WO1999020887A1 - Combustion air treatment apparatus for combustion engines - Google Patents

Combustion air treatment apparatus for combustion engines Download PDF

Info

Publication number
WO1999020887A1
WO1999020887A1 PCT/JP1998/004721 JP9804721W WO9920887A1 WO 1999020887 A1 WO1999020887 A1 WO 1999020887A1 JP 9804721 W JP9804721 W JP 9804721W WO 9920887 A1 WO9920887 A1 WO 9920887A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
combustion
air treatment
combustion engine
treatment device
Prior art date
Application number
PCT/JP1998/004721
Other languages
French (fr)
Japanese (ja)
Inventor
Yukimasa Sunami
Original Assignee
Honjo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honjo Corporation filed Critical Honjo Corporation
Publication of WO1999020887A1 publication Critical patent/WO1999020887A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/02Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/04Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
    • F02M27/045Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism by permanent magnets

Definitions

  • the present invention relates to a combustion air treatment device for a combustion engine. More specifically, the present invention relates to a device for treating air used for combustion in an external combustion engine such as a boiler or a generator, in addition to an internal combustion engine such as an automobile engine. Background art
  • Air pollution is regarded as a representative example of pollution problems.In particular, it is urgently necessary to develop equipment that can significantly reduce harmful exhaust gas and black smoke emitted from automobiles, especially diesel vehicles. It has been.
  • a device for reforming fuel used in a combustion engine has been developed as a device for reducing the amount of harmful gas exhausted.
  • a device which imparts strong magnetism to flowing fuel divides the fuel and makes it easy to burn, thereby preventing incomplete combustion.
  • impurities contained in the fuel are agglomerated by magnetism, so-called clogging of the fuel is caused, thereby causing troubles such as incomplete combustion or stop of the combustion engine. There was something.
  • an electrode in which a cylindrical negative electrode is inserted into a cylindrical positive electrode in a magnetic field formed by a permanent magnet is arranged.
  • a positive electrode and a negative electrode are rubbed by an air flow of combustion air to discharge static electricity, and to mix generated cations and anions into combustion air (Japanese Patent Laid-Open No. Hei 6 (1994) -101). No. 81731).
  • An object of the present invention has been made in view of the above-mentioned conventional technology, and an object of the present invention is to provide a combustion air treatment device that exhibits a constant treatment efficiency of combustion air irrespective of fluctuations in the flow rate of combustion air.
  • Another object of the present invention is to reduce the amount of harmful components, mainly nitrogen oxides, carbon monoxide, and ternary components of hydrocarbons, contained in exhaust gas discharged from a combustion engine without causing fuel-related problems.
  • Another object of the present invention is to provide a device capable of reducing the amount of black smoke discharged and improving the combustion efficiency.
  • An air inlet and a processing air outlet are provided, and a pair of 1000 gauss or more is provided in the processing apparatus main body in which the air inlet and the processing air outlet communicate with each other through an air passage with an air passage therebetween.
  • a permanent magnet that generates a magnetic field of the type described above is disposed so that the same poles face each other, an air treatment material having an aluminum surface in the air passage, and a far-infrared radiation material layer formed in at least an inner surface of a pipe.
  • a combustion air treatment device for a combustion engine in which an air stabilizing material loaded with a reduction catalyst is disposed with a gap provided.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a combustion air treatment device for a combustion engine of the present invention.
  • FIG. 2 is a schematic sectional view showing one embodiment of an air stabilizing material used in the combustion air treatment device for a combustion engine of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing one embodiment of an air stabilizing material used in the combustion air treatment device for a combustion engine of the present invention.
  • FIG. 4 is a schematic sectional view showing one embodiment of a means for fixing an air treatment material or an air stabilizing material used in a combustion air treatment device for a combustion engine of the present invention to a treatment device main body.
  • a combustion air treatment device for a combustion engine includes an air inlet and a treated air outlet, and the treatment device in which the air inlet and the treated air outlet communicate with each other via an air passage.
  • An air stabilizing material loaded with a reducing catalyst is provided in a pipe having at least an inner layer with a gap provided in it.o
  • FIG. 1 is a schematic cross-sectional view in a horizontal direction of a combustion air treatment device for a combustion engine of the present invention.
  • reference numeral 1 denotes a processing apparatus main body.
  • the material constituting the processing apparatus body 1 include aluminum, stainless steel, iron, copper, and brass, but the present invention is not limited to only such materials.
  • aluminum is suitable for use because it is light in weight and, for example, responds to the demand for lighter weight of automobiles and the like, thereby improving fuel efficiency.
  • the shape and size of the processing apparatus main body 1 are not particularly limited.
  • the shape is not particularly limited. The shape is
  • Examples thereof include a rectangular tube shape and a cylindrical shape. Such a shape is the combustion air of the present invention. What is necessary is just to determine suitably according to the use of a processing apparatus. Further, the size of the processing apparatus main body 1 may be appropriately determined according to the use of the combustion air processing apparatus of the present invention, similarly to the shape. As an example, when the combustion air treatment device of the present invention is used for treating combustion air of an internal combustion engine such as an automobile engine, for example, the length is about 10 to 50 cm and the width is 5 to 30 cm. Degree and height should be about 10 to 30 cm.
  • the processing apparatus main body 1 has an air inlet 2 and a processing air outlet 3. The air inlet 2 and the treated air outlet 3 are connected via an air passage 4.
  • Air combusted by the internal combustion engine is introduced from the air inlet 2 in the direction of arrow A. After the air is processed in the air passage 4 in the processing device body 1, it is discharged from the treated air outlet 3 in the direction of arrow B. Is done. Meanwhile, in order to prevent air from leaking from the processing apparatus main body 1, the processing apparatus main body 1 is configured to be a closed system except for the air inlet 2 and the processing air outlet 3.
  • An air treatment material 5 having an aluminum surface, an air stabilization material 6 having a reduction catalyst inserted in at least a pipe having a far-infrared radiation material layer formed on an inner surface thereof, in an air passage 4 in the treatment device body 1. are provided with a gap.
  • the combustion air treatment device of the present invention has one significant feature in that the air treatment material 5 and the air stabilization material 6 are independently disposed in a non-contact state.
  • the use of the air treatment material 5 in the air passage 4 suppresses the occurrence of incomplete combustion during operation of the combustion engine, thereby improving fuel efficiency. Is expressed.
  • the reason why the use of the air treatment material 5 suppresses the occurrence of incomplete combustion is not clear at present, but is presumed to be as follows.
  • oxygen molecules do not exist in a dispersed manner but in the form of aggregates of oxygen atoms. ing.
  • oxygen atoms are aggregated, When the combustion engine is operated, not all oxygen atoms are completely burned in the combustion chamber, but some oxygen atoms remain without burning, triggering incomplete combustion. It is considered something.
  • the combustion air combusted in the combustion chamber comes into contact with the air treatment material 5 disposed in the air passage 4 in the air passage 4.
  • the condensed oxygen atoms contained in the air come into contact with the aluminum provided on the surface of the air treatment material 5.
  • Such aluminum is very unstable with respect to oxygen, and when it comes into contact with oxygen, an oxidation reaction occurs quickly. Therefore, when a part of the aggregated oxygen atoms comes into contact with the aluminum, the formula:
  • the air treatment material 5 has aluminum on its surface.
  • the substrate of the air treatment material 5 is not particularly limited.
  • Examples of the base material of the air treatment material 5 include an aluminum base material, a metal material such as copper and brass, and a base material having an aluminum layer in which aluminum is adhered to a ceramic surface by vapor deposition or the like. Materials.
  • the shape of the air treatment material 5 is not particularly limited, and examples thereof include a plate shape, a rod shape, a pipe shape, and a honeycomb shape.
  • the surface area of the aluminum portion of the air treatment material 5 is preferably as large as possible. From this point of view, reduction of costs such as processing costs, and reduction of air resistance, in the present invention, it is preferable to use an aluminum pipe as the air treatment material 5. preferable.
  • the size of the air treatment material 5 is not particularly limited, and is usually large enough to be accommodated in the treatment apparatus main body 1 and large enough not to obstruct the passage of air passing through the air passage 4.
  • a typical example is an aluminum pipe having an outer diameter of about 5 to 3 Omm and an inner diameter of about 0.3 to 25 mm.
  • a through hole 7 is provided in the air treatment material 5 or a slit 8 is provided to penetrate the inside, so as to increase the contact area with the air. Air may also be brought into contact with the inner surface of the gas treatment material 5.
  • two or more air treatment materials 5 are connected through a spacer 9 and the spacer 9 is provided.
  • a gap 10 may be formed in a portion where the air treatment material 5 flows from the gap 10.
  • the number of the air treatment materials 5 provided in the air passage 4 differs depending on the application and size of the combustion air treatment device of the present invention, and the size and shape of the air treatment material 5 and is therefore generally determined. Can not do it.
  • the application of the combustion air treatment device of the present invention is an internal combustion engine such as an automobile engine, and an aluminum hollow pipe having an outer diameter of about 3 to 10 mm is used as the air treatment material 5, It may be about 5 to 30 pieces.
  • the arrangement of the hollow pipes in the air passage 4 is a so-called zigzag shape, that is, an air treatment material 5 and an air stabilization material, as shown in FIG. 6 is preferably provided with a gap in a non-contact state.
  • the coagulated oxygen atoms in the air react with the aluminum of the air treatment material 5 to generate aluminum oxide.
  • the condensed oxygen atoms are dissociated into dispersed oxygen molecules, so that they can be burned efficiently.
  • the air stabilizing material 6 is used in the combustion air treatment device of the present invention, and the air stabilizing material 6 generates nitrogen oxides NO x, carbon monoxide, hydrocarbons, and the like. An excellent effect of being able to suppress the occurrence of the above is exhibited.
  • the air stabilizing material 6 has a reducing catalyst, and the reducing catalyst imparts a reducing property to air.
  • the air provided with such reducing properties acts to rapidly and completely burn the fuel even in a low temperature state. Therefore, before the nitrogen oxide NOx, which is generated by the reaction between oxygen and nitrogen at a high temperature, is generated, the air provided with the reducing property rapidly and completely burns the fuel. As a result, the air is consumed when fuel is burned, so that the amount of nitrogen oxides NOx generated by the reaction between oxygen and nitrogen is suppressed.
  • oxygen that is originally involved in the reaction with nitrogen is given a reducing property, the oxygen is involved in the reaction with carbon monoxide and hydrocarbons in the fuel and is consumed. It no longer participates in the reaction with nitrogen.
  • oxygen reacts with carbon monoxide to form carbon dioxide, and also reacts with hydrocarbons to form carbon dioxide and water, so that the amount of exhausted nitrogen oxides NOx, carbon monoxide, and hydrocarbons It is considered that the amount can be reduced.
  • a far-infrared radiating material layer is provided on the inner surface of the air stabilizing material 6, and far-infrared rays generated from the far-infrared radiating material layer are directly irradiated to the reduction catalyst.
  • the oxidation of nitrogen gas and the like contained in the air to nitrogen oxides is significantly suppressed. An excellent effect of being controlled is exhibited.
  • the far-infrared ray generated from the far-infrared radiating material layer is constantly radiated to the reduction catalyst, so that the processing capacity of the combustion air is maintained almost constant regardless of the fluctuation of the flow rate of the combustion air. be able to.
  • the reduction catalyst may be heated by combustion heat generated when the combustion engine is operating.
  • the combustion engine and the reduction catalyst may be connected by a heat pipe or the like so that the combustion heat propagates to the reduction catalyst, or the combustion air treatment device may be directly contacted with the combustion engine. .
  • the reduction catalyst refers to one having a property of imparting reducibility to air.
  • reduction catalyst examples include, for example, platinum (Pt), palladium (Pd), rhodium (Rh), and the like, and these can be used alone or in combination of two or more.
  • the use form of the reduction catalyst is not particularly limited in the present invention.
  • the reduction catalyst may be used in a plate form as it is, may be used by being supported on a far-infrared radiating material, or may be used in a powder form.
  • a plate-shaped reduction catalyst is preferable in the present invention because it can be used as it is without any particular processing.
  • the amount of the reduction catalyst to be used cannot be unconditionally determined because it varies depending on the use and size of the combustion air treatment device of the present invention, the form of the reduction catalyst, and the like.
  • the amount of the reduction catalyst used depends on the type of the reduction catalyst and the like. Although it is not possible, usually, it should be about 0.1 to 10 g, preferably about 0.3 to 5 g per 100 O ml of displacement of the internal combustion engine.
  • the reduction catalyst is preferably used in contact with a far-infrared radiation material.
  • the far-infrared radiating material itself has a property of radiating far-infrared rays.
  • the far-infrared radiating material include, for example, titania ceramic, glass ceramic, alumina ceramic, zirconia ceramic, beryllia ceramic, magnesia ceramic, gay nitride ceramic, nickel oxide ceramic, boron nitride ceramic, Examples include yttria ceramics and gay carbide.
  • titania ceramics can be particularly preferably used in the present invention because they significantly increase the activity of the reduction catalyst.
  • the far-infrared radiating material may be, for example, a sintered body obtained by sintering in a predetermined shape, or by spraying or coating a pipe made of a metal such as aluminum, copper, iron, or brass. It may be a formed film. Among them, those in which a coating of a far-infrared radiating material such as titania ceramic is formed on an aluminum base material have high mechanical strength and are lightweight, so that they are preferably used in the present invention. It is a good thing.
  • the thickness of the coating of the far-infrared radiating material is usually preferably about 50 to 10 O ⁇ m from the viewpoints of far-infrared radiation and usability.
  • the far-infrared radiation material layer is provided on at least the inner surface of the pipe forming the air stabilizing material 6. In some cases, the far-infrared radiation material layer may be provided not only on the inner surface of the pipe but also on the outer surface.
  • the pipe-shaped far-infrared radiating material can produce the air stabilizing material 6 only by inserting the reduction catalyst into the hollow portion thereof, and is suitable in the present invention from the viewpoint of industrial productivity. It can be used for
  • the amount of the far-infrared radiating material used depends on its type and the like, and thus cannot be unconditionally determined. Usually, the amount of the far-infrared radiating material used is selected such that the catalytic activity of the reduction catalyst is enhanced by the far-infrared radiation emitted from the far-infrared radiating material. For example, when the far-infrared radiating material is titania ceramic, the amount of the catalyst used is determined by the catalytic activity per liter of the internal volume of the combustion air treatment device for a combustion engine of the present invention.
  • 0.5 g or more preferably 1 g or more.
  • it is not more than 5 g.
  • the reduction catalyst used in the present invention is coated with a far-infrared radiating material, or when the far-infrared radiating material is a pipe formed on the surface of a metal pipe, the reduction catalyst is contained in the pipe. Can be used.
  • the far-infrared radiating material layer When using a pipe in which the far-infrared radiating material layer is formed on at least the inner surface, for example, as shown in FIG. However, it may be inserted into a space in the air stabilizing material 6 in which a far-infrared radiation material layer is formed on at least the inner surface. Also, in order to allow air to enter the air stabilizer 6 and make sufficient contact with the reduction catalyst 11, two or more air stabilizers 6 are connected through the spacer 12. The space 13 may be connected to form a gap 13 in a portion where the spacer 12 is provided, and air may flow into the air stabilizing material 6 from the gap 13. 6 may be provided with through holes 14 and through slits 15 as appropriate.
  • the number of air stabilizers 6 provided in the air passage 4 varies depending on the use and size of the combustion air treatment device of the present invention, and the size and shape of the air stabilizers 6. Can not be determined.
  • the application of the combustion air treatment device of the present invention is an internal combustion engine such as an automobile engine, and a hollow pipe having an outer diameter of about 3 to 1 Omm is used as the air stabilizing material 6, It may be about 30.
  • the arrangement of the hollow pipes is so-called staggered, that is, the air treatment material 5 and the air stabilization material 6 are not in contact with each other, as shown in FIG. It is preferable that a gap is provided in this state.
  • the air treatment material 5 and the air stabilization material 6 are not arranged in contact with each other, but are arranged so as to be alternately adjacent to each other with a gap provided.
  • the distance between the air treatment material 5 and the air stabilizing material 6 adjacent to each other is about 3 to 10 mm, preferably about 3 to 5 mm.
  • An air passage 4 is formed in the processing apparatus main body 1, and a pair of permanent magnets 19a and 19b that generate a strong magnetic field of 1000 gauss or more through the air passage 4 include: The poles are arranged so as to face each other.
  • a pair of permanent magnets 19a and 19b that generate a pair of extremely strong magnetic fields of 1000 Gauss or more are arranged so that the same poles face each other. Also has one major feature.
  • the magnets 19a and 19b are arranged so that the same poles face each other, so that the magnetic field formed is They are close to each other near the center between the magnets 19a and 19b.
  • Oxygen ions generated when the aggregated oxygen atoms react with aluminum have the property of being moved by a magnetic field, unlike oxygen molecules. Therefore, the oxygen ions are attracted near the center between the magnets 19a and 19b by the magnetic field generated from the magnets 19a and 19b. In this way, oxygen ions are attracted near the center between the magnets 19a and 19b As is conventionally known, it is possible to expect a certain effect of treating the combustion air.
  • oxygen ions are simply generated by the magnets 19a, 1 In addition to being attracted near the center between 9b, oxygen ions are separated from the condensed oxygen atoms, which dissociates the condensed oxygen atoms and forms non-coagulated oxygen molecules. It is considered that such oxygen molecules without coagulation have an excellent effect of preventing incomplete combustion of fuel in the combustion engine.
  • the magnetic force generated by the magnets 19a and 19b is 100 gauss or more, and preferably 1200 gauss or more, from the viewpoint of sufficiently exhibiting the effect of disaggregating the aggregated oxygen atoms. It is said.
  • Examples of permanent magnets that generate such a strong magnetic field include titania magnets and neodymium magnets. Among these magnets, neodymium magnets have a very large magnetic force of more than 1200 gauss, and are extremely excellent in the effect of unraveling the condensed oxygen atoms. And can be suitably used.
  • the magnets 19a and 19b are arranged so that the same poles are opposed to each other so that lines of magnetic force collide with each other near the center between the magnets 19a and 19b.
  • the opposed magnets 19a and 19b are N poles, there is an advantage that oxygen ions generated between the two magnets are easily focused around the center of the air passage 4.
  • the size of the magnets 19a and 19b is not particularly limited, and may be appropriately selected and used according to the use of the combustion air treatment device of the present invention.
  • the length of the magnets 19a and 19b is 8 to 40. cm and a width of about 8 to 25 cm.
  • the distance between the two magnets 19a and 19b cannot be determined unequivocally because they differ depending on the strength of the magnetic lines of force of the magnets 19a and 19b. Normally, however, it should be about 5 to 30 cm.
  • the combustion air treatment device of the present invention is configured.
  • the shape and the diameter of the air inlet 2 and the processing air outlet 3 may be appropriately adjusted according to the type of the combustion engine, and are not particularly limited.
  • the installation location of the combustion air treatment device of the present invention is not particularly limited.
  • the combustion air treatment device when installed in an engine room of an automobile, it may be installed between an air filter and an intake manifold of the engine.
  • the combustion air treatment device of the present invention reduces emissions of harmful components, mainly ternary components of nitrogen oxides, carbon monoxide and hydrocarbons, and black smoke contained in exhaust gas discharged from a combustion engine, Moreover, since the combustion efficiency can be increased, it can be suitably used, for example, in internal combustion engines such as automobile engines, and external combustion engines such as boilers and generators.
  • FIG. 1 As the combustion air treatment device, one having a structure as shown in FIG. 1 was used.
  • aluminum processing equipment body 1 vertical: 15 O mm, height: 150 mm, length: 24 O mm, cuboid, air inlet 2 with diameter: 125 mm on the side And a processing air outlet 3 with a diameter of 10 O mm are provided.
  • a pair of neodymium magnets 18 a, 18 b (length: 20 O mm, width: 5 O mm.
  • Thickness 5 mm, magnetic force: 1200 Gauss
  • the air passage 4 is provided with an air treatment material 5 [aluminum pipe, outer diameter: 1 Omm, Inside diameter: 8 mm, length: 4 Omm] 4 5 pieces, and air stabilizing material 6 [outside diameter: 1 Omm, inside diameter: 8 mm, length: 4 Omm]
  • a pipe with a ceramic layer is provided, and a lum, 20 mm long, 5 mm wide width plate (reduction catalyst) is wound around the pipe and inserted into the pipe. 7.5 mm
  • the combustion air treatment devices provided at equal intervals were used.
  • the combustion air treatment equipment was mounted on the vehicle, and the emission of ternary components (carbon monoxide, hydrocarbons and nitrogen oxides) and the concentration of black smoke in the exhaust gas were examined in the following manner.
  • the test was performed without installing the processing apparatus.
  • Exhaust gas components during full load running are sampled and measured on the chassis dynamo in the diesel 10 mode operation pattern.
  • the exhaust gas at full load running was sampled on the chassis dynamo in the operation pattern of the diesel 10 mode, and the black was collected. Measure smoke density.
  • the amount of fuel used after full-load driving and the amount of fuel used after no-load driving are determined on the chassis dynamo in the operation pattern of the diesel 10 mode.
  • a comparative test is conducted before and after the installation of the combustion air treatment equipment.
  • Example 1 the test vehicle used was Nissan Diesel Co., Ltd., P-LG54VRF8, total mileage: 65,200 9 km), and the mileage at the time of measurement: about 700 km.
  • the test was performed in the same manner as in Example 1 except that the speed was set to about 10 O kmZh. The results are shown in Table 2.
  • the ternary component amount was measured according to the following method.
  • the load of the vehicle is measured on a large shear dynamo owned by the Japan Automobile Research Institute [Tsukuba, Ibaraki] to measure the ternary component amount.
  • Example 1 Nissan Diesel Co., Ltd., P-CW6 7GT RF10, total mileage: 447098 km) was used as a test vehicle, and the mileage at the time of measurement was about 700 km, and the average continuous running speed was about The test was performed in the same manner as in Example 1 except that the value was set to 10 OkmZh.
  • the ternary component amount was measured in the same manner as in Example 2, and the fuel consumption was examined according to the following method. The results are shown in Table 3.
  • the combustion air treatment device was installed on a test vehicle, and the fuel economy when traveling from Osaka to Tsukuba through a Meishin, Tomei, and Metropolitan Expressway (average speed: about 100 km) was approximately 650 km. And a combustion air treatment system attached to the test vehicle, and the fuel economy when traveling about 650 km from Tsukuba City to Osaka City via the capital, Tomei, and Meishin Expressways (average speed: about 100 kmZh). measure.
  • Example 1 the test vehicle used was Hino Motors, Ltd., P-FD 176 BK H07C, total mileage: 36 1 292 km), and the mileage at the time of measurement: about 700 km.
  • the test was performed in the same manner as in Example 1 except that the continuous traveling speed was set to about 10 O kmZh.
  • the ternary component amount was measured in the same manner as in Example 2, and the fuel consumption was measured in the same manner as in Example 3. The results are shown in Table 4.
  • Example 1 as a test vehicle, P-FRR12HA6BG1, manufactured by Isuzu Motors Co., Ltd., total mileage: 12044 5 km), mileage at the time of measurement: approximately 700 km, average continuous running
  • the test was performed in the same manner as in Example 1 except that the speed was set to about 100 kmZh. Table 5 shows the results.
  • the ternary component amount was measured in the same manner as in Example 2, and the fuel consumption was measured in the same manner as in Example 3.
  • the combustion air treatment device for a combustion engine of the present invention reduces the amount of harmful components, mainly nitrogen oxides, carbon monoxide and hydrocarbons, contained in exhaust gas discharged from the combustion engine, and furthermore, improves the combustion efficiency. Can be enhanced. Therefore, the combustion air treatment device for a combustion engine of the present invention is suitably used as an apparatus for treating air used for combustion in an internal combustion engine such as an automobile engine, or in an external combustion engine such as a boiler or a generator. It is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

A combustion air treatment apparatus for combustion engines, having a treatment apparatus body provided with an air introduction port and a treated air discharge port which communicate with each other via an air passage, wherein the apparatus body is provided therein with an air treatment member in which a pair of permanent magnets, which generate a magnetic field of not less than 10000 gauss, are disposed via the air passage so that the same poles thereof are opposed to each other and which has aluminum surfaces in the air passage, and an air stabilization member which is spaced from the air treatment member and formed by inserting a reducing catalyst in a pipe having a layer of an infrared radiation material on at least an inner surface thereof, this apparatus being capable of displaying a constant combustion air treatment efficiency irrespective of the variation of a flow rate of the combustion air, reducing the quantity of noxious components, i.e. ternary components, mainly, nitrogen oxide, carbon monoxide and hydrocarbon contained in an exhaust gas from a combustion engine and that of exhaust black smoke without fuel problem, and, moreover, improving the combustion efficiency.

Description

明 細 書 燃焼機関用燃焼空気処理装置 技術分野  Description Technical field of combustion air treatment equipment for combustion engines
本発明は、 燃焼機関用燃焼空気処理装置に関する。 さらに詳しくは、 自動車ェ ンジンなどの内燃機関をはじめ、 ボイラー、 発電機などの外燃機関で燃焼に使用 される空気を処理するための装置に関する。 背景技術  The present invention relates to a combustion air treatment device for a combustion engine. More specifically, the present invention relates to a device for treating air used for combustion in an external combustion engine such as a boiler or a generator, in addition to an internal combustion engine such as an automobile engine. Background art
大気汚染は公害問題の代表格として位置づけられており、 特に、 自動車、 なか でもディ一ゼル車から排出される有害排気ガス、 黒煙などの大幅な低減を図るこ とができる装置の開発が急務とされている。  Air pollution is regarded as a representative example of pollution problems.In particular, it is urgently necessary to develop equipment that can significantly reduce harmful exhaust gas and black smoke emitted from automobiles, especially diesel vehicles. It has been.
そこで、 近年、 排気される有害ガス量を低減させる装置として、 燃焼機関に使 用される燃料を改質する装置が開発されている。 前記装置としては、 流動してい る燃料に強い磁気を付与し、 燃料を細分化させ、 燃焼しやすくすることによって 不完全燃焼を防止する装置などが知られている。 しかしながら、 かかる装置を用 いた場合には、 燃料に含まれている不純物が磁気によって凝集し、 いわゆる燃料 詰まりを発生することにより、 燃焼機関が不完全燃焼を起こしたり、 停止するな どのトラブルを生じることがあった。  Therefore, in recent years, a device for reforming fuel used in a combustion engine has been developed as a device for reducing the amount of harmful gas exhausted. As the above-mentioned device, there is known a device which imparts strong magnetism to flowing fuel, divides the fuel and makes it easy to burn, thereby preventing incomplete combustion. However, when such a device is used, impurities contained in the fuel are agglomerated by magnetism, so-called clogging of the fuel is caused, thereby causing troubles such as incomplete combustion or stop of the combustion engine. There was something.
このようなトラブルを発生させずに有害ガスの発生量を低減させることができ る装置として、 永久磁石によって形成された磁界内に筒状の正極内に筒状の負極 が挿入された電極が配設され、 燃焼空気の空気流によつて正極と負極とを摩擦さ せ、 静電気を放電させ、 発生した陽イオンおよび陰イオンを燃焼空気に混入させ る装置が提案されている (特開平 6— 8 1 7 3 1号公報) 。  As a device that can reduce the amount of harmful gas generated without causing such troubles, an electrode in which a cylindrical negative electrode is inserted into a cylindrical positive electrode in a magnetic field formed by a permanent magnet is arranged. There has been proposed a device in which a positive electrode and a negative electrode are rubbed by an air flow of combustion air to discharge static electricity, and to mix generated cations and anions into combustion air (Japanese Patent Laid-Open No. Hei 6 (1994) -101). No. 81731).
しかしながら、 かかる装置は、 燃焼空気の流量によって発生する陽イオン量お よび陰イオン量が変動するので、 安定した燃焼空気の改質効果を期待することが できず、 また燃焼空気の空気流の流量が少ない場合には、 燃焼空気の改質効果が 不充分となるという欠点がある。 本発明の目的は、 前記従来技術に鑑みてなされたものであり、 燃焼空気の流量 の変動に関係なく、 一定した燃焼空気の処理効率を発現する燃焼空気処理装置を 提供することにある。 However, such devices are not suitable for the amount of cations generated by the flow of combustion air And the amount of anions fluctuate, so it is not possible to expect a stable combustion air reforming effect.If the flow rate of the combustion air flow is small, the combustion air reforming effect will be insufficient. There is a disadvantage that. An object of the present invention has been made in view of the above-mentioned conventional technology, and an object of the present invention is to provide a combustion air treatment device that exhibits a constant treatment efficiency of combustion air irrespective of fluctuations in the flow rate of combustion air.
本発明のもう 1つの目的は、 燃料に関するトラブルを発生させずに、 燃焼機関 から排出される排気ガス中に含まれる有害成分、 主として窒素酸化物、 一酸化炭 素および炭化水素の三元成分量ならびに排出黒煙量の低減を図り、 しかも燃焼効 率を高めることができる装置を提供することにある。  Another object of the present invention is to reduce the amount of harmful components, mainly nitrogen oxides, carbon monoxide, and ternary components of hydrocarbons, contained in exhaust gas discharged from a combustion engine without causing fuel-related problems. Another object of the present invention is to provide a device capable of reducing the amount of black smoke discharged and improving the combustion efficiency.
本発明のこれらおよび他の目的は、 以下の記載から明らカ、になるであろう。 発明の開示  These and other objects of the present invention will become apparent from the following description. Disclosure of the invention
本発明によれば、  According to the present invention,
空気導入口および処理空気排出口を備え、 空気導入口と処理空気排出口とが空気 通路を介して連通してなる処理装置本体内に、 空気通路を隔てて一対の 1 0 0 0 0ガウス以上の磁界を発生する永久磁石がたがいに同極が対向するように配設さ れ、 該空気通路にアルミニウム表面を有する空気処理材と、 遠赤外線輻射材層が 少なくとも内面に形成されたパイプ内に還元触媒が装入された空気安定化材とが 間隙を設けて配設されてなる燃焼機関用燃焼空気処理装置 An air inlet and a processing air outlet are provided, and a pair of 1000 gauss or more is provided in the processing apparatus main body in which the air inlet and the processing air outlet communicate with each other through an air passage with an air passage therebetween. A permanent magnet that generates a magnetic field of the type described above is disposed so that the same poles face each other, an air treatment material having an aluminum surface in the air passage, and a far-infrared radiation material layer formed in at least an inner surface of a pipe. A combustion air treatment device for a combustion engine in which an air stabilizing material loaded with a reduction catalyst is disposed with a gap provided.
が提供される。 図面の簡単な説明 Is provided. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の燃焼機関用燃焼空気処理装置の一実施態様を示す概略横断 面図である。 第 2図は、 本発明の燃焼機関用燃焼空気処理装置に用いられる空気安定化材の 一実施態様を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing one embodiment of a combustion air treatment device for a combustion engine of the present invention. FIG. 2 is a schematic sectional view showing one embodiment of an air stabilizing material used in the combustion air treatment device for a combustion engine of the present invention.
第 3図は、 本発明の燃焼機関用燃焼空気処理装置に用いられる空気安定化材の 一実施態様を示す概略断面図である。  FIG. 3 is a schematic cross-sectional view showing one embodiment of an air stabilizing material used in the combustion air treatment device for a combustion engine of the present invention.
第 4図は、 本発明の燃焼機関用燃焼空気処理装置に用いられる空気処理材また は空気安定化材を処理装置本体に固定するための手段の一実施態様を示す概略断 面図である。 発明を実施するための最良の形態  FIG. 4 is a schematic sectional view showing one embodiment of a means for fixing an air treatment material or an air stabilizing material used in a combustion air treatment device for a combustion engine of the present invention to a treatment device main body. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の燃焼機関用燃焼空気処理装置は、 空気導入口および処理空気排出口を 備え、 空気導入口と処理空気排出口とが空気通路を介して連通してなる処理装置 本体内に、 空気通路を隔てて一対の 1 0 0 0 0ガウス以上の磁界を発生する永久 磁石がたがいに同極が対向するように配設され、 該空気通路にアルミニゥム表面 を有する空気処理材と、 遠赤外線輻射材層が少なくとも内面に形成されたパイプ 内に還元触媒が装入された空気安定化材とが間隙を設けて配設されたものである o  A combustion air treatment device for a combustion engine according to the present invention includes an air inlet and a treated air outlet, and the treatment device in which the air inlet and the treated air outlet communicate with each other via an air passage. A pair of permanent magnets that generate a magnetic field of 1000 gauss or more with the same poles facing each other, an air treatment material having an aluminum surface in the air passage, and a far-infrared radiation material An air stabilizing material loaded with a reducing catalyst is provided in a pipe having at least an inner layer with a gap provided in it.o
以下、 本発明の燃焼機関用燃焼空気処理装置を図面に基づいて説明する。 第 1図は、 本発明の燃焼機関用燃焼空気処理装置の水平方向における概略横断 面図である。  Hereinafter, a combustion air treatment device for a combustion engine of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view in a horizontal direction of a combustion air treatment device for a combustion engine of the present invention.
第 1図において、 1は処理装置本体である。 処理装置本体 1を構成する素材と しては、 例えば、 アルミニウム、 ステンレス鋼、 鉄、 銅、 真鍮などがあげられる が、 本発明は、 かかる素材のみに限定されるものではない。 なお、 これらの素材 の中では、 アルミニウムは、 軽量であり、 例えば、 自動車等の軽量化の要請に応 え、 燃費の向上にも繫がるので、 好適に使用しうるものである。  In FIG. 1, reference numeral 1 denotes a processing apparatus main body. Examples of the material constituting the processing apparatus body 1 include aluminum, stainless steel, iron, copper, and brass, but the present invention is not limited to only such materials. Among these materials, aluminum is suitable for use because it is light in weight and, for example, responds to the demand for lighter weight of automobiles and the like, thereby improving fuel efficiency.
処理装置本体 1の形状および大きさについては、 特に限定がない。 前記形状は The shape and size of the processing apparatus main body 1 are not particularly limited. The shape is
、 例えば、 角筒状、 円筒状などがあげられる。 かかる形状は、 本発明の燃焼空気 処理装置の用途に応じて適宜、 決定すればよい。 また、 前記処理装置本体 1の大 きさは、 前記形状と同様に、 本発明の燃焼空気処理装置の用途に応じて適宜、 決 定すればよい。 その一例として、 本発明の燃焼空気処理装置を、 例えば、 自動車 のエンジンなどの内燃機関の燃焼空気の処理に使用する場合には、 長さ 1 0〜5 0 c m程度、 幅 5〜3 0 c m程度、 高さ 1 0〜3 0 c m程度であればよい。 処理装置本体 1は、 空気導入口 2および処理空気排出口 3を有する。 空気導入 口 2と処理空気排出口 3とは、 空気通路 4を介して連通されている。 Examples thereof include a rectangular tube shape and a cylindrical shape. Such a shape is the combustion air of the present invention. What is necessary is just to determine suitably according to the use of a processing apparatus. Further, the size of the processing apparatus main body 1 may be appropriately determined according to the use of the combustion air processing apparatus of the present invention, similarly to the shape. As an example, when the combustion air treatment device of the present invention is used for treating combustion air of an internal combustion engine such as an automobile engine, for example, the length is about 10 to 50 cm and the width is 5 to 30 cm. Degree and height should be about 10 to 30 cm. The processing apparatus main body 1 has an air inlet 2 and a processing air outlet 3. The air inlet 2 and the treated air outlet 3 are connected via an air passage 4.
空気導入口 2から内燃機関で燃焼される空気が矢印 A方向に導入され、 かかる 空気は処理装置本体 1内の空気通路 4で処理された後、 処理空気排出口 3から矢 印 B方向に排出される。 その間、 処理装置本体 1から空気が漏出しないようにす るために、 前記処理装置本体 1は、 空気導入口 2および処理空気排出口 3を除い て密閉系となるように構成されている。  Air combusted by the internal combustion engine is introduced from the air inlet 2 in the direction of arrow A. After the air is processed in the air passage 4 in the processing device body 1, it is discharged from the treated air outlet 3 in the direction of arrow B. Is done. Meanwhile, in order to prevent air from leaking from the processing apparatus main body 1, the processing apparatus main body 1 is configured to be a closed system except for the air inlet 2 and the processing air outlet 3.
前記処理装置本体 1内の空気通路 4に、 アルミニゥム表面を有する空気処理材 5と、 遠赤外線輻射材層が少なくとも内面に形成されたパイプ内に還元触媒が装 入された空気安定化材 6とが間隙を設けて配設されている。  An air treatment material 5 having an aluminum surface, an air stabilization material 6 having a reduction catalyst inserted in at least a pipe having a far-infrared radiation material layer formed on an inner surface thereof, in an air passage 4 in the treatment device body 1. Are provided with a gap.
本発明の燃焼空気処理装置には、 このように、 空気処理材 5および空気安定化 材 6がそれぞれ独立して非接触の状態で配設されている点に、 1つの大きな特徴 がある。  The combustion air treatment device of the present invention has one significant feature in that the air treatment material 5 and the air stabilization material 6 are independently disposed in a non-contact state.
本発明においては、 空気通路 4に空気処理材 5が用いられていることにより、 燃焼機関の作動時に不完全燃焼が発生することが抑制され、 燃費を向上させるこ とができるという、 優れた効果が発現される。 空気処理材 5を用いることによつ て、 不完全燃焼が発生することが抑制される理由は、 現在のところ確かではない が、 おそらく以下のとおりであると推測される。  In the present invention, the use of the air treatment material 5 in the air passage 4 suppresses the occurrence of incomplete combustion during operation of the combustion engine, thereby improving fuel efficiency. Is expressed. The reason why the use of the air treatment material 5 suppresses the occurrence of incomplete combustion is not clear at present, but is presumed to be as follows.
すなわち、 一般に、 大気中における空気、 特に汚染されている空気中では、 酸 素分子は分散して存在しているのではなく、 酸素原子同士の凝集体の形態で存在 しているものと考えられている。 このように、 酸素原子が凝集している場合、 燃 焼機関を作動させた際に、 すべての酸素原子が燃焼室内で完全に燃焼するのでは なく、 ある程度の量の酸素原子が燃焼せずに残存するため、 不完全燃焼の引金と なっているものと考えられる。 That is, in general, in the air in the atmosphere, particularly in polluted air, it is considered that oxygen molecules do not exist in a dispersed manner but in the form of aggregates of oxygen atoms. ing. Thus, when oxygen atoms are aggregated, When the combustion engine is operated, not all oxygen atoms are completely burned in the combustion chamber, but some oxygen atoms remain without burning, triggering incomplete combustion. It is considered something.
これに対して、 本発明においては、 燃焼室内で燃焼される燃焼空気は、 空気通 路 4内で該空気通路 4に配設された空気処理材 5と接触する。 そのとき、 かかる 空気に含まれている凝集した酸素原子は、 空気処理材 5の表面に設けられたアル ミニゥムと接触する。 かかるアルミニウムは、 酸素に対して非常に不安定であり 、 酸素と接触すると速やかに酸化反応が起こる。 したがって、 凝集した酸素原子 の一部が該アルミニウムと接触することにより、 式:  On the other hand, in the present invention, the combustion air combusted in the combustion chamber comes into contact with the air treatment material 5 disposed in the air passage 4 in the air passage 4. At that time, the condensed oxygen atoms contained in the air come into contact with the aluminum provided on the surface of the air treatment material 5. Such aluminum is very unstable with respect to oxygen, and when it comes into contact with oxygen, an oxidation reaction occurs quickly. Therefore, when a part of the aggregated oxygen atoms comes into contact with the aluminum, the formula:
4 A 1 + 3〇2 → 2 A 1 2 03 + 02 个 で表わされるように、 アルミニウムの酸化反応が進行し、 酸素分子が解きほぐさ れる。 このとき、 凝集した酸素原子が後述する磁石が発生する非常に強力な磁力 による作用とあいまって解きほぐされる。 この解きほぐされた酸素分子は、 非常 に効率よく燃焼されるため、 不完全燃焼の発生を抑制することができるものと考 えられる。 4 A 1 + 3_Rei 2 → 2 A 1 2 0 3 + 0 as represented by 2 pieces, the oxidation reaction of the aluminum proceeds, oxygen molecules are loosened. At this time, the agglomerated oxygen atoms are dissociated together with the action of the extremely strong magnetic force generated by the magnet described later. It is considered that the dissociated oxygen molecules are burned very efficiently and can suppress the occurrence of incomplete combustion.
空気処理材 5は、 前記したように、 その表面にアルミニウムを有する。 かかる 空気処理材 5の基材などには特に限定がない。  As described above, the air treatment material 5 has aluminum on its surface. The substrate of the air treatment material 5 is not particularly limited.
空気処理材 5の基材としては、 例えば、 アルミニウム製基材、 銅、 真鍮などの 金属製素材やセラミックの表面にアルミ二ゥムが蒸着などによって付着されたァ ルミ二ゥム層を有する基材などがあげられる。  Examples of the base material of the air treatment material 5 include an aluminum base material, a metal material such as copper and brass, and a base material having an aluminum layer in which aluminum is adhered to a ceramic surface by vapor deposition or the like. Materials.
空気処理材 5の形状についても特に限定がなく、 例えば、 板状、 棒状、 パイプ 状、 ハニカム状などがあげられる。  The shape of the air treatment material 5 is not particularly limited, and examples thereof include a plate shape, a rod shape, a pipe shape, and a honeycomb shape.
なお、 本発明においては、 空気中の酸素を効率よく処理する観点から、 前記空 気処理材 5のアルミニウム部分の表面積ができるだけ大きいことが好ましい。 か かる観点、 加工費等の経費の低減の観点および空気抵抗を小さくする観点から、 本発明においては、 空気処理材 5として、 アルミニウム製パイプを用いることが 好ましい。 In the present invention, from the viewpoint of efficiently treating oxygen in the air, the surface area of the aluminum portion of the air treatment material 5 is preferably as large as possible. From this point of view, reduction of costs such as processing costs, and reduction of air resistance, in the present invention, it is preferable to use an aluminum pipe as the air treatment material 5. preferable.
また、 空気処理材 5の大きさは、 特に限定がなく、 通常、 処理装置本体 1内に 収納される大きさで、 かつ空気通路 4を通過する空気の通過を妨げないような大 きさが選ばれる。 その代表例としては、 例えば、 外径 5〜3 O mm程度、 内 径 0 . 3〜2 5 mm程度のアルミニウム製パイプなどがあげられる。 なお、 パイ プを用いる場合、 空気との接触面積を大きくするために、 第 2図に示されるよう に、 空気処理材 5に貫通孔 7を設けたり、 内部と貫通するスリット 8を設け、 空 気処理材 5の内面にも空気が接触するようにしてもよい。 また、 空気が空気処理 材 5の内面のアルミニウムにも接触するようにするために、 スぺ一サー 9を介し て 2本以上の空気処理材 5を接続し、 該スぺーサー 9が設けられている部分に間 隙 1 0を形成させ、 かかる間隙 1 0から空気処理材 5内の空間に空気が流入する ようにしてもよい。  The size of the air treatment material 5 is not particularly limited, and is usually large enough to be accommodated in the treatment apparatus main body 1 and large enough not to obstruct the passage of air passing through the air passage 4. To be elected. A typical example is an aluminum pipe having an outer diameter of about 5 to 3 Omm and an inner diameter of about 0.3 to 25 mm. In the case of using a pipe, as shown in FIG. 2, a through hole 7 is provided in the air treatment material 5 or a slit 8 is provided to penetrate the inside, so as to increase the contact area with the air. Air may also be brought into contact with the inner surface of the gas treatment material 5. Further, in order to make the air also contact the aluminum on the inner surface of the air treatment material 5, two or more air treatment materials 5 are connected through a spacer 9 and the spacer 9 is provided. A gap 10 may be formed in a portion where the air treatment material 5 flows from the gap 10.
空気通路 4内に配設される空気処理材 5の個数は、 本発明の燃焼空気処理装置 の用途、 大きさなどや、 空気処理材 5の大きさ、 形状などによって異なるので一 概には決定することができない。 その一例として、 例えば、 本発明の燃焼空気処 理装置の用途が自動車用エンジンなどの内燃機関であり、 空気処理材 5として外 径 3〜1 0 mm程度のアルミニウム製の中空パイプを用いる場合、 5〜3 0本程 度であればよい。 この場合、 かかる中空パイプの空気通路 4における配列は、 効 率よく空気を処理する観点から、 第 1図に示されるように、 いわゆる千鳥状、 す なわち、 空気処理材 5と空気安定化材 6とが非接触の状態で間隙を設けて配設さ れていることが好ましい。  The number of the air treatment materials 5 provided in the air passage 4 differs depending on the application and size of the combustion air treatment device of the present invention, and the size and shape of the air treatment material 5 and is therefore generally determined. Can not do it. As an example, for example, when the application of the combustion air treatment device of the present invention is an internal combustion engine such as an automobile engine, and an aluminum hollow pipe having an outer diameter of about 3 to 10 mm is used as the air treatment material 5, It may be about 5 to 30 pieces. In this case, the arrangement of the hollow pipes in the air passage 4 is a so-called zigzag shape, that is, an air treatment material 5 and an air stabilization material, as shown in FIG. 6 is preferably provided with a gap in a non-contact state.
なお、 本発明においては、 前記したように、 空気中の凝集した酸素原子は、 空 気処理材 5のアルミニウムと反応し、 酸化アルミニウムを生成する。 このとき、 凝集した酸素原子は、 解きほぐされ、 分散した酸素分子となるので、 効率よく燃 焼するようになる。  In the present invention, as described above, the coagulated oxygen atoms in the air react with the aluminum of the air treatment material 5 to generate aluminum oxide. At this time, the condensed oxygen atoms are dissociated into dispersed oxygen molecules, so that they can be burned efficiently.
ところで、 燃焼機関で燃料を燃焼させた際には、 空気中の窒素分子は酸素と反 応し、 公害の原因とされている、 いわゆる窒素酸化物 N O x 〔xは 1または 2を 示す〕 、 一酸化炭素、 炭化水素などを生成する。 By the way, when fuel is burned by a combustion engine, nitrogen molecules in the air react with oxygen. In response, it produces the so-called nitrogen oxides NOx (x indicates 1 or 2), carbon monoxide, hydrocarbons, and the like, which are considered to cause pollution.
しかしながら、 本発明の燃焼空気処理装置には、 空気安定化材 6が用いられて おり、 かかる空気安定化材 6により、 窒素酸化物 N O x の発生をはじめ、 一酸化 炭素、 炭化水素などの発生を抑制することができるという、 優れた効果が発現さ れる。  However, the air stabilizing material 6 is used in the combustion air treatment device of the present invention, and the air stabilizing material 6 generates nitrogen oxides NO x, carbon monoxide, hydrocarbons, and the like. An excellent effect of being able to suppress the occurrence of the above is exhibited.
このような優れた効果が発現される理由は、 現在のところ定かではないが、 お そらく、 以下のとおりであると考えられる。 すなわち、 空気安定化材 6は、 還元 触媒を有しており、 該還元触媒は、 空気に還元性を付与する。 かかる還元性が付 与された空気は、 低温状態であっても燃料を迅速に完全燃焼させるように作用す る。 したがって、 高温状態で酸素と窒素とが反応することによって発生するとい われている窒素酸化物 N O x が発生する前に、 還元性が付与された空気は、 燃料 を迅速に完全燃焼させる。 その結果、 該空気は、 燃料を燃焼させる際に消費され るため、 酸素と窒素とが反応することによって発生する窒素酸化物 N O x 量が抑 制される。 このように、 本来、 窒素との反応に関与する酸素には還元性が付与さ れることにより、 該酸素は、 燃料中の一酸化炭素および炭化水素との反応に関与 し、 消費されるため、 窒素との反応に関与しなくなる。 また、 酸素は、 一酸化炭 素と反応して二酸化炭素となり、 また炭化水素とも反応して二酸化炭素と水とな るため、 排気される窒素酸化物 N O x 量、 一酸化炭素量および炭化水素量の低減 も図られるようになるものと考えられる。  The reason for such an excellent effect is not clear at present, but it is probably as follows. That is, the air stabilizing material 6 has a reducing catalyst, and the reducing catalyst imparts a reducing property to air. The air provided with such reducing properties acts to rapidly and completely burn the fuel even in a low temperature state. Therefore, before the nitrogen oxide NOx, which is generated by the reaction between oxygen and nitrogen at a high temperature, is generated, the air provided with the reducing property rapidly and completely burns the fuel. As a result, the air is consumed when fuel is burned, so that the amount of nitrogen oxides NOx generated by the reaction between oxygen and nitrogen is suppressed. As described above, since oxygen that is originally involved in the reaction with nitrogen is given a reducing property, the oxygen is involved in the reaction with carbon monoxide and hydrocarbons in the fuel and is consumed. It no longer participates in the reaction with nitrogen. In addition, oxygen reacts with carbon monoxide to form carbon dioxide, and also reacts with hydrocarbons to form carbon dioxide and water, so that the amount of exhausted nitrogen oxides NOx, carbon monoxide, and hydrocarbons It is considered that the amount can be reduced.
なお、 前記還元触媒を単独で用いた場合、 窒素酸化物などの発生を抑制する効 果が低い。  When the reduction catalyst is used alone, the effect of suppressing the generation of nitrogen oxides and the like is low.
これに対して、 本発明においては、 空気安定化材 6の内面に遠赤外線輻射材層 が設けられており、 該遠赤外線輻射材層から発生する遠赤外線が直接、 還元触媒 に照射される。 このように、 還元触媒に遠赤外線が輻射された場合には、 空気中 に含まれている窒素ガスなどが酸化されて窒素酸化物などとなることが著しく抑 制されるという優れた効果が発現される。 On the other hand, in the present invention, a far-infrared radiating material layer is provided on the inner surface of the air stabilizing material 6, and far-infrared rays generated from the far-infrared radiating material layer are directly irradiated to the reduction catalyst. In this way, when far-infrared rays are radiated to the reduction catalyst, the oxidation of nitrogen gas and the like contained in the air to nitrogen oxides is significantly suppressed. An excellent effect of being controlled is exhibited.
さらに、 遠赤外線輻射材層から発生した遠赤外線が常時一定して還元触媒に輻 射されるので、 燃焼空気の流量の変動に関係なく、 燃焼空気の処理能力をほぼ一 定の状態に維持することができる。  Furthermore, the far-infrared ray generated from the far-infrared radiating material layer is constantly radiated to the reduction catalyst, so that the processing capacity of the combustion air is maintained almost constant regardless of the fluctuation of the flow rate of the combustion air. be able to.
なお、 本発明においては、 燃焼機関の稼働時に発生する燃焼熱で還元触媒を加 熱してもよい。 この場合、 例えば、 燃焼熱が還元触媒に伝播するように、 燃焼機 関と前記還元触媒とをヒートパイプなどで連接してもよく、 燃焼空気処理装置と 燃焼機関とを直接接触させてもよい。  In the present invention, the reduction catalyst may be heated by combustion heat generated when the combustion engine is operating. In this case, for example, the combustion engine and the reduction catalyst may be connected by a heat pipe or the like so that the combustion heat propagates to the reduction catalyst, or the combustion air treatment device may be directly contacted with the combustion engine. .
前記還元触媒とは、 空気に還元性を付与する性質を有するものをいう。  The reduction catalyst refers to one having a property of imparting reducibility to air.
前記還元触媒の代表例としては、 例えば、 プラチナ (P t ) 、 パラジウム (P d ) 、 ロジウム (R h ) などがあげられ、 これらは単独でまたは 2種以上を組み 合わせて用いることができる。  Representative examples of the reduction catalyst include, for example, platinum (Pt), palladium (Pd), rhodium (Rh), and the like, and these can be used alone or in combination of two or more.
前記還元触媒の使用形態については、 本発明においては特に限定がない。 例え ば、 前記還元触媒は、 そのままプレート状で使用してもよく、 遠赤外線輻射材に 担持させて使用してもよく、 あるいは粉末状で使用してもよい。 それらの中では 、 プレート状の還元触媒は、 特に加工を施さなくてもそのまま使用することがで きるので、 本発明において好ましいものである。  The use form of the reduction catalyst is not particularly limited in the present invention. For example, the reduction catalyst may be used in a plate form as it is, may be used by being supported on a far-infrared radiating material, or may be used in a powder form. Among them, a plate-shaped reduction catalyst is preferable in the present invention because it can be used as it is without any particular processing.
前記還元触媒の使用量は、 本発明の燃焼空気処理装置の用途、 大きさなどや、 該還元触媒の形態などによって異なるので一概には決定することができない。 そ の一例として、 例えば、 本発明の燃焼空気処理装置の用途が自動車エンジンなど の内燃機関である場合、 還元触媒の使用量は、 前記還元触媒の種類などによって 異なるので一概には決定することができないが、 通常、 内燃機関の排気量 1 0 0 O m lあたり、 0 . 1〜1 0 g程度、 好ましくは 0 . 3〜5 g程度であればよい The amount of the reduction catalyst to be used cannot be unconditionally determined because it varies depending on the use and size of the combustion air treatment device of the present invention, the form of the reduction catalyst, and the like. As an example, for example, when the use of the combustion air treatment device of the present invention is an internal combustion engine such as an automobile engine, the amount of the reduction catalyst used depends on the type of the reduction catalyst and the like. Although it is not possible, usually, it should be about 0.1 to 10 g, preferably about 0.3 to 5 g per 100 O ml of displacement of the internal combustion engine.
0 0
なお、 本発明においては、 還元触媒の活性を充分に高める観点から、 還元触媒 は、 遠赤外線輻射材と接触させて使用することが好ましい。 前記遠赤外線輻射材は、 それ自身が遠赤外線を輻射する性質を有するものであ 。 In the present invention, from the viewpoint of sufficiently increasing the activity of the reduction catalyst, the reduction catalyst is preferably used in contact with a far-infrared radiation material. The far-infrared radiating material itself has a property of radiating far-infrared rays.
前記遠赤外線輻射材の代表例としては、 例えば、 チタ二アセラミック、 ガラス セラミック、 アルミナセラミック、 ジルコ二アセラミック、 ベリリアセラミック 、 マグネシアセラミック、 窒化ゲイ素セラミック、 酸化ニッケルセラミック、 窒 化ホウ素セラミック、 イットリアセラミック、 炭化ゲイ素などがあげられる。 こ れらの中では、 チタ二アセラミックは、 還元触媒の活性を著しく高めるので、 本 発明において特に好適に使用しうるものである。  Representative examples of the far-infrared radiating material include, for example, titania ceramic, glass ceramic, alumina ceramic, zirconia ceramic, beryllia ceramic, magnesia ceramic, gay nitride ceramic, nickel oxide ceramic, boron nitride ceramic, Examples include yttria ceramics and gay carbide. Among these, titania ceramics can be particularly preferably used in the present invention because they significantly increase the activity of the reduction catalyst.
前記遠赤外線輻射材は、 例えば、 所定形状に焼結することによって得られた焼 結体であってもよく、 またアルミニウム、 銅、 鉄、 真鍮などの金属からなるパイ プに溶射、 塗布などによって形成された被膜であってもよい。 それらの中では、 チタ二アセラミックなどの遠赤外線輻射材の被膜がアルミ二ゥム基材に形成され たものは、 機械的強度が高く、 また軽量であるので、 本発明において好適に使用 しうるものである。 遠赤外線輻射材の被膜の厚さは、 通常、 5 0〜1 0 O ^ m程 度であることが遠赤外線の輻射性および使用性の観点から好ましい。  The far-infrared radiating material may be, for example, a sintered body obtained by sintering in a predetermined shape, or by spraying or coating a pipe made of a metal such as aluminum, copper, iron, or brass. It may be a formed film. Among them, those in which a coating of a far-infrared radiating material such as titania ceramic is formed on an aluminum base material have high mechanical strength and are lightweight, so that they are preferably used in the present invention. It is a good thing. The thickness of the coating of the far-infrared radiating material is usually preferably about 50 to 10 O ^ m from the viewpoints of far-infrared radiation and usability.
前記遠赤外線輻射材層は、 空気安定化材 6を形成しているパイプの少なくとも 内面に設けられる。 場合によっては、 前記遠赤外線輻射材層は、 パイプの内面の みならず、 外面にも設けられていてもよい。  The far-infrared radiation material layer is provided on at least the inner surface of the pipe forming the air stabilizing material 6. In some cases, the far-infrared radiation material layer may be provided not only on the inner surface of the pipe but also on the outer surface.
また、 パイプ状の遠赤外線輻射材は、 その中空部分に、 前記還元触媒を装入す るだけで空気安定化材 6を作製することができ、 工業的生産性の面から、 本発明 において好適に使用しうるものである。  In addition, the pipe-shaped far-infrared radiating material can produce the air stabilizing material 6 only by inserting the reduction catalyst into the hollow portion thereof, and is suitable in the present invention from the viewpoint of industrial productivity. It can be used for
前記遠赤外線輻射材の使用量は、 その種類などによつて異なるので一概に決定 することができない。 通常、 遠赤外線輻射材の使用量は、 該遠赤外線輻射材から 発せられる遠赤外線の輻射によつて還元触媒が触媒活性が高められる量が選ばれ る。 例えば、 遠赤外線輻射材がチタニアセラミックである場合、 その使用量は、 本発明の燃焼機関用燃焼空気処理装置の内部容積 1 リッ トルあたり、 触媒活性を 高める観点から、 0 . 5 g以上、 好ましくは 1 g以上とすることが望ましく、 ま たあまりにも多量に用いてもそれ以上の効果が望めず、 かえってコスト高となる ため、 1 0 g以下、 好ましくは 5 g以下であることが望ましい。 The amount of the far-infrared radiating material used depends on its type and the like, and thus cannot be unconditionally determined. Usually, the amount of the far-infrared radiating material used is selected such that the catalytic activity of the reduction catalyst is enhanced by the far-infrared radiation emitted from the far-infrared radiating material. For example, when the far-infrared radiating material is titania ceramic, the amount of the catalyst used is determined by the catalytic activity per liter of the internal volume of the combustion air treatment device for a combustion engine of the present invention. From the viewpoint of enhancement, it is desirable to use 0.5 g or more, preferably 1 g or more.Moreover, even if used in an excessively large amount, no further effect can be expected and the cost is rather increased. Preferably, it is not more than 5 g.
本発明に用いられる還元触媒は、 遠赤外線輻射材に被覆したり、 あるいは前記 遠赤外線輻射材が金属製パイプの表面に形成されたパイプである場合には、 該パ イブ内に、 前記還元触媒を装入することによって用いることができる。  The reduction catalyst used in the present invention is coated with a far-infrared radiating material, or when the far-infrared radiating material is a pipe formed on the surface of a metal pipe, the reduction catalyst is contained in the pipe. Can be used.
前記遠赤外線輻射材層が少なくとも内面に形成されたパイプを用いる場合、 例 えば、 第 3図に示されるように、 板状の還元触媒 1 1を巻回するなどして丸めら れた状態で、 少なくとも内面に遠赤外線輻射材層が形成された空気安定化材 6内 の空間に装入すればよい。 また、 空気が空気安定化材 6内に侵入し、 還元触媒 1 1と充分に接触するようにするために、 スぺーサ一 1 2を介して 2本以上の複数 の空気安定化材 6を接続し、 該スぺーサー 1 2が設けられている部分に間隙 1 3 を形成させ、 かかる間隙 1 3から空気安定化材 6内に空気が流入するようにして もよく、 また空気安定化材 6に適宜、 貫通孔 1 4や貫通スリット 1 5を設けても よい。  When using a pipe in which the far-infrared radiating material layer is formed on at least the inner surface, for example, as shown in FIG. However, it may be inserted into a space in the air stabilizing material 6 in which a far-infrared radiation material layer is formed on at least the inner surface. Also, in order to allow air to enter the air stabilizer 6 and make sufficient contact with the reduction catalyst 11, two or more air stabilizers 6 are connected through the spacer 12. The space 13 may be connected to form a gap 13 in a portion where the spacer 12 is provided, and air may flow into the air stabilizing material 6 from the gap 13. 6 may be provided with through holes 14 and through slits 15 as appropriate.
空気通路 4内に配設される空気安定化材 6の個数は、 本発明の燃焼空気処理装 置の用途、 大きさなどや、 該空気安定化材 6の大きさ、 形状などによって異なる ので一概には決定することができない。 その一例として、 例えば、 本発明の燃焼 空気処理装置の用途が自動車エンジンなどの内燃機関であり、 空気安定化材 6と して外径 3〜1 O mm程度の中空パイプを用いる場合、 5〜3 0本程度であれば よい。 この場合、 かかる中空パイプの配列は、 効率よく空気を処理する観点から 、 第 1図に示されるように、 いわゆる千鳥状、 すなわち、 空気処理材 5と空気安 定化材 6とが非接触の状態で間隙を設けて配設されていることが好ましい。 また 、 本発明では、 このように空気処理材 5と空気安定化材 6とは、 それぞれ接触さ せて配設するのではなく、 間隙を設けて交互に隣接するように配設されているこ とにより、 燃焼空気の処理効果がより一層高められるという利点がある。 かかる 観点から、 たがいに隣接する空気処理材 5と空気安定化材 6との間隔は、 3〜1 0 mm程度、 好ましくは 3〜 5 mm程度であることが望ましい。 The number of air stabilizers 6 provided in the air passage 4 varies depending on the use and size of the combustion air treatment device of the present invention, and the size and shape of the air stabilizers 6. Can not be determined. As an example, for example, when the application of the combustion air treatment device of the present invention is an internal combustion engine such as an automobile engine, and a hollow pipe having an outer diameter of about 3 to 1 Omm is used as the air stabilizing material 6, It may be about 30. In this case, from the viewpoint of efficiently treating air, the arrangement of the hollow pipes is so-called staggered, that is, the air treatment material 5 and the air stabilization material 6 are not in contact with each other, as shown in FIG. It is preferable that a gap is provided in this state. Further, in the present invention, the air treatment material 5 and the air stabilization material 6 are not arranged in contact with each other, but are arranged so as to be alternately adjacent to each other with a gap provided. Thus, there is an advantage that the effect of treating the combustion air can be further enhanced. Take From the viewpoint, it is desirable that the distance between the air treatment material 5 and the air stabilizing material 6 adjacent to each other is about 3 to 10 mm, preferably about 3 to 5 mm.
なお、 本発明においては、 空気処理材 5や空気安定化材 6を処理装置本体 1に 固定する手段としては、 例えば、 第 4図に示されるように、 空気処理材 5および 空気安定化材 6がそれぞれ中空パイプ 1 6である場合、 中空パイプ 1 6に固定具 1 7を挿入し、 処理装置本体 1に設けられた貫通孔から固定具 1 7を突出させ、 ナット 1 8で固定具 1 7を固定する手段などがあげられる。  In the present invention, as means for fixing the air treatment material 5 and the air stabilization material 6 to the treatment apparatus main body 1, for example, as shown in FIG. Is a hollow pipe 16, respectively, insert the fixture 17 into the hollow pipe 16, project the fixture 17 from the through hole provided in the processing device body 1, and fix the fixture 17 with the nut 18. And the like.
前記処理装置本体 1内には、 空気通路 4が形成されており、 空気通路 4を隔て て一対の 1 0 0 0 0ガウス以上の強磁界を発生する永久磁石 1 9 a、 1 9 bが、 たがいに同極が相対向するように配設されている。  An air passage 4 is formed in the processing apparatus main body 1, and a pair of permanent magnets 19a and 19b that generate a strong magnetic field of 1000 gauss or more through the air passage 4 include: The poles are arranged so as to face each other.
本発明においては、 このように一対の 1 0 0 0 0ガウス以上の非常に強い磁界 を発生する永久磁石 1 9 a、 1 9 bがたがいに同極が対向するように配設されて いる点にも 1つの大きな特徴がある。  In the present invention, a pair of permanent magnets 19a and 19b that generate a pair of extremely strong magnetic fields of 1000 Gauss or more are arranged so that the same poles face each other. Also has one major feature.
すなわち、 一般に、 凝集した酸素原子がアルミニウムと反応する際に、 イオン 状態になるものと考えられるが、 このとき、 酸素原子は激しく分子運動を起こす 。 このように激しい分子運動を起こしている酸素原子をそのまま放置した場合に は、 この激しレ、分子運動によつて乱流が生じている酸素分子が燃焼機関に供給さ れるため、 燃焼機関内で不完全燃焼を生じ、 排気ガス中に含まれる一酸化炭素量 や炭化水素量が増加すると考えられる。  In other words, it is generally considered that when an aggregated oxygen atom reacts with aluminum, it becomes an ionic state. At this time, the oxygen atom violently causes molecular motion. If the oxygen atoms undergoing such intense molecular motion are left as they are, the oxygen molecules that are turbulent due to the intense molecular motion are supplied to the combustion engine. It is considered that incomplete combustion occurs at this time, and the amount of carbon monoxide and hydrocarbons contained in the exhaust gas increases.
ところが、 本発明においては、 磁力が同程度である場合には、 磁石 1 9 a、 1 9 bがたがいに同極が対向するように配設されていることにより、 形成される磁 界は、 磁石 1 9 a、 1 9 b間の中央付近でぶっかり合っている。 凝集した酸素原 子がアルミニウムと反応する際に発生した酸素ィオンは、 酸素分子とは異なり、 磁界によって移動する性質を有する。 したがって、 磁石 1 9 a、 1 9 bから発生 する磁界により、 酸素イオンは、 磁石 1 9 a、 1 9 b間の中央付近に寄せつけら れる。 このように、 酸素イオンを磁石 1 9 a、 1 9 b間の中央付近に寄せつける と、 従来知られているように、 ある程度の燃焼空気の処理効果を期待することが できる。 However, in the present invention, when the magnetic forces are almost the same, the magnets 19a and 19b are arranged so that the same poles face each other, so that the magnetic field formed is They are close to each other near the center between the magnets 19a and 19b. Oxygen ions generated when the aggregated oxygen atoms react with aluminum have the property of being moved by a magnetic field, unlike oxygen molecules. Therefore, the oxygen ions are attracted near the center between the magnets 19a and 19b by the magnetic field generated from the magnets 19a and 19b. In this way, oxygen ions are attracted near the center between the magnets 19a and 19b As is conventionally known, it is possible to expect a certain effect of treating the combustion air.
さらに、 本発明においては、 永久磁石として、 1 0 0 0 0ガウス以上という非 常に磁力が大きい強磁界を発生する永久磁石が用いられているので、 ただ単に、 酸素イオンが磁石 1 9 a、 1 9 b間の中央付近に寄せつけられるのみならず、 凝 集された酸素原子から酸素イオンが分離し、 それにより、 凝集された酸素原子が 解きほぐされ、 凝集のない酸素分子が形成される。 このように凝集のない酸素分 子は、 燃焼機関内で燃料の不完全燃焼を阻止するという優れた効果を発現するも のと考えられる。  Further, in the present invention, since a permanent magnet that generates a strong magnetic field having a very large magnetic force of 1000 Gauss or more is used as the permanent magnet, oxygen ions are simply generated by the magnets 19a, 1 In addition to being attracted near the center between 9b, oxygen ions are separated from the condensed oxygen atoms, which dissociates the condensed oxygen atoms and forms non-coagulated oxygen molecules. It is considered that such oxygen molecules without coagulation have an excellent effect of preventing incomplete combustion of fuel in the combustion engine.
前記磁石 1 9 a、 1 9 bが発生する磁力は、 凝集された酸素原子が解きほぐさ れる効果を充分に発現させる観点から、 1 0 0 0 0ガウス以上、 好ましくは 1 2 0 0 0ガウス以上とされる。 このような強磁界を発生する永久磁石としては、 例 えば、 チタニア磁石、 ネオジゥム磁石などがあげられる。 これらの磁石の中では 、 ネオジゥム磁石は、 1 2 0 0 0ガウス以上という非常に大きな磁力を有し、 凝 集された酸素原子が解きほぐす効果に非常に優れたものであるので、 本発明にお いて好適に使用しうるものである。  The magnetic force generated by the magnets 19a and 19b is 100 gauss or more, and preferably 1200 gauss or more, from the viewpoint of sufficiently exhibiting the effect of disaggregating the aggregated oxygen atoms. It is said. Examples of permanent magnets that generate such a strong magnetic field include titania magnets and neodymium magnets. Among these magnets, neodymium magnets have a very large magnetic force of more than 1200 gauss, and are extremely excellent in the effect of unraveling the condensed oxygen atoms. And can be suitably used.
磁石 1 9 aおよび 1 9 bは、 両磁石 1 9 a、 1 9 bの間の中央付近で磁力線が たがいにぶっかりあうようにするために、 同極が対向するように配設される。 ま た、 対向する磁石 1 9 a、 1 9 bが N極である場合、 両磁石の間で発生している 酸素イオンが空気通路 4の中央付近に集束されやすくなるという利点がある。 前記磁石 1 9 a、 1 9 bの大きさは、 特に限定がなく、 本発明の燃焼空気処理 装置の用途に応じて適宜、 選択して使用すればよい。 その一例として、 本発明の 燃焼空気処理装置を、 例えば、 自動車エンジンなどの内燃機関の燃焼空気の処理 に使用する場合には、 前記磁石 1 9 a、 1 9 bの長さは 8〜4 0 c m程度、 幅は 8〜2 5 c m程度であればよい。 また、 両磁石 1 9 a、 1 9 bの間隔は、 磁石 1 9 a、 1 9 bの磁力線の強さによって異なるので一概には決定することができな いが、 通常、 5〜3 0 c m程度であればよい。 The magnets 19a and 19b are arranged so that the same poles are opposed to each other so that lines of magnetic force collide with each other near the center between the magnets 19a and 19b. In addition, when the opposed magnets 19a and 19b are N poles, there is an advantage that oxygen ions generated between the two magnets are easily focused around the center of the air passage 4. The size of the magnets 19a and 19b is not particularly limited, and may be appropriately selected and used according to the use of the combustion air treatment device of the present invention. As an example, when the combustion air treatment device of the present invention is used for treating combustion air of an internal combustion engine such as an automobile engine, the length of the magnets 19a and 19b is 8 to 40. cm and a width of about 8 to 25 cm. Also, the distance between the two magnets 19a and 19b cannot be determined unequivocally because they differ depending on the strength of the magnetic lines of force of the magnets 19a and 19b. Normally, however, it should be about 5 to 30 cm.
かくして、 本発明の燃焼空気処理装置が構成される。 なお、 前記空気導入口 2 および処理空気排出口 3の形状および開口径は、 燃焼機関の種類に応じて適宜、 調整すればよく、 特に限定がない。  Thus, the combustion air treatment device of the present invention is configured. The shape and the diameter of the air inlet 2 and the processing air outlet 3 may be appropriately adjusted according to the type of the combustion engine, and are not particularly limited.
本発明の燃焼空気処理装置の設置箇所は、 特に限定がなく、 例えば、 自動車の エンジンルーム内に取り付ける場合には、 エアフィルタとエンジンのィンテーク マニーホールドとの間に設置すればよい。  The installation location of the combustion air treatment device of the present invention is not particularly limited. For example, when the combustion air treatment device is installed in an engine room of an automobile, it may be installed between an air filter and an intake manifold of the engine.
本発明の燃焼空気処理装置は、 燃焼機関から排出される排気ガス中に含まれる 有害成分、 主として窒素酸化物、 一酸化炭素および炭化水素の三元成分および黒 煙の排出量の低減を図り、 しかも燃焼効率を高めることができるので、 例えば、 自動車エンジンなどの内燃機関をはじめ、 ボイラー、 発電機などの外燃機関に好 適に使用することができる。  The combustion air treatment device of the present invention reduces emissions of harmful components, mainly ternary components of nitrogen oxides, carbon monoxide and hydrocarbons, and black smoke contained in exhaust gas discharged from a combustion engine, Moreover, since the combustion efficiency can be increased, it can be suitably used, for example, in internal combustion engines such as automobile engines, and external combustion engines such as boilers and generators.
次に、 本発明を実施例に基づいてさらに詳細に説明するが、 本発明はかかる実 施例のみに限定されるものではない。  Next, the present invention will be described in more detail based on examples, but the present invention is not limited to only these examples.
実施例 1 Example 1
燃焼空気処理装置として、 第 1図に示されるような構造を有するものを用いた 。 すなわち、 アルミニウム製の処理装置本体 1 〔縦: 1 5 O mm、 高さ : 1 5 0 mm、 長さ : 2 4 O mmの直方体、 側面に直径: 1 2 5 mmの空気導入口 2およ び直径 1 0 O mmの処理空気排出口 3が配設〕 内の側壁に、 一対のネオジゥム磁 石 1 8 a、 1 8 b 〔長さ: 2 0 O mm, 幅: 5 O mm. 厚さ: 5 mm、 磁力: 1 2 0 0 0ガウス〕 が N極がたがいに対向するように設けられ、 またその空気通路 4には、 空気処理材 5 〔アルミニウム製パイプ、 外径: 1 O mm、 内径: 8 mm 、 長さ : 4 O mm〕 4 5本、 および空気安定化材 6 〔外径: 1 O mm、 内径: 8 mm、 長さ : 4 O mmのアルミニウム製パイプの内面にチタ二アセラミック層が 設けられたパイプ、 パイプ内に厚さ l mm、 長さ 2 0 O mm, 幅 5 O mmのバラ ジゥム板 (還元触媒) を巻回して挿入〕 4 5本をそれぞれ交互に 1 7 . 5 mmの 等間隔で設けられた燃焼空気処理装置を用いた。 As the combustion air treatment device, one having a structure as shown in FIG. 1 was used. In other words, aluminum processing equipment body 1 [vertical: 15 O mm, height: 150 mm, length: 24 O mm, cuboid, air inlet 2 with diameter: 125 mm on the side And a processing air outlet 3 with a diameter of 10 O mm are provided.] A pair of neodymium magnets 18 a, 18 b (length: 20 O mm, width: 5 O mm. Thickness) : 5 mm, magnetic force: 1200 Gauss) are provided so that the N poles face each other, and the air passage 4 is provided with an air treatment material 5 [aluminum pipe, outer diameter: 1 Omm, Inside diameter: 8 mm, length: 4 Omm] 4 5 pieces, and air stabilizing material 6 [outside diameter: 1 Omm, inside diameter: 8 mm, length: 4 Omm] A pipe with a ceramic layer is provided, and a lum, 20 mm long, 5 mm wide width plate (reduction catalyst) is wound around the pipe and inserted into the pipe. 7.5 mm The combustion air treatment devices provided at equal intervals were used.
次に、 燃焼空気処理装置を 動車に実装し、 以下の方法に従って、 排気ガス中 の三元成分 (一酸化炭素、 炭化水素および窒素酸化物) の排出量および黒煙濃度 を調べた。 なお、 対照試験として、 前記処理装置を装着しないで試験を行なった Next, the combustion air treatment equipment was mounted on the vehicle, and the emission of ternary components (carbon monoxide, hydrocarbons and nitrogen oxides) and the concentration of black smoke in the exhaust gas were examined in the following manner. In addition, as a control test, the test was performed without installing the processing apparatus.
。 それらの結果を表 1に示す。 . Table 1 shows the results.
〔試験自動車〕  [Test vehicle]
昭和 6 3年式トヨタ ·カローラバン (トヨタ自動車工業 (株) 製、 5速マニュ アル ·ディ一ゼル車、 総走行距離: 7 5 6 4 0 k m) 、 測定時の走行距離:約 7 0 0 k m、 平均連続走行時速: 1 0 0 k mZh  Showa 63 Toyota Corollavan (Toyota Motor Co., Ltd., 5-speed manual diesel car, total mileage: 750,400 km), mileage at the time of measurement: about 700 km, average continuous running speed: 100 kmZh
〔試験実施前の試験車の処理事項〕  [Test vehicle processing items before the test]
( 1 ) フラッシングオイルによるエンジン内のフラッシング  (1) Flushing in the engine with flushing oil
( 2 ) エンジンオイル及びエアフィル夕の交換  (2) Change of engine oil and air filter
( 3 ) 燃焼空気処理装置は、 自動車に装着されているエアクリーナーとインテ一 クマ二ホールドとの間のパイプを取り外し、 市販の蛇腹ホースを用いてエアクリ ーナ一と空気導入口 2とを、 また処理空気排出口 3とィンテ一クマ二ホールドと を接続  (3) For the combustion air treatment device, remove the pipe between the air cleaner mounted on the car and the intelligent holder, and connect the air cleaner and the air inlet 2 using a commercially available bellows hose. In addition, connect the processing air outlet 3 to the INTUMR 2 holder
( 4 ) 試験走行前には約 5 0 0 k mの距離を走行  (4) Run a distance of about 500 km before the test run
〔排気ガス中の三元成分 (一酸化炭素、 炭化水素および窒素酸化物) の排出量お よび黒煙濃度の測定方法〕  [Method for measuring ternary components (carbon monoxide, hydrocarbons and nitrogen oxides) and black smoke concentration in exhaust gas]
① 排気ガス中の三元成分 (一酸化炭素、 炭化水素および窒素酸化物) 量の測定 方法  ① Measurement method of ternary components (carbon monoxide, hydrocarbons and nitrogen oxides) in exhaust gas
シャーシダイナモ上でディーゼル 1 0モードの運転パターンにて全負荷走行時 の排気ガス成分を採取し、 計測する。  Exhaust gas components during full load running are sampled and measured on the chassis dynamo in the diesel 10 mode operation pattern.
② 排出黒煙濃度の測定方法  ② Measuring method of black smoke concentration
前記排気ガス中の三元成分量の測定方法と同様に、 シャーシダイナモ上でディ ーゼル 1 0モードの運転パターンにて全負荷走行時の排気ガスを採取し、 その黒 煙濃度を計測する。 In the same manner as the method of measuring the amount of ternary components in the exhaust gas, the exhaust gas at full load running was sampled on the chassis dynamo in the operation pattern of the diesel 10 mode, and the black was collected. Measure smoke density.
③ 実走走行燃費 ③ Actual driving fuel efficiency
前記排気ガス中の三元成分量の測定方法と同様に、 シャーシダイナモ上でディ ーゼル 1 0モードの運転パターンにて全負荷走行後の使用燃料量と、 無負荷走行 後の使用燃料量とを、 燃焼空気処理装置の取付前およぴ取付後について比較試験 する。  In the same manner as the method of measuring the ternary component amount in the exhaust gas, the amount of fuel used after full-load driving and the amount of fuel used after no-load driving are determined on the chassis dynamo in the operation pattern of the diesel 10 mode. A comparative test is conducted before and after the installation of the combustion air treatment equipment.
Figure imgf000017_0001
実施例 2
Figure imgf000017_0001
Example 2
実施例 1において、 試験自動車として、 日産ディーゼル (株) 製、 P— LG 5 4 V R F 8、 総走行距離: 6 5200 9 km) を用い、 測定時の走行距離:約 70 0 km. 平均連続走行時速:約 1 0 O kmZhとした他は、 実施例 1と同様 にして試験を行なった。 その結果を表 2に示す。  In Example 1, the test vehicle used was Nissan Diesel Co., Ltd., P-LG54VRF8, total mileage: 65,200 9 km), and the mileage at the time of measurement: about 700 km. The test was performed in the same manner as in Example 1 except that the speed was set to about 10 O kmZh. The results are shown in Table 2.
なお、 三元成分量の測定は、 以下の方法に従って行なった。  The ternary component amount was measured according to the following method.
〔三元成分量の測定法〕  (Method of measuring ternary component amount)
(財) 日本自動車研究所 〔茨城県つくば市〕 が所有する大型シヤーダイナモ上 で車両に負荷をかけて三元成分量を計測する。 The load of the vehicle is measured on a large shear dynamo owned by the Japan Automobile Research Institute [Tsukuba, Ibaraki] to measure the ternary component amount.
表 2 走 行 試 験 結 果 Table 2 Run test results
実施例番号 三元成分重 (ppm) 排出黒煙濃度 (%) 実走走行燃費 Example number Ternary component weight (ppm) Black smoke emission concentration (%)
(km/し) 一酸化炭素 炭化水素 窒素酸化物 空吹かし時 走行時 [50km/h] (km / s) Carbon monoxide Hydrocarbons Nitrogen oxides When running [50km / h]
2 368.7 132.7 255.6 10 21 3.5 新車発表時 500 205 440 30 39 4.2 の公開諸元 2 368.7 132.7 255.6 10 21 3.5 At the time of new car announcement 500 205 440 30 39 4.2 Published specifications
改善率 26.3 35.3 41.9 66.7 41.5 16.7 Improvement rate 26.3 35.3 41.9 66.7 41.5 16.7
実施例 3 Example 3
実施例 1において、 試験自動車として、 日産ディーゼル (株) 製、 P - CW6 7GT RF 1 0、 総走行距離: 447098 km) を用い、 測定時の走行距離 :約 700 km, 平均連続走行時速:約 1 0 OkmZhとした他は、 実施例 1と 同様にして試験を行なった。  In Example 1, Nissan Diesel Co., Ltd., P-CW6 7GT RF10, total mileage: 447098 km) was used as a test vehicle, and the mileage at the time of measurement was about 700 km, and the average continuous running speed was about The test was performed in the same manner as in Example 1 except that the value was set to 10 OkmZh.
なお、 三元成分量の測定は、 実施例 2と同様にして行ない、 また消費燃費は、 以下の方法に従って調べた。 その結果を表 3に示す。  The ternary component amount was measured in the same manner as in Example 2, and the fuel consumption was examined according to the following method. The results are shown in Table 3.
〔消費燃費〕  [Fuel consumption]
燃焼空気処理装置を試験自動車に取り付け、 大阪市からつくば市まで約 650 kmの道程を名神、 東名、 首都高速道路 〔平均速度:約 1 00 kmZh ou r) を経由して走行したときの燃費、 および燃焼空気処理装置を試験自動車に取り付 け、 つくば市から大阪市まで約 650 kmの道程を首都、 東名、 名神高速道路 〔 平均速度:約 1 00kmZh〕 を経由して走行したときの燃費を計測する。 The combustion air treatment device was installed on a test vehicle, and the fuel economy when traveling from Osaka to Tsukuba through a Meishin, Tomei, and Metropolitan Expressway (average speed: about 100 km) was approximately 650 km. And a combustion air treatment system attached to the test vehicle, and the fuel economy when traveling about 650 km from Tsukuba City to Osaka City via the capital, Tomei, and Meishin Expressways (average speed: about 100 kmZh). measure.
表 3 Table 3
実施例番号 三元成分量 (ppmソ 排出黒煙濃度 (%) 消費燃費 Example No. Ternary component amount (ppm Smoke emission black smoke concentration (%) Fuel consumption
(km/L) 一酸化炭素 炭化水素 窒素酸化物 空吹かし時 走行時 [50km/h] (km / L) Carbon monoxide Hydrocarbon Nitrogen Oxide When driving [50km / h]
3 207.9 120.1 374 8 12 8.8 新車発表時 500 205 440 29 40 7.0 の公開語兀 3 207.9 120.1 374 8 12 8.8 At the time of new car launch 500 205 440 29 40 7.0 Public language
改善率 58.4 41.4 15.0 72.4 70.0 20.5 (%) Improvement rate 58.4 41.4 15.0 72.4 70.0 20.5 (%)
実施例 4 Example 4
実施例 1において、 試験自動車として、 日野自動車 (株) 製、 P - FD 1 76 BK H 07 C、 総走行距離: 3 6 1 292 km) を用い、 測定時の走行距離: 約 700 km. 平均連続走行時速:約 1 0 O kmZhとした他は、 実施例 1と同 様にして試験を行なった。  In Example 1, the test vehicle used was Hino Motors, Ltd., P-FD 176 BK H07C, total mileage: 36 1 292 km), and the mileage at the time of measurement: about 700 km. The test was performed in the same manner as in Example 1 except that the continuous traveling speed was set to about 10 O kmZh.
なお、 三元成分量の測定は、 実施例 2と同様にして行ない、 消費燃費の測定は 、 実施例 3と同様にして行なった。 その結果を表 4に示す。 The ternary component amount was measured in the same manner as in Example 2, and the fuel consumption was measured in the same manner as in Example 3. The results are shown in Table 4.
表 4 Table 4
Figure imgf000023_0001
Figure imgf000023_0001
実施例 5 Example 5
実施例 1において、 試験自動車として、 いす 自動車 (株) 製、 P— FRR 1 2HA 6 B G 1、 総走行距離: 1 2044 5 km) を用い、 測定時の走行距離 :約 700 km、 平均連続走行時速:約 1 00 kmZhとした他は、 実施例 1 と 同様にして試験を行なった。 その結果を表 5に示す。  In Example 1, as a test vehicle, P-FRR12HA6BG1, manufactured by Isuzu Motors Co., Ltd., total mileage: 12044 5 km), mileage at the time of measurement: approximately 700 km, average continuous running The test was performed in the same manner as in Example 1 except that the speed was set to about 100 kmZh. Table 5 shows the results.
なお、 三元成分量の測定は、 実施例 2と同様にして行ない、 消費燃費の測定は 、 実施例 3と同様にして行なった。 The ternary component amount was measured in the same manner as in Example 2, and the fuel consumption was measured in the same manner as in Example 3.
表 5 走 行 試 験 結 果 Table 5 Results of driving test
実施例番号 三元成分量 (ppm) 排出黒煙濃度 (%) 消費燃費 Example number Ternary component amount (ppm) Emission black smoke concentration (%) Fuel consumption
(km /い 一酸化炭素 炭化水素 窒素酸化物 空吹かし時 走行時 [50km/h] (km / I Carbon monoxide Hydrocarbon Nitrogen Oxide When driving [50km / h]
5 480.1 195.2 283.7 15 21 3.0 新車発表時 560 275 440 30 42 2.1 の公開諸元 5 480.1 195.2 283.7 15 21 3.0 At the time of announcement of the new car 560 275 440 30 42 2.1 Published specifications
改善率 14.3 29.0 35.5 50.0 50.0 30.0 Improvement rate 14.3 29.0 35.5 50.0 50.0 30.0
表 1〜5に示された結果から、 実施例 1〜5では、 燃焼空気処理装置が用いら れているので、 三元成分量および排出黒煙ガスの発生量を大幅に低減させ、 しか も燃費効率よく走行させることができることがわかる。 産業上の利用可能性 From the results shown in Tables 1 to 5, in Examples 1 to 5, the combustion air treatment device was used, so that the amount of the ternary component and the amount of the generated black smoke gas were significantly reduced. It can be seen that the vehicle can be driven with high fuel efficiency. Industrial applicability
本発明の燃焼機関用燃焼空気処理装置は、 燃焼機関から排出される排気ガス中 に含まれる有害成分、 主として窒素酸化物、 一酸化炭素および炭化水素の量の低 減を図り、 しかも燃焼効率を高めることができる。 したがって、 本発明の燃焼機 関用燃焼空気処理装置は、 自動車エンジンなどの内燃機関をはじめ、 ボイラー、 発電機などの外燃機関で燃焼に使用される空気を処理するための装置として好適 に使用しうるものである。  The combustion air treatment device for a combustion engine of the present invention reduces the amount of harmful components, mainly nitrogen oxides, carbon monoxide and hydrocarbons, contained in exhaust gas discharged from the combustion engine, and furthermore, improves the combustion efficiency. Can be enhanced. Therefore, the combustion air treatment device for a combustion engine of the present invention is suitably used as an apparatus for treating air used for combustion in an internal combustion engine such as an automobile engine, or in an external combustion engine such as a boiler or a generator. It is possible.

Claims

請 求 の 範 囲 The scope of the claims
1 . 空気導入口および処理空気排出口を備え、 空気導入口と処理空気排出口と が空気通路を介して連通してなる処理装置本体内に、 空気通路を隔てて一対の 1 0 0 0 0ガウス以上の磁界を発生する永久磁石がたがいに同極が対向するように 配設され、 該空気通路にアルミニウム表面を有する空気処理材と、 遠赤外線輻射 材層が少なくとも内面に形成されたパイプ内に還元触媒が装入された空気安定化 材とが間隙を設けて配設されてなる燃焼機関用燃焼空気処理装置。 1. A processing apparatus main body having an air inlet and a processing air outlet, wherein the air inlet and the processing air outlet communicate with each other via an air passage, and a pair of 100 0 0 0 0 separated by an air passage. A permanent magnet that generates a magnetic field of Gauss or more is disposed so that the same poles face each other, an air treatment material having an aluminum surface in the air passage, and a pipe in which a far-infrared radiation material layer is formed at least on the inner surface. A combustion air treatment device for a combustion engine, comprising a space provided with an air stabilizing material having a reduction catalyst inserted therein.
2 . 遠赤外線輻射材がチタニアセラミックである請求項 1記載の燃焼機関用燃 焼空気処理装置。 2. The combustion air treatment device for a combustion engine according to claim 1, wherein the far-infrared radiation material is titania ceramic.
3 . アルミニゥム表面を有する空気処理材がアルミニゥムからなる中空パイプ である請求項 1記載の燃焼機関用燃焼空気処理装置。 3. The combustion air treatment device for a combustion engine according to claim 1, wherein the air treatment material having an aluminum surface is a hollow pipe made of aluminum.
4 . 還元触媒がプラチナ、 パラジウムまたはロジウムである請求項 1記載の燃 焼機関用燃焼空気処理装置。 4. The combustion air treatment device for a combustion engine according to claim 1, wherein the reduction catalyst is platinum, palladium or rhodium.
PCT/JP1998/004721 1997-10-22 1998-10-19 Combustion air treatment apparatus for combustion engines WO1999020887A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/289823 1997-10-22
JP28982397 1997-10-22

Publications (1)

Publication Number Publication Date
WO1999020887A1 true WO1999020887A1 (en) 1999-04-29

Family

ID=17748240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004721 WO1999020887A1 (en) 1997-10-22 1998-10-19 Combustion air treatment apparatus for combustion engines

Country Status (1)

Country Link
WO (1) WO1999020887A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013010197A1 (en) * 2011-07-18 2013-01-24 Eu-Trucktec Gmbh Apparatus for the preparation of gaseous or liquid energy carriers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167062A (en) * 1986-08-18 1988-07-11 Masayuki Iwata Cyclone type catalyzer combustion promoting container and combustion promoting method
JPH01163454A (en) * 1987-12-18 1989-06-27 Etsuro Fujita Air and fuel activating material
JPH01253558A (en) * 1988-04-02 1989-10-09 Mitsubishi Heavy Ind Ltd Intake device for combustion engine
JPH0734893A (en) * 1993-07-13 1995-02-03 Mitsutoshi Okamura Promotion of combustion for internal combustion engine and device therefor
JPH0742633A (en) * 1993-08-04 1995-02-10 Yuugiyokuen Ceramics:Kk Internal combustion engine and relative transportation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167062A (en) * 1986-08-18 1988-07-11 Masayuki Iwata Cyclone type catalyzer combustion promoting container and combustion promoting method
JPH01163454A (en) * 1987-12-18 1989-06-27 Etsuro Fujita Air and fuel activating material
JPH01253558A (en) * 1988-04-02 1989-10-09 Mitsubishi Heavy Ind Ltd Intake device for combustion engine
JPH0734893A (en) * 1993-07-13 1995-02-03 Mitsutoshi Okamura Promotion of combustion for internal combustion engine and device therefor
JPH0742633A (en) * 1993-08-04 1995-02-10 Yuugiyokuen Ceramics:Kk Internal combustion engine and relative transportation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013010197A1 (en) * 2011-07-18 2013-01-24 Eu-Trucktec Gmbh Apparatus for the preparation of gaseous or liquid energy carriers

Similar Documents

Publication Publication Date Title
US4945721A (en) Electromagnetic converter for reduction of exhaust emissions
CA2159504C (en) Emission control device and method
US10280821B2 (en) Gaseous emissions treatment structures with electrohydrodynamic heat and mass transfer
JPH07217507A (en) Feed fuel oil reformer
JP2007107491A (en) Combustion accelerating air treatment device for displacement type internal combustion engine
WO2001081750A1 (en) Device and process for improving fuel consumption and reducing emissions upon fuel combustion
KR19990064229A (en) Exhaust gas purification device of internal combustion engine
KR100549364B1 (en) Diesel Fuel Hazardous Emission Reduction Device
KR100665727B1 (en) Device for high mileage and reducing soots of internal combustion engine
US20040168905A1 (en) Method of generating nitrogen oxides and pertaining system
JP3391799B2 (en) Ammonia injection for NOx control
JPH07766A (en) Waste gas purifier
WO1999020887A1 (en) Combustion air treatment apparatus for combustion engines
US20010036428A1 (en) Exhaust emission purifier
JPH1047173A (en) Liquid fuel improving device
JPH116465A (en) Fuel economizing device for internal combustion engine
US8484952B2 (en) Device for purification of exhaust gas
JP2002256851A (en) Exhaust gas purifier of internal combustion engine
JPH06167211A (en) Method of dealing air pollution
WO1995010702A1 (en) Device for improving the quality of combustion air for an internal combustion engine
WO2005000450A1 (en) Apparatus and method of treating exhaust gas
JP2005344700A (en) Combustion promoting device
JP2002054514A (en) Improving device for combustion efficiency
JPH05332212A (en) Combustion or exhaust processor
KR20110003098A (en) Apparatus for decreasing exhaust gas and method for decreasing exhaust gas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase