WO1999009195A1 - Verfahren zur herstellung von enantiomerenreinen phenylacetylcarbinolen aus acetaldehyd und benzaldehyd in gegenwart von pyruvatdecarboxylase aus zymomonas - Google Patents

Verfahren zur herstellung von enantiomerenreinen phenylacetylcarbinolen aus acetaldehyd und benzaldehyd in gegenwart von pyruvatdecarboxylase aus zymomonas Download PDF

Info

Publication number
WO1999009195A1
WO1999009195A1 PCT/EP1998/004672 EP9804672W WO9909195A1 WO 1999009195 A1 WO1999009195 A1 WO 1999009195A1 EP 9804672 W EP9804672 W EP 9804672W WO 9909195 A1 WO9909195 A1 WO 9909195A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetaldehyde
benzaldehyde
pyruvate decarboxylase
zymomonas
free
Prior art date
Application number
PCT/EP1998/004672
Other languages
English (en)
French (fr)
Inventor
Michael Breuer
Bernhard Hauer
Kathrin Mesch
Hans Iding
Günter GOETZ
Martina Pohl
Maria-Regina Kula
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AU87327/98A priority Critical patent/AU8732798A/en
Priority to JP2000509857A priority patent/JP2001514899A/ja
Priority to EP98938706A priority patent/EP1009848A1/de
Publication of WO1999009195A1 publication Critical patent/WO1999009195A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones

Definitions

  • the present invention relates to a process for the preparation of enantiomerically pure phenylacetylcarbinols from acetaldehyde and benzaldehydes in the presence of pyruvate decarboxylase (PDC) from Zymomonas.
  • PDC pyruvate decarboxylase
  • Enantiomerically pure phenylacetylcarbinols play an important role as an intermediate in ephedrine synthesis.
  • WO 96/37620 describes the production of acyloin from acetaldehyde and benzaldehyde by catalysis with a genetically modified pyruvate decarboxylase from Zymomonas mobilis.
  • those enzymes are described as being suitable in which the tryptophan residue in position 392 is replaced by a sterically smaller residue such as alanine, glycine, phenylalanine, eucine, isoleucine, arginine, histidine, serine or threonine.
  • acetaldehyde inactivates the enzyme and is therefore advantageously removed from the reaction mixture, for example by enzymatic conversion with alcohol dehydrogenase to ethanol.
  • R is H, F, Cl or Br
  • acetaldehyde is metered in continuously or batchwise in such a way that the concentration of acetaldehyde in the reaction medium is between 20 and 50 mmol / l.
  • Substituted and unsubstituted compounds can be used as benzaldehydes (II) in the process according to the invention on the phenyl ring.
  • the substituted benzaldehydes are preferably those which contain one or more halogen atoms, in particular fluorine, chlorine or bromine. The substitution can take place in the 2-, 3- or 4-position.
  • the yield with 4-substituted benzaldehyde educts is generally higher than with the 2- or 3-substituted educts.
  • Benzaldehyde is usually used in an approximately stoichiometric amount based on acetaldehyde. However, good results are also obtained if an reactant is added in an excess of up to 100 mol%. Benzaldehyde is usually used in an initial concentration of 40 to 100 mmol / 1. A replenishment of benzaldehyde in the course of the biotransformation up to the initial concentrations is recommended, since otherwise a relative excess of acetaldehyde is formed in the process according to the invention, which can lead to side reactions.
  • the process is generally carried out in such a way that the starting materials are placed in the reaction medium and the reaction is started by adding the PDC.
  • Acetaldehyde is usually presented in a concentration of 20 to 10 50 mmol / 1.
  • the consumption of acetaldehyde is advantageously determined over the entire course of the biotransformation and the converted acetaldehyde is supplemented by metering in the reaction mixture.
  • the subsequent metering can be carried out continuously or batchwise.
  • concentration of acetaldehyde should preferably not exceed or fall below the limits of 20 to 50 mmol / 1, preferably 20 to 35 mmol / 1. If these limits are clearly exceeded or not reached, there are often no -
  • reaction rate slows down as a result of a decrease in the acetaldehyde concentration
  • an increase in the reaction rate can be achieved again by adding 30 acetaldehyde, which is a clear sign that the enzyme has not been inhibited by acetaldehyde.
  • a particularly suitable embodiment of the process according to the invention is a procedure in which both starting materials are metered in continuously or discontinuously.
  • Pyruvate decarboxylases from microorganisms of the genus Zymomonas, in particular from the species Zymomonas mobilis, are suitable as the enzyme for the process according to the invention.
  • PDC enzymes in which a mutation of amino acid residue No. 392 (Trp) has been carried out are particularly preferred.
  • the position count relates to the sequence of the PDC as specified in 5 WO 96/37620.
  • There is also genetic engineering Generation of such mutations and isolation of the mutant enzymes are described.
  • Mutated PDC enzymes in which the Trp residue at position 392 is replaced by isoleucine, alanine or methionine are particularly suitable. These PDC enzymes are characterized by an increased stability compared to the wild type and very good carbolytic activity.
  • the PDC can be used in both soluble and immobilized form.
  • the PDC in a purified form is suitable as a catalyst, as can be obtained with conventional protein chemistry agents.
  • genetically modified PDC enzymes which can be isolated particularly effectively, for example a PDC which carries a number of additional His residues at the C terminus and which can be easily purified by metal ion affinity chromatography with the aid of these His residues can be represented (Hochuli, Dobli, Schader, J. Chromat. Vol. 411, 177-184, (1987)).
  • the PDC can also be used uncleaned or partially purified as a cell-free extract in the process according to the invention.
  • reaction medium Water or aqueous buffer solutions are preferred as the reaction medium.
  • the reaction is usually carried out at a pH between 6 and 8.
  • organic solvents which are compatible with water, for example lower alcohols, preferably ethanol or isopropanol, the solubility of the starting materials in the reaction medium can be increased and the reaction rate can thereby be positively influenced.
  • Good results are obtained when 1 to 5, preferably 1 to 3, mol of ethanol are added per liter of aqueous solvent.
  • the reaction is usually carried out at a temperature between 10 and 40, preferably between 20 and 30 ° C.
  • the cofactor thiamine pyrophosphate is also added in a concentration of 0.1 to 5 mM, preferably 0.5 to 2 mM.
  • Mg ions are also added, preferably in the form of magnesium sulfate in a concentration of 1 to 100 mM, preferably 5 to 50 mM.
  • the reaction can be carried out in various reactors, in particular in enzyme membrane reactors, stirred tank reactors and flow tube reactors.
  • the process according to the invention provides phenylacetylcarbinols of the general formula I in the R configuration in a high enantiomer purity of 98% ee and more.
  • the ⁇ -hydroxyketones accessible in this way are highly susceptible to racemization.
  • the racemization-free work-up is achieved by chromatography on silica gel 60.
  • R-PAC R-phenylacetylcarbinol
  • R-phenylacetylcarbinol was synthesized from acetaldehyde and benzaldehyde in the presence of the PDC from Zymomonas mobilis, in which Trp 392 was replaced by methionine.
  • the protein was denatured by adding TFA (10%) and removed from the reaction mixture by subsequent centrifugation.
  • R-phenylacetylcarbinol was quantified by HPLC. Under these conditions, 0.62 ⁇ mol R-PAC / min mg protein was produced.
  • R-PAC R-phenylacethylcarbinol
  • Acetaldehyde and benzaldehyde were determined every 30 minutes. The initial concentrations of the starting materials were then restored by subsequent metering.
  • R-phenylacetylcarbinol was quantified by HPLC. The bio-transformation was carried out over a period of 10 hours.
  • R-PAC was formed in a concentration of several grams per liter of reaction mixture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Verfahren zur Herstellung von enantiomerenreinen Phenylacetylcarbinolen der allgemeinen Formel (I), wobei R für H, F, Cl oder Br steht, aus Acetaldehyd und Benzaldehyden der allgemeinen Formel (II) in Gegenwart von Pyruvatdecarboxylase aus Zymomonas, dadurch gekennzeichnet, daß im Verlauf der Biotransformation Acetaldehyd in einer solchen Weise kontinuierlich oder diskontinuierlich nachdosiert wird, daß die Konzentration von Acetaldehyd im Reaktionsmedium zwischen 20 und 50 mMol/l beträgt.

Description

Verfahren zur Herstellung von enantiomerenreinen Phenylacetyl- carbinolen aus Acetaldehyd und Benzaldehyd in Gegenwart von Pyr vatdecarboxylase aus Zymomonas
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von enantiomerenreinen Phenylacetylcarbinolen aus Acetaldehyd und Benzaldehyden in Gegenwart von Pyruvatdecarboxylase (PDC) aus Zymomonas .
Enantiomerenreine Phenylacetylcarbinole spielen als Zwischenprodukt bei der Ephedrinsynthese eine wichtige Rolle.
In WO 96/37620 wird die Herstellung von Acyloinen aus Acetaldehyd und Benzaldehyd durch Katalyse mit einer gentechnisch veränderten Pyruvatdecarboxylase aus Zymomonas mobilis beschrieben. Es werden insbesondere solche Enzyme als geeignet beschrieben, bei denen der Tryptophanrest in Position 392 durch einen sterisch kleineren Rest wie Alanin, Glycin, Phenylalanin, eucin, Isoleucin, Arginin, Histidin, Serin oder Threonin ersetzt ist. Es wird jedoch beschrieben, daß Acetaldehyd das Enzym inaktiviert und deshalb vorteilhafterweise aus dem Reaktionsgemisch entfernt wird, beispielsweise durch enzymatische Umsetzung mit Alkoholdehydroge- nase zu Ethanol.
Von Bornemann et al . (J.Chem. Soc. Perkin Trans. 1, 425-430, 1996) werden die Herstellung von R-aromatischen Acyloinen aus Benzaldehyd bzw. Fluor- und Chlor- substituierten Benzaldehyden und Acetaldehyd unter Katalyse mit PDC aus Zymomonas mobilis beschrieben. Die Autoren finden, daß die Reaktionsprodukte zwar mit hoher optischer Reinheit (98 % ee) gebildet werden, jedoch ist die Reaktionsgeschwindigkeit bei Einsatz von Acetaldehyd mehrfach kleiner als bei Einsatz von Pyruvat.
In der Dissertation von H. Bruhn (Verbesserung von Acyloinkon- densationsfähigkeit der Pyruvatdecarboxylase aus Zymomonas mobilis, Heinrich Heine Universität Düsseldorf, 1995) wird die Umset- zung von Acetaldehyd mit Benzaldehyd unter Katalyse durch PDC aus Zymomonas mobilis beschrieben. Die Autorin gelangt zu der Schlußfolgerung, daß Acetaldehyd die enzymatische Synthese des Phenyl- acetylcarbinols inhibiert. Die beschriebenen Verfahren erfüllen bezüglich ihrer Raum- Zeit - Ausbeute noch nicht die Anforderungen, die an ein technisch und ökonomisch sinnvolles Verfahren zur Herstellung von enantiomerenreinen Phenylacetylcarbinolen gestellt werden.
Gefunden wurde ein Verfahren zur Herstellung von enantiomerenreinen Phenylacetylcarbinolen der allgemeinen Formel (I)
Figure imgf000004_0001
wobei R für H, F, Cl oder Br steht,
aus Acetaldehyd und Benzaldehyden der allgemeinen Formel (II)
Figure imgf000004_0002
in Gegenwart von Pyruvatdecarboxylase aus Zymomonas, dadurch ge- kennzeichnet, daß im Verlauf der Biotransformation Acetaldehyd in einer solchen Weise kontinuierlich oder diskontinuierlich nachdosiert wird, daß die Konzentration von Acetaldehyd im Reaktions- medium zwischen 20 und 50 mMol/1 beträgt.
Als Benzaldehyde (II) können in dem erfindungsgemäßen Verfahren am Phenylring substituierte und unsubstituierte Verbindungen eingesetzt werden. Bei den substituierten Benzaldehyden werden bevorzugt solche verwendet, die ein oder mehrere Halogenatome, insbesondere Fluor, Chlor oder Brom, enthalten. Die Substitution kann in 2-, 3- oder 4-Stellung erfolgen. Die Ausbeute bei 4-sub- stituierten Benzaldehydedukten ist im allgemeinen höher als bei den 2- oder 3 -substituierten Edukten.
Bevorzugt wird in dem erfindungsgemäßen Verfahren nicht-substi- tuierter Benzaldehyd (R=H) eingesetzt.
Benzaldehyd wird üblicherweise in etwa stöchiometrischer Menge bezogen auf Acetaldehyd eingesetzt. Man erhält jedoch auch gute Ergebnisse, wenn ein Reaktionspartner in einem Überschuß von bis zu 100 Mol% zugegeben wird. Benzaldehyd wird in der Regel in einer Anfangskonzentration von 40 bis 100 mMol/1 eingesetzt. Eine Nachdosierung von Benzaldehyd im Verlauf der Biotransformation bis zu den Anfangskonzentrationen ist empfehlenswert, da ansonsten bei dem erfindungsgemäßen Verfahren ein relativer Acetal- dehydüberschuß entsteht, der zu Nebenreaktionen führen kann.
5 Das Verfahren wird in der Regel so durchgeführt, daß die Edukte im Reaktionsmedium vorgelegt werden und die Reaktion durch Zugabe der PDC gestartet wird.
Acetaldehyd wird üblicherweise in einer Konzentration von 20 bis 10 50 mMol/1 vorgelegt. Der Verbrauch von Acetaldehyd wird vorteilhafterweise über den gesamten Verlauf der Biotransformation bestimmt und das umgesetzte Acetaldehyd durch Nachdosieren zum Reaktionsansatz ergänzt.
15 Die Nachdosierung kann kontinuierlich oder diskontinuierlich durchgeführt werden. Die Konzentration von Acetaldehyd soll dabei möglichst die Grenzen von 20 bis 50 mMol/1, bevorzugt 20 bis 35 mMol/1 nicht über- oder unterschreiten. Bei einem deutlichen Ober- oder Unterschreiten dieser Grenzen, entstehen häufig nicht -
20 gewünschte Nebenprodukte oder die Umsetzung wird zu langsam.
Durch diese Fahrweise lassen sich unerwartet hohe Phenylacetyl- carbinolkonzentrationen von mehreren Gramm pro Liter Reaktionsmedium erreichen. Eine Inhibierung der PDC wie sie in der eingangs 25 zitierten Literatur beschrieben wird, wurde bei dieser Fahrweise nicht beobachtet.
Wenn sich die Reaktionsgeschwindigkeit infolge Abnahme der Acetaldehydkonzentration verlangsamt, kann durch Nachdosieren von 30 Acetaldehyd wieder eine Steigerung der Reaktionsgeschwindigkeit erreicht werden, was ein klares Zeichen dafür ist, daß das Enzym nicht durch Acetaldehyd inhibiert worden ist.
Eine besonders geeignete Ausführungsform des erfindungsgemäßen 5 Verfahrens ist eine Fahrweise, bei der beide Edukte kontinuierlich oder diskontinuierlich nachdosiert werden.
Als Enzym für das erfindungsgemäße Verfahren eignen sich Pyruvat- decarboxylasen aus Mikroorganismen der Gattung Zymomonas, ins- 0 besondere aus der Art Zymomonas mobilis.
Besonders bevorzugt sind solche PDC-Enzyme, bei denen eine Mutation des Aminosäurerests Nr. 392 (Trp) durchgeführt wurde. Die Positionszählung bezieht sich auf die Sequenz der PDC, wie sie in 5 WO 96/37620 angegeben worden ist. Dort ist auch die gentechnische Erzeugung solcher Mutationen und die Isolierung der mutierten Enzyme beschrieben.
Besonders gut geeignet sind solche mutierten PDC-Enzyme, bei de- nen der Trp-Rest an Position 392 durch Isoleucin, Alanin oder Methionin ersetzt ist. Diese PDC-Enzyme zeichnen sich durch eine gegenüber dem Wildtyp erhöhte Stabilität und sehr gute Carboliga- seaktivität aus.
Die PDC kann sowohl in löslicher als auch in immobilisierter Form verwendet werden. Als Katalysator eignet sich die PDC in gereinigter Form, wie sie mit üblichen Mitteln der Proteinchemie erhältlich ist. Man kann aber auch gentechnisch veränderte PDC-En- zyme, die sich besonders effektiv isolieren lassen, verwenden, beispielsweise eine PDC, die am C-Terminus noch mehrere zusätzliche His -Reste trägt und die sich mit Hilfe dieser His -Reste leicht durch Metallionenaffinitätschromatographie rein darstellen läßt (Hochuli, Dobli, Schader, J. Chromat. Bd. 411, 177-184, (1987) ) .
Die PDC kann aber auch un- oder teilgereinigt als zellfreier Extrakt in dem erfindungsgemäßen Verfahren eingesetzt werden.
Als Reaktionsmedium sind Wasser bzw. wäßrige Pufferlösungen bevorzugt. Man führt die Reaktion üblicherweise bei einem pH-Wert zwischen 6 bis 8 aus. Man kann jedoch auch durch Zusatz von mit Wasser verträglichen organischen Lösungsmitteln, beispielsweise niederen Alkoholen, bevorzugt Ethanol oder Isopropanol, die Löslichkeit der Edukte im Reaktionsmedium erhöhen und dadurch die Reaktionsgeschwindigkeit positiv beeinflussen. Gute Ergebnisse erhält man bei Zugabe von 1 bis 5, bevorzugt 1 bis 3 mol Ethanol pro Liter wäßriges Lösungsmittel.
Die Reaktion wird üblicherweise bei einer Temperatur zwischen 10 und 40, bevorzugt zwischen 20 und 30°C durchgeführt.
Neben den bereits beschriebenen Edukten und dem Enzym PDC fügt man noch den Cofaktor Thiaminpyrophosphat in einer Konzentration von 0,1 bis 5 mM, bevorzugt 0,5 bis 2 mM zu.
Ferner gibt man noch Mg -Ionen, bevorzugt in Form von Magnesium- sulfat in einer Konzentration von 1 bis 100 mM, bevorzugt 5 bis 50 mM zu. Die Reaktion ist in verschiedenen Reaktoren ausführbar, insbesondere in Enzymmembranreaktoren, Rührkesselreaktoren und Strö- mungsrohrrekatoren.
Das erfindungsgemäße Verfahren liefert Phenylacetylcarbinole der allgemeinen Formel I in der R-Konfiguration in hoher Enantio- merenreinheit von 98 % ee und mehr.
Die auf diesem Wege zugänglichen α-Hydroxyketone sind in hohem Maße racemisierungsanfällig. Die racemisierungsfreie Aufarbeitung gelingt durch Chromatographie an Kieselgel 60.
Die Erfindung ist in den folgenden Beispielen näher veranschaulicht.
Beispiel 1 (Vergleichsbeispiel)
Zellfreie Synthese von R-Phenylacetylcarbinol (R-PAC) aus Acetaldehyd und Benzaldehyd
Aus Acetaldehyd und Benzaldehyd wurde in Gegenwart der PDC aus Zymomonas mobilis, bei der Trp 392 durch Methionin ersetzt wurde, R-Phenylacetylcarbinol synthetisiert.
Bedingungen:
Benzaldehyd 40 mM
Acetaldehyd 25 mM
Ethanol 1,5 M Thiaminpyrophosphat 1,0 mM
MgS04 20 mM
Morpholinethansulfonsäure 50 mM
PDC 15,4 μg
(gelöst in Wasser, pH 7,0)
Nach einstündiger Inkubation bei 25°C wurde das Protein durch Zugabe von TFA (10 %ig) denaturiert und durch anschließende Zentri- fugation aus der Reaktionsmischung entfernt.
R-Phenylacetylcarbinol wurde mittels HPLC quantifiziert. Unter diesen Bedingungen entstand 0,62 μmol R-PAC/min mg Protein.
HPLC-Bedingungen
Säule: Spherisorb C8, Fa. Latek, temperiert auf 40°C
Laufmittel: 120 VT Acetonitril, 380 VT Wasser, 0,5 VT Eisessig Flußrate: 1 ml/min Detektion: UV-Absorption bei 283 nm Referenz: authentisches R-PAC.
Beispiel 2
Zellfreie Synthese von R-Phenylacethylcarbinol (R-PAC) aus Acetaldehyd und Benzaldehyd mit kontinuierlicher Zugabe der Edukte.
Benzaldehyd 40 mM Acetaldehyd 30 mM
Ethanol 1, 5 M
Thiaminpyrophosphat 1,0 mM
MgS04 20 mM
Morpholinethansulfonsäure 50 mM PDC 1,5 mg
(gelöst in Wasser, pH 7,0)
Alle 30 Minuten wurde Acetaldehyd und Benzaldehyd bestimmt. Anschließend wurden die Anfangskonzentrationen der Edukte durch Nachdosieren wiederhergestellt.
Die Quantifizierung von Benzaldehyd erfolgte unter den gleichen HPLC-Bedingungen wie in Beispiel 1 dargestellt. Die Analytik von Acetaldehyd wurde nach dem Verfahren von Beutler (H.O. Beutler, Methods of enzymatic analyses, H.U. Bergmeyer, 606-623) durchgeführt.
R-Phenylacetylcarbinol wurde mittels HPLC quantifiziert. Die Bio- transformation wurde über einen Zeitraum von 10 Stunden durchge- führt.
Unter diesen Bedingungen entstand R-PAC in einer Konzentration von mehreren Gramm pro Liter Reaktionsansatz.
Beispiel 3
Enzymatische Synthese von (R) -1-Hydroxy-l- (3 ' -fluoro- phenyl) propan- 2 -on (meta-Fluor- Phenylacetylcarbinol)
Analog zur Beispiel 2 wurde ein m-Fluorbenzaldehyd eingesetzt. Man erhielt das entsprechende R-l-Hydroxy-1- (3' -fluoro- phenyl) propan- 2 -on in einer Enantiomerenreinheit von > 98 % ee.
Charaktersisierung von (R) -1-Hydroxy-l- (3' -fluorophe- nyl) propan- 2 -on: Drehwert: aD 25 = -310,1° (c = 1,26, Chloroform)
iH-NMR1 300 MHz, Lösungsmittel CDC13 (s: Singulett; d: Duplett, m: Multiplett) d = 2,15 (s, 3H, CH3); 4,35 (s, 1H, OH); 5,09 (s, 5 1H, CHOH) ; 7,05-7,3 (m, 4H, H-2 ' , 4 ' , 5' , 6 ' ) ppm.
13C-NMR: (75 MHz, Lösungsmittel CDC13) d = 25,2 (CH3) ; 79,5 (CHOH); 114,3 (d, 2J(13C, 19F) = 21 Hz, C-4' 115,8 (d, 2J(13C, 19F) = 21 Hz, C-2') ; 123,1 0 (d, J(13C, 19F) = 3 Hz, C-6') ; 130,6 (d,d, 3J(13C, 9F) = 8 Hz, C-5') ; 140,4 (d, 3J(13C, 19F) = 8 Hz, C-l') ; 163,1 (d, 1J(13C 19F) = 247 Hz, C-3') ; 206,4 (C=0) ppm
I frarotspektroskopie: Kapillar 5 n = 292«
17:
13(
20 1016; 969; 952; 920; ... ._ ..
(769; 752; 735, 697 (d (C=C) aromat. ; 657; 609; 523;
5
0
5
0
5

Claims

Patentansprüche
1. Verfahren zur Herstellung von enantiomerenreinen Phenyl- acetylcarbinolen der allgemeinen Formel (I)
Figure imgf000010_0001
wobei R für H, F, Cl oder Br steht,
aus Acetaldehyd und Benzaldehyden der allgemeinen Formel (II)
Figure imgf000010_0002
in Gegenwart von Pyruvatdecarboxylase aus Zymomonas, dadurch gekennzeichnet, daß im Verlauf der Biotransformation Acet- aldehyd in einer solchen Weise kontinuierlich oder diskontinuierlich nachdosiert wird, daß die Konzentration von Acetaldehyd im Reaktionsmedium zwischen 20 und 50 mMol/1 beträgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Benzaldehyd (II) mit R=H eingesetzt wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Pyruvatdecarboxylase aus Zymomonas mobilis verwendet wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß eine gegenüber dem Wildtyp veränderte Pyruvatdecarboxylase aus Zymomonas mobilis verwendet wird.
5. Verfahren nach Anspruch 4, wobei die Pyruvatdecarboxylase an- stelle des Trp Rests an der Position 392 eine andere Aminosäure enthält.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß an der Position 392 eine Aminosäure aus der Gruppe Ala, Ile und Met ausgewählt wird.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Acetaldehydkonzentration zwischen 20 und 35 mMol/1 beträgt.
PCT/EP1998/004672 1997-08-20 1998-07-25 Verfahren zur herstellung von enantiomerenreinen phenylacetylcarbinolen aus acetaldehyd und benzaldehyd in gegenwart von pyruvatdecarboxylase aus zymomonas WO1999009195A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU87327/98A AU8732798A (en) 1997-08-20 1998-07-25 Method for producing enantiomer-free phenylacetyl carbinoles from acetaldehyde and benzaldehyde in the presence of pyruvate decarboxylase from zymomonas
JP2000509857A JP2001514899A (ja) 1997-08-20 1998-07-25 ジモモナス属からのピルビン酸デカルボキシラーゼの存在下でアセトアルデヒドとベンズアルデヒドとからエナンチオマー純粋なフェニルアセチルカルビノールを製造する方法
EP98938706A EP1009848A1 (de) 1997-08-20 1998-07-25 Verfahren zur herstellung von enantiomerenreinen phenylacetylcarbinolen aus acetaldehyd und benzaldehyd in gegenwart von pyruvatdecarboxylase aus zymomonas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19736104.8 1997-08-20
DE19736104A DE19736104A1 (de) 1997-08-20 1997-08-20 Verfahren zur Herstellung von enantiomerenreinen Phenylacetylcarbinolen aus Acetaldchyd und Benzaldehyd in Gegenwart von Pyruvatdecarboxylase aus Zymomonas

Publications (1)

Publication Number Publication Date
WO1999009195A1 true WO1999009195A1 (de) 1999-02-25

Family

ID=7839543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/004672 WO1999009195A1 (de) 1997-08-20 1998-07-25 Verfahren zur herstellung von enantiomerenreinen phenylacetylcarbinolen aus acetaldehyd und benzaldehyd in gegenwart von pyruvatdecarboxylase aus zymomonas

Country Status (6)

Country Link
EP (1) EP1009848A1 (de)
JP (1) JP2001514899A (de)
AR (1) AR016832A1 (de)
AU (1) AU8732798A (de)
DE (1) DE19736104A1 (de)
WO (1) WO1999009195A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002791A1 (en) * 2000-07-05 2002-01-10 Basf Aktiengesellschaft Microbial production of r-phenylacetylcarbinol by biotransformation of benzaldehyde by filamentous fungi
WO2002002753A2 (de) * 2000-07-03 2002-01-10 Forschungszentrum Jülich GmbH Nukleotidsequenz kodierend für eine benzaldehyd-lyase und verfahren zur stereoselektiven synthese von 2-hydroxyketonen
WO2003020942A2 (en) * 2001-09-01 2003-03-13 Basf Aktiengesellschaft Process for production of r-phenylacetylcarbinol by an enzymatic process in a two-phase system
WO2003020921A2 (de) * 2001-08-31 2003-03-13 Basf Aktiengesellschaft Pyruvatdecarboxylase-mutante, deren herstellung und verwendung
WO2019002459A1 (de) 2017-06-28 2019-01-03 Technische Universität Dresden Enzyme und verfahren zur stereoselektiven reduktion von carbonylverbindungen, oxidation sowie stereoselektiven reduktiven aminierung - zur enantioselektiven darstellung von alkoholaminverbindungen

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19918935A1 (de) * 1999-04-27 2000-11-02 Forschungszentrum Juelich Gmbh Stereoselektive Synthese von 2-Hydroxyketonen
JP2010017094A (ja) * 2008-07-08 2010-01-28 Thermostable Enzyme Laboratory Co Ltd 酵素反応によりアセトアルデヒドを製造する方法
DE102013009631A1 (de) * 2013-06-10 2014-12-11 Forschungszentrum Jülich GmbH Verfahren zur Herstellung von Cathin

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037620A2 (de) * 1995-05-26 1996-11-28 Forschungszentrum Jülich GmbH Verfahren zur gewinnung von acyloinen, dafür geeignete pyruvat-decarboxylase sowie deren herstellung und dna-sequenz des für diese kodierenden pdc-gens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037620A2 (de) * 1995-05-26 1996-11-28 Forschungszentrum Jülich GmbH Verfahren zur gewinnung von acyloinen, dafür geeignete pyruvat-decarboxylase sowie deren herstellung und dna-sequenz des für diese kodierenden pdc-gens

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BIOCATALYSIS (1988), 1(4), 321-31 CODEN: BIOCED;ISSN: 0886-4454 *
BIOCHEM. PHYSIOL. THIAMIN DIPHOSPHATE ENZYMES, PROC. INT. MEET. FUNCT. THIAMIN DIPHOSPHATE ENZYMES (1991), MEETING DATE 1990, 123-32. EDITOR(S): BISSWANGER, HANS;ULLRICH, JOHANNES. PUBLISHER: VCH, WEINHEIM, FED. REP. GER. CODEN: 57LOA7 *
CHEMICAL ABSTRACTS, vol. 110, no. 3, 16 January 1989, Columbus, Ohio, US; abstract no. 20374, BRINGER-MEYER, STEPHANIE ET AL: "Acetoin and phenylacetylcarbinol formation by the pyruvate decarboxylases of Zymomonas mobilis and Saccharomyces carlsbergensis" XP002081628 *
CHEMICAL ABSTRACTS, vol. 116, no. 1, 6 January 1992, Columbus, Ohio, US; abstract no. 2629, BRINGER-MEYER, STEPHANIE ET AL: "Pyruvate decarboxylase from Zymomonas mobilis: properties of the enzyme and catalysis of carbon-carbon bond formation" XP002081627 *
CHEMICAL ABSTRACTS, vol. 124, no. 21, 20 May 1996, Columbus, Ohio, US; abstract no. 288906, BORNEMANN, STEPHEN ET AL: "Stereospecific formation of R-aromatic acyloins by Zymomonas mobilis pyruvate decarboxylase" XP002081626 *
D. H. G. CROUT ET AL.: "Applications of hydrolytic and decarboxylating enzymes in biotransformations.", BIOCATALYSIS, vol. 9, 1994, pages 1 - 30, XP000610933 *
H. BRUHN ET AL.: "The replacement of Trp392 by alanine influences the decarboxylase/carboligase activity and stability of pyruvate decarboxylase from Zymomonas mobilis.", EUR. J. BIOCHEM., vol. 234, 1995, pages 650 - 655, XP000607025 *
J. CHEM. SOC., PERKIN TRANS. 1 (1996), (5), 425-30 CODEN: JCPRB4;ISSN: 0300-922X *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045334B2 (en) * 2000-07-03 2006-05-16 Forschungszentrum Jülich GmbH Nucleotide sequence encoding a benzaldehyde lyase, and process for stereoselectively synthesizing 2-hydroxyketones
WO2002002753A2 (de) * 2000-07-03 2002-01-10 Forschungszentrum Jülich GmbH Nukleotidsequenz kodierend für eine benzaldehyd-lyase und verfahren zur stereoselektiven synthese von 2-hydroxyketonen
WO2002002753A3 (de) * 2000-07-03 2002-05-10 Forschungszentrum Juelich Gmbh Nukleotidsequenz kodierend für eine benzaldehyd-lyase und verfahren zur stereoselektiven synthese von 2-hydroxyketonen
WO2002002791A1 (en) * 2000-07-05 2002-01-10 Basf Aktiengesellschaft Microbial production of r-phenylacetylcarbinol by biotransformation of benzaldehyde by filamentous fungi
WO2003020921A2 (de) * 2001-08-31 2003-03-13 Basf Aktiengesellschaft Pyruvatdecarboxylase-mutante, deren herstellung und verwendung
WO2003020921A3 (de) * 2001-08-31 2003-10-16 Basf Ag Pyruvatdecarboxylase-mutante, deren herstellung und verwendung
US7189545B2 (en) 2001-08-31 2007-03-13 Basf Aktiengesellschaft Production and use of pyruvate decarboxylase
WO2003020942A2 (en) * 2001-09-01 2003-03-13 Basf Aktiengesellschaft Process for production of r-phenylacetylcarbinol by an enzymatic process in a two-phase system
US7074966B2 (en) 2001-09-01 2006-07-11 Basf Aktiengesellschaft Process for production of R-phenylacetylcarbinol by an enzymatic process in a two-phase system
WO2003020942A3 (en) * 2001-09-01 2003-12-04 Basf Ag Process for production of r-phenylacetylcarbinol by an enzymatic process in a two-phase system
WO2019002459A1 (de) 2017-06-28 2019-01-03 Technische Universität Dresden Enzyme und verfahren zur stereoselektiven reduktion von carbonylverbindungen, oxidation sowie stereoselektiven reduktiven aminierung - zur enantioselektiven darstellung von alkoholaminverbindungen
DE102017210944A1 (de) 2017-06-28 2019-01-03 Technische Universität Dresden Alkoholdehydrogenasen und Verfahren zur stereoselektiven Reduktion von Carbonylverbindungen
DE102017210944A9 (de) 2017-06-28 2019-02-28 Technische Universität Dresden Alkoholdehydrogenasen und Verfahren zur stereoselektiven Reduktion von Carbonylverbindungen
DE102017210944B4 (de) 2017-06-28 2019-05-23 Technische Universität Dresden Alkoholdehydrogenasen und Verfahren zur stereoselektiven Reduktion von Carbonylverbindungen

Also Published As

Publication number Publication date
JP2001514899A (ja) 2001-09-18
DE19736104A1 (de) 1999-02-25
AU8732798A (en) 1999-03-08
AR016832A1 (es) 2001-08-01
EP1009848A1 (de) 2000-06-21

Similar Documents

Publication Publication Date Title
AT503017B1 (de) Verfahren zur enantioselektiven enzymatischen reduktion von hydroxyketoverbindungen
EP1745134B1 (de) Verfahren zur herstellung von 2-butanol durch enzymatische reduktion von 2-butanon in einem zwei-phasen-system
WO2014114505A1 (de) Verfahren zur herstellung von alpha, omega-alkandiol
WO1999009195A1 (de) Verfahren zur herstellung von enantiomerenreinen phenylacetylcarbinolen aus acetaldehyd und benzaldehyd in gegenwart von pyruvatdecarboxylase aus zymomonas
DE69920568T2 (de) Verfahren zur Herstellung von optisch aktivem 4-Halo-3-hydroxybuttersäureester
EP2089530B1 (de) Verfahren zur herstellung von (4s)-3,4-dihydroxy-2,6,6-trimethyl-cyclohex-2-enon und derivaten davon unter verwendung der azoarcus phenylethanol dehydrogenase
EP2888046A1 (de) Verzweigte fettsäuren als flüssige kationenaustauscher
DE60115849T2 (de) Methode und katalytisches system zur stereoselektiven invertierung eines chiralen zentrums in einer chemischen verbindung
DE10032254B4 (de) Nukleotidsequenz kodierend für eine Benzaldehyd-Lyase und Verfahren zur stereoselektiven Synthese von (R)-2-Hydroxyketonen
EP0828841A2 (de) Verfahren zur gewinnung von acyloinen, dafür geeignete pyruvat-decarboxylase sowie deren herstellung und dna-sequenz des für diese kodierenden pdc-gens
DE60202227T2 (de) Neue Enon Reduktasen isoliert aus Kluyveromyces lactis, Methoden zu deren Herstellung und Methoden zur selektiven Reduzierung von Kohlenstoff-Kohlenstoff Doppelbindungen von Alpha, Beta-ungesättigten Ketonen unter Verwendung der Reduktasen
DE10313971A1 (de) Gekoppeltes cofaktorabhängiges enzymatisches Reaktionssystem
DE102017210944B4 (de) Alkoholdehydrogenasen und Verfahren zur stereoselektiven Reduktion von Carbonylverbindungen
EP1425392B1 (de) Pyruvatdecarboxylase-mutante, deren herstellung und verwendung
DE10247147A1 (de) Verfahren sowie Mikroorganismus zur Herstellung von D-Mannitol
DE10152113C1 (de) Verfahren zur Herstellung von (R)- und (S)-8-Chlor-6-hydroxy-octansäurealkylestern durch enzymatische Reduktion
DD287052A5 (de) Verfahren zur biokatalytischen gewinnung von stereoisomer reinen sekundaeren alkoholen
EP2193194A1 (de) Verfahren zur herstellung von 2-methyl-1,2-dihydroxypropan
DE102007051452A1 (de) Fermentative Gewinnung von α-Ketoglutarsäure aus erneuerbaren Rohstoffen unter erhöhter Stickstoffzufuhr
DE102004010786A1 (de) Mikroorganismus und Verfahren zur Herstellung von Weinsäure
EP2205726A1 (de) Verfahren zur oxidation von methylgruppen in aliphatischen kohlenwasserstoffen unter verwendung eines enzymsystems mit der aktivität einer monooxygenase
EP2119790A1 (de) 1,2-Addition von Carbonylverbindungen unter Verwendung des Enzyms YerE
DE102007051451A1 (de) Fermentative Gewinnung von α-Ketoglutarsäure aus erneuerbaren Rohstoffen unter Biotinlimitierung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR JP MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998938706

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09485853

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998938706

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998938706

Country of ref document: EP