WO1999014630A1 - Ecran a cristaux liquides - Google Patents

Ecran a cristaux liquides Download PDF

Info

Publication number
WO1999014630A1
WO1999014630A1 PCT/JP1997/003282 JP9703282W WO9914630A1 WO 1999014630 A1 WO1999014630 A1 WO 1999014630A1 JP 9703282 W JP9703282 W JP 9703282W WO 9914630 A1 WO9914630 A1 WO 9914630A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
circuit board
light guide
guide plate
Prior art date
Application number
PCT/JP1997/003282
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Yarita
Kaoru Hasegawa
Kengo Kobayashi
Yoshio Toriyama
Original Assignee
Hitachi, Ltd.
Hitachi Device Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Device Engineering Co., Ltd. filed Critical Hitachi, Ltd.
Priority to JP51195399A priority Critical patent/JP3639602B2/ja
Priority to PCT/JP1997/003282 priority patent/WO1999014630A1/ja
Publication of WO1999014630A1 publication Critical patent/WO1999014630A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/13332Front frames
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133328Segmented frames
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/46Fixing elements
    • G02F2201/465Snap -fit

Definitions

  • the present invention relates to a liquid crystal display panel and a liquid crystal display device having a drive circuit board and the like (that is, a liquid crystal display module).
  • a gate line group extending in the X direction and arranged in the y direction and a drain line group extending in the y direction insulated from the gate line group and extending in the X direction are formed. It is formed.
  • Each region surrounded by the gate line group and the drain line group is a pixel region, and a thin film transistor (TFT) and a transparent pixel electrode, for example, are formed as switching elements in this pixel region.
  • TFT thin film transistor
  • the thin film transistor When the scanning signal is supplied to the gate line, the thin film transistor is turned on, and a video signal from the drain line is supplied to the pixel electrode through the turned on thin film transistor.
  • each drain line of the drain line group extends to the periphery of the transparent insulating substrate to form an external terminal, and is connected to the external terminal.
  • a video drive circuit and a gate scan drive circuit that is, a plurality of drive ICs (semiconductor integrated circuits) constituting these are externally mounted around the transparent insulating substrate. That is, a plurality of tape carrier packages (TCPs) on which these drive ICs are mounted are externally mounted around the substrate.
  • TCPs tape carrier packages
  • the transparent insulating substrate has a driver IC mounted around it. Since these TCPs are configured to be externally attached, the outline of the display area formed by the intersection area of the gate line group and the drain line group on the transparent insulating substrate is obtained by these circuits. The area occupied by the area (usually called a picture frame) between the outline of the transparent insulating substrate and the outer frame increases, which is contrary to the desire to reduce the external dimensions of the liquid crystal display module.
  • a flip-chip type liquid crystal display device is described in, for example, Japanese Patent Application Laid-Open No. Hei 8-122806 by the same applicant.
  • An object of the present invention is to solve a problem that occurs when a frame area of a liquid crystal display device is reduced, and to provide a compact liquid crystal display device having a large display screen.
  • the area that does not contribute to the display of the liquid crystal display device is reduced. Then, it is necessary to change the shape of the mounting hole from a conventional round hole to a U-shaped notch.
  • An object of the present invention is to prevent deformation of a mounting portion of a liquid crystal display device.
  • the present invention provides a liquid crystal display device, an upper case having an opening for exposing a display portion of the liquid crystal display device and covering the periphery of the liquid crystal device, What is claimed is: 1.
  • a liquid crystal display device comprising: an upper case; and a lower case for accommodating the liquid crystal element, wherein a notch for fixing the liquid crystal display device is provided around the liquid crystal display device. Is formed by superimposing a first notch formed in the upper case and a second notch formed in the lower case, and is substantially parallel to the notch and is closest to the notch, The upper case is bent into an L-shape.
  • a liquid crystal display element ; an upper case having an opening for exposing a display portion of the liquid crystal display element and covering a periphery of the liquid crystal element; and a lower case united with the upper case and containing the liquid crystal element.
  • a notch for fixing the liquid crystal display device is provided around the liquid crystal display device, and the notch is formed in a first notch formed in the upper case and a lower case.
  • a second cutout is formed by overlapping the cutouts, and the lower case, which is substantially parallel to the cutouts, is closest to the cutouts and on the side surface on the side, is bent into an L-shape.
  • a liquid crystal display element an upper case having an opening for exposing a display portion of the liquid crystal display element and covering the periphery of the liquid crystal element;
  • the upper case is formed by superimposing the first notch formed on the lower case and the second notch formed on the lower case, and is substantially parallel to the notch and on the side closest to the notch.
  • the lower case is bent into an L-shape.
  • the upper case SHD and the lower case LF are bent out of the mold ML into an L-shape and arranged, so that y, y ′ Directional impact can be received not only by the mold ML, the upper surface la of the upper case SHD, the upper surface 2a of the lower case LF, but also by the side 1b of the upper case 3110 and / or the side 2b of the lower case LF. Therefore, the U-shaped notch is less likely to be deformed.
  • the opening of the upper case becomes larger. If the opening of the upper case is larger than the light guide plate of the light guide plate, the liquid crystal display panel is sandwiched between the light guide plate and the upper case when a strong mechanical shock is applied to the liquid crystal display device. In addition, since the light guide plate collides and shear stress is generated, and the substrate of the liquid crystal display panel is broken, it has been difficult to reduce the frame area by the conventional technology.
  • Another object of the present invention is to provide a structure in which a substrate of a liquid crystal display panel is not broken even if an opening of an upper case of a liquid crystal display device is enlarged.
  • the present invention provides a liquid crystal display element, a light guide plate overlapping the liquid crystal display element and irradiating the liquid crystal display element with light, and a display of the liquid crystal display element.
  • a liquid crystal display device comprising: an upper case having an opening for exposing a portion and covering the periphery of the liquid crystal element; and a lower case united with the upper case and housing the liquid crystal element and the light guide plate.
  • the light plate has two opposing sides, and each of the two opposing sides of the light guide plate is A projection is provided near the center of the side so as to overlap the upper case in a planar manner.
  • the projection 4a is disposed near the center of the side of the light guide plate GLB so as to overlap the upper case SHD, so that the liquid crystal display When a strong impact is applied to the device, the deformation of the light guide plate GLB is suppressed by the projection 4a, and no shear stress is applied to the liquid crystal display panel PNL.
  • the strength of the liquid crystal display device against impact can be increased.
  • the light incident surface where light from the fluorescent tube enters the light guide plate is closer to the display region of the liquid crystal display panel, and luminance such as bright lines and dark lines generated in the light incident portion of the light guide plate is reduced.
  • luminance such as bright lines and dark lines generated in the light incident portion of the light guide plate.
  • the light-entering portion of the conventional light guide plate has a lamp reflection sheet for reflecting the light of the fluorescent tube, a reflection sheet provided on the reflection surface of the light guide plate, and a light-exit surface of the light guide plate.
  • Various optical sheets such as a diffusion sheet to be provided were fixed to the light guide plate by a double-sided adhesive tape, an adhesive, or melting.
  • Another object of the present invention is to reduce the frame area of a liquid crystal display device.
  • An object of the present invention is to solve a problem in which uneven brightness of a backlight generated near a light incident surface of a light guide of a knock light appears as bright lines or dark lines on a display screen.
  • the present invention provides a liquid crystal display element, a light guide plate that overlaps the liquid crystal display element and irradiates the liquid crystal display element with light, and a portion of the light guide plate that irradiates the liquid crystal display element with light.
  • a frame provided between the liquid crystal display element and the light guide plate, the upper case having an opening exposing a display portion of the liquid crystal display element and covering the periphery of the liquid crystal element;
  • a liquid crystal display device having a lower case for housing the liquid crystal element, the frame, and the light guide plate,
  • a light source is disposed on one side surface of the light guide plate, and the light source is covered with a first reflection sheet made of a film that reflects light except for a portion facing the light guide, and the reflection sheet is provided. It is characterized by being fixed to the frame. Further, a diffusion sheet for diffusing light transmitted between the liquid crystal display element and the light guide plate is provided, and the diffusion sheet is fixed near a side surface of the light guide body opposite to the one side surface.
  • a second reflection sheet made of a film that reflects light is provided between the light guide plate and the lower case, and the second reflection sheet is provided on a side of the light guide that faces the one side of the light guide. It is characterized by being fixed in the vicinity.
  • the first reflection sheet, the second reflection sheet, and the optical sheet such as the diffusion sheet are fixed to the light-entering portion of the light guide plate by a double-sided adhesive tape, an adhesive, or melting. Since there is no brightness unevenness of the backlight at the light entrance portion of the light guide plate does not occur.
  • the diffusion sheet SPS and the reflection sheet RFS are fixed to the light guide plate on the side opposite to the light entrance portion of the light guide plate GLB with a fixing member such as a double-sided adhesive tape BAT.
  • a fixing member such as a double-sided adhesive tape BAT.
  • the lamp reflection sheet LS to the mold ML (frame) on the non-reflection surface 5 of the lamp reflection sheet LS. Since it is fixed with a fixing agent such as surface adhesive tape BAT, there is no part where the light of the fluorescent tube LP is scattered at the light entrance part of the light guide plate, causing uneven brightness of the backlight such as bright lines and dark lines. There is no.
  • the display quality of the liquid crystal display device can be improved.
  • Fig. 1A is a front view from the display side of the liquid crystal module
  • Fig. 1B is a left side view
  • Fig. 1C is a right side view
  • Fig. 1D is a rear side view
  • Fig. 1E is a front side view.
  • Fig. 2A is a rear view of the module
  • Fig. 2B is a sectional view taken along the line B-B of Fig. 2A
  • Fig. 2C is C-C of Fig. 2A
  • FIG. 4 is a sectional view taken along a cutting line.
  • FIG. 3A is a sectional view taken along the line I-I of the liquid crystal display device shown in FIG. 1A
  • FIG. 3B is a sectional view taken along the line H— ⁇ of FIG. 1A. .
  • FIG. 4A is a sectional view taken along the line HI-HI of FIG. 1A
  • FIG. 4B is a sectional view taken along the line IV-IV of FIG. 1A.
  • FIG. 5 is an overall exploded perspective view showing the frame-shaped holder ML, a backlight housed therein, and an interface circuit board PCB, etc., as viewed from below.
  • Fig. 6A is a front view of a gate-side multilayer flexible circuit board FPC1, a drain-side multilayer flexible circuit board FPC2, and a liquid crystal panel PNL
  • Fig. 6B is a right side view
  • Fig. g. 6C is a sectional view taken along the line 1-1 of FIG.
  • FIGS. 6A to 6C are diagrams illustrating comparative examples corresponding to FIGS. 6A to 6C.
  • F i g. 8 A is the positive side of the drain-side multilayer flexible circuit board FPC 2.
  • 8B is a left side view
  • FIG. 8C is a right side view
  • FIG. 8D is an enlarged front view of a portion corresponding to the center position J i of the terminal
  • FIG. 8E is an enlarged front view of a portion corresponding to the center position J2 to J11 of the terminal
  • FIG. 8F is an enlarged front view of a portion corresponding to the center position J12 of the terminal.
  • FIG. 9A is a front view of the gate-side multilayer flexible circuit board FPC1
  • FIG. 9B is a sectional view taken along the line I-I of FIG. 9A.
  • FIG. 1 OA is a back (bottom) view of the interface circuit board PCB
  • FIG. 1 OB is a front (top) view of the circuit board PCB.
  • FIG. 11 is a block diagram showing a schematic configuration of each driver of the module and a signal flow.
  • FIG. 12 is a diagram showing a comparative example corresponding to FIG. 11.
  • FIG. 13 is a view similar to FIG. 6A, showing a state in which the drain-side circuit board FPC 2 has not been folded back after being mounted on the panel PNL.
  • FIG. 14 is a view showing a state in which the drain-side circuit board FPC2 is attached to the panel PNL and folded in FIG. 13 and the connector CT4 is not inserted into the circuit board PCB.
  • FIGS. 15A, 15B, and 15C are side views showing how the circuit board FPC 2 of FIGS.
  • FIGS. 16A to 16C are the same as FIGS. 15A to 15C including the projections of the circuit board FPC2 provided with the connector CT4.
  • FIGS. 17A to 17D are perspective views showing the four corners of the upper metal shield case SHD, and FIGS. 17E to 17H are the four corners of the lower metal shield case LF. It is a perspective view.
  • FIG. 18A is a plan view showing an imposition state of the circuit board PCB of this example
  • FIG. 18B is a plan view of a main part of the circuit board PCB after division of this example
  • FIG. 18C is a plan view showing an imposition state of the circuit board PCB of the comparative example
  • FIG. 18D is a plan view of a principal part of the circuit board PCB after division in the comparative example.
  • FIG. 19A is a bottom view of the integrated circuit element TCON
  • FIG. 19B is a side view
  • FIG. 19C is an outline of the pin arrangement of this example on the lower surface of the integrated circuit TCON
  • FIG. 19D is a diagram schematically showing a pin arrangement of a comparative example.
  • FIG. 20 is a perspective view of relevant parts showing the gate-side multilayer flexible circuit board FPC1 and an interface circuit board PCB arranged so as to be superposed thereon. .
  • FIG. 21A is a plan view showing a structure of a notch for fixing the liquid crystal display device of the present invention
  • FIG. 21B is a side view of the notch.
  • FIG. 22A is a plan view showing the positional relationship between the projection provided on the light guide plate and the upper case according to the present invention, and FIG. 22B is cut along the line II of FIG. 22A. It is sectional drawing.
  • FIG. 23 is a cross-sectional view showing a method for fixing the lamp reflection sheet, the diffusion sheet, and the reflection sheet according to the present invention.
  • FIG. 24 is a block diagram showing an equivalent circuit of the whole liquid crystal display device.
  • FIG. 25 is a diagram showing a driving waveform of the TFT liquid crystal display element TFT-LCD.
  • Fig. 1A is a front view of the liquid crystal display module as viewed from the display after assembly
  • Fig. 1B is a left side view
  • Fig. 1C is a right side view
  • Fig. 1D is a rear side view
  • FIG. 1E is a front side view.
  • SHD is an upper metal shield case made of a metal plate
  • WD is a display window
  • PNL is a flip chip with a drive IC mounted on one of two superposed transparent insulating substrates.
  • a liquid crystal display panel also referred to as a liquid crystal display element or LCD (liquid crystal display)
  • AR is the effective pixel area
  • HLDs 1 to 4 are holes or cutouts for mounting the module on a PC
  • LP C2 is the lamp cable for the fluorescent tube in the backlight
  • LCT is the connector for connecting
  • Fig. 2A is a rear view of the liquid crystal display module after assembly is completed
  • Fig. 2B is a cross-sectional view taken along section line B-B of Fig. 2A
  • Fig. 2C is a frame ground portion. It is principal part sectional drawing which shows.
  • LF is a lower metal shield case made of a metal plate
  • DRH is a plurality of holes penetrating the lower (bottom) surface of the shield case LF
  • DRW is a plurality of holes around the DRH.
  • Depression see Fig. 2B
  • F GH for frame ground hole
  • SUP for depression supporting connector CT4 (see Fig. 8, 6) from below
  • CT 1 for interface connector
  • Reference numeral 4 denotes a mounting hole for attaching the module to a nosepiece or a horn.
  • Holes or notches for mounting and mounting (HLD 2 and HLD4 are not closed holes but notches). Fix and mount the mounting holes or notches HLDs 1 to 4 provided on both sides to the information processing device through screws.
  • Signals from the main computer (host) and necessary power are supplied to the interface circuit in the module via the interface connector CT1 located on the back of the module. It is supplied to the controller and power supply of the board.
  • FIGS. 1 to 20 the specific configuration of each component is shown in FIGS. 1 to 20 and each member will be described in detail.
  • Fig. 1A shows the upper surface of the upper shield case SHD
  • Fig. 1B, 1C and 1D show the sides of the upper shield case SHD
  • Fig. 2A shows the lower shield case LF. Is shown.
  • Shield cases SHD and LF also called metal frames, are made by stamping and bending a single metal plate using press working technology.
  • WD is a display window that is an opening that exposes the liquid crystal display panel PNL to the field of view.
  • the case SHD is made of 0.4 mm thick stainless steel plate (large strength), and the case LF is made of 0.3 mm thick aluminum plate.
  • beads DRP1, DRP2, and DRP3, which are convex portions formed by pressing the lower case LF.
  • beads DRP1 and DRP3 parallel to the long side of the liquid crystal display device and beads DRP2 parallel to the short side are provided between the holes DRH of the lower case LF. Even if multiple holes DRH are provided in the side case LF, the strength does not decrease and the lower case LF does not bend.
  • the provision of the recess DRW further increases the strength of the lower case LF, and prevents warpage around the diagonal line of the lower case LF. I can do it.
  • the uppermost part of the recess DRW toward the inside of the module contacts the light guide plate GLB of the backlight via the reflection sheet RFS, and supports the light guide plate GLB.
  • the light guide plate GLB has a substantially trapezoidal cross-sectional shape whose thickness gradually decreases from the left side to the right side of FIG. as, F i g.
  • the SUP of FIG. 2A is a recess that supports the connector CT 4 from below via the circuit board FPC 2 (see FIG. 4A).
  • FIG. 3A is a cross-sectional view of a principal part of the liquid crystal display module taken along the I—I section line of FIG. 1A
  • FIG. 3B is a section view along the 11-11 section line of FIG.
  • FIG. 4 is a sectional view of a main part of the module in FIG.
  • each side surface of the upper shield case SHD is arranged outside each side surface of the lower case LF which overlaps with each side surface.
  • the drain-side multilayer flexible circuit board FPC2 connected to the edge of the liquid crystal display panel PNL is arranged substantially perpendicularly to the display surface of the liquid crystal display panel PNL (detailed later).
  • the connection side of the circuit board FPC2 to the liquid crystal display panel PNL is connected to the liquid crystal display / Since the upper shield case SHD is inserted first, module assembly becomes easier. Also, when inserting the upper shield case SHD into the panel PNL with the circuit board FPC2 and then inserting the lower shield case LF, the spread of the circuit board FPC2 is suppressed by the upper case SHD, so insertion is easy. Good assemblability.
  • the upper shield case SHD is located on the outside, as is apparent from Figs. 4A, 4B, and 3B. ing.
  • BM is the black matrix provided around the effective pixel area AR of the liquid crystal display panel PNL
  • VINC 1 is the panel PNL.
  • VINC 2 is viewing angle expansion provided between upper transparent glass substrate SUB 2 of panel P NL and polarizing plate POL 2 Film
  • BAT is double-sided adhesive tape
  • Fig. 3A and 3B GC is a rubber cushion (described later)
  • Fig. 3A is LSH, which covers the upper surface of the fluorescent tube LP to which high frequency is applied.
  • FIG. 4A Is a spacer to create a space to protect the drive 1
  • FIG. 3B SPC 4 is a spacer
  • F GP4 is a frame ground pad (described later)
  • F US is a liquid crystal display panel PN.
  • NL is a fixing nail provided on the upper metal shield case SHD to be fitted with the lower metal shield case LF It is.
  • the conductive sheet LSH extends along the lamp reflection sheet LS to be described later to a region sandwiched between the light guide plate GLB and the lower case LF, and comes into contact with the metal lower case LF. No special connection means is required between the flexible sheet L SH and the lower case.
  • Fig. 17 A to 17 D are perspective views showing the four corners of the upper metal shield case SHD
  • Fig. 17 E to 17 H are the lower metal shield case LF.
  • Fig. 17B is the lower right corner
  • Fig. 17C is the upper right corner
  • Fig. 17D is 17 E is the lower left corner of Fig. 2 A
  • Fig. 17 F is the lower right corner
  • Fig. 17 G is the upper right corner
  • Fig. .17H indicates the upper left corner.
  • the upper case SHD has notches HLD2a and HLD4a at two corners for fixing the liquid crystal display device. are doing.
  • the cutouts HLD2a and HLD4a are provided with bent portions SK2a and SK4a, respectively, of the upper case SHD on the side surfaces, and the strength of the upper case SHD at the portion where the cutouts HLD2a and HLD4a are provided. Has improved.
  • a portion parallel to the XY plane formed in the X and Y directions is formed at the corner of the upper case SHD, and extends in the X direction.
  • Notches HLD2a and HLD4a are formed, and bent portions SK2a and SK4a are formed by bending upper case SHD in the Z direction near notches HLD2a and HLD4a.
  • the projections I and ⁇ ⁇ ⁇ formed by providing the notches HLD 2 a and HLD 4 a are parallel to the YZ plane formed in the Y and Z directions and the flat part parallel to the XY plane. Since the flat parts (SK2a, SK4a) are connected, the projecting parts I, The strength of ⁇ is improved, and the strength of the notch HLD2a and HLD4a is improved.
  • the lower case LF also has two corners, as shown in FIGS. 17E and 17F, with notches HLD2b and HLD4b for mounting the liquid crystal display device, and notches HLD4.
  • a bent portion SK4b is provided on the side surface of b to improve the strength of the notch HLD4b.
  • no bent portion of the lower case LF is provided on the side surface of the cutout HLD 2 b of the lower case LF.
  • the cutout HLD2a of the upper case SHD corresponding to the cutout HLD2b of the lower case LF has a bent part SK2a, and the cutout between the lower case LF and the upper case SHD. Since the mold case ML (see Fig. 5) with the notched HLD2 c is sandwiched, the strength of the entire cutout (HLD 2 shown in Fig. 1A) for mounting the liquid crystal display is higher. Both cases SHD and lower case LF are improved compared to the conventional technology, which has no bent part.
  • a bent portion is provided on the side surface of the cutout provided at the corner of the upper case SHD or the lower case LF, the cutout portion is provided between the upper case SHD and the lower case LF.
  • Space is created.
  • a notch (a HLD2 c in Fig. 5) formed between a part of the plastic molded case ML and the space between the upper case SHD and the lower case LF. , HLD4 c), the mechanical strength of the notches HLD2 and HLD4 for mounting the liquid crystal display device is further improved.
  • the corners where the two side surfaces of the metal shield case are going to intersect have been conventionally removed by cutting, and the two side surfaces are bent to the upper surface. Since a part of the material was removed in this way, the mechanical strength of the shield case was low.
  • the upper metal shield case SHD and the lower metal shield case LF are rounded by drawing in the vicinity of each of the four corners. The two side surfaces are connected without removing them.
  • the mechanical strength of the cases SHD and LF is large. Therefore, the mechanical strength and reliability of the module can be improved.
  • Fig. 9A is a front view of the gate-side multilayer flexible circuit board FPC1
  • Fig. 9B is a cross-sectional view of a principal part taken along the line I-I of Fig. 9A.
  • J— Jviii indicates the center position of the terminal for each of the eight gate-side drive ICs.
  • FHL is a positioning hole for the liquid crystal display panel PNL to be attached to the fixing pin of the jig
  • CT 3 is a connector to connect to the interface circuit board PC B connector CTR 3
  • EP is a single-sided mounting on the upper surface of the circuit board F PC 1.
  • TM is a connection terminal to the liquid crystal display panel PNL
  • LI is a conductor layer
  • BF1, BF2, and BF3 are polyimide films. .
  • Fig. 8A is a front view of the drain-side multilayer flexible circuit board FPC2
  • Fig. 8B is a left side view
  • Fig. 8C is a right side view.
  • J ⁇ ⁇ ] ⁇ 2 indicates the center position of each of the twelve drain-side drive ICs.
  • Fig. 8D is an enlarged front view of the main part of the circuit board FP C2 corresponding to the center position Ji of the terminal
  • Fig. 8E is the center position of the terminal J ⁇ J
  • F i g. 8F is an enlarged front view of the circuit board F PC 2 in the portion corresponding to the center position J lambda o of pin.
  • BAT is a double-sided tape for attaching a plurality of wiring blocks of the FPC 2 when the drain-side multilayer flexible substrate FPC 2 is folded.
  • the double-sided adhesive tape BAT is not provided in a portion between the connector CT4 of the drain-side multilayer flexible substrate FPC2 and the connection portion J1 with the liquid crystal substrate. .
  • the drain-side multilayer flexible substrate FPC2 between the connector CT4 and the connection portion J1 is further bent in a state where a plurality of wiring blocks are folded. Therefore, when the plurality of wiring blocks at the bent portion are fixed to each other with the double-sided adhesive tape BAT, it becomes difficult to further fold the drain-side multilayer flexible substrate FPC 2 after folding, as shown in FIG. 6C. It becomes difficult to connect the connector CT 4 of the drain-side multilayer flexible board FPC 2 to the connector C TR 4 of the interface circuit board PCB.
  • FHL is provided at both ends of the circuit board FPC2, positioning holes for the LCD panel PNL to be attached to fixing pins of the jig, and EP is mounted on one side on the lower surface of the circuit board FPC2.
  • Chip components such as capacitors
  • FGP is a frame ground pad provided on the lower side of the circuit board F PC 2 and three are provided
  • CT 4 is a connector connected to the connector C R 4 of the interface circuit board PC B
  • BF 1 is polyimide film
  • ALMD is alignment mark with panel PNL
  • TM is connection terminal with liquid crystal display panel.
  • F i g. 6 A is the gate side attached to the short side of the LCD panel PNL I o
  • FIG. 3 is a cross-sectional view of a main part taken along line I-I of FIG. 6A.
  • the eight ICs 2 on the left side of Fig. 6 are driving IC chips on the vertical scanning circuit (gate) side, and the lower 12 ICs 1 are driving IC chips on the video signal driving circuit (drain) side.
  • Chip-on-glass (COG) is mounted on the transparent glass substrate SUB 1 using an anisotropic conductive film or ultraviolet curing agent (see Fig. 6C).
  • a tape carrier package (TCP) in which the driving IC chip is mounted by tape automated bonding (TAB) is connected to the LCD panel PNL using an anisotropic conductive film.
  • COG mounting since the direct drive IC is used, the above TAB process is not required, so that the process is shortened, and a tape carrier is not required, so that there is also an effect of cost reduction. Furthermore, COG mounting is suitable as a mounting technology for high-definition, high-density liquid crystal display panels PNL.
  • the drain driver 'IC1 was arranged in a line on one long side of the panel PNL, and the drain wire was drawn out on one long side.
  • the connection between the lead line and the output side bump of the drive IC is easy.
  • the peripheral circuit board is placed on the outer periphery of the two opposite long sides of the panel.
  • the gate-side flexible circuit board FPC1 is connected to the upper edge of the transparent glass substrate SUB1 on the short side of the liquid crystal display panel PNL (outside the driver IC 2).
  • the terminal is connected to the terminal via an anisotropic conductive film
  • the drain-side flexible circuit board FPC2 is connected to the drain of the upper side edge of the transparent glass substrate SUB1 on the long side of the panel PNL (outside the driver IC1). It is connected to the terminal of the wire via an anisotropic conductive film.
  • FIGS. 6A to 6C are diagrams illustrating comparative examples corresponding to FIGS. 6A to 6C.
  • the drain-side multilayer flexible circuit board FPC2 connected to the edge of the liquid crystal display panel PNL has a liquid crystal display as shown in FIG. 7B. It was folded back on the back side of the panel PNL, adhered to the back side via a double-sided adhesive tape (not shown), and arranged between the panel PNL and the backlight (see FIG. 3).
  • the thickness (for example, lmm) of the circuit board FPC2 which has been repeatedly superimposed several times (to be described in detail later), becomes an obstacle to reducing the module thickness because it is a component having a module thickness.
  • the double-sided adhesive tape is peeled off after repairing the circuit board FPC2 which has been found defective. Must be repaired. Furthermore, when the double-sided adhesive tape is peeled off, a part of the adhesive remains on the back surface of the substrate SUB 1 and a recess is formed. The unevenness of the existing adhesive will support when re-installing the driver IC 1 on the surface of the substrate SUB 1.
  • the drain-side flexible circuit board FPC2 connected to the edge of the panel PNL is disposed substantially perpendicular to the display surface of the liquid crystal display panel PNL. That is, the circuit board FPC 2 is removed from between the liquid crystal display panel PNL and the light guide plate GLB, and the thickness of the multilayer circuit board FPC 2 superimposed several times is not a component of the module thickness. . Therefore, the thickness of the module can be reduced. Also, since the bending angle of the circuit board FPC 2 with respect to the connection with the panel PNL is halved from 18 degrees in FIG. 7B to 90 degrees in FIG. 6B, the panel PNL of the circuit board FPC 2 is The stress on the crimped portion of the wire is reduced, and the reliability of the crimped portion is improved.
  • circuit board FPC2 since the circuit board FPC2 is not attached to the back of the glass substrate SUB1 of the liquid crystal display panel PNL with double-sided adhesive tape, the circuit board FPC2 must be repaired.
  • Fig. 1 OA is the back (bottom) view of the interface circuit board PCB that has the functions of the controller and power supply.
  • Fig. 10B is the front (top) view of the interface circuit board PCB. is there.
  • an eight-layer multilayer printed board made of a glass epoxy material was used as the board PCB.
  • a multilayer flexible substrate can be used, this part did not adopt a folded structure, so a relatively low-cost multilayer printed substrate was used.
  • a capacitor EP and a gradation resistor R are also mounted on an upper surface of a force mounted on a lower surface of the substrate PCB which is a rear surface side as viewed mainly from a display surface of the information processing device.
  • One integrated circuit element T CON (timing converter) is arranged on the substrate PCB for the display control device.
  • TC ⁇ N is an integrated circuit IC directly on a printed circuit board. (Ball Grid Array) Implemented.
  • the interface connector CT1 is located almost at the center of the PC board.
  • the low voltage differential signaling circuit LVDS, hybrid integrated circuit HI, operational amplifier, multiple resistors, capacitors, and high-frequency noise removal circuit components are provided. It is on board.
  • the hybrid integrated circuit HI integrates a part of the circuit into a hybrid integrated circuit, and is configured by mounting a plurality of integrated circuits and electronic components mainly for power supply on the upper and lower surfaces of a small circuit board. One is mounted on the circuit board PCB.
  • the leads of the hybrid integrated circuit HI are formed to be long, and the circuit board between the circuit board PCB and the hybrid integrated circuit HI also has a plurality of electronic components including resistors, capacitors, etc. on the PCB. Implemented.
  • the connector CT3 and the connector CTR3 are used as an electrical connection between the gate driver board FPC1 and the interface circuit board PCB.
  • the upper surface of the PCB is the front side when viewed from the information processing device, and is the direction in which the potential for radiating EMI noise is the highest. For this reason, in this example, the multilayer surface conductor layer is almost entirely covered with a ground metal pattern or a mesh pattern. Although not shown, a mesh pattern of a copper conductor is formed entirely under the solder resist except for through-hole portions. This mesh pattern can reduce EMI noise radiation by being electrically connected to the ground pattern FGP on the lower surface of the PCB.
  • the ground pattern FGP is connected to the ground of the main body by connecting the ground pattern FGP of the substrate PCB to the ground of the shield case SHD and soldering the ground coming from the connector CT1.
  • the surface conductor layers of the boards are covered with a mesh pattern, and the outer peripheral portions of the two sides of the liquid crystal display panel PNL are all fixed at DC potential, EMI noise radiation from the inside of the substrate can be effectively reduced.
  • FIG. 48? ig. 1A is a cross-sectional view of main parts of the module taken along a section line IV-IV of 1A.
  • the interface circuit board PCB partially overlaps the liquid crystal display panel PNL, and is arranged below the lower surface of the lower transparent insulating substrate SUB1.
  • the gate driver flexible board FPC 1 has one end side directly and mechanically connected to the transparent glass substrate SUB 1 of the panel PNL. Unlike the drain side, the gate driver flexible board FPC 1 has almost the entire width of the interface circuit board without bending. It is superimposed on the PCB.
  • the interface circuit board PCB is partially overlapped with the liquid crystal display panel PNL, and furthermore, the gate driver circuit board FPC 1 is overlapped and arranged on the interface circuit board PCB, so that the frame portion is formed.
  • the width and area of the LCD panel can be reduced, and the external dimensions of the liquid crystal display panel PNL and information processing devices such as personal computers and word processors incorporating the panel as a display unit can be reduced.
  • Fig. 19A is the bottom view of the interface circuit board TC0N for the display control device mounted on the PCB, which is the interface circuit shown in Fig. 10A.
  • Fig. 19B is the side view.
  • FIG. 19C is a diagram schematically showing the pin arrangement of this example on the lower surface of the integrated circuit element T CON, and FIG. It is a figure showing an outline.
  • TT is a terminal provided in a matrix on the lower surface of the integrated circuit element T CON, and is connected to FIGS. 19C and 19D.
  • P is a power supply terminal
  • G is a ground terminal
  • I is an input signal terminal
  • 0 is an output signal terminal
  • M is a function mode setting terminal.
  • the integrated circuit element T CON is mounted directly on a circuit board PCB by a ball grid array.
  • the pin arrangement of the matrix-shaped electrode terminals TT provided on the lower surface of the integrated circuit element T CON is not sufficiently considered as in the comparative example shown in Fig. 19D, and the input signal terminal I and the output signal terminal
  • the child ⁇ , the mode setting terminal M, the power supply terminal P, and the ground terminal G were randomly allocated.
  • the wiring layout on the circuit board PCB becomes complicated, unnecessary detour wiring increases, the effective wiring area decreases, and the power supply and ground wiring width decreases, and as a result, the circuit board area increases. And it became impossible to sufficiently suppress EMI noise.
  • a plurality of power supply terminals P and a plurality of ground terminals G are respectively allocated to the periphery of the integrated circuit element TCON and arranged.
  • a plurality of input signal terminals I, output signal terminals 0, and mode setting terminals M are arranged together for each group. That is, the mode setting terminal M is gathered at the center, and the input signal terminal I and the output signal terminal 0 are gathered on the opposite side one by one at the center except for the periphery.
  • FIG. 18A is a plan view showing a state before the circuit board PCB of this example is individually separated
  • FIG. 18B is a plan view of a main part of the circuit board PCB after division in this example
  • FIG. 18C is a plan view showing an imposition state of the circuit board PCB of the comparative example
  • FIG. 18D is a plan view of a main part of the divided circuit board PCB of the comparative example.
  • FR is a frame that supports multiple circuit board PCBs
  • PFR is a perforation for separating circuit board PCBs
  • Fig. It is a beam.
  • the perforation PFR is arranged at the outermost part of the circuit board P CB.
  • the flash PFP protrudes from the outermost part of the substrate PCB.
  • the circuit board PCB cannot be housed in the mold case, and it is necessary to remove troublesome and time-consuming burrs.
  • the dimensions of the flash PFP must be taken into account in the circuit board PCB storage section of the monolithic case, and the distance between the circuit board PCB and the mold case increases, which is disadvantageous for downsizing the module. If you try to reduce this distance Then, deburring work is required.
  • the circuit board PCB has a recess GN in the outer contour thereof, and a perforation PFR is arranged in the recess GN. Therefore, after dividing the circuit board P CB, as shown in FIG. 18B, the burrs PFP are located in the concave portions GN, so that the burrs PFP do not protrude from the outermost portion of the substrate PCB.
  • the depth of the concave portion GN should be longer than the remaining length of the burrs PFP of the comparative example. Burst PFP remaining length is a maximum of lmm.
  • Fig. 5 shows the frame-shaped holder ML viewed from the bottom (back) side, the backlight (light guide plate GLB, various sheets, fluorescent tubes LP, etc.) and the interface circuit board PCB etc. It is the whole exploded perspective view shown.
  • the interface circuit board PCB is housed in a housing recess provided at one short side end of the frame-shaped holder ML so as to substantially coincide with the outer contour of the circuit board PCB.
  • a housing recess provided at one short side end of the frame-shaped holder ML so as to substantially coincide with the outer contour of the circuit board PCB.
  • One hole FHL (FIG. 10) provided at one end of the circuit board PCB is inserted into a pin PIN integrally provided at an end of the holder ML, and the position is determined and held. Rotational movement parallel to the panel PNL display surface of the circuit board PCB is hindered by the side wall of the housing recess.
  • the holders BLO 1 and BL02 of FIG. 5 are fitted into the frame-shaped holder ML to hold the circuit board PCB.
  • BL01 holds the portion of the circuit board PCB where the LVDS (integrated circuit) is provided
  • BL02 holds the portion where the TCON (integrated circuit) is provided
  • BL01 and BL02 hold the TCON and LVDS Create space to accommodate integrated circuits. Therefore, L b
  • BLO 1 and BL02 also serve to protect LVDS, TCON integrated circuits.
  • the drain-side multilayer flexible circuit board FP C2 and the interface circuit board P CB are adjacent to the liquid crystal display panel PNL.
  • Fig. 6A is arranged at right angles to each other along two end sides of the lower long side and the left short side of 6A.
  • the circuit board FPC2 connected to the edge of the liquid crystal display panel PNL is disposed substantially perpendicular to the display surface of the panel PNL.
  • a protrusion (CT4 part in FIG. 8A) provided with a connector CT4 for connection to the circuit board PCB is provided.
  • FIG. 7C The electrical connection between the circuit board FPC 2 of the comparative example and the circuit board PCB is shown in FIG. 7C, and the main body of the circuit board FPC 2 is a panel shown in FIG. 7B. Since it is bonded to the back surface of the PNL glass substrate SUB 1 with a double-sided tape (not shown), it protrudes from the main body to reach the circuit board PCB, and the length of the convex portion where the connector CT 4 is provided is long. Become. When taking an L-shaped flexible substrate having such projections from a large substrate, if the projections are long, the material removal efficiency is reduced and the production cost is increased.
  • the main body of the circuit board FPC 2 is Since the main body of the circuit board FPC 2 is bent near the circuit board P CB in the thickness direction and connected to the circuit board PCB near the circuit board P CB, the length of the protrusion is reduced. It can be shortened, and the shape of the circuit board FPC2 can be made almost rectangular. Therefore, the material removal efficiency of the flexible substrate is improved, and the manufacturing cost can be reduced.
  • the length of the projection of the circuit board FPC2 of the present invention is 1.1 cm, and the length of the projection of the comparative example of FIG. 7 is 2.0 cm.
  • FIG. 13 is a plan view similar to FIG. 6A, which is a plan view in which flexible circuit boards FPC 1 and FPC 2 are attached to the liquid crystal display panel PNL.
  • FIG. 7 is a view showing a state where the liquid crystal display panel is not folded after being attached to the liquid crystal display panel PNL.
  • Fig. 14 is the same as Fig. 13 except that the drain-side circuit board FPC2 is attached to the panel PNL and folded, and is not arranged perpendicularly to the display surface, and the connector CT4 is not inserted and connected to the circuit board PCB.
  • Figure 1 shows the state.
  • FIGS. 15A, 15B and 15C are side views showing how the circuit boards FPC2 of FIGS. 13 and 14 are bent.
  • a is a one-layer part, and part a between parts b is a folded part.
  • Fig. 15 A Fold the right part b of the 15A over the center part b and paste it with double-sided adhesive tape.Lay these two pieces under the left part b and paste with double-sided adhesive tape (Shown in FIG. 15B).
  • the circuit board FPC2 with three stacked panels is bent vertically as shown in Fig. L o
  • the chip component EP mounted on the circuit board FPC2 faces the panel PNL side as shown in Fig. 15C, and the frame-shaped holder adjacent to it as shown in Fig. 3A. It is placed in the opening provided on the side surface of the ML, and short-circuit with the upper metal shield case SHD is prevented.
  • the capacitor E P is adjacent to the lamp reflection sheet L S.
  • the frame ground pad FGP protrudes below the circuit board FPC 2 arranged substantially vertically, and is connected to the frame ground FG 1 of the upper metal shield case SHD. Contact.
  • FIGS. 16A to 16C are the same as FIGS. 15A to 15C, including the projections of the circuit board FPC2 provided with the connector CT4.
  • the circuit board FPC 2 is folded to the state shown in FIG. 16B, and as shown in FIG. 16C, the circuit board FP C 2 Is arranged substantially perpendicular to the display surface of the panel PNL, the portion b having the connector C T4 is at the position shown in FIG. 16C, and the connector CT 4 is the connector CTR 4 on the lower surface of the interface circuit board P CB. Can be connected.
  • FIG. 20 is a perspective view of an essential part showing the gate-side multilayer flexible circuit board FPC1 connected to the edge of the liquid crystal display panel PNL, and the printer chip circuit board PCB disposed on the gate-side multilayer flexible circuit board FPC1.
  • the interface circuit board P CB held and accommodated in the panel PNL is arranged vertically along the short side of the panel PNL with the lower transparent glass substrate SUB1 of the panel PNL interposed therebetween.
  • FIGS. 10A and 10B various components are mounted on both sides of the interface circuit board PCB.
  • the chip component EP is also mounted on the surface of the circuit board PCB facing the circuit board FPC1.
  • FIGS. 20 and 9A a plurality of (7 in this case) cutout CUTs are provided on the gate-side multilayer flexible circuit board FPC1.
  • the parts of the multilayer flexible circuit board FPC1, that is, the mounting of the capacitor EP and the arrangement of the through holes TH are combined into the wide part of the circuit board FPC1, and the narrow part with the cutout CUT is only used for wiring. Area.
  • a capacitor EP of an electronic component mounted on a surface of the interface circuit board PCB opposite to the flexible circuit board FPC 1 was arranged in the cutout CUT.
  • components can be mounted also on the surface of the interface circuit board PCB facing the circuit board FPC1, and both sides of the circuit board PCB can be mounted. realizable.
  • it is advantageous for mounting high-density components on the circuit board PCB, and it is possible to reduce the outer dimensions of the circuit board PCB, which is effective in reducing the size of the module.
  • circuit board F PC 1 and the interface circuit board PC B are arranged so as to sandwich the lower transparent glass substrate SUB 1 of the panel PNL, the circuit board PCB to be arranged in the cutout portion The parts on the surface A substrate larger than the thickness of the glass substrate SUB 1 is arranged.
  • the lower metal shield case LF is provided with three frame grounds FG1 projecting integrally therewith, as shown in FIG. 2C.
  • the frame ground FG 1 of the lower case LF is connected to the frame ground FG 1 and the frame ground pad FGP in the process of fitting the shield case SHD and LF at the end of module assembly. Are electrically connected.
  • the ground line of the circuit board FPC2 is electrically connected to the metal shield cases LF and SHD having sufficiently low impedance via the frame ground FG1 so that a stable ground line is provided. Can be supplied, and the ground line in the high frequency region can be strengthened. Therefore, it is possible to eliminate the influence of external intrusion and noise generated inside, so that stable display quality can be obtained.
  • the circuit board electrically connected to the shield case SHD is the drain line drive flexible circuit board FPC2, and the gate line scan drive flexible circuit board FPC1 does not have a frame ground. Is because the clock input to the drain-side flexible printed circuit board FPC2 is fast and noise is easily generated, the clock input to the gate-side flexible printed circuit board FPC1 is slow, and noise is hardly generated.
  • the power and ground potentials become more stable. Good matching can be obtained.
  • the ground can be more stabilized, and the effect of the flexible board as an antenna can be prevented. It is not necessary to solder the frame ground FG 1 and the frame ground pad FGP, so that the number of assembly steps can be reduced. Furthermore, a metal plate dedicated to the frame ground is not required.
  • FGP 4 is a frame ground pad provided on the lower surface of the convex portion (two at both ends on the lower surface of the convex portion) having the connector CT4 of the flexible printed circuit board FPC 2 on the drain side. It is electrically connected via the recess SUP of the shield case LF (see Fig. 2A).
  • a frame ground pad FGP2 is also provided on the left end of the circuit board FPC2 of Fig. 14 and the upper metal shield case S Electrically connected.
  • the interface circuit board PCB for handling high-frequency signals is also provided with a frame ground pad FGP connected to the ground line.
  • the claws NL provided on the upper shield case SHD are connected to the frame ground pad FGP, so that the interface circuit board P CB may also generate electromagnetic waves that cause EMI. Absent.
  • the rubber cushion GC is shown in FIGS. 3A and 3B.
  • the rubber cushion GC is arranged between the lower surface of the edge around the frame of the lower transparent glass substrate SUB1 of the liquid crystal display panel PNL and the frame-shaped holder ML for storing the backlight.
  • the metal shield cases SHD and LF are pushed into the interior of the device, and on the side surface shown in FIG. 0 L
  • the claws NL of the shield case SHD fit into the shield case LF as shown in Fig. 4B and shown in Fig. ID.
  • the convex part FK of the holder ML fits into the opening FH of the shield case SHD
  • the shield case LF is cut as shown in Fig. 1D.
  • the claws NL 2 provided integrally are bent into the opening FH 2 of the shield case SHD, and the side shown in FIG. 1E is integrated by drawing the shield case SHD as shown in FIG. 3A.
  • the provided convex FK fits into the opening FH of the shield case LF.
  • the rubber cushion GC has an adhesive (not shown) on one side and is attached to a predetermined portion of the substrate SUB1.
  • Fig. 5 shows the frame-shaped holder ML viewed from the bottom (back) side and the backlights (light guide plate GLB, various sheets, fluorescent tubes LP, etc.) and interface circuit board PCB Etc. are shown in an overall exploded perspective view.
  • RFS is a reflection sheet
  • GLB is a light guide plate
  • SPS is a diffusion sheet
  • PRS is a prism sheet
  • POR is Polarized reflective sheet
  • ML frame-shaped holder (mold case) formed by integral molding
  • LP see Fig. 5, Fig. 3A
  • cold cathode fluorescent tube cold source for backlight
  • F ig. 5 GB is a rubber bush that supports the fluorescent tube LP.
  • the lamp cable LP CK 2 (refer to LPC 2 of Fig. 1A, Fig. 2A, Fig. 4B) and the connector LCT for the inverter are not shown (Fig. 1A, F ig. 2A)).
  • the side-light type backlight that illuminates the LCD panel PNL from the back consists of one cold-cathode fluorescent lamp LP, the lamp cable LP C 1 and 2 of the fluorescent tube LP, the fluorescent tube LP and the lamp cable LP C 1 and 2.
  • the wiring of the lamp cable LPC was devised so that it could be compactly mounted and had no adverse effect on EMI noise. That is, of the two lamp cables LP C 1 and 2, the cable LPC 1 on the ground voltage side has a flat band shape, is drawn out from one end of the fluorescent tube LP, and has a short side of the light guide plate GLB. Along the two long sides adjacent thereto and on the short side between the side wall of the frame-shaped holder ML and the side wall of the light guide plate GLB, and on the long side, the frame-shaped holder ML It is located in the groove GLO 1 on the side wall.
  • the high voltage side cable LP C 2 has a substantially circular cross section, is pulled out from the other end of the fluorescent tube LP, and is shortly wired near the portion connected to the inverting line (inverting power supply circuit) IV.
  • the light plate is arranged in a groove GL02 provided on the side wall of the frame-shaped holder ML on the other short side of the GLB.
  • GLO 1 is a storage guide groove (see Fig. 3B) for the lamp cable LPC 1 provided in the frame-shaped holder ML
  • GLO 2 is a lamp cable LP C provided in the frame-shaped holder ML. This is the storage guide groove 2 (see Fig. 4B).
  • Light guide plate GLB is fluorescent as shown in Fig. 2B for weight reduction.
  • the cross-sectional shape cut perpendicular to the long axis of the pipe LP is almost trapezoidal.
  • the light guide plate GLB is formed of a transparent material such as an acrylic resin, and serves to guide the light emitted from the fluorescent tube LP so that the light is emitted to the entire display area AR of the liquid crystal panel PNL.
  • the light guide plate GLB is held by the frame-shaped holder ML so as to surround the periphery.
  • the light guide plate GLB is provided with a projection PJ1 for positioning near the corner, and the frame-shaped holder ML is provided with a recess for receiving the protrusion PJ1, so that the light guide plate GLB is oriented at the time of assembly. Is not implemented by mistake.
  • a projection 4 for preventing the liquid crystal substrate from breaking is provided in addition to the positioning projection PJ1.
  • a recess 4 ′ for receiving the projection 4 is provided in a portion of the frame-shaped holding body ML corresponding to the projection 4.
  • the light guide plate GLB When the size of the light guide plate GLB increases with the size of the liquid crystal display device, the light guide plate GLB is easily deformed by an external impact. When the light guide plate GL B is deformed, the light guide plate GL B hits the lower glass substrate SUB 1 of the liquid crystal panel, causing a problem that not only the lower glass substrate SUB 1 but also the upper glass substrate SU B 2 is broken.
  • the center of the light guide plate shows the largest amplitude. Therefore, the projection 4 is provided at the center of each side of the light guide plate GLB, and the vibration amplitude of the light guide plate GLB can be reduced by holding the protrusion 4 with the frame-shaped holder ML.
  • the substrate SUB 1 and SUB 2 can be prevented from breaking.
  • the projections 4 provided on the light guide plate GLB also extend beyond the display window WD of the upper case SHD to the area covered by the upper case SHD, as shown in FIGS. 4A and 4B. Are there. Therefore, the upper case SHD Since the light guide plate GLB partially overlaps near the center of the corresponding side of the light guide plate GLB, no shear stress is applied to the liquid crystal panel PNL provided between the upper case SHD and the light guide plate GLB. When the liquid crystal display device is subjected to a strong impact, the substrates SUB 1 and SUB 2 of the liquid crystal display panel PNL do not crack.
  • the side of the light guide plate GLB where the projection 4 is provided, except for the portion of the projection 4, is indicated by the upper case SHD.
  • the window is retracted from the WD and is not covered by the upper case SHD. Therefore, in this embodiment, the display window WD of the upper case SHD can be enlarged, and a liquid crystal display device having a large display screen can be realized.
  • the side where the projection 4 for preventing the liquid crystal substrate from being cracked cannot be provided on the light guide plate GLB (for example, the light of the fluorescent tube LP is Since the incident side is covered by the upper case SHD, no shear stress is applied to the liquid crystal display panel PNL.
  • the diffusion sheet SPS is placed on the light guide plate GLB, diffuses light emitted from the upper surface of the light guide plate GLB, and uniformly irradiates the liquid crystal display panel PNL with light.
  • the diffusion sheet SPS is fixed to the light guide plate GLB with a double-sided tape BAT on the side of the light guide plate GLB opposite to the side where the fluorescent tube LP is provided.
  • the light guide plate GLB and the diffusion sheet SPS are bonded at the portion farthest from the fluorescent tube LP, strong light is not irradiated to the bonded portion, and light is scattered at the bonded portion and backlight is generated. There is no brightness unevenness.
  • the method of bonding the diffusion sheet SPS and the light guide plate GLB is not limited to the double-sided tape, but may be an adhesive or a method of fusing and bonding the diffusion sheet SPS and the light guide plate GLB. In any case, scattering of light at the bonding portion can be prevented.
  • the prism sheet PRS is placed on the diffusion sheet SPS, and the lower surface is a smooth surface and the upper surface is a prism surface.
  • the prism surface is composed of, for example, a plurality of V-shaped grooves arranged in a straight line parallel to each other. In other words, many triangular prisms are arranged in parallel.
  • the prism sheet PRS can improve the brightness of the knock light by collecting light diffused from the diffusion sheet SPS over a wide angle range in the normal direction of the prism sheet PRS. Accordingly, the power consumption of the backlight can be reduced, and as a result, the module can be reduced in size and weight, and the manufacturing cost can be reduced.
  • the two prism sheets PRS are arranged so that the extending directions of the grooves of the two prism sheets PRS are orthogonal to each other.
  • the polarization reflection sheet POR is placed on the prism sheet PRS, and transmits only light of a specific polarization axis, reflects light of other polarization axes to the light guide plate GLB side, and transmits the polarization plate POL1. It functions to extract only light and improve the light use efficiency of the liquid crystal display device.
  • the reflection sheet RFS is disposed below the light guide plate GLB, and reflects light emitted from the lower surface of the light guide plate GLB toward the liquid crystal display panel PNL. As shown in Fig. 3B, the reflection sheet RSF is also guided by a double-sided tape BAT on the side opposite to the side where the fluorescent tube LP of the light guide plate GLB is provided. Fixed to light plate G LB.
  • the light guide plate GLB and the reflection sheet RSF are bonded at the portion farthest from the fluorescent tube LP, light is scattered at the bonding portion without strong light being irradiated to the bonding portion. There is no uneven brightness of the light.
  • the method of bonding the reflection sheet RSF and the light guide plate GLB is not limited to the double-sided tape, but may be an adhesive or a method of melting and bonding the reflection sheet RSF and the light guide plate GLB. According to this, even in the case of displacement, scattering of light at the bonding portion can be prevented.
  • the frame-shaped holder ML formed by molding is made by integrally molding a single mold with synthetic resin, and Fig. 5, Fig. 3A, 3B, Fig. 4A, As shown in Fig. 4B, holding members such as the fluorescent tube LP, the lamp cables LPC 1 and 2 and the light guide plate GLB, that is, the package and the light storage case, and the multilayer flexible circuit boards FPC1 and FPC2. It is a storage case for the connected liquid crystal display panel PNL and a storage case for the interface circuit board PCB. In other words, most parts except the shield case SHD and LF are stored and held.
  • the liquid crystal display panel PNL with the circuit boards FPC 1 and 2 is stored on the upper surface of the holder ML, the holder ML is inverted, and the interface circuit board PCB is stored from the lower surface.
  • the backlight components are sequentially stored in the holding body ML from the lower surface of the frame-shaped holding body ML, and when the backlight and the backlight are stored, the upper shield case SHD is put on the upper surface of the holding body ML, Put the lower shield case LF on the lower surface of the holder.
  • the frame-shaped holder ML functions as a positioning jig.
  • the light guide plate GLB, the diffusion plate SPS, the prism sheet PRS, and the polarization reflection sheet RFS are each provided with a frame-shaped holder.
  • Positioning projections PJ1, PJ2, PJ3, PJ4, PJ5 are provided at positions corresponding to the recesses PJR of the holder ML, so that the orientation of each optical sheet can be incorrectly mounted. Absent.
  • the frame-shaped holder ML is firmly united with the metal shield cases SHD and LF by the fitting of the fixing members and the action of the elastic body (rubber cushion GC), so the module's vibration and thermal shock resistance And reliability can be improved.
  • the elongated fluorescent tube LP has a frame-like shape below the drain-side drive IC mounted on one of the long sides of the liquid crystal display panel PNL in the module. It is located in the space inside the holder ML. Thereby, the external dimensions of the module can be reduced.
  • Fig. 3A shows the lamp reflector sheet LS.
  • the lamp reflector sheet LS is rounded and bent 180 degrees, and the adhesive is provided by a double-sided tape (not shown) having an adhesive. One end is adhered to the frame-shaped holding body ML, and the other end is adhered to and held by the reflection sheet RFS on the lower surface of the edge of the light guide plate GLB.
  • the lamp reflection sheet was bonded to the light guide plate with double-sided tape, the light coming from the fluorescent tube was scattered at the area where the light guide plate was attached with double-sided tape, near the lamp reflection sheet. This caused uneven brightness of the backlight.
  • the lamp reflection sheet LS is fixed to the frame-shaped holder ML, there is no need to adhere the lamp reflection sheet LS to the light guide plate GLB, and the fluorescent light Light coming from the tube LP is not scattered at the contact portion between the light guide plate GLB and the lamp reflection sheet LS. Therefore, according to the present embodiment, the backlight is provided near the lamp reflection sheet LS. No uneven brightness occurs.
  • the method of bonding the lamp reflection sheet LS and the frame-shaped holder ML is not limited to a double-sided tape, and the lamp reflection sheet LS and the frame-shaped holder ML are melted and bonded even with an adhesive. According to the present invention, according to the present invention, even in the case of L or misalignment, the brightness unevenness of the backlight does not occur near the area where the lamp reflection sheet LS is provided.
  • FIG. 11 is a block diagram showing a schematic configuration of each driver of the liquid crystal display module and a signal flow.
  • FIG. 12 is a diagram showing a comparative example corresponding to FIG. 11.
  • control signals (clock, display timing signal, synchronization signal) from the main unit computer are supplied to the interface circuit board (PCB) via the interface connector (CT1).
  • the controller generates clock, shift clock, and display data control signals, which are supplied to the D (drain) driver via connectors CTR4 and CT4, and to the liquid crystal display panel (PNL) drain line.
  • LVDS Low Voltage Deferential Signaling, LVDS
  • T CON timing converter
  • T CON is an integrated circuit element for display control, and is provided on the interface circuit board (PCB).
  • Reduces EMI noise and reduces interface connector The number of connection pins can be reduced, and connection reliability is improved.
  • the power supply voltage from this computer is converted to three voltages (1) to (3) by a DCZDC converter (equivalent to the hybrid integrated circuit HI of Fig. 1 OA).
  • the 5 V system is supplied to the G (gate) dryno via the level shift circuit and connectors (CTR3, CT3), and to the panel (PNL) gate line.
  • the 18 V system converted by the DCZDC converter is supplied to the gradation voltage circuit, supplied to the OP AMP (operational amplifier), passed through the connectors (CTR3, CT3), and then to the opposite common electrode of the panel (PNL). Supplied.
  • 1 8V system is also supplied to D (drain) driver.
  • the signal system of the DCZ DC converter of the comparative example shown in Fig. 12 is 1210 V system, ⁇ 17 V system, 3-5 V system, 45 V system. It has been reduced from four systems to three systems: 1 8 V system, ⁇ 17 V system, and 3-5 V system.
  • the 45V system of Fig. 12 is made only to supply LVDS. Also, the number of OP AMPs in the comparative example was reduced from three to one.
  • the power supply voltage is the same as the power supply voltage supplied from the outside, and by using 3.3 V LVDS, the power supply supplied from the outside through the interface connector CT 1 can be reduced. Since the power is supplied directly to LVDS, a 5 V DC / DC converter is not required compared to the comparative example shown in Fig. 12, and the power consumption is reduced.
  • the total power P required to operate LVDS is as follows: the power supply voltage of ⁇ 03 is ⁇ , the current flowing through the LVDS power supply line is I, and the DC / DC converter If you look at the conversion efficiency in the evening,
  • LVDS is connected to an external power supply. Since the power is supplied directly from the, the total power ⁇ required to operate LVDS is
  • the conversion efficiency ⁇ of the DC / DC converter is smaller than 1 (0.73 in the comparative example shown in FIG. 12), so that the embodiment shown in FIG.
  • the power consumption is reduced as compared with the comparative example shown in FIG.
  • the power consumption of L VDS is 372.0 mW when viewed in Fig. 12, which is lower than that of other parts such as OP AMP, gradation resistance, level shift + G driver block, etc. Of the total.
  • LVDS handles high-frequency (32.5 MHz or more) signals sent from a computer via the interface connector CT, so it must operate at high speed and consume high power.
  • the power supply voltage of the LVDS to be the same as the voltage of the external power supply and supplying power from the external power supply to the LVDS without passing through the DC / DC converter, the power consumption of the liquid crystal display device as viewed from the external power supply Can be reduced.
  • the TCON having the function of the display control device also receives the power directly from the external power supply by setting the power supply voltage of the TCON to be the same as the voltage of the external power supply. I have. Since the power consumption of TCON is a large part of the power consumption of the liquid crystal display device, the power consumption of TCON can be further reduced by directly receiving power from an external power supply. T CON also needs to operate at high speed because it handles high-frequency (32.5 MHz or higher) video signals sent from LVDS, which increases power consumption.
  • the grayscale voltage (V1 to V9) which is the output of the grayscale voltage circuit, is amplified by the operational amplifier OP AMP and supplied to the D driver (drain driver). are doing.
  • Fig. 11 shows In the embodiment, the output of the gradation voltage circuit is directly supplied to the D driver without passing through the OP AMP, so that the power consumption can be further reduced. Specifically, 38.9 mw of power was saved. In the past, the output of the grayscale voltage circuit had to be supplied in parallel to multiple D drivers, so it was necessary to amplify the power with an OP AMP.
  • the output of the gray scale voltage circuit can be increased to a plurality of, specifically, up to 12 D as shown in FIG. 6, without amplifying the power by the OP AMP. Since it was found that there would be no problem even if it was supplied to the driver, a configuration was obtained in which the output of the gradation voltage circuit was directly supplied to the D driver.
  • FIG. 24 is a block diagram showing an equivalent circuit of the entire liquid crystal display device.
  • a video signal line driving circuit 103 is arranged on only one side of the TFT LCD (TFT-LCD), and a scanning signal line driving circuit 104, a controller 101, and a power supply are located on the side of the TFT LCD.
  • the part 102 is arranged.
  • the video signal line drive circuit 103 is mounted by bending the drain-side multilayer flexible substrate FPC2 to reduce the frame area of the liquid crystal display device.
  • the controller 101 and the power supply 102 are mounted on the interface board PCB.
  • the scanning signal line drive circuit section 104 is provided on the gate-side flexible board FPC1, and is mounted on the liquid crystal display device so as to overlap the interface board PCB.
  • the thin-film transistor TFT is arranged in an intersection region between two adjacent drain signal lines DL and two adjacent gate signal lines GL.
  • a drain electrode and a gate electrode of the thin film transistor are connected to a drain signal line DL and a gate signal line GL, respectively.
  • the source and drain are originally determined by the bias pole 3 ⁇ 41 between them, and in the liquid crystal display circuit, the polarity is inverted during operation, so it should be understood that the source and drain electrodes are switched during operation.
  • the connection to the drain signal line DL is expressed as the drain electrode
  • the connection to the pixel electrode is expressed as the source electrode.
  • the source electrode of the thin film transistor TFT is connected to the pixel electrode, and a liquid crystal layer is provided between the pixel electrode and the common electrode, so that a voltage is applied from the pixel electrode to the liquid crystal layer.
  • the thin-film transistor TFT conducts when a positive bias voltage is applied to the gate voltage, and becomes non-conductive when a negative bias voltage is applied to the gate electrode.Thus, by controlling the voltage applied to each gate signal line GL, The pixel electrode to which the video signal line is added can be selected through the drain signal line DL.
  • FIG. 25 is a diagram showing a drive waveform of each electrode of the TFT-LCD shown in FIG.
  • VG is the waveform of the voltage applied to the gate signal line GL
  • V COM is the waveform of the voltage applied to the common electrode
  • VDH is the waveform of the voltage applied to the odd drain signal line DL
  • VDL is the even number 5 is a waveform of a voltage applied to the drain signal line DL.
  • VG changes between high and low levels in one frame cycle, and when VG changes from high to low, the VDH and VDL voltages are written to each pixel electrode.
  • VDH and VDL invert the signal polarity around VCOM at the cycle of one horizontal scan (1H).
  • VDH and VDL invert the signal polarity even in one frame cycle.
  • VDH and VDL also have a relationship in which the signal polarity is inverted with respect to each other.
  • the driving method dot inversion driving
  • the voltage of the gate signal line GL or the drain signal line DL leaks to the pixel electrode unrelated to them, and the display quality of the liquid crystal display device deteriorates. problem Is lost.
  • the drain driver 'integrated circuit IC 1 used in the video signal line driving circuit 103 has a function of changing the polarity of the odd-numbered output and the even-numbered output and simultaneously outputting the same, the display High image quality.
  • VCOM shown in Fig. 25 shows an ideal case where there is no coupling between the gate electrode and source electrode of the thin film transistor TFT. I have.
  • the present invention has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and it is needless to say that various modifications can be made without departing from the gist of the present invention. .
  • the present invention is also applicable to a simple matrix type liquid crystal display device.
  • the present invention is also applicable to a flip-chip type liquid crystal display device.
  • the present invention is also applicable to other types of liquid crystal display devices.
  • the present invention is applied to a liquid crystal display device in which a frame region, which is a region that does not contribute to display, is reduced to the utmost, and is particularly mounted on a display unit of a portable information processing device such as a notebook personal computer. It has the potential for practical use, as it can enlarge the display screen of an information processing device and improve durability.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Description

明細
[技術分野]
本発明は、 液晶表示パネルと、 駆動回路基板等を有する液晶表示装 置 (すなわち、 液晶表示モジュール) に関する。
[背景技術]
例えばアクティブ ·マトリクス方式の液晶表示装置の液晶表示素子 では、 液晶層を介して互いに対向配置されるガラス等からなる 2枚の透 明絶縁基板のうち、 その一方のガラス基板の液晶層側の面に、 その X方 向に延在し、 y方向に並設されるゲート線群と、 このゲート線群と絶縁 されて y方向に延在し、 X方向に並設されるドレイン線群とが形成され ている。
これらのゲート線群とドレイン線群とで囲まれた各領域がそれぞれ 画素領域となり、 この画素領域にスィツチング素子として例えば薄膜ト ランジス夕 (T F T ) と透明画素電極とが形成されている。
ゲ一ト線に走査信号が供給されることにより、 薄膜トランジスタが オンされ、 このオンされた薄膜トランジスタを介してドレイン線からの 映像信号が画素電極に供給される。
なお、 ドレイン線群の各ドレイン線はもちろんのこと、 ゲート線群 の各ゲート線においても、 それぞれ透明絶縁基板の周辺にまで延在され て外部端子を構成し、 この外部端子にそれぞれ接続されて映像駆動回路、 ゲート走査駆動回路、 すなわち、 これらを構成する複数個の駆動 I C (半導体集積回路) が該透明絶縁基板の周辺に外付けされるようになつ ている。 つまり、 これらの各駆動 I Cを搭載したテープキャリアパッケ —ジ (T C P ) を基板の周辺に複数個外付けする。
しかし、 このように透明絶縁基板は、 その周辺に駆動 I Cが搭載さ れた T C Pが外付けされる構成となっているので、 これらの回路によつ て、 透明絶縁基板のゲート線群とドレイン線群との交差領域によって構 成される表示領域の輪郭と、 該透明絶縁基板の外枠の輪郭との間の領域 (通常、 額縁と称している) の占める面積が大きくなつてしまい、 液晶 表示モジュールの外形寸法を小さくしたいという要望に反する。
それゆえ、 このような問題を少しでも解消するために、 すなわち、 液晶表示素子の高密度化と液晶表示モジユールの外形をできる限り縮小 したいとの要求から、 T C P部品を使用せず、 映像駆動 I Cおよびゲー ト走査駆動 I cを透明絶縁基板上に直接搭載する構成が提案された。 こ のような実装方式をフリップチップ方式、 あるいはチップ ·オン ·ガラ ス (C O G ) 方式という。
また、 フリップチップ方式の液晶表示装置に関しては、 例えば同一 出願人による特開平 8— 1 2 2 8 0 6号公報に記載されている。
[発明の開示]
従来の技術では、 液晶表示装置の表示に寄与しない領域、 所謂額縁 領域、 を小さく した場合の、 液晶表示装置の機械的な衝撃に対する強度 についての検討が不十分であつたため、 液晶表示装置の額縁領域を小さ くすることに限界があった。
また、 液晶表示装置の所謂額縁領域を小さく した場合に、 バックラ ィ トの導光体の光入射面近辺で発生するバックライ 卜の輝度むらが表示 画面に輝線となつて見える問題についての対策が不十分であつたため、 液晶表示装置の額縁領域を小さくすることの妨げになっていた。
本発明は、 液晶表示装置の額縁領域を小さく した場合に生じる問題 を解決し、 表示画面が大きくかつコンパク トな液晶表示装置を提供する ことを主たる目的とする。
液晶表示装置の表示に寄与しない領域、 所謂額縁領域、 を小さくす ると、 取り付け穴の形状も従来の丸穴から、 U字形の切り欠きに変える 必要が出てくる。
しかし従来の U字形の切り欠きは、 機械的なストレスや衝撃を強く 加えると、 変形しやすい。 取り付け部の切り欠きが変形すると、 液晶表 示パネル (液晶表示素子) の変形や、 液晶表示パネルの割れが起こる。 本発明の一つの目的は、 液晶表示装置の取り付け部の変形を防止す ることにある。
液晶表示装置の取り付け部の変形を防止する為に、 本発明では、 液 晶表示素子と、 該液晶表示素子の表示部を露出する開口を有し上記液晶 素子の周囲を覆う上側ケースと、 上記上側ケースと合体し上記液晶素子 を収納する下側ケースとを有する液晶表示装置であって、 該液晶表示装 置を固定するための切り欠きを上記液晶表示装置の周辺に設け、 上記切 り欠きは上記上側ケースに形成した第 1の切り欠きと下側ケースに形成 した第 2の切り欠きを重ね合せて形成され、 上記切り欠きに略平行で、 上記切り欠きに最も近 、側の側面の上記上側ケースを L字形に折り曲げ たことを特徴とする。
また、 液晶表示素子と、 該液晶表示素子の表示部を露出する開口を 有し上記液晶素子の周囲を覆う上側ケースと、 上記上側ケースと合体し 上記液晶素子を収納する下側ケースとを有する液晶表示装置であつて、 該液晶表示装置を固定するための切り欠きを上記液晶表示装置の周辺に 設け、 上記切り欠きは上記上側ケースに形成した第 1の切り欠きと下側 ケースに形成した第 2の切り欠きを重ね合せて形成され、 上記切り欠き に略平行で、 上記切り欠きに最も近 、側の側面の上記下側ケースを L字 形に折り曲げたことを特徴とする。
さらには、 液晶表示素子と、 該液晶表示素子の表示部を露出する開 口を有し上記液晶素子の周囲を覆う上側ケースと、 上記上側ケースと合 体し上記液晶素子を収納する下側ケースとを有する液晶表示装置であつ て、 該液晶表示装置を固定するための切り欠きを上記液晶表示装置の周 辺に設け、 上記切り欠きは上記上側ケースに形成した第 1の切り欠きと 下側ケースに形成した第 2の切り欠きを重ね合せて形成され、 上記切り 欠きに略平行で、 上記切り欠きに最も近い側の側面の上記上側ケース及 び上記下側ケースを L字形に折り曲げたことを特徴とする。
上記構成によれば、 F i g . 2 1 A及び 2 1 Bに示すように、 上側 ケース S H Dと下側ケース L Fをモールド M Lの外側に L字に曲げて配 置することにより、 y, y ' 方向の衝撃を、 モールド M L、 上側ケース S H Dの上面 l a、 下側ケース L Fの上面 2 aだけでなく、 上側ケース 3 110の側面1 b及び又は下側ケース L Fの側面 2 bで受け止めること が出来るので、 U字形切り欠きが変形し難くなる。
また、 額縁領域を小さくすると、 上側ケースの開口部が大きくなる。 し力、し、 パ、ックライ トの導光板よりも上側ケースの開口が大きくな ると、 液晶表示装置に機械的に強い衝撃が加わった時に、 導光板と上側 ケースに挟まれた液晶表示パネルに、 導光板が衝突し、 せん断応力が生 じ、 液晶表示パネルの基板が割れるため、 従来の技術では額縁領域を小 さくすることが困難であった。
本発明の他の目的は、 液晶表示装置の上側ケースの開口部を大きく しても、 液晶表示パネルの基板が割れない構造を提供することにある。 液晶表示パネルの基板が割れるのを防止する為に、 本発明では、 液 晶表示素子と、 該液晶表示素子に重なり上記液晶表示素子に光を照射す る導光板と、 上記液晶表示素子の表示部を露出する開口を有し上記液晶 素子の周囲を覆う上側ケースと、 上記上側ケースと合体し上記液晶素子 及び上記導光板を収納する下側ケースとを有する液晶表示装置であって、 上記導光板は対向する 2辺を有し、 上記導光板の対向する 2辺の夫々の 辺の中央付近に、 上記上側ケースと平面的に重なる突起を設けたことを 特徴とする。
本発明によれば、 F i g . 2 2 A及び 2 2 Bに示すように、 導光板 G L Bの辺の中央付近に突起 4 aを上側ケース S H Dに重なるように配 置しているので、 液晶表示装置に強い衝撃が加わった時に、 導光板 G L Bの変形が突起 4 aにより押ざえられ、 液晶表示パネル P N Lにせん断 応力が加わることがない。
従って本発明によれば、 液晶表示装置の衝撃に対する強度を強くす ることが出来る。
また液晶表示装置の額縁領域を小さくすると、 導光板に蛍光管から 光が入射する入光面が液晶表示パネルの表示領域に近くなり、 導光板の 入光部で発生する輝線や暗線などの輝度むらが表示画面に影響を及ぼす 現象も、 従来技術では十分に検討されていなかった。
発明者らの研究によれば、 従来導光板の入光部には蛍光管の光を反 射するランプ反射シートゃ、 導光板の反射面に設けられる反射シートゃ、 導光板の光射出面に設けられる拡散シートなど各種の光学シートが、 両 面粘着テープや接着剤あるいは溶融等により、 導光板に固定されていた。
し力、し、 これら両面粘着テープや接着剤あるいは溶融等により、 各 種光学シートが導光板に固定された部分に、 蛍光管の光が当たると、 光 が不規則に散乱され、 バックライ トの輝度むらを生じ、 輝線が発生した c バックライ トの輝線を低減する方法としては、 導光板の入光部近辺 の反射シートゃ拡散シートに黒色または灰色の模様を印刷して光を吸収 させる方法がある力 光の吸収量が多い場合は暗線が発生したり、 吸収 される光の分だけ余計に蛍光管の輝度を上げる必要があつたため、 バッ クライ トの消費電力が大きくなる短所があった。
本発明の他の目的は、 液晶表示装置の額縁領域を小さくした場合に、 ノ ックライ卜の導光体の光入射面近辺で発生するバックライトの輝度む らが表示画面に輝線や暗線となつて見える問題を解決することにある。 上記問題を解決するために本発明では、 液晶表示素子と、 該液晶表 示素子に重なり上記液晶表示素子に光を照射する導光板と、 該導光板の 上記液晶表示素子に光を照射する部分に開口を有し上記液晶表示素子と 上記導光板の間に設けられる枠^と、 上記液晶表示素子の表示部を露出 する開口を有し上記液晶素子の周囲を覆う上側ケースと、 上記上側ケ一 スと合体し上記液晶素子、 上記枠体及び上記導光板を収納する下側ケー スとを有する液晶表示装置であって、
上記導光板の一つの側面に光源を配置し、 上記光源を、 上記導光体 と対向する部分を除いて、 光を反射するフィルムからなる第 1の反射シ ―トで覆い、 該反射シートを上記枠体に固定したことを特徴とする。 また上記液晶表示素子と上記導光板の間に透過する光を拡散させる 拡散シートを設け、 該拡散シートを上記導光体の上記一つの側面に対向 する側面の近傍で固定したことを特徴とする。
また上記導光板と上記下側ケースの間に光を反射するフィルムから なる第 2の反射シ一トを設け、 該第 2の反射シートを上記導光体の上記 一つの側面に対向する側面の近傍で固定したことを特徴とする。
本発明によれば、 第 1の反射シート、 第 2の反射シート及び拡散シ 一トなどの光学シートを、 導光板の入光部に両面粘着テープや接着剤あ るいは溶融などにより固定していないので、 導光板の入光部でバックラ ィ卜の輝度むらが発生することがない。
すなわち本発明では、 F i g . 2 3に示すように、 拡散シート S P S及び反射シート R F Sを、 導光板 G L Bの入光部と反対側で、 導光板 に両面粘着テープ B A T等の固定部材で固定し、 ランプ反射シート L S を、 ランプ反射シート L Sの非反射面 5で, モールド M L (枠体) に両 面粘着テープ BAT等の固定部剤で固定しているので、 導光板の入光部 に蛍光管 L Pの光が散乱される部分が無く、 輝線や暗線などのバックラ ィトの輝度むらを生じることがない。
従って本発明によれば、 液晶表示装置の表示品質を向上することが 出来る。
[図面の簡単な説明]
F i g. 1 Aは液晶モジュールの表示側から見た正面図、 F i g. 1 Bは左側面図、 F i g. 1 Cは右側面図、 F i g. 1 Dは後側面図、 F i g. 1 Eは前側面図である。
F i g. 2 Aはモジュールの裏面図、 F i g. 2 Bは F i g. 2 A の B— B切断線断面図、 F i g. 2 Cは F i g. 2Aの C一 C切断線断 面図である。
F i g. 3 Aは F i g. 1 Aに示す液晶表示装置の I一 I切断線断 面図、 F i g. 3Bは F i g. 1 Aの H— Π切断線断面図である。
F i g. 4 Aは F i g. 1 Aの HI— HI切断線断面図、 F i g . 4 B は F i g. 1 Aの IV— IV切断線断面図である。
F i g. 5は下側から見た枠状保持体 MLとそれに収納されるバッ クライトおよびィンタ一フニイス回路基板 P CB等を示す全体分解斜視 図である。
F i g. 6 Aはゲート側多層フレキシブル回路基板 F PC 1と、 ド レイン側多層フレキシブル回路基板 F P C 2と、 液晶パネル P N Lの正 面図、 F i g. 6 Bは右側面図、 F i g. 6 Cは F i g. 6八の1— 1 切断線断面図である。
F i g. 7A〜7 Cは F i g. 6 A〜 6 Cに対応する比較例を示す 図である。
F i g. 8 Aはドレイン側多層フレキシブル回路基板 F P C 2の正 面図、 F i g. 8 Bは左側面図、 F i g. 8 Cは右側面図、 F i g. 8 Dは端子の中心位置 J iに対応する部分の拡大正面図、 F i g. 8Eは 端子の中心位置 J 2〜J 1 1に対応する部分の拡大正面図、 F i g. 8 Fは端子の中心位置 J 12に対応する部分の拡大正面図である。
F i g. 9 Aはゲート側多層フレキシブル回路基板 FPC 1の正面 図、 F i g. 9 Bは F i g. 9 Aの I一 I切断線断面図である。
F i g. 1 OAはインタ一フェイス回路基板 PCBの裏 (下) 面図、 F i g. 1 OBは該回路基板 PCBの正 (上) 面図である。
F i g. 1 1はモジュールの各ドライバの概略構成と、 信号の流れ を示すブロック図である。
F i g. 12は F i g. 1 1に対応する比較例を示す図である。
F i g. 13はドレイン側回路基板 FPC 2をパネル PNLに取り 付け後、 折り返していない状態を示す F i g. 6 Aと同様の図である。
F i g. 14は F i g. 13において、 ドレイン側回路基板 F P C 2をパネル PNLに取り付け折り返し、 回路基板 PCBにコネクタ CT 4を挿入しない状態を示す図である。
F i g. 15A、 15B、 1 5 Cは F i g. 13、 14の回路基板 FPC 2の折り曲げ方を示す側面図である。
F i g. 16 A〜l 6 Cはコネクタ CT 4を設けた回路基板 FPC 2の凸部を含めた F i g. 15A〜15Cと同様の図である。
F i g. 17A〜17Dは上側金属製シールドケース SHDの 4個 の角部を示す斜視図、 F i g. 17E〜17 Hは下側金属性シールドケ —ス L Fの 4個の角部を示す斜視図である。
F i g. 18 Aは本例の回路基板 P C Bの面付け状態を示す平面図、 F i g. 18 Bは本例の分割後の回路基板 PCBの要部平面図、 F i g. 18 Cは比較例の回路基板 PCBの面付け状態を示す平面図、 F i g. 18 Dは比較例の分割後の回路基板 P C Bの要部平面図である。
F i g. 19 Aは、 集積回路素子 T CONの下面図、 F i g. 19 Bは側面図、 F i g. 19 Cは集積回路 T CONの下面の本例のピン配 列の概略を示す図、 F i g. 19 Dは比較例のピン配列の概略を示す図 である。
F i g. 20はゲート側多層フレキシブル回路基板 F PC 1とそれ に重ねて配置されたィンターフェイス回路基板 PC Bを示す要部斜視図 であ。。
F i g. 21 Aは本発明の液晶表示装置を固定するための切り欠き の構造を示すための平面図、 F i g. 21 Bは切り欠きの側面図である。
F i g. 22 Aは本発明の、 導光板に設けた突起と、 上側ケースの 位置関係を示す平面図、 F i g. 22 Bは F i g. 22 Aの I— I線で 切った断面図である。
F i g. 23は本発明の、 ランプ反射シート、 拡散シート及び反射 シートの固定方法を示す断面図である。
F i g. 24は液晶表示装置全体の等価回路を示すブロック図であ る o
F i g. 25は TFT液晶表示素子 TFT— LCDの駆動波形を示 す図である。
[発明を実施するための最良の形態]
以下、 図面を用いて本発明の実施の形態について詳細に説明する。 なお、 以下で説明する図面で、 同一機能を有するものは同一符号を付け、 その繰返しの説明は省略する。
《液晶表示モジュ一ルの全体構成》
F i g. 1 Aは液晶表示モジュールの組立完成後の表示側から見た 正面図、 F i g. 1 Bは左側面図、 F i g. 1 Cは右側面図、 F i g. 1 Dは後側面図、 F i g. 1 Eは前側面図である。
F i g. 1において、 SHDは金属板からなる上側金属製シールド ケース、 WDは表示窓、 PNLは重ね合わせた 2枚の透明絶縁基板の一 方の基板上に駆動 I Cを搭載してなるフリツプチップ方式液晶表示パネ ノレ (液晶表示素子や LCD (リキッ ド クリスタル ディスプレイ) と も称す) 、 ARは有効画素エリア、 HLD 1〜4は該モジュールのパソ コン等への取付穴または切り欠き、 LPC 1、 LP C 2はバックライ ト の蛍光管のランプケーブル、 L CTはィンバ一夕との接続コネクタであ o
F i g. 2 Aは液晶表示モジュールの組立完成後の裏面図、 F i g. 2Bは F i g. 2 Aの B— B切断線における断面図、 F i g. 2Cはフ レームグランド部を示す要部断面図である。
F i g. 2 Aにおいて、 LFは金属板からなる下側金属製シールド ケース、 DRHはシールドケース LFの下 (底) 面に貫通する複数個の 穴、 DRWは複数個の穴 DRHの回りの凹み (F i g. 2 B参照) 、 F GHはフレームグランド穴、 SUPはコネクタ CT4 (F i g. 8、 6 参照) を下から支持する凹み、 CT 1はインタ一フヱイスコネクタ、 H LD 1-4は該モジユールのノ、°ソコン等への取付穴である。
F i g. 1、 2において、 両ケース SHD、 LFにそれぞれ設けた 4個の取付穴または切り欠き HLD 1~4は、 当該モジュールを表示部 としてパソコン、 ワープロ等の情報処理装置にねじ等を用いて実装する ための穴または切り欠き (HLD 2と HLD4は閉じた穴ではなく切り 欠き) である。 両者に設けた取付穴または切り欠き HLD 1〜4にねじ 等を通して情報処理装置に固定、 実装する。 本体コンピュータ (ホス ト) からの信号と必要な電源は、 モジュール裏面に位置するインターフ ェイスコネクタ CT 1を介して、 モジュール内のィンタ一フェイス回路 基板のコントローラ部および電源部に供給する。
以下、 各構成部品の具体的な構成を F i g. 1 ~F i g. 20に示 し、 各部材について詳しく説明する。
《上側金属製シールドケース S HDと下側金属製シールドケース L F》
F i g. 1 Aに上側シールドケース SHDの上面、 F i g. 1 B、 1 C、 1 Dに上側シールドケース SHDの各側面が示され、 F i g. 2 Aに下側シールドケース L Fの下面が示される。
メタルフレームとも称されるシールドケース SHD、 LFは、 1枚 の金属板をプレス加工技術により、 打ち抜きと折り曲げ加工により作製 される。 WDは液晶表示パネル PNLを視野に露出させる開口である表 示窓である。 ケース SHDは、 厚さ 0. 4mmのステンレス板 (強度 大) 力、らなり、 ケース LFは、 厚さ 0. 3mmのアルミ板からなる。
F i g. 2 Aに示すように、 下側金属製シールドケース L Fの底面 には、 多数の貫通した穴 DRHと、 その周囲に該ケース LFと一体にモ ジュール内部に向かう (F i g. 2B参照) 凹み DRWが設けられてい る。 この多数の穴 DRHを設けたことにより、 軽量化を実現し、 かつ、 バックライ ト等から発生する熱を放熱する。
また、 各穴 DRHの間には、 下側ケース LFをプレスして形成した 凸部であるビード DRP 1、 DRP2、 DRP 3が設けられている。 本実施例では、 下側ケース LFの各穴 DRHの間に、 液晶表示装置 の長辺と平行なビ一ド DRP 1、 DRP 3と短辺に平行なビード DRP 2を設けているので、 下側ケース LFに複数の穴 DRHを設けても、 強 度が低下することなく、 下側ケース L Fにたわみを生じることも無い。
また、 凹み DRWを設けたことにより、 下側ケース LFの強度がさ らに増し、 下側ケース L Fの対角線を中心とする反りの発生を防止する ことが出来る。 また、 モジュール内部に向かう凹み DRWの最上部は、 反射シート RF Sを介してバックライトの導光板 GLBに当接し、 該導 光板 GLBを支持する。 すなわち、 F i g. 2 Bに示すように、 F i g. 2 Aの左側から右側に向かって軽量化のため厚さが漸次減少する断面形 状が略台形状の導光板 GLBを支持するように、 F i g. 2Bの厚さ d 丄の導光板 GLBの部分を支える凹み DRWの高さ h 1よりも厚さ d 2 の導光板 G L Bの部分を支える凹み D RWの高さ h 2の方が高くなつて いる。 なお、 F i g. 2 Aの SUPは、 回路基板 F PC 2を介してコネ クタ CT 4を下から支持する凹みである (F i g. 4A参照) 。
F i g. 3 Aは F i g. 1 Aの I— I切断線における液晶表示モジ ユールの要部断面図、 F i g. 3Bは F i g. 1八の11— 11切断線にぉ ける該モジュールの要部断面図である。
通常、 上側シールドケース SHDの各側面は、 それとそれぞれ重な る下側ケース LFの各側面の外側に配置されている。 F i g. 3に示す ように、 液晶表示パネル PNLの端辺に接続されたドレイン側多層フレ キシブル回路基板 F P C 2を液晶表示パネル P NLの表示面に対して略 垂直に (後で詳述) 、 上下フレーム SHD、 LFの側面のかみ合わせ部 に配置する場合、 ドレイン側多層フレキシブル回路基板 F PC 2がその 反発力により外側に開くので、 下側ケース LF側面を内側にしょうとす ると、 該回路基板 F PC 2が付いた液晶表示パネル PNLに下側ケース LFが挿入しにくく、 組立が困難になる。 また、 後で詳細に説明するよ うに、 F i g. 2 Cに示す回路基板 F PC 2のフレームグランドパッド F G Pを下側金属製ケース L Fのフレームグランド F G 1に接続するの も困難となる。
したがって、 F i g. 3 A, F i g. 1 Eに示すように、 回路基板 FPC 2に隣接する上側シールドケース SHDの側面を、 それと重ね合 丄 ύ
わされる下側シールドケース L Fの側面より内側に位置させることによ り、 回路基板 F PC 2の液晶表示パネル PNLへの接続側から、 該回路 基板 F P C 2付き液晶表示/、°ネル P N Lに上側シールドケース S H Dを 先に挿入することとなるので、 モジュールの組立が容易となる。 また、 回路基板 F P C 2付きパネル PNLに上側シールドケース SHDを挿入 した後、 下側シールドケース LFを挿入する際、 回路基板 FPC2の広 がりが上側ケース S H Dで抑えられているので、 挿入が容易で組立性が よい。
なお、 F i g. 1 B、 1 C、 1 Dの各側面図では、 それぞれ F i g. 4A、 4B、 F i g. 3Bから明らかなように、 上側シールドケース S HDが外側に位置している。
F i g. 3A、 3 B、 F i g. 4 A、 4 Bにおいて、 B Mは液晶表 示パネル PNLの有効画素エリァ A Rの周辺部に設けたブラックマトリ クス、 V I NC 1は、 パネル PNLの下部透明ガラス基板 SUB 1と偏 光板 P 0 L 1との間に設けた視角拡大フィルム、 V I N C 2はパネル P NLの上部透明ガラス基板 SUB 2と偏光板 POL 2との間に設けた視 角拡大フィルム、 BATは両面粘着テープ、 F i g. 3A、 3Bにおい て、 GCはゴムクッション (後述) 、 F i g. 3 Aにおいて、 LSHは 高周波のかかる蛍光管 LPの上面を覆い、 高周波ノイズから駆動 I C 1 をシールドする銅テープ等からなる導電性シート、 03? (:は駆動1じ を保護する空間を作るためのスぺーサ、 F i g. 3 Bにおいて、 SPC 4はスぺ一サ、 F i g. 4 Aにおいて、 F GP 4はフレームグランドバ ッ ド (後述) 、 F i g. 4 Bにおいて、 F USは液晶表示パネル PNL の上下透明ガラス基板 SUB 1、 SUB 2間に封入した液晶を封止する 封止剤、 NLは下側金属製シールドケース LFと嵌合する上側金属製シ —ルドケース S H Dに設けた固定用爪である。 導電性シ一ト L S Hは、 後述するランプ反射シ一ト L Sに沿って、 導光板 G L Bと下側ケース L Fで挟まれる領域まで延在され、 金属製の 下側ケース LFと接触するので、 導電性シート L SHと下側ケースとの 間に特殊な接続手段が不要になる。
F i g. 1 7 A〜l 7 Dは上側金属製シールドケース SHDの 4個 の角部を示す斜視図、 F i g. 1 7 E〜1 7 Hは下側金属製シールドケ ース LFの 4個の角部を示す斜視図である。 F i g. 1 7八は i g. 1 Aの左下角部、 F i g. 1 7 Bは右下角部、 F i g. 1 7 Cは右上角 部、 F i g. 1 7 Dは左上角部、 F i g. 1 7 Eは F i g. 2 Aの左下 角部、 F i g. 1 7 Fは右下角部、 F i g. 1 7 Gは右上角部、 F i g. 1 7 Hは左上角部を示す。
本実施例では、 F i g. 1 7 A、 1 7 Bに示すように、 上側ケース S H Dは 2つの角部で、 液晶表示装置を固定するための切り欠き HLD 2 a、 HLD 4 aを有している。 切り欠き HLD 2 a、 H L D 4 aの側 面には、 それぞれ上側ケース SHDの折り曲げ部 SK2 a、 SK4 aを 設け、 切り欠き HLD 2 a、 HLD 4 aを設けた部分の上側ケース S H Dの強度を向上している。
すなわち、 F i g. 1 7 A、 1 7 Bに示すように、 上側ケース SH Dの角部に X方向と Y方向で形成する X Y平面に平行な部分を形成し、 X方向に延在する切り欠き HLD 2 a、 HLD 4 aを形成し、 切り欠き HLD 2 a、 HLD 4 aの近傍に上側ケース S HDを Z方向に折り曲げ た、 折り曲げ部 SK 2 a、 SK4 aを形成している。
従って、 切り欠き HLD 2 a、 HLD 4 aを設けたことによって形 成される突出部 I、 Πは、 XY平面に平行な平板部分と、 Y方向と Z方 向で形成する YZ平面に平行な平板部分 (SK 2 a、 SK4 a) が接続 した形状になるので、 X方向、 Y方向及び Z方向の外力に対し突出部 I、 Πの強度が向上し、 切り欠き HLD2 a、 HLD4 aの強度が向上する。 同様に下側ケース L Fも 2つの角部で、 F i g. 17 E、 1 7 Fに 示すように、 液晶表示装置取り付け用の、 切り欠き HLD2 b、 HLD 4 bを有し、 切り欠き HLD4 bの側面に、 折り曲げ部 SK 4 bを設け て、 切り欠き HLD4 bの強度を向上している。
なお、 本実施例では、 下側ケース L Fの切り欠き HLD 2 bの側面 には、 下側ケース LFの折り曲げ部を設けていない。 しかし、 下側ケ一 ス LFの切り欠き HLD2 bに対応する上側ケース SHDの切り欠き H LD2 aには折り曲げ部 SK 2 a力あり、 さらに下側ケース L Fと上側 ケース SHDの間には、 切り欠き HLD2 cを設けたモールドケース M L (F i g. 5参照) が挟まれているので、 液晶表示装置取り付け用の 切り欠き全体 (F i g. 1 Aに示す HLD 2) の強度は、 上側ケース S H Dまたは下側ケース L Fのどちらにも折り曲げ部の無い従来技術に比 ベて向上している。
なお、 本発明のように上側ケース SHDまたは下側ケース LFの角 部に設けた切り欠きの側面に、 折り曲げ部を設けると、 切り欠きの部分 で、 上側ケース SHDと下側ケース LFの間に空間が出来る。 この上側 ケース SHDと下側ケース LFの空間の間に、 F i g. 21 bに示すよ うに、 プラスチックからなるモールドケース MLの一部で形成した切り 欠き部 (F i g. 5の HLD2 c、 HLD4 c参照) を挿入することに より、 液晶表示装置取り付け用の切り欠き部 HLD 2、 HLD4の機械 的強度がさらに向上する。
また、 金属製シールドケースの 2個の側面が交わろうとする角部は、 従来、 切断加工により、 交わろうとする部分を取り除き、 該 2側面を上 面に対して折り曲げていた。 このように素材の一部を取り除いているた め、 該シールドケースの機械的強度が小さかった。 本例では、 F i g. 17 A〜l 7 Dに示すように、 上側金属製シールドケース SHDおよび 下側金属製シールドケース L Fの各 4個の角部近傍に、 絞り加工により 丸みを設け、 その近傍の両側面が交わる部分を取り除くことなく、 該両 側面が接続されている。 このように金属製ケース SHD、 LFの各角部 は、 絞り加工により側面を折り曲げ、 素材の一部を取除いていないので、 ケース SHD、 LFの機械的強度が大きい。 したがって、 モジュールの 機械的強度、 信頼性を向上できる。
《ゲート側およびドレイン側多層フレキシブル基板 F P C 1、 FP C 2》
F i g. 9 Aはゲート側多層フレキシブル回路基板 FPC 1の正面 図、 F i g. 9Bは F i g. 9 Aの I一 I切断線における要部断面図で あ
F i g. 9 Aにおいて、 J — J viii は、 それぞれ 8個配置された ゲート側駆動 I C毎の端子の中心位置を示す。 FHLは治具の固定ピン にさす液晶表示パネル PNLとの位置決め穴、 CT 3はィンターフェィ ス回路基板 PC Bのコネクタ CTR 3と接続するコネクタ、 EPは該回 路基板 F PC 1の上面に片面実装したチップ部品例えばコンデンサ、 C UTは切り欠き、 F i g. 9 Bにおいて、 TMは液晶表示パネル PNL との接続端子、 L Iは導体層、 B F 1、 B F 2、 B F 3はポリイミ ドフ イルムである。
F i g. 8 Aはドレイン側多層フレキシブル回路基板 FPC 2の正 面図、 F i g. 8 Bは左側面図、 F i g. 8 Cは右側側面図である。
F i g. 8 Aにおいて、 J 丄 ~】 丄 2は、 それぞれ 12個配置され たドレイン側駆動 I C毎の端子の中心位置を示す。
F i g. 8 Dは端子の中心位置 J iに対応する部分の回路基板 FP C 2の要部拡大正面図、 F i g. 8 Eは端子の中心位置 Jり〜 J 丄 , に 対応する部分の回路基板 F PC 2の要部拡大正面図、 F i g. 8Fは端 子の中心位置 J λ οに対応する部分の回路基板 F PC 2の要部拡大正面 図である。
F i g. 8Aにおいて BATは、 ドレイン側多層フレキシブル基板 FPC 2を折り畳む時に、 FPC 2の複数の配線ブロックを貼り付ける 為の、 両面テープである。
本実施例では F i g. 8 Aに示すようにドレイン側多層フレキシブ ル基板 FPC 2のコネクタ CT4と、 液晶基板との接続部 J 1の間の部 分には両面粘着テープ BATを設けていない。
コネクタ CT 4と接続部 J 1の間のドレイン側多層フレキシブル基 板 F PC 2は F i g. 6A、 6 Bに示すように、 複数の配線ブロックが 折り重なった状態で、 さらに折り曲げられる。 従って、 折り曲げる部分 の複数の配線ブロック同士を両面粘着テープ BATで固定すると、 ドレ ィン側多層フレキシブル基板 F P C 2を折り畳んだ後さらに折り曲げる ことが困難になり、 F i g. 6 Cに示すようにインタ一フヱイス回路基 板 P C Bのコネクタ C TR 4にドレイン側多層フレキシブル基板 F P C 2のコネクタ CT 4を接続することが困難になる。
F i g. 8 Aにおいて、 FHLは回路基板 FP C 2の両端に設けら れ、 治具の固定ピンにさす液晶表示パネル PNLとの位置決め穴、 EP は回路基板 F P C 2の下面に片面実装したチップ部品例えばコンデンサ、 FGPは回路基板 F PC 2の下側面に突出して 3個設けたフレームグラ ンドパッ ド、 CT 4はインタ一フェイス回路基板 PC Bのコネクタ CT R 4と接続するコネクタ、 BF 1、 BF 2はポリイミ ドフィルム、 AL MDはパネル PNLとのァライメントマ一ク、 TMは液晶表示パネルと の接続端子である。
F i g. 6 Aは液晶表示パネル PNLの短辺に取り付けたゲート側 I o
多層フレキシブル回路基板 F P C 1と、 パネル PNLの長辺に取り付け 折り曲げかつ回路基板 P CBにコネクタ CT4を挿入した状態のドレイ ン側多層フレキシブル回路基板 F P C 2と、 液晶表示パネル PNLの正 面図、 F i g. 6Bは右側面図、 F i g. 6 Cはパネル PNLとゲート 側回路基板 FPC 1とインターフニイス回路基板 PCBとドレイン側回 路基板 F PC 2との位置関係を示す F i g. 6 Aの I一 I切断線におけ る要部断面図である。
F i g. 6の左側の 8個の I C 2は垂直走査回路 (ゲート) 側の駆 動 I Cチップ、 下側の 12個の I C 1は映像信号駆動回路 (ドレイン) 側の駆動 I Cチップで、 異方性導電膜や紫外線硬化剤等を使用して透明 ガラス基板 SUB 1上にチップ ·オン ·ガラス (COG) 実装されてい る (F i g. 6 C参照) 。 従来法では、 駆動 I Cチップがテープ ォー トメィティ ド ボンディング法 (TAB) により実装されたテープキヤ リアパッケージ (TCP) を異方性導電膜を使用して液晶表示パネル P NLに接続していた。 COG実装では、 直接駆動 I Cを使用するため、 前記の TAB工程が不要となり工程短縮となり、 テープキヤリアも不要 となるため原価低減の効果もある。 さらに、 COG実装は、 高精細,高 密度液晶表示パネル PNLの実装技術として適している。 本例では、 パ ネル PNLの片側の長辺側にドレインドライバ' I C 1を一列に並べ、 ド レイン線を片側の長辺側に引き出した。
ドレイン線あるいはゲ一ト線を交互に引き出す方式では、 その引き 出し線と駆動 I Cの出力側バンプとの接続は容易になる力^ 周辺回路基 板をパネルの対向する 2長辺の外周部に配置する必要が生じ、 このため 外形寸法が片側引き出しの場合よりも大きくなるという問題があつた。 特に、 表示色数が増えると表示データのデータ線数が増加し、 情報処理 装置の最外形が増加する。 このため、 本例では、 多層フレキシブル基板 を使用し、 ドレイン線を片側のみに引き出すことで従来の外形寸法が大 きくなる問題を解決する。
F i g. 6 Aに示すように、 ゲート側フレキシブル回路基板 F PC 1は、 液晶表示パネル PNLの短辺側の透明ガラス基板 SUB 1の上面 端辺 (ドライバ I C 2の外側) のゲート線の端子に異方性導電膜を介し て接続され、 ドレイン側フレキシブル回路基板 F PC 2は、 パネル PN Lの長辺側の透明ガラス基板 SUB 1の上面端辺 (ドライバ I C 1の外 側) のドレイン線の端子に異方性導電膜を介して接続されている。
F i g. 7A〜7 Cは F i g. 6 A〜 6 Cに対応する比較例を示す 図である。
F i g. .7 A~7 Cの比較例では、 液晶表示パネル PNLの端辺に 接続されたドレイン側多層フレキシブル回路基板 F PC 2は、 F i g. 7 Bに示すように、 液晶表示パネル PNLの裏面に折り返され、 両面粘 着テープ (図示省略) を介して該裏面に接着され、 パネル PNLとバッ クライ ト (F i g. 3参照) の間に配置されていた。 数回折り返し重ね 合わされた (後で詳述) 回路基板 F PC 2の厚み (例えば lmm) は、 モジュ一ル厚の構成要素となるため、 モジュール厚を薄くする障害とな る。 また、 両面粘着テープで回路基板 F PC 2を PNL、 すなわち、 透 明ガラス基板 SUB 1の裏面に貼り付けるため、 その後不良が判明した 該回路基板 F PC 2を修理するのに両面粘着テープを剥がさなければな らないため、 修理が困難である。 さらに、 両面粘着テープを剥がすと、 粘着剤の一部が基板 SUB 1裏面に残って凹 ΰができ、 その後、 ドライ ノ 、 I C 1の不良が判明し、 交換を要する場合、 基板 SUB 1裏面に存在 する粘着剤の凹凸が、 基板 SUB 1表面にドライバ I C 1を再搭載する ときに支承をきたす。
本実施例では F i g. 3 A F i g. 6 Bに示すように、 液晶表示 パネル P N Lの端辺に接続されたドレイン側フレキシブル回路基板 F P C 2は、 液晶表示パネル PNLの表示面に対して略垂直に配置されてい る。 すなわち、 回路基板 F PC 2が液晶表示パネル PNLと導光板 GL Bとの間からなくなり、 数回折り返し重ね合わされた多層回路基板 F P C 2の厚みが、 モジュール厚の構成要素とならない構造となっている。 したがって、 モジュールの薄型化が可能である。 また、 パネル PNLと の接続部に対する回路基板 F P C 2の曲げ角度が、 F i g. 7 Bの 18 度から F i g. 6Bの 90度へと半減するため、 回路基板 FPC 2の パネル PNLとの圧着部へのストレスが低減し、 該圧着部の信頼性が向 上する。
また、 回路基板 F P C 2を両面粘着テープで液晶表示パネル PNL のガラス基板 SUB 1裏面に貼り付けないため、 回路基板 F PC 2の修
C 1の再搭載が容易である。
ンターフェイス回路基板 PC B》
F i g. 1 OAは、 コントローラ部および電源部の機能を有するィ ンターフヱイス回路基板 PC Bの裏面 (下面) 図、 F i g. 10 Bはィ ンターフェイス回路基板 PCBの正面 (上面) 図である。
本例では、 基板 P C Bはガラスエポキシ材からなる 8層の多層プリ ント基板を採用した。 多層フレキシブル基板も使用可能であるが、 この 部分は折り曲げ構造を採用しなかったため、 価格が相対的に安い多層プ リント基板とした。
電子部品は主に情報処理装置の表示面から見て裏面側である基板 P CBの下面に搭載される力^ 上面にもコンデンサ E Pや階調抵抗 Rが搭 載される。 表示制御装置用として、 1個の集積回路素子 T CON (タイ ミングコンバータ) を基板 PC B上に配置している。 集積回路素子 TC ◦ Nは、 プリント基板上に集積回路 I Cを直接ボールグリッ ドアレイ (Ball Grid Array) 実装される。 インターフヱイスコネクタ C T 1は、 基板 PC Βのほぼ中央に位置し、 さらに、 ロー ボルテージ ティファレ ンシャル シグナリング回路 LVDS、 ハイブリッ ド集積回路 H I、 ォ ペアンプ、 複数の抵抗、 コンデンサ、 高周波ノイズ除去用回路部品が搭 載されている。
また、 ハイプリ ッ ド集積回路 H Iは、 回路の一部をハイプリ ッ ド集 積化し、 小さな回路基板の上面および下面に主に電源供給用の複数個の 集積回路や電子部品が実装されて構成され、 回路基板 P C B上に 1個実 装されている。 図示は省略するが、 ハイブリツ ド集積回路 H Iのリード を長く形成し、 回路基板 PC Bとハイブリッ ド集積回路 H Iとの間の回 路基板 P C B上にも抵抗、 コンデンサ等を含む電子部品が複数個実装さ れている。
また、 ゲ一ト ドライバ基板 F P C 1とィンタ一フェイス回路基板 P CBとの電気的接続手段として、 本例では、 コネクタ CT3とコネクタ CTR3を使用している。
ィンターフェイス基板 P C Bの上面は、 情報処理装置から見て表面 側であり、 EMIノイズが最も輻射されるポテンシャルが高い方向であ る。 このため、 本例では、 多層の表面導体層をほぼ全面にグランドのべ 夕状あるいはメッシュ状パターンで被覆している。 図示はしないが、 ソ ルダレジストの下に銅導体のメッシュ状パターンが貫通穴部分を除いて 全面被覆形成されている。 このメッシュ状パターンは、 基板 PC Bの下 面のグランドパターン FGPと電気的に接続することで、 EMIノイズ 輻射を減少させることができる。 なお、 グランドパターン FGPは、 基 板 P C Bのグランドパターン F G Pとシールドケース S H Dのグランド とをつなぎ、 さらに、 コネクタ CT 1からくるグランドと半田付けする ことにより、 本体側のグランドに接続される。 前述したように、 フレキシブル回路基板 F P C 1、 2も、 基板の表 面導体層はメッシュ状パターンで被覆されており、 液晶表示パネル PN Lの 2辺の外周部は、 全て直流電位で固定され、 効果的に基板内側から の EM Iノイズ輻射を減少させることができる。
F i g. 4八は? i g. 1 Aの HI_m切断線における液晶表示モジ ユールの要部断面図、 F i g. 48は? i g. 1 Aの IV - IV切断線にお ける該モジユールの要部断面図である。
F i g. 4 Aに示すように、 インターフェイス回路基板 P C Bは、 液晶表示パネル P N Lと一部重ね合わせられ、 下部透明絶縁基板 S U B 1の下面の下側に配置されている。 また、 ゲートドライバフレキシブル 基板 FPC 1は、 その一端辺がパネル PNLの透明ガラス基板 SUB 1 と直接電気的機械的に接続され、 ドレイン側と異なり、 折り曲げること なく、 ほぼその全幅がィンターフェイス回路基板 P C Bの上に重ね合わ せられている。 このように、 インタ一フェイス回路基板 PCBを液晶表 示パネル PNLと一部重ね合わせ、 さらに、 ゲートドライバ回路基板 F P C 1をィンタ一フヱイス回路基板 P C B上に重ね合わせて配置するこ とにより、 額縁部の幅、 面積を縮小でき、 液晶表示パネル PNLおよび 該パネルを表示部として組み込んだパソコン、 ワープロ等の情報処理装 置の外形寸法を縮小できる。
F i g. 19Aは、 F i g. 10 Aに示したインタ一フェイス回路 基板 P C Bに実装される表示制御装置用の集積回路素子 T C 0 Nの下面 図、 F i g. 19 Bは側面図、 F i g. 19 Cは集積回路素子 T CON の下面の本例のピン配列の概略を示す図、 F i g. 19 Dは集積回路素 子 T C 0 Nの下面の比較例のピン配列の概略を示す図である。
F i g. 19 A, 19 Bにおいて、 TTは集積回路素子 T CONの 下面にマトリクス状に設けた端子、 F i g. 19 C, F i g. 19Dに おいて、 Pは電源端子、 Gはグランド端子、 Iは入力信号端子、 0は出 力信号端子、 Mは機能モード設定端子である。
なお、 集積回路素子 T CONは、 回路基板 PC B上に直接ボールグ リツドアレイ実装される。 集積回路素子 T CONの下面に設けられるマ トリクス状電極端子 TTのピン配列に関しては、 F i g. 19Dに示す 比較例のように、 十分考慮されておらず、 入力信号端子 I、 出力信号端 子〇、 モード設定端子 M、 電源端子 P、 グランド端子 Gはランダムに割 り振られていた。 このため、 回路基板 PC Bにおける配線の引き回しが 複雑となり、 不要な迂回配線が増加し、 有効な配線領域が減少して電源 やグランドの配線幅が減少し、 この結果、 回路基板の面積が増大したり、 E M Iノィズを十分抑圧することが出来なくなる問題点があつた。
本例では、 F i g. 19 Cに概略を示すように、 それぞれ複数本存 在する電源端子 P、 グランド端子 Gを集積回路素子 T CONの周辺部に 割り当てて配置する。 また、 それぞれ複数本存在する入力信号端子 I、 出力信号端子 0、 モード設定端子 Mを各グループ毎にまとめて配置する。 すなわち、 モード設定端子 Mを中央部に集め、 入力信号端子 Iおよび出 力信号端子 0を、 周辺部を除く中央部にそれぞれ片側ずつ反対側に集め ている。 このように集積回路素子 T C 0 Nのピン配列を最適化すること により、 回路基板 PC Bの配線が単純化され、 配線の迂回、 複雑な引き 回しを低減することができ、 回路基板 PC Bの効率的な配線レイアウト が容易に実現でき、 その結果、 回路基板 PC Bの面積を縮小できる。 つ まり、 同一基板幅ならより多くの配線を引くことができ、 配線数が同じ なら基板幅を縮小できる。
また、 集積回路素子 T CONの周辺部に電源端子 P、 グランド端子 Gを集めて配線することにより、 電源やグランドの配線幅やべタパター ンの面積を増やすことが可能となり、 このような電源線ゃグランド線ゃ ベタパターンでその周辺をシールドでき、 その結果、 EMIノイズ等を 低減できる。
《インターフユイス回路基板 P C Bの最外形状》
F i g. 18 Aは本例の回路基板 PCBが個々に分離される前の状 態を示す平面図、 F i g. 18 Bは本例の分割後の回路基板 PCBの要 部平面図、 F i g. 18 Cは比較例の回路基板 PCBの面付け状態を示 す平面図、 F i g. 18 Dは比較例の分割後の回路基板 PCBの要部平 面図である。
F i g. 1 8A、 1 8 Cにおいて、 FRは複数枚の回路基板 P C B を支持する枠、 PFRは回路基板 PCBの切り離し用ミシン目、 F i g. 18 F i g. 18 Dにおいて、 P F Pはばりである。
F i g. 18 Cに示すように、 枠 FRに面付けされた回路基板 PC Bでは、 枠 FRに切り離し用ミシン目 PFRを介して、 複数枚の回路基 板 PC Bが繋がっている。 回路基板 PC Bを 1個に分割するときは、 ミ シン目 PFR部に亀裂を作り、 枠 FRから分離する。 このとき、 F i g. 18 Dに示すように、 ミシン目 PFR部の一部が回路基板 PC Bの本体 側にばり P F Pとして一部残つてしまう。
F i g. 18 C F i g. 18 Dに示す比較例では、 ミシン目 PF Rを回路基板 P CBの最外形部に配置しているため、 回路基板 PC Bを 分割すると、 F i g. 18Dに示すように、 ばり PFPが基板 PCBの 最外形部から突出してしまう。 このため、 回路基板 PCBをモジュール に実装する際、 回路基板 P C Bをモールドケースに収納することができ ず、 めんどうで時間のかかるばりを削る作業が必要となる。 また、 モ一 ノレドケースの回路基板 P C B収納部に、 ばり P F Pの寸法を考慮しなけ ればならず、 回路基板 PC Bとモールドケース間の距離が大きくなつて、 モジュールの小型化に不利となる。 なお、 この距離を小さくしょうとす ると、 ばり取り作業が必要となる。
本例では、 F i g. 1 8 Aに示すように、 回路基板 PC Bの外形輪 郭に凹部 GNを有し、 該凹部 GNにミシン目 P FRが配置されている。 したがって、 回路基板 P CBを分割した後、 F i g. 18 Bに示すよう に、 ばり PFPは凹部 GNに位置するので、 ばり PFPが基板 PCBの 最外形部から突出しない。 なお、 凹部 GNの深さは、 比較例のばり PF P残り長さより長く取る。 ばり PFP残り長さは、 最大 lmmである。 この結果、 モールドケースの回路基板 P CB収納部に、 ばり PFP の寸法を考慮する必要がなくなり、 回路基板 P C Bとモールドケース間 の距離を小さくでき、 モジュールの小型化に有利である。 また、 ばり取 り作業が不要となる。
F i g. 5は下 (裏) 面側から見た枠状保持体 MLとそれに収納さ れるバックライ ト (導光板 GLB、 各種シート、 蛍光管 LP等) および ィンタ一フ イス回路基板 P C B等を示す全体分解斜視図である。
インタ一フヱイス回路基板 PCBは、 F i g. 5に示すように、 枠 状保持体 MLの片側短辺側端部に該回路基板 P C Bの外形輪郭と略一致 して設けた収納凹部に収納される。 該保持体 MLの端に一体に設けたピ ン P I Nに、 回路基板 PC Bの一端に設けた 1個の穴 FHL (F i g. 10) が挿入され、 位置が決められ保持される。 回路基板 PC Bのパネ ル PNL表示面と平行な回転運動は、 前記収納する凹部の側壁により妨 げられる。
また、 F i g. 5の保持具 BLO 1、 BL02力、 枠状保持体 ML にはめ込まれ回路基板 P C Bが保持される。 B L 01は回路基板 P C B の LVDS (集積回路) を設けた部分を保持し、 BL02は TCON (集積回路) を設けた部分を保持し、 BL01、 BL02が保持する部 分に、 T CONや LVDSの集積回路を収納する空間を作る。 従って、 L b
BLO 1及び BL02は LVDS、 T C 0 Nの集積回路を保護する機能 も果たす。
《ドレイン側多層フレキシブル回路基板 F P C 2とィンターフェィ ス回路基板 P CB 2との電気的接続》
F i . 6 A. F i g. 6 C, F i g. 4 Aから明らかなように、 ドレイン側多層フレキシブル回路基板 FP C 2とィンターフヱイス回路 基板 P CBとは、 液晶表示パネル PNLの隣接する F i g. 6Aの下側 長辺と左側短辺の 2端辺に沿って互いに直角に配置されている。 F i g. 3 Aに示したように、 液晶表示パネル PNLの端辺に接続された回路基 板 FP C 2は、 パネル PNLの表示面に対して略垂直に配置されている。 回路基板 P C Bに隣接する回路基板 F P C 2の端部には、 回路基板 P C Bとの接続用のコネクタ CT4を設けた凸部 (F i g. 8Aの CT4の 部分) が設けられている。 パネル PNLの表示面に対して略垂直に配置 された回路基板 F P C 2の端部が、 F i g. 6 Aに示すように、 回路基 板 FP C 1の方へ略直角に折り曲げられ、 F i g. 6 Cに示すように、 コネクタ C T 4が回路基板 P C Bの下面のコネクタ CTR4に接続され o
比較例の回路基板 F P C 2と回路基板 P C Bとの電気的接続は、 F i g. 7 Cに示されるカ、 回路基板 F P C 2の本体部分は、 F i g. 7 Bに示すように、 パネル PNLのガラス基板 SUB 1の裏面に両面テ一 プ (図示省略) で接着されているので、 回路基板 P C Bへ向かうために 該本体部分から突出し、 コネクタ C T 4が設けられる凸部の長さが長く なる。 大きな基板からこのような凸部を有する L字形のフレキシブル基 板を取る際、 凸部が長いと、 材料取り効率が低下し、 製造コストの増加 を招く。
前記のように、 本発明では、 回路基板 F P C 2の本体部分をパネル PNLの表示面に対して略垂直に配置し、 回路基板 P CB近傍で回路基 板 F P C 2の本体部分を厚さ方向に折り曲げて回路基板 P C Bと接続し ているため、 凸部の長さを短くでき、 回路基板 F PC 2の形状を長方形 状に近くできる。 したがって、 フレキシブル基板の前記材料取り効率が 向上し、 製造コストを低減できる。 なお、 本発明における回路基板 FP C 2の凸部の長さは、 1. l cm、 F i g. 7の比較例の凸部の長さは 2. 0 c mであ 。
《ドレイン側多層フレキシブル回路基板 F P C 2の折りたたみ実 装》
F i g. 13は、 液晶表示パネル PNLにフレキシブル回路基板 F PC 1、 FPC 2を取り付けた平面図である F i g. 6 Aと同様の図で ある力^ ドレイン側フレキシブル回路基板 F P C 2を液晶表示パネル P N Lに取り付け後、 折り返していな 、状態を示す図である。
F i g. 14は F i g. 13において、 ドレイン側回路基板 F PC 2をパネル PNLに取り付け折り返し、 表示面に対して垂直に配置して なく、 回路基板 P CBにコネクタ CT4を挿入接続しない状態を示す図 1める。
F i g. 15A、 1 5B、 15 Cは F i g. 13、 F i g. 14の 回路基板 F P C 2の折り曲げ方を示す側面図である。
F i g. 13~1 5に示す実施例では、 折りたたむ部分 (多層配線 部分) bが 3個ある。 aは 1層部分で、 部分 b相互間の部分 aは折り返 し部である。
F i g. 15 Aの右側部分 bを中央部分 bの上に折り重ね、 両面粘 着テープで貼り付け、 この 2個重ねたものを左側部分 bの下に重ね、 両 面粘着テープで貼り付ける (F i g. 15Bに示す) 。 3個重ねた回路 基板 F PC 2は、 F i g. 15 Cに示すように垂直に折り曲げ、 パネル L o
PNLの表示面と略垂直に配置される。 回路基板 F P C 2上に搭載され たチップ部品 E Pは、 F i g. 1 5 Cに示すように、 パネル PNL側に 向き、 F i g. 3 Aに示すように、 それに隣接する枠状保持体 MLの側 面に設けた開口内に配置され、 上側金属製シールドケース SHDとのシ ョートが防止される。 該コンデンサ E Pは、 ランプ反射シート L Sに隣 接する。 また、 F i g. 1 5 Cに示すように、 フレームグランドパッ ド FGPは、 略垂直に配置された回路基板 F P C 2の下方に突出して、 上 側金属製シールドケース SHDのフレームグランド FG 1と接触する。
(F i g. 2 D参照。 後述) 。
F i g. 1 6 A〜 l 6 Cはコネクタ C T 4を設けた回路基板 F P C 2の凸部を含めて図示した F i g. 1 5 A〜l 5 Cと同様の図である。
F i g. 1 6 Aに示すように、 回路基板 F P C 2を折りたたんで、 F i g. 1 6 Bに示す状態にし、 F i g. 1 6 Cに示すように、 回路基 板 FP C 2をパネル PNLの表示面と略垂直に配置すると、 コネクタ C T4を有する部分 bが F i g. 1 6 Cに示す位置となり、 コネクタ CT 4がィンターフェイス回路基板 P CBの下面のコネクタ CTR 4と接続 可能になる。
F i g. 20は液晶表示パネル PNLの端辺に接続されたゲート側 多層フレキシブル回路基板 F P C 1と、 それに重ねて配置されたィンタ —フ Xイス回路基板 P C Bを示す要部斜視図である。
F i g. 20、 F i g. 4 A, F i g. 6 Cに示すように、 液晶表 示パネル PNLの短辺に接続されたゲート側フレキシブル回路基板 F P C 1と、 枠状保持体 MLに保持収納されるインターフニイス回路基板 P CBとは、 パネル PNLの該短辺に沿って、 パネル PNLの下部透明ガ ラス基板 SUB 1を挟んで上下重ねて配置されている。
ィンターフェイス回路基板 P CBとゲ一ト側フレキシブル回路基板 FPC 1とを重ねて実装しょうとすると、 回路基板 PC Bの回路基板 F PC 1と相対する面上には、 コンデンサ EP等の電子部品を実装するこ とができない。 このため、 回路基板 PC Bは、 部分片側実装となり、 該 回路基板 P C Bの外形寸法を縮小することが困難となる。 これがモジュ ール外形寸法の小型化を制限する要因となっている。
本例では、 F i g. 10 A、 1 0 Bに示すように、 インターフェイ ス回路基板 PC Bの両面に各種部品を実装する。 F i g. 10Bに示す ように、 回路基板 PC Bの回路基板 FPC 1と相対する面上にも、 チッ プ部品 EPを実装している。 一方、 F i g. 20、 F i g. 9 Aに示す ように、 ゲート側多層フレキシブル回路基板 FPC 1に複数個 (ここで は 7個) の切り欠き CUTを設ける。 多層フレキシブル回路基板 F PC 1の部品、 すなわち、 コンデンサ EPの実装、 スルーホール THの配置 箇所を、 該回路基板 FPC 1の幅広の部分にまとめ、 切り欠き CUTを 設けた幅狭の部分を配線のみの領域とする。 回路基板 F P C 1の幅方向 に信号線を引き出すためにある程度の幅が必要なので、 該幅広の部分が 必要である。 F i g. 20に示すように、 切り欠き部 CUTに、 インタ ーフヱイス回路基板 P C Bの該フレキシブル回路基板 F P C 1に相対す る面上に実装した電子部品のコンデンサ EPを配置した。 すなわち、 フ レキシブル回路基板 F PC 1の切り欠き部 CUTでは、 インタ一フェイ ス回路基板 P C Bの回路基板 F P C 1と面する面側にも部品実装が可能 となり、 回路基板 PC Bの部品両面実装が実現できる。 この結果、 回路 基板 P C Bの高密度部品実装に有利であり、 回路基板 P C Bの外形寸法 の縮小が可能となり、 モジュールの外形の小型化に効果がある。 なお、 回路基板 F PC 1とインターフヱイス回路基板 PC Bとは、 パネル PN Lの下部透明ガラス基板 SUB 1を挟んで重ねて配置されるので、 切り 欠き C UT部に配置すべき回路基板 P C B面上の部品は、 その厚さがガ ラス基板 SUB 1の厚さより大きいものを配置する。
《フレームグランド》
F i g. 8A〜8 Cに示すように、 ドレイン側多層フレキシブル回 路基板 F P C 2の下側側面に 3個のフレームグランドパッ ド F G Pが所 定の間隔を置いて設けられている。 一方、 それに対応して下側金属製シ —ルドケース LFには、 F i g. 2 Cに示すように、 それと一体に突出 する 3個のフレームグランド FG 1が設けられている。 F i g. 2Cに 示すように、 下側ケース L Fのフレームグランド F G 1は、 モジュール 組立の最後のシールドケース SHDと L Fを嵌合する工程において、 フ レームグランド FG 1とフレームグランドパッ ド FGPとが電気的に接 続される。 このように、 回路基板 F PC 2のグランドラインと、 インピ 一ダンスの十分低い金属製シールドケース L F及び S HDとをフレーム グランド FG 1を介して電気的に接続したので、 安定したグランドライ ンを供給することができ、 高周波領域におけるグランドラインを強化す ることができる。 したがって、 外部から侵入したり、 内部で発生するノ ィズの影響を除くことができるので、 安定した表示品質が得られ、 また、
EM Iを引き起こす有害な輻射電波の発生を抑制することができる。 な お、 シールドケース SHDと電気的に接続する回路基板は、 ドレイン線 駆動フレキシブル回路基板 F P C 2であり、 ゲ一ト線走査駆動フレキシ ブル回路基板 FPC 1にはフレームグランドを取っていないが、 これは ドレイン側フレキシブル回路基板 F PC 2に入力されるクロックは速く、 ノィズが発生し易く、 ゲート側フレキシブル基板 F P C 1に入力される クロックは遅く、 ノイズが発生しにくいためであり、 また、 フレームグ ランドパッ ド FGPをフレキシブル基板 F PC 2の伸張方向に間隔をあ けて 3個配置したことにより、 電源、 グランドの電位がより安定となる ので、 シールドケース SHDと 1点で接続するよりも、 インピーダンス マッチングを良好に取ることができる。 また、 回路基板の信号入力側か ら遠い部分でフレームグランドを取ることは、 グランドをより安定でき、 かつ、 フレキシブル基板のアンテナとしての効果を防ぐことができる。 なお、 フレームグランド FG 1とフレームグランドパッ ド FGPとの半 田付けを行わなくても良いので、 組立工数を低減できる。 さらに、 フレ —ムグランド専用の金属板が不要である。
F i g. 4 Aにおいて、 FGP 4は、 ドレイン側フレキシブル回路 基板 FPC 2のコネクタ CT4を有する凸部下面 (凸部下面両端に 2 個) に設けたフレームグランドパッ ドであり、 下側金属製シールドケ一 ス LFの凹み SUP (F i g. 2 A参照) を介して電気的に接続される。 また、 F i g. 4 Aに示すように、 F i g. 14の回路基板 FPC2の 左側端部にもフレームグランドパッ ド FGP2が設けられ、 上側金属製 シールドケース S HDのフレームグランド F G 2と電気的に接続される。 また F i g. 10 Aに示すように、 高周波の信号を扱う、 ィンター フェイス回路基板 P C Bもグランド線に接続されたフレームグランドパ ッ ド FGPが設けられている。 F i g. 2Aに示すように、 上側シール ドケース SHDに設けた爪 NLがフレームグランドパッ ド FGPに接続 しているので、 ィンターフェイス回路基板 P CBも EM Iを引き起こす 電磁波が発生することがない。
《ゴムクッション GC》
ゴムクッション GCは、 F i g. 3 A、 3 Bに示される。 ゴムクッ シヨン GCは、 液晶表示パネル PNLの下部透明ガラス基板 SUB 1の 額縁周辺の端部下面とバックライ トを収納する枠状保持体 M Lとの間に 配置されている。 ゴムクッション GCの弾性を利用して、 金属製シール ドケース SHD、 LFを装置内部方向に押し込むことにより、 F i g. 1 Bに示す側面では、 保持体 MLの凸部 FKがシールドケース SHDの 0 L
開口に嵌合し、 F i g. 1 Cに示す側面では、 F i g. 4 Bに示すよう に、 シールドケース SHDの爪 NLがシールドケース LFに嵌合し、 F i g. IDに示す側面では、 F i g. 3 Bに示すように、 保持体 MLの 凸部 FKがシールドケース SHDの開口 FHに嵌合するとともに、 F i g. 1 Dに示すようにシールドケース LFの切断加工により一体に設け た爪 NL 2がシールドケース SHDの開口 FH 2に折り曲げられ、 F i g. 1 Eに示す側面では、 F i g. 3Aに示すように、 シールドケース S H Dの絞り加工により一体に設けた凸付 F Kがシールドケース L Fの 開口 FHに嵌合する。 すなわち、 各凸部とそれに対応する開口との嵌合 がストッパとして機能し、 上側シールドケース SHDと枠状保持体 ML と下側シールドケース L Fとが固定され、 モジュール全体が一体となつ てしつかりと保持され、 他の固定用部材が不要である。 したがって、 組 立が容易で製造コストを低減できる。 また、 機械的強度が大きく、 耐振 動衝撃性が高く、 装置の信頼 を向上できる。 なお、 ゴムクッシヨン G Cには、 片側に粘着材 (図示省略) がついており、 基板 SUB 1の所定 個所に貼られる。
《バックライ ト》
F i g. 5に、 下 (裏) 面側から見た枠状保持体 MLとそれに収納 されるバックライ ト (導光板 GLB、 各種シート、 蛍光管 LP等) およ びィンターフェイス回路基板 P C B等が全体分解斜視図で示される。
F i g. 5、 F i g. 3A、 3 Bおよび F i g. 4A、 4 Bにおい て、 RFSは反射シート、 G LBは導光板、 SPSは拡散シート、 PR Sはプリズムシート、 PORは偏光反射シート、 MLは一体成型により 形成された枠状保持体 (モールドケース) 、 LP (F i g. 5、 F i g. 3 A参照) はバックライ 卜の光源である冷陰極蛍光管、 F i g. 5の G Bは蛍光管 LPを支持するゴムブッシュである。 なお、 F i g. 5では、 ランプケーブル LP C K 2 (F i . 1 A, F i g. 2 A, F i . 4Bの LPC 2参照) 、 インバータ用の接続コネクタ LCTは図示省略 してある (F i g. 1 A, F i g. 2 A参照) 。
液晶表示パネル PNLを背面から照らすサイ ドライ ト方式バックラ イ トは、 1本の冷陰極蛍光管 LP、 蛍光管 LPのランプケーブル LP C 1、 2、 蛍光管 LPおよびランプケーブル LP C 1、 2を保持する 2個 のゴムブッシュ GB、 導光板 GLB、 導光板 GLBの上面全面に接して 配置された拡散シート S P S、 導光板 GL Bの下面全面に配置された反 身 ン一ト RF S、 拡散シ一ト S P Sの上面全面に接して配置されたプリ ズムシート PR S、 偏光反射シート P OR等から構成される。
また、 本例では、 コンパク トに実装を行うためと、 EMIノイズへ の悪影響がないようにランプケーブル L P Cの配線を工夫した。 すなわ ち、 2本のランプケーブル LP C 1、 2の内、 グランド電圧側のケープ ル LPC 1は、 平たい帯状となっており、 蛍光管 LPの一端から引き出 され、 導光板 GLBの短辺とそれに隣接する長辺の 2辺に沿って、 該短 辺側では枠状保持体 M Lの側壁と導光板 G L Bの側壁との間に配置され、 該長辺側では、 枠状保持体 MLの側壁に設けた溝 GLO 1内に配置され る。 また、 高圧側ケーブル LP C 2は、 断面が略円状で、 蛍光管 LPの 他端から引き出され、 インバー夕 (インバー夕電源回路) I Vに接続さ れる部分に近いように短く配線し、 導光板 GLBのもう一方の短辺側の 枠状保持体 MLの側壁に設けた溝 GL 02内に配置される。 F i g. 5 において、 GLO 1は枠状保持体 MLに設けたランプケーブル LPC 1 の収納案内溝 (F i g. 3B参照) 、 GLO 2は枠状保持体 MLに設け たランプケーブル LP C 2の収納案内溝 (F i g. 4B参照) である。
《導光板 GLB》
導光板 GLBは、 軽量化のため、 F i g. 2 Bに示すように、 蛍光 管 L Pの長軸と垂直に切った断面形状が略台形状となっている。
導光板 GLBはアクリル樹脂などの、 透明な材料で形成され、 蛍光 管 LPの発する光を、 液晶パネル PNLの表示領域 AR全体にに照射さ れるように、 導く働きをする。
F i g. 5に示すように、 導光板 GLBは、 枠状保持体 MLに、 周 囲を取り囲まれて保持される。
導光板 GLBには角部の近傍に、 位置決めのための突起 P J 1が設 けられ、 枠状保持体 MLには突起 P J 1を受ける凹みを設けているので、 組み立て時に、 導光板 G L Bの向きを間違えて実装することが無い。 導光板 GL Bの 2辺の中央付近には、 位置決め用突起 P J 1とは別 の、 液晶基板の割れを防止するための突起 4が設けられている。 また、 枠状保持体 MLの、 突起 4に対応する部分には、 突起 4を受ける凹み 4' が設けられている。
液晶表示装置の大型化に伴い、 導光板 GLBが大型化すると、 外部 から受ける衝撃により、 導光板 GLBは変形しやすくなる。 導光板 GL Bが変形すると、 液晶パネルの下側のガラス基板 SUB 1に導光板 GL Bが当たり、 下側のガラス基板 SUB 1のみならず上側ガラス基板 SU B 2が割れる問題を生じる。
導光板 GLBに振動を加えた時に、 最も大きな振幅を示すのは、 導 光板中央部である。 従って導光板 GLBの各辺の中央部に突起 4を設け、 枠状保持体 M Lにより突起 4を保持することにより、 導光板 G L Bの振 動振幅を低減することが出来、 液晶表示パネル P N Lのガラス基板 S U B l、 SUB 2が割れるのを防止することが出来る。
導光板 GLBに設けられた突起 4はまた、 F i g. 4A、 F i g. 4 Bに示すように、 上側ケース SHDの表示窓 WDを越えて、 上側ケー ス SHDで覆われる領域まで延在している。 従って上側ケース SHDと 導光板 G L Bは、 導光板 G L Bの対応する辺の中央近辺で一部重なる部 分が出来るので、 上側ケース S HDと導光板 G L Bの間に設けられる液 晶パネル P N Lにせん断応力が加わることが無く、 液晶表示装置に強 、 衝撃を加えた時に液晶表示パネル PNLの基板 SUB 1、 SUB 2が割 れることがない。
なお、 本実施例においては F i g. 4 A, F i g. 4 Bに示すよう に、 導光板 GLBの突起 4を設けた辺は、 突起 4の部分を除いて、 上側 ケース SHDの表示窓 WDよりも後退しており、 上側ケース SHDで覆 われていない。 従って本実施例では、 上側ケース SHDの表示窓 WDを 大きくすることが出来、 表示画面の大きな液晶表示装置を実現すること が出来る。
また、 本実施例では F i g. 3A、 F i g. 3 Bに示すように、 導 光板 G L Bに液晶基板割れ防止用突起 4を設けることが出来ない辺 (例 えば蛍光管 LPの光が入射する辺) は、 上側ケース SHDで覆っている ので、 液晶表示パネル PNLにせん断応力が加わることがない。
《拡散シート SPS》
拡散シート S P Sは、 導光板 GLBの上に載置され、 導光板 GLB の上面から発せられる光を拡散し、 液晶表示パネル PNLに均一に光を 照射する。
拡散シート SP Sは F i g. 3 Bに示すように、 導光板 GLBの蛍 光管 LPが設けられる辺と反対側の辺で、 両面テープ BATにより導光 板 GLBに固定される。
本実施例では、 蛍光管 LPから最も遠い部分で、 導光板 GLBと拡 散シート S P Sを接着しているので、 接着部に強い光が照射されること が無く、 接着部で光が散乱しバックライ トの輝度むらを生じることがな い。 なお、 拡散シート S P Sと導光板 G L Bの接着法は両面テープに限 るものでなく、 接着剤を用いても、 拡散シート SPSと導光板 GLBを 溶融して接着する方法でも良く、 本発明によればいずれの場合も接着部 での光の散乱を防止することが出来る。
《プリズムシート PR S》
プリズムシ一ト PR Sは、 拡散シート S P Sの上に載置され、 下面 は平滑面で、 上面がプリズム面となっている。 プリズム面は、 例えば、 互いに平行直線状に配列された断面形状が V字状の複数本の溝からなる。 言い換えれば、 多数本の 3角柱状のプリズムを平行に配列してなる。 プ リズムシート PRSは、 拡散シート SPSから広い角度範囲にわたって 拡散される光をプリズムシート P R Sの法線方向に集めることにより、 ノくックライトの輝度を向上させることができる。 したがって、 バックラ イトを低消費電力化することができ、 その結果、 モジュールを小型化、 軽量化することができ、 製造コストを低減することができる。 なお、 プ リズムシート PRSを 2枚使用する場合は、 2枚のプリズムシート PR Sの各溝の伸張方向が直交するように、 2枚重ねて配置される。
《偏光反射シート P〇R》
偏光反射シート PORは、 プリズムシート PRSの上に載置され、 特定の偏光軸の光のみ透過させ、 それ以外の偏光軸の光を導光板 G L B 側に反射させて、 偏光板 POL 1を透過する光のみを取り出し、 液晶表 示装置の光利用効率を向上させる機能を果たす。
《反射シート RFS》
反射シート RF Sは、 導光板 GLBの下に配置され、 導光板 GLB の下面から発せられる光を液晶表示パネル PNLの方へ反射させる。 反射シート RSFも、 F i g. 3 Bに示すように、 導光板 GLBの 蛍光管 L Pが設けられる辺と反対側の辺で、 両面テープ B A Tにより導 光板 G LBに固定される。
従って、 蛍光管 L Pから最も遠い部分で、 導光板 GL Bと反射シ一 ト R S Fを接着しているので、 接着部に強い光が照射されること力無く、 接着部で光が散乱しパ'ックライ トの輝度むらを生じることがない。
なお、 反射シート R S Fと導光板 GL Bの接着法は両面テープに限 るものでなく、 接着剤を用いても、 反射シート RSFと導光板 GLBを 溶融して接着する方法でも良く、 本発明によれば 、ずれの場合も接着部 での光の散乱を防止することが出来る。
《枠状保持体 ML》
モールド成型により形成した枠状保持体 MLは、 合成樹脂で 1個の 型で一体成型することにより作られ、 F i g. 5、 F i g. 3 A、 3 B、 F i g. 4A、 4 Bに示すように、 蛍光管 LP、 ランプケーブル LP C 1、 2、 導光板 GLB等の保持部材、 すなわち、 パ、ックライ ト収納ケー スであり、 多層フレキシブル回路基板 FPC 1、 FP C 2が接続された 液晶表示パネル PNLの収納ケースであり、 さらに、 インタ一フェース 回路基板 P C Bの収納ケースである。 すなわち、 シールドケース SHD、 LFを除くほどんどの部品を収納、 保持する。 組立工程においては、 保 持体 MLの上面に回路基板 F P C 1、 2付き液晶表示パネル PNLを収 納し、 保持体 MLを逆さにして、 その下面からインターフヱイス回路基 板 P C Bを収納し、 次いで、 枠状保持体 MLの下面から該保持体 ML内 にバックライ ト構成部品を順次収納していき、 パ、ックライトが収納し終 わったら、 保持体 MLの上面に上側シールドケース SHDを被せ、 保持 体の下面に下側シールドケース LFを被せる。 各部品収納組立時、 枠状 保持体 M Lは位置出し治具の機能を果たすようになつている。
すなわち、 F i g. 5に示すように、 導光板 GLB、 拡散板 SP S、 プリズムシート PR S、 偏光反射シート RF Sには、 それぞれ、 枠状保 持体 MLの凹み P J Rに対応する位置に、 位置決め用の突起 P J 1、 P J 2、 P J 3、 P J 4、 P J 5が設けられているので、 各光学シー卜の 向きを誤って実装することがない。
枠状保持体 MLは、 金属製シールドケース SHD、 LFと、 各固定 部材の嵌合と弾性体 (ゴムクッション GC) の作用により、 しっかりと 合体するので、 モジュールの耐振動衝撃性、 耐熱衝撃性が向上でき、 信 頼性を向上できる。
《冷陰極蛍光管 L Pの配置位置》
細長い蛍光管 LPは、 F i g. 3 A. F i g. 5に示すように、 モ ジュール内において、 液晶表示パネル PNLの長辺の一方に実装された ドレイン側駆動 I Cの下の枠状保持体 ML内のスペースに配置されてい る。 これにより、 モジュールの外形寸法を小さくすることができる。
《ランプ反射シート LS》
F i g. 3 Aに示されるランプ反射シート LSは、 蛍光管 LPを反 射シート LS上に配置した後、 丸めて 180度折り曲げ、 粘着材を有す る両面テープ (図示省略) により、 その一端を枠状保持体 MLに接着し、 かつ、 他端を導光板 G L Bの端辺下面の反射シ一ト R F Sに接着させて 保持する。
従来は、 ランプ反射シ一トを導光板に両面テープで接着していたた め、 導光板に両面テープを付けた部分で、 蛍光管から来た光が散乱し、 ランプ反射シ一トの近辺でバックライ トの輝度むらが発生していた。 本実施例によれば、 F i g. 3Aに示すように、 ランプ反射シート L Sを枠状保持体 MLに固定しているので、 導光板 GLBにランプ反射 シート L Sを接着する必要がなく、 蛍光管 L Pから来た光が導光板 G L Bとランプ反射シート LSの接触部分で散乱することが無い。 従って本 実施例によればランプ反射シート L Sが設けられた近辺でバックライ ト の輝度むらが発生することがない。
なお、 ランプ反射シ一ト L Sと枠状保持体 MLの接着法は両面テー プに限るものでなく、 接着剤を用いても、 ランプ反射シート L Sと枠状 保持体 M Lを溶融して接着する方法でも良く、 本発明によれば L、ずれの 場合もランプ反射シート L Sが設けられた近辺でバックライトの輝度む らが発生することがない。
《信号の流れ》
F i g. 1 1は液晶表示モジュールの各ドライバの概略構成と、 信 号の流れを示すブロック図である。
F i g. 1 2は F i g. 1 1に対応する比較例を示す図である。
F i g. 1 1において、 本体コンピュータからの制御信号 (クロッ ク、 表示タイミ ング信号、 同期信号) は、 ィンターフニイスコネクタ (CT 1 ) を経て、 インターフェイス回路基板 (PCB) に供給され、 そのコントローラ部でクロック、 シフトクロックおよび表示データの制 御信号が生成され、 コネクタ CTR4、 CT4を経て、 D (ドレイン) ドライバに供給され、 液晶表示パネル (PNL) のドレイン線に供給さ れる。 なお、 その途中にある LVDS (ロー ボルテージ ディファレン シャノレ シク、、ナリ ング' (Low Voltage deferential signalling) ) (まコ ンピュータ側から送られて来る変調のかかった表示信号を復調し、 TC ONが処理することが出来る表示信号を出力するものであり、 また、 T CON (タイミング コンバータ) は表示制御用の集積回路素子であり、 インターフヱイス回路基板 (PCB) 上に設けられている。 · コンピュータ側から送られて来る表示信号に変調をかけ、 変調のか かった信号を LVDSで復調し、 原表示信号を取り出し、 原表示信号を TCONに入力するシステム構成により、 インタ一フェースコネクタ C T 1部で発生する EM Iノイズを低減し、 インターフェースコネクタの 接続ピン数も低減することが出来、 接続の信頼性が向上する。
また、 本コンピュータからの電源電圧は、 DCZDCコンバータ (F i g. 1 OAのハイプリッ ド集積回路 H Iに相当する) で、 ①〜③ の 3系統の電圧に変換され、 ©17 V系と③ _ 5 V系がレベルシフト回 路およびコネクタ (CTR3、 CT 3) を経て、 G (ゲート) ドライノ に供給され、 パネル (PNL) のゲート線に供給される。 DCZDCコ ンバータにより変換された① 8 V系は、 階調電圧回路に供給され、 OP AMP (オペアンプ) に供給され、 コネクタ (CTR3、 CT 3) を経 て、 パネル (PNL) の対向共通電極に供給される。 また、 ① 8V系は、 D (ドレイン) ドライバ一にも供給される。
F i g. 1 1に示す本例では、 F i g. 12に示す比較例の DCZ DCコンバータの信号系統が① 10 V系、 ©17 V系、 ③ー 5 V系、 ④ 5 V系の 4系統から、 ① 8 V系、 ©17 V系、 ③ー 5 V系の 3系統に減 少されている。 F i g. 12の④ 5V系は、 LVDSに供給するためだ けに作られる。 また、 比較例の OP AMPが 3個から 1個に減少され ている。
F i g. 1 1に示す実施例では電源電圧が外部から供給される電源 電圧と同じ、 3. 3Vの LVDSを用いることにより、 インタ一フエ一 スコネクタ C T 1を通して外部から供給される電源を直接 L V D Sに供 給するので F i g. 12に示す比較例と比べて 5 V系の DC/DCコン バー夕が不要になり、 消費電力が低減される。
F i g. 12に示す比較例で考えると、 LVDSを動かす為に必要 なトータルの電力 Pは、 ¥03の電源電圧を¥、 LVDSの電源ライ ンに流れる電流を I、 D C/D Cコンバ一夕の変換効率をひとすると、
P= (V · I ) となる。
それに対し F i g. 1 1に示す実施例では、 LVDSが外部の電源 から直接電力の供給を受けるので、 LVDSを動かすために必要なトー タルの電力 Ρは、
P=V · Iとなる。
一般に DC/DCコンバータの変換効率 αは 1よりも少ない (F i g. 12に示す比較例では 0. 73) ので、 F i g. 1 1に示す実施例 の方が、 F i g. 12に示す比較例よりも、 消費電力が低減される。 特に L VDSの消費電力は、 F i g. 12で見ると 372. 0 mW で、 他の部分例えば OP AMP, 階調抵抗、 レベルシフト + Gドライ バープロックなどと比べ、 液晶表示装置の消費電力に占める割合が大き い。 一般に LVDSはコンピュータからインタ一フヱースコネクタ CT を介して送られて来る高周波 (32. 5MHZ以上) の信号を扱う為、 高速で動作する必要があり、 消費電力が高くなる。 従って、 LVDSの 電源電圧を外部電源の電圧と同じにして、 外部電源から D CZD Cコン バータを介さずに、 LVDSに電力を供給することにより、 外部電源か ら見た液晶表示装置の消費電力を低減することが出来る。
また F i g. 1 1に示す実施例では、 表示制御装置の機能を持つ T CONも、 T CONの電源電圧を外部電源の電圧と同じにして、 外部電 源から直接電力の供給を受けている。 T C ONの消費電力も液晶表示装 置の消費電力に占める割合が大きいので、 T CONの電源も外部電源か ら直接供給を受けることにより、 さらに消費電力を低減することが出来 る。 T CONも LVDSから送られて来る高周波 (32. 5MH Z以 上) の映像信号を扱う為、 高速で動作する必要があり、 消費電力が高く る。
また F i g. 1 2に示す比較例は階調電圧回路の出力である階調電 圧 (V 1〜V9) を演算増幅回路 OP AMPで増幅して、 Dドライノく (ドレインドライバ) に供給している。 それに対し F i g. 1 1に示す 実施例では、 階調電圧回路の出力は、 OP AMPを介さずに、 直接 D ドライバに供給しているので、 さらに消費電力を低減することが出来た。 具体的には 38. 9 mwの電力を削減することができた。 従来は、 階調 電圧回路の出力は、 複数の Dドライバに並列に供給する必要がある為、 OP AMPにより電力を増幅する必要があった。 し力、し、 Dドライバ の改良により、 OP AMPにより電力を増幅しなくても階調電圧回路 の出力を複数の、 具体的には F i g. 6に示すように 12個までの、 D ドライバに供給しても問題を生じないことが分かったので、 階調電圧回 路の出力を直接 Dドライバに供給する構成が得られた。
《液晶表示装置全体の等価回路》
F i g. 24は液晶表示装置全体の等価回路を示すプロック図であ る。 T FT液晶表示素子 (T FT— LCD) の片側のみに映像信号線駆 動回路 103が配置され、 TFT— L CDの側面部には、 走査信号線駆 動回路部 104、 コントローラ部 101、 電源部 102が配置される。 映像信号線駆動回路 103は、 前述したように、 ドレイン側多層フレキ シブル基板 F PC 2を折り曲げて実装し、 液晶表示装置の額縁領域を縮 小している。
コントロ一ラ部 10 1、 電源部 102は、 インターフヱ一ス基板 P CBに実装している。
走査信号線駆動回路部 104は、 ゲ一ト側フレキシブル基板 F P C 1に設けられ、 ィン夕一フェース基板 P C Bに重ねて液晶表示装置に実 装している。
F i g. 24に示すように、 薄膜トランジスタ T FTは、 隣接する 2本のドレイン信号線 DLと、 隣接する 2本のゲート信号線 GLの交差 領域内に配置される。 薄膜トランジスタのドレイン電極、 ゲート電極は、 それぞれ、 ドレイン信号線 DL、 ゲート信号線 GLに接続される。 なお、 ソース、 ドレインは本来その間のバイアス極¾1によって決まるもので、 この液晶表示装置の回路ではその極性は動作中反転するので、 ソース、 ドレイン電極は、 動作中入れ替わると理解されたい。 し力、し、 以下の説 明では、 ドレイン信号線 DLに接続する方をドレイン電極、 画素電極に 接続する方をソース電極と固定して表現する。
薄膜トランジスタ T FTのソース電極は画素電極に接続され、 画素 電極と共通電極との間に液晶層が設けられるので、 画素電極から液晶層 に電圧が加えられる。
薄膜トランジスタ T FTは、 ゲ一ト電圧に正のバイアス電圧を印加 すると導通し、 ゲート電極に負のバイアス電圧を印加すると不導通にな るので、 各ゲート信号線 GLに加える電圧を制御することにより、 ドレ ィン信号線 D Lを通して映像信号線を加える画素電極を選択することが 出来る。
F i g. 25は F i g. 24に示す TFT— L CDの各電極の駆動 波形を示す図である。 VGはゲート信号線 GLに印加される電圧の波形、 V COMは共通電極に印加される電圧の波形、 VDHは奇数番目のドレ ィン信号線 DLに印加される電圧の波形、 VDLは偶数番目のドレイン 信号線 DLに印加される電圧の波形である。 VGは 1フレームの周期で ハイとロウのレベル変化を起こし、 V Gがハイからロウに変化する夕ィ ミングで、 VDH、 VDLの電圧が各画素電極に書き込まれる。 VDH、 VDLは 1水平走査 (1H) の周期で V COMを中心に信号の極性を反 転している。 VDH、 VDLは 1フレームの周期でも信号の極性を反転 している。 更に、 VDHと VDLも、 互いに信号の極性を反転した関係 になっている。 F i g. 25に示す駆動方法 (ドット反転駆動) を行う ことにより、 ゲート信号線 GL又はドレイン信号線 DLの電圧がそれら と無関係の画素電極に漏洩し、 液晶表示装置の表示画質が低下する問題 を無くしている。 また、 映像信号線駆動回路 1 0 3に使われるドレイン ドライバ'集積回路 I C 1は、 奇数番目の出力と偶数番目の出力を極性を 変えて、 同時に出力する機能を備えたものを用いるので、 表示画質の良 ぃドット反転駆動を行いかつ映像信号線駆動回路 1 0 3を液晶表示装置 の片側に寄せて、 額縁領域の縮小を図っている。 なお F i g . 2 5に示 す V C O Mは、 薄膜トランジスタ T F Tのゲート電極とソース電極の間 にカツプリングの無い、 理想的な場合を示しており、 実際はカツプリン グをキャンセルする為のバイアスを V C O Mに加えている。
以上本発明を実施の形態に基づいて具体的に説明したが、 本発明は、 上記実施の形態に限定されるものではなく、 その要旨を逸脱しない範囲 において種々変更可能であることは勿論である。 例えば、 前記実施の形 態では、 アクティブ ·マトリクス方式の液晶表示装置に適用した例を示 したが、 単純マトリクス方式の液晶表示装置にも適用可能である。 また、 前記実施の形態では、 フリップチップ方式の液晶表示装置に適用した例 を示したが、 その他の方式の液晶表示装置にも適用可能である。
[産業上の利用可能性]
本発明は、 表示に寄与しない領域である額縁領域を極限まで縮小し た液晶表示装置に適用され、 特にノートブック形パーソナルコンピュー 夕のような携帯型情報処理装置の表示部に搭載して、 情報処理装置の表 示画面を大きくすることが出来かつ耐久性も向上できるという、 実用可 能性のあるものです。

Claims

績求の範囲
1 . 液晶表示素子と、 該液晶表示素子の表示部を露出する開口を有 し上記液晶素子の周囲を覆う上側ケースと、 上記上側ケースと合体し上 記液晶素子を収納する下側ケ一スとを有する液晶表示装置であつて、 該液晶表示装置を固定するための切り欠きを上記液晶表示装置の周 辺に設け、
上記切り欠きは上記上側ケースに形成した第 1の切り欠きと下側ケ ースに形成した第 2の切り欠きを重ね合せて形成され、
上記切り欠きに略平行で、 上記切り欠きに最も近い側の側面の上記 上側ケースを L字形に折り曲げたことを特徴とする液晶表示装置。
2 . 液晶表示素子と、 該液晶表示素子の表示部を露出する開口を有 し上記液晶素子の周囲を覆う上側ケースと、 上記上側ケースと合体し上 記液晶素子を収納する下側ケースとを有する液晶表示装置であって、 該液晶表示装置を固定するための切り欠きを上記液晶表示装置の周 辺に設け、
上記切り欠きは上記上側ケースに形成した第 1の切り欠きと下側ケ —スに形成した第 2の切り欠きを重ね合せて形成され、
上記切り欠きに略平行で、 上記切り欠きに最も近い側の側面の上記 下側ケースを L字形に折り曲げたことを特徴とする液晶表示装置。
3 . 液晶表示素子と、 該液晶表示素子の表示部を露出する開口を有 し上記液晶素子の周囲を覆う上側ケースと、 上記上側ケースと合体し上 記液晶素子を収納する下側ケースとを有する液晶表示装置であつて、 該液晶表示装置を固定するための切り欠きを上記液晶表示装置の周 辺に設け、
上記切り欠きは上記上側ケースに形成した第 1の切り欠きと下側ケ ースに形成した第 2の切り欠きを重ね合せて形成され、 上記切り欠きに略平行で、 上記切り欠きに最も近い側の側面の上記 上側ケース及び上記下側ケースを L字形に折り曲げたことを特徴とする 液晶表示装置。
4 . 液晶表示素子と、 該液晶表示素子に重なり上記液晶表示素子に 光を照射する導光板と、 上記液晶表示素子の表示部を露出する開口を有 し上記液晶素子の周囲を覆う上側ケースと、 上記上側ケースと合体し上 記液晶素子及び上記導光板を収納する下側ケースとを有する液晶表示装 ΐ ¾つて、
上記導光板は対向する 2辺を有し、 上記導光板の対向する 2辺の 夫々の辺の中央付近に、 上記上側ケースと平面的に重なる突起を設けた ことを特徴とする液晶表示装置。
5 . 液晶表示素子と、 該液晶表示素子に重なり上記液晶表示素子に 光を照射する導光板と、 該導光板の上記液晶表示素子に光を照射する部 分に開口を有し上記液晶表示素子と上記導光板の間に設けられる枠体と、 上記液晶表示素子の表示部を露出する開口を有し上記液晶素子の周囲を 覆う上側ケースと、 上記上側ケースと合体し上記液晶素子、 上記枠体及 び上記導光板を収納する下側ケースとを有する液晶表示装置であって、 上記導光板の一つの側面に光源を配置し、 上記光源を、 上記導光体 と対向する部分を除いて、 光を反射するフィルムからなる第 1の反射シ 一トで覆い、 該反射シートを上記枠体に固定したことを特徴とする液晶 表示装置。
6 . 上記液晶表示素子と上記導光板の間に透過する光を拡散させる 拡散シートを設け、 該拡散シートを上記導光体の上記一つの側面に対向 する側面の近傍で固定したことを特徴とする請求項 5記載の液晶表示装
7 . 上記導光板と上記下側ケースの間に光を反射するフィルムから なる第 2の反射シートを設け、 該第 2の反射シートを上記導光体の上記 一つの側面に対向する側面の近傍で固定したことを特徴とする請求項 5 記載の液晶表示装置。
PCT/JP1997/003282 1997-09-17 1997-09-17 Ecran a cristaux liquides WO1999014630A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP51195399A JP3639602B2 (ja) 1997-09-17 1997-09-17 液晶表示装置
PCT/JP1997/003282 WO1999014630A1 (fr) 1997-09-17 1997-09-17 Ecran a cristaux liquides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/003282 WO1999014630A1 (fr) 1997-09-17 1997-09-17 Ecran a cristaux liquides

Publications (1)

Publication Number Publication Date
WO1999014630A1 true WO1999014630A1 (fr) 1999-03-25

Family

ID=14181135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003282 WO1999014630A1 (fr) 1997-09-17 1997-09-17 Ecran a cristaux liquides

Country Status (2)

Country Link
JP (1) JP3639602B2 (ja)
WO (1) WO1999014630A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040424A (ja) * 2000-06-30 2002-02-06 Samsung Electronics Co Ltd 積層型バックライトアセンブリを有する液晶表示装置及び組立方法
JP2004272237A (ja) * 2003-02-17 2004-09-30 Sharp Corp 平面表示装置用シャーシ、平面表示装置、および、平面表示装置用シャーシユニット
JP2005234436A (ja) * 2004-02-23 2005-09-02 Sony Corp 取付具及び液晶表示装置
JP2005242174A (ja) * 2004-02-27 2005-09-08 Advanced Display Inc 表示装置
JP2006039437A (ja) * 2004-07-29 2006-02-09 Kyocera Corp 携帯電子機器
JP2006313331A (ja) * 2005-04-07 2006-11-16 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
JP2007132970A (ja) * 2005-11-08 2007-05-31 Seiko Instruments Inc 表示装置
KR101174149B1 (ko) 2004-06-18 2012-08-14 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
JP2017102478A (ja) * 2017-02-22 2017-06-08 ソニー株式会社 液晶表示ユニット及び投射型表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136978A (ja) * 1990-09-28 1992-05-11 Shin Etsu Polymer Co Ltd 面状光源装置
JPH0547924U (ja) * 1991-11-29 1993-06-25 株式会社エンプラス 面光源装置
JPH0882716A (ja) * 1994-09-13 1996-03-26 Hitachi Ltd 液晶表示装置
JPH09138405A (ja) * 1995-11-16 1997-05-27 Hitachi Ltd 液晶表示装置
JPH09152577A (ja) * 1995-11-30 1997-06-10 Hitachi Ltd 液晶表示装置
JPH09160670A (ja) * 1995-12-05 1997-06-20 Hitachi Ltd 情報処理装置あるいは部品の取付け装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136978A (ja) * 1990-09-28 1992-05-11 Shin Etsu Polymer Co Ltd 面状光源装置
JPH0547924U (ja) * 1991-11-29 1993-06-25 株式会社エンプラス 面光源装置
JPH0882716A (ja) * 1994-09-13 1996-03-26 Hitachi Ltd 液晶表示装置
JPH09138405A (ja) * 1995-11-16 1997-05-27 Hitachi Ltd 液晶表示装置
JPH09152577A (ja) * 1995-11-30 1997-06-10 Hitachi Ltd 液晶表示装置
JPH09160670A (ja) * 1995-12-05 1997-06-20 Hitachi Ltd 情報処理装置あるいは部品の取付け装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040424A (ja) * 2000-06-30 2002-02-06 Samsung Electronics Co Ltd 積層型バックライトアセンブリを有する液晶表示装置及び組立方法
JP2004272237A (ja) * 2003-02-17 2004-09-30 Sharp Corp 平面表示装置用シャーシ、平面表示装置、および、平面表示装置用シャーシユニット
JP2005234436A (ja) * 2004-02-23 2005-09-02 Sony Corp 取付具及び液晶表示装置
JP4492151B2 (ja) * 2004-02-23 2010-06-30 ソニー株式会社 取付具及び液晶表示装置
JP2005242174A (ja) * 2004-02-27 2005-09-08 Advanced Display Inc 表示装置
JP4647218B2 (ja) * 2004-02-27 2011-03-09 三菱電機株式会社 表示装置
KR101174149B1 (ko) 2004-06-18 2012-08-14 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
JP2006039437A (ja) * 2004-07-29 2006-02-09 Kyocera Corp 携帯電子機器
JP2006313331A (ja) * 2005-04-07 2006-11-16 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
JP2007132970A (ja) * 2005-11-08 2007-05-31 Seiko Instruments Inc 表示装置
JP2017102478A (ja) * 2017-02-22 2017-06-08 ソニー株式会社 液晶表示ユニット及び投射型表示装置

Also Published As

Publication number Publication date
JP3639602B2 (ja) 2005-04-20

Similar Documents

Publication Publication Date Title
KR100304745B1 (ko) 액정표시장치
KR101107982B1 (ko) 평판표시장치
KR100752324B1 (ko) 액정 디스플레이 장치
JPH11305254A (ja) 液晶表示装置
JP2000275635A (ja) 液晶表示装置
US8264635B2 (en) Liquid crystal display having a top case with first and second frame members that are physically separated
US6891582B2 (en) Mold frame structure of liquid crystal display
JP3576294B2 (ja) 液晶表示装置
JP3639602B2 (ja) 液晶表示装置
US20100128193A1 (en) Liquid crystal display
JPH1138431A (ja) 液晶表示装置
CN107664863B (zh) 液晶显示装置
JP3541918B2 (ja) 液晶表示装置および集積回路素子
JPH1138433A (ja) 液晶表示装置
JP2000047209A (ja) 液晶表示装置
KR20080001511A (ko) 액정표시소자
KR20060125074A (ko) Esd 개선을 위한 접지 경로가 형성된 액정표시패널어셈블리 및 상기 액정표시패널을 포함하는 액정표시장치
JPH11305227A (ja) 液晶表示装置
JPH09138405A (ja) 液晶表示装置
JP3958341B2 (ja) 液晶表示モジュールおよび液晶表示装置
KR20070080996A (ko) 액정 표시 장치
KR20070007633A (ko) 테이프 캐리어 패키지 및 이를 포함하는 액정표시장치
JP2000019560A (ja) 液晶表示装置
JP3786992B2 (ja) 液晶表示装置
JP2004213035A (ja) 液晶表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase