WO1999019888A1 - Elektrischer leiter mit dehnungsabhängigem widerstand - Google Patents

Elektrischer leiter mit dehnungsabhängigem widerstand Download PDF

Info

Publication number
WO1999019888A1
WO1999019888A1 PCT/EP1998/005099 EP9805099W WO9919888A1 WO 1999019888 A1 WO1999019888 A1 WO 1999019888A1 EP 9805099 W EP9805099 W EP 9805099W WO 9919888 A1 WO9919888 A1 WO 9919888A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
electrical conductor
outer layer
insulating outer
conductor track
Prior art date
Application number
PCT/EP1998/005099
Other languages
English (en)
French (fr)
Inventor
Andreas Hilburg
Original Assignee
Innocept Medizintechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innocept Medizintechnik Gmbh filed Critical Innocept Medizintechnik Gmbh
Priority to AU93415/98A priority Critical patent/AU9341598A/en
Publication of WO1999019888A1 publication Critical patent/WO1999019888A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables
    • H01B7/0823Parallel wires, incorporated in a flat insulating profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0013Extrusion moulding in several steps, i.e. components merging outside the die
    • B29C48/0015Extrusion moulding in several steps, i.e. components merging outside the die producing hollow articles having components brought in contact outside the extrusion die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0007Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3462Cables

Definitions

  • the invention relates to an electrical conductor with a conductor track consisting of a silicone elastomer with carbon or graphite particles as electrically conductive additives, and a manufacturing method for such an electrical conductor.
  • plastics electrically conductive by admixing electrically conductive additives, for example powdery or fibrous graphite particles.
  • DE 42 26 841 A1 discloses a crosslinking organopolysiloxane composition for the production of electrically conductive elastomers which, on the one hand, crosslinked organopolysiloxane composition (silicone) to non-conductive elastomer and, on the other hand, a certain proportion (11 to 30% by weight) of carbon fibers with an average length of 0 , Contains 1 to 10 mm. Further carbon- or graphite-containing organopolysiloxane compositions are described in US-A 4,279,783. These materials are used in particular for the electrically conductive sheathing of glass fiber cords to form ignition voltage cables.
  • the object of the invention is to create an elastic and flexible conductor consisting of a silicone elastomer, which also has sensory properties, and to create a method for its production.
  • This object is achieved with respect to the electrical conductor in that the conductor is covered with an insulating outer layer made of a silicone elastomer and that it has a variable electrical resistance when the conductor is stretched.
  • a silicone elastomer is used both for the insulating outer layer and for the electrically conductive conductor track.
  • the conductor becomes elastically stretchable.
  • the silicone elastomer is formed from a known organopolysiloxane composition which cross-links to form an elastomer and has a uniform elasticity essentially over the entire cross-sectional area of the conductor.
  • the conductor thus forms an elongated, elastically stretchable element with a predetermined thickness and with a material-dependent, elastic spring constant.
  • the electrical conductor with a conductor track made of carbon-containing or graphite-containing silicone elastomer has a variable electrical resistance when the conductor is stretched.
  • Such an electrical conductor can be used for strain measurement. Due to its expansion resistance defined by the spring constant, the expansion force can also be determined from the measured expansion.
  • a silicone elastomer with extremely fine, powdery graphite or carbon material particles is suitable for the formation of the electrical conductor with strain-dependent resistance.
  • the conductivity and thus the resistance and the characteristic of the change in resistance change depending on the elongation of the conductor track.
  • a conductor optimally suitable for strain measurement purposes with a resistance that changes almost proportionally to the elongation of the conductor can be used using a silicone elastomer Elastosil (registered trademark) sold by Wacker-Chemie GmbH, Kunststoff with one of the following type designations R573 / 50A , R573 / 50B or R4000-50.
  • these are polydimethylsiloxane with graphite particle additives.
  • Round conductor tracks with a diameter of 1 to 4 mm made of this material have a resistance that increases almost linearly with the elongation.
  • the total resistance would have to increase disproportionately in the case of an elongation, which probably results in elongation as well as a reduction in cross-section, since both the elongation and the reduction of the cross-sectional area increase Increase in resistance.
  • the linear changes in resistance due to elongation observed in the silicone elastomers tested appear to be due to the molecular guiding mechanisms within a soot-filled silicone elastomer.
  • the insulating outer layer of a silicone elastomer free of electrically conductive additives is preferably applied to the conductor track in the extrusion process.
  • the electrical conductor can comprise at least two mutually parallel electrical conductor tracks, each with an insulating outer layer, the insulating outer layers being connected to one another via webs arranged at a distance from one another and having different diameters.
  • a coextrusion process is suitable as the production method for the electrical conductor according to the invention, in which the silicone elastomer with conductive additives is passed through an inner nozzle and the silicone elastomer without conductive additives through an outer nozzle.
  • Either both elastomer bodies can be crosslinked at the same time or one after the other, whereby the electrically conductive conductor track is first crosslinked (polymerized) and wound onto a spool and then fed to the inner nozzle of the extrusion head, where it is coated with uncrosslinked silicone elastomer, which is then crosslinked.
  • a wide variety of conductor shapes can be produced by varying the nozzle geometry. For example, several conductor tracks can be surrounded next to one another by a common insulating outer layer, so that a band-shaped conductor assembly is created.
  • the insulated elastomer conductor according to the invention can be used in various areas for measuring strain. It can be arranged parallel to a spring body, a measurement of the elongation of the electrical conductor by determining its resistance making it possible to determine the spring length and thus the spring force. Since the electrical conductor itself has spring-elastic material properties, it can advantageously be used simultaneously as a spring element and as a sensor element.
  • FIG. 1 shows the cross section of a round elastomeric conductor
  • FIG. 2 shows the side view of an extrusion die arrangement for producing a conductor according to FIG. 1
  • FIG. 3 shows a cross section through a multiple conductor according to the invention
  • FIG. 4 shows the top view of the multiple conductor from FIG . 3,
  • FIG. 6 shows the representation of the conductor from FIG. 5 cut along the section line VI-VI in FIG. 5.
  • a circular electrical conductor which consists entirely of silicone elastomer (crosslinked organopolysiloxane mass). Its insulating outer layer 1 is not electrically conductive. Graphite particles are added to the elastomeric conductor track 2.
  • the electrical conductor is formed by a continuous plastic body, which is produced in the coextrusion process.
  • FIG. 2 The manufacturing process of the electrical conductor is shown in FIG. 2.
  • a stream of an uncrosslinked organopolysiloxane mass is fed from an auger press to an outer nozzle 4 without electrically conductive additives.
  • the outer nozzle 4 is of rotationally symmetrical design and surrounds an inner nozzle 5.
  • the outlet cross section 6 of the outer nozzle 4 is ring-shaped and surrounds the circular outlet cross section 7 of the inner nozzle 5.
  • the inner nozzle 5 is fixed in the outer nozzle 4 via connecting struts 8.
  • a non-crosslinked organopolysiloxane composition 9 with electrically conductive particles of graphite is also fed to the inner nozzle 5 by a screw press.
  • the emerging electrically conductive plastic forms the conductor track 2 at the outlet cross section 7 of the inner nozzle 5.
  • the plastic emerging from the outlet cross section 6 of the outer nozzle 4 forms the insulating outer layer 1.
  • an already polymerized (crosslinked) silicone elastomer conductor track can be fed to the inner nozzle 5.
  • This can offer advantages in terms of production technology, since the graphite-containing organopolysiloxane composition has only a limited shelf life (about 3 months) in the uncrosslinked state, but can be lasered indefinitely in the crosslinked state.
  • the contours of the outlet cross sections of the outer nozzle 4 and the inner nozzle 5 can be varied in order to implement different conductor shapes.
  • Figures 3 and 4 show, for example, a co-extruded multiple conductor. This multiple conductor comprises 5 conductor tracks 2 ', which are surrounded by an insulating outer layer 1', which forms a coherent flat conductor.
  • the outer nozzle for producing this multiple conductor has a contour which essentially corresponds to the surface profile of the insulating outer layer 1 ′ which can be seen in FIG. 3.
  • FIG. 4 and 5 show an alternative embodiment of the electrical conductor.
  • two electrical conductors which essentially correspond to the conductor shown in FIG. 1, are connected to one another via flat connecting webs 10.
  • Each conductor comprises an insulating outer layer 1 and a conductor track 2.
  • both conductors have different diameters and thus generate different resistance forces against elastic expansion. This double conductor is used in medical technology to absorb different amounts and forces of expansion.
  • the outer nozzle essentially has the outer contour of the insulating outer layer 1 with the connecting web 10. The interruptions between the individual connecting webs can be punched out of the web material after the conductor has been coextruded.
  • connecting webs 10 can be subsequently attached, in particular glued, to two individual conductors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Die Erfindung betrifft einen elektrischen Leiter mit einer Leiterbahn bestehend aus einem ein Silicon-Elastomer mit Kohlenstoff- oder Graphitpartikeln als elektrisch leitenden Zusatzstoffen. Aufgabe der Erfindung ist es, einen aus einem Silicon-Elastomer bestehenden elastischen und flexiblen Leiter zu schaffen, der auch sensorische Eigenschaften aufweist. Diese Aufgabe wird in bezug auf den elektrischen Leiter dadurch gelöst, daß der Leiter mit einer isolierenden Außenschicht aus einem Silicon-Elastomer ummantelt ist und daß er einen bei einer Dehnung des Leiters variablen elektrischen Widerstand aufweist. Durch Widerstandsmessung des gedehnten erfindungsgemäßen elektrischen Leiters läßt sich so dessen Dehnung ermitteln.

Description

ELEKTRISCHER LEITER MIT DEHNUNGSABHANGIGEM WIDERSTAND
Die Erfindung betrifft einen elektrischen Leiter mit einer Leiterbahn bestehend aus einem ein Silicon-Elastomer mit Kohlenstoff- oder Graphitpartikeln als elektrisch leitenden Zusatzstoffen, sowie ein Herstellungsverfahren für einen derartigen elektrischen Leiter.
Es ist bekannt, Kunststoffe elektrisch leitend zu machen, indem elektrisch leitende Zusätze, beispielsweise pulverförmige oder faserförmige Graphitpartikel, beigemischt werden.
Die DE 42 26 841 AI offenbart eine vernetzende Organopolysiloxanzusammen- setzung zur Herstellung elektrisch leitfähiger Elastomere, welche einerseits zu nicht leitfähigem Elastomer additionsvernetzende Organopolysiloxanmasse (Silicone) und andererseits einen bestimmten Anteil (11 bis 30 Gew.-%) Kohlefasern mit einer durchschnittlichen Länge von 0,1 bis 10 mm enthält. Weitere kohlenstoff- oder graphithaltige Organopolysiloxanzusammensetzung sind in der US-A 4,279,783 beschrieben. Diese Werkstoffe werden insbesondere zur elektrisch leitenden Ummantelung von Glasfaserschnüren zur Ausbildung von Zündspannungskabeln verwendet.
Aufgabe der Erfindung ist es, einen aus einem Silicon-Elastomer bestehenden elastischen und flexiblen Leiter zu schaffen, der auch sensorische Eigenschaften aufweist, sowie ein Verfahren zu dessen Herstellung zu schaffen.
Diese Aufgabe wird in bezug auf den elektrischen Leiter dadurch gelöst, daß der Leiter mit einer isolierenden Außenschicht aus einem Silicon-Elastomer ummantelt ist und daß er einen bei einer Dehnung des Leiters variablen elektrischen Widerstand aufweist.
Zur Herstellung des elektrischen Leiters wird ein Silicon-Elastomer sowohl für die isolierende Außenschicht als auch für die elektrisch leitende Leiterbahn verwandt. Auf diese Weise wird der Leiter elastisch dehnbar. Das Silicon-Elastomer wird aus einer bekannten, zu einem Elastomer vernetzenden Organopolysiloxanmasse gebildet und weist im wesentlichen über die gesamten Querschnittsfläche des Leiters eine gleichmäßige Elastizität auf. Der Leiter bildet so ein längliches elastisch dehnbares Element mit vorgegebener Dicke und mit materialabhängiger, elastischer Federkonstante.
Der elektrische Leiter mit einer Leiterbahn aus kohlenstoffhaltigem oder graphithaltigem Silicon-Elastomer weist einen bei einer Dehnung des Leiters variablen elektrischen Widerstand auf. Ein derartiger elektrischer Leiter kann zur Dehnungs- messung verwandt werden. Aufgrund seines durch die Federkonstante definierten Dehnwiderstandes läßt sich aus der gemessenen Dehnung auch die Dehnkraft ermitteln.
Nach den zur Zeit vorliegenden Erkenntnissen eignet sich nur ein Silicon-Elastomer mit hochfeinen, pulverförmigen Graphit- oder Kolenstoffpartikeln zur Bildung des elektrischen Leiters mit dehnungsabhängigem Widerstand. Je nach prozentualem Anteil der Partikel am Gesamtgewicht der Leiterbahn ändert sich die Leitfähigkeit und damit der Widerstand sowie die Charakteristik der Widerstandsänderung in Abhängigkeit von der Dehnung der Leiterbahn. Ein optimal für Dehnungsmeß- zwecke geeigneter Leiter mit einem sich nahezu proportional zur Längung des Leiters ändernden Widerstand läßt sich unter Verwendung eines von der Firma Wacker-Chemie GmbH, München vertriebenen Silicon-Elastomer Elastosil (eingetragene Marke) mit einer der folgenden Typenbezeichnungen R573/50A, R573/50B oder R4000-50 herstellen. Nach den Herstellerangaben handelt es sich hier um Polydimethylsiloxan mit Graphitpartikelzusätzen. Runde Leiterbahnen mit einem Durchmesser von 1 bis 4 mm aus diesem Werkstoff haben einen nahezu linear mit der Dehnung steigenden Widerstand. Ginge man von einem bei Dehnung unveränderlichen spezifischen Widerstand des Silicon-Elastomers aus, müßte sich der Gesamtwiderstand bei einer Dehnung, die so wohl eine Längung als auch eine Querschnittsreduktion zur Folge hat, überproportional steigern, da sowohl die Längung als auch die Reduktion der Querschnittsfläche zum Anstieg des Widerstandes führen würde. Die bei den überprüften Silicon-Elastomeren beobachteten linearen Widerstandsänderungen durch Dehnung scheinen auf die molekulare Leitmechanismen innerhalb eines rußgefüllten Silicon-Elastomer zurückzuführen zu sein. Vorzugsweise wird die isolierende Außenschicht aus einem von elektrisch leitenden Zusatzstoffen freien Silicon-Elastomer im Extrusionsverfahren auf die Leiterbahn aufgetragen.
Weiterhin kann der elektrische Leiter mindestens zwei zueinander parallele elektrische Leiterbahnen mit jeweils einer isolierenden Außenschicht umfassen, wobei die isolierenden Außenschichten über im Abstand zueinander angeordnete Stege miteinander verbunden sind und unterschiedliche Durchmesser aufweisen.
Als Herstellungsverfahren für den erfindungsgemäßen elektrischen Leiter bietet sich ein Coextrusionsverfahren an, bei dem das Silicon-Elastomer mit leitenden Zusätzen durch eine Innendüse und das Silicon-Elastomer ohne leitende Zusätzen durch eine Außendüse geführt wird. Entweder können beide Elastomer-Körper gleichzeitig vernetzen oder hintereinander, wobei zunächst die elektrisch leitende Leiterbahn vernetzt (polymerisiert) und auf eine Spule aufgewickelt wird und anschließend der Innendüse der Extrusionskopfes zugeführt und dort mit unvernetztem Silicon- Elastomer ummantelt wird, welches anschließend vernetzt.
Durch eine Variation der Düsengeometrie können unterschiedlichste Leiterformen hergestellt werden. Beispielsweise können mehrere Leiterbahnen nebeneinander von einer gemeinsamen isolierenden Außenschicht umgeben sein, so daß ein bandförmiger Leiterverbund entsteht.
Der erfindungsgemäße isolierte Elastomer-Leiter kann in vielfältigen Bereichen zur Dehnungsmessung eingesetzt werden. Er kann parallel zu einem Federkörper angeordnet werden, wobei eine Messung der Dehnung des elektrischen Leiters durch Ermittlung seines Widerstandes eine Ermittlung der Federlänge und damit der Federkraft ermöglicht. Da der elektrische Leiter selbst federelastische Materialeigenschaften hat, kann er vorteilhaft gleichzeitig als Federelement und als Sensor- element verwendet werden. Wenn eine große Federkraft erforderlich ist und ein Federkörper aus einem Silicon-Elastomer mit großem Durchmesser erforderlich ist, kann es ausreichend sein, nur einen kleinen mittleren Bereich des Federkörpers mit elektrisch leitenden Graphitzusätzen zu versehen und den überwiegenden Teil der Querschnittsfläche des Leiters im äußeren Ringbereich ohne elektrisch leitende Zusätze aus vernetztem Organopolysiloxan zu bilden. Weitere Einzelheiten der Erfindung ergeben sich aus der folgenden Zeichnungsbeschreibung. Die Zeichnungen zeigen in:
Fig. 1 den Querschnitt eines runden elastomeren Leiters, Fig. 2 die Seitenansicht einer Extrusionsdüsen- Anordnung zur Herstellung eines Leiters gemäß Fig. 1 , Fig. 3 einen Querschnitt durch einen Mehrfachleiter gemäß der Erfindung, Fig. 4 die Draufsicht auf den Mehrfachleiter aus Fig. 3,
Fig. 5 die Draufsicht auf einen zweifachen elektrischen Leiter zur Dehnungsmes- sung und
Fig. 6 die gemäß der Schnittlinie VI- VI in Fig. 5 geschnittene Darstellung des Leiters aus Fig. 5.
In Fig. 1 ist ein kreisförmiger elektrischer Leiter dargestellt, der vollständig aus Silicon-Elastomer (vernetzter Organopolysiloxanmasse) besteht. Seine isolierende Außenschicht 1 ist elektrisch nicht leitend. Der elastomeren Leiterbahn 2 sind Graphitpartikel beigemischt. Der elektrische Leiter wird von einem kontinuierlichen Kunststoffkörper gebildet, der im Coextrusionsverfahren hergestellt ist.
Das Herstellungsverfahrens des elektrischen Leiters ist in der Fig. 2 dargestellt. Von einer Schneckenpresse wird ein durch die Pfeile 3 gekennzeichneter Strom einer unvernetzten Organopolysiloxanmasse ohne elektrisch leitende Zusätze einer Außendüse 4 zugeführt. Die Außendüse 4 ist rotationssymmetrisch aufgebaut und umschließt eine Innendüse 5. Der Austrittsquerschnitt 6 der Außendüse 4 ist ringförmig und umschließt den kreisförmigen Austrittsquerschnitt 7 der Innendüse 5. Die Innendüse 5 ist in der Außendüse 4 über Verbindungsstreben 8 fixiert. Der Innendüse 5 wird ebenfalls von einer Schneckenpresse eine unvernetzte Organopolysiloxanmasse 9 mit elektrisch leitenden Partikeln aus Graphit zugeführt. Am Austrittsquerschnitt 7 der Innendüse 5 formt der austretende elektrisch leitende Kunststoff die Leiterbahn 2. Der aus dem Austrittsquerschnitt 6 der Außendüse 4 austretende Kunststoff formt die isolierende Außenschicht 1.
Alternativ kann der Innendüse 5 eine bereits polymerisierte (vernetzte) Leiterbahn aus Silicon-Elastomer zugeführt werden. Dies kann fertigungstechnische Vorteile bieten, da die graphithaltige Organopolysiloxanmasse nur eine begrenzte Haltbarkeit (etwa 3 Monate) in unvernetztem Zustand aufweist, in vernetztem Zustand aber unbegrenzt laserbar ist. Zur Realisierung unterschiedlicher Leiterformen können die Konturen der Austrittsquerschnitte der Außendüse 4 und der Innendüse 5 variiert werden. Die Figuren 3 und 4 zeigen beispielsweise einen coextrudierten Mehrfachleiter. Dieser Mehrfach- leiter umfaßt 5 Leiterbahnen 2', die von einer isolierenden Außenschicht 1 ' umgeben sind, welche einen zusammenhängenden Flachleiter bildet. Die Außendüse zur Herstellung dieses Mehrfachleiters weist eine Kontur auf, die im wesentlichen dem in Fig. 3 erkennbaren Oberflächenverlauf der isolierenden Außenschicht 1 ' entspricht. In den fünf Ausbauchungen des Austrittsquerschnittes der Außendüse liegen fünf Innendüsen zur Ausbildung der fünf Leiterbahnen 2' des Mehrfachleiters.
Die Fig. 4 und 5 zeigen eine alternative Ausführungsform des elektrischen Leiters. Hier sind zwei elektrische Leiter, die im wesentlichen dem in Fig. 1 dargestellten Leiter entsprechen, über flache Verbindungsstege 10 miteinander verbunden. Jeder Leiter umfaßt eine isolierende Außenschicht 1 und eine Leiterbahn 2. Allerdings weisen beide Leiter unterschiedliche Durchmesser auf und erzeugen somit unterschiedliche Widerstandskräfte gegen elastische Dehnung. Dieser Doppelleiter wird in der Medizintechnik zur Aufnahme unterschiedlicher Dehnungsbeträge und -kräfte verwandt.
Der in den Fig. 5 und 6 dargestellte Leiterverbund kann einschließlich des Materials für die Stege 10 im Coextrusionsverfahren hergestellt werden. Dabei weist die Außendüse im wesentlichen die Außenkontur der isolierenden Außenschicht 1 mit dem Verbindungssteg 10 auf. Die Unterbrechungen zwischen den einzelnen Verbindungsstegen können nach der Coextrusion des Leiters aus dem Stegmaterial ausgestanzt werden.
Alternativ können die Verbindungsstege 10 nachträglich an zwei einzelnen Leitern befestigt, insbesondere festgeklebt werden. Bezugszeichenliste:
1 Außenschicht
2,2' Leiterbahn 3 Strom der Organopolysiloxanmasse ohne elektrisch leitende Zusatzstoffe
4 Außendüse
5 Innendüse
6 Austrittsquerschnitt der Außendüse
7 Austrittsquerschnitt der Innendüse 8 Verbindungsstreben
9 Strom der Organopolysiloxanmasse mit Graphitzusatz
10 Verbindungssteg

Claims

Ansprüche:
1. Elektrischer Leiter mit einer Leiterbahn (2,2') bestehend aus einem ein Silicon- Elastomer mit Kohlenstoff- oder Graphitpartikeln als elektrisch leitenden Zusatz- Stoffen, dadurch gekennzeichnet, daß er mit einer isolierenden Außenschicht (1) aus einem Silicon-Elastomer ummantelt ist und daß er einen bei einer Dehnung des Leiters variablen elektrischen Widerstand aufweist.
2. Elektrischer Leiter nach Anspruch 1 , dadurch gekennzeichnet, daß die isolie- rende Außenschicht (1) im Extrusionsverfahren auf die Leiterbahn (2,2') aufgetragen ist.
3. Elektrischer Leiter nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß er mindestens zwei zueinander parallele elektrische Leiterbahnen (2) mit jeweils einer isolierenden Außenschicht (1) umfaßt, wobei die isolierenden Außenschichten (1) über im Abstand zueinander angeordnete Stege (10) miteinander verbunden sind und unterschiedliche Durchmesser aufweisen.
4. Verfahren zur Herstellung eines elektrischen Leiters nach einem der vorangehen- den Ansprüche, dadurch gekennzeichnet, daß die isolierende Außenschicht (1) und die Leiterbahn (2) in einem kontinuierlichen Coextrusionsverfahren ausgebildet werden, wobei eine von elektrisch leitenden Zusatzstoffen freie Organopolysiloxanmasse zur Bildung der isolierenden Außenschicht (1) einer äußeren Profildüse (4) zugeführt wird und gleichzeitig eine kohlenstoff- oder graphithaltige Organopoly- siloxanmasse zur Bildung einer zentralen Leiterbahn (2,2') mindestens einer von der äußeren Profildüse (4) umschlossenen Innendüse (5) zugeführt wird und beide Organopolysiloxanmasse anschließend vernetzen.
5. Verfahren zur Herstellung eines elektrischen Leiters nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zunächst eine kohlenstoff- oder graphithaltige
Organopolysiloxanmasse zur Bildung der Leiterbahn (2,2') extrudiert wird und vernetzt, diese vernetzte Leiterbahn anschließend dem zentralen Kanal (5) eines Extrusionskopfes zugeführt wird, wobei einer den zentralen Kanal (5) umgebenden Außendüse (4) des Extrusionskopfes eine von elektrisch leitenden Zusatzstoffen freie Organopolysiloxanmasse zur Bildung der isolierenden, die Leiterbahn (2,2') umgebenden Außenschicht (1) zugeführt wird, welche anschließend vernetzt.
PCT/EP1998/005099 1997-10-09 1998-08-12 Elektrischer leiter mit dehnungsabhängigem widerstand WO1999019888A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU93415/98A AU9341598A (en) 1997-10-09 1998-08-12 Electrical conductor with resistance dependent on elongation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19744527A DE19744527A1 (de) 1997-10-09 1997-10-09 Isolierter Kunststoff-Leiter
DE19744527.6 1997-10-09

Publications (1)

Publication Number Publication Date
WO1999019888A1 true WO1999019888A1 (de) 1999-04-22

Family

ID=7845002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/005099 WO1999019888A1 (de) 1997-10-09 1998-08-12 Elektrischer leiter mit dehnungsabhängigem widerstand

Country Status (3)

Country Link
AU (1) AU9341598A (de)
DE (1) DE19744527A1 (de)
WO (1) WO1999019888A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090619A1 (en) * 2008-01-18 2009-07-23 Nxp B.V. Conductive silicone wristband for wireless communications
DE102016003697A1 (de) 2016-03-24 2017-09-28 Stefan Weiss Elastisches Trainingsband mit integriert sensorischen Eigenschaften

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930878C1 (de) * 1999-07-05 2001-01-11 Siemens Audiologische Technik Hörhilfegerät
EP1742013A1 (de) * 2005-07-06 2007-01-10 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO System zum Messen von Änderungen in der Länge oder der Form eines Objekts
WO2010097454A1 (de) * 2009-02-27 2010-09-02 Ceramtec Ag Elektrische sicherung
DE102022109327A1 (de) 2022-04-14 2023-10-19 Ntt New Textile Technologies Gmbh Verfahren zum Aufbringen von Elstomer und einem Kabel auf eine Stofflage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0359533A1 (de) * 1988-09-14 1990-03-21 The Gates Rubber Company Limited Elektrisches Sensorelement

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8233003U1 (de) * 1982-11-25 1983-03-24 Kabelwerk Wagner Kg, 5600 Wuppertal Leitungsstueck einer elektrischen leitung
DE3700724C1 (de) * 1987-01-13 1988-04-21 Doellken & Co Gmbh W Strangpresswerkzeug zum Herstellen von marmorierten Profilen
FR2674179B1 (fr) * 1991-03-19 1994-11-10 Conte Procede de fabrication par tri-extrusion d'un crayon a ecrire ou a colorier et crayon a ecrire ou a colorier comportant une gaine intermediaire de protection de la mine.
DE9206558U1 (de) * 1992-05-14 1992-07-30 Ernst + Engbring GmbH, 4353 Oer-Erkenschwick Kabel für Röntgengeräte oder andere mit Strahlung arbeitende Abbildungseinrichtungen
DE4226841A1 (de) * 1992-08-13 1994-02-17 Wacker Chemie Gmbh Zu elektrisch leitfähigen Elastomeren vernetzende Organopolysiloxanzusammensetzungen
FR2723245B1 (fr) * 1994-08-01 1996-09-13 Cortaillod Cables Sa Cable de transport d'energie electrique ou de telecommunication et procede de fabrication d'un tel cable
US5574377A (en) * 1994-08-10 1996-11-12 Marquez-Lucero; Alfredo Device for the detection and localization of organic solvent leakages and fabrication process
DE19623800A1 (de) * 1996-01-22 1997-07-24 Ruthenberg Gmbh Waermetechnik Kabel
DE29705458U1 (de) * 1996-05-22 1997-06-26 Haake, André, 46354 Südlohn Verbindungskabel für die Stromzuführung
DE29702560U1 (de) * 1997-02-14 1997-07-03 Draka Deutschland GmbH & Co. KG, 42369 Wuppertal Zündleitung für Kraftfahrzeuge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0359533A1 (de) * 1988-09-14 1990-03-21 The Gates Rubber Company Limited Elektrisches Sensorelement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090619A1 (en) * 2008-01-18 2009-07-23 Nxp B.V. Conductive silicone wristband for wireless communications
US8325015B2 (en) 2008-01-18 2012-12-04 Nxp B.V. Conductive silicone wristband for wireless communications
DE102016003697A1 (de) 2016-03-24 2017-09-28 Stefan Weiss Elastisches Trainingsband mit integriert sensorischen Eigenschaften
DE102016003697B4 (de) 2016-03-24 2021-08-12 Straffr Gmbh Elastisches Trainingsband mit integriert sensorischen Eigenschaften

Also Published As

Publication number Publication date
DE19744527A1 (de) 1999-04-15
AU9341598A (en) 1999-05-03

Similar Documents

Publication Publication Date Title
DE3447018C2 (de)
DE19681199B4 (de) Druckschalter
DE2854080A1 (de) Druckempfindliches widerstandselement
EP0416452A2 (de) Elektrofilterkabel
DE102014216761A1 (de) Kabelsatz und Verfahren zur Herstellung eines solchen
WO2009100904A1 (de) Feldgesteuerter verbundisolator
EP3447463A1 (de) Drucksensor und verfahren zu seiner herstellung
DE202008011737U1 (de) Ummantelte elektrische Leitung
DE3202854C2 (de) Elektrisch leitfähige Schlauchleitung
WO1999019888A1 (de) Elektrischer leiter mit dehnungsabhängigem widerstand
EP1451497B1 (de) Kunststoffschlauch, insbesondere pneumatikschlauch
EP0978678A1 (de) Elektrisch leitende Rohr- oder Kabelschelle
DE4033846A1 (de) Zuendkabel mit drahtwicklung und verfahren zur herstellung desselben
DE2443493B2 (de) Elastisches Fahrzeugrad mit einem auf einer Felge des Fahrzeugrades befestigten Reifenkörper aus elastomerem Material mit darin eingebetteten Stromabnahmeeinrichtungen
EP0654575B1 (de) Sicherheitskontaktschiene mit Schutzschicht
DE2160452C3 (de) Streifenschalter
DE102006036508A1 (de) Verfahren und Vorrichtung zur Herstellung elektrisch leitfähiger Passagen in einem Laufstreifen
DE102007030142B4 (de) Zahnriemen, bestimmt als Teil einer Anordnung zur Erfassung von Zahnriemen-Längenänderungen
EP2441867A1 (de) Dehnungssensor und Verfahren zum Messen einer Dehnung eines Textils
CH659907A5 (en) Insulator and method for its production
DE19711600A1 (de) Sicherheitskontaktelement
DE102017112639B3 (de) Drahtseil als Traktionsseil für Aufzüge
DE3233928A1 (de) Flexibles elektrisches heiz- oder temperaturmesselement
DE69300408T2 (de) Vorrichtung zur Verschleissanzeige von Reibbelägen.
DE19846081A1 (de) Sicherheitskontaktschiene oder Sicherheitskontaktelement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CZ HU JP PL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA