JP4855002B2 - Blast furnace operation method with pulverized coal injection - Google Patents

Blast furnace operation method with pulverized coal injection Download PDF

Info

Publication number
JP4855002B2
JP4855002B2 JP2005215019A JP2005215019A JP4855002B2 JP 4855002 B2 JP4855002 B2 JP 4855002B2 JP 2005215019 A JP2005215019 A JP 2005215019A JP 2005215019 A JP2005215019 A JP 2005215019A JP 4855002 B2 JP4855002 B2 JP 4855002B2
Authority
JP
Japan
Prior art keywords
pulverized coal
flow rate
tuyere
control
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005215019A
Other languages
Japanese (ja)
Other versions
JP2007031758A (en
Inventor
豊 藤原
邦義 阿南
昭弘 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005215019A priority Critical patent/JP4855002B2/en
Publication of JP2007031758A publication Critical patent/JP2007031758A/en
Application granted granted Critical
Publication of JP4855002B2 publication Critical patent/JP4855002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Description

本発明は、微粉炭分配流量制御装置にて各分配支管に分配された微粉炭を、羽口から熱風とともに吹き込む高炉操業方法に関する。   The present invention relates to a blast furnace operating method in which pulverized coal distributed to each distribution branch pipe by a pulverized coal distribution flow rate control device is blown together with hot air from a tuyere.

従来から、高炉操業においては、コークス比を低減するため、羽口から微粉炭を吹き込む操業が行われている。微粉炭は、通常、図1に示す送給・分配経路に従って羽口9に到達し、熱風ともに高炉12内に吹き込まれる。   Conventionally, in blast furnace operation, in order to reduce the coke ratio, operation in which pulverized coal is blown from the tuyere has been performed. The pulverized coal normally reaches the tuyere 9 according to the supply / distribution route shown in FIG. 1 and is blown into the blast furnace 12 together with hot air.

即ち、まず、微粉炭は、微粉炭貯蔵槽(図示なし)から送給されて加圧タンク1に貯留された後、弁2の開放により微粉炭気送流となって、気送支管3、気送本管4を経て分配器5へ送給される。なお、微粉炭気送流は、途中、加温空気供給器6から希釈器7を経て供給される加温空気により希釈される。   That is, first, pulverized coal is supplied from a pulverized coal storage tank (not shown) and stored in the pressurized tank 1, and then becomes a pulverized coal air flow by opening the valve 2, It is fed to the distributor 5 through the air main pipe 4. In addition, the pulverized coal air flow is diluted with warm air supplied from the warm air supply device 6 via the diluter 7 on the way.

そして、微粉炭は、分配器5において、先端を羽口9内に置く分配支管8に分配、送給され、最終的に、送風本管11から送風支管10を経て吹き込まれる熱風とともに、羽口9から高炉12内に吹き込まれる。   Then, the pulverized coal is distributed and fed in the distributor 5 to the distribution branch pipe 8 whose tip is placed in the tuyere 9, and finally the hot air blown from the blower main pipe 11 through the blower branch pipe 10 together with the tuyere 9 is blown into the blast furnace 12.

本来、分配装置(器)は、微粉炭気流を各分配支管に均等に分配することにより、微粉炭を各羽口から炉内に均等に吹き込み、高炉の炉周方向における熱管理を円滑に行い、かつ、熱分布を安定させるものである。それ故、これまで、微粉炭の均等分配を図る技術が幾つか提案されている(特許文献1〜3、参照)。   Originally, the distribution device (equipment) distributes the pulverized coal air flow evenly to each distribution branch pipe, so that the pulverized coal is evenly blown into the furnace from each tuyere and smoothly manages the heat in the blast furnace circumferential direction. And, it stabilizes the heat distribution. Therefore, some techniques for achieving even distribution of pulverized coal have been proposed so far (see Patent Documents 1 to 3).

しかし、炉内状況は一定ではなく、特に、羽口近傍の炉況は変化し易いので、各羽口近傍の炉底外周位置にて、炉底温度、溶銑温度、スラグ温度、及び、ステーブ温度の1つ又は2つ以上、及び/又は、装入物降下速度等を測定し、炉況管理を厳密に行っている。   However, the furnace conditions are not constant, and especially the furnace conditions near the tuyere are likely to change, so the furnace bottom temperature, hot metal temperature, slag temperature, and stave temperature at the furnace bottom outer peripheral position near each tuyere. One or more of the above and / or the charge lowering speed are measured, and the furnace condition management is strictly performed.

なかでも、炉底温度は重要な操業因子で、炉底温度が上昇した時は、炉底のカーボンレンガが損耗しているので、何らかの対応が必要である。通常、この場合、損耗しているカーボンレンガ直上の送風支管において、流量調整弁により送風支管流量を低減し、上記カーボンレンガの近傍に滴下する溶銑量を低減する。   Of these, the furnace bottom temperature is an important operating factor. When the furnace bottom temperature rises, the carbon bricks at the furnace bottom are worn out, and some measures are necessary. Usually, in this case, in the blowing branch directly above the worn carbon brick, the flow rate of the blowing branch pipe is reduced by the flow rate adjusting valve, and the amount of molten iron dripping in the vicinity of the carbon brick is reduced.

この時、微粉炭流量を調整しないと、送風支管流量を低減した羽口先の微粉炭比が上昇し、未燃焼微粉炭が羽口先に堆積する。その結果、羽口前の炉芯部における通気性、通液性が悪化し、適切なガス流れ、溶銑流れ、及び、溶滓流れが阻害され、高炉操業に悪影響を与えることになる。   At this time, if the pulverized coal flow rate is not adjusted, the pulverized coal ratio of the tuyere tip with the reduced blower branch flow rate increases, and unburned pulverized coal accumulates on the tuyere tip. As a result, the air permeability and liquid permeability in the furnace core before the tuyere are deteriorated, and an appropriate gas flow, hot metal flow, and hot metal flow are hindered, which adversely affects blast furnace operation.

しかし、現時点で、送風支管流量の増減に応じ微粉炭流量を制御する方法が存在しないので、微粉炭流量をそのままにして吹き込み続けるか、又は、微粉炭吹込みを停止せざるを得ない。   However, at the present time, there is no method for controlling the pulverized coal flow rate according to the increase or decrease in the blast branch flow rate, so it is necessary to continue blowing with the pulverized coal flow rate as it is or to stop the pulverized coal blowing.

微粉炭吹込みを停止すると、羽口前の微粉炭比及び還元材比が著しく低下し、その影響で、羽口近傍を流れる溶銑及び溶滓の温度が低下する。そして、昇温及び還元が遅れている未溶融の溶銑及び溶滓が炉芯コークスに貯留する状況となり、長期的に通気性及び通液性が悪化する。その結果、適切なガス流れ、溶銑流れ、及び、溶滓流れが阻害され、高炉操業に悪影響を与えることになる。   When the pulverized coal blowing is stopped, the ratio of the pulverized coal before the tuyere and the ratio of the reducing material are significantly reduced, and the temperature of the hot metal and hot metal flowing in the vicinity of the tuyere is lowered due to the influence. And it will be in the condition where the unmelted hot metal and hot metal which temperature rising and reduction | restoration are behind accumulate in a furnace core coke, and air permeability and liquid permeability will deteriorate in the long run. As a result, an appropriate gas flow, hot metal flow, and hot metal flow are hindered, which adversely affects blast furnace operation.

したがって、微粉炭吹き込み高炉操業においては、送風支管流量の増減に応じ微粉炭流量を制御する技術が求められている。また、微粉炭流量を適確に制御するためには、微粉炭流量を、瞬時に精度よく検出する技術が必要である。   Therefore, in pulverized coal injection blast furnace operation, a technique for controlling the pulverized coal flow rate according to the increase or decrease of the blast branch pipe flow rate is required. In addition, in order to accurately control the pulverized coal flow rate, a technique for instantaneously and accurately detecting the pulverized coal flow rate is required.

しかし、今のところ、分配支管内を流れる微粉炭の量を、瞬時に精度よく検出して、微粉炭流量を適確に制御し得る微粉炭分配制御装置は提案されていない。   However, at present, no pulverized coal distribution control device has been proposed that can detect the amount of pulverized coal flowing in the distribution branch pipes accurately and instantaneously to accurately control the pulverized coal flow rate.

特開昭58−69620号公報JP 58-69620 A 特開昭61−7138号公報JP 61-7138 A 特開昭61−206736号公報JP-A 61-206736

本発明は、上記要望と現状を踏まえ、送風支管における送風流量の増減に応じて、微粉炭を気送流で搬送する分配支管における微粉炭流量を増減し、羽口前における還元材比を一定に維持して、高炉操業上の悪影響を回避する微粉炭吹き込み高炉操業方法を提供することを課題とする。   Based on the above request and present situation, the present invention increases or decreases the pulverized coal flow rate in the distribution branch pipe that conveys pulverized coal by air flow according to the increase or decrease in the blast flow rate in the blower branch pipe, and the reducing material ratio in front of the tuyere is constant. It is an object of the present invention to provide a pulverized coal blowing blast furnace operating method that maintains the above and avoids adverse effects on blast furnace operation.

本発明者は、特願2005−214635号にて、静電容量式微粉炭流量計を用いて、分配支管における微粉炭流量を、瞬時にかつ精度よく測定し、この測定値に基づいて、該微粉炭流量、即ち、羽口から吹き込む微粉炭の量を制御する微粉炭分配流量制御装置を提案した。   The present inventor, in Japanese Patent Application No. 2005-214635, measured the pulverized coal flow rate in the distribution branch instantaneously and accurately using a capacitance type pulverized coal flowmeter, and based on this measured value, A pulverized coal distribution flow rate control device for controlling the coal flow rate, that is, the amount of pulverized coal blown from the tuyere was proposed.

本発明者は、上記微粉炭分配流量制御装置による微粉炭流量の制御と、炉況制御を有機的に組み合わせれば、微粉炭流量を炉況に合わせ定量的に制御することができ、その結果、高炉操業上の悪影響を回避でき、さらに、操業指標の向上を図ることができるのではないかとの発想に至り、鋭意研究した。   The present inventor can organically combine the control of the pulverized coal flow rate by the pulverized coal distribution flow rate control device and the furnace state control, and the pulverized coal flow rate can be quantitatively controlled according to the furnace state. The research team diligently came up with the idea that it would be possible to avoid adverse effects on blast furnace operation and further improve the operation index.

本発明は、その研究結果に基づいてなされたもので、その要旨は以下のとおりである。   The present invention has been made based on the research results, and the gist thereof is as follows.

(1) 微粉炭分配流量制御装置にて各分配支管に分配された微粉炭を羽口から熱風とともに吹き込む高炉操業方法において、
(i)各羽口にて、送風流量及び微粉炭流量を測定するとともに、各羽口の外周位置にて、炉底温度、及び、ステーブ温度の1つ又は2つ、及び/又は、装入物降下速度を測定し、
(ii)(a) 炉底温度、及び、ステーブ温度の1つ又は2つ、及び/又は、装入物降下速度が管理基準値より高い羽口では、送風流量を低減するとともに、送風流量の低減量に応じて、微粉炭流量を下記式(1)で定まる目標微粉炭流量に低減し、
(b) 炉底温度、及び、ステーブ温度の1つ又は2つ、及び/又は、装入物降下速度が管理基準値より低い羽口では、送風流量を各羽口の送風流量の平均流量とし、
各羽口における微粉炭流量を個別に制御することを特徴とする微粉炭吹き込み高炉操業方法。
PCka(t+Δt)=BVk(t)/Σn i=1BVi(t)×Σn i=1PCi(t) …(1)
ただし、
i:羽口番号(=1、・・・、n)
PCka(t+Δt):k番目の羽口(制御対象)の目標微粉炭流量(Nm3/h)
BVk(t):k番目の羽口(制御対象)の測定送風流量(Nm3/h)
BVi(t):i番目の羽口の測定送風流量(Nm3/h)
PCi(t):i番目の羽口の測定微粉炭流量(Nm3/h)
t:時間(sec)
Δt:測定時間間隔(sec)
(1) In a blast furnace operating method in which pulverized coal distributed to each distribution branch by a pulverized coal distribution flow rate control device is blown together with hot air from a tuyere,
(I) At each tuyere, the air flow rate and pulverized coal flow rate are measured, and at the outer peripheral position of each tuyere, one or two of the furnace bottom temperature and stave temperature , and / or charging Measure the object descent speed,
(Ii) (a) furnace bottom temperature, and, one or two stave temperature, and / or, together with the charge descent speed is higher tuyere from the management reference value, reduces the air blowing rate, the blast flow rate According to the reduction amount, the pulverized coal flow rate is reduced to the target pulverized coal flow rate determined by the following formula (1),
(b) furnace bottom temperature, and, one or two of stave temperature, and / or at a lower tuyere than charge descent speed management reference value, the blower flow rate and the average flow rate of the air flow rate of each tuyere ,
A method for operating a blast furnace in which pulverized coal is injected, characterized by individually controlling the flow rate of pulverized coal at each tuyere.
PCka (t + Δt) = BVk (t) / Σ n i = 1 BVi (t) × Σ n i = 1 PCi (t) ... (1)
However,
i: tuyere number (= 1,..., n)
PCka (t + Δt): target pulverized coal flow rate (Nm 3 / h) at the k th tuyere (control target)
BVk (t): measured ventilation flow rate (Nm 3 / h) of the k th tuyere (control target)
BVi (t): measured air flow rate at the i-th tuyere (Nm 3 / h)
PCi (t): measured pulverized coal flow rate at the i th tuyere (Nm 3 / h)
t: Time (sec)
Δt: Measurement time interval (sec)

) 前記微粉炭分配流量制御装置として、微粉炭気送流を、逆円錐形の下部中央から導入し、円形天井壁の中央部に衝突せしめて、半径方向に放射線状に分流させ、周壁内周面に所定高さ及び間隔で配置した開口部に連結する羽口と同数の分配支管に分配する微粉炭量を、上記開口部に装着した制御管を周壁に対し進退させることにより制御する微粉炭分配流量制御装置を用い、制御管の突出し量(mm)と分配支管内の微粉炭流量との関係に基づいて、目標微粉炭量に応じて制御管の突出し量(先端位置)を変えることにより、各羽口における微粉炭流量を制御することを特徴とする前記(1)に記載の微粉炭吹き込み高炉操業方法。 ( 2 ) As the pulverized coal distribution flow rate control device, the pulverized coal air flow is introduced from the center of the lower part of the inverted conical shape, collides with the central part of the circular ceiling wall, and is radially diverted to the peripheral wall. The amount of pulverized coal distributed to the same number of distribution branch pipes as the tuyere connected to the openings arranged at a predetermined height and interval on the inner peripheral surface is controlled by advancing and retracting the control pipe attached to the openings with respect to the peripheral wall. Using the pulverized coal distribution flow rate control device, based on the relationship between the protruding amount (mm) of the control pipe and the pulverized coal flow rate in the distribution branch pipe, the protruding amount (tip position) of the control pipe is changed according to the target pulverized coal amount. Thus, the pulverized coal injection blast furnace operating method according to (1 ) above, wherein the pulverized coal flow rate at each tuyere is controlled.

) 前記微粉炭分配流量制御装置として、微粉炭気送流を、逆円錐形の下部中央から導入し、円形天井壁の中央部に衝突せしめて、半径方向に放射線状に分流させ、周壁内周面に所定高さ及び間隔で配置した開口部に連結する羽口と同数の分配支管に分配する微粉炭量を、上記開口部に装着した制御管を周壁に対し進退させることにより制御する微粉炭分配流量制御装置を用い、制御管の突出し量(mm)と分配支管内の微粉炭流量との関係に基づいて、目標微粉炭量に応じて、下記式(3)を満足する制御管の突出し量(先端位置)となるように制御管を進退させることにより、各羽口における微粉炭流量を制御することを特徴とする前記(1)又は(2)に記載の微粉炭吹き込み高炉操業方法。
(PCka(t+Δt)−PCk(t))/(Σn i=1PCi(t)/n)
=a×(Xka(t+Δt)−Xk(t))+b×(Xka(t+Δt) −Xk(t)) +c×(Xka(t+Δt)−Xk(t)) …(3)
ただし、
i:羽口番号(=1、・・・、n)
PCka(t+Δt):k番目の羽口(制御対象)の目標微粉炭流量(Nm3/h)
PCk(t):k番目の羽口(制御対象)の測定微粉炭流量(Nm3/h)
PCi(t):i番目の羽口の測定微粉炭流量(Nm3/h)
Xka(t+Δt):k番目の制御管(制御対象)の目標突き出し量(mm)
Xk(t):k番目の制御管(制御対象)の測定突き出し量(mm)
t:時間(sec)
Δt:測定時間間隔(sec)
a、b、c:実験的に定まる定数
( 3 ) As the pulverized coal distribution flow rate control device, a pulverized coal air flow is introduced from the center of the lower part of the inverted conical shape, collides with the central part of the circular ceiling wall, and is radially diverted to the peripheral wall. The amount of pulverized coal distributed to the same number of distribution branch pipes as the tuyere connected to the openings arranged at a predetermined height and interval on the inner peripheral surface is controlled by advancing and retracting the control pipe attached to the openings with respect to the peripheral wall. A control pipe that uses the pulverized coal distribution flow rate control device and satisfies the following expression (3) according to the target pulverized coal amount based on the relationship between the protruding amount (mm) of the control pipe and the pulverized coal flow rate in the distribution branch pipe The pulverized coal injection blast furnace operation according to (1) or (2) above, wherein the pulverized coal flow rate at each tuyere is controlled by advancing and retreating the control pipe so as to have a protruding amount (tip position) of Method.
(PCka (t + Δt) −PCk (t)) / (Σ n i = 1 PCi (t) / n)
= A × (Xka (t + Δt) −Xk (t)) 3 + b × (Xka (t + Δt) −Xk (t)) 2 + c × (Xka (t + Δt) −Xk (t)) (3)
However,
i: tuyere number (= 1,..., n)
PCka (t + Δt): target pulverized coal flow rate (Nm 3 / h) at the k th tuyere (control target)
PCk (t): measured pulverized coal flow rate (Nm 3 / h) at the k th tuyere (control target)
PCi (t): measured pulverized coal flow rate at the i th tuyere (Nm 3 / h)
Xka (t + Δt): target protrusion amount (mm) of the kth control pipe (control target)
Xk (t): Measurement protrusion amount (mm) of the kth control pipe (control target)
t: Time (sec)
Δt: Measurement time interval (sec)
a, b, c: constants determined experimentally

) 前記微粉炭分配流量制御装置において、分配支管に、静電容量式微粉炭流量計を取り付け、該流量計により、各羽口における微粉炭流量を測定することを特徴とする前記(1)〜()のいずれかに記載の微粉炭吹き込み高炉操業方法。 ( 4 ) In the pulverized coal distribution flow rate control device, an electrostatic capacity type pulverized coal flow meter is attached to the distribution branch pipe, and the pulverized coal flow rate at each tuyere is measured by the flow meter (1) The blast furnace operating method in which pulverized coal is blown in any one of ( 3 ).

本発明によれば、炉底温度、ステーブ温度、及び/又は、装入物降下速度の上昇・下降に伴う送風流量の増減制御による円周方向における偏差に応じて、微粉炭を気送流で搬送する分配支管における微粉炭流量を増減制御するので、羽口前における還元材比を一定に維持して、高炉操業上の悪影響を回避することができる。 According to the present invention, the furnace bottom temperature, scan table temperature, and / or, in accordance with the deviation in the circumferential direction by increasing or decreasing control of the air flow caused by the rise and fall of the charge descent speed, air transfer flow pulverized coal Since the flow rate of the pulverized coal in the distribution branch pipe transported by the control is controlled to increase or decrease, the ratio of the reducing material in front of the tuyere can be maintained constant, and adverse effects on blast furnace operation can be avoided.

本発明について、図面に基づいて説明する。図2に、本発明に係る微粉炭送給・分配経路を示す。   The present invention will be described with reference to the drawings. FIG. 2 shows a pulverized coal feed / distribution route according to the present invention.

図2において、分配支管8の途中に、静電容量式微粉炭流量計16が取り付けられている。この静電容量式微粉炭流量計16により、分配支管8内を流れる微粉炭気送流中に存在する微粉炭の量を、分配支管毎に、瞬時に精度よく測定できる。なお、静電容量式微粉炭流量計を取り付ける分配支管の部分は、微粉炭が付着しないよう、セラミックスで構成する。   In FIG. 2, a capacitance pulverized coal flow meter 16 is attached in the middle of the distribution branch pipe 8. The capacitance type pulverized coal flow meter 16 can instantaneously and accurately measure the amount of pulverized coal existing in the air flow of pulverized coal flowing in the distribution branch 8 for each distribution branch. In addition, the part of the distribution branch pipe which attaches an electrostatic capacitance type pulverized coal flowmeter is comprised with ceramic so that pulverized coal may not adhere.

また、各送風支管10には、送風流量の増減を測定するため送風流量計17が取り付けられている。   In addition, an air flow meter 17 is attached to each air supply branch pipe 10 in order to measure the increase / decrease in the air flow rate.

静電容量式微粉炭流量計16と送風流量計17による測定信号は、演算制御装置15に送信され、ここで、微粉炭流量を制御する制御管位置制御装置14に送る分配支管毎の制御量を演算する。   Measurement signals from the electrostatic pulverized coal flow meter 16 and the blast flow meter 17 are transmitted to the arithmetic and control unit 15, where the control amount for each distribution branch pipe to be sent to the control pipe position control unit 14 for controlling the pulverized coal flow rate. Calculate.

制御管位置制御装置の一態様を、図3に示す。この制御管位置制御装置においては、電動駆動装置19を駆動し、該装置と分配支管8にシール装置18で進退自在に取り付けた制御管13を、分配器5の周壁面に対し進退させ、各分配支管8に分配する微粉炭量を調整する。   One mode of the control pipe position control device is shown in FIG. In this control pipe position control device, the electric drive device 19 is driven, and the control tube 13 attached to the device and the distribution branch pipe 8 so as to be freely advanced and retracted is moved forward and backward with respect to the peripheral wall surface of the distributor 5. The amount of pulverized coal distributed to the distribution branch pipe 8 is adjusted.

制御管の進退は、制御信号に応じ迅速に行う必要があるので、制御管を駆動する装置は、応答性のよい電動駆動装置が好ましいが、制御管の迅速な進退を確保できる限りで、他の駆動方式の装置を採用してもよい。ソレノイド方式の駆動装置でもよい。   Since it is necessary to advance and retract the control pipe quickly according to the control signal, the device that drives the control pipe is preferably an electric drive device with good responsiveness. The drive system apparatus may be employed. A solenoid type driving device may be used.

このように、演算制御装置15においては、制御管位置制御装置14における制御管13の進退量を、分配支管毎に演算し、この進退量(制御信号)を制御管位置制御装置14に送信する。制御管位置制御装置14は、演算制御装置からの制御信号を受け、制御管13を、例えば、周壁から0〜100mmの範囲で突き出して、分配支管毎に微粉炭流量を調整する。   Thus, in the arithmetic control device 15, the advance / retreat amount of the control pipe 13 in the control pipe position control device 14 is calculated for each distribution branch pipe, and this advance / retreat amount (control signal) is transmitted to the control pipe position control device 14. . The control pipe position control device 14 receives a control signal from the arithmetic control device, and projects the control pipe 13 within a range of 0 to 100 mm from the peripheral wall, for example, to adjust the pulverized coal flow rate for each distribution branch pipe.

ここで、本発明の基本思想について説明する。   Here, the basic idea of the present invention will be described.

本発明においては、微粉炭流量を制御するに当り、各羽口にて、送風流量及び微粉炭流量を測定するとともに、各羽口の外周位置に対応する、炉底温度、及び、ステーブ温度の1つ又は2つ以上、及び/又は、装入物降下速度を測定する。 In the present invention, per the control the pulverized coal flow rate at each tuyere, with measuring the blowing flow and pulverized coal flow rate, corresponding to the outer circumferential position of each tuyere furnace bottom temperature,及 Beauty, staves One or more of the temperatures and / or the charge drop rate is measured.

送風流量は、送風流量計で測定し、微粉炭流量は、静電容量式微粉炭流量計で測定する(図2、参照)。前述したように、静電容量式微粉炭流量計により、微粉炭流量を瞬時に精度よく測定できる。   The blast flow rate is measured with a blast flow meter, and the pulverized coal flow rate is measured with a capacitance pulverized coal flow meter (see FIG. 2). As described above, the pulverized coal flow rate can be measured instantaneously and accurately by the electrostatic capacitance pulverized coal flow meter.

各羽口の外周位置にて、炉底温度、ステーブ温度、及び/又は、装入物降下速度等の測定は、通常の測定方法で行う。 At an external circumferential position of each tuyere furnace bottom temperature, scan table temperature, and / or measurement of such charge descent speed is carried out in a conventional measurement method.

図4に、炉底温度の測定値に基づく微粉炭流量の制御態様を模式的に示す。   FIG. 4 schematically shows a control mode of the pulverized coal flow rate based on the measured value of the furnace bottom temperature.

羽口下部の炉底温度が基準温度Ts(管理基準値)より低い場合は、正常な操業状態であるので、送風流量を各羽口における送風流量の平均流量(基準送風流量)とし、微紛炭流量を各羽口における微粉炭流量の平均流量(基準微粉炭流量)とし、操業条件を変えずに高炉操業を継続する。   If the furnace bottom temperature at the bottom of the tuyere is lower than the reference temperature Ts (control standard value), it is normal operation, so the air flow rate is the average air flow rate (reference air flow rate) at each tuyere. The blast furnace operation is continued without changing the operating conditions by setting the coal flow rate to the average flow rate of the pulverized coal flow rate at each tuyere (reference pulverized coal flow rate).

操業継続中、図4(a)に示すように、ある羽口下部の炉底温度Tが上昇し、t1の時点で基準温度Tsに達した時は、図4(b)に示すように、送風流量を、基準送風流量の80%に低減するとともに、図4(c)に示すように、送風流量の低減(20%)に即応して、微粉炭流量を、基準微粉炭流量の80%に低減する。 During operation continues, as shown in FIG. 4 (a), increase the furnace bottom temperature T of a tuyere bottom, when it reaches the reference temperature Ts at time t 1, as shown in FIG. 4 (b) The blast flow rate is reduced to 80% of the reference blast flow rate, and as shown in FIG. 4C, the pulverized coal flow rate is set to 80% of the reference pulverized coal flow rate in response to the reduction of the blast flow rate (20%). %.

1の時点で、送風流量を20%低減し、微粉炭流量を20%低減しても、炉底温度Tが上昇し続け、t2の時点で基準温度Ts’に達した時(図4(a)、参照)には、送風流量を、基準送風流量の60%に低減するとともに、微粉炭流量を、基準微粉炭流量の60%に低減する(図4(b)及び(c)、参照)。 Even when the air flow rate is reduced by 20% at t 1 and the pulverized coal flow rate is reduced by 20%, the furnace bottom temperature T continues to rise and reaches the reference temperature Ts ′ at time t 2 (FIG. 4). (Refer to (a),) The air flow rate is reduced to 60% of the reference air flow rate, and the pulverized coal flow rate is reduced to 60% of the reference pulverized coal flow rate (FIGS. 4B and 4C). reference).

基準送風流量の60%の送風流量と基準微粉炭流量の60%の微粉炭流量で操業を継続した結果、炉底温度Tが下降し、t3の時点で基準温度Ts’に達すると(図4(a)、参照)、送風流量を基準送風流量の80%に戻すとともに、微粉炭流量を基準微粉炭流量の80%に戻して操業を継続する(図4(b)及び(c)、参照)。 Reference blower flow 60% of the air flow and the reference pulverized coal flow rate 60% of the pulverized coal flow rate in the result of continued operation of the furnace bottom temperature T is lowered, and reaches the reference temperature Ts' at time t 3 (FIG. 4 (a), and the blast flow rate is returned to 80% of the reference blast flow rate, and the operation is continued by returning the pulverized coal flow rate to 80% of the reference pulverized coal flow rate (FIGS. 4B and 4C). reference).

そして、この操業の継続の結果、炉底温度Tが、t4の時点で基準温度Tsに達すれば、送風流量を基準送風流量に戻すとともに、微粉炭流量を基準微粉炭流量に戻して操業を継続する(図4(b)及び(c)、参照)。 The continuation of the result of this operation, the furnace bottom temperature T, if reaches the reference temperature Ts at time t 4, together with the return to the reference blowing flow blowing flow rate, the operation to return the pulverized coal flow rate to the reference pulverized coal flow rate Continue (see FIGS. 4B and 4C).

図2に示すように、本発明では、静電容量式微粉炭流量計で分配支管における微粉炭流量を、瞬時にかつ精度よく測定できるので、図4に示すような制御方式に従い、各羽口における微粉炭流量を、各羽口における送風流量の増減に即応して個別に、迅速かつ高精度で制御することができる。この点が本発明の特徴である。   As shown in FIG. 2, in the present invention, the pulverized coal flow rate in the distribution branch pipe can be measured instantaneously and accurately with the electrostatic capacitance type pulverized coal flow meter. Therefore, according to the control method as shown in FIG. The pulverized coal flow rate can be individually and quickly controlled with high accuracy in response to the increase or decrease of the air flow rate at each tuyere. This is a feature of the present invention.

ここで、図5〜7に、本発明を実施した場合における高炉操業上の効果を示す。   Here, in FIGS. 5-7, the effect on the blast furnace operation in the case of implementing this invention is shown.

図5に、炉底温度の上昇に伴い送風流量を低減していく場合において、(x)微粉炭流量を変えないで吹き込みを継続する場合、(y)送風流量を80%に低減した時点で微粉炭吹込みを停止する場合、及び、(z)送風流量の低減に即応して微粉炭流量を低減する(本発明)場合における羽口前微粉炭比の変化を示す。   In FIG. 5, in the case where the blowing flow rate is reduced as the furnace bottom temperature rises, (x) when blowing is continued without changing the pulverized coal flow rate, (y) when the blowing flow rate is reduced to 80%. The change of the pulverized coal ratio before tuyere in the case of stopping the pulverized coal injection and (z) the case of reducing the pulverized coal flow rate in response to the reduction of the blast flow rate (present invention) is shown.

(x)の場合、羽口前微粉炭比が急増し、レースウェイ内に未燃焼の微粉炭が堆積する。この急増・堆積は、前述したように、高炉操業に悪影響を及ぼす。(y)の場合、還元材の量に不足をきたし、還元に遅れが生じ、やはり、高炉操業に悪影響を及ぼす。本発明の(z)の場合、羽口前微粉炭比が一定となり、良好な高炉操業を維持することができる。   In the case of (x), the ratio of pulverized coal before tuyere increases rapidly, and unburned pulverized coal accumulates in the raceway. This rapid increase / deposition has an adverse effect on blast furnace operation, as described above. In the case of (y), the amount of the reducing material is insufficient, the reduction is delayed, and the blast furnace operation is adversely affected. In the case of (z) of the present invention, the pre-tuyere pulverized coal ratio becomes constant, and good blast furnace operation can be maintained.

図6に、炉底温度の上昇に伴い送風流量を低減していく場合において、上記(x)、(y)及び(z)の場合における羽口前還元材比の変化を示す。   FIG. 6 shows changes in the ratio of the pre-reduction material in the tuyere in the cases (x), (y), and (z) when the air flow rate is reduced as the furnace bottom temperature increases.

(x)の場合、羽口前還元材比が急増し、羽口先で燃焼できない未燃焼の微粉炭が炉芯に堆積する。この堆積は、前述したように、高炉操業に悪影響を及ぼす。(y)の場合、還元材の量に不足をきたし、還元に遅れが生じ、やはり、高炉操業に悪影響を及ぼす。本発明の(z)の場合、羽口前還元材比が一定となり、未燃焼の微粉炭が堆積する状況には至らず、良好な高炉操業を維持することができる。   In the case of (x), the ratio of reducing material before the tuyere increases rapidly, and unburned pulverized coal that cannot be burned at the tuyere tip accumulates on the furnace core. This deposition adversely affects blast furnace operation, as described above. In the case of (y), the amount of the reducing material is insufficient, the reduction is delayed, and the blast furnace operation is adversely affected. In the case of (z) of the present invention, the ratio of the reducing material before the tuyere becomes constant, the situation where unburned pulverized coal is deposited does not reach, and good blast furnace operation can be maintained.

図7に、炉底温度の上昇に伴い送風流量を低減していく場合において、上記(x)、(y)及び(z)の場合における羽口前の滴下溶銑温度の変化を示す。   FIG. 7 shows changes in the temperature of the molten iron before the tuyere in the cases (x), (y), and (z) when the flow rate of air flow is reduced as the furnace bottom temperature increases.

(y)の場合、滴下溶銑温度は急激に低下し、やはり、高炉操業に悪影響を及ぼす。本発明の(z)の場合、滴下溶銑温度は略一定に維持されていて、高炉操業への悪影響はない。   In the case of (y), the temperature of the dropping hot metal is rapidly lowered, which also adversely affects the blast furnace operation. In the case of (z) of the present invention, the dropping hot metal temperature is maintained substantially constant, and there is no adverse effect on blast furnace operation.

本発明においては、実測データに基づいて、目標とする微粉炭流量、微粉炭流量の増減量、及び、微粉炭量を制御するための制御管の突き出し量を演算する。   In the present invention, the target pulverized coal flow rate, the increase / decrease amount of the pulverized coal flow rate, and the protruding amount of the control pipe for controlling the pulverized coal amount are calculated based on the actually measured data.

図8に、上記突出し量を演算するための手順を示す。   FIG. 8 shows a procedure for calculating the protrusion amount.

炉底温度が基準温度以下であり、送風支管流量を低減する必要がなく高炉操業が進行している場合においても、微粉炭流量計で測定した微粉炭流量に基づいて目標微粉炭流量を演算し、実測微粉炭流量と目標微粉炭流量の差分を算出する。この流量差分(差分量Δ)を平均微粉炭流量で除して流量比(Δ/ΣPCx/Z)とする。   Even when the furnace bottom temperature is below the reference temperature and the blast furnace operation is in progress without reducing the blower branch flow, the target pulverized coal flow is calculated based on the pulverized coal flow measured by the pulverized coal flow meter. The difference between the measured pulverized coal flow rate and the target pulverized coal flow rate is calculated. The flow rate difference (difference amount Δ) is divided by the average pulverized coal flow rate to obtain a flow rate ratio (Δ / ΣPCx / Z).

この流量比を確保するため、分配器において、微粉炭流量制御装置で制御管の突出し量を制御するが、そのため、予め、流量比と突出し量との関数関係を設定しておく必要がある。   In order to ensure this flow rate ratio, in the distributor, the protruding amount of the control pipe is controlled by the pulverized coal flow rate control device. For this reason, it is necessary to set a functional relationship between the flow rate ratio and the protruding amount in advance.

本発明では、一例として、下記式(3)に示すように、流量比を、突出し量(=目標突出し幅−実測時の突出し幅)を変数とする3次関数で定義したが、流量比と突出し量を関係付ける関数は、制御精度や演算時間を考慮して適宜設定すればよく、特定の関数に限定されるものではない。   In the present invention, as an example, as shown in the following formula (3), the flow rate ratio is defined by a cubic function with the protrusion amount (= target protrusion width−protrusion width at actual measurement) as a variable. The function relating the protrusion amount may be appropriately set in consideration of control accuracy and calculation time, and is not limited to a specific function.

(PCka(t+Δt)−PCk(t))/(Σn i=1PCi(t)/n)
=a×(Xka(t+Δt)−Xk(t))+b×(Xka(t+Δt) −Xk(t)) +c×(Xka(t+Δt)−Xk(t)) …(3)
ただし、
i:羽口番号(=1、・・・、n)
PCka(t+Δt):k番目の羽口(制御対象)の目標微粉炭流量(Nm3/h)
PCk(t):k番目の羽口(制御対象)の測定微粉炭流量(Nm3/h)
PCi(t):i番目の羽口の測定微粉炭流量(Nm3/h)
Xka(t+Δt):k番目の制御管(制御対象)の目標突き出し量(mm)
Xk(t):k番目の制御管(制御対象)の測定突き出し量(mm)
t:時間(sec)
Δt:測定時間間隔(sec)
a、b、c:実験的に定まる定数
(PCka (t + Δt) −PCk (t)) / (Σ n i = 1 PCi (t) / n)
= A × (Xka (t + Δt) −Xk (t)) 3 + b × (Xka (t + Δt) −Xk (t)) 2 + c × (Xka (t + Δt) −Xk (t)) (3)
However,
i: tuyere number (= 1,..., n)
PCka (t + Δt): target pulverized coal flow rate (Nm 3 / h) at the k th tuyere (control target)
PCk (t): measured pulverized coal flow rate (Nm 3 / h) at the k th tuyere (control target)
PCi (t): measured pulverized coal flow rate at the i th tuyere (Nm 3 / h)
Xka (t + Δt): target protrusion amount (mm) of the kth control pipe (control target)
Xk (t): Measurement protrusion amount (mm) of the kth control pipe (control target)
t: Time (sec)
Δt: Measurement time interval (sec)
a, b, c: constants determined experimentally

上記(3)式に、微粉炭流量制御装置で実測した突出し幅を代入し、演算装置で数値解析して突出し量(=目標突出し幅−実測時の突出し幅)を求め、該量に基づいて、分配器における制御管の突出し幅を制御する。   Substitution width measured by the pulverized coal flow rate control device is substituted into the above equation (3), and numerical analysis is performed by the arithmetic unit to obtain the projection amount (= target projection width−protrusion width at the time of measurement). Based on this amount Control the protruding width of the control pipe in the distributor.

ある羽口の炉底温度が基準温度を超えた場合、送風支管流量を低減するとともに、微粉炭流量を低減して、炉底温度の降下を図る必要がある。 When the furnace bottom temperature at a tuyere exceeds the reference temperature, it is necessary to reduce the flow rate of the blast branch pipe and the pulverized coal flow rate to lower the furnace bottom temperature.

例えば、羽口A及びBの近傍の炉底温度が基準温度を超えた場合、炉底温度を基準温度以下に下げるため送風支管流量を低減する。この低減した送風支管流量に見合う微粉炭流量を演算する。   For example, when the furnace bottom temperature in the vicinity of tuyere A and B exceeds the reference temperature, the blower branch pipe flow rate is reduced in order to lower the furnace bottom temperature below the reference temperature. A pulverized coal flow rate corresponding to the reduced blast branch flow rate is calculated.

羽口A及びBでの微粉炭流量の低減量を、羽口A及びB以外の各羽口における微粉炭流量の増で補うべく、羽口A及びB以外の各羽口における目標微粉炭流量を演算する。   Target pulverized coal flow rate at each tuyere other than tuyere A and B to compensate for the reduction in pulverized coal flow rate at tuyere A and B with an increase in pulverized coal flow rate at each tuyere other than tuyere A and B Is calculated.

羽口A及びBにおける目標微粉炭流量(低減後の微粉炭流量)、及び、羽口A及びB以外の各羽口における微粉炭流量(増量後の微粉炭流量)と、各羽口における実測微粉炭流量とのに基づいて、それぞれの流量比(Δ/ΣPCx/Z)を演算する。   Target pulverized coal flow rate at tuyere A and B (reduced pulverized coal flow rate), pulverized coal flow rate at each tuyere other than tuyere A and B (pulverized coal flow rate after increase), and actual measurement at each tuyere Based on the pulverized coal flow rate, the respective flow rate ratios (Δ / ΣPCx / Z) are calculated.

この流量差分(差分量Δ)を平均微粉炭流量で除して流量比とし、上記(3)式に従って、突出し量(=目標突出し幅−実測時の突出し幅)を求め、該量に基づいて、分配器における制御管の突出し幅を制御する。   The flow rate difference (difference amount Δ) is divided by the average pulverized coal flow rate to obtain a flow rate ratio, and a protruding amount (= target protruding width−protruding width at the time of actual measurement) is obtained according to the above equation (3). Control the protruding width of the control pipe in the distributor.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例)
円周方向に40本ある羽口の内、#29の羽口直下の炉底温度が管理基準値260℃を超えたので、#29羽口における送風量を、200Nm3/minから120Nm3/minに低減した。これに伴い、#29羽口における微粉炭吹込み量を2.0t/hから1.2t/hに低減し、当該羽口の微粉炭量を一定とした。
(Example)
Of the 40 tuyere in the circumferential direction, the furnace bottom temperature just below the # 29 tuyere exceeded the control standard value of 260 ° C., so the air flow rate at the # 29 tuyere was changed from 200 Nm 3 / min to 120 Nm 3 / Reduced to min. Along with this, the amount of pulverized coal in the # 29 tuyere was reduced from 2.0 t / h to 1.2 t / h, and the amount of pulverized coal in the tuyere was made constant.

これにより、高炉操業上において問題が発生せず、#29羽口における送風量の低減の前後で、出銑量は12500t/dを維持できた。操業諸元については、表1に示すとおりである。   As a result, no problem occurred in the operation of the blast furnace, and before and after the reduction of the air flow rate at the # 29 tuyere, the amount of tapping was maintained at 12,500 t / d. The operating specifications are as shown in Table 1.

Figure 0004855002
Figure 0004855002

前述したように、本発明によれば、炉底温度、溶銑温度、スラグ温度、ステーブ温度、及び/又は、装入物降下速度の上昇・下降に伴う送風流量の増減制御による円周方向における偏差に応じて、微粉炭を気送流で搬送する分配支管における微粉炭流量を増減制御するので、羽口前における還元材比を一定に維持して、高炉操業上の悪影響を回避することができる。したがって、本発明は、鉄鋼産業において利用可能性の高いものである。   As described above, according to the present invention, the deviation in the circumferential direction due to the furnace bottom temperature, hot metal temperature, slag temperature, stave temperature, and / or increase / decrease control of the flow rate of air flow accompanying the increase / decrease of the charge lowering speed. Accordingly, the pulverized coal flow rate in the distribution branch pipe that conveys pulverized coal by air flow is controlled to increase or decrease, so that the reducing material ratio in front of the tuyere can be maintained constant, and adverse effects on blast furnace operation can be avoided. . Therefore, the present invention has high applicability in the steel industry.

通常の微粉炭送給・分配経路を示す図である。It is a figure which shows a normal pulverized coal feeding / distribution route. 本発明に係る微粉炭送給・分配経路を示す図である。It is a figure which shows the pulverized coal feeding / distribution path | route which concerns on this invention. 微粉炭流量制御装置の態様を示す図である。It is a figure which shows the aspect of a pulverized coal flow control apparatus. 本発明の制御態様を模式的に示す図である。It is a figure which shows typically the control aspect of this invention. 送風支管における送風流量と羽口前微粉炭比の関係を示す図である。It is a figure which shows the relationship between the ventilation flow volume in a ventilation branch, and a pulverized coal ratio before a tuyere. 送風支管における送風流量と羽口前還元材比の関係を示す図である。It is a figure which shows the relationship between the ventilation flow volume in a ventilation branch, and a tuyere front reducing material ratio. 送風支管における送風流量と羽口前滴下溶銑温度の関係を示す図である。It is a figure which shows the relationship between the ventilation flow volume in a ventilation branch, and the hot metal dropping temperature before a tuyere. 目標とする微粉炭流量及び制御管の突き出し量を演算するためのフローを示す図である。It is a figure which shows the flow for calculating the target pulverized coal flow volume and the protrusion amount of a control pipe.

符号の説明Explanation of symbols

1 加圧タンク
2 弁
3 気送支管
4 気送本管
5 分配器
6 加温空気供給器
7 希釈器
8 分配支管
9 羽口
10 送風支管
11 送風本管
12 高炉
13 制御管
14 制御管位置制御装置
15 演算制御装置
16 静電容量式微粉炭流量計
17 送風流量計
18 シール装置
19 電動駆動装置
DESCRIPTION OF SYMBOLS 1 Pressurized tank 2 Valve 3 Air supply branch pipe 4 Air supply main pipe 5 Distributor 6 Heating air supply device 7 Diluter 8 Distribution branch pipe 9 Tuyere 10 Blower branch 11 Blower main pipe 12 Blast furnace 13 Control pipe 14 Control pipe position control Device 15 Arithmetic control device 16 Capacitance type pulverized coal flow meter 17 Blow flow meter 18 Seal device 19 Electric drive device

Claims (4)

微粉炭分配流量制御装置にて各分配支管に分配された微粉炭を羽口から熱風とともに吹き込む高炉操業方法において、
(i)各羽口にて、送風流量及び微粉炭流量を測定するとともに、各羽口の外周位置にて、炉底温度、及び、ステーブ温度の1つ又は2つ、及び/又は、装入物降下速度を測定し、
(ii)(a) 炉底温度、及び、ステーブ温度の1つ又は2つ、及び/又は、装入物降下速度が管理基準値より高い羽口では、送風流量を低減するとともに、送風流量の低減量に応じて、微粉炭流量を下記式(1)で定まる目標微粉炭流量に低減し、
(b) 炉底温度、及び、ステーブ温度の1つ又は2つ、及び/又は、装入物降下速度が管理基準値より低い羽口では、送風流量を各羽口の送風流量の平均流量とし、
各羽口における微粉炭流量を個別に制御することを特徴とする微粉炭吹き込み高炉操業方法。
PCka(t+Δt)=BVk(t)/Σn i=1BVi(t)×Σn i=1PCi(t) …(1)
ただし、
i:羽口番号(=1、・・・、n)
PCka(t+Δt):k番目の羽口(制御対象)の目標微粉炭流量(Nm3/h)
BVk(t):k番目の羽口(制御対象)の測定送風流量(Nm3/h)
BVi(t):i番目の羽口の測定送風流量(Nm3/h)
PCi(t):i番目の羽口の測定微粉炭流量(Nm3/h)
t:時間(sec)
Δt:測定時間間隔(sec)
In the blast furnace operation method in which the pulverized coal distributed to each distribution branch by the pulverized coal distribution flow control device is blown together with hot air from the tuyere,
(I) At each tuyere, the air flow rate and pulverized coal flow rate are measured, and at the outer peripheral position of each tuyere, one or two of the furnace bottom temperature and stave temperature , and / or charging Measure the object descent speed,
(Ii) (a) furnace bottom temperature, and, one or two stave temperature, and / or, together with the charge descent speed is higher tuyere from the management reference value, reduces the air blowing rate, the blast flow rate According to the reduction amount, the pulverized coal flow rate is reduced to the target pulverized coal flow rate determined by the following formula (1),
(b) furnace bottom temperature, and, one or two of stave temperature, and / or at a lower tuyere than charge descent speed management reference value, the blower flow rate and the average flow rate of the air flow rate of each tuyere ,
A method for operating a blast furnace in which pulverized coal is injected, characterized by individually controlling the flow rate of pulverized coal at each tuyere.
PCka (t + Δt) = BVk (t) / Σ n i = 1 BVi (t) × Σ n i = 1 PCi (t) ... (1)
However,
i: tuyere number (= 1,..., n)
PCka (t + Δt): target pulverized coal flow rate (Nm 3 / h) at the k th tuyere (control target)
BVk (t): measured ventilation flow rate (Nm 3 / h) of the k th tuyere (control target)
BVi (t): measured air flow rate at the i-th tuyere (Nm 3 / h)
PCi (t): measured pulverized coal flow rate at the i th tuyere (Nm 3 / h)
t: Time (sec)
Δt: Measurement time interval (sec)
前記微粉炭分配流量制御装置として、微粉炭気送流を、逆円錐形の下部中央から導入し、円形天井壁の中央部に衝突せしめて、半径方向に放射線状に分流させ、周壁内周面に所定高さ及び間隔で配置した開口部に連結する羽口と同数の分配支管に分配する微粉炭量を、上記開口部に装着した制御管を周壁に対し進退させることにより制御する微粉炭分配流量制御装置を用い、制御管の突出し量(mm)と分配支管内の微粉炭流量との関係に基づいて、目標微粉炭量に応じて制御管の突出し量(先端位置)を変えることにより、各羽口における微粉炭流量を制御することを特徴とする請求項1に記載の微粉炭吹き込み高炉操業方法。   As the pulverized coal distribution flow rate control device, the pulverized coal air flow is introduced from the lower center of the inverted conical shape, collides with the center of the circular ceiling wall, and is radially diverted to the inner peripheral surface of the peripheral wall. Pulverized coal distribution that controls the amount of pulverized coal distributed to the same number of distribution branch pipes as tuyere connected to openings arranged at predetermined heights and intervals by advancing and retracting the control pipe attached to the opening with respect to the peripheral wall By using the flow rate control device, based on the relationship between the protruding amount of the control pipe (mm) and the pulverized coal flow rate in the distribution branch pipe, by changing the protruding amount (tip position) of the control pipe according to the target pulverized coal amount, The pulverized coal blowing blast furnace operating method according to claim 1, wherein the pulverized coal flow rate at each tuyere is controlled. 前記微粉炭分配流量制御装置として、微粉炭気送流を、逆円錐形の下部中央から導入し、円形天井壁の中央部に衝突せしめて、半径方向に放射線状に分流させ、周壁内周面に所定高さ及び間隔で配置した開口部に連結する羽口と同数の分配支管に分配する微粉炭量を、上記開口部に装着した制御管を周壁に対し進退させることにより制御する微粉炭分配流量制御装置を用い、制御管の突出し量(mm)と分配支管内の微粉炭流量との関係に基づいて、目標微粉炭量に応じて、下記式(3)を満足する制御管の突出し量(先端位置)となるように制御管を進退させることにより、各羽口における微粉炭流量を制御することを特徴とする請求項1又は2に記載の微粉炭吹き込み高炉操業方法。
(PCka(t+Δt)−PCk(t))/(Σn i=1PCi(t)/n)
=a×(Xka(t+Δt)−Xk(t))+b×(Xka(t+Δt) −Xk(t)) +c×(Xka(t+Δt)−Xk(t)) …(3)
ただし、
i:羽口番号(=1、・・・、n)
PCka(t+Δt):k番目の羽口(制御対象)の目標微粉炭流量(Nm3/h)
PCk(t):k番目の羽口(制御対象)の測定微粉炭流量(Nm3/h)
PCi(t):i番目の羽口の測定微粉炭流量(Nm3/h)
Xka(t+Δt):k番目の制御管(制御対象)の目標突き出し量(mm)
Xk(t):k番目の制御管(制御対象)の測定突き出し量(mm)
t:時間(sec)
Δt:測定時間間隔(sec)
a、b、c:実験的に定まる定数
As the pulverized coal distribution flow rate control device, the pulverized coal air flow is introduced from the lower center of the inverted conical shape, collides with the center of the circular ceiling wall, and is radially diverted to the inner peripheral surface of the peripheral wall. Pulverized coal distribution that controls the amount of pulverized coal distributed to the same number of distribution branch pipes as tuyere connected to openings arranged at predetermined heights and intervals by advancing and retracting the control pipe attached to the opening with respect to the peripheral wall Based on the relationship between the amount of protrusion of the control pipe (mm) and the flow rate of pulverized coal in the distribution branch pipe using the flow control device, the amount of protrusion of the control pipe satisfying the following formula (3) according to the target pulverized coal amount The pulverized coal injection blast furnace operating method according to claim 1 or 2, wherein the pulverized coal flow rate at each tuyere is controlled by moving the control pipe forward and backward so as to be (tip position).
(PCka (t + Δt) −PCk (t)) / (Σ n i = 1 PCi (t) / n)
= A × (Xka (t + Δt) −Xk (t)) 3 + b × (Xka (t + Δt) −Xk (t)) 2 + c × (Xka (t + Δt) −Xk (t)) (3)
However,
i: tuyere number (= 1,..., n)
PCka (t + Δt): target pulverized coal flow rate (Nm 3 / h) at the k th tuyere (control target)
PCk (t): measured pulverized coal flow rate (Nm 3 / h) at the k th tuyere (control target)
PCi (t): measured pulverized coal flow rate at the i th tuyere (Nm 3 / h)
Xka (t + Δt): target protrusion amount (mm) of the kth control pipe (control target)
Xk (t): Measurement protrusion amount (mm) of the kth control pipe (control target)
t: Time (sec)
Δt: Measurement time interval (sec)
a, b, c: constants determined experimentally
前記微粉炭分配流量制御装置において、分配支管に、静電容量式微粉炭流量計を取り付け、該流量計により、各羽口における微粉炭流量を測定することを特徴とする請求項1〜3のいずれか1項に記載の微粉炭吹き込み高炉操業方法。   In the said pulverized coal distribution flow control apparatus, an electrostatic capacitance type pulverized coal flowmeter is attached to a distribution branch pipe, The pulverized coal flow rate in each tuyere is measured with this flowmeter. A method for operating a blast furnace with pulverized coal as described in claim 1.
JP2005215019A 2005-07-25 2005-07-25 Blast furnace operation method with pulverized coal injection Active JP4855002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005215019A JP4855002B2 (en) 2005-07-25 2005-07-25 Blast furnace operation method with pulverized coal injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005215019A JP4855002B2 (en) 2005-07-25 2005-07-25 Blast furnace operation method with pulverized coal injection

Publications (2)

Publication Number Publication Date
JP2007031758A JP2007031758A (en) 2007-02-08
JP4855002B2 true JP4855002B2 (en) 2012-01-18

Family

ID=37791367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005215019A Active JP4855002B2 (en) 2005-07-25 2005-07-25 Blast furnace operation method with pulverized coal injection

Country Status (1)

Country Link
JP (1) JP4855002B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5064086B2 (en) * 2007-04-10 2012-10-31 新日本製鐵株式会社 Blast furnace operation method
JP5397997B2 (en) * 2009-07-03 2014-01-22 新日鉄住金エンジニアリング株式会社 How to distribute and supply pulverized coal
JP5397996B2 (en) * 2009-07-03 2014-01-22 新日鉄住金エンジニアリング株式会社 Pulverized coal distribution and supply equipment
JP5724654B2 (en) * 2011-06-13 2015-05-27 Jfeスチール株式会社 Apparatus and method for injecting reducing material into blast furnace
KR101388314B1 (en) 2011-10-31 2014-04-23 현대제철 주식회사 Controlling method for injecting pulverized coal inblast furnace
JP6056346B2 (en) * 2012-10-06 2017-01-11 Jfeスチール株式会社 Blast furnace gas reducing material blowing device and blast furnace operating method
JP7087534B2 (en) * 2018-03-26 2022-06-21 日本製鉄株式会社 How to perform PCI stably

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869620A (en) * 1981-09-14 1983-04-25 Nippon Steel Corp Pneumatic pulverized coal distributor
JPS5881907A (en) * 1981-11-10 1983-05-17 Sumitomo Metal Ind Ltd Control process for blowing powder coal
JPS60243207A (en) * 1984-05-16 1985-12-03 Nippon Kokan Kk <Nkk> Method for operating blast furnace
JPH01230706A (en) * 1988-03-09 1989-09-14 Sumitomo Metal Ind Ltd Method for blowing powdered coal into blast furnace
JPH09209008A (en) * 1996-02-05 1997-08-12 Sumitomo Metal Ind Ltd Method for protecting furnace bottom part of blast furnace

Also Published As

Publication number Publication date
JP2007031758A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP4855002B2 (en) Blast furnace operation method with pulverized coal injection
WO1999023262A1 (en) Method of operating blast furnace
JP2007077440A (en) Method for operating blast furnace under condition of blowing-stop with reduced molten iron level
KR101321653B1 (en) Blast furnace operation method
JP2007031040A (en) Flow rate control device for distribution of coal particulates
Lyalyuk et al. Total energy of the hearth gas in pulverized-coal injection
WO2023112505A1 (en) Method for producing molten iron
JP5854200B2 (en) Blast furnace operation method
Edmond et al. Improving blast funance efficiency and reducing carbon emissions with blast furnance oxygen pulsing technology
JP5862470B2 (en) Blast furnace resting method
JP5779839B2 (en) Blast furnace operation method
KR100919028B1 (en) Method for filling a blast furnace with charging materials
WO2010016553A1 (en) Iron bath-type melting furnace
JP2005350540A (en) Method for controlling coal charge level in coke oven
JP2012520983A (en) Hot gas feed method to shaft furnace
JP2007031811A (en) Method for evaluating condition of tuyere and lower part of blast furnace
JP4233039B2 (en) Coke oven coal level control method
KR20240090598A (en) Method of manufacturing molten iron
JP2009235437A (en) Method for controlling blast furnace operation at blowing-stop time in large reduction of charged material level
JP6056346B2 (en) Blast furnace gas reducing material blowing device and blast furnace operating method
CN118265805A (en) Method for manufacturing molten iron
JPH0625368B2 (en) Blast furnace operation method
JP2022152721A (en) Operation method of blast furnace
JP2000273508A (en) Method for strengthening center gas flow in blast furnace
JPH11222611A (en) Operation of blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4855002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350