを求め る。 そして、 各センサー毎に予め定められた重み付けを行なって、 炉熱推移を推 定する。 炉熱推移は、 傾きが 0 (零) の傾き区分を中央にして、 いくつかのラン クを予め設けておき、 現在の傾きがどのランクに属するかを求める。  (2) The current furnace heat transition is determined as follows. Among the sensors, for the embedded sensor, the temperature gradient from point Ql to point Q2 in Fig. 12 (b) is determined by a statistical method. Similarly, for other sensors, the temperature gradient is calculated according to this. Then, a predetermined weighting is performed for each sensor to estimate the furnace heat transition. For the furnace heat transition, several ranks are set up in advance with the slope section having a slope of 0 (zero) as the center, and the rank to which the current slope belongs is calculated.
③ 上記①及び②で求められた炉熱のレベルランク及び推移ランクを用いて、 予 め定められた炉熱のレベルランクと推移ランクとのマトリックス (即ち、 ァクシ ヨンマトリックス) 上の該当する位置を求め、 現在の炉熱を推論する。  (3) Using the furnace heat level rank and transition rank obtained in (1) and (2) above, find the corresponding position on the matrix of the predetermined furnace heat level rank and transition rank (that is, the action matrix). Calculate and infer current furnace heat.
④次いで、 上記で推論された現在の炉熱に対する補正を、 現在の炉熱がァクシ ヨンマトリックスのどの位置に該当するかに応じて行なう。 アクションは、 予め 定めた炉熱補正モデルから得られたァクション補正ルールに基づき行なう。 ァク シヨン補正ルールは、 専門象の経験則を主体に構成されており、 一義的に定める ことはできない。 アクション補正の操業要因としては、 羽口送風中の蒸気吹込み 量が代表的なものであり、 アクション量は当該高炉における固有の操業条件、 特 に使用原料及び原料装入条件等により変り、 一義的には決められない。 (4) Next, the correction of the current furnace heat deduced above is performed according to the position of the current furnace heat in the function matrix. The action is performed based on the action correction rules obtained from the preset furnace heat correction model. The compensation rules are mainly based on the rules of thumb of specialized elephants, and are uniquely defined. It is not possible. The typical operation factor for the action correction is the amount of steam blown during tuyere blowing, and the amount of action varies depending on the specific operating conditions of the blast furnace, especially the raw materials used and the raw material charging conditions, etc. Can not be decided.
修正された炉熱推定モデルとして、 例えば特公平 7— 2 6 1 2 7号公報には、 溶銑温度測定値及びセンサ一値情報から、 炉熱レベル及び炉熱推移を推定する方 法において確信度を導入し、 溶銑温度から推定される炉熱レベル又は炉熱推移と 、 センサー値情報と、 確信度とを 3軸とした 3次元関数を用いて推論する方法が 開示されている。  As a modified furnace heat estimation model, for example, Japanese Examined Patent Publication No. 7-26127, Japanese Patent Application Publication No. 7-26127 proposes a method of estimating furnace heat level and furnace heat transition from hot metal temperature measurement value and sensor one-value information. A method of inferring using a three-dimensional function having three axes of furnace heat level or furnace heat transition estimated from hot metal temperature, sensor value information, and certainty factor is disclosed.
しかしながら、 従来の高炉炉熱制御においては次の問題がある。  However, the conventional blast furnace heat control has the following problems.
溶銑温度をスキンマ部で測定しているので、 上述した理由により、 正確な炉熱 レベルとしてはタップ末期に顕われる溶銑最高温度を採用しざるを得ない。 即ち 、 各タップの末期にならないと正確な溶銑温度がわからないので、 3〜 4時間程 度に 1回しか信頼性の高い炉熱レベルデ一夕を入手できない。 従って、 炉熱レベ ルの推定精度が低下する。  Since the hot metal temperature is measured at the skinner, for the reasons described above, it is necessary to use the maximum hot metal temperature that appears at the end of the tap as the accurate furnace heat level. That is, since the exact hot metal temperature is not known until the end of each tap, a highly reliable furnace heat level can be obtained only once every 3 to 4 hours. Therefore, the accuracy of estimating the furnace heat level decreases.
更に、 タップ中間時期の溶銑温度測定値の信頼性が低いので、 炉熱推移を補正 するためのデータとして使用することができない。 また、 炉熱レベル推定用の信 頼性の高いデー夕の入手頻度が少ないので、 炉熱推移を補正するためのデー夕と しては時間遅れが大きくなる。 従って、 炉熱推移を補正するためのデ一夕として も従来の溶銑温度測定値の変動を使用することはできない。  In addition, the reliability of the measured hot metal temperature during the middle of the tap period is low, so it cannot be used as data to correct the furnace heat transition. In addition, since the frequency of obtaining reliable data for estimating the furnace heat level is low, the time delay for compensating for changes in the furnace heat is large. Therefore, it is not possible to use the conventional fluctuations in the measured hot metal temperature as a means for correcting the furnace heat transition.
一方、 高炉操業において従来用いられている炉熱制御を目的とした各種のセン サー値、 例えば、 羽ロ埋込み温度、 炉頂ガス分析値及び多数箇所のシャフト温度 等からは、 例えば、 羽ロ埋込み温度については前述したように、 炉熱レベルとし ても亦、 炉熱推移としても、 上記最高溶銑温度情報よりも優れた信頼性のある情 報は得られない。 On the other hand, from the various sensor values used for furnace heat control conventionally used in blast furnace operation, for example, the blade embedding temperature, the furnace top gas analysis value, and the shaft temperature at many locations, etc. As described above, reliable information that is superior to the above-mentioned maximum hot metal temperature information cannot be obtained in terms of the furnace heat level and the furnace heat transition as described above.
発明の開示 Disclosure of the invention
本発明の目的は、 炉況の安定化を促進し溶銑製造コストを下げると共に、 低シ リコン溶銑を安定して製造することが可能な高炉操業方法を提供することである。 上記目的を達成するために、 本発明は、 以下からなる溶銑を製造する高炉の操 業方法を提供する:  An object of the present invention is to provide a blast furnace operating method capable of accelerating stabilization of a furnace condition and reducing hot metal production cost and stably producing low silicon hot metal. In order to achieve the above object, the present invention provides a method for operating a blast furnace for producing hot metal comprising:
金属管で被覆された光ファイバ一を準備し、 ;  Providing an optical fiber coated with a metal tube;
高炉の出銑口から排出された溶銑流の温度を前記金属管で被覆された光ファ ィバーを使用して測定し、 溶銑温度情報を獲得し;  Measuring the temperature of the hot metal stream discharged from the taphole of the blast furnace using an optical fiber coated with the metal pipe to obtain hot metal temperature information;
得られた溶銑温度情報に基づき高炉の炉熱を制御する。  The furnace heat of the blast furnace is controlled based on the obtained hot metal temperature information.
前記溶銑流は、 出銑口から出銑樋に落下するまでの間にある噴出流であるのが 好ましい。 前記高炉で製造される溶銑は、 シリコン含有量の低い溶銑であるのが 望ましい。  It is preferable that the hot metal flow is a jet flow existing before falling from a tap hole to a tapping gutter. The hot metal produced in the blast furnace is desirably a hot metal having a low silicon content.
前記溶銑流は、 出銑口から出銑樋に落下するまでの間にある噴出流であるのが 好ましい。 前記炉熱を制御する工程は、 炉熱を制御し、 シリコン含有量が 0 . 3 wt.%以下である溶銑を製造する工程から構成されてもよい。 また、 前記炉熱を制 御する工程は、 炉熱を制御し、 燃料比を低減させる工程から構成されてもよい。 第 1に、 炉熱を制御する工程は以下の工程から構成してもよい:  It is preferable that the hot metal flow is a jet flow existing before falling from a tap hole to a tapping gutter. The step of controlling the furnace heat may include a step of controlling the furnace heat to produce hot metal having a silicon content of 0.3 wt.% Or less. Further, the step of controlling the furnace heat may include a step of controlling the furnace heat and reducing the fuel ratio. First, the process of controlling furnace heat may consist of the following steps:
スキンマーで溶銑温度を測定する場合の管理目標温度 (T 2 ) よりも低い管 理目標温度 (1 ) を設定する工程; Step of setting a management target temperature (T 2) lower management target temperature than (1) when measuring the hot metal temperature in skimmer;
該管理目標温度 (Τ に対して (1 一 a ) から (1\ + a ) の管理温度 範囲を設定する工程;  Setting a control temperature range from (1 1 a) to (1 \ + a) for the control target temperature (Τ;
該管理温度範囲になるように操業アクションをとる工程。  Taking an operation action so as to be in the control temperature range.
第 2に、 炉熱を制御する工程は以下の工程から構成してもよい:  Second, the process of controlling the furnace heat may consist of the following steps:
スキンマーで溶銑温度を測定する場合の管理目標温度 (T 2 ) よりも低い管 理目標温度 (Τ を設定する工程; Setting a control target temperature (Τ) lower than the control target temperature (T 2 ) for measuring hot metal temperature with a skinmer;
スキンマーで溶銑温度を測定する場合の管理温度幅 (土 b ) よりも狭い管理 温度幅 (土 a ) を設定する工程;  Setting a control temperature range (soil a) smaller than the control temperature range (soil b) when measuring hot metal temperature with a skinmer;
(T x - a ) から (1^ + a ) の管理温度範囲になるように操業アクション をとる工程。 上記の高炉操業方法は、 更に、 得られた溶銑温度情報に基づき高炉の炉芯の活 性度を検知する工程を有してもよい。 The process of taking operational action so that the temperature is within the control temperature range from (T x -a) to (1 ^ + a). The above blast furnace operating method may further include a step of detecting the activity of the core of the blast furnace based on the obtained hot metal temperature information.
高炉の炉芯の活性度を検知する工程は、 以下の工程からなる:  The process of detecting the activity of the blast furnace core consists of the following steps:
出銑初期の溶銑温度 (T s ) と該出銑初期を除いた出銑期間中の最低溶銑温 度 (Tm i n) を比較し、 ΔΤ = Τ\— Tm i nを求める工程; Comparing the hot metal temperature at the beginning of tapping (T s ) with the minimum hot metal temperature (T min ) during the tapping period excluding the initial tapping to determine ΔΤ = Τ \ —T min ;
前記比較工程を少なくとも 2タツプ以上続ける工程; と  Continuing the comparing step for at least two taps; and
△ Tの推移から炉芯の状態を推定する工程。  △ A process of estimating the state of the core from the transition of T.
上記の高炉操業方法は、 更に、 得られた溶銑温度情報に基づき微粉炭吹き込み 量を制御する工程を有してもよい。 上記の高炉操業方法においては、 以下に述べるような炉熱制御方法から選択さ れた一つの炉熱制御方法が好ましい。  The above blast furnace operating method may further include a step of controlling the pulverized coal injection amount based on the obtained hot metal temperature information. In the above blast furnace operating method, one furnace heat control method selected from the furnace heat control methods described below is preferable.
第 1の炉熱制御方法は以下の工程からなる:  The first furnace heat control method comprises the following steps:
高炉操業における経験則と専門知識を用いて作成された炉熱推定モデルを提供 する工程;  Providing a furnace heat estimation model created using experience and expertise in blast furnace operation;
得られた溶銑温度情報に基づき前記炉熱推定モデルを用いて、炉熱レベル及 び炉熱推移を推定し、 推定結果を得る工程; と  Estimating a furnace heat level and a furnace heat transition using the furnace heat estimation model based on the obtained hot metal temperature information, and obtaining an estimation result; and
該推定結果に基づき、高炉操業における経験則と専門知識を用いて高炉の操業 要因の補正処置をとり、 溶銑温度を制御する工程。 第 2の炉熱制御方法は以下の工程からなる:  A process of controlling the hot metal temperature based on the estimation results by taking corrective measures for blast furnace operation factors using empirical rules and expertise in blast furnace operation. The second furnace heat control method comprises the following steps:
高炉操業における経験則と専門知識を用いて作成された炉熱推定モデルを提供 する工程;  Providing a furnace heat estimation model created using experience and expertise in blast furnace operation;
得られた溶銑温度情報に基づき、前記炉熱推定モデルを用いて炉熱レベル及び 炉熱推移を推定し、 推定結果を得る工程;  Estimating a furnace heat level and a furnace heat transition using the furnace heat estimation model based on the obtained hot metal temperature information, and obtaining an estimation result;
該推定結果を表示手段に表示する工程; と  Displaying the estimation result on display means;
表示された推定結果に基づき、高炉操業における経験則と専門知識を用いて高 炉の操業要因の補正処置をとり、 溶銑温度を制御する工程。 第 3の炉熱制御方法は人工知能システムを用いて自動的に高炉の操業要因の補 正処置をとり、 溶銑温度を制御することからなる。 A process of controlling the hot metal temperature by taking corrective actions for blast furnace operating factors based on the displayed estimation results and using empirical rules and expertise in blast furnace operation. The third furnace heat control method consists of automatically correcting the operating factors of the blast furnace using an artificial intelligence system and controlling the hot metal temperature.
前記人工知能システムは以下の工程を有する:  The artificial intelligence system has the following steps:
高炉操業における経験則と専門知識を用いて作成された炉熱推定モデル を提供する工程;  Providing a furnace heat estimation model created using experience and expertise in blast furnace operation;
得られた溶銑温度情報に基づき、 前記炉熱推定モデルを用いて炉熱レベ ル及び炉熱推移を推定し、 推定結果を得る工程;  A step of estimating a furnace heat level and a furnace heat transition using the furnace heat estimation model based on the obtained hot metal temperature information, and obtaining an estimation result;
高炉操業における経験則と専門知識を用いて作成された炉熱補正モデル を提供する工程;  Providing a furnace heat compensation model created using experience and expertise in blast furnace operation;
前記推定結果に基づき、 前記炉熱補正モデルを用いて、 高炉の操業要因 の補正処置を行う工程。 第 4の炉熱制御方法は以下の工程からなる:  Performing a corrective action for the operating factor of the blast furnace using the furnace heat correction model based on the estimation result. The fourth furnace heat control method comprises the following steps:
高炉操業における経験則と専門知識を用いて作成された炉熱推定モデルを提供 する工程;  Providing a furnace heat estimation model created using experience and expertise in blast furnace operation;
得られた溶銑温度情報に基づき前記炉熱推定モデルを用いて、炉熱レベル及び 炉熱推移を推定する工程; と  Estimating a furnace heat level and a furnace heat transition using the furnace heat estimation model based on the obtained hot metal temperature information;
該推定された炉熱が定常状態にあるのか非定常状態にあるのかを判定するェ 程;  Determining whether the estimated furnace heat is in a steady state or an unsteady state;
該炉熱に関する判定結果に基づき高炉操業における経験則と専門知識を用いて 高炉の操業要因の補正処置をとり、 溶銑温度を制御する工程。 第 5の炉熱制御方法は以下の工程からなる:  A process of controlling hot metal temperature by taking corrective action for blast furnace operation factors using empirical rules and expertise in blast furnace operation based on the determination result regarding the furnace heat. The fifth furnace heat control method comprises the following steps:
高炉操業における経験則と専門知識を用いて作成された炉熱推定モデルを提供 する工程;  Providing a furnace heat estimation model created using experience and expertise in blast furnace operation;
得られた溶銑温度情報に基づき前記炉熱推定モデルを用いて、炉熱レベル及び 炉熱推移を推定する工程; と  Estimating a furnace heat level and a furnace heat transition using the furnace heat estimation model based on the obtained hot metal temperature information;
該推定された炉熱が定常状態にあるのか非定常状態にあるのかを判定するェ 程;  Determining whether the estimated furnace heat is in a steady state or an unsteady state;
該炉熱に関する判定結果を表示手段で表示する工程; 表示された判定結果に基づき高炉操業における経験則と専門知識を用いて高炉 の操業要因の補正処置をとり、 溶銑温度を制御する工程。 第 6の炉熱制御方法は人工知能システムを用いて自動的に高炉の操業要因の補 正処置をとり、 溶銑温度を制御することからなる。 Displaying the determination result regarding the furnace heat on a display means; A process of controlling the hot metal temperature by taking corrective measures for blast furnace operation factors based on the displayed judgment results and using the rules of experience and expertise in blast furnace operation. The sixth furnace heat control method consists of automatically taking corrective action for blast furnace operating factors and controlling the hot metal temperature using an artificial intelligence system.
前記人工知能システムは以下の工程を有する:  The artificial intelligence system has the following steps:
高炉操業における経験則と専門知識を用いて作成された炉熱推定モデル を提供する工程;  Providing a furnace heat estimation model created using experience and expertise in blast furnace operation;
得られた溶銑温度情報に基づき、 前記炉熱推定モデルを用いて炉熱レベ ル及び炉熱推移を推定する工程;  Estimating a furnace heat level and a furnace heat transition using the furnace heat estimation model based on the obtained hot metal temperature information;
該推定された炉熱が定常状態にあるのか非定常状態にあるのかを判定す る工程;  Determining whether the estimated furnace heat is in a steady state or an unsteady state;
高炉操業における経験則と専門知識を用いて作成された炉熱補正モデル を提供する工程;  Providing a furnace heat compensation model created using experience and expertise in blast furnace operation;
前記判定結果に基づき、 前記炉熱補正モデルを用いて、 高炉の操業要因 の補正処置を行う工程。 図面の簡単な説明  A step of performing a corrective action for an operating factor of the blast furnace using the furnace heat correction model based on the determination result. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 最良の形態 1において使用する金属管で被覆された光ファイバ一の 構造例を示す横断面図である。  FIG. 1 is a cross-sectional view showing a structural example of an optical fiber coated with a metal tube used in a first embodiment.
第 2図は、 最良の形態 1において使用する測温装置の構成例を示す概要図であ る。  FIG. 2 is a schematic diagram showing a configuration example of a temperature measuring device used in the first embodiment.
第 3図は、 最良の形態 1において炉芯活性状態の判定をする場合の例を説明す る溶銑温度の推移の概念図である。  FIG. 3 is a conceptual diagram of the transition of the hot metal temperature for explaining an example of determining the core activation state in the first embodiment.
第 4図は、 最良の形態 1において炉芯不活性状態の判定をする場合の例を説明 する溶銑温度の推移の概念図である。  FIG. 4 is a conceptual diagram of the transition of hot metal temperature for explaining an example in the case of determining the core dead state in the best mode 1.
第 5図は、 最良の形態 1における溶銑温度の測定値、 溶銑中 S i濃度、 と熱風中 の湿分添加量の経時変化を示す図である。  FIG. 5 is a diagram showing the time-dependent changes in the measured value of the hot metal temperature, the Si concentration in the hot metal, and the amount of moisture added in the hot air in the best mode 1.
第 6図は、 最良の形態 2による炉熱制御のフローチヤ一トである。  FIG. 6 is a flowchart of furnace heat control according to the second embodiment.
第 7図は、 最良の形態 2の方法で測定した溶銑温度及び羽ロ埋込み温度の測定 結果の例である。 Fig. 7 shows the measurement of hot metal temperature and blade embedding temperature measured by the method of best mode 2. It is an example of a result.
第 8図は、 最良の形態 2における溶銑温度の測定値、 溶銑中 S i濃度、 及び熱 風中湿分の添加量の経時変化を示すグラフである。  FIG. 8 is a graph showing the measured values of the hot metal temperature, the Si concentration in the hot metal, and the change over time in the amount of moisture added in the hot air in the best mode 2.
第 9図は、 従来法における溶銑温度の測定値、 溶銑中 S i濃度、 及び熱風中湿 分の添加量の経時変化を示すグラフである。  FIG. 9 is a graph showing the change over time of the measured value of hot metal temperature, the Si concentration in hot metal, and the amount of moisture added in hot air in the conventional method.
第 1 0図は、 出銑初期と後期以降とで層別した場合の、 最良の形態 2における 溶銑温度の測定値と、 従来法における溶銑温度の測定値との対応関係を示すダラ フである。  Fig. 10 is a graph showing the correspondence between the measured values of the hot metal temperature in the best mode 2 and the measured values of the hot metal temperature in the conventional method when stratification is performed between the initial and later stages of tapping. .
第 1 1図は、 従来法による溶銑温度測定値の推移を示すグラフである。  FIG. 11 is a graph showing the transition of the measured value of the hot metal temperature by the conventional method.
第 1 2図は、 従来法による連続 3回の出銑期間中における溶銑温度と羽ロ埋込 み温度との測定結果の対応例を示すグラフである。  Fig. 12 is a graph showing an example of the correspondence between the measurement results of the hot metal temperature and the impeller embedding temperature during the three consecutive tapping periods according to the conventional method.
第 1 3図は、 最良の形態 3の方法による炉熱制御のフローチャートであ る。  FIG. 13 is a flowchart of the furnace heat control according to the method of Best Mode 3.
第 1 4図は、 最良の形態 3の方法で測定した溶銑温度及び羽ロ埋込み温度の測 定結果の例である。  FIG. 14 is an example of the measurement results of the hot metal temperature and the blade embedding temperature measured by the method of the best mode 3.
第 1 5図は、 最良の形態 3において炉熱が定常状態の場合の補正アクション方 法を説明するフロー図である。  FIG. 15 is a flowchart illustrating a corrective action method in the best mode 3 when the furnace heat is in a steady state.
第 1 6図は、 最良の形態 3において炉熱が非定常状態の場合の補正アクション 方法を説明するフロー図である。  FIG. 16 is a flowchart illustrating a corrective action method when furnace heat is in an unsteady state in Best Mode 3.
第 1 7図は、 最良の形態 3における溶銑温度の測定値、 溶銑中 S i濃度、 及び 熱風中湿分の添加量の経時変化を示すグラフである。  FIG. 17 is a graph showing the measured value of the hot metal temperature, the Si concentration in the hot metal, and the change over time in the amount of moisture added in the hot air in the best mode 3.
第 1 8図は、 従来法における溶銑温度の測定値、 溶銑中 S i濃度、 及び熱風中 湿分の添加量の経時変化を示すグラフである。  FIG. 18 is a graph showing the change over time in the measured value of hot metal temperature, the Si concentration in hot metal, and the amount of moisture added in hot air in the conventional method.
第 1 9図は、 最良の形態 3により炉熱制御した場合に検出した、 炉熱の異常状 態を示す溶銑温度の異常低温例を示- 発明を実施するための最良の形態 最良の形態 1 Fig. 19 shows an example of abnormally low hot metal temperature, which indicates an abnormal state of furnace heat, detected when furnace heat control is performed according to Best Mode 3. BEST MODE FOR CARRYING OUT THE INVENTION BEST MODE 1
本発明者等は以下を実施することにより炉況安定化を達成することができると の知見を得た。  The present inventors have found that the reactor conditions can be stabilized by performing the following.
( a )光ファイバ一を金属管で補強し剛性を持たせ、 被測定溶銑流の状態に応じ てワイヤー状の光センサ一ュニットを設計すること。  (a) The optical fiber shall be reinforced with a metal tube to have rigidity, and a wire-shaped optical sensor unit shall be designed according to the state of the hot metal flow to be measured.
( b ) 該ワイヤー状の光センサ一ュニットを使用して溶銑温度を測定すること。 ( c ) 測定された温度情報に基づき炉熱支配因子を制御すること。  (b) Measuring hot metal temperature using the wire-shaped optical sensor unit. (c) Control the furnace heat control factor based on the measured temperature information.
最良の形態 1は、 上述した知見に基づきなされたものである。  Best mode 1 is based on the above findings.
最良の形態 1の溶銑を製造する高炉の操業方法は以下からなる:  The operation of a blast furnace for producing hot metal of the best mode 1 consists of:
金属管で被覆された光ファイバ一を準備し、 ;  Providing an optical fiber coated with a metal tube;
高炉の出銑口から排出された溶銑流の温度を前記金属管で被覆された光ファ ィバ一を使用して測定し、 溶銑温度情報を獲得し;  Measuring the temperature of the hot metal stream discharged from the tap hole of the blast furnace using an optical fiber coated with the metal tube to obtain hot metal temperature information;
得られた溶銑温度情報に基づき高炉の炉熱を制御する。  The furnace heat of the blast furnace is controlled based on the obtained hot metal temperature information.
前記溶銑流は、 出銑口から出銑樋に落下するまでの間にある噴出流であるのが 好ましい。 前記高炉で製造される溶銑は、 シリコン含有量の低い溶銑であるのが 望ましい。 低シリコン溶銑とは、 溶銑中の S i濃度が 0 . 3 0 wt.%以下の溶銑で ある。  It is preferable that the hot metal flow is a jet flow existing before falling from a tap hole to a tapping gutter. The hot metal produced in the blast furnace is desirably a hot metal having a low silicon content. Low silicon hot metal is hot metal whose Si concentration in hot metal is less than 0.3 wt.%.
( 1 ) 溶銑温度の測定方法  (1) Method of measuring hot metal temperature
高炉出銑口から噴出する溶銑流に光ファイバ一製の温度センサ一を挿入し、 光フ アイバーからの光信号を受け、 光エネルギーとその波長分布とから放射温度計で溶 銑流の温度を測定する。 測温はセンサーを溶銑流に挿入している間、 連続的に行な い温度記録計に記録する。 こうして測定された溶銑流の温度は、 炉内の溶銑温度に 近似した値が得られる。 従って、 本発明においては、 炉内の溶銑温度を知る方法と して上記の方法を採用する。 高炉からの出銑期間中、 上記方法により溶銑温度を測 定する。 測定は 1回当たり、 例えば 1 0〜2 0秒程度連続して行い、 1出銑期間中 数回の測温を行う。 光ファイバ一センサ一により、 1回当たり 1 0〜2 0秒程度連 続測温すれば、 溶銑温度を明確に判定できる。 次に、 上述した出銑口からの噴出溶銑流の温度測定方法について、 図面を参照 しながら説明する。 A temperature sensor made of an optical fiber is inserted into the hot metal stream ejected from the blast furnace tap hole, receives the optical signal from the optical fiber, and uses the radiation thermometer to determine the temperature of the hot metal stream from the light energy and its wavelength distribution. Measure. Temperature measurement is performed continuously while the sensor is inserted into the hot metal stream and recorded on a temperature recorder. The temperature of the hot metal flow measured in this way is close to the temperature of the hot metal in the furnace. Therefore, in the present invention, the above method is adopted as a method for knowing the hot metal temperature in the furnace. During the tapping period from the blast furnace, the hot metal temperature is measured by the above method. The measurement is performed once, for example, continuously for about 10 to 20 seconds, and the temperature is measured several times during one tapping period. By measuring the temperature continuously for about 10 to 20 seconds each time with one optical fiber and one sensor, the hot metal temperature can be determined clearly. Next, a method for measuring the temperature of the hot metal flow ejected from the taphole described above will be described with reference to the drawings.
第 1図は、最良の形態 1において使用する金属管で被覆された光ファイバ一の 構造例を示す概略横断面図である。 第 1図において、 7は光ファイバ一、 8は金 属製内管、 そして 9は金属製外管である。 光ファイバ一 7は金属製内管 8及び金 属製外管 9で外側を被覆されれている。 このような二重構造のワイヤー状の光セ ンサーュニット 6を構成している。 このように光ファイバ一 7を金属製管で被覆 することにより、 光ファイバ一 7が溶銑流の高温下での動圧により折れないよう にすると共に、 高温環境での溶融損耗速度を低下させる。  FIG. 1 is a schematic cross-sectional view showing a structural example of an optical fiber coated with a metal tube used in Best Mode 1. In FIG. 1, 7 is an optical fiber, 8 is a metal inner tube, and 9 is a metal outer tube. The outer side of the optical fiber 17 is covered with a metal inner tube 8 and a metal outer tube 9. Such a double-structured wire-type optical sensor unit 6 is configured. By coating the optical fiber 17 with a metal tube in this way, the optical fiber 17 is prevented from breaking due to the dynamic pressure of the hot metal flow under high temperature, and the melting and wear rate in a high-temperature environment is reduced.
第 2図は、 この発明の実施において使用する測温装置の構成例を示す概要図で ある。 第 2図において、 1は高炉出銑口、 2は溶銑流、 3は放射温度計、 そして 1 0は光センサーユニットの送り出し機構である。  FIG. 2 is a schematic diagram showing a configuration example of a temperature measuring device used in the embodiment of the present invention. In Fig. 2, 1 is a blast furnace tap hole, 2 is a hot metal flow, 3 is a radiation thermometer, and 10 is a delivery mechanism of an optical sensor unit.
高炉出銑口 1から噴出する溶銑流 2に対して、 光センサ一ュニット 6を挿入す る。 ここで、 光センサーユニット 6は第 1図で説明した構造のものである。 光セン サ一ユニット 6は溶銑流 2により減耗するので、 供給源として回転ドラム 1 1に 巻かれており、 測温中所要の供給速度で送り出される。 光センサ一ユニット 6の この送り出しは、 ピンチ口一ル 1 2により速度制御装置 1 3及び送り出し速度検 出器 1 4でその供給速度を調節する、 送り出し機構 1 0で行なわれる。 一方、 光 センサ一ユニット 6を溶銑流 2内部に正確に揷入するための機構、 及び、 光セン サーュニット 6が溶銑流 2から弾き出されないようにこれを保持するための機構 が設けられている。 即ち、 光センサ一ユニット 6は、 溶銑流 2に挿入される直前 までガイドパイプ 1 5の中を滑るように通って送給される。 ガイドパイプ 1 5は 先端ガイド 1 6及び支持枠 1 7に固定されている。 光センサ一ュニット 6の先端 を溶銑流 2内部に命中させるために、 先端ガイド 1 5の保持位置を駆動装置 1 8 、 駆動制御装置 1 9及び物体検出装置 2 0、 及び支持枠 1 7で位置決めし、 誘導 する。  An optical sensor unit 6 is inserted into the hot metal stream 2 ejected from the blast furnace tap hole 1. Here, the optical sensor unit 6 has the structure described in FIG. Since the optical sensor unit 6 is depleted by the hot metal flow 2, it is wound around the rotating drum 11 as a supply source, and is sent out at a required supply speed during temperature measurement. The sending out of the optical sensor unit 6 is performed by a sending out mechanism 10 which adjusts the supply speed by a speed controller 13 and a sending out speed detector 14 by a pinch port 12. On the other hand, a mechanism is provided for accurately inserting the optical sensor unit 6 into the hot metal stream 2 and a mechanism for holding the optical sensor unit 6 so that the optical sensor unit 6 is not ejected from the hot metal stream 2. . That is, the optical sensor unit 6 is fed through the guide pipe 15 so as to slide immediately before being inserted into the hot metal stream 2. The guide pipe 15 is fixed to the tip guide 16 and the support frame 17. In order to hit the tip of the optical sensor unit 6 into the hot metal stream 2, the holding position of the tip guide 15 is positioned by the drive unit 18, the drive control unit 19, the object detection unit 20, and the support frame 17. And guide.
こうして、 光センサーユニット 6の先端が溶銑流 2中に挿入されると、 光ファ ィバ一 7にその先端から溶銑流 2中の放射光が入射し、 その他端に接続された回 転式光コネクターを経て放射温度計 3に到達し、 ここで温度に変換され、 温度記 録計 2 1に溶銑流 2の温度が記録される。 こうして、 溶銑温度を殆んど時間遅れ なしに、 しかも正確且つ精度良く測定することができる。 In this manner, when the tip of the optical sensor unit 6 is inserted into the hot metal stream 2, the radiated light in the hot metal stream 2 is incident on the optical fiber 7 from the tip, and the rotary light connected to the other end is provided. It reaches the radiation thermometer 3 via the connector, where it is converted into temperature, and the temperature of the hot metal stream 2 is recorded on the temperature recorder 21. In this way, the hot metal temperature is almost delayed Without this, the measurement can be performed accurately and accurately.
従来のスキンマでの溶銑測温では、 安定した測温結果が出るまでには出銑開始 後数十分を要しているが、上記の方法により出銑流を測温すれば、 1 0 ~ 2 0秒程 度で正確な温度がわかる。  With conventional hot metal temperature measurement with a skinmer, it takes several tens of minutes from the start of tapping until a stable temperature measurement result is obtained. An accurate temperature can be determined in about 20 seconds.
( 2 ) 高炉操業への利用一その 1 (2) Utilization for blast furnace operation (1)
高炉操業への利用の第 1は、 正常操業時における溶銑温度の管理基準温度を下 げることである。  The first use for blast furnace operation is to lower the control temperature of hot metal temperature during normal operation.
出銑期間中に 1個の溶銑温度の測定値が得られる度に、炉熱支配因子の設定条件 が修正される。 ここで、 1個の溶銑温度の測定値を得るに当たっては、 約 3— 4 時間の 1回の出銑期間中に 5— 8回程度の温度の測定が行われる。 1回の測定で 1 0 - 2 0秒間程度連続測温して 1個の測定値が得られる。 溶銑温度の管理基準 は高炉操業における重要管理項目である。 そこで、 先ず、 正常操業時の溶銑温度 の管理目標値を決め、 この目標値を中心に上下に所定の温度幅を設けて、 溶銑温 度の管理範囲とする。 なお、 溶銑温度が異常低温であると判断される異常低温判 定の下限管理値 ( 以降、 本明細書では "異常管理下限値" という ) は、 上記の 正常操業時の溶銑温度管理範囲の下限値とは区別して、 別途、 これよりも低い温 度領域において定められる。 従来のスキンマでの溶銑温度測定方法による場合に は、 一般的に高炉操業における溶銑温度の管理目標値を例えば、 1 5 2 0 °Cに決 め、 1 5 2 0 ± 1 5 °Cを温度管理範囲とする。 これに対して、 最良の形態 1にお いては、 温度管理の目標値を従来よりも例えば 2 5 °C低くし、 且つ管理温度幅を 1 5 から 1 0 に狭めて、 1 4 9 5 ± 1 0 °Cを管理温度範囲として設定する。 このように、 溶銑温度の管理目標値は、 高炉の安定操業が可能な範囲においてで きるだけ低めに設定し、 そして管理範囲幅も狭くする。 よって、 燃料比低減上有 利である。  Each time one hot metal temperature measurement is obtained during the tapping period, the setting conditions of the furnace heat control factor are modified. Here, in order to obtain one hot metal temperature measurement value, about 5 to 8 temperature measurements are performed during one tapping period of about 3 to 4 hours. One measurement can be obtained by measuring the temperature continuously for about 10-20 seconds in one measurement. Hot metal temperature control standards are important control items in blast furnace operation. Therefore, first, a target value for controlling hot metal temperature during normal operation is determined, and a predetermined temperature range is set up and down around this target value to make the hot metal temperature control range. In addition, the lower limit control value of the abnormally low temperature judgment where the hot metal temperature is judged to be abnormally low (hereinafter referred to as “abnormal control lower limit value” in this specification) is the lower limit of the hot metal temperature control range during normal operation described above. Separately from the value, it is set separately in the lower temperature range. In the case of the conventional hot metal temperature measurement method using a skinmer, generally, the control target value of the hot metal temperature in blast furnace operation is set to, for example, 150 ° C and the temperature of 152 ° C ± 15 ° C is set. We assume management range. On the other hand, in the best mode 1, the target value of temperature control is lowered by, for example, 25 ° C from the conventional one, and the control temperature range is narrowed from 15 to 10 to reduce the Set 10 ° C as the control temperature range. In this way, the target value for controlling the hot metal temperature is set as low as possible within the range where stable operation of the blast furnace is possible, and the range of the control range is also narrowed. Therefore, it is advantageous in reducing the fuel ratio.
設定された溶銑温度の管理範囲を T a〜T b °C ( 但し、 T a <T b ) とし最 良の形態 1の方法により得られた溶銑温度の測定値 Tm°Cと比較する。管理範囲 の上限値及び下限値と、 測定値との偏差をそれぞれ求め、 それを用いて炉熱支配 因子に対する操業条件を、 溶銑温度が管理範囲内に移行するように修正する。 主 な炉熱支配因子として、 以下に示すようなものがある。 ①羽口から吹き込まれる熱風中の湿分、 The control range of the set hot metal temperature is defined as Ta to Tb ° C (where Ta <Tb) and compared with the measured hot metal temperature Tm ° C obtained by the method of best mode 1. Deviations between the upper and lower limits of the control range and the measured values are calculated, and the operating conditions for the furnace heat control factors are corrected using these values so that the hot metal temperature falls within the control range. The main factors controlling the furnace heat are as follows. ① Moisture in hot air blown from tuyeres,
②羽口から吹き込まれる熱風の温度、  ② Temperature of hot air blown from tuyere,
③ P C I比 ( 微粉炭吹き込み比率 ) 、  ③ PCI ratio (pulverized coal injection ratio),
④ コ一クス比 ( 装入コークス比 ) 。  ④ Coke ratio (charged coke ratio).
上記の炉熱支配因子の中から現時点及び今後の、 炉内状況の推定並びに高炉操業条 件を考慮して修正因子が選定され、 その修正量が決められる。 そして、 炉熱レベル に対する修正量は、 別途の試験及び Z又は操業経験値等から定められたテーブルに より行われる。 例えば、 T m ぐ T a の場合、 即ち、 溶銑温度 T m °Cが目標温度範 囲 T a 〜T b °Cよりも低い場合には、熱風中への湿分添加量の低減、熱風温度の上 昇、 P C比の増加、 及びコークス比の増加アクションの中から適宜、 アクション対 象操作因子を選定する。 T m > T b の場合は、 上記場合と反対方向の修正ァクシ ョンをとる。 Correction factors are selected from among the above-mentioned furnace heat governing factors, taking into account the current and future estimation of furnace conditions and blast furnace operating conditions, and the amount of correction is determined. The amount of correction to the furnace heat level is determined by a separate test and a table determined from Z or operational experience. For example, in the case of Tm to Ta, that is, when the hot metal temperature Tm ° C is lower than the target temperature range Ta to Tb ° C, the reduction of the amount of moisture added to the hot air and the hot air temperature The operation factor for the action is selected as appropriate from the actions of increasing the PC ratio, increasing the PC ratio, and increasing the coke ratio. If T m> T b, take the corrective action in the opposite direction.
ここで、 炉熱支配因子及びその修正量の決定は、 "炉熱レベル" と "炉熱推移 " との両要素を考慮した判定基準により行うのが好ましい。 即ち、 炉熱支配因子 の修正アクションに際しては、 炉熱レベルに対する判断に加え、 炉熱の上昇 ·下 降傾向を示す炉熱推移を勘案した判断を加え、炉熱状況を総合的に判断して行う。 炉熱推移は、 高炉炉体の適所にセットしたセンサー、 即ち炉体センサーによる温 度測定値や炉頂排ガスの成分組成や流量等の情報と、 溶銑温度情報とから推定す る。 そして、 炉熱レベルと同様、 操業時のデータ解析や操業経験等を基に作成し た修正基準を織り込む。 ここで、 炉体センサ一としては、 高炉操業において炉熱 制御等のために従来用いられるもので、高炉炉体各所に設定された炉体センサ一、 例えば、 羽ロ埋込み温度センサ一、 シャフト部炉壁温度センサー或は炉頂ガス温 度センサ一等を指す。  Here, it is preferable that the determination of the furnace heat control factor and the correction amount thereof is performed based on a criterion that takes into account both the "furnace heat level" and the "furnace heat transition". In other words, when correcting the furnace heat dominant factor, in addition to the judgment on the furnace heat level, a judgment taking into account the furnace heat transition, which indicates a tendency for the furnace heat to rise and fall, was taken to comprehensively judge the furnace heat situation. Do. The furnace heat transition is estimated from the temperature of the sensor set in the blast furnace body, that is, the temperature of the furnace sensor, information on the composition and flow rate of the furnace top exhaust gas, and the hot metal temperature information. Then, as with the furnace heat level, we incorporate the revised standards created based on data analysis and operational experience during operation. Here, the furnace body sensor, which is conventionally used for furnace heat control and the like in blast furnace operation, is a furnace body sensor set in each part of the blast furnace furnace body, for example, an impeller embedded temperature sensor, a shaft part. A furnace wall temperature sensor or a top gas temperature sensor.
このように、 炉熱支配因子、 その修正方向及び修正量の決定は、 炉熱レベルと 炉熱推移との両方の要素を取り入れて修正アクションテーブルを定め、 これに基 づき炉熱修正ァクションをとる。  In this way, to determine the furnace heat dominant factor, its correction direction and correction amount, the correction action table is determined by incorporating both the furnace heat level and the furnace heat transition, and the furnace heat correction action is taken based on this. .
このようにして修正された炉熱は、 更に、 修正アクション後の溶銑温度情報及 び炉体センサーによる計測情報に基づき、 炉熱支配因子の操業条件に対する修正 アクションを継続することにより制御することができる。  The furnace heat corrected in this way can be further controlled by continuing the corrective action for the operating conditions of the furnace heat controlling factor based on the hot metal temperature information after the corrective action and the information measured by the furnace body sensor. it can.
上述した方法により、 溶銑温度の測定値が従来よりも低温の管理範囲内に入る ように制御することにより、 以下のことが可能である。 With the method described above, the measured value of the hot metal temperature falls within the lower control range than before. By controlling as described above, the following is possible.
(a)溶銑中の S i濃度を低く抑えて、いわゆる低シリコン溶銑を製造する。 (a) To produce so-called low silicon hot metal while keeping the Si concentration in the hot metal low.
(b)燃料比を低減させた低燃料比操業を行う。 (b) Low fuel ratio operation with reduced fuel ratio.
(a)低シリコン溶銑の製造 (a) Production of low silicon hot metal
溶銑中シリコン濃度は温度に依存し、溶銑温度が低いほど下記の反応が進行し、 溶銑中のシリコン濃度は低くなる。  The concentration of silicon in the hot metal depends on the temperature. The lower the temperature of the hot metal, the more the following reaction proceeds, and the lower the concentration of silicon in the hot metal.
( S i O 2 ) + 2 〔C〕 → 〔S i〕 + 2 C O (S i O 2 ) + 2 (C) → (S i) + 2 CO
S i O + 〔C〕 → 〔S i〕 + C O  S i O + [C] → [S i] + C O
例えば、 溶銑中のシリコン濃度を 0 . 1 5— 0 . 2 0 wt.%の範囲内に制御する 場合には、 溶銑温度を 1 4 9 5 ± 1 0 °Cの範囲内に制御するのが望ましい。 この ような温度範囲に溶銑を維持するために、 炉熱レベル及び炉熱推移に対する適切 な修正アクションを行う。 即ち、 上述したアクションテ一ブルに基づき、 溶銑温 度の測定結果及び炉体センサ一による計測結果を用いて、 炉熱支配因子である熱 風中への湿分添加量、 熱風温度、 P C I比及びコ一クス比を調整する。  For example, when controlling the silicon concentration in the hot metal within the range of 0.15-0.20 wt.%, It is necessary to control the hot metal temperature within the range of 149 ± 10 ° C. desirable. Appropriate corrective actions on furnace heat levels and furnace heat transitions are taken to maintain the hot metal in these temperature ranges. That is, based on the above-mentioned action table, using the measurement results of the hot metal temperature and the furnace body sensor 1, the amount of moisture added to the hot air, the hot air temperature, the PCI ratio And adjust the coke ratio.
また、 低シリコン溶銑製造の操業を安定して行うことができるので、 炉外精鍊 時の脱珪、 脱りん工程の負荷が軽減される。 したがって、 高炉装入鉱石として安 価な高りん鉱石を使用することも可能となる。  In addition, since the operation of producing low-silicon hot metal can be performed stably, the load of the desiliconization and dephosphorization steps during out-of-pile purification is reduced. Therefore, it is possible to use inexpensive high phosphate rock as the blast furnace ore.
(b)低燃料比操業 (b) Low fuel operation
次に、 光ファイバ一センサーにより溶銑流の温度を測定することにより、 正常 操業時に溶銑温度の管理目標値を従来よりも低下させて、 例えば、 従来の 1 5 2 0 °C から 1 4 9 0 °C程度に低下させることにより、高炉操業における燃料比を低 減させる方法を説明する。  Next, by measuring the temperature of the hot metal flow using an optical fiber sensor, the control target value of the hot metal temperature during normal operation can be reduced from the conventional level, for example, from 150 ° C to 1490 ° C. A method for reducing the fuel ratio in blast furnace operation by reducing the temperature to about ° C will be described.
従来のスキンマにおいて溶銑温度を測定する方法では、 出銑初期段階には外的 因子、 即ち、 樋を通過する途中で出銑樋への熱伝導と大気への熱放射とによる抜 熱の影響により、 溶銑温度の測定結果は判断の為の基準としては欠陥がある。 そ のため、 炉熱ァクションが遅れがちになり、 タツプ間での熱変動が大きくなる。 したがって、 従来は炉冷による操業の異常発生を避けるために、 日常の正常な操 業においても溶銑温度の管理目標値を高めに設定していた。 これに対して、最良 の形態 1においては、 出銑口で噴出直後の溶銑温度を光ファイバ一で測定するの で外的因子の影響を受けにくい。 そのために常に正確な炉熱が迅速に把握される ので、 通常操業時の溶銑温度管理範囲の下限値を従来よりも低く設定する。 例え ば、 溶銑温度の管理範囲の下限値を、 従来のスキンマにおける溶銑温度測定時に 比べて 3 0 - 3 5 °C程度低下させて操業する。 この場合の炉熱制御方法も上述し たァクションテ一ブルを用いる。 In the conventional method of measuring hot metal temperature in skinmers, the initial stage of tapping is an external factor, that is, the influence of heat extraction due to heat conduction to the tapping gutter and heat radiation to the atmosphere while passing through the gutter. However, the measurement results of the hot metal temperature are defective as a criterion for judgment. As a result, the furnace heat function tends to be delayed, and the heat fluctuation between taps increases. Therefore, in the past, in order to avoid the occurrence of abnormal operation due to furnace cooling, the target value for controlling the hot metal temperature was set higher even during normal normal operation. On the other hand, the best In the first embodiment, the hot metal temperature immediately after jetting at the taphole is measured with the optical fiber, so it is not easily affected by external factors. For this reason, since accurate furnace heat is always quickly grasped, the lower limit of the hot metal temperature control range during normal operation is set lower than before. For example, the lower limit of the hot metal temperature control range is reduced by about 30 to 35 ° C compared to the conventional hot metal temperature measurement in skinmers. The furnace heat control method in this case also uses the above-mentioned action table.
( 3 ) 高炉操業への利用一その 2 (3) Utilization for blast furnace operation Part 2
高炉操業方法への利用の第 2は、炉芯の不活性化を早期に検知することである。 前述したように、 炉芯が不活性になると炉況が悪化する。 したがって、 早期に 炉芯不活性を検知する必要がある。 この最良の形態 1では、 出銑口から排出され た溶銑の温度を光ファイバ一を利用して直接速やかに測定することにより、 炉芯 不活性が発生していることを判定できることを見出した。 即ち、 炉芯が活性の場 合には、 通液性 ·通気性が確保され、 正常な熱交換が行われるのに対して、 炉芯 が不活性の場合には、 前述したように、 炉芯部での溶銑環状流の発生に伴う炉壁 への抜熱により溶銑温度が低下する。 したがって、 炉芯活性 '不活性の判断は、 最良の形態 1による溶銑温度の測定により正確に検知することが明らかになった。 この高炉操業方法への利用は、 異常低温の判定が下されるような炉況悪化が生 じることを防止することを目的とする。 この操業方法においては、 例えば 3— 4 時間を要する先行出銑の溶銑温度の挙動と、 これに続く同じく 3— 4時間を要す る後行出銑の溶銑温度の挙動とを比較して炉内状況を判定する。 炉芯不活性の方 向への進行を阻止したり、 炉芯不活性の程度がこれ以上悪化しないようにし、 炉 芯を活性状態に復旧させるようにするために、 修正すべき操業因子を選定し、 そ の操業条件を修正する。 修正すべき操業因子を選定は、 上述したように対象出銑 の溶銑温度の挙動パターンの判定と、 挙動パターン同士の比較をすることにより 行われる。 そして、 この選定基準は、 操業経験と専門知識とにより作成される。 重大な炉況悪化を未然に防ぐための方法を以下に例示する。  The second application of blast furnace operation is to detect early deactivation of the core. As mentioned above, when the core becomes inactive, the furnace condition deteriorates. Therefore, it is necessary to detect the deadman inactivation at an early stage. In the best mode 1, it was found that the core inertness could be determined by directly measuring the temperature of the hot metal discharged from the taphole directly using an optical fiber. In other words, when the mandrel is active, liquid permeability and air permeability are ensured and normal heat exchange is performed. On the other hand, when the mandrel is inactive, the furnace The temperature of the hot metal drops due to the heat removal from the furnace wall due to the occurrence of the annular flow of hot metal at the core. Therefore, it was clarified that the determination of core inactivity / inactivity can be accurately detected by measuring the hot metal temperature in the best mode 1. The purpose of this blast furnace operation method is to prevent the deterioration of the furnace condition such that an abnormally low temperature is judged. In this operation method, for example, the behavior of the hot metal temperature of the preceding hot metal, which requires 3-4 hours, and the subsequent hot metal temperature of the subsequent hot metal, which also requires 3-4 hours, are compared. The inside situation is determined. Select operating factors to be modified to prevent progress in the direction of core inactivation, prevent the degree of core inactivation from deteriorating further, and restore the core to an active state. And modify the operating conditions. The operation factor to be corrected is selected by determining the behavior pattern of the hot metal temperature of the target tapping and comparing the behavior patterns as described above. This selection criterion is created based on operational experience and expertise. The following is an example of a method for preventing serious deterioration of the reactor conditions.
(A) 炉下部における炉芯不活性状態の早期検知と炉況悪化の未然防止方法 先ず、 この最良の形態 1の方法により溶銑温度を測定する。 高炉には通常 2— 4個の出銑口があり、 この内 2個の出銑口から交互に出銑滓をする。 なお、 他の 1又は 2個は、 交代出銑用ないし予備である。 第 1の出銑口を開口して第 1の出 銑を開始し、 溶銑温度の測定を行う。 測定は出銑期間中実施する。 但し、 1回の 出銑期間に 3— 4時間を要し、 溶銑温度の測定は 1回の出銑期間中に 5— 8回程 度行う。 ここで、 1回の測定は 1 0— 2 0秒間程度連続して行い、 この連続測定 データを基にして 1個の温度測定値を得る。 こうして、 1出銑期間中の溶銑温度 の推移を 5— 8個の測温値で把握し、 炉熱レベルと炉熱推移とを判定する。 次い で、 第 1の出銑口を閉塞して出銑を終了し、 第 2の出銑口を開口して第 2の出銑 を開始する。 出銑される溶銑温度を同様に測定し、 出銑期間中の溶銑温度の推移 を把握する。 以下、 後続の第 3、 第 4以降の出銑についても同様に、 (A) Early detection of core dead state in the lower part of furnace and prevention of deterioration of furnace condition First, the hot metal temperature is measured by the method of the best mode 1. Blast furnaces usually have 2 to 4 tap holes, of which tapping taps alternately from 2 tap holes. In addition, other One or two are for replacement tapping or spare. The first tap hole is opened to start the first tapping and the hot metal temperature is measured. The measurement is performed during the tapping period. However, 3-4 hours are required for one tapping period, and the hot metal temperature is measured about 5-8 times during one tapping period. Here, one measurement is continuously performed for about 10 to 20 seconds, and one temperature measurement value is obtained based on the continuous measurement data. In this way, the transition of hot metal temperature during one tapping period is grasped by using 5 to 8 temperature measurement values to determine the furnace heat level and the furnace heat transition. Next, the first tap hole is closed to stop tapping, and the second tap hole is opened to start the second tapping. The temperature of the hot metal to be tapped is measured in the same way, and the transition of the hot metal temperature during the tapping period is grasped. The same applies to the subsequent tapping of the third, fourth and subsequent taps.
出銑期間中の溶銑温度を測定し、 炉熱を把握する。 Measure the hot metal temperature during the tapping period to grasp the furnace heat.
上記の出銑形態は、 第 1と第 2の出銑口から交互に出銑する場合である。 これ を例にとって、 炉下部における炉芯の活性 ·不活性状態の判定方法の例を説明す る。  The above tapping mode is for tapping alternately from the first and second tap holes. Taking this as an example, an example of a method for determining the active / inactive state of the core in the lower part of the furnace will be described.
異なる出銑口から出銑された先行出銑 (第 1の出銑口から出銑) の溶銑温度の 推移とこれに続く後行出銑 (第 2の出銑口から出銑) の溶銑温度の推移とを比較 する。 両出銑口からの溶铣温度の推移どうしを比較し、 その推移の相対的傾向に より炉熱レベルと炉熱推移とを同時に把握し、 判定する。  Transition of the hot metal temperature of the preceding hot tap (tap from the first tap) and the hot metal temperature of the subsequent hot tap (tap from the second tap) from different taps Compare with the transition of The transition of the melting temperature from both tapholes is compared, and the furnace heat level and the furnace heat transition are simultaneously grasped and judged based on the relative tendency of the transition.
第 3図及び第 4図に示した先行出銑及び後行出銑の溶銑温度推移例を用いて、 炉芯の活性状態及び不活性状態の判断基準の概念及びそれを用いた操業を説明す る。  The concept of criteria for determining the active and inactive states of the core and the operation using the same will be explained using the examples of transition of hot metal temperature of leading and trailing tapping shown in Figs. 3 and 4. You.
( a ) 炉芯活性状態の判定  (a) Determination of core activation status
第 3図は、 炉芯活性状態の判定をする場合の例を説明する溶銑温度推移の概念 図である。 第 3図において Δ Τを、 出銑初期の溶銑温度から当該出銑期間中の最 低溶銑温度を差し引いた値で定義する。  FIG. 3 is a conceptual diagram of transition of hot metal temperature for explaining an example of a case where a core activation state is determined. In Fig. 3, ΔΤ is defined as the value obtained by subtracting the minimum hot metal temperature during the tapping period from the initial hot metal temperature.
先行出銑の溶銑温度が Δ T≥ 0であり、 先行出銑に続く異なる出銑口からの後 行出銑の溶銑温度も Δ Τ≥0である状態が続く限り、 炉芯活性と判定する。 これ は、 操業デ一夕及び操業経験を根拠とする。 ここで、 Δ Τの大きさは、 高炉操業 条件に応じて設定すべきものであるが、 通常は 3 0から 5 0 °Cの間の適切な値に 設定するのが良い。  As long as the hot metal temperature of the preceding tapping metal is Δ T ≥ 0 and the hot metal temperature of the subsequent tapping iron from a different tap hole following the preceding tapping also remains Δ Τ ≥ 0, the core is determined to be active. . This is based on the operating hours and operating experience. Here, the magnitude of ΔΤ should be set according to the operating conditions of the blast furnace, but it is usually better to set it to an appropriate value between 30 and 50 ° C.
一方、 炉芯活性状態の場合、 当該出銑の溶銑温度が管理範囲内にあるか否かの 判定は、 当該出銑の初期 2回の測定値 ( 例えば、 第 3図において、 * 1及び * 2 の測定値を指す ) を除いた測定値の平均値が、 当該管理温度範囲内にあるか否か により判定する。 溶銑温度が前記正常操業時の溶銑温度の管理範囲内にあればそ のまま操業を継続するが、 管理範囲を外れている場合には、 上記低 S i溶銑操業 や低燃料比操業に準じて炉熱を制御する。 On the other hand, when the core is in the activated state, it is determined whether the hot metal temperature of the tapping is within the control range. Judgment was made as to whether the average value of the measured values excluding the first two measured values of the tapping (for example, the measured values of * 1 and * 2 in Fig. 3) was within the control temperature range. Judge by whether or not. If the hot metal temperature is within the control range of the hot metal temperature during the normal operation, the operation is continued as it is.If the hot metal temperature is out of the control range, the operation is performed according to the low Si hot metal operation and low fuel ratio operation described above. Control furnace heat.
( b ) 炉下部における炉芯不活性状態の判定一その 1及びそれに対するァクショ ン  (b) Judgment of core inactive state at lower part of furnace-Part 1 and its action
第 4図は、 炉芯不活性状態の判定をする場合の例を説明する溶銑温度推移の概 念図である。 第 4図のように、 先行出銑とこれに続く後行出銑との間に、 Δ Τ≥ 0についで Δ Τ< 0が、 又は、 Δ Τ< 0についで Δ Τ≥0が交互に現れる出銑が 行われた場合には、 炉下部における炉芯不活性状態と判定する。 これに対する炉 熱操業因子に対する修正アクションは、 先ず、 炉芯を活性状態に復帰させるため のアクションを早急に講じる。そのために、負の値である Δ Τの絶対値の大小と、 その Δ Τが何タップ継続するかに応じて、 修正因子とその修正量を定めておき、 この基準にしたがって修正アクションをとる。 例えば、 一 2 0 °〇≤Δ Τ < 0 :の 出銑が 3タツプ継続したときは、 予め作成してあるアクションテーブルにしたが つて羽口から吹き込まれる熱風への湿分添加量を減少させる。 Δ Τぐ一 2 0 °Cの 出銑が 3タツプ継続したときは、 予め作成してあるアクションテーブルにしたが つて装入鉱石を減量する。 上記の装入鉱石の減量アクションを行い、 炉芯活性状 態に復旧させる。  FIG. 4 is a conceptual diagram of the transition of hot metal temperature for explaining an example of a case where the core dead state is determined. As shown in Fig. 4, Δ 先行 <0 followed by Δ Τ <0, or Δ Τ <0 followed by Δ Τ ≥ 0, between the leading tap and the subsequent tap. If tapping occurs, it is determined that the core is inactive in the lower part of the furnace. The corrective action for the furnace thermal operation factor in response is to take immediate action to return the core to the active state. For this purpose, the correction factor and the correction amount are determined according to the magnitude of the absolute value of the negative value Δ と and how many taps the Δ す る continues, and corrective action is taken according to this criterion. For example, if tapping of 20 ° 〇≤ΔΤ <0: continues for 3 taps, reduce the amount of moisture added to the hot air blown from the tuyere according to the action table created in advance. . If tapping at 20 ° C continues for 3 taps, the amount of ore charged is reduced according to the action table created in advance. Perform the above-mentioned ore reduction action to restore the core activated state.
このような早期の修正アクションにより、 炉床部における溶銑の環状流の形成 を抑制し、 また、 炉芯不活性による出銑滓の不良を回避し、 重大な炉況悪化を未 然に防止する。  Such an early corrective action suppresses the formation of an annular flow of hot metal in the hearth, and also avoids defects in tapping slag due to inactivation of the core and prevents serious deterioration of the furnace condition. .
( c ) 炉下部における炉芯不活性状態の判定一その 2及びそれに対するァクショ これに対して、 A T< 0 °Cの出銑が 3回継続した場合は、 予め作成してあるァ クシヨンテーブルに従って、 コ一クス比を所定値だけ増加させ (例えば、 3 0 k g / tを増加させ) 、 溶銑温度の下限目標値を高めて ( 例えば、 1 5 0 0 °Cに 高めて) 、 炉底のクリーニングを行う。 このように、 炉芯不活性状態の早期検知  (c) Determining the inactive state of the core in the lower part of the furnace-Part 2 and the corresponding action If, on the other hand, tapping at AT <0 ° C is repeated three times, the previously prepared action table According to, the coke ratio is increased by a predetermined value (for example, 30 kg / t is increased), and the lower limit target value of the hot metal temperature is raised (for example, raised to 150 ° C), and the hearth is increased. Perform cleaning. Thus, early detection of core dead state
'ョンにより、軽度な炉芯不活性状態の間に炉況を立て直すことができる。 従って、 炉底及び炉壁の損傷防止のためにィルメナイト焼結鉱のような T i 0 2 含有鉱石を装入せずに炉況を復旧させることができる。 よって、 副生するスラグ の成分組成も風滓処理によりセメント原料として使用できる。 The furnace allows the furnace condition to be reestablished while the furnace core is inactive. Therefore, it is possible to recover the Ro況the T i 0 2 containing ores such as Irumenaito sinter to prevent damage to the furnace bottom and furnace wall without charging. Therefore, the component composition of the slag by-produced can also be used as a cement raw material by the tailing treatment.
( d ) 高微粉炭吹き込み (高 P C I ) 操業時における炉芯不活性化の回避 上記の (a ) から (c ) のような炉芯活性 ·炉芯不活性の判断とこれに対する アクションを早期にとることにより、 高 P C I操業を行う。 微粉炭吹き込み(P C I ) を高くした操業、 いわゆる高 P C I操業においては、 通常の操業よりも炉 芯不活性に陥りやすい。 但し、 ここで高 P C Iとは、 微粉炭吹き込み量が溶銑ト ン当たり 1 5 0 k g以上の操業を指す。 即ち、 高 P C I操業においては、 通常操 業におけるよりも装入コークス比を減らすので、 コークスの炉内滞留時間が増加 傾向を示す。 そのため、 コ一クスの粉化量が増加し、 これが炉芯部に流入してこ の領域の通気性を悪化させ、 炉芯不活性を招き易いと考えられるからである。 高 P C I操業において、 炉芯不活性状態が発生した場合、 これに対する復旧ァ クシヨンの遅れが甚だしい場合には、 微粉炭吹き込みを全く行うことができなく なり、 炉熱の低下も大きくなり、 異常低温による炉況不調に陥る。 従って、 高 P C I操業時には、 溶銑温度の低下による炉熱レベル低下を一層早期に検知するこ とが重要となる。 この最良の形態 1においては、 溶銑温度を正確に且つ迅速に把 握することができるので、 溶銑温度の低下情報により炉芯不活性傾向を早期に検 知することが可能となり、 異常管理下限値まで低下するに至らず、 炉況悪化を引 き起こすことを回避できる。 しかも、 出銑口からの噴出溶銑の温度測定情報を利 用することにより、 正常操業時における溶銑温度の管理目標値を従来のスキンマ での溶銑温度測定時よりも、 相当低めに設定することができるので、 燃料比低減 にも一層寄与する。  (d) Avoidance of core inactivation during high-pulverized coal injection (high PCI) operation As shown in (a) to (c) above, determine core activation and core inactivation as soon as possible and take action on this in an early stage. By doing so, high PCI operation will be performed. Operations with high pulverized coal injection (PCI), so-called high PCI operations, are more susceptible to core inactivation than normal operations. However, here, high PCI refers to operations where the amount of pulverized coal injected is 150 kg or more per molten iron. That is, in the high PCI operation, the charged coke ratio is smaller than in the normal operation, and the residence time of coke in the furnace tends to increase. For this reason, the amount of powdered coke increases, which is considered to flow into the furnace core and deteriorate the air permeability in this region, which is likely to cause furnace core inertness. In the high-PCI operation, when the core dead state occurs, if the recovery action is delayed significantly, the pulverized coal injection cannot be performed at all, the furnace heat will drop significantly, and the temperature will be abnormally low. The reactor situation will fall due to Therefore, during high PCI operation, it is important to detect a decrease in furnace heat level due to a drop in hot metal temperature earlier. In the best mode 1, since the hot metal temperature can be accurately and quickly grasped, it is possible to detect the tendency of the core inactivation at an early stage based on the information of the drop in the hot metal temperature, and to set the lower limit of the abnormal control. It is possible to avoid the deterioration of the reactor condition, even if the temperature does not decrease to the minimum. In addition, by using the temperature measurement information of the hot metal spouted from the taphole, it is possible to set the target value of the hot metal temperature during normal operation to be considerably lower than when measuring hot metal temperature with a conventional skinmer. It can further contribute to a reduction in fuel ratio.
高 P C I操業においては、 通常の高炉操業時よりも、 溶銑温度目標値を高め ( 例えば、 ベース + 1 0 °C程度) とし、 羽口から吹き込まれる熱風の温度を高めに 設定する。出銑中の温度はこの最良の形態 1に記載されている方法で測定する。 また、 把握すべき温度情報の形態としては、 上記の (b ) 或は (c ) で述べたも のと同じようにする。 そして、 上記の (b ) 或は (c ) で例示したような炉芯不 活性の前兆を検知した場合には、 速やかに、 炉芯活性化へのアクションをとる。 このアクションで修正すべき操業因子の種類としては、 例えば、 微粉炭吹き込み 量の減少、 羽口から吹き込まれる熱風への湿分添加量の減少、 熱風温度の上昇或 は高強度コ一クスの使用である。 修正量は、 当該高炉に固有の操業経験及び専門 知識により決定する。 実施例 1 :低シリコン溶銑の製造 In high-PCI operation, the target value of hot metal temperature is set higher (for example, about +10 ° C base) and the temperature of hot air blown from tuyeres is set higher than during normal blast furnace operation. The temperature during tapping is measured by the method described in Best Mode 1. The form of the temperature information to be grasped is the same as that described in (b) or (c) above. When the precursor of core inactivation as exemplified in the above (b) or (c) is detected, an action to activate the core is taken immediately. Types of operating factors that should be corrected in this action include, for example, pulverized coal injection Decrease the amount of moisture added to the hot air blown from the tuyere, raise the temperature of the hot air or use a high-strength coke. The amount of correction will be determined based on the operating experience and expertise specific to the blast furnace. Example 1: Production of low silicon hot metal
第 1図及び第 2図に示した光センサ一ュニット及び出銑口噴出溶銑の温度測定 装置を用い、 得られた情報を用レ て溶銑温度を低温に制御した。  The temperature of the hot metal was controlled at a low temperature using the information obtained by using the optical sensor unit and the temperature measuring device for the hot metal spout shown in Fig. 1 and Fig. 2.
直径 125 mの石英ガラス製光ファイバ一 7の素線を、 外径 1. 2mm、 内 径 0. 8 mmの肉厚 0. 2 mmのステンレス製被覆管 (内管) 、 及び、 外径 3. 6mm、 内径 3. 011111の肉厚0. 3 mmのステンレス製被覆管 (外管) で覆つ た二重構造のワイヤ一状の光センサ一ユニット 6を、 内径 6mm、 外径 10mm のガイドパイプ 15の中を滑走させながら、 出銑中の噴出溶銑流 2に挿入した。 光センサ一ュニット 6の供給速度を 40 OmmZ秒に設定した。 温度測定 1回当 たりの時間を約 10〜20秒とし、 この間の温度を連続測定した。 出銑時間は 1 回当たりの 3〜 4時間であり、 この間 8〜 10回溶銑流 2の温度を測定した。 溶 銑温度の目標値を 1490°Cとし、 熱風中の湿分を調節して溶銑温度を制御した 。 第 5図 (a) に、 上記実施例における出銑 3回分の溶銑温度の測定値、 溶銑中 S i濃度、 及び熱風中湿分の添加量の経時変化を示す。 溶銑温度が安定して低く 制御されているので、 溶銑中 S i濃度は 0. 15~0. 23 w t . %の範囲内にあ り、 平均で 0. 18wt. %という、 安定した低 S i溶銑が製造された。  A 125-m diameter silica glass optical fiber is used to connect a stainless steel cladding tube (inner tube) with an outer diameter of 1.2 mm, an inner diameter of 0.8 mm, and a thickness of 0.2 mm, and an outer diameter of 3 mm. A double-layered wire-shaped optical sensor unit 6 covered with a stainless steel cladding tube (outer tube) with a thickness of 6 mm and an inner diameter of 3.011111, and a guide with an inner diameter of 6 mm and an outer diameter of 10 mm While sliding in the pipe 15, it was inserted into the hot metal stream 2 during tapping. The supply speed of the optical sensor unit 6 was set to 40 OmmZ seconds. The time for each temperature measurement was about 10 to 20 seconds, and the temperature was measured continuously during this time. The tapping time was 3 to 4 hours per time. During this time, the temperature of the hot metal stream 2 was measured 8 to 10 times. The target value of the hot metal temperature was set to 1490 ° C, and the hot metal temperature was controlled by adjusting the moisture in the hot air. FIG. 5 (a) shows the measured values of the hot metal temperature, the Si concentration in the hot metal, and the amount of moisture added in the hot air over time for the three tapping times in the above example. Since the hot metal temperature is controlled to be stable and low, the S i concentration in the hot metal is in the range of 0.15 to 0.23 wt.%, And the stable low S i concentration is 0.18 wt.% On average. Hot metal was produced.
比較例 1 :従来法による低 S i溶銑の製造  Comparative Example 1: Production of low Si hot metal by conventional method
従来法の溶銑温度制御方法として、 スキンマにおいてイマ一ジョン式温度計で 溶銑温度を測定し、 この測定値に基づき、 溶銑温度の設定目標値 1505°Cに制 御するように、 溶銑中の湿分を調節した。 第 5図 (b) に、 従来法における出銑 4回分のスキンマにおける溶銑温度の測定値、溶銑中 S i濃度、及び熱風中湿分 の添加量の経時変化を示す。従来法においては、溶銑中 S i濃度が大きく変動し ており、 低シリコン溶銑を安定して製造することはできなかった。 即ち、 溶銑中 As a conventional method of controlling hot metal temperature, the hot metal temperature is measured with an immersion thermometer at a skinmer, and based on this measured value, the hot metal temperature in the hot metal is controlled to a target value of 1505 ° C. The minute was adjusted. Fig. 5 (b) shows the changes over time in the measured values of the hot metal temperature, the Si concentration in the hot metal, and the amount of moisture added in the hot air in the skinner for four tapping operations in the conventional method. In the conventional method, the Si concentration in the hot metal fluctuated greatly, and it was not possible to produce low silicon hot metal stably. That is, in hot metal
1濃度は0. 10~0. 30wt. %の間で変動している。 従って、 また、 従来 法にによる溶銑温度制御においては、 真の溶銑温度は上下に大きく変動していた ことがわかる。 実施例 2 :低燃料比操業 1 The concentration varies between 0.10 and 0.30 wt.%. Therefore, it can be seen that the true hot metal temperature fluctuated greatly up and down in the hot metal temperature control according to the conventional method. Example 2: Low fuel operation
第 1図及び第 2図に示した光センサ一ュニット及び出銑口噴出溶銑の温度測定 装置を用い、 得られた情報を用いて溶銑温度を低温に制御した。 ここで用いた光 センサ一ユニット、 温度測定装置とその使用方法は、 実施例 1におけると同じで あり、 出銑中の噴出溶銑流に光センサーを挿入して、 溶銑温度を測定した。 溶銑 温度の目標値を 1 4 8 5 に設定し、 はじめに、 熱風中への湿分添加量を調節し て溶銑温度を制御した。 こうして、 炉熱を充分定常状態に保持できることを推定 した後に、 定常状態における溶銑温度目標値を 1 4 8 5 °Cのまま継続し、 炉熱支 配因子としてコークス比を採用して操業を続けた。 この実施例の試験期間中、 炉 熱は定常状態にあった。  The temperature of the hot metal was controlled to a low temperature using the information obtained using the optical sensor unit and the temperature measuring device for the hot metal spout shown in Fig. 1 and Fig. 2. The optical sensor unit used here, the temperature measuring device and the method of use thereof were the same as in Example 1, and the hot metal temperature was measured by inserting the optical sensor into the hot metal flow during tapping. The target value of the hot metal temperature was set at 1485, and the hot metal temperature was controlled by adjusting the amount of moisture added to the hot air. After estimating that the furnace heat can be maintained in a steady state in this way, the target value of the hot metal temperature in the steady state is kept at 148 ° C, and the operation is continued using the coke ratio as the furnace heat control factor. Was. The furnace heat was in a steady state during the test period of this example.
ここで、 定常状態と非定常状態との区別は、 下記に従った。 即ち、 先ず、 現在 の炉熱レベルと炉熱推移とを推定する。 炉熱レベルの推定は、 測定された溶銑温 度レベルから行い、 また、 炉熱推移の推定は、 高炉の炉体各所に設けられた炉体 センサ一からの情報、 即ち、 羽ロ埋込みセンサ一の温度情報、 炉頂ガス温度推移、 炉頂ガス分析値推移及び溶銑中 S i濃度の推移に重み付けをし、これらを統合し て行った。 次いで、 炉熱レベル及び炉熱推移の各設定目標値が属する温度区分を 中央にして、 幾つかのランクを予め設けておき、 現在の炉熱レベル及び炉熱推移 がそれぞれどのランクに属するかを求めた。 炉熱のレベルランクと推移ランクと のマトリックス (即ち、 アクションマトリックス) を作成し、 アクションマトリ ックス上の該当する位置を求め、 現在の炉熱を推論した。 現在の炉熱が、 当該ァ クシヨンマトリックス上で、 定常 ·非定常領域のいずれに該当するかをみた。 定 常 ·非定常領域の決定は、 専門家の知識、 高炉操作者の経験則及び過去の操業実 績デ一夕を総合して行った。  Here, the distinction between the steady state and the non-steady state was based on the following. That is, first, the current furnace heat level and furnace heat transition are estimated. The furnace heat level is estimated from the measured hot metal temperature level, and the furnace heat transition is estimated based on the information from the furnace sensors installed at various places in the blast furnace, that is, the blade embedded sensor. We weighted the temperature information, the top gas temperature transition, the top gas analysis value transition, and the transition of the Si concentration in the hot metal, and integrated them. Next, several ranks are set in advance with the temperature category to which each set target value of the furnace heat level and the furnace heat transition belongs at the center, and it is determined to which rank the current furnace heat level and the furnace heat transition belong respectively. I asked. A matrix of reactor heat level rank and transition rank (ie, action matrix) was created, the corresponding position on the action matrix was determined, and the current furnace heat was inferred. We examined whether the current furnace heat falls into the steady or unsteady region on the function matrix. The steady / unsteady region was determined based on the knowledge of experts, the empirical rules of blast furnace operators, and the results of past operation results.
上記の通り、 溶銑温度目標値を低温に設定した低燃料比操業を行った操業成績 を、 表 1に示す。 なお、 同じ高炉における通常操業時における操業成績を比較例 2として併記する。 表 1 As described above, Table 1 shows the operation results of low fuel ratio operation with the hot metal temperature target set at a low temperature. The operating results during normal operation in the same blast furnace are also shown as Comparative Example 2. table 1
Figure imgf000025_0001
上記の試験結果によれば、 実施例の低燃料比操業により、 燃料比は 3 k g Z t だけ低減した。 また、 比較例 2に比べて実施例 2の方が溶銑温度の変動幅を小さ く抑えることができ、 より安定した炉熱管理が可能となった。 以上述べたように、 最良の形態 1によれば、 炉熱を安定して制御することがで きる。 したがって、溶銑温度を従来よりも狭い範囲に制御することができるので、 溶銑温度の管理目標値を従来よりも低く設定することができる。 また、 炉芯不活 性による操業異常トラブルの発生を未然に防止することができる。 したがって、 高 P C I操業も可能となる。 こうして、 炉況の安定化が促進され、 溶銑製造コス 卜が下がる。 このような高炉の操業方法を提供することができ、 工業上有用な効 果がもたらされる。
Figure imgf000025_0001
According to the above test results, the fuel ratio was reduced by 3 kg Zt by the low fuel ratio operation of the example. In addition, compared to Comparative Example 2, Example 2 was able to suppress the fluctuation range of the hot metal temperature to a smaller extent, thus enabling more stable furnace heat management. As described above, according to Best Mode 1, furnace heat can be controlled stably. Therefore, the hot metal temperature can be controlled in a narrower range than before, so that the control target value of the hot metal temperature can be set lower than before. In addition, it is possible to prevent the occurrence of troubles in operation due to inactivation of the core. Therefore, high PCI operation is also possible. In this way, stabilization of the furnace condition is promoted, and the cost of hot metal production is reduced. Such a method for operating a blast furnace can be provided, and an industrially useful effect is brought about.
最良の形態 2 Best mode 2
本発明者等は、 溶銑温度を正確に精度良く、 時間遅れをできるだけ短くし、 連 続的に測定することが可能な方法が必要であると考えた。 そのような方法として、 出銑時に出銑口から噴出する溶銑を、 その温度降下が発生しない内に安定して測 定することが可能な新しい方法を研究した。 その結果、 それは金属管で被覆され た光ファイバ一の利用方法を工夫して実現できること、 即ち、 光ファイバ一を金 属管で補強し剛性を持たせ、 被測定溶銑流の状態に応じて適切に設計されたヮィ ヤー状の光センサーュニッ卜を用いて溶銑温度を測定することにより達成できる ことを知見した。  The present inventors considered that a method is needed that can accurately measure the hot metal temperature accurately and accurately, minimize the time delay, and measure continuously. As such a method, we researched a new method capable of stably measuring hot metal spouting from a taphole at the time of tapping without causing a temperature drop. As a result, it can be realized by devising a method of using the optical fiber covered with the metal tube, that is, the optical fiber is reinforced with a metal tube to have rigidity, and appropriate depending on the state of the hot metal flow to be measured It was found that this could be achieved by measuring the hot metal temperature using a wire-shaped optical sensor unit designed in the same manner.
更に、 上記新しい溶銑測定方法による温度情報で各種センサ一値情報をバック ァップすることにより、 炉熱推移を一層精度よく推定することができることを知 見した。 第 1の高炉の炉熱の制御は以下からなる:  Furthermore, it was found that by backing up the one-value information of various sensors with the temperature information obtained by the new hot metal measurement method, it is possible to more accurately estimate the furnace heat transition. Control of the furnace heat of the first blast furnace consists of:
高炉操業における経験則と専門知識を用いて作成された炉熱推定モデルを提供 する工程;  Providing a furnace heat estimation model created using experience and expertise in blast furnace operation;
得られた溶銑温度情報に基づき前記炉熱推定モデルを用いて、炉熱レベル及び 炉熱推移を推定し、 推定結果を得る工程; と  Estimating a furnace heat level and a furnace heat transition using the furnace heat estimation model based on the obtained hot metal temperature information, and obtaining an estimation result; and
該推定結果に基づき、高炉操業における経験則と専門知識を用いて高炉の操業 要因の補正処置をとり、 溶銑温度を制御する工程。  A process of controlling the hot metal temperature based on the estimation results by taking corrective measures for blast furnace operation factors using empirical rules and expertise in blast furnace operation.
該炉熱推定モデルは、 光ファイバ一による溶銑温度情報を含む炉熱推定の知識 ベースと、 光ファイバ一による溶銑温度測定情報と高炉センサ一による測定情報 を含む炉熱推移推定の知識ベースからなる。 第 2の高炉の炉熱の制御は以下からなる:  The furnace heat estimation model consists of a knowledge base for furnace heat estimation including hot metal temperature information using an optical fiber, and a knowledge base for furnace heat transition estimation including hot metal temperature measurement information using an optical fiber and measurement information using a blast furnace sensor. . Control of the furnace heat of the second blast furnace consists of:
高炉操業における経験則と専門知識を用いて作成された炉熱推定モデルを提供 する工程;  Providing a furnace heat estimation model created using experience and expertise in blast furnace operation;
得られた溶銑温度情報に基づき、前記炉熱推定モデルを用いて炉熱レベル及び 炉熱推移を推定し、 推定結果を得る工程; 該推定結果を表示手段に表示する工程; と Estimating a furnace heat level and a furnace heat transition using the furnace heat estimation model based on the obtained hot metal temperature information, and obtaining an estimation result; Displaying the estimation result on display means;
表示された推定結果に基づき、高炉操業における経験則と専門知識を用いて高 炉の操業要因の補正処置をとり、 溶銑温度を制御する工程。 第 3の高炉の炉熱の制御は人工知能システムを用いて自動的に高炉の操業要因 の補正処置をとり、 溶銑温度を制御することからなる。  A process of controlling the hot metal temperature by taking corrective actions for blast furnace operating factors based on the displayed estimation results and using empirical rules and expertise in blast furnace operation. The third control of the furnace heat in the blast furnace consists of automatically taking corrective action for the operating factors of the blast furnace using an artificial intelligence system and controlling the hot metal temperature.
前記人工知能システムは以下の工程を有する:  The artificial intelligence system has the following steps:
高炉操業における経験則と専門知識を用いて作成された炉熱推定モデル を提供する工程;  Providing a furnace heat estimation model created using experience and expertise in blast furnace operation;
得られた溶銑温度情報に基づき、 前記炉熱推定モデルを用いて炉熱レベ ル及び炉熱推移を推定し、 推定結果を得る工程;  A step of estimating a furnace heat level and a furnace heat transition using the furnace heat estimation model based on the obtained hot metal temperature information, and obtaining an estimation result;
高炉操業における経験則と専門知識を用いて作成された炉熱補正モデル を提供する工程;  Providing a furnace heat compensation model created using experience and expertise in blast furnace operation;
前記推定結果に基づき、 前記炉熱補正モデルを用いて、 高炉の操業要因 の補正処置を行う工程。  Performing a corrective action for the operating factor of the blast furnace using the furnace heat correction model based on the estimation result.
該炉熱推定モデルは、 光ファイバ一による溶銑温度情報を含む炉熱推定の知識 ベースと、 光ファイバ一による溶銑温度測定情報と高炉センサ一による測定情報 を含む炉熱推移推定の知識ベースからなる。 次に、 この最良の形態 2 を説明する。  The furnace heat estimation model consists of a knowledge base for furnace heat estimation including hot metal temperature information using an optical fiber, and a knowledge base for furnace heat transition estimation including hot metal temperature measurement information using an optical fiber and measurement information using a blast furnace sensor. . Next, the best mode 2 will be described.
この発明による高炉の炉熱制御方法は、 出銑口から出銑された溶銑の温度を測 定し、 得られた温度情報に基づき高炉操業の操作者が高炉の操業要因に補正を加 えるアクションをとるか、 又は、 得られた温度情報に基づき人工知能システムを 用いて高炉の操業要因に補正を加えるァクションをとる工程を基本とするもので ある。  The method of controlling the heat of a blast furnace according to the present invention measures the temperature of the hot metal from a taphole, and the blast furnace operator corrects the blast furnace operation factor based on the obtained temperature information. Based on the obtained temperature information, or based on the obtained temperature information, an artificial intelligence system is used to correct the operating factors of the blast furnace.
この発明の最大の特徴は、 溶銑温度の測定位置とその測定方法にある。 炉熱レ ベルを代表すると考えられる溶銑温度を測定する位置としては、 炉内溶銑温度に 最も近い位置である、 出銑中に出銑口から噴出する溶銑を対象とするのが望まし レ^ しかしながら、 このような激しい流動を伴なう溶銑の温度を正確に安定した 状態で連続的に測定するのは困難であつたが、 金属管で被覆された光ファイバ一 をそのような溶銑流に挿入し、 光ファイバ一の先端から入射した溶銑の放射光を 検出することによりその困難を解消した。 The most significant features of the present invention reside in the position and method of measuring hot metal temperature. It is desirable to measure the hot metal temperature, which is considered to be representative of the furnace heat level, at the position closest to the hot metal temperature in the furnace, that is, hot metal spouting from the tap hole during tapping. However, it has been difficult to accurately and continuously measure the temperature of hot metal with such a violent flow in a stable state. Was inserted into such a hot metal stream, and the difficulty was solved by detecting the emitted light of the hot metal incident from the tip of the optical fiber.
最良の形態 2において使用される金属管で被覆された光ファイバ一の構造は、 最良の形態 1の第 1図で示されたものと同じである。 本最良の形態 2において 使用される測温装置は、 最良の形態 1の第 2図で示されたものと同じである。 上記の溶銑温度情報に加えて、 各種センサ一 (即ち、 高炉センサ一、 炉体セン サー) 値情報としての羽ロ埋込み温度、 炉頂ガス温度、 炉頂排ガス分析値、 並 びに、 溶銑中 S i濃度及び溶銑中 S濃度等の計測情報を収集する。 こうして得ら れた各種情報を用いて炉熱を推論し、 これを制御する。  The structure of the optical fiber coated with the metal tube used in the best mode 2 is the same as that shown in FIG. 1 of the best mode 1. The temperature measuring device used in Best Mode 2 is the same as that shown in FIG. 2 of Best Mode 1. In addition to the above hot metal temperature information, impeller embedding temperature, furnace top gas temperature, furnace top exhaust gas analysis values as various sensor- 1 (that is, blast furnace sensor 1, furnace body sensor) value information, and hot metal S Collect measurement information such as i concentration and S concentration in hot metal. Using the various information obtained in this way, the furnace heat is inferred and controlled.
第 6図に、 本発明の炉熱制御のフローチャートを示す。 これを用いて本発明の炉 熱制御方法の例を説明する。  FIG. 6 shows a flowchart of the furnace heat control of the present invention. Using this, an example of the furnace heat control method of the present invention will be described.
① 高炉の出銑口噴流溶銑 (2 2 ) に光ファイバ一を内装した光センサーュニッ ト (6 ) を所定時間挿入し、 温度測定 (2 3 ) をして溶銑温度情報 (2 4 ) を得 る。 溶銑温度の測定は連続的に行ない、 1タップの出銑時間約 3〜4時間の間を 2 0分間隔で区分し、 一区間の平均値を当該区間の代表溶銑温度とみなし、 これ をこの区間の溶銑レベル (2 5 ) とする。 また、 直前の区間から当該区間への溶 銑温度の変動を、 当該区間の溶銑温度推移 (2 6 ) とする。  (1) Insert the optical sensor unit (6) containing the optical fiber into the taphole jet hot metal (22) of the blast furnace for a predetermined time and measure the temperature (23) to obtain hot metal temperature information (24). . The hot metal temperature is measured continuously, and the tapping time of about 1 to 3 taps is divided at intervals of 20 minutes, and the average value of one section is regarded as the representative hot metal temperature of the section. The hot metal level of the section (25). The change in hot metal temperature from the immediately preceding section to the section concerned is defined as the transition of the hot metal temperature in the section (26).
②一方、 各種炉体センサ一 (2 7 ) で所定の特性値を計測して (2 8 ) 、 セン サー情報 (2 9 ) を得る。 測定対象及び測定頻度の態様はサンサ一の種類により 異なる。 例えば、 羽ロ埋込みセンサーでは、 羽口近くの炉体に埋め込んだ熱電対 で毎分 1回の羽ロ埋込み温度を得る。 こうして各センサ一情報に基づき、 羽ロ埋 込み温度推移 (3 0 ) 、 炉頂ガス温度推移 (3 1 ) 、 炉頂ガス分析値推移 (3 2 (2) On the other hand, a predetermined characteristic value is measured with each furnace body sensor (27) (28), and sensor information (29) is obtained. The mode of measurement and the frequency of measurement differ depending on the type of sensor. For example, with a blade embedded sensor, a thermocouple embedded in the furnace near the tuyere obtains the temperature of the blade embedded once per minute. In this way, based on each sensor's information, changes in the blade embedding temperature (30), changes in the furnace gas temperature (31), changes in the top gas analysis values (32)
) 、 溶銑 S i濃度推移 (3 3 ) 及び溶銑 S濃度推移 (3 4 ) が得られる。 ), The transition of hot metal Si concentration (33) and the transition of hot metal S concentration (34) are obtained.
③第 7図の (a ) に溶銑温度の測定結果例を示し、 そして (b ) に羽ロ埋込み 温度の測定結果例を示す。 この発明の溶銑温度の測定方法によれば、 出銑初期か ら末期まで、 溶銑温度の測定値は ± 5 °Cの範囲内に入っている。 予め、 高炉操業 の経験則及び Z又は専門知識を用いて高炉の炉熱推定モデル (3 5 ) を作成して おく。 上記①及び②において得られた温度レベルや温度推移等に基づき、 上記炉 熱推定モデル (3 5 ) を用いて、 炉熱レベル推定 (3 6 ) 及び炉熱推移推定 (3 7 ) をする。 上記 I及び Jにおいて得られた温度レベルや温度推移等に基づき、 高炉操業の経験則及び Z又は専門知識を用いて作成された高炉の炉熱推定モデル ( 3 5 ) を用いて、 炉熱レベル推定 (3 6 ) 及び炉熱推移推定 (3 7 ) をする。③ Fig. 7 (a) shows an example of the measurement result of the hot metal temperature, and (b) shows an example of the measurement result of the embedding temperature. According to the method for measuring hot metal temperature of the present invention, the measured value of hot metal temperature is within a range of ± 5 ° C from the initial stage to the final stage of tapping. A blast furnace heat estimation model (35) should be prepared in advance using the empirical rules of blast furnace operation and Z or expertise. Based on the temperature levels and temperature transitions obtained in ① and ② above, the furnace heat level estimation (36) and the furnace heat transition estimation (37) are performed using the furnace heat estimation model (35). Based on the temperature level and temperature transition obtained in I and J above, Estimate the furnace heat level (36) and estimate the furnace heat transition (37) using the blast furnace furnace heat estimation model (35) created using the empirical rules of blast furnace operation and Z or expertise.
④次いで、 上記各推定結果に基づき、 同じく炉熱推定モデル (3 5 ) を用いて 、 アクションマトリックス (3 8 ) を作成する。 アクションマトリックスは、 炉 熱レベルと炉熱推移の推定結果により、 炉熱の現在レベルを評価すると共に、 捋 来炉熱がどのように推移するかを推定し、 目標とする炉熱レベルに近づけ、 それ に維持するための判断基準とするものの一態様である。 ④ Next, based on the above estimation results, an action matrix (38) is created using the same furnace heat estimation model (35). The action matrix evaluates the current level of the furnace heat based on the estimated results of the furnace heat level and the furnace heat transition, estimates the transition of the conventional furnace heat, approaches the target furnace heat level, This is one aspect of the criteria used to maintain this.
(④— a ) 炉熱レベルの推定:溶銑温度の測定は、 出銑口からの噴流溶銑を対象 とするので、 炉内溶銑の温度がほぼそのままあらわれると考えられる。 しかも、 測定デ一夕の信頼性が高く、 連続的の計測できるので測定間隔も短くすることが できる。 従って、 ここで得られた溶銑温度レベルを炉熱レベルとみなしても十分 、 正確で且つ精度がよい。 そこで、 こうして得られた溶銑温度を現在の炉熱レベ ルとして採用する。  (④—a) Estimation of furnace heat level: Since hot metal temperature is measured for hot metal jet from a taphole, it is considered that the temperature of hot metal in the furnace appears almost as it is. In addition, the reliability of measurement data is high and continuous measurement is possible, so that the measurement interval can be shortened. Therefore, even if the obtained hot metal temperature level is regarded as the furnace heat level, it is sufficiently accurate and accurate. Therefore, the hot metal temperature obtained in this way is used as the current furnace heat level.
(④— b ) 炉熱推移の推定:各センサ一デ一夕より求められる推移に、 予めセン サ一毎に設定された重み付けを考慮し、 各センサーデ一夕を統合して炉熱推移を 求め、 次いで、 これを上述した溶銑温度レベルの推移で補正して、 今後の炉熱推 移とする。 このように、 各センサーデ一夕を炉熱推移の規準とするのは、 各セン サーデ—夕値の方が炉熱変化をより早期に検出するからである。  (④—b) Estimation of furnace heat transition: Considering the weights set for each sensor in advance, the transition obtained from each sensor data is integrated to calculate the furnace heat transition. Then, this is corrected by the above-mentioned transition of the hot metal temperature level, and is used as the future furnace heat transfer. In this way, the reason why each sensor data is used as a criterion for the furnace heat transition is that each sensor data detects the furnace heat change earlier.
(④— c ) こうして得られた現在の炉熱レベル及び炉熱推移の推定に基づき、 現 在の炉熱レベル及び炉熱推移にランクを付与する。 炉熱レベルのランク設定は、 、 例えば、 溶銑温度を 1 0で刻みで一ランクとし、 目標炉熱レベルを含むランク を中心に上下に 3つずつのランクを設け、 計 7ランクとする。 炉熱推移のランク 設定は、 例えば、 炉熱の傾きが 1 0 °CZ分刻みで一ランクとし、 傾き = 0を含む ランクを中心に上下に 2つずつのランクを設け、 計 5ランクとする。  (II—c) Based on the estimation of the current furnace heat level and furnace heat transition obtained in this way, a rank is assigned to the current furnace heat level and furnace heat transition. For example, the furnace heat level is set to a rank of, for example, one set of the hot metal temperature in increments of 10, and three ranks above and below the rank including the target furnace heat level, for a total of seven ranks. Rank setting of furnace heat transition is, for example, one rank of furnace heat in increments of 10 ° CZ, and two ranks above and below the rank including slope = 0, for a total of 5 ranks .
(④— d ) こうして作成されたアクションマトリックス (3 8 ) 中に、 現在の炉 熱レベルと炉熱推移とをもつ炉熱状態の該当位置を求める。  (④—d) In the action matrix (38) created in this way, find the corresponding position of the furnace heat state with the current furnace heat level and furnace heat transition.
⑤次いで、 アクションマトリックス中の該当位置で評価された現在の炉熱を、 目標炉熱に制御するために、 高炉の操業要因に対して補正処置をとる。 この補正 処置は、 アクションマトリックス情報を表示手段 (3 9 ) で表示し、 表示手段で 表示された情報に基づき操作者 (4 0 ) が行なう場合と、 人工知能システム (4 9) にアクションマトリックス情報を取り込み、 機械化により自動的に行なう場 合とに分ける。 (4) Next, corrective measures are taken for the blast furnace operating factors in order to control the current furnace heat evaluated at the corresponding position in the action matrix to the target furnace heat. This corrective action is performed by displaying the action matrix information on the display means (39) and by the operator (40) based on the information displayed on the display means. 9) The action matrix information is fetched into, and it is divided into the case where it is automatically performed by mechanization.
⑥ 上記⑤において、 操作者が補正処置をする場合は、 高炉操業における経験則 及び 又は専門知識 (41) を活用し、 処置 (アクション) 対象の操業要因 (4 ⑤ In the above ①, if the operator takes corrective action, he / she should utilize the experience and / or expertise in blast furnace operation (41) to take action factor (4).
3) 及びアクション量 (44) を決定する (42) 。 一方、 人工知能システムに より機械的に補正処置をする場合は、 高炉操業における経験則及び Z又は専門知 識を用いて予め作成された炉熱補正モデル (45) にしたがって計算機 (46) により、 アクション対象の操業要因 (43' ) 及びアクション量 (44' ) を決 定する (47) 。 こうして決定された補正アクションを実行することにより (43) and the action amount (44) are determined (42). On the other hand, when mechanical correction is performed mechanically by an artificial intelligence system, a computer (46) uses a empirical rule in blast furnace operation and a furnace heat correction model (45) created in advance using Z or expert knowledge, The operation factor (43 ') and the amount of action (44') of the action target are determined (47). By executing the correction action determined in this way, (4
8) 、 溶銑温度を目標値に維持する制御をし、 かくして炉熱を制御する。 8) Control the hot metal temperature to the target value, thus controlling the furnace heat.
⑦主要な炉熱支配因子として、 熱風中の湿分、 熱風温度、 PC比 (微粉炭吹 込み比率) 、 及びコ一クス比 (装入コークス比) 等があるが、 溶銑温度の調節に は、 熱風中の湿分を調整するのが便利である。 溶銑温度を上げるときは、 蒸気添 加量を減らせばよい。 次に、 この発明を実施例によって更に詳細に説明する。  炉 The main furnace heat controlling factors include moisture in hot air, hot air temperature, PC ratio (pulverized coal injection ratio), coke ratio (charge coke ratio), etc. However, it is convenient to adjust the moisture in the hot air. When raising the hot metal temperature, the amount of steam added should be reduced. Next, the present invention will be described in more detail with reference to examples.
第 2図に示した溶銑温度測定装置を用い、 第 1図に示した構造の溶銑温度測定 用光センサーュニットを用いて、 本発明の炉熱制御方法により高炉を操業した。 炉熱制御のフローは、 第 6図に示した通りである。  The blast furnace was operated by the furnace heat control method of the present invention using the hot metal temperature measuring device shown in FIG. 2 and the hot metal temperature measuring optical sensor unit having the structure shown in FIG. The flow of furnace heat control is as shown in FIG.
光センサ一ュニット 6は、 直径 125; mの石英ガラス製光ファイバ一 1の素 線を、 外径 1. 2mm、 内径 0. 8 mmの肉厚 0. 2 mmのステンレス製被覆管 (内管) 、 及び、 外径 3. 6mm、 内径 3. 0111111の肉厚0. 3 mmのステンレ ス製被覆管 (外管) で覆った二重構造のワイヤ一状のものである。 これを内径 6 mm、 外径 10mmのガイドパイプ 1 5の中を滑走させながら、 出銑中の噴出溶 銑流 8に挿入した。 光センサ一ュニット 6の供給速度を 400mm/秒に設定し た。 温度測定 1回当たりの時間を約 1 0〜 20秒とし、 この間の温度を連続測定 した。 出銑時間は 1タップ当たり 3〜 4時間であり、 この間 8〜 1 0回程度溶銑 流 8の温度を測定した。 溶銑温度の目標値を 1 505°Cとし、 熱風中の湿分を調 節して溶銑温度を制御した。 (試験結果一 1 ) : The optical sensor unit 6 is composed of a quartz glass optical fiber 11 having a diameter of 125 m and a stainless steel cladding tube (inner tube having an outer diameter of 1.2 mm and an inner diameter of 0.8 mm and a wall thickness of 0.2 mm). ), And a double-layered wire covered with a 0.3 mm thick stainless steel cladding tube (outer tube) with an outer diameter of 3.6 mm and an inner diameter of 3.011111. This was inserted into the hot metal stream 8 during tapping while sliding in a guide pipe 15 having an inner diameter of 6 mm and an outer diameter of 10 mm. The supply speed of the optical sensor unit 6 was set to 400 mm / sec. The temperature per measurement was about 10 to 20 seconds, and the temperature was measured continuously during this time. The tapping time was 3 to 4 hours per tap. During this time, the temperature of the hot metal stream 8 was measured about 8 to 10 times. The target value of the hot metal temperature was 1505 ° C, and the hot metal temperature was controlled by adjusting the moisture in the hot air. (Test result 1):
第 8図に、 上記実施例における出銑 3回分の溶銑温度の測定値、 溶銑中 S i濃 度、 及び熱風中湿分の添加量の経時変化を示す。 溶銑温度が安定して低く制御さ れているので、 溶銑中 S i濃度は 0 . 1 5〜0 . 2 1 wt.%の範囲内にあり、 平均 で 0 . 1 8 wt.%という、 安定して低シリコン溶銑が製造された。  FIG. 8 shows the time-dependent changes in the measured values of the hot metal temperature, the Si concentration in the hot metal, and the amount of moisture added in the hot air for the three tapping times in the above example. Since the hot metal temperature is controlled to be stable and low, the Si concentration in the hot metal is in the range of 0.15 to 0.21 wt.%, And is 0.18 wt.% On average. To produce low silicon hot metal.
一方、 従来法の溶銑温度制御方法として、 スキンマにおいてイマ一ジョン式温 度計で溶銑温度を測定し、 この測定値に基づき、 溶銑温度の設定目標値 1 5 0 5 °Cに制御するように、 熱風中の湿分を調節した。  On the other hand, as a conventional method of controlling hot metal temperature, the hot metal temperature is measured by an immersion thermometer at a skinmer, and based on the measured value, the hot metal temperature is controlled to a target value of 1505 ° C. The moisture in the hot air was adjusted.
第 9図に、 上記従来法における出銑 4回分のスキンマにおける溶銑温度の測定 値、 溶銑中 S i濃度、 及び熱風中湿分の添加量の経時変化を示す。 従来法におい ては、 溶銑中 S i濃度が大きく変動しており、 低シリコン溶銑を安定して製造す ることはできなかった。 溶銑中 S i濃度は 0 . 1 0〜0 . 3 0 wt.%の間で変動し ている。 従って、 真の溶銑温度は上下に大きく変動していたことがわかる。  Figure 9 shows the changes over time in the measured values of hot metal temperature, the hot metal Si concentration, and the amount of moisture added in hot air in skinmers for four tapping operations in the conventional method. In the conventional method, the Si concentration in the hot metal fluctuated greatly, and it was not possible to produce low silicon hot metal stably. The Si concentration in the hot metal fluctuates between 0.10 and 0.30 wt.%. Therefore, it can be seen that the true hot metal temperature fluctuated greatly up and down.
(試験結果一 2 ) :  (Test result 1 2):
上記実施例の方法により炉熱制御した、 出銑 7回分の操業試験、 及び、 溶銑温 度をスキンマ部で測定して炉熱制御した、 同じく出銑 7回分の操業試を行なつた 。 そして第 1 0図に、 本発明法における溶銑温度の測定値と、 従来法における溶 銑温度の測定値との対応関係を、 出銑初期におけるデ一夕 (図中の〇印) と、 従 来法における溶銑温度の測定値が当該出銑後期以降の最高温度に近い値を示す時 期のデータ (図中の秦印) とに層別して示す。  An operation test for seven tapping operations was performed with the furnace heat controlled by the method of the above-described embodiment, and an operation test for seven tapping operations was also performed by controlling the furnace heat by measuring the hot metal temperature at the skinner. FIG. 10 shows the correspondence between the measured value of the hot metal temperature in the method of the present invention and the measured value of the hot metal temperature in the conventional method, in the early stage of tapping (〇 in the figure). The measured values of the hot metal temperature in the next method are stratified with the data (Hata in the figure) when the measured value of the hot metal temperature shows a value close to the maximum temperature after the latter stage of tapping.
上記試験結果より、 また下記事項が明らかである。  The following items are clear from the above test results.
従来の高炉操業における炉熱制御方法では、 出銑温度を迅速に、 正確に精度良 く推定することが困難であるから、 炉熱の異常低下により発生する操業トラブル を未然に防止するために、 出銑温度の管理規準を実際に必要な温度水準よりも高 く設定し、 炉熱を安全サイドの高目の水準に制御している。 溶銑温度をこのよう に高めに管理すると、 燃料としてのコ一クス使用量を多くしなければならずコ一 クス比が高くなるという問題等がある。  With conventional furnace heat control methods for blast furnace operation, it is difficult to estimate tapping temperature quickly, accurately, and accurately.To prevent operation troubles caused by abnormally low furnace heat, The tapping temperature control standard is set higher than the actual required temperature level, and the furnace heat is controlled to a higher level on the safe side. If the hot metal temperature is controlled to be higher in this way, the amount of coke used as fuel must be increased, and the coke ratio will increase.
また、 溶銑温度が高い程、 下記反応式で示される S iの溶銑中への移行反応: ( S i O 2 ) + 2 〔C〕 → 〔S i〕 + 2 C O Also, as the hot metal temperature increases, the transfer reaction of Si into the hot metal represented by the following reaction formula: (S i O 2 ) + 2 [C] → [S i] + 2 CO
S i O + 〔C〕 → 〔S i〕 + C O が進行して溶銑中の S i濃度が高くなる。 そして、 溶銑中の S i濃度が高くなる ほど、 次工程の製鋼工程における原料溶銑の精鍊において、 媒溶剤としての石灰 を多量に消費し、 製鋼スラグ量の増加により F e歩留が低下し、 また製鋼スラグ の発生量が増加するという問題につながる。 S i O + [C] → [S i] + CO Progresses, and the Si concentration in the hot metal increases. The higher the Si concentration in the hot metal, the greater the consumption of lime as a solvent in the hot metal refining in the subsequent steelmaking process, and the lower the Fe yield due to the increase in the amount of steelmaking slag. It also leads to the problem of increasing the amount of steelmaking slag generated.
これに対して、 本発明の炉熱制御方法によれば、 炉熱を安定して制御すること ができるので、 溶銑温度の管理基準を実際に必要な目標温度水準まで下げること ができる。 従って、 余分なコ一クスを使用する必要がなくなる。 また、 溶銑温度 が低下した状態に制御することができるので溶銑中 S i濃度も、 0 . 1 5〜  On the other hand, according to the furnace heat control method of the present invention, since the furnace heat can be stably controlled, the control standard of the hot metal temperature can be reduced to the actually required target temperature level. Therefore, there is no need to use an extra coke. In addition, since the hot metal temperature can be controlled to be low, the Si concentration in the hot metal is also 0.15 to
2 1 wt.%の範囲内というように低く、 安定させることができる。 また、 炉熱の異 常低下による操業トラブルの発生も防止することができる。 以上述べたように、 この最良の形態 2によれば、 炉熱を安定して制御することが できる。 従って、 炉況の安定化が促進され、 溶銑製造コストが下がる。 また、 溶銑 温度を狭い範囲内に制御することができるので、 溶銑温度の管理目標値を低く設定 することができる。 これに伴い低シリコン溶銑を安定して製造することができる。 更に、 炉熱の異常低下による操業トラブルの発生も防止される。 It is as low as 21 wt.% And can be stabilized. In addition, it is possible to prevent operation troubles caused by abnormally low furnace heat. As described above, according to Best Mode 2, furnace heat can be controlled stably. Therefore, stabilization of the furnace condition is promoted and hot metal production cost is reduced. Also, since the hot metal temperature can be controlled within a narrow range, the target value for controlling the hot metal temperature can be set low. Accordingly, low silicon hot metal can be stably manufactured. In addition, operation troubles due to abnormally low furnace heat are prevented.
最良の形態 3 Best mode 3
本発明者等は、 溶銑温度を正確に精度良く、 時間遅れをできるだけ短く し、 連続的に測定することが可能な方法が必要であると考えた。  The present inventors considered that a method capable of measuring the hot metal temperature accurately and accurately, with a time delay as short as possible, and capable of continuous measurement was required.
そのような方法として、 出銑時に出銑口から噴出する溶銑を、 その温度降下が発 生しない内に安定して測定することが可能な新しい方法を研究した。 その結果、 それは金属管で被覆された光ファイバ一の利用方法を工夫して実現できること、 即ち、 光ファイバ一を金属管で補強し剛性を持たせ、 被測定溶銑流の状態に応じ て適切に設計されたワイヤー状の光センサーュニットを用いて溶銑温度を測定す ることにより達成できることを知見した。 As such a method, we researched a new method capable of stably measuring the hot metal spouting from the tap hole at the time of tapping without causing a temperature drop. As a result, it can be realized by devising a method of using the optical fiber covered with the metal tube, that is, the optical fiber is reinforced with a metal tube to have rigidity, and appropriately according to the state of the hot metal flow to be measured. It was found that this could be achieved by measuring the hot metal temperature using the designed wire-shaped optical sensor unit.
更に、 上記新しい溶銑測定方法による温度情報で各種センサー値情報をバック ァップすることにより、 炉熱推移を一層精度よく推定することができることを知 見した。  Furthermore, it was found that by backing up various sensor value information with the temperature information obtained by the new hot metal measurement method, it is possible to more accurately estimate the furnace heat transition.
また、 適切な炉熱推定モデルと炉熱補正モデルとが組み込まれ、 各モデルの知 識ベースには、 光ファイバ一による溶銑温度の測定情報及び高炉センサーによる 測定情報が含まれている人工知能システムを用いて炉熱を推論し、 また炉熱が定 常状態にあるのか、 非定常状態にあるのかを判断すれば、 迅速に且つ個人差なく 高炉の操業要因に対して補正処置をとることができることを知見した。  In addition, an appropriate furnace heat estimation model and a furnace heat correction model are incorporated, and the knowledge base of each model includes an artificial intelligence system that includes information on the measurement of hot metal temperature using an optical fiber and measurement information using a blast furnace sensor. By inferring the furnace heat using, and determining whether the furnace heat is in a steady state or in an unsteady state, it is possible to take corrective action for the operating factors of the blast furnace quickly and without individual differences. I learned that I can do it.
この発明は上記知見に基づきなされたものである。  The present invention has been made based on the above findings.
第 1の前記高炉の炉熱の制御は以下からなる:  The first control of the furnace heat of the blast furnace comprises:
高炉操業における経験則と専門知識を用いて作成された炉熱推定モデルを提供 する工程;  Providing a furnace heat estimation model created using experience and expertise in blast furnace operation;
得られた溶銑温度情報に基づき前記炉熱推定モデルを用いて、炉熱レベル及び 炉熱推移を推定する工程; と  Estimating a furnace heat level and a furnace heat transition using the furnace heat estimation model based on the obtained hot metal temperature information;
該推定された炉熱が定常状態にあるのか非定常状態にあるのかを判定するェ 程;  Determining whether the estimated furnace heat is in a steady state or an unsteady state;
該炉熱に関する判定結果に基づき高炉操業における経験則と専門知識を用いて 高炉の操業要因の補正処置をとり、 溶銑温度を制御する工程。  A process of controlling hot metal temperature by taking corrective action for blast furnace operation factors using empirical rules and expertise in blast furnace operation based on the determination result regarding the furnace heat.
該炉熱推定モデルは、 光ファイバ一による溶銑温度情報を含む炉熱推定の知識 ベースと、 光ファイバ一による溶銑温度測定情報と高炉センサ一による測定情報 を含む炉熱推移推定の知識ベースからなる。 第 2の高炉の炉熱の制御は以下からなる: The furnace heat estimation model consists of a knowledge base for furnace heat estimation including hot metal temperature information using an optical fiber, and a knowledge base for furnace heat transition estimation including hot metal temperature measurement information using an optical fiber and measurement information using a blast furnace sensor. . Control of the furnace heat of the second blast furnace consists of:
高炉操業における経験則と専門知識を用いて作成された炉熱推定モデルを提供 する工程;  Providing a furnace heat estimation model created using experience and expertise in blast furnace operation;
得られた溶銑温度情報に基づき前記炉熱推定モデルを用いて、炉熱レベル及び 炉熱推移を推定する工程; と  Estimating a furnace heat level and a furnace heat transition using the furnace heat estimation model based on the obtained hot metal temperature information;
該推定された炉熱が定常状態にあるのか非定常状態にあるのかを判定するェ 程;  Determining whether the estimated furnace heat is in a steady state or an unsteady state;
該炉熱に関する判定結果を表示手段で表示する工程;  Displaying the determination result regarding the furnace heat on a display means;
表示された判定結果に基づき高炉操業における経験則と専門知識を用いて高炉 の操業要因の補正処置をとり、 溶銑温度を制御する工程。  A process of controlling the hot metal temperature by taking corrective measures for blast furnace operation factors based on the displayed judgment results and using the rules of experience and expertise in blast furnace operation.
該炉熱推定モデルは、 光ファイバ一による溶銑温度情報を含む炉熱推定の知識 ベースと、 光ファイバ一による溶銑温度測定情報と高炉センサ一による測定情報 を含む炉熱推移推定の知識ベースからなる。 第 3の高炉の炉熱の制御は、 人工知能システムを用いて自動的に高炉の操業要 因の補正処置をとり、 溶銑温度を制御することからなる。  The furnace heat estimation model consists of a knowledge base for furnace heat estimation including hot metal temperature information using an optical fiber, and a knowledge base for furnace heat transition estimation including hot metal temperature measurement information using an optical fiber and measurement information using a blast furnace sensor. . The third control of the furnace heat in the blast furnace consists of automatically taking corrective action for the operating factors of the blast furnace using an artificial intelligence system and controlling the hot metal temperature.
前記人工知能システムは以下の工程を有する:  The artificial intelligence system has the following steps:
高炉操業における経験則と専門知識を用いて作成された炉熱推定モデル を提供する工程;  Providing a furnace heat estimation model created using experience and expertise in blast furnace operation;
得られた溶銑温度情報に基づき、 前記炉熱推定モデルを用いて炉熱レベ ル及び炉熱推移を推定する工程;  Estimating a furnace heat level and a furnace heat transition using the furnace heat estimation model based on the obtained hot metal temperature information;
該推定された炉熱が定常状態にあるのか非定常状態にあるのかを判定す る工程;  Determining whether the estimated furnace heat is in a steady state or an unsteady state;
高炉操業における経験則と専門知識を用いて作成された炉熱補正モデル を提供する工程;  Providing a furnace heat compensation model created using experience and expertise in blast furnace operation;
前記判定結果に基づき、 前記炉熱補正モデルを用いて、 高炉の操業要因 の補正処置を行う工程。 該炉熱推定モデルは、 光ファイバ一による溶銑温度情報を含む炉熱推定の知識 ベースと、 光ファイバ一による溶銑温度測定情報と高炉センサ一による測定情報 を含む炉熱推移推定の知識ベースからなる。 次に、 この最良の形態 3を説明する。 A step of performing a corrective action for an operating factor of the blast furnace using the furnace heat correction model based on the determination result. The furnace heat estimation model consists of a knowledge base for furnace heat estimation including hot metal temperature information using an optical fiber, and a knowledge base for furnace heat transition estimation including hot metal temperature measurement information using an optical fiber and measurement information using a blast furnace sensor. . Next, the best mode 3 will be described.
この発明による高炉の炉熱制御方法は、 出銑口から出銑された溶銑の温度を測 定し、 得られた温度情報に基づき高炉操業の操作者が高炉の操業要因に補正を加 えるアクションをとるか、 又は、 得られた温度情報に基づき人工知能システムを 用いて高炉の操業要因に補正を加えるアクションをとる工程を基本とするもので ある。  The method of controlling the heat of a blast furnace according to the present invention measures the temperature of the hot metal from a taphole, and the blast furnace operator corrects the blast furnace operation factor based on the obtained temperature information. It is based on the process of taking an action or taking an action to correct the operating factor of the blast furnace using an artificial intelligence system based on the obtained temperature information.
( 1 ) 溶銑温度の測定  (1) Hot metal temperature measurement
この発明の最大の特徴は、 溶銑温度の測定位置とその測定方法にある。 そして この測定値に基づき炉熱レベル及び炉熱推移を推定すると共に、 更にその測定値 に基づき炉熱状態が定常か非定常かの判断をする。 この判断 (判定) は所定の炉 熱推移モデルを用いて自動的に行なうことにある。  The most significant features of the present invention reside in the position and method of measuring hot metal temperature. Based on the measured values, the furnace heat level and the furnace heat transition are estimated, and based on the measured values, it is determined whether the furnace heat state is steady or unsteady. This judgment (judgment) consists in automatically making use of a predetermined furnace heat transition model.
炉熱レベルを代表すると考えられる溶銑温度を測定する位置としては、 炉内溶 銑温度に最も近い位置である、 出銑中に出銑口から噴出する溶銑を対象とするの が望ましい。 しかしながら、 このような激しい流動を伴なう溶銑の温度を正確に 安定した状態で連続的に測定するのは困難であつたが、 金属管で被覆された光フ アイバーをそのような溶銑流に挿入し、 光ファイバ一の先端から入射した溶銑の 放射光を検出することによりその困難を解消した。  It is desirable to measure the hot metal temperature, which is considered to be representative of the furnace heat level, at the position closest to the hot metal temperature in the furnace, which is the hot metal spouted from the tap hole during tapping. However, it has been difficult to accurately and continuously measure the temperature of hot metal with such a violent flow in a stable state.However, an optical fiber coated with a metal tube is used for such hot metal flow. The difficulty was solved by detecting the emitted light of the hot metal that was inserted and entered from the tip of the optical fiber.
本最良の形態 3において使用される金属管で被覆された光ファイバ一の構造は、 最良の形態 1の第 1図で示されたものと同じである。 本最良の形態 3において使 用される測温装置は、 最良の形態 1の第 2図で示されたものと同じである。  The structure of the optical fiber covered with the metal tube used in the present Best Mode 3 is the same as that shown in FIG. 1 of the Best Mode 1. The temperature measuring device used in Best Mode 3 is the same as that shown in FIG. 2 of Best Mode 1.
( 2 ) 炉熱制御のフロー  (2) Flow of furnace heat control
第 1 3図に、 本発明の炉熱制御のフローチャートを示す。 これを用いて本発明の 炉熱制御方法の例を説明する。  FIG. 13 shows a flowchart of the furnace heat control of the present invention. Using this, an example of the furnace heat control method of the present invention will be described.
① 高炉の出銑口噴流溶銑 (2 2 ) に光ファイバ一を内装した光センサ一ュニ ット (6 ) を所定時間挿入し、 温度測定 (2 3 ) をして溶銑温度情報 (2 4 ) を 得る。 溶銑温度の測定は連続的に行ない、 1夕ップの出銑時間約 3〜 4時間の間 を 2 0分間隔で区分し、 一区間の平均値を当該区間の代表溶銑温度とみなし、 こ れをこの区間の溶銑レベル (2 5 ) とする。 また、 直前の区間から当該区間への 溶銑温度の変動を、 当該区間の溶銑温度推移 (2 6 ) とする。 (1) An optical sensor unit (6) containing an optical fiber is inserted into the taphole jet hot metal (22) of the blast furnace for a predetermined time, and the temperature is measured (23) to obtain hot metal temperature information (24). ). The hot metal temperature is measured continuously, and the tapping time per evening is about 3 to 4 hours. Are divided at intervals of 20 minutes, the average value of one section is regarded as the representative hot metal temperature of the section, and this is defined as the hot metal level (25) of this section. The change of the hot metal temperature from the immediately preceding section to the section is defined as the transition of the hot metal temperature in the section (26).
② 一方、 各種炉体センサー (2 7 ) で所定の特性値を計測して (2 8 ) 、 セ ンサー情報 (2 9 ) を得る。 測定対象及び測定頻度の態様はサンサ一の種類によ り異なる。 例えば、 羽ロ埋込みセンサーでは羽口近くの炉体に埋め込んだ熱電対 により、 毎分 1回の羽ロ埋込み温度を得る。 こうして各センサー情報に基づき、 羽ロ埋込み温度推移 (3 0 ) 、 炉頂ガス温度推移 (3 1 ) 、 炉頂ガス分析値推移 (2) On the other hand, predetermined characteristic values are measured by various furnace sensors (27) (28) to obtain sensor information (29). The mode of measurement and the frequency of measurement differ depending on the type of sensor. For example, with a blade embedded sensor, a thermocouple embedded in the furnace near the tuyere obtains the temperature of the blade embedded once per minute. In this way, based on each sensor information, the embedding temperature transition (30), the furnace gas temperature transition (31), the furnace gas analysis value transition
( 3 2 ) 、 溶銑 S i濃度推移 (3 3 ) 及び溶銑 S濃度推移 (3 4 ) が得られる。 (32), hot metal Si concentration change (33) and hot metal S concentration change (34) are obtained.
③ 第 1 4図の (a ) に溶銑温度の測定結果例を示し、 そして (b ) に羽ロ埋込 み温度の測定結果例を示す。 3) (a) in Fig. 14 shows an example of the measurement results of the hot metal temperature, and (b) shows an example of the measurement results of the embedding temperature.
この発明の溶銑温度の測定方法によれば、 出銑初期から末期まで、 溶銑温度の 測定値は ± 5 の範囲内に入っている。 予め、 高炉操業の経験則及びノ又は専門 知識を用いて高炉の炉熱推定モデル (3 5 ) を作成しておく。 上記 I及び Jで得 られた温度レベルや温度推定等に基づき、 高炉操業の経験則及び Z又は専門知識 を用いて作成された高炉の炉熱推定モデル (3 5 ) を用いて、 炉熱レベルの推定 ( 3 6 ) 及び炉熱推移の推定 (3 7 ) をする。  According to the method for measuring hot metal temperature of the present invention, the measured value of hot metal temperature is within the range of ± 5 from the beginning to the end of tapping. A blast furnace heat estimation model (35) should be created in advance using the empirical rules of blast furnace operation and knowledge or expertise. Based on the temperature level and temperature estimation obtained in I and J above, the furnace heat level was calculated using the blast furnace operating rule and the blast furnace heat estimation model (35) created using Z or expert knowledge. Estimation (36) and estimation of furnace heat transition (37).
炉熱レベルの推定、 炉熱推移の推定、 及び異常低温把握方法は下記の通りである  The method of estimating the furnace heat level, estimating the change in the furnace heat, and grasping the abnormal low temperature are as follows:
〔a〕 炉熱レベルの推定: [A] Estimation of furnace heat level:
溶銑温度の測定は、 出銑口からの噴流溶銑を対象とするので、 炉内溶銑の温度 がほぼそのままあらわれると考えられる。 しかも、 測定デ一夕の信頼性が高く、 連続的の計測できるので測定間隔も短くすることができる。 従って、 ここで得ら れた溶銑温度レベルを炉熱レベルとみなしても十分、 正確で且つ精度がよい。 そ こで、 こうして得られた溶銑温度を現在の炉熱レベルとして採用する。  Since the measurement of hot metal temperature targets hot metal jet from a taphole, the temperature of hot metal in the furnace is considered to appear almost as it is. In addition, the reliability of the measurement data is high and continuous measurement is possible, so that the measurement interval can be shortened. Therefore, even if the obtained hot metal temperature level is regarded as the furnace heat level, it is sufficiently accurate and accurate. Therefore, the obtained hot metal temperature is used as the current furnace heat level.
〔b〕 炉熱推移の推定:  [B] Estimation of furnace heat transition:
各センサ一データより求められる推移に、 予めセンサ一毎に設定された重み付 けを考慮し、 各センサーデータを統合して炉熱推移を求め、 次いで、 これを上述 した溶銑温度レベルの推移で補正して、 今後の炉熱推移とする。 このように、 各 センサーデータを炉熱推移の規準とするのは、 各センサ一データ値の方が炉熱変 化をより早期に検出するからである。 Considering the weighting set in advance for each sensor, the transition obtained from each sensor data is taken into account, and the sensor data is integrated to obtain the furnace heat transition. Make corrections to make future furnace heat transitions. Thus, each The reason why the sensor data is used as a criterion for the furnace heat transition is that each sensor data value detects the furnace heat change earlier.
〔C〕 炉況異常の推定:  [C] Estimation of furnace condition abnormality:
ここで重要な点は、 炉熱が非定常状態の場合には、 炉況異常が発生していると 推定されるので、 アクションマトリックスの作成に当たっては、 定常状態領域と 共に、 非定常状態の領域も設定することである。 非定常状態は、 例えば、 異常低 温として顕れる。  It is important to note here that when the furnace heat is in an unsteady state, it is presumed that a furnace condition abnormality has occurred.Therefore, when creating the action matrix, both the steady state area and the unsteady state area Is also to set. The unsteady state manifests itself, for example, as abnormally low temperatures.
第 1 3図中の溶銑温度推移グラフに例示したように、 溶銑温度情報 (2 4 ) に おいて、 タップの出銑後最初の溶銑温度測定値 、 Τ 2 、 Τ 3 ) が、 Τ 、 Τ 2 のように異常に低い場合 (異常低温の場合) には、 残留溶銑滓の増加、 炉壁 付着物の落下、 未還元鉱石の降下、 あるいは亜鉛等の高蒸気圧金属の炉壁への析 出物質の落下等が推定される。 この時は、 緊急アクションが必要になる。 異常低 温の定義は経験則及び Ζ又は羽口観察結果等に基づき予め決めておく。 As illustrated in the hot metal temperature transition graph in Fig. 13, in the hot metal temperature information (24), the first measured hot metal temperature after tapping from the tap, Τ 2 , Τ 3 ) is Τ, Τ If the temperature is abnormally low as shown in ( 2 ) (abnormally low temperature), the residual molten iron slag increases, the furnace wall deposits fall, unreduced ore drops, or high vapor pressure metal such as zinc deposits on the furnace wall. It is estimated that the material falls. In this case, urgent action is required. The definition of abnormally low temperature shall be determined in advance based on empirical rules and Ζ or tuyere observation results.
④ 上記各推定結果を参照し、 炉熱推定モデル (3 5 ) を用いて、 予めァクシ ヨンマトリックス (3 8 ) を作成しておく。 アクションマトリックスは、 炉熱の 現在レベルを評価すると共に、 将来炉熱がどのように推移するかを推定し、 目標 とする炉熱レベルに近づけ、 それに維持するための判断基準とするものであり、 炉熱レベルの推定結果と炉熱推移の推定結果とのマトリックスの形態で構成する 。 この発明において、 アクションマトリックスを、 定常状態領域と非定常状態領 域とに区分して作成しておくことが特徴の一つである。  参照 Referring to the above estimation results, create an action matrix (38) in advance using the furnace heat estimation model (35). The action matrix evaluates the current level of furnace heat, estimates how the furnace heat will change in the future, and uses it as a criterion for approaching and maintaining the target furnace heat level. It is constructed in the form of a matrix of furnace heat level estimation results and furnace heat transition estimation results. One of the features of the present invention is that the action matrix is created by dividing it into a steady state area and an unsteady state area.
先ず、 炉熱レベル及び炉熱推移のそれぞれを、 幾つかのランクに区分する。 炉 熱レベルを、 例えば、 溶銑温度を 1 0 °C刻みで 1ランクとし、 炉熱推移を、 例え ば、 炉熱の傾きを 1 0 °CZ分刻みで 1ランクとする。 一方、 炉熱レベルと炉熱推 移とのそれぞれに関し、 正常範囲と異常範囲とを、 経験則及び/又は専門知識を 用いて定める。 今、 炉熱レベルの正常範囲は、 目標炉熱レベルを含むランクを中 心にその上下に 3つずつのランクが該当して 7ランクに区分され、 炉熱推移の正 常範囲は、 目標炉熱推移を含むランクを中心にその上下に 2つずつのランクが該 当して 5ランクに区分されたとする。 この場合は、 正常範囲に対応する上記 7 X 5のランクの領域を、 定常状態領域とする。 そして、 定常状態領域の外側の領域 を非定常状態領域とする。 なお、 1ランクの範囲の大きさは経験則及び Z又は専 門知識より定める。 First, each of the furnace heat level and the furnace heat transition is classified into several ranks. For example, the furnace heat level is set at one rank for the hot metal temperature in increments of 10 ° C, and the furnace heat transition is set at one rank for every 10 ° CZ, for example. On the other hand, a normal range and an abnormal range are determined for each of the furnace heat level and the furnace heat transfer using empirical rules and / or expertise. Now, the normal range of the furnace heat level is divided into seven ranks, with three ranks above and below the rank including the target furnace heat level, and the normal range of the furnace heat transition is the target furnace heat level. Suppose that two ranks above and below the rank including the heat transition correspond to five ranks. In this case, the area of the 7 × 5 rank corresponding to the normal range is defined as a steady state area. Then, a region outside the steady state region is defined as a non-steady state region. Note that the size of the range of one rank is based on empirical rules and Z or Determined from gate knowledge.
第 15図及び第 16図中に、 こうして構成されたアクションマトリックス例を 示す。 ここで、 炉熱レベルランク 1〜7と炉熱推移ランク 1〜5とで囲まれた領 域が定常状態領域であり、 その外周領域が非定常状態領域である。  FIGS. 15 and 16 show examples of the action matrix configured in this manner. Here, the area surrounded by the furnace heat level ranks 1 to 7 and the furnace heat transition ranks 1 to 5 is the steady state area, and the outer peripheral area is the unsteady state area.
⑤ 上記③で得られた炉熱レベルの推定、 及び炉熱推移の推定結果を、 こうし て求められたアクションマトリックス中の該当する位置に当てはめる。 即ち、 前 記第 13図で、 アクションマトリックス (38) により、 炉熱が定常状態 (YE S) か非定常状態 (NO) かを判断する。 そして、 補正処置を実行する。 定常状 態の場合は、 定常時アクション系 (S) に進み、 第 15図のフローに従い、 また、 非定常状態の場合は、 非定常時アクション系 (U) に進み、 第 16図のフローに 従って補正処置を実行する。 両者間では、 当然、 アクションの補正内容が異なり、 定常状態の場合は、 緩やかなアクション補正をするが、 非定常の場合には、 速や かに変化量の大きなァクション補正により緊急に対処する。 この点以外には両者 間で異ならない。  当 て Apply the furnace heat level estimation and furnace heat transition estimation results obtained in ③ above to the corresponding positions in the action matrix thus obtained. That is, in FIG. 13 described above, it is determined from the action matrix (38) whether the furnace heat is in a steady state (YE S) or an unsteady state (NO). Then, a corrective action is performed. In the steady state, proceed to the regular action system (S) and follow the flow shown in Fig. 15. In the unsteady state, proceed to the unsteady action system (U) and proceed to the flow in Fig. 16. Therefore, a corrective action is performed. Naturally, the correction contents of the actions differ between the two, and in the steady state, a gradual action correction is performed, but in the unsteady state, urgent action is taken by correcting the action with a large change amount immediately. Other than this, there is no difference between the two.
⑥ そこで、 上記補正処置のフロ一を第 16図の非定常状態時について説明す ると、 アクションマトリックス情報を画面 (39) に映し出し、 画面に表示され た情報に基づき操作者 (40) が行なう場合と、 人工知能システム (50) にァ クシヨンマトリックス情報を取り込み、 機械により自動的に行なう場合とに分け る。  ⑥ Therefore, the flow of the above corrective action will be described for the unsteady state shown in FIG. 16. The action matrix information is displayed on the screen (39), and the operator (40) performs the action based on the information displayed on the screen. The case is divided into the case where the function matrix information is imported into the artificial intelligence system (50) and automatically executed by a machine.
〔a〕 操作者が補正処置をする場合は、 高炉操業における経験則及びノ又は専 門知識 (41" ) を活用し、 最終的には当該操作者の判断で処置 (アクション) 対象の操業要因 (43" ) 及びアクション量 (44" ) を決定する (42" ) 。  [A] When the operator takes corrective action, he / she utilizes his / her empirical rules and knowledge or expertise (41 ") in blast furnace operation, and ultimately, the operating factor subject to the action (action) at his / her own discretion. (43 ") and the amount of action (44") are determined (42 ").
〔b〕 人工知能システムにより機械的に補正処置をする場合は、 高炉操業にお ける経験則及び Z又は専門知識を用いて予め作成された炉熱非定常時の炉熱補正 モデル (45" ) にしたがって計算機 (46) により、 アクション対象の操業要 因 (43" ' ) 及びアクション量 (44" ' ) を決定する (47" ) 。  [B] When mechanical correction is performed mechanically by an artificial intelligence system, a furnace heat correction model for non-stationary furnace heat prepared in advance using the empirical rules of blast furnace operation and Z or expertise (45 ") The operation factor (43 "') and the action amount (44"') of the action target are determined by the computer (46) according to (47 ").
こうして決定された補正アクションを実行することにより (48" ) 、 溶銑温度 を目標値に維持する制御をし、 かくして非定常時の炉熱を制御する。 By performing the corrective action determined in this way (48 "), control is exercised to maintain the hot metal temperature at the target value, thus controlling the non-stationary furnace heat.
⑦ 補正アクションは、 高炉の操業要因の条件設定の変更により行なわれる。 主要な炉熱支配因子として、 熱風中の湿分、 熱風温度、 PC比 (微粉炭吹込み比 率) 、 及びコ一クス比 (装入コ一クス比) 等があるが、 溶銑温度の調節には、 熱 風中の湿分を調整するのが便利である。 溶銑温度を上げるときは、 蒸気添加量を 減らせばよい。 補正 Corrective action is performed by changing the condition setting of blast furnace operation factors. The main furnace heat controlling factors are moisture in hot air, hot air temperature, PC ratio (pulverized coal injection ratio Rate, and coke ratio (charge coke ratio), etc. It is convenient to adjust the hot water temperature by adjusting the moisture in the hot air. When raising the hot metal temperature, the amount of steam added should be reduced.
このようにして、 残銑、 壁落ち等の有無をも自動的に判断し (4 9 ) 、 炉熱の定 常 ·非定常判断 (5 1 ) を自動的に行ない、 更に、 操業要因の条件設定の変更も 自動的に且つ適切に行なうことができる。 次に、 この発明を実施例によって更に詳細に説明する。  In this way, the presence or absence of residual iron, wall falling, etc. is automatically determined (49), and the steady / unsteady determination of furnace heat (51) is automatically performed. Settings can be changed automatically and appropriately. Next, the present invention will be described in more detail with reference to examples.
第 2図に示した溶銑温度測定装置を用い、 第 1図に示した構造の溶銑温度測定 用光センサ一ュニットを用いて、 本発明の炉熱制御方法により高炉を操業した。 第 1 3図、 第 1 5図と第 1 6図に示した炉熱制御のフローに従い、 人工知能を組 み込んだ制御システムにより炉熱を自動制御した。 詳細は次の通りである。  The blast furnace was operated by the furnace heat control method of the present invention using the hot metal temperature measuring device shown in FIG. 2 and the hot metal temperature measuring optical sensor unit having the structure shown in FIG. According to the flow of furnace heat control shown in Fig. 13, Fig. 15 and Fig. 16, furnace heat was automatically controlled by a control system incorporating artificial intelligence. Details are as follows.
光センサーュニット 6は、 直径 1 2 5 x mの石英ガラス製光ファイバ一 1の素 線を、 外径 1 . 2 mm、 内径 0 . 8 mmの肉厚 0 . 2 mmのステンレス製被覆管 The optical sensor unit 6 is a stainless steel cladding tube with an outer diameter of 1.2 mm and an inner diameter of 0.8 mm and a thickness of 0.2 mm.
(内管) 、 及び、 外径 3 . 6 mm、 内径 3 . 0 11111の肉厚0 . 3 mmのステンレ ス製被覆管 (外管) で覆った二重構造のワイヤ一状のものである。 これを内径 6 mm、 外径 1 0 mmのガイドパイプ 1 5の中を滑走させながら、 出銑中の噴出溶 銑流 8に挿入した。 光センサ一ュニット 6の供給速度を 4 0 O mmZ秒に設定し た。 温度測定 1回当たりの時間を約 1 0〜2 0秒とし、 この間の温度を連続測定 した。 出銑時間は 1タップ当たり 3〜 4時間であり、 この間 8〜 1 0回程度溶銑 流 8の温度を測定した。 溶銑温度の目標値を 1 5 0 5 °Cとし、 熱風中の湿分を調 節して溶銑温度を制御した。 (Inner tube) and a double-layered wire covered with a 0.3 mm thick stainless steel cladding tube (outer tube) with an outer diameter of 3.6 mm and an inner diameter of 3.011111. . This was inserted into the hot metal stream 8 during tapping while sliding in a guide pipe 15 having an inner diameter of 6 mm and an outer diameter of 10 mm. The supply speed of the optical sensor unit 6 was set to 40 O mmZ seconds. The time per temperature measurement was about 10 to 20 seconds, and the temperature during this time was measured continuously. The tapping time was 3 to 4 hours per tap. During this time, the temperature of the hot metal stream 8 was measured about 8 to 10 times. The target value of the hot metal temperature was set at 1505 ° C, and the hot metal temperature was controlled by adjusting the moisture in the hot air.
(試験結果一 1 ) :  (Test result 1):
第 1 7図に上記実施例における、 出銑 3回分の溶銑温度の測定値、 溶銑中 S i 濃度、 及び熱風中湿分の添加量の経時変化を示す。 各タップの出銑開始後初回の 溶銑温度に異常低温はみられない。 即ち、 炉熱は定常状態にあると判断された。 そこで、 第 1 3図における炉熱の定常 ·非定常判断 (5 1 ) により定常と判断さ れ、 定常時アクション系 (S ) に進み、 第 1 5図のフローチャートの人工知能 ( 5 0 ) システムによりアクション補正判断が行なわれ (4 7 ) 、 実行される (4 8 ) 。 こうして、 溶銑温度を制御されることにより炉熱を制御した。 その結果、 出銑期間中の溶銑温度は全期間を通じて 1 4 9 5 ~ 1 5 1 5 °Cとい う極めて狭い温度範囲内に制御されている。 またこの間の溶銑中 S i濃度は、 0 . 1 5〜0 . 2 1 wt.%の範囲内にあり、 平均値 0 . 1 8 wt.%という低シリコン 溶銑が安定して製造された。 Fig. 17 shows the time-dependent changes in the measured values of the hot metal temperature, the Si concentration in the hot metal, and the amount of moisture added in the hot air for the three tapping times in the above example. No abnormally low temperature is found in the initial hot metal temperature after the start of tapping of each tap. That is, it was determined that the furnace heat was in a steady state. Therefore, it is determined that the reactor heat is steady by the steady / unsteady determination (51) in Fig. 13 and the routine proceeds to the constant action system (S), and the artificial intelligence (50) system shown in the flowchart of Fig. 15 is used. , An action correction judgment is made (4 7) and executed (4 8). Thus, the furnace heat was controlled by controlling the hot metal temperature. As a result, the hot metal temperature during the tapping period is controlled within an extremely narrow temperature range of 1495-1515 ° C throughout the entire period. The Si concentration in the hot metal during this period was in the range of 0.15 to 0.21 wt.%, And low silicon hot metal with an average value of 0.18 wt.% Was produced stably.
一方、 従来法の溶銑温度制御方法として、 スキンマにおいてイマ一ジョン式温 度計で溶銑温度を測定し、 この測定値に基づき、 溶銑温度の設定目標値 1 5 0 5 °Cに制御するように、 熱風中の湿分を調節した。  On the other hand, as a conventional method of controlling hot metal temperature, the hot metal temperature is measured by an immersion thermometer at a skinmer, and based on the measured value, the hot metal temperature is controlled to a target value of 1505 ° C. The moisture in the hot air was adjusted.
第 1 8図に上記従来法における、 出銑 4回分のスキンマ部における溶銑温度の 測定値、 溶銑中 S i濃度、 及び熱風中湿分の添加量の経時変化を示す。 各タップ 内における溶銑温度は変化が大きく、 また多くの場合、 各末期に最高温度になつ ている。 タップ内でのこのような温度推移は、 出銖樋における溶銑の冷却が主原 因であるが、 この結果のみからは炉熱の定常 ·非定常状態を判断することは不可 能である。 そこで、 従来は操作者が、 過去の操業実績による経験則や各種炉体セ ンサ一値の異常挙動、 あるいは羽口からの炉況観察等を総合的に検討してその判 断をしていた。 従って、 炉熱の定常 ·非定常判断を人工知能システムにより自動 的に判断することはできなかった。 また、 本発明のような早期判断もできなかつ た。 更に、 判断に個人差もあった。  Fig. 18 shows the changes over time in the measured values of the hot metal temperature, the Si concentration in the hot metal, and the amount of moisture added in the hot air in the skinner for four tapping operations in the conventional method. Hot metal temperature in each tap varies greatly, and often reaches the highest temperature at the end of each tap. This temperature change in the tap is mainly due to the cooling of the hot metal in the drainage gutter, but it is not possible to judge the steady or unsteady state of the furnace heat from this result alone. In the past, operators made comprehensive judgments based on empirical rules based on past operating results, abnormal behavior of various furnace sensor values, or observation of reactor conditions from tuyeres. . Therefore, it was not possible to judge the steady / unsteady judgment of the furnace heat automatically by the artificial intelligence system. In addition, early judgment as in the present invention could not be made. In addition, there were individual differences in judgment.
一方、 溶銑温度の制御が不十分であったため、 スキンマ部における溶銑温度測 定値の変動が大きいだけでなく、 炉内の溶銑温度の変動も大きかった。  On the other hand, due to insufficient control of the hot metal temperature, not only did the measured value of the hot metal temperature in the skinner fluctuate significantly, but also the fluctuation of the hot metal temperature in the furnace was large.
このように、 従来の高炉操業における炉熱制御方法では、 出銑温度を迅速に、 正確に精度良く推定することが困難であるから、 炉熱の異常低下により発生する 操業トラブルを未然に防止するために、 出銑温度の管理規準を実際に必要な温度 水準よりも高く設定し、 炉熱を安全サイドの高目の水準に制御していた。 溶銑温 度をこのように高めに管理すると、 燃料としてのコ一クス使用量を多くしなけれ ばならずコークス比が高くなるという問題等がある。  As described above, it is difficult to estimate the tapping temperature quickly, accurately and accurately by the conventional furnace heat control method in the blast furnace operation, and thus it is possible to prevent operation troubles caused by abnormally low furnace heat. For this reason, the tapping temperature management standard was set higher than the actually required temperature level, and the furnace heat was controlled to a higher level on the safe side. If the hot metal temperature is controlled to be so high, the amount of coke used as fuel must be increased, and the coke ratio will increase.
また、 溶銑温度が高いほど、 下記反応式で示される S iの溶銑中への移行反応  In addition, the higher the hot metal temperature, the higher the transfer reaction of Si into the hot metal expressed by the following reaction formula
( S i O 2 ) + 2 C O → C S i ) + 2 C O (S i O 2) + 2 C O → C S i) + 2 C O
S i〇 + 〔C〕 → 〔S i〕 + C O  S i〇 + [C] → [S i] + C O
が進行して溶銑中の S i濃度が高くなる。 そして、 溶銑中の S i濃度が高くなる ほど、 次工程の製鋼工程における原料溶銑の精鍊において、 媒溶剤としての石灰 を多量に消費し、 製鋼スラグ量の増加により F e歩留が低下し、 また製鋼スラグ の発生量が増加するという問題につながる。 Progresses, and the Si concentration in the hot metal increases. And the Si concentration in the hot metal increases In the next step of steelmaking in the next steelmaking process, a large amount of lime is consumed as a solvent in the hot metal refining process, and the amount of steelmaking slag reduces the Fe yield and increases the amount of steelmaking slag generated. Leads to.
これに対して、 本発明の炉熱制御方法によれば、 炉熱を安定して制御すること ができるので、 溶銑温度の管理基準を実際に必要な目標温度水準まで下げること ができる。 従って、 余分なコ一クスを使用する必要がなくなる。 また、 溶銑温度 が低下した状態に制御することができるので溶銑中 S i濃度も、 例えば、 0 . 1 On the other hand, according to the furnace heat control method of the present invention, since the furnace heat can be stably controlled, the control standard of the hot metal temperature can be reduced to the actually required target temperature level. Therefore, there is no need to use an extra coke. In addition, since the hot metal temperature can be controlled to be lowered, the Si concentration in the hot metal can be, for example, 0.1.
5〜0 . 2 1 wt.%の範囲内というように低く、 安定させることができる。 また、 炉熱の異常低下による操業トラブルの発生も防止することができる。 It is as low as in the range of 5 to 0.21 wt.% And can be stabilized. In addition, it is possible to prevent operation troubles caused by abnormally low furnace heat.
(試験結果一 2 ) :  (Test result 1 2):
第 1 9図に、 上記実施例の方法により炉熱制御した高炉の操業において、 出銑 後最初の溶銑温度が異常低温を示した場合の温度の推移を示す。 前述した通り、 溶銑温度の 1プロットは、 出銑開始後の経過時間を 2 0分間隔で区分し、 一区間 の平均値を当該区間の代表溶銑温度としている。 第 1 9図によれば、 第 1タップ と第 2タップの初回溶銑温度のみが異常低温を示している。 このように、 初回の み異常低温を示すのは、 残留溶銑滓の増加、 炉壁付着物の落下、 未還元鉱石の降 下、 あるいは亜鉛等の高蒸気圧金属の炉壁への析出物質の落下等が発生していた ために、 出銑口付近の溶銑温度は異常に低下しており、 そのために出銑当初は異 常低温溶銑が流出し、 出銑時間の経過につれて上方の正常温度の溶銑が流出する ためである。 そして、 第 1タップの出銑口の向かい側の出銑口からの第 2タップ においても、 出銑後初回の溶銑温度のみが異常低温を示したのは上記と同じ理由 によるものであり、 第 3タップの初回溶銑温度には異常低温が解消している。 こ れは、 第 3タップの開始までには異常低温の直接原因である上記原因物質がなく なったことを示す。  FIG. 19 shows the transition of the temperature when the initial hot metal temperature after tapping shows an abnormally low temperature in the operation of the blast furnace in which the furnace heat is controlled by the method of the above embodiment. As described above, one plot of hot metal temperature divides the elapsed time after the start of tapping at intervals of 20 minutes, and sets the average value of one section as the representative hot metal temperature of that section. According to FIG. 19, only the initial hot metal temperature of the first tap and the second tap indicates abnormally low temperature. Thus, only the first time, the extremely low temperature is indicated by an increase in the residual molten iron slag, a fall in the furnace wall deposits, a fall in the unreduced ore, or a deposition of high vapor pressure metal such as zinc on the furnace wall. The hot metal temperature near the tap hole dropped abnormally due to the dropping, etc., and the abnormally low temperature hot metal flowed out at the beginning of tapping, and the normal temperature of the upper This is because hot metal flows out. Also, in the second tap from the tap hole opposite the tap hole of the first tap, only the first hot metal temperature after tapping showed abnormally low temperature for the same reason as described above. Abnormal low temperature has been eliminated in the initial hot metal temperature of the tap. This indicates that by the start of the third tap, the above-mentioned causative substances, which are the direct cause of the abnormally low temperature, have disappeared.
なお、 夕ップ後の初期溶銑温度測定値により、 このように明確な溶銑の低温異 常を検出することは従来不可能なことであつたが、 本発明によりそれが可能とな つた。 これに伴い、 残銑ゃ炉内での鉱石降下や物質落下の発生を高精度且つ迅速 に、 またその規模を定量的に判断することが可能になった。 以上述べたように、 この発明によれば、 高炉操業において溶銑温度を目標とす るレベルに正確に、 且つ狭い温度範囲に制御することができ、 また、 炉熱の異常 状態を早期に精度よく、 自動的に判断することができる。 こうして従来得られな かった良好な炉熱制御による炉況の高位安定化が実現可能となった。 その結果、 下記の効果が発揮される。 Although it was conventionally impossible to detect such a low-temperature abnormality of the hot metal from the initial hot metal temperature measurement value after the evening-up, the present invention has made it possible. Along with this, it has become possible to accurately and promptly determine the occurrence of ore fall and material fall in the remaining pig iron furnace, and to quantitatively determine the scale. As described above, according to the present invention, the hot metal temperature is targeted in the blast furnace operation. The temperature can be controlled accurately to a certain level and within a narrow temperature range, and the abnormal state of the furnace heat can be determined early, accurately and automatically. In this way, high-level stabilization of the furnace condition by good furnace heat control, which was not obtained conventionally, has become feasible. As a result, the following effects are exhibited.
I生産工程計画に対する一層柔軟な高炉操業の対応が可能となり、 生産性の向上 I More flexible operation of blast furnace operation in production process planning is possible, improving productivity
、 原料需給変動の吸収、 及び生産性の向上が図られる。 This will absorb fluctuations in supply and demand of raw materials and improve productivity.
J低 S i溶銑の安定製造、 コ一クス比の低減、 耐火物寿命の延長、 ガス利用率の 安定的向上、 及び副原料原単位の低減により溶銑製造コス卜の低減が図られると 共に、 原料資源の節減が図られる。  J Reduced hot metal production cost by stable production of low Si hot metal, lower coke ratio, longer refractory life, more stable gas utilization, and lower unit consumption of auxiliary materials Raw material resources can be saved.
κ炉熱異常に起因する高炉操業の重大トラブルが完全に解消し、 また、 高炉寿命 の延長が図られ、 また補修費の低減が図られる。 Severe troubles in blast furnace operation due to κ furnace heat abnormalities will be completely eliminated, blast furnace life will be prolonged, and repair costs will be reduced.
L炉熱制御の自動化により大幅な省力化が図られ、 更に、 複数高炉の集中管理化 や操業管理の無人化が促進され、 一層の省力化が図られる。  Significant labor savings can be achieved by automating L furnace heat control, and furthermore, centralized management of multiple blast furnaces and unmanned operation management are promoted, resulting in further labor savings.
このような高炉の炉熱制御方法を提供することができ、 工業上有用な効果がもた らされる。 It is possible to provide such a furnace heat control method for a blast furnace, which has an industrially useful effect.

Claims

請求の範囲 The scope of the claims
1. 溶銑を製造する高炉の操業方法は以下の工程からなる: 1. The method of operating a blast furnace for producing hot metal consists of the following steps:
金属管で被覆された光ファイバ一を準備する工程;  Providing an optical fiber coated with a metal tube;
高炉の出銑口から排出された溶銑流の温度を前記金属管で被覆された光ファ ィバ一を使用して測定し、 溶銑温度情報を得る工程; と  Measuring the temperature of the hot metal stream discharged from the taphole of the blast furnace using an optical fiber covered with the metal tube to obtain hot metal temperature information;
得られた溶銑温度情報に基づき高炉の炉熱を制御する工程。  A step of controlling the furnace heat of the blast furnace based on the obtained hot metal temperature information.
2. 前記溶銑流が、 出銑口から出銑樋に落下するまでの間にある噴出流である請 求の範囲第 1項記載の高炉操業方法。 2. The blast furnace operating method according to claim 1, wherein the hot metal flow is a jet flow from a tap hole to a tap gutter.
3. 前記炉熱を制御する工程が、 炉熱を制御し、 シリコン含有量が 0. 3 ^.%以 下である溶銑を製造する工程からなる請求の範囲第 1項記載の高炉操業方法。 3. The blast furnace operating method according to claim 1, wherein the step of controlling the furnace heat comprises the step of controlling the furnace heat to produce hot metal having a silicon content of 0.3% or less.
4. 前記炉熱を制御する工程が、 炉熱を制御し、 燃料比を低減させる工程からな る請求の範囲第 1項記載の高炉操業方法。 4. The blast furnace operating method according to claim 1, wherein the step of controlling the furnace heat comprises the step of controlling the furnace heat and reducing a fuel ratio.
5. 炉熱を制御する工程が以下の工程からなる請求の範囲第 1項記載の高炉操業 方法: 5. The blast furnace operating method according to claim 1, wherein the step of controlling the furnace heat comprises the following steps:
スキンマ一で溶銑温度を測定する場合の管理目標温度 (T2) よりも低い管 理目標温度 (1 ) を設定する工程; Setting a control target temperature (1) lower than the control target temperature (T 2 ) for measuring hot metal temperature with a skinner;
該管理目標温度 (1\) に対して (Ύ,- a) から (T\+ a) の管理温度 範囲を設定する工程;  Setting a control temperature range from (Ύ, -a) to (T \ + a) for the control target temperature (1 \);
該管理温度範囲になるように操業アクションをとる工程。  Taking an operation action so as to be in the control temperature range.
6. 炉熱を制御する工程が以下の工程からなる請求の範囲第 1項記載の高炉操業 方法: 6. The blast furnace operating method according to claim 1, wherein the step of controlling the furnace heat comprises the following steps:
スキンマーで溶銑温度を測定する場合の管理目標温度 (T2) よりも低い管 理目標温度 (1\) を設定する工程; Setting a target temperature (1 \) lower than the target temperature (T 2 ) for measuring hot metal temperature with skinmer;
スキンマーで溶銑温度を測定する場合の管理温度幅 (土 b) よりも狭い管理 温度幅 (士 a) を設定する工程; Controlling narrower than the control temperature range (Soil b) when measuring hot metal temperature with skinmer Setting a temperature range (a);
(T\一 a) から (T\+ a) の管理温度範囲になるように操業アクション をとる工程。  The process of taking operation action to control the temperature range from (T \ a) to (T \ + a).
7. 更に、 得られた溶銑温度情報に基づき高炉の炉芯の活性度を検知する工程を 有する請求の範囲第 1項記載の高炉操業方法。 7. The blast furnace operating method according to claim 1, further comprising a step of detecting the activity of the core of the blast furnace based on the obtained hot metal temperature information.
8. 高炉の炉芯の活性度を検知する工程が、 以下の工程からなる請求の範囲第 7 項記載の高炉操業方法: 8. The method for operating a blast furnace according to claim 7, wherein the step of detecting the activity of the core of the blast furnace comprises the following steps:
出銑初期の溶銑温度 (Ts) と該出銑初期を除いた出銑期間中の最低溶銑温 度 (Tmi n) を比較し、 AT = TS— Tmi nを求める工程; Compared tapping initial hot metal temperature (T s) From the hot metal temperature in tapping period except the said output pig iron initial a (T mi n), AT = T S - Request T mi n step;
前記比較工程を少なくとも 2タツプ以上続ける工程; と  Continuing the comparing step for at least two taps; and
△Tの推移から炉芯の状態を推定する工程。  A step of estimating the state of the core from the transition of ΔT.
9. 更に、 得られた溶銑温度情報に基づき微粉炭吹き込み量を制御する工程を有 する請求の範囲第 1項記載の高炉操業方法。 9. The blast furnace operating method according to claim 1, further comprising a step of controlling a pulverized coal injection amount based on the obtained hot metal temperature information.
10. 前記高炉の炉熱の制御が以下からなる請求の範固第 1項記載の高炉操業方 法: 10. The blast furnace operating method according to claim 1, wherein the furnace heat control of the blast furnace comprises:
高炉操業における経験則と専門知識を用いて作成された炉熱推定モデルを提供 する工程;  Providing a furnace heat estimation model created using experience and expertise in blast furnace operation;
得られた溶銑温度情報に基づき前記炉熱推定モデルを用いて、炉熱レベル及び 炉熱推移を推定し、 推定結果を得る工程; と  Estimating a furnace heat level and a furnace heat transition using the furnace heat estimation model based on the obtained hot metal temperature information, and obtaining an estimation result; and
該推定結果に基づき、高炉操業における経験則と専門知識を用いて高炉の操業 要因の補正処置をとり、 溶銑温度を制御する工程。  A process of controlling the hot metal temperature based on the estimation results by taking corrective measures for blast furnace operation factors using empirical rules and expertise in blast furnace operation.
1 1. 該炉熱推定モデルが、 光ファイバ一による溶銑温度情報を含む炉熱推定の 知識ベースと、 光ファイバ一による溶銑温度測定情報と高炉センサ一による測定 情報を含む炉熱推移推定の知識ベースからなる請求の範囲第 10項記載の高炉操 業方法。 1 1. The furnace heat estimation model is based on the knowledge base of furnace heat estimation including hot metal temperature information using optical fiber, and the knowledge of furnace heat transition estimation including hot metal temperature measurement information using optical fiber and measurement information using blast furnace sensor 1. The blast furnace operating method according to claim 10, comprising a base.
1 2 . 前記高炉の炉熱の制御が以下からなる請求の範囲第 1項記載の高炉操業方 法: 12. The blast furnace operating method according to claim 1, wherein the furnace heat control of the blast furnace comprises:
高炉操業における経験則と専門知識を用いて作成された炉熱推定モデルを提供 する工程;  Providing a furnace heat estimation model created using experience and expertise in blast furnace operation;
得られた溶銑温度情報に基づき、前記炉熱推定モデルを用いて炉熱レベル及び 炉熱推移を推定し、 推定結果を得る工程;  Estimating a furnace heat level and a furnace heat transition using the furnace heat estimation model based on the obtained hot metal temperature information, and obtaining an estimation result;
該推定結果を表示手段に表示する工程; と  Displaying the estimation result on display means;
表示された推定結果に基づき、高炉操業における経験則と専門知識を用いて高 炉の操業要因の補正処置をとり、 溶銑温度を制御する工程。  A process of controlling the hot metal temperature by taking corrective actions for blast furnace operating factors based on the displayed estimation results and using empirical rules and expertise in blast furnace operation.
1 3 . 該炉熱推定モデルは、 光ファイバ一による溶銑温度情報を含む炉熱推定の 知識ベースと、 光ファイバ一による溶銑温度測定情報と高炉センサーによる測定 情報を含む炉熱推移推定の知識べ一スからなる請求の範囲第 1 2項記載の高炉操 業方法。 13. The furnace heat estimation model is based on the knowledge base of furnace heat estimation including hot metal temperature information using optical fiber, and the knowledge of furnace heat transition estimation including hot metal temperature measurement information using optical fiber and measurement information using blast furnace sensors. 13. The blast furnace operating method according to claim 12, wherein the method comprises:
1 4. 請求の範囲第 1 3項記載の高炉操業方法において、 1 4. In the blast furnace operating method described in claim 13,
前記高炉の炉熱の制御は、 人工知能システムを用いて自動的に高炉の操業要 因の補正処置をとり、 溶銑温度を制御することからなる ;  Controlling the furnace heat of the blast furnace comprises automatically taking corrective action for the operating factors of the blast furnace using an artificial intelligence system and controlling the hot metal temperature;
前記人工知能システムは以下の工程を有する:  The artificial intelligence system has the following steps:
高炉操業における経験則と専門知識を用いて作成された炉熱推定モデル を提供する工程;  Providing a furnace heat estimation model created using experience and expertise in blast furnace operation;
得られた溶銑温度情報に基づき、 前記炉熱推定モデルを用いて炉熱レベ ル及び炉熱推移を推定し、 推定結果を得る工程;  A step of estimating a furnace heat level and a furnace heat transition using the furnace heat estimation model based on the obtained hot metal temperature information, and obtaining an estimation result;
高炉操業における経験則と専門知識を用いて作成された炉熱補正モデル を提供する工程;  Providing a furnace heat compensation model created using experience and expertise in blast furnace operation;
前記推定結果に基づき、 前記炉熱補正モデルを用いて、 高炉の操業要因 の補正処置を行う工程。 Performing a corrective action for the operating factor of the blast furnace using the furnace heat correction model based on the estimation result.
1 5 . 該炉熱推定モデルは、 光ファイバ一による溶銑温度情報を含む炉熱推定 の知識ベースと、 光ファイバ一による溶銑温度測定情報と高炉センサーによる 測定情報を含む炉熱推移推定の知識ベースからなる請求の範囲第 1 4項記載の 高炉操業方法。 15. The furnace heat estimation model is based on the knowledge base of furnace heat estimation including hot metal temperature information using optical fiber and the knowledge base of furnace heat transition estimation including hot metal temperature measurement information using optical fiber and measurement information using blast furnace sensors. The blast furnace operating method according to claim 14, wherein the method comprises:
1 6 . 請求の範囲第 1項記載の高炉操業方法において、 前記高炉の炉熱の制御は 以下からなる: 16. The blast furnace operating method according to claim 1, wherein the control of the furnace heat of the blast furnace comprises:
高炉操業における経験則と専門知識を用いて作成された炉熱推定モデルを提供 する工程;  Providing a furnace heat estimation model created using experience and expertise in blast furnace operation;
得られた溶銑温度情報に基づき前記炉熱推定モデルを用いて、炉熱レベル及び 炉熱推移を推定する工程; と  Estimating a furnace heat level and a furnace heat transition using the furnace heat estimation model based on the obtained hot metal temperature information;
該推定された炉熱が定常状態にあるのか非定常状態にあるのかを判定するェ 程;  Determining whether the estimated furnace heat is in a steady state or an unsteady state;
該炉熱に関する判定結果に基づき高炉操業における経験則と専門知識を用いて 高炉の操業要因の補正処置をとり、 溶銑温度を制御する工程。  A process of controlling hot metal temperature by taking corrective action for blast furnace operation factors using empirical rules and expertise in blast furnace operation based on the determination result regarding the furnace heat.
1 7 . 請求の範囲第 1 6項記載の高炉操業方法において、 該炉熱推定モデルは、 光ファイバ一による溶銑温度情報を含む炉熱推定の知識ベースと、 光ファイバ一 による溶銑温度測定情報と高炉センサーによる測定情報を含む炉熱推移推定の知 識ベースからなる。 17. The blast furnace operating method according to claim 16, wherein the furnace heat estimation model includes a knowledge base for furnace heat estimation including hot metal temperature information using an optical fiber, and a hot metal temperature measurement information using an optical fiber. It consists of a knowledge base for estimating furnace heat transition including information measured by blast furnace sensors.
1 8 . 請求の範囲第 1項記載の高炉操業方法において、 前記高炉の炉熱の制御は 以下からなる: 18. The blast furnace operating method according to claim 1, wherein the control of the furnace heat of the blast furnace comprises:
高炉操業における経験則と専門知識を用いて作成された炉熱推定モデルを提供 する工程;  Providing a furnace heat estimation model created using experience and expertise in blast furnace operation;
得られた溶銑温度情報に基づき前記炉熱推定モデルを用いて、炉熱レベル及び 炉熱推移を推定する工程; と  Estimating a furnace heat level and a furnace heat transition using the furnace heat estimation model based on the obtained hot metal temperature information;
該推定された炉熱が定常状態にあるのか非定常状態にあるのかを判定するェ 程;  Determining whether the estimated furnace heat is in a steady state or an unsteady state;
該炉熱に関する判定結果を表示手段で表示する工程; 表示された判定結果に基づき高炉操業における経験則と専門知識を用いて高炉 の操業要因の補正処置をとり、 溶銑温度を制御する工程。 Displaying the determination result regarding the furnace heat on a display means; A process of controlling the hot metal temperature by taking corrective measures for blast furnace operation factors based on the displayed judgment results and using the rules of experience and expertise in blast furnace operation.
1 9 . 請求の範囲第 1 8項記載の高炉操業方法において、 該炉熱推定モデルは、 光ファイバ一による溶銑温度情報を含む炉熱推定の知識ベースと、 光ファイバ一 による溶銑温度測定情報と高炉センサ一による測定情報を含む炉熱推移推定の知 識ベースからなる。 19. The blast furnace operating method according to claim 18, wherein the furnace heat estimation model comprises: a knowledge base for furnace heat estimation including hot metal temperature information using an optical fiber; and a hot metal temperature measurement information using an optical fiber. It consists of a knowledge base for estimating furnace heat transition including information measured by blast furnace sensors.
2 0 . 請求の範囲第 1項記載の高炉操業方法において、 20. The blast furnace operating method according to claim 1,
前記高炉の炉熱の制御は、 人工知能システムを用いて自動的に高炉の操業要 因の補正処置をとり、 溶銑温度を制御することからなる;  Controlling the furnace heat of the blast furnace comprises automatically taking action to correct the operating factors of the blast furnace and controlling the hot metal temperature using an artificial intelligence system;
前記人工知能システムは以下の工程を有する:  The artificial intelligence system has the following steps:
高炉操業における経験則と専門知識を用いて作成された炉熱推定モデル を提供する工程;  Providing a furnace heat estimation model created using experience and expertise in blast furnace operation;
得られた溶銑温度情報に基づき、 前記炉熱推定モデルを用いて炉熱レベ ル及び炉熱推移を推定する工程;  Estimating a furnace heat level and a furnace heat transition using the furnace heat estimation model based on the obtained hot metal temperature information;
該推定された炉熱が定常状態にあるのか非定常状態にあるのかを判定す る工程;  Determining whether the estimated furnace heat is in a steady state or an unsteady state;
高炉操業における経験則と専門知識を用いて作成された炉熱補正モデル を提供する工程;  Providing a furnace heat compensation model created using experience and expertise in blast furnace operation;
前記判定結果に基づき、 前記炉熱補正モデルを用いて、 高炉の操業要因 の補正処置を行う工程。  A step of performing a corrective action for an operating factor of the blast furnace using the furnace heat correction model based on the determination result.
2 1 . 請求の範囲第 2 0項記載の高炉操業方法において、 該炉熱推定モデルは、 光ファイバ一による溶銑温度情報を含む炉熱推定の知識べ一スと、 光ファイバ一 による溶銑温度測定情報と高炉センサ一による測定情報を含む炉熱推移推定の知 識ベースからなる。 21. The blast furnace operating method according to claim 20, wherein the furnace heat estimation model includes a knowledge base for furnace heat estimation including hot metal temperature information using an optical fiber, and a hot metal temperature measurement using an optical fiber. It consists of a knowledge base for estimating furnace heat transition, including information and information measured by blast furnace sensors.
PCT/JP1998/004951 1997-11-04 1998-11-02 Method of operating blast furnace WO1999023262A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020007004169A KR100362067B1 (en) 1997-11-04 1998-11-02 Method of operating blast furnace
EP98950490A EP1029931A4 (en) 1997-11-04 1998-11-02 Method of operating blast furnace
US09/556,569 US6302941B1 (en) 1997-11-04 2000-04-24 Method for operating a blast furnace

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP9/301943 1997-11-04
JP30194397 1997-11-04
JP2556198A JPH11222610A (en) 1998-02-06 1998-02-06 Method for controlling furnace heat of blast furnace
JP10/25561 1998-02-06
JP10/25560 1998-02-06
JP2556098A JPH11222609A (en) 1998-02-06 1998-02-06 Method for controlling furnace heat of blast furnace

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/556,569 Continuation US6302941B1 (en) 1997-11-04 2000-04-24 Method for operating a blast furnace

Publications (1)

Publication Number Publication Date
WO1999023262A1 true WO1999023262A1 (en) 1999-05-14

Family

ID=27285062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004951 WO1999023262A1 (en) 1997-11-04 1998-11-02 Method of operating blast furnace

Country Status (6)

Country Link
US (1) US6302941B1 (en)
EP (2) EP1491641B1 (en)
KR (1) KR100362067B1 (en)
DE (1) DE69838523T2 (en)
TW (1) TW454038B (en)
WO (1) WO1999023262A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002010868A2 (en) * 2000-07-27 2002-02-07 The Johns Hopkins University Method and system for the autonomous design of cybernetic systems
US8745494B2 (en) * 2009-05-27 2014-06-03 Zambala Lllp System and method for control of a simulated object that is associated with a physical location in the real world environment
US20100306825A1 (en) 2009-05-27 2010-12-02 Lucid Ventures, Inc. System and method for facilitating user interaction with a simulated object associated with a physical location
RU2451320C2 (en) * 2010-06-21 2012-05-20 Закрытое акционерное общество "МетПромПроект" Method for automatic control of electric drive of blast furnace gas sampling machine
JP5699834B2 (en) * 2011-07-08 2015-04-15 Jfeスチール株式会社 Blast furnace operation method
DE102011012174B4 (en) * 2011-02-23 2018-02-08 Heraeus Electro-Nite International N.V. Measuring device for measuring parameters in melts
TWI506140B (en) * 2012-03-23 2015-11-01 China Steel Corp A Method for Evaluating the Pre - Drilling Size of a New Furnace in a New Blast Furnace
US20130297460A1 (en) 2012-05-01 2013-11-07 Zambala Lllp System and method for facilitating transactions of a physical product or real life service via an augmented reality environment
CN104898433B (en) * 2015-06-25 2017-10-24 马鞍山市安工大工业技术研究院有限公司 A kind of blast furnace cooling intensity control method based on fuzzy-adaptation PID control
US10444079B2 (en) * 2016-10-13 2019-10-15 Tata Consultancy Services Limited System and method for accretion detection
DE102017105285A1 (en) 2017-03-13 2018-09-13 fos4X GmbH Temperature sensor and associated manufacturing method
CN110793880A (en) * 2019-09-30 2020-02-14 鞍钢股份有限公司 Device and method for simulating metallurgical reduction mineral aggregate process
JP7126078B2 (en) * 2019-11-29 2022-08-26 Jfeスチール株式会社 Operation method of ladle refining process
CN114134262A (en) * 2021-08-03 2022-03-04 武汉钢铁有限公司 Method for identifying working state of blast furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318418A (en) * 1976-08-05 1978-02-20 Kawasaki Steel Co Low fuel ratio blust furnace operation
JPS6119708A (en) * 1984-07-05 1986-01-28 Sumitomo Metal Ind Ltd Method for desiliconizing operation of blast furnace
JPH04268006A (en) * 1991-02-25 1992-09-24 Nkk Corp Method for controlling furnace heat in blast furnace
JPH05156327A (en) * 1991-12-06 1993-06-22 Nkk Corp Device for controlling furnace heat in blast furnace
JPH05239518A (en) * 1992-02-26 1993-09-17 Kobe Steel Ltd Method for controlling furnace heat in blast furnace
JPH0882553A (en) * 1994-09-12 1996-03-26 Nkk Corp Method for measuring molten iron temperature at tap hole by optical fiber thermometer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204813A (en) * 1984-03-28 1985-10-16 Nippon Kokan Kk <Nkk> Operating method of blast furnace
JPS60251206A (en) * 1984-05-28 1985-12-11 Kawasaki Steel Corp Method for controlling blast furnace heat
JPS61157606A (en) * 1984-12-28 1986-07-17 Nippon Steel Corp Silicification or desilicification controlling method of molten iron of blast furnace
KR0134654B1 (en) * 1993-10-05 1998-04-20 이요시 슌키치 Apparatus and method for measuring a temperature using optical fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318418A (en) * 1976-08-05 1978-02-20 Kawasaki Steel Co Low fuel ratio blust furnace operation
JPS6119708A (en) * 1984-07-05 1986-01-28 Sumitomo Metal Ind Ltd Method for desiliconizing operation of blast furnace
JPH04268006A (en) * 1991-02-25 1992-09-24 Nkk Corp Method for controlling furnace heat in blast furnace
JPH05156327A (en) * 1991-12-06 1993-06-22 Nkk Corp Device for controlling furnace heat in blast furnace
JPH05239518A (en) * 1992-02-26 1993-09-17 Kobe Steel Ltd Method for controlling furnace heat in blast furnace
JPH0882553A (en) * 1994-09-12 1996-03-26 Nkk Corp Method for measuring molten iron temperature at tap hole by optical fiber thermometer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1029931A4 *

Also Published As

Publication number Publication date
DE69838523T2 (en) 2008-06-26
TW454038B (en) 2001-09-11
EP1029931A4 (en) 2003-10-01
EP1491641A1 (en) 2004-12-29
EP1491641B1 (en) 2007-10-03
US6302941B1 (en) 2001-10-16
EP1029931A1 (en) 2000-08-23
DE69838523D1 (en) 2007-11-15
KR100362067B1 (en) 2002-11-22
KR20010024536A (en) 2001-03-26

Similar Documents

Publication Publication Date Title
WO1999023262A1 (en) Method of operating blast furnace
CN103439999B (en) Method for controlling abnormal furnace temperature of blast furnace according to temperature changes of cooling wall
JP4855002B2 (en) Blast furnace operation method with pulverized coal injection
JPH11222610A (en) Method for controlling furnace heat of blast furnace
JPH11222611A (en) Operation of blast furnace
JP5862470B2 (en) Blast furnace resting method
JPH11222609A (en) Method for controlling furnace heat of blast furnace
JP2724365B2 (en) Blast furnace operation method
JP2022152721A (en) Operation method of blast furnace
WO2023112505A1 (en) Method for producing molten iron
JP2009235437A (en) Method for controlling blast furnace operation at blowing-stop time in large reduction of charged material level
JP2001040405A (en) Method for evaluating mud material for iron tapping hole in blast furnace and method for opening iron tapping hole
CN116770018A (en) Method for controlling molten steel temperature by LF bottom blowing argon
JPH09227911A (en) Operation of blast furnace
JP2837284B2 (en) Method and apparatus for producing hot metal containing chromium
JP2023131619A (en) Molten iron temperature measurement method and blast furnace operation method
Andreev et al. Obtaining reliable information on energy-saving regimes for the heating of continuous-cast semifinished products prior to rolling
JP2022148377A (en) Blast furnace operation method
JPS5985841A (en) Manufacture of ferrochromium
KR20220154826A (en) A method for detecting fluctuations in the solidified layer and a method for operating a blast furnace
JPS5928515A (en) Method and apparatus for refining steel
JPH0967603A (en) Operation of blast furnace
JPH0293010A (en) Method for removing sticking material at circumference of tuyere in smelting reduction furnace
JP2001335818A (en) Method for cooling furnace bottom in blast furnace
JPH0417607A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007004169

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09556569

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998950490

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998950490

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007004169

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007004169

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998950490

Country of ref document: EP