WO1998043270A1 - Plasma display - Google Patents

Plasma display Download PDF

Info

Publication number
WO1998043270A1
WO1998043270A1 PCT/JP1997/000932 JP9700932W WO9843270A1 WO 1998043270 A1 WO1998043270 A1 WO 1998043270A1 JP 9700932 W JP9700932 W JP 9700932W WO 9843270 A1 WO9843270 A1 WO 9843270A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
display device
plasma display
protective layer
electrode
Prior art date
Application number
PCT/JP1997/000932
Other languages
French (fr)
Japanese (ja)
Inventor
Takahisa Mizuta
Keizo Suzuki
Masaji Ishigaki
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1997/000932 priority Critical patent/WO1998043270A1/en
Publication of WO1998043270A1 publication Critical patent/WO1998043270A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/38Dielectric or insulating layers

Definitions

  • the present invention relates to a plasma display (hereinafter, referred to as PDP) device, and more particularly, to a surface shape of a protective layer that isolates plasma.
  • PDP plasma display
  • MgO also has the effect of protecting the electrode from plasma, and is widely used in current PDP equipment.
  • the surface of the layer in contact with the plasma is a plane, and the contact area with the plasma is uniquely determined as the area of the plane. Therefore, in order to increase the luminous efficiency of the PDP device and reduce the plasma firing voltage by utilizing the secondary electron emission characteristics of the layer made of MgO or the like as a raw material, it is necessary to review the raw material itself for forming the layer. I needed it. Disclosure of the invention
  • An object of the present invention is to reconsider the shape of a contact surface of a layer made of MgO or the like having secondary electron emission characteristics with plasma, without reconsidering the raw material having secondary electron emission characteristics.
  • Layer which makes it possible to use the secondary electron emission characteristics of the layer more efficiently, thereby realizing a PDP device with high luminous efficiency and providing means that can reduce the plasma firing voltage. Is to do.
  • a plasma display apparatus comprising: means for generating plasma; means for generating visible light by the plasma; an electrode to which a voltage for generating the plasma is applied; and an insulating layer covering the electrode. 2.
  • a plasma display device comprising: an electrode to which a voltage for generating the plasma is applied; and an insulating layer covering the electrode, comprising: a protective layer covering the insulating layer; A plasma display device with an irregular surface on the plasma generation side.
  • the amplitude and the period of the concave shape on the plasma side surface of the protective layer are 0.1 [! !] to 100 [m].
  • FIG. 1 is a diagram showing a first embodiment of the present invention
  • FIG. 2 is an exploded perspective view showing a part of the structure of a plasma display panel of the present invention.
  • FIG. 4 is a cross-sectional view of the plasma display panel viewed from the direction of arrow D1 in FIG. 2, and FIG. 4 is a sectional view of the plasma display panel viewed from the direction of arrow D2 in FIG.
  • FIG. 5 is a cross-sectional view of a plasma display panel
  • FIG. 5 is a diagram showing an operation in one field period forming one image
  • FIG. 6 is a diagram showing a second embodiment of the present invention.
  • FIG. 7 is a diagram showing a first embodiment of the present invention
  • FIG. 7 is a diagram showing a first embodiment of the present invention
  • FIG. 8 is a diagram showing a second embodiment of the present invention
  • FIG. 9 is a diagram showing the present invention
  • FIG. 10 is a view showing another example of the first and second embodiments of the present invention
  • FIG. 10 is a view showing details of a protrusion of another example of the first and second embodiments of the present invention
  • FIG. 11 is a diagram showing details of a protrusion of another example of the first and second embodiments of the present invention.
  • FIG. 2 is an exploded view showing a part of the structure of a PDP device to which the present invention is applied. It is a perspective view, and on the lower surface of the front glass substrate 21 is a transparent common electrode (hereinafter referred to as X electrode) 2 2 — 1, 2 2 — 2 and a transparent independent electrode (hereinafter referred to as Y electrode) 2 3 — 1, 2 3-2 is attached.
  • the X electrodes 2 2 — 1 and 2 2-2 and the Y electrodes 2 3 — 1 and 2 3 — 2 have the X bus electrodes 2 4 — 1 and 2 4 — 2 and the Y bus electrodes 2 5 — 1 and 2 2 5 — 2 is attached.
  • X electrode 2 2 — 1, 2 2 — 2, Y electrode 2 3 — 1, 2 3-2, X bus electrode 2 4 — 1, 2 4 — 2, Y bus electrode 2 5 — 1, 2 5- 2 is covered with a dielectric 26, and a protective layer 27 such as Mg0 is provided.
  • the protective layer 27 has a secondary electron emission characteristic by using the material such as Mg0, and the electrons in the plasma can be amplified by the secondary electrons. As a result, the power supplied from the drive circuit to the X electrodes 22-1 and 22-2. 2.
  • the Y electrodes 23-1 and 23-2 are more efficiently used for plasma generation. At the same time, it becomes possible to reduce the discharge starting voltage when the gas is turned into plasma.
  • an electrode 29 which is three-dimensionally orthogonal to 3-1, 1, 3-2 is attached, and the A electrode 29 is covered with a dielectric material 30, and the dielectric material 3 is provided.
  • a partition 31 is provided on 0 in parallel with the A electrode 29.
  • the phosphor 32 is applied to the inside of the portion sandwiching the A electrode 29 in the concave region formed by the wall surface of the partition wall 31 and the upper surface of the dielectric 30.
  • FIG. 3 is a cross-sectional view of the PDP apparatus viewed from the direction of arrow D1 in FIG. 2, and shows one cell which is the minimum unit of a pixel.
  • the A electrode 29 is located between the two partition walls 31 and generates plasma in the discharge space 33 surrounded by the front glass substrate 21 and the rear glass substrate 28, and the partition walls 31. Gas.
  • the discharge space 33 may be spatially separated by the partition 31, and a space may be provided between the partition 31 and the side of the discharge space of the front glass substrate 21. Sometimes it is continuous.
  • -Fig. 4 is a cross-sectional view of the PDP device viewed from the direction of arrow D2 in Fig. 2, and shows two cells. The boundaries of each cell are roughly indicated by dotted lines.
  • FIG. 5 is a diagram showing the operation in one field period required to display one image on the PDP device shown in FIG. 2, in which one field period (a) includes a plurality of sub-fields.
  • the subfields are divided into 41 to 48, and each subfield is composed of a preliminary discharge period 49, a write discharge period 50 defining a light emitting cell, and a light emitting display period 51 as shown in (b).
  • Waveform 52 is a voltage waveform applied to one A electrode during a writing / discharging period 50 according to the prior art
  • waveform 53 is a voltage waveform applied to the X electrode
  • 54, 55 are i electrodes of the Y electrode. These are the voltage waveforms applied to the (i + 1) th and (i + 1) th, respectively, where the voltages are VO, VI, and V2 (V).
  • FIG. 1 is a view showing a first embodiment of the present invention, and is a cross-sectional view of a PDP viewed from the same direction as FIG.
  • FIG. 6 is a view showing a second embodiment of the present invention, and is a cross-sectional view of the PDP apparatus viewed from the same direction as FIG.
  • the unevenness is provided on the surface of the dielectric material 26, but the second embodiment shown in FIG. Then, the surface of the dielectric 26 is formed into a planar shape, and the surface of the protective layer 27 facing the discharge space 33 is formed into an uneven shape.
  • the secondary electron emission characteristics of the protective layer 27 can be used more effectively, and the efficiency of using the power supplied from the drive circuit can be improved. Is improved. Further, it is also possible to reduce the discharge starting voltage when the gas is turned into plasma at the same time.
  • FIG. 7 is a view showing an example of the first embodiment of the present invention, and is a perspective view in which the surface of the protective layer 27 facing the discharge space 33 is faced up.
  • irregularities formed by linear grooves are provided on the surface of the dielectric 26 that is in contact with the protective layer 27, and the uniform thickness and uniformity of the irregularities on the surface of the dielectric 26 are obtained.
  • a protective layer 27 is formed as needed.
  • the surface of the protective layer 27 facing the discharge space 33 can be made uneven, and the protective layer 27 This makes it possible to more effectively use the secondary electron emission characteristics possessed by the device, thereby improving the efficiency of using the power supplied from the drive circuit.
  • the discharge starting voltage when the gas is turned into plasma can be reduced.
  • the example shown in FIG. 7 can be realized by forming a linear groove on the surface of the dielectric 26 that is in contact with the protective layer 27, so that there is an advantage that the implementation is easy.
  • FIG. 8 is a diagram showing an example of the second embodiment of the present invention, and is a perspective view in which the surface of the protective layer 27 facing the discharge space 33 is faced up.
  • the surface of the dielectric 26 in contact with the protective layer 27 has a planar shape, and the protective layer 27 having unevenness is provided linearly on the dielectric 26.
  • the surface of the protective layer 27 facing the discharge space 33 can be made uneven, so that the secondary electron emission characteristics of the protective layer 27 can be used more effectively.
  • the utilization efficiency of the power supplied from the circuit is improved.
  • the discharge starting voltage when the gas is turned into plasma can be reduced.
  • FIG. 9 is a diagram showing another example of the first and second embodiments of the present invention, and is a perspective view in which the surface of the protective layer 27 facing the discharge space 33 is faced up.
  • the unevenness of the surface of the protective layer 27 facing the discharge space 33 is formed as a projection.
  • the surface area of the protective layer 27 facing the discharge space 33 is further increased. Becomes possible. This makes it possible to more effectively use the secondary electron emission characteristics of the protective layer 27 as compared with the first embodiment of the present invention and the second embodiment of the present invention. From the drive circuit The utilization efficiency of the supplied power is further improved. At the same time, the discharge starting voltage when the gas is turned into plasma can be further reduced.
  • FIG. 10 is a diagram showing details of a protrusion of another example of the first and second embodiments of the present invention, and shows a cut surface taken along the plane indicated by S in FIG.
  • the protrusion of the surface of the protective layer 27 facing the discharge space 33 has a uniform thickness along the shape of the surface of the dielectric 26 in contact with the protective layer 27. 7 is formed.
  • FIG. 11 is a diagram showing details of a protrusion of another example of the first and second embodiments of the present invention, and shows a cross section taken along the plane indicated by S in FIG.
  • the protruding shape of the surface of the protective layer 27 facing the discharge space 33 is formed by providing the protruding protective layer 27 on the surface of the planar dielectric 26.
  • this can be realized, for example, by using particles having a difference in size as the material particles of the protective layer 27.
  • the amplitude and period of the uneven shape will be described. It is desirable that the amplitude and the period of the irregular shape of the surface of the protective layer 27 facing the discharge space 33 be larger than the mean free path of the ions and smaller than the width of the discharge electrode.
  • the mean free path of ions is 0.1 [! ! ! ] To about 1 [ ⁇ m].
  • the width of the discharge electrode is 10 [/ n! ] To about 100 [/ m].
  • the amplitude and the period of the uneven shape on the surface of the protective layer 27 facing the discharge space 33 are 0.1 [n! ] To about 100 [/ m]. Especially 1 [ ⁇ II! ] To 10 [m] is optimal.
  • the raw material itself having secondary electron emission characteristics is reviewed without this, the secondary electron emission characteristics of the layer that isolates the plasma can be used more efficiently. As a result, a PDP device with high luminous efficiency can be realized, and at the same time, the plasma firing voltage can be reduced.

Abstract

A plasma display whose emission efficiency is high and whose discharge start voltage of the plasma is low. The display is provided with a plasma generating means, a means which generates visible light from the plasma, an electrode across which a voltage is applied to generate the plasma, and an insulating layer covering the electrode. The plasma generating side surface of the insulating layer is a rugged surface.

Description

明 細  Details
プラズマディスプレイ装置 技術分野 Technical Field of Plasma Display Device
本発明はプラズマディスプレイ (以下、 P D Pという) 装置に関し、 特に、 プラズマを隔絶する保護層の表面形状に関する。 背景技術  The present invention relates to a plasma display (hereinafter, referred to as PDP) device, and more particularly, to a surface shape of a protective layer that isolates plasma. Background art
発光効率の高い P D P装置を実現するためには、 駆動回路によりセル に投入された電力が効率よく紫外線の生成に使われることが重要である < このためには、 セルへの投入電力に対するプラズマ生成の効率を向上す ることが必須の条件となる。  In order to realize a PDP device with high luminous efficiency, it is important that the power supplied to the cell by the drive circuit is used efficiently for generating ultraviolet light. < It is an essential condition to improve the efficiency of the project.
また、 現在 P D P装置の実用化に際して、 プラズマの放電開始電圧を 低減することが重要な課題となつている。  In addition, reducing the plasma firing voltage has become an important issue when PDP devices are put into practical use.
前記課題への対策として、 例えば特開平 5 - 1 9 0 0 9 9号公報に開 示されるように、 従来より 2次電子放出特性を有する MgO等を原料とし た層をプラズマに接する面に設けていた。  As a countermeasure against the above-mentioned problem, for example, as disclosed in Japanese Patent Application Laid-Open No. 5-1990-99, a layer made of MgO or the like having a secondary electron emission characteristic is conventionally provided on a surface in contact with plasma. I was
又、 MgO はプラズマから電極を保護する効果をも兼ね備えているため、 現在の P D P装置には広く用いられている。 MgO also has the effect of protecting the electrode from plasma, and is widely used in current PDP equipment.
しかし、 従来、 前記の層のプラズマに接する表面は平面であり、 ブラ ズマとの接触面積は平面の面積として一意的に決定されていた。 従って、 上記 MgO等を原料とした層の 2次電子放出特性を利用し、 P D P装置の 発光効率を高めると共にプラズマの放電開始電圧を低減するためには前 記層を形成する原料自体の見直しが必要であつた。 発明の開示 However, conventionally, the surface of the layer in contact with the plasma is a plane, and the contact area with the plasma is uniquely determined as the area of the plane. Therefore, in order to increase the luminous efficiency of the PDP device and reduce the plasma firing voltage by utilizing the secondary electron emission characteristics of the layer made of MgO or the like as a raw material, it is necessary to review the raw material itself for forming the layer. I needed it. Disclosure of the invention
本発明の目的は、 2次電子放出特性を有する MgO等を原料とした層の プラズマとの接触面形状を見直すことによって、 2次電子放出特性を有 する原料自体の見直しを行うことなく、 前記層の 2次電子放出特性をよ り効率的に利用することを可能とし、 これによつて発光効率の高い P D P装置を実現するとともに、 プラズマの放電開始電圧を低減することが 可能な手段を提供することにある。  An object of the present invention is to reconsider the shape of a contact surface of a layer made of MgO or the like having secondary electron emission characteristics with plasma, without reconsidering the raw material having secondary electron emission characteristics. Layer, which makes it possible to use the secondary electron emission characteristics of the layer more efficiently, thereby realizing a PDP device with high luminous efficiency and providing means that can reduce the plasma firing voltage. Is to do.
前記目的を解決する本発明の構成は、 次の ( 1 ) 〜 ( 1 2 ) である。 ( 1 ) プラズマを発生させる手段と、 該プラズマにより可視光を発生さ せる手段と、 該プラズマを発生させるための電圧が印加される電極と、 該電極を覆う絶縁層とを具備するプラズマディスプレイ装置において、 前記絶縁層のプラズマ発生側表面が凹凸形状であるプラズマディスプレ ィ装置。  The configuration of the present invention that solves the above object is the following (1) to (12). (1) A plasma display apparatus comprising: means for generating plasma; means for generating visible light by the plasma; an electrode to which a voltage for generating the plasma is applied; and an insulating layer covering the electrode. 2. The plasma display device according to claim 1, wherein the surface of the insulating layer on the plasma generation side has an uneven shape.
( 2 ) 前記 ( 1 ) 記載のプラズマディスプレイ装置において、 前記絶縁 層が保護層で覆われ、 該保護層のプラズマ側表面が凹 ώ形状であるブラ ズマディスプレイ装置。  (2) The plasma display device according to (1), wherein the insulating layer is covered with a protective layer, and a plasma-side surface of the protective layer has a concave shape.
( 3 ) 前記 ( 1 ) 記載のプラズマディスプレイ装置において、 前記凹凸 形状は、 直線的に配列された溝により形成されたものであるプラズマデ イ スプレイ装置。  (3) The plasma display device according to (1), wherein the uneven shape is formed by linearly arranged grooves.
( 4 ) 前記 ( 1 ) 記載のプラズマディスプレイ装置において、 前記凹凸 形状が突起により形成されたものであるプラズマディスプレイ装置。 (4) The plasma display device according to (1), wherein the irregularities are formed by protrusions.
( 5 ) 前記 ( 1 ) 記載のプラズマディスプレイ装置において、 前記保護 層のプラズマ側表面の凹凸形状の振幅及び周期が 0 . 1 [ m] 〜 1 0 0 [ m] であるプラズマディスプレイ装置。 (5) The plasma display device according to (1), wherein the amplitude and the period of the irregularities on the plasma-side surface of the protective layer are from 0.1 [m] to 100 [m].
( 6 ) プラズマを発生させる手段と、 該プラズマにより可視光を発生さ せる手段と、 該プラズマを発生させるための電圧が印加される電極と、 ― 該電極を覆う絶縁層とを具備するプラズマディスプレイ装置において、 前記絶縁層を覆う保護層を有し、 該保護層のブラズマ発生側表面が凹凸 形状であるプラズマディ スプレイ装置。 (6) Means for generating plasma, and visible light is generated by the plasma. A plasma display device comprising: an electrode to which a voltage for generating the plasma is applied; and an insulating layer covering the electrode, comprising: a protective layer covering the insulating layer; A plasma display device with an irregular surface on the plasma generation side.
( 7 ) 前記 ( 6 ) 記載のプラズマディスプレイ装置において、 前記絶縁 層のプラズマ発生側表面が凹凸形状であるプラズマディスプレイ装置。 (7) The plasma display device according to (6), wherein the surface of the insulating layer on the plasma generation side is uneven.
( 8 ) 前記 ( 6 ) 記載のプラズマディスプレイ装置において、 前記絶縁 層の表面がほぼ平坦であり、 該絶縁層の表面が保護層で覆われ、 該保護 層のプラズマ側表面が凹凸形状であるブラズマディ スプレイ装置。 (8) The plasma display device according to (6), wherein the surface of the insulating layer is substantially flat, the surface of the insulating layer is covered with a protective layer, and the plasma side surface of the protective layer has an irregular shape. Spray device.
( 9 ) 前記 ( 8 ) 記載のプラズマディスプレイ装置において、 前記保護 層を形成する材料粒子の大きさが非均一であるプラズマディスプレイ装 置。  (9) The plasma display device according to (8), wherein the material particles forming the protective layer have non-uniform sizes.
( 1 0 ) 前記 ( 6 ) 記載のプラズマディスプレイ装置において、 前記凹 凸形状は、 直線的に配列された溝により形成されたものであるプラズマ ディ スプレイ装置。  (10) The plasma display device according to (6), wherein the concave and convex shapes are formed by linearly arranged grooves.
( 1 1 ) 前記 ( 6 ) 記載のプラズマディスプレイ装置において、 前記凹 凸形状が突起により形成されたものであるプラズマディスプレイ装置。 (11) The plasma display device according to (6), wherein the concave and convex shapes are formed by protrusions.
( 1 2 ) 前記 ( 6 ) 記載のプラズマディスプレイ装置において、 前記保 護層のプラズマ側表面の凹 ώ形状の振幅及び周期が 0. 1 [ !!!] 〜 1 0 0 [ m] であるプラズマディスプレイ装置。 図面の簡単な説明 (12) In the plasma display device according to (6), the amplitude and the period of the concave shape on the plasma side surface of the protective layer are 0.1 [! !!] to 100 [m]. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1の実施形態を示した図であり、 第 2図は、 本発 明のプラズマディ スプレイパネルの構造の一部を示す分解斜視図であり - 第 3図は、 第 2図中の矢印 D 1の方向から見たプラズマディスプレイパ ネルの断面図であり、 第 4図は、 第 2図中の矢印 D 2の方向から見たプ ラズマディスプレイパネルの断面図であり、 第 5図は、 1枚の画を構成 する 1 フィールド期間の動作を示した図であり、 第 6図は、 本発明の第 2の実施形態を示した図であり、 第 7図は、 本発明の第 1の実施形態を 示した図であり、 第 8図は、 本発明の第 2の実施形態を示した図であり、 第 9図は、 本発明の第 1、 第 2の実施形態の他の例を示した図であり、 第 1 0図は、 本発明の第 1、 第 2の実施形態の他の例の突起部詳細を示 した図であり、 第 1 1図は、 本発明の第 1、 第 2の実施形態の他の例の 突起部詳細を示した図である。 発明を実施するための最良の形態 FIG. 1 is a diagram showing a first embodiment of the present invention, and FIG. 2 is an exploded perspective view showing a part of the structure of a plasma display panel of the present invention. FIG. 4 is a cross-sectional view of the plasma display panel viewed from the direction of arrow D1 in FIG. 2, and FIG. 4 is a sectional view of the plasma display panel viewed from the direction of arrow D2 in FIG. FIG. 5 is a cross-sectional view of a plasma display panel, FIG. 5 is a diagram showing an operation in one field period forming one image, and FIG. 6 is a diagram showing a second embodiment of the present invention. FIG. 7 is a diagram showing a first embodiment of the present invention, FIG. 8 is a diagram showing a second embodiment of the present invention, and FIG. 9 is a diagram showing the present invention. FIG. 10 is a view showing another example of the first and second embodiments of the present invention, and FIG. 10 is a view showing details of a protrusion of another example of the first and second embodiments of the present invention. FIG. 11 is a diagram showing details of a protrusion of another example of the first and second embodiments of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施形態を第 1図から第 1 1図を用いて説明する。  An embodiment of the present invention will be described with reference to FIG. 1 to FIG.
まず、 これらで用いられる記号は次の通りである。 2 1…前面ガラス 基板、 2 2— 1、 2 2— 2 ···Χ電極、 2 3 — :! 〜 2 3 - 4 8 0… Υ電極、 First, the symbols used in these are as follows. 2 1 ... Front glass substrate, 2 2-1, 2 2 2 ··· Electrode, 2 3 —:! ~ 2 3-4 8 0… Υ electrode,
2 4— 1、 2 4— 2 ··· Xバス電極、 2 5— 1、 2 5— 2 '" バス電極、 2 6…誘電体、 2 7…保護層、 2 8…背面ガラス基板、 2 9… 電極、2 4—1, 2 4—2... X bus electrode, 25—1, 25—2 '”bus electrode, 26—dielectric, 27—protective layer, 28—back glass substrate, 2 9… electrode,
3 0…誘電体、 3 1…隔壁、 3 2…蛍光体、 3 3…放電空間、 4 1〜 4 8…サブフィ 一ノレ ド、 4 1 — 1〜 4 8— 1…サブフ ィ ール ド、 4 1 — 2 〜 4 8— 2…サブフィ ール ド、 4 9…予備放電期間、 4 9— 1…予備放 電期間、 4 9一 2…予備放電期間、 5 0…書き込み放電期間、 5 0 - 1 …書き込み放電期間、 5 0— 2…書き込み放電期間、 5 1…発光表示期 間、 5 2… 1本の Α電極に印加する電圧波形、 5 3—X電極に印加する 電圧波形、 5 4…丫電極の i番目に印加する電圧波形、 5 5—丫電極の i + 1番目に印加する電圧波形、 5 6… Y電極の i行目に印加されるス キャンパルス、 5 7… Y電極の i + 1行目に印加されるスキャンパルス、 6 0…放電電極、 6 1…誘電体、 6 2…放電空間。 30 ... dielectric, 31 ... partition, 32 ... phosphor, 33 ... discharge space, 41-48 ... subfield, 41-1-48-1 ... subfield, 4 1—2 to 4 8—2… Subfield, 49… Preliminary discharge period, 49−1… Preliminary discharge period, 491-2… Preliminary discharge period, 50… Write discharge period, 50 -1: Write discharge period, 50-2-Write discharge period, 51-Light emission display period, 52-Voltage waveform applied to one Α electrode, 53-Voltage waveform applied to X electrode, 5 4 ... 丫 The voltage waveform applied to the i-th electrode, 5 5— 丫 The voltage waveform applied to the i + 1st electrode, 56: A scan pulse applied to the i-th row of the Y electrode, 5 7… Y The scan pulse applied to the i + 1st row of the electrode, 60 ... discharge electrode, 61 ... dielectric, 62 ... discharge space.
さて、 第 2図は本発明を適用する P D P装置の構造の一部を示す分解 斜視図であり、 前面ガラス基板 2 1の下面には透明な共通電極 (以下、 X電極という) 2 2 — 1、 2 2 — 2 と、 透明な独立電極 (以下、 Y電極 という) 2 3 — 1、 2 3 - 2を付設する。 また、 X電極 2 2 — 1、 2 2 - 2 と Y電極 2 3 — 1、 2 3 — 2には、 それぞれ Xバス電極 2 4 — 1、 2 4 — 2 と Yバス電極 2 5 — 1、 2 5 — 2を積層付設する。 さらに、 X 電極 2 2 — 1、 2 2 — 2、 Y電極 2 3 — 1、 2 3 - 2 , Xバス電極 2 4 — 1、 2 4 — 2、 Yバス電極 2 5 — 1、 2 5 - 2を誘電体 2 6によって 被覆し、 M g 0等の保護層 2 7を付設する。 該保護層 2 7は前記 M g 0 等の素材を用いることによって 2次電子放出特性を有したものとなり、 プラズマ中の電子を 2次電子増幅することが可能となる。 これによつて、 駆動回路より X電極 2 2 — 1、 2 2 - 2. Y電極 2 3 — 1、 2 3 — 2 に 与えられた電力が、 より効率的にプラズマ生成に用いられる。 又、 同時 にガスがプラズマ化する時の放電開始電圧を低減することも可能となる, 一方、 背面ガラス基板 2 8の上面には、 X電極 2 2— 1、 2 2 — 2、 Y電極 2 3 — 1、 2 3 — 2 と直角に立体交差する電極 (以下、 A電極と いう) 2 9を付設し、 該 A電極 2 9を誘電体 3 0によつて被覆し、 該誘 電体 3 0の上に隔壁 3 1を A電極 2 9 と平行に設ける。 さらに、 隔壁 3 1の壁面と誘電体 3 0の上面によって形成される凹領域のうち A電極 2 9を挟む部分の内側に蛍光体 3 2を塗布する。 FIG. 2 is an exploded view showing a part of the structure of a PDP device to which the present invention is applied. It is a perspective view, and on the lower surface of the front glass substrate 21 is a transparent common electrode (hereinafter referred to as X electrode) 2 2 — 1, 2 2 — 2 and a transparent independent electrode (hereinafter referred to as Y electrode) 2 3 — 1, 2 3-2 is attached. The X electrodes 2 2 — 1 and 2 2-2 and the Y electrodes 2 3 — 1 and 2 3 — 2 have the X bus electrodes 2 4 — 1 and 2 4 — 2 and the Y bus electrodes 2 5 — 1 and 2 2 5 — 2 is attached. In addition, X electrode 2 2 — 1, 2 2 — 2, Y electrode 2 3 — 1, 2 3-2, X bus electrode 2 4 — 1, 2 4 — 2, Y bus electrode 2 5 — 1, 2 5- 2 is covered with a dielectric 26, and a protective layer 27 such as Mg0 is provided. The protective layer 27 has a secondary electron emission characteristic by using the material such as Mg0, and the electrons in the plasma can be amplified by the secondary electrons. As a result, the power supplied from the drive circuit to the X electrodes 22-1 and 22-2. 2. The Y electrodes 23-1 and 23-2 are more efficiently used for plasma generation. At the same time, it becomes possible to reduce the discharge starting voltage when the gas is turned into plasma. On the other hand, on the upper surface of the rear glass substrate 28, the X electrodes 22-1, 22-2, and the Y electrode 2 An electrode (hereinafter, referred to as an A electrode) 29 which is three-dimensionally orthogonal to 3-1, 1, 3-2 is attached, and the A electrode 29 is covered with a dielectric material 30, and the dielectric material 3 is provided. A partition 31 is provided on 0 in parallel with the A electrode 29. Further, the phosphor 32 is applied to the inside of the portion sandwiching the A electrode 29 in the concave region formed by the wall surface of the partition wall 31 and the upper surface of the dielectric 30.
第 3図は第 2図中の矢印 D 1の方向から見た P D P装置の断面図であ り、 画素の最小単位であるセル 1個を示している。  FIG. 3 is a cross-sectional view of the PDP apparatus viewed from the direction of arrow D1 in FIG. 2, and shows one cell which is the minimum unit of a pixel.
第 3図より、 A電極 2 9は 2つの隔壁 3 1の中間に位置し前面ガラス 基板 2 1 と背面ガラス基板 2 8、 隔壁 3 1に囲まれた放電空間 3 3には プラズマを生成するためのガスを充填する。  According to FIG. 3, the A electrode 29 is located between the two partition walls 31 and generates plasma in the discharge space 33 surrounded by the front glass substrate 21 and the rear glass substrate 28, and the partition walls 31. Gas.
尚、 放電空間 3 3は隔壁 3 1 により空間的に区切られることもあるし、 隔壁 3 1 と前面ガラス基板 2 1の放電空間側面との間に間隙を設け空間 的に連続にすることもある。 ― 第 4図は第 2図中の矢印 D 2の方向からみた P D P装置の断面図であ り、 2個のセルを示している。 各セルの境界は概略点線で示す位置であ る。 The discharge space 33 may be spatially separated by the partition 31, and a space may be provided between the partition 31 and the side of the discharge space of the front glass substrate 21. Sometimes it is continuous. -Fig. 4 is a cross-sectional view of the PDP device viewed from the direction of arrow D2 in Fig. 2, and shows two cells. The boundaries of each cell are roughly indicated by dotted lines.
第 4図より、 各セルの間には隔壁等が存在しないため、 丫電極 2 3 — 1 と A電極 2 9 との間の放電によつて生じた荷電粒子は Y電極 2 3 — 1 に隣接する Y電極 2 3 一 2側へ移動する可能性がある。 また、 隣接する Y電極同士の誤放電の可能性もある。 これら要因によって書き込み放電 時に隣接 A電極上の電荷を消去し隣接電極の書き込みを阻害することも ある。  According to Fig. 4, since there are no barriers between the cells, charged particles generated by the discharge between the 丫 electrode 23-1 and the A electrode 29 are adjacent to the Y electrode 23-1 May move to the Y electrode 2 3 1 2 side. In addition, there is a possibility of erroneous discharge between adjacent Y electrodes. Due to these factors, the charge on the adjacent A electrode may be erased at the time of write discharge, and writing to the adjacent electrode may be hindered.
第 5図は第 2図に示した P D P装置に 1枚の画を表示するのに要する 1 フィ一ルド期間の動作を示す図であり、 1 フィ一ルド期間 (a ) は複数 のサブフィ一ルド 4 1乃至 4 8に分割され、 各サブフィ一ルドは (b ) に 示すように予備放電期間 4 9、 発光セルを規定する書き込み放電期間 5 0、 発光表示期間 5 1からなる。 波形 5 2は従来技術による書き込み放 電期間 5 0に於ける 1本の A電極に印加する電圧波形、 波形 5 3は X電 極に印加する電圧波形、 5 4、 5 5は Y電極の i番目と ( i + 1 ) 番目 に印加する電圧波形であり、 それぞれの電圧を V O , V I , V 2 ( V ) とする。  FIG. 5 is a diagram showing the operation in one field period required to display one image on the PDP device shown in FIG. 2, in which one field period (a) includes a plurality of sub-fields. The subfields are divided into 41 to 48, and each subfield is composed of a preliminary discharge period 49, a write discharge period 50 defining a light emitting cell, and a light emitting display period 51 as shown in (b). Waveform 52 is a voltage waveform applied to one A electrode during a writing / discharging period 50 according to the prior art, waveform 53 is a voltage waveform applied to the X electrode, and 54, 55 are i electrodes of the Y electrode. These are the voltage waveforms applied to the (i + 1) th and (i + 1) th, respectively, where the voltages are VO, VI, and V2 (V).
第 5図より、 Y電極の i行目にスキャンパルス 5 6が印加された時、 A電極 2 9 との交点に位置するセルで書き込み放電が起こる。  According to FIG. 5, when the scan pulse 56 is applied to the i-th row of the Y electrode, a write discharge occurs in the cell located at the intersection with the A electrode 29.
又、 Y電極の i行目にスキャ ンパルス 5 6が印加された時、 A電極 2 9 がグラン ド電位であれば書き込み放電は起こらず、 そのセルは非発光セ ルとなる。 このように、 書き込み放電期間 5 0に於いて Y電極にはスキ ヤンパルスが 1回印加され、 A電極 2 9にはスキャンパルスに対応して 発光セルでは V 0、 非発光セルではグラン ド電位となる。 以上、 本発明を適用する P D P装置の構成の一例を示した。 第 1図は本発明の第 1の実施形態を示した図であり、 第 4図と同様な 方向から見た P D Pの断面図である。 When the scan pulse 56 is applied to the i-th row of the Y electrode, if the A electrode 29 is at the ground potential, no writing discharge occurs, and the cell becomes a non-light emitting cell. Thus, in the writing discharge period 50, a scan pulse is applied once to the Y electrode, and the A electrode 29 is set to V 0 in the light emitting cell and the ground potential in the non-light emitting cell in response to the scan pulse. Become. The example of the configuration of the PDP device to which the present invention is applied has been described above. FIG. 1 is a view showing a first embodiment of the present invention, and is a cross-sectional view of a PDP viewed from the same direction as FIG.
第 1図より、 誘電体 2 6の表面に凹凸を設け、 該凹凸に対して均一な 厚みとなるように保護—層 2 7を形成し、 放電空間 3 3に面した保護層 2 7の表面を凹凸形状にする。 これによつて、 放電空間 3 3内で発生した プラズマ中の電子が接する保護層 2 7の面積が増大するため、 保護層 2 7の有する 2次電子放出特性を、 より効果的に利用することが可能とな り、 駆動回路より供給される電力の利用効率が向上する。 また、 同時に ガスがプラズマ化する際の放電開始電圧を低減することも可能となる。 第 6図は本発明の第 2の実施形態を示した図であり、 第 4図と同様な 方向から見た P D P装置の断面図である。  As shown in FIG. 1, irregularities are formed on the surface of the dielectric 26, a protective layer 27 is formed so as to have a uniform thickness with respect to the irregularities, and the surface of the protective layer 27 facing the discharge space 33 is formed. Is made uneven. As a result, the area of the protective layer 27 in contact with the electrons in the plasma generated in the discharge space 33 increases, so that the secondary electron emission characteristics of the protective layer 27 can be used more effectively. This improves the efficiency of using the power supplied from the drive circuit. At the same time, the discharge starting voltage when the gas is turned into plasma can be reduced. FIG. 6 is a view showing a second embodiment of the present invention, and is a cross-sectional view of the PDP apparatus viewed from the same direction as FIG.
第 1の実施形態では、 放電空間 3 3に面した保護層 2 7の表面を凹凸 形状にするため、 誘電体 2 6の表面に凹凸を設けたが、 第 6図で示す第 2の実施形態では、 誘電体 2 6の表面は平面な形状とした上で保護層 2 7の放電空間 3 3に面した表面を凹凸形状とする。 これによつて、 第 1 の実施形態の場合と同様に、 保護層 2 7の有する 2次電子放出特性を、 より効果的に利用することが可能となり、 駆動回路より供給される電力 の利用効率が向上する。 又、 同時にガスがプラズマ化する際の放電開始 電圧を低減することも可能となる。  In the first embodiment, in order to make the surface of the protective layer 27 facing the discharge space 33 uneven, the unevenness is provided on the surface of the dielectric material 26, but the second embodiment shown in FIG. Then, the surface of the dielectric 26 is formed into a planar shape, and the surface of the protective layer 27 facing the discharge space 33 is formed into an uneven shape. As a result, similarly to the first embodiment, the secondary electron emission characteristics of the protective layer 27 can be used more effectively, and the efficiency of using the power supplied from the drive circuit can be improved. Is improved. Further, it is also possible to reduce the discharge starting voltage when the gas is turned into plasma at the same time.
第 7図は本発明の第 1の実施形態の一例を示した図であり、 保護層 2 7の放電空間 3 3に面する表面を上にした斜視図である。  FIG. 7 is a view showing an example of the first embodiment of the present invention, and is a perspective view in which the surface of the protective layer 27 facing the discharge space 33 is faced up.
第 7図より、 誘電体 2 6の保護層 2 7に接する表面には直線的な溝に よって構成された凹凸を設け、 該誘電体 2 6の表面の凹凸に対して、 均 一な厚みとなるよう保護層 2 7を形成する。 これによつて、 保護層 2 7 の放電空間 3 3に面した表面を凹凸形状とすることができ、 保護層 2 7 の有する 2次電子放出特性を、 より効果的に利用することが可能となり、 駆動回路より供給される電力の利用効率が向上する。 また、 同時にガス がプラズマ化する際の放電開始電圧を低減することも可能となる。 更に、 第 7図で示した例の場合、 誘電体 2 6の保護層 2 7に接する表面に直線 的な溝を作製することによって実現可能であるため、 実施が容易となる 利点がある。 As shown in FIG. 7, irregularities formed by linear grooves are provided on the surface of the dielectric 26 that is in contact with the protective layer 27, and the uniform thickness and uniformity of the irregularities on the surface of the dielectric 26 are obtained. A protective layer 27 is formed as needed. As a result, the surface of the protective layer 27 facing the discharge space 33 can be made uneven, and the protective layer 27 This makes it possible to more effectively use the secondary electron emission characteristics possessed by the device, thereby improving the efficiency of using the power supplied from the drive circuit. At the same time, the discharge starting voltage when the gas is turned into plasma can be reduced. Furthermore, the example shown in FIG. 7 can be realized by forming a linear groove on the surface of the dielectric 26 that is in contact with the protective layer 27, so that there is an advantage that the implementation is easy.
第 8図は本発明の第 2の実施形態の一例を示した図であり、 保護層 2 7の放電空間 3 3に面する表面を上にした斜視図である。  FIG. 8 is a diagram showing an example of the second embodiment of the present invention, and is a perspective view in which the surface of the protective layer 27 facing the discharge space 33 is faced up.
第 8図より、 誘電体 2 6の保護層 2 7に接する表面は平面形状であり、 該誘電体 2 6上に直線的に凹凸の有る保護層 2 7が設けてある。 これに よって、 保護層 2 7の放電空間 3 3に面した表面を凹凸形状とでき、 保 護層 2 7の有する 2次電子放出特性を、 より効果的に利用することが可 能となり、 駆動回路より供給される電力の利用効率が向上する。 また、 同時にガスがプラズマ化する際の放電開始電圧を低減することも可能と なる。 更に、 第 8図で示した例の場合、 保護層 2 7の放電空間 3 3に面 する表面に直線的な溝を作製することによって実現可能であるため、 実 施が容易となる利点がある。  As shown in FIG. 8, the surface of the dielectric 26 in contact with the protective layer 27 has a planar shape, and the protective layer 27 having unevenness is provided linearly on the dielectric 26. As a result, the surface of the protective layer 27 facing the discharge space 33 can be made uneven, so that the secondary electron emission characteristics of the protective layer 27 can be used more effectively. The utilization efficiency of the power supplied from the circuit is improved. At the same time, the discharge starting voltage when the gas is turned into plasma can be reduced. Further, in the case of the example shown in FIG. 8, since it can be realized by forming a linear groove on the surface of the protective layer 27 facing the discharge space 33, there is an advantage that the implementation is easy. .
第 9図は本発明の第 1、 第 2の実施形態の他の例を示した図であり、 保護層 2 7の放電空間 3 3に面する表面を上にした斜視図である。  FIG. 9 is a diagram showing another example of the first and second embodiments of the present invention, and is a perspective view in which the surface of the protective layer 27 facing the discharge space 33 is faced up.
第 9図に示した第 1乃至第 2の実施形態の他の例の場合、 保護層 2 7 の放電空間 3 3に面した表面の凹凸形状を突起状に構成することによつ て、 第 7図、 第 8図で示した本発明の第 1の実施形態、 及び、 本発明の 第 2の実施形態に比較し、 放電空間 3 3に面した保護層 2 7表面積を、 より増大することが可能となる。 これによつて、 本発明の第 1の実施形 態、 及び本発明の第 2の実施形態に比較し、 更に効果的に保護層 2 7の 有する 2次電子放出特性を利用することが可能となり、 駆動回路より供 給される電力の利用効率も更に向上する。 また、 同時にガスがプラズマ 化する際の放電開始電圧も更に低減することが可能となる。 In the case of another example of the first or second embodiment shown in FIG. 9, the unevenness of the surface of the protective layer 27 facing the discharge space 33 is formed as a projection. Compared with the first embodiment of the present invention shown in FIGS. 7 and 8, and the second embodiment of the present invention, the surface area of the protective layer 27 facing the discharge space 33 is further increased. Becomes possible. This makes it possible to more effectively use the secondary electron emission characteristics of the protective layer 27 as compared with the first embodiment of the present invention and the second embodiment of the present invention. From the drive circuit The utilization efficiency of the supplied power is further improved. At the same time, the discharge starting voltage when the gas is turned into plasma can be further reduced.
第 1 0図は本発明の第 1、 第 2の実施形態の他の例の突起部詳細を示 した図であり、 第 9図の Sで示した面での切断面を示している。  FIG. 10 is a diagram showing details of a protrusion of another example of the first and second embodiments of the present invention, and shows a cut surface taken along the plane indicated by S in FIG.
第 1 0図より、 保護層 2 7の放電空間 3 3に面した表面の突起形状は 誘電体 2 6の保護層 2 7に接する表面の突起形状に沿って、 均一な厚さ の保護層 2 7を設けることによって形成される。  As shown in FIG. 10, the protrusion of the surface of the protective layer 27 facing the discharge space 33 has a uniform thickness along the shape of the surface of the dielectric 26 in contact with the protective layer 27. 7 is formed.
第 1 1図は本発明の第 1、 第 2の実施例の他の例の突起部詳細を示し た図であり、 第 9図の Sで示した面での切断面を示している。  FIG. 11 is a diagram showing details of a protrusion of another example of the first and second embodiments of the present invention, and shows a cross section taken along the plane indicated by S in FIG.
第 1 1図より、 保護層 2 7の放電空間 3 3に面した表面の突起形状は 平面な誘電体 2 6の表面に突起形状の有る保護層 2 7を設けることによ つて形成される。 第 1 1図で示す例の場合、 例えば保護層 2 7の原料粒 子に大小の差の有るものを用いることによって実現可能である。  From FIG. 11, the protruding shape of the surface of the protective layer 27 facing the discharge space 33 is formed by providing the protruding protective layer 27 on the surface of the planar dielectric 26. In the case of the example shown in FIG. 11, this can be realized, for example, by using particles having a difference in size as the material particles of the protective layer 27.
以上、 保護層 2 7の放電空間 3 3に面した表面を凹凸形状とする手法 について述べたが、 次に、 該凹凸形状の振幅及び、 周期について示す。 保護層 2 7の放電空間 3 3に面した表面の凹凸形状の振幅及び、 周期 の大きさは、 イオンの平均自由行程より大きく、 放電電極の幅より小さ いこ とが望ま しい。 一例として、 放電空間 3 3 中のガス圧を 3 0 0 [ Torr ] 程度とした場合のイオンの平均自由行程は 0 . 1 [ !!!] 〜 1 [ β m ] 程度となる。 又、 放電電極の幅は 1 0 [ / n!] 〜 1 0 0 [ / m ] 程度が一般的である。 この場合、 保護層 2 7の放電空間 3 3に面した表 面の凹凸形状の振幅及び、周期の大きさは 0 . 1 [ n!] 〜 1 0 0 [ / m ] 程度となる。 特に 1 [ μ II!] 〜 1 0 [ m ] が最適である。 産業上の利用可能性  The method of forming the surface of the protective layer 27 facing the discharge space 33 into an uneven shape has been described above. Next, the amplitude and period of the uneven shape will be described. It is desirable that the amplitude and the period of the irregular shape of the surface of the protective layer 27 facing the discharge space 33 be larger than the mean free path of the ions and smaller than the width of the discharge electrode. As an example, when the gas pressure in the discharge space 33 is about 300 [Torr], the mean free path of ions is 0.1 [! ! ! ] To about 1 [βm]. The width of the discharge electrode is 10 [/ n! ] To about 100 [/ m]. In this case, the amplitude and the period of the uneven shape on the surface of the protective layer 27 facing the discharge space 33 are 0.1 [n! ] To about 100 [/ m]. Especially 1 [μII! ] To 10 [m] is optimal. Industrial applicability
本発明によって、 2次電子放出特性を有する原料自体の見直しを行う ことなく、 ブラズマを隔絶する層の 2次電子放出特性をより効率的に利 用することが可能となる。 これによつて発光効率の高い P D P装置が実 現可能となるとともに、 ブラズマの放電開始電圧を低減することも同時 に可能となる。 According to the present invention, the raw material itself having secondary electron emission characteristics is reviewed Without this, the secondary electron emission characteristics of the layer that isolates the plasma can be used more efficiently. As a result, a PDP device with high luminous efficiency can be realized, and at the same time, the plasma firing voltage can be reduced.

Claims

請求の範囲 The scope of the claims
1 . プラズマを発生させる手段と、 該プラズマにより可視光を発生させ る手段と、 該プラズマを発生させるための電圧が印加される電極と、 該 電極を覆う絶縁層とを具備するプラズマディ スプレイ装置において、 前記絶縁層のプラズマ発生側表面が凹凸形状であることを特徴とする プラズマディスプレイ装置。 1. A plasma display device comprising: means for generating plasma; means for generating visible light using the plasma; an electrode to which a voltage for generating the plasma is applied; and an insulating layer covering the electrode. 2. The plasma display device according to claim 1, wherein a surface of the insulating layer on the plasma generation side has an uneven shape.
2 . 請求の範囲第 1項記載のプラズマディスプレイ装置において、 前記絶縁層が保護層で覆われ、 該保護層のプラズマ側表面が凹凸形状 であることを特徴とするプラズマディスプレイ装置。  2. The plasma display device according to claim 1, wherein the insulating layer is covered with a protective layer, and a plasma-side surface of the protective layer has an uneven shape.
3 . 請求の範囲第 1項記載のプラズマディ スプレイ装置において、 前記凹凸形状は、 直線的に配列された溝により形成されたものである ことを特徴とするプラズマディスプレイ装置。  3. The plasma display device according to claim 1, wherein the uneven shape is formed by linearly arranged grooves.
4 . 請求の範囲第 1項記載のプラズマディ スプレイ装置において、 前記凹凸形状が突起により形成されたものであるこ とを特徴とするプ ラズマディスプレイ装置。  4. The plasma display device according to claim 1, wherein the uneven shape is formed by protrusions.
5 . 請求の範囲第 1項記載のプラズマディ スプレイ装置において、 前記保護層のプラズマ側表面の凹凸形状の振幅及び周期が 0 . 1 [ m ] ~ 1 0 0 m ] であることを特徴とするプラズマディ スプレイ装置。  5. The plasma display device according to claim 1, wherein the amplitude and the period of the irregularities on the plasma side surface of the protective layer are 0.1 [m] to 100 m]. Plasma display device.
6 . プラズマを発生させる手段と、 該プラズマにより可視光を発生させ る手段と、 該プラズマを発生させるための電圧が印加される電極と、 該 電極を覆う絶縁層とを具備するブラズマディスプレイ装置において、 前記絶縁層を覆う保護層を有し、 該保護層のプラズマ発生側表面が凹 凸形状であることを特徴とするプラズマディ スプレイ装置。 6. A plasma display device comprising: means for generating plasma; means for generating visible light by the plasma; an electrode to which a voltage for generating the plasma is applied; and an insulating layer covering the electrode. A plasma display device, comprising: a protective layer that covers the insulating layer, wherein a surface of the protective layer on the plasma generation side is concave and convex.
7 . 請求の範囲第 6項記載のプラズマディスプレイ装置において、 前記絶縁層のプラズマ発生側表面が凹凸形状であるこ とを特徴とする プラズマディスプレイ装置。 7. The plasma display device according to claim 6, wherein a surface of the insulating layer on the plasma generation side has an uneven shape. Plasma display device.
8 . 請求の範囲第 6項記載のプラズマディ スプレイ装置において、 前記絶縁層の表面がほぼ平坦であり、 該絶縁層の表面が保護層で覆わ れ、 該保護層のプラズマ側表面が凹凸形状であるこ とを特徴とするブラ ズマディスプレイ装置。  8. The plasma display device according to claim 6, wherein the surface of the insulating layer is substantially flat, the surface of the insulating layer is covered with a protective layer, and the plasma-side surface of the protective layer has an uneven shape. A plasma display device characterized by the following.
9 . 請求の範囲第 8項記載のプラズマディスプレイ装置において、 前記保護層を形成する材料粒子の大きさが非均一であるこ とを特徴と するプラズマディスプレイ装置。  9. The plasma display device according to claim 8, wherein the size of material particles forming the protective layer is non-uniform.
1 0 . 請求の範囲第 6項記載のプラズマディスプレイ装置において、 前記凹凸形状は、 直線的に配列された溝により形成されたものである こ とを特徴とするプラズマディスプレイ装置。  10. The plasma display device according to claim 6, wherein the uneven shape is formed by linearly arranged grooves.
1 1 . 請求の範囲第 6項記載のプラズマディ スプレイ装置において、 前記凹凸形状が突起により形成されたものであるこ とを特徴とするプ ラズマディスプレイ装置。  11. The plasma display device according to claim 6, wherein the uneven shape is formed by protrusions.
1 2 . 請求の範囲第 6項記載のプラズマディスプレイ装置において、 前記保護層のプラズマ側表面の凹 ώ形状の振幅及び周期が 0 . 1 [ π!] 〜 1 0 0 [ m] であるこ とを特徴とするプラズマディスプレイ装置 c  12. The plasma display device according to claim 6, wherein the amplitude and the period of the concave shape on the plasma side surface of the protective layer are 0.1 [π! ] To 100 [m].
PCT/JP1997/000932 1997-03-21 1997-03-21 Plasma display WO1998043270A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/000932 WO1998043270A1 (en) 1997-03-21 1997-03-21 Plasma display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/000932 WO1998043270A1 (en) 1997-03-21 1997-03-21 Plasma display

Publications (1)

Publication Number Publication Date
WO1998043270A1 true WO1998043270A1 (en) 1998-10-01

Family

ID=14180272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000932 WO1998043270A1 (en) 1997-03-21 1997-03-21 Plasma display

Country Status (1)

Country Link
WO (1) WO1998043270A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831709A1 (en) * 2001-10-29 2003-05-02 Thomson Licensing Sa PLASMA PANEL SLAB COMPRISING MEANS FOR RE-DISSEMINATING THE RADIATION EMITTED BY THE DISCHARGES
US7557506B2 (en) 2005-08-31 2009-07-07 Samsung Sdi Co., Ltd. Plasma display panel
US7781968B2 (en) 2006-03-28 2010-08-24 Samsung Sdi Co., Ltd. Plasma display panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965180A (en) * 1972-10-24 1974-06-24
JPH0737510A (en) * 1993-07-26 1995-02-07 Fujitsu Ltd Plasma display panel
JPH0877931A (en) * 1994-09-02 1996-03-22 Oki Electric Ind Co Ltd Protective film of gas discharge panel and its forming method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965180A (en) * 1972-10-24 1974-06-24
JPH0737510A (en) * 1993-07-26 1995-02-07 Fujitsu Ltd Plasma display panel
JPH0877931A (en) * 1994-09-02 1996-03-22 Oki Electric Ind Co Ltd Protective film of gas discharge panel and its forming method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831709A1 (en) * 2001-10-29 2003-05-02 Thomson Licensing Sa PLASMA PANEL SLAB COMPRISING MEANS FOR RE-DISSEMINATING THE RADIATION EMITTED BY THE DISCHARGES
WO2003038853A1 (en) * 2001-10-29 2003-05-08 Thomson Licensing S.A. Plasma panel faceplate comprising uv radiation re-scattering means
JP2005507550A (en) * 2001-10-29 2005-03-17 トムソン ライセンシング ソシエテ アノニム Plasma display panel including means for backscattering radiation emitted by a discharge
CN1307675C (en) * 2001-10-29 2007-03-28 汤姆森许可贸易公司 Plasma panel faceplate comprising UV radiation re-scattering means
US7550923B2 (en) 2001-10-29 2009-06-23 Thomson Licensing Plasma panel faceplate comprising UV radiation re-scattering means
US7557506B2 (en) 2005-08-31 2009-07-07 Samsung Sdi Co., Ltd. Plasma display panel
US7781968B2 (en) 2006-03-28 2010-08-24 Samsung Sdi Co., Ltd. Plasma display panel

Similar Documents

Publication Publication Date Title
US7235924B2 (en) Plasma display panel
JP2000331615A (en) Plasma display panel and method for driving same
US6720736B2 (en) Plasma display panel
JP3690148B2 (en) Plasma display panel and image display device using the same
US6479934B2 (en) AC-driven surface discharge plasma display panel having transparent electrodes with minute openings
US7265492B2 (en) Plasma display panel with discharge cells having curved concave-shaped walls
JPH0968944A (en) Driving method of ac type pdp
JPH10199426A (en) Plasma display panel
US20030155862A1 (en) Plasma display device
WO1998043270A1 (en) Plasma display
US7288892B2 (en) Plasma display panel with improved cell geometry
JP4212184B2 (en) Plasma display device
KR20020026653A (en) Plasma display panel forming differently width of partition wall
JP2783011B2 (en) Surface discharge display board
JP2003331732A (en) Plasma display panel
KR100192340B1 (en) Plasma display panel
JPH09259767A (en) Ac type pdp and driving method therefor
US7876047B2 (en) Plasma display panel having electrodes covered by a dielectric layer having varying permittivites
US7453211B2 (en) Plasma display panel having dielectric layers and igniting electrodes
US20050162086A1 (en) Plasma display panel with microwave radiation discharge excitation
US6667581B2 (en) Plasma display panel
KR20030026777A (en) Plasma display panel
KR100421488B1 (en) Plasma Display Panel
KR100768045B1 (en) Plasma Display Panel Using a High Frequency
KR100400373B1 (en) Plasma Display Panel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase