WO1998039789A1 - Plasma display panel and process for producing the same - Google Patents

Plasma display panel and process for producing the same Download PDF

Info

Publication number
WO1998039789A1
WO1998039789A1 PCT/JP1997/000714 JP9700714W WO9839789A1 WO 1998039789 A1 WO1998039789 A1 WO 1998039789A1 JP 9700714 W JP9700714 W JP 9700714W WO 9839789 A1 WO9839789 A1 WO 9839789A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
plasma display
substrate
glass
sealing
Prior art date
Application number
PCT/JP1997/000714
Other languages
French (fr)
Japanese (ja)
Inventor
Shigehisa Motowaki
Takashi Naitou
Takashi Namekawa
Nobuyuki Ushihusa
Yutaka Naitou
Yasutaka Suzuki
Hiroki Yamamoto
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1997/000714 priority Critical patent/WO1998039789A1/en
Publication of WO1998039789A1 publication Critical patent/WO1998039789A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • H01J9/261Sealing together parts of vessels the vessel being for a flat panel display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2217/00Gas-filled discharge tubes
    • H01J2217/38Cold-cathode tubes
    • H01J2217/49Display panels, e.g. not making use of alternating current

Definitions

  • the present invention relates to a plasma display panel used as a display device such as a ⁇ ⁇ and a computer, and more particularly to a plasma display and a method for manufacturing the same, which can reduce the manufacturing cost as compared with the related art.
  • a pair of substrates having electrodes are arranged so that the electrodes face each other, the periphery of the substrates is sealed with a sealing member to form a discharge space, and discharge cells defined at intersections of the electrode groups are formed.
  • This is an image display device configured to selectively emit light. It has features such as a thin display device and a large-screen display device that can be obtained at relatively low cost. Therefore, it will be widely used as a display device for home-use large-screen wall-mounted televisions and presentations. Is expected.
  • a pair of glass substrates is prepared.
  • An address electrode pattern is formed on one of the glass substrates (back substrate) by a thick film printing method using silver paste.
  • cell barriers (barrier ribs) for forming cells, which are light emitting units of the display panel, are formed by repeating thick-film printing and drying of a paste containing a mixture of glass powder and a binder. I do.
  • a phosphor layer is formed by a thick film printing method, and a back substrate on which discharge cells are formed is obtained.
  • a transparent electrode pattern is formed on the other glass substrate (front substrate). IT ⁇ (Indium Tin Oxide) or the like is used as a transparent electrode material.
  • the front substrate and the rear substrate are aligned, the exhaust pipe is attached, and the periphery of the substrate is sealed with glass.
  • a Pb ⁇ -based glass containing a filler as described in JP-A-8-26770 is generally used as the sealing glass.
  • a paste is applied to a substrate by adding a binder to glass and filling it into a tube called a dispenser, and then attaching the glass paste in a string form to the glass substrate from the end of the tube. It is.
  • the two substrates are pressed together with a glass paste in between, and the glass is solidified by heating and the substrate is sealed.
  • the air in the space surrounded by both substrates and the sealing member is exhausted from the exhaust pipe, and the discharge gas is introduced into this space through the exhaust pipe. Finally, the exhaust pipe is torn off (chip off) to seal off the discharge gas.
  • a plasma display panel is manufactured.
  • a first object of the present invention is to simplify the manufacturing process and reduce the manufacturing cost of a plasma display panel by enabling heat sealing in a reduced-pressure atmosphere.
  • a second object of the present invention is to provide a plasma display panel having good contrast of a displayed image, a long discharge life, and high strength and reliability, and a method of manufacturing the same. Disclosure of the invention
  • an electrode having an electrode In a plasma display panel in which a pair of substrates are arranged so that electrodes face each other, the periphery of the substrates is sealed with a sealing member, and a discharge gas is sealed in an internal space and used as a discharge space, the sealing portion around the substrates is uniform.
  • a plasma display panel characterized by being composed of an amorphous phase is provided.
  • a pair of substrates having electrodes are arranged so that the electrodes face each other, the periphery of the substrates is sealed with a sealing member, and a discharge gas is sealed in the internal space to form a discharge space.
  • a plasma display panel, wherein the effective display area is in the range of 90 to 95% of the area of the pair of substrates on the side displaying image information of the pair of substrates. Is provided.
  • a pair of substrates having electrodes are arranged so that the electrodes face each other, the periphery of the substrates is sealed with a sealing member, and a discharge gas is sealed in the internal space to form a discharge space.
  • the internal space sealed by the sealing portion around the substrate is depressurized, or the exhaust pipe for charging the discharge gas does not exist on the substrate, and the outer surface of the substrate is smooth.
  • a plasma display panel is provided.
  • a pair of substrates having electrodes are arranged so that the electrodes face each other, the periphery of the substrates is sealed with a sealing member, and a discharge gas is sealed in the internal space to form a discharge space.
  • the present invention provides a plasma display panel, wherein the substrate is sealed with a sealing glass mainly composed of vanadium oxide.
  • the sealing glass further contains phosphorus oxide, antimony oxide, and niobium oxide.
  • the sealing glass is, in terms of the following oxides, V 2 ⁇ 6 4 0-6 5 weight 0/0, P 2 0 5 1. 5 to 3 0 wt 0/0 , S b 2 ⁇ 3 5-3 0% by weight, 1 ⁇ 13 2 ⁇ 51 to 1 5% by weight, and is more preferably composed of a glass in 13_Rei 0-1 0 within the range of weight 0/0.
  • the electrodes oppose an S i 0 2 _R 2 ⁇ —R ⁇ glass substrate (R: an alkali metal element or an alkaline earth metal element) having an electrode.
  • R an alkali metal element or an alkaline earth metal element
  • the sealing portion around the substrate has a thermal expansion coefficient of 60 X 1 0 one 7 ⁇ 8 0 X 1 0- 7 / ° C
  • a plasma display panel characterized in that they are composed of a glass transition temperature 4 0 0 ° C or less is homogeneous glass phase is provided.
  • a pair of substrates having electrodes are arranged so that the electrodes face each other, the periphery of the substrates is sealed with a sealing member, a discharge gas is sealed in an internal space, and a plasma used as a discharge space is formed.
  • the amount of air bubbles in the sealing portion around the substrate is 100 or less per dragon 2 and the average bubble size is 10 ⁇ m or less. Is provided.
  • a pair of substrates having electrodes are arranged so that the electrodes face each other, the periphery of the substrates is sealed with a sealing member, and a discharge gas is sealed in an internal space and used as a discharge space.
  • the plasma display panel provided in the first to seventh inventions is preferably applied to a plasma display device.
  • the electrodes face a pair of substrates having electrodes.
  • the surroundings of the substrate are sealed with a sealing member, the discharge gas is sealed in the internal space, and the sealing member of the plasma display panel used as the discharge space is converted to oxides, V 2 0 5 4 0-6 5 wt%, P 2 0 5 1 5 ⁇ 3 0 by weight 0/0, S b 2 ⁇ a. 5 to 3 0 wt%, N b 2 0 5 1 ⁇ 1 5 wt%, P b 0 0
  • a sealing member for a plasma display panel is provided, which is made of glass in a range of up to 10% by weight.
  • a glass rod is inserted between the front substrate and the rear substrate. Heating the substrate and sealing the substrate; and reducing the pressure of the space surrounded by the front plate, the back plate, and the sealing member, and then sealing the discharge gas.
  • At least a step of forming an electrode on the front plate, a step of forming a dielectric on the electrode, and a step of forming a protective film on the dielectric Forming an electrode on the back plate, forming a partition on the back plate, forming a phosphor layer on the partition and the surface of the back plate; and forming the front plate with electrodes facing each other.
  • a method of manufacturing a plasma display panel comprising:
  • a front substrate and a rear substrate on which electrodes are respectively formed are faced so that the electrodes face each other, and the front substrate and the rear substrate are opposed to each other.
  • the glass rod is a glass mainly composed of vanadium oxide.
  • the glass rod of the tenth or eleventh invention of the present invention preferably does not include a filler made of crystalline glass.
  • the above-mentioned glass rod contains at least phosphorus oxide, antimony oxide, and dioboxide.
  • the glass rod in terms of oxide, V 2 ⁇ 5 4 0-6 5 wt%, P 2 0 6 1 5 ⁇ 3 0 wt 0/0, S b z 0 3 5 ⁇ 3 0 wt %, N b 2 ⁇ 5 1-1 5 wt%, it is preferable that P b 0 0 ⁇ 1 0 wt% range.
  • V 2 0 5 is Ri a high characteristic temperature of the glass is less than 4 0% by weight, because it causes an increase in sealing temperature, not preferred to use the plasma display panel.
  • V 2 ⁇ 5 6 5 exceeds wt%, the weather resistance poor no longer, it is impaired reliability of the glass sealing portion.
  • 2 0 5 can not easily good glass sealing crystallized in less than 1 5% by weight.
  • P 2 ⁇ 5 3 0 by weight% 3 ⁇ 4 exceeded, a higher characteristic temperature of the glass is Li, because that causes an increase in sealing temperature, not preferred for use in the plasma display panel.
  • Sb 2 0 3 is poor weather resistance is less than 5 wt%, unreliable glass sealing. On the other hand, it tends to crystallize and S b 2 ⁇ 3 exceeds 3 0 wt%, good glass sealing flame arbitrary.
  • the N b 2 0 5 is less than 1 wt%, high thermal expansion coefficient, the bonding strength or beat low, cracks may occur in the glass sealing part. On the other hand, it tends to crystallize as N b 2 ⁇ 5 exceeds 1 5 wt%, good glass sealing flame New ? If ⁇ exceeds 10% by weight, good glass sealing under vacuum or reduced pressure cannot be performed, and addition of a large amount is not preferable from the viewpoint of pollution problems.
  • FIG. 1 is a schematic diagram showing a cross section of a sealing portion of a spray panel.
  • FIG. 2 is a schematic view illustrating a method for producing a simulated sealing test piece.
  • a glass paste is used as the sealing member because the thermal expansion coefficient of the currently used sealing glass mainly composed of lead oxide is larger than the thermal expansion coefficient of the glass substrate.
  • filler for reducing the coefficient must be mixed with the lead oxide glass powder. That is, the paste made of glass powder and filler powder in an organic binder is heated and solidified and bonded at the time of joining. Silicon oxide powder is often used as a filter.
  • simulated sealing test pieces were prepared using only a glass substrate, sealing glass, and a spacer.
  • S i ⁇ 2 — R 20 — RO glass R: alkali metal element or alkali
  • Soda lime glass which is an earth metal element was used.
  • Vanadium oxide glass and lead oxide glass were used for the sealing glass.
  • the glass for sealing was prepared by mixing and mixing glass raw materials at a predetermined mixing ratio, melting and mixing at 110 ° C for 2 hours in an electric furnace, then pouring the melt into a graphite jig and quenching.
  • Table 1 shows the composition and properties of the prepared vanadium oxide glass
  • Table 2 shows the composition and properties of the lead oxide glass.
  • P b T i 0 3 is used to the filler.
  • the transition temperature and the coefficient of thermal expansion were measured using a glass processed into a 50 ⁇ 20 banded cylinder as a measurement sample using a thermal dilatometer in air at a heating rate of 5 ° C Zmin.
  • the water resistance was evaluated by the weight reduction rate when a glass piece processed into a cube with five sides was immersed in 4 Occ of distilled water at 70 ° C for 2 hours.
  • a glass rod was made of vanadium oxide glass and a glass paste was made of lead oxide glass.
  • a glass rod was prepared by putting a glass force reticle into a furnace of a fiber drawing apparatus, re-melting the fiber, drawing a fiber, and cutting the fiber into a predetermined length.
  • the glass paste was prepared by pulverizing a glass cullet with a ball mill into a glass powder, mixing the glass powder with a filler at a predetermined ratio, and then adding a vehicle (isoamyl acetate + nitrocellulose).
  • FIG. 2 (a) a test piece using vanadium oxide glass was placed on a 20 ⁇ 20 ⁇ 2.8 glass substrate 11 with a 2 ⁇ 16 ⁇ 0.2 glass rod. After placing the four pieces 3 and the spacer 12 of 10 X 10 X 0.13 in the center, as shown in Fig. 2 (b), the glass substrate 11 is put on from above and the weight 1 4 and sealed at 450 ° C. As shown in Fig. 2 (c), a test piece using lead oxide glass was coated with a glass paste 15 on a 20 x 20 x 2.8 glass substrate 11 using a dispenser. After drying, place a spacer 12 of 10 X 10 X 0.13 in the center, and as shown in Fig. 2 (d), align the glass substrate 11 from above and put a weight 14 on it. And sealed at 450 ° C.
  • Table 3 shows the properties of the obtained simulated sealing test piece.
  • the glass used for sealing has the composition shown in Tables 1 and 2 and corresponds to the sample number.
  • the cross section of the sealed portion was observed with an optical microscope, and the number and average diameter were measured.
  • the bonding strength was evaluated by cutting the panel into a rectangular parallelepiped so as to include the sealing part, and folding it at the sealing part by a three-point bending test. Table 3 Bonding strength of joint
  • the glass based on vanadium oxide of the present invention has a low transition temperature and achieves a low coefficient of thermal expansion without a filler. .
  • the sealing portion is constituted by a uniform amorphous phase, as can be seen from Table 3, the bubbles are small and small, and a large bonding strength can be obtained.
  • the transition temperature would be 4%. The temperature rises to more than 0 ° C, making it impossible to seal at low temperatures.
  • the sealing temperature is increased, it is not preferable for the plasma display panel because the substrate and the rib material are deformed.
  • Glass with a low transition temperature such as sample B, has a large coefficient of thermal expansion and cannot match the coefficient of thermal expansion of the substrate, causing cracks in the glass seal and the substrate.
  • glass such as Sample C in which the filler is mixed to lower the coefficient of thermal expansion, is widely used, but as shown in Table 3, it is necessary to mix the binder and use it as a paste. Large and many bubbles. This is reflected in the joint strength, which results in only low joint strength being obtained.
  • Glass oxidation Banajiumu composition of the present invention as a main component, or 0 amount of bubbles 1 0
  • Table 1/2 or less is a cell size mean diameter 1 ⁇ ⁇ ⁇ below, on the Since the strength of the glass itself is high, a high bonding strength of 4 OMPa or more has been obtained.
  • the reasons for limiting the composition will be explained using Tables 1 and 3.
  • the sealing temperature When S i S 2 — R 2 ⁇ R ⁇ glass is used for the substrate, the sealing temperature must be kept at a temperature that does not deform the substrate. Yes, and the transition temperature must be less than 400 ° C. Furthermore, the sample N o. As can be seen from 6-9, since the transition temperature P 2 ⁇ 6 exceeds 3 0% by weight is high, Li too sealing temperature is high, whereas, P 2 ⁇ 5 1 If the content is less than 5% by weight, crystallization occurs and the sealing portion becomes brittle, so that high bonding strength cannot be obtained. In Sample N o.
  • a plasma display panel was actually manufactured using the vanadium oxide-based glass rod of Table 1 Sample No. 1 described in Example 1 and the lead oxide-based glass paste of Table 2 Sample C as sealing members. The manufacturing method will be described below.
  • a pair of soda lime glass substrates was prepared and washed.
  • An undressed electrode pattern was formed on one of the glass substrates (back substrate) by a thick film printing method using silver paste.
  • Barrier ribs were formed by repeating thick film printing and drying using a Pb ⁇ -based glass paste.
  • a phosphor substrate was formed by a thick film printing method to obtain a back substrate on which discharge cells were formed.
  • a transparent electrode pattern was formed on the other glass substrate (front substrate).
  • ITO Indium Tin Oxide
  • pattern processing was performed after forming a film by a sputtering method.
  • a bus electrode was formed at each electrode portion of the pattern.
  • a dielectric layer was formed on the surface on which the electrodes were formed by a thick film printing method.
  • a Mg ⁇ protection film was formed on the surface of the obtained dielectric film by EB (Electron Beam) evaporation.
  • EB Electro Beam
  • the front substrate and the rear substrate were aligned, the exhaust pipe was attached, and the periphery of the substrate was sealed with glass.
  • the vanadium oxide-based glass rod is placed around the substrate on the rear substrate. It was placed and temporarily fixed. After that, the front substrate and the rear substrate were aligned with each other, and heat treatment was performed at 450 ° C. to perform sealing.
  • a lead oxide glass paste is applied to a rear substrate using a dispenser, dried, and then prebaked.
  • the exhaust pipe was attached to the rear substrate, the front substrate and the rear substrate were aligned with each other, and sealed by performing a heat treatment at 450 ° C.
  • FIG. 1 schematically shows a cross-sectional view of a sealing portion of the obtained plasma display panel. The electrodes and discharge cells seen in the actual panel cross section are not shown for simplicity.
  • FIG. 1 schematically shows a cross-sectional view of a sealing portion of the obtained plasma display panel. The electrodes and discharge cells seen in the actual panel cross section are not shown for simplicity.
  • FIG. 1 shows a plasma display panel using a vanadium oxide-based glass rod as a sealing member of the present invention, and (b) shows a plasma display panel using a lead oxide-based glass as a sealing member as a comparative example. Show the panel.
  • the sealing portion between the front substrate 1 and the rear substrate 2 of the present invention is formed of a uniform amorphous phase 3 and almost no bubbles are observed, whereas the front substrate 1 and the rear substrate 2 of the comparative example are different from each other.
  • filler 4 is mixed with glass phase 6, and many bubbles 5 are seen.
  • Table 4 shows the characteristics of the two types of plasma display panels.
  • bubbles the cross section of the sealed part was observed with an optical microscope, and the number and average diameter were examined.
  • the bonding strength was evaluated by cutting the panel into a rectangular parallelepiped so as to include the sealing part, and folding it at the sealing part by a three-point bending test. Life performs lighting test of 10,000 hours, those that do not decrease in brightness ⁇ , further c representing what reduction in X, those that do not decrease in con truss Bok Con truss Bok in the vicinity sealing portion ⁇ ⁇ X with a decrease.
  • the sealing portion of the panel of the present invention has few and small bubbles, a large bonding strength is obtained.
  • the bonding strength of 40 MPa or more was obtained in the actual panel, and the width of the sealing phase could be reduced to 1 cm or less.
  • the non-display area at the joints must be 1 cm or less.Therefore, to support a large screen of 40 inches or more, the bonding strength must be 4 OMPa or more. is necessary.
  • a glass rod made of an amorphous low-melting-point glass not containing a filler according to the present invention is used. It has been found that, for example, the sealing width and bonding strength required for a multi-panel are satisfied. Further, in the panel of the present invention, since the gas is not released from the sealing member at the time of discharge, the luminance is reduced even after a long time. As a result, it was confirmed that a good contrast could be obtained over the entire display area.
  • Example 2 In the same manner as in Example 1, a vanadium oxide glass rod having the composition of Sample No. 1 in Table 1 was produced. A plasma display panel was manufactured using this glass rod by a method different from that in Example 2, and the manufacturing method will be described below.
  • a pair of soda lime glass substrates was prepared and washed.
  • An address electrode pattern was formed on one of the glass substrates (back substrate) by a thick film printing method using silver paste.
  • a thick rib was formed by repeating printing and drying using a Pb0-based glass paste.
  • the phosphor is applied by the thick-film printing method, and at the same time, a glass rod is placed around the rear substrate, and the phosphor is heated to 500 ° C. Was fired and the glass rod was fused to the rear substrate.
  • a bus electrode, a dielectric, and a Mg ⁇ protective film were formed in the same manner as in Example 2.
  • an exhaust pipe is attached to the rear substrate, the front substrate is aligned with the rear substrate, and a heat treatment at 450 ° C is performed to remelt the glass rod fused around the rear substrate and seal it. Was done.
  • the air in the space surrounded by the substrate and the sealing member is exhausted from the exhaust pipe, and the discharge gas (mixing of Xe and Ne) is introduced into this space through this exhaust pipe. Gas). Finally, the exhaust gas was cut off (tip-off) by local heating, and the discharge gas was sealed. Thus, a plasma display panel was manufactured.
  • the method of manufacturing a plasma display panel of the present invention has a problem of the manufacturing method of Example 2 in which the glass rod is moved when the front substrate and the rear substrate are aligned by fusing the glass rod to the substrate. This has been resolved and workability has improved. As a result, a plasma display panel could be manufactured with good yield. No crystallization occurred even when the glass rod was heated to 500 ° C. Furthermore, since this glass rod is an amorphous low-melting glass that does not contain filler, it does not raise its characteristic temperature even if it is once heated to 500 ° C, and is sealed at 450 ° C. I was able to stop.
  • Example 2 In the same manner as in Example 1, a vanadium oxide glass rod having the composition of Sample No. 1 in Table 1 was produced. A plasma display panel was manufactured using this glass rod by a method different from those in Examples 2 and 3. The manufacturing method is described below.
  • Example 3 a glass rod having a discharge cell and used for sealing was used.
  • a back substrate fused with and a back substrate on which electrodes, a dielectric, and a protective film were formed.
  • both substrates were aligned so that the electrodes faced each other, and were placed in a furnace.
  • the furnace was heated to 350 ° C under reduced pressure, and then the discharge gas was sealed in the furnace.
  • the back substrate and the front substrate were heated to 450 ° C. in a furnace where the atmosphere became a discharge gas, and the glass rod fused around the back substrate was melted again and sealed.
  • the steps of attaching and burning off the exhaust pipe are not required, and the manufacturing cost can be reduced.
  • the discharge cells could be evacuated uniformly and in a short time, a plasma display panel could be manufactured with higher yield than the manufacturing methods of Examples 2 and 3. Since the glass used for the sealing portion of the present plasma display panel contained only a trace amount of lead, the sealing portion was insulative. Industrial applicability
  • a plasma display panel with a long discharge life, high contrast, and high strength can be manufactured with low cost and high yield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Glass Compositions (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

A long-discharge-life, high-contract, high-strength, and low-cost plasma display panel and a process for producing the display panel. The sealing section around the substrate of the display panel is made of a uniform amorphous phase composed mainly of a vanadium oxide. The glass composed mainly of vanadium oxide does not contain any filler and can be easily formed into a glass bar because the glass has a low coefficient of thermal expansion. When the glass bar is used for sealing the display panel, the display panel can have a long discharge life, because no gas is discharged from the sealing section. In addition, the panel is improved in contrast and discharge life and the joining strength adaptable a large screen are obtained.

Description

明 細 書  Specification
スプレイパネルおよびその製造方法 技術分野  Spray panel and method for manufacturing the same
本発明は、 τ ν, コンピュータ等の表示装置として用いられるプラズ マディスプレイパネルに係わり、 特に従来に比べて製造コス 卜の低減が 図れるプラズマディスプレイおよびその製造方法に関する。 背景技術  The present invention relates to a plasma display panel used as a display device such as a τ ν and a computer, and more particularly to a plasma display and a method for manufacturing the same, which can reduce the manufacturing cost as compared with the related art. Background art
プラズマディスプレイパネルは、 電極を有する一対の基板を電極が対 向するように配置し、 基板周囲を封止部材で密閉して放電空間を形成し、 電極群の交差部に画定される放電セルを選択的に発光可能に構成されて いる画像表示装置である。 表示装置が薄型にできること、 及び大画面の 表示装置が比較的低コス 卜で得られることなどの特徴を有することから、 家庭用の大画面壁掛けテレビゃプレゼンテ一ション用の表示装置として 今後普及することが期待されている。  In a plasma display panel, a pair of substrates having electrodes are arranged so that the electrodes face each other, the periphery of the substrates is sealed with a sealing member to form a discharge space, and discharge cells defined at intersections of the electrode groups are formed. This is an image display device configured to selectively emit light. It has features such as a thin display device and a large-screen display device that can be obtained at relatively low cost. Therefore, it will be widely used as a display device for home-use large-screen wall-mounted televisions and presentations. Is expected.
このプラズマディスプレイパネルの製造方法としては、 以下に説明す るような方法が知られている。  As a method of manufacturing this plasma display panel, the following method is known.
まず、 一対のガラス基板を用意する。 このガラス基板の一方 (背面基 板) に銀ぺ一ス トを用いた厚膜印刷法により、 アドレス電極パターンを 形成する。 このアドレス電極を形成した面に、 ディスプレイパネルの発 光単位であるセルを形成するためのセル隔壁 (バリアリブ) を、 ガラス 粉末とバインダーを混合したペース卜を厚膜印刷と乾燥を繰り返すこと により形成する。 次いで、 厚膜印刷法によって蛍光体層を形成し、 放電 セルが形成された背面基板が得られる。 他方のガラス基板 (前面基板) には、 まず透明電極パターンを形成す る。 透明電極材料としては I T〇 ( I ndium Tin Oxide ) などが用いられ る。 次に、 この電極の導電性を向上させるため、 パターンの各電極部に バス電極を形成する。 この電極を形成した面に、 厚膜印刷法によって誘 電体層を形成する。 さらに、 得られた誘電体膜表面に、 保護膜を形成す る。 保護膜としては M g 0膜を用いるのが一般的で、 E B (Electron Beam) 蒸着法により成膜する。 これにより、 前面基板が完成する。 First, a pair of glass substrates is prepared. An address electrode pattern is formed on one of the glass substrates (back substrate) by a thick film printing method using silver paste. On the surface on which the address electrodes are formed, cell barriers (barrier ribs) for forming cells, which are light emitting units of the display panel, are formed by repeating thick-film printing and drying of a paste containing a mixture of glass powder and a binder. I do. Next, a phosphor layer is formed by a thick film printing method, and a back substrate on which discharge cells are formed is obtained. First, a transparent electrode pattern is formed on the other glass substrate (front substrate). IT〇 (Indium Tin Oxide) or the like is used as a transparent electrode material. Next, a bus electrode is formed on each electrode portion of the pattern in order to improve the conductivity of this electrode. A dielectric layer is formed on the surface on which the electrodes are formed by a thick film printing method. Further, a protective film is formed on the surface of the obtained dielectric film. A MgO film is generally used as the protective film, and is formed by an EB (Electron Beam) evaporation method. Thereby, the front substrate is completed.
次に、 前面基板と背面基板を位置合わせし、 排気管の取付けと基板周 縁部のガラスによる封止を行う。 封止用ガラスとしては特開平 8— 26770 号記載のようなフィラーを含んだ P b〇系ガラスを用いるのが一般的で ある。 基板への塗布はガラスにバインダ一を加えてペース 卜状にしたも のを、 ディスペンサーと呼ばれるチューブに充填した後、 チューブ先端 からガラスペース トをひも状にガラス基板状に付着させる方法が一般的 である。 ガラスペース 卜を間に挟んで両基板間を圧着させ、 加熱するこ とによりガラスが固化して基板を封止する。 封止後、 両基板及び封止部 材で囲まれる空間内の空気を排気管から排気し、 この排気管を介してこ の空間内に放電ガスを入れる。 最後に、 排気管の焼きちぎり (チップォ フ) を行い、 放電ガスを封止する。 以上により、 プラズマディスプレイ パネルが作製される。  Next, the front substrate and the rear substrate are aligned, the exhaust pipe is attached, and the periphery of the substrate is sealed with glass. As the sealing glass, a Pb〇-based glass containing a filler as described in JP-A-8-26770 is generally used. In general, a paste is applied to a substrate by adding a binder to glass and filling it into a tube called a dispenser, and then attaching the glass paste in a string form to the glass substrate from the end of the tube. It is. The two substrates are pressed together with a glass paste in between, and the glass is solidified by heating and the substrate is sealed. After the sealing, the air in the space surrounded by both substrates and the sealing member is exhausted from the exhaust pipe, and the discharge gas is introduced into this space through the exhaust pipe. Finally, the exhaust pipe is torn off (chip off) to seal off the discharge gas. Thus, a plasma display panel is manufactured.
上記のような従来技術で製造されたプラズマディスプレイパネルは、 ガラスペース 卜を加熱して封止する際に、 ぺ一ストに含まれているバイ ンダーを完全に除くことができず、 封止部材内、 もしくは封止部材と基 板との界面部に気泡となって残っていた。 このため、 ディスプレイ電極 を放電することにより、 基板の温度が上昇すると、 封止部材からガスが 放出され、 表示画面のコン トラス トが悪くなつたり、 放電寿命を短く し てしまうという問題があった。 更に上記気泡が存在することにより、 接 合強度が小さくなってしまうという点も問題であった。 In the plasma display panel manufactured by the above-described conventional technology, when the glass paste is heated and sealed, the binder included in the paste cannot be completely removed, and the sealing member is not provided. Air bubbles remained inside or at the interface between the sealing member and the substrate. For this reason, when the temperature of the substrate rises by discharging the display electrodes, gas is released from the sealing member, which deteriorates the contrast of the display screen and shortens the discharge life. There was a problem that would. In addition, the presence of the above-mentioned air bubbles has a problem that the bonding strength is reduced.
更に、 従来の製造工程では、 封止してから排気するために、 排気管の 取付け, 焼きちぎりの必要がある上、 細かく仕切られた放電セルを均一 にかつ短時間で真空排気することが困難であった。 これに対し、 真空中 あるいは放電ガス中 (減圧下) で封止できれば、 排気管の取付け, 焼き ちぎりの工程が不要な上、 放電セルを均一にかつ短時間で真空排気する ことが可能なことから、 製造コス卜の低減および歩留まりの向上が期待 できる。 しかしながら、 P b 0系ガラスを真空中もしくは減圧下で加熱 すると、 P b〇が還元されて金属 P bが析出するために封止部の絶縁性 が失われ、 封止部に接している電極をショー トさせてしまう。 そのため、 真空中あるいは放電ガス中の封止を実現できなかった。 また、 ディスぺ ンサ一を用いて封止する方法では、 加熱時にバイ ンダ一が揮発するため に十分な真空度が得られず、 放電ガスを効率的に封入できなかった。 さ らに、 揮発したバインダ一によりセル内が汚染されるといった問題があ つた。  Furthermore, in the conventional manufacturing process, it is necessary to install an exhaust pipe and burn off the gas after sealing and exhausting, and it is difficult to evacuate the finely divided discharge cells uniformly and in a short time. Met. On the other hand, if it is possible to seal in a vacuum or in a discharge gas (under reduced pressure), it is not necessary to attach an exhaust pipe and to burn off, and it is possible to evacuate the discharge cell uniformly and in a short time. Therefore, reduction in manufacturing cost and improvement in yield can be expected. However, when the Pb0-based glass is heated in a vacuum or under reduced pressure, Pb〇 is reduced and metal Pb is deposited, so that the insulation of the sealing portion is lost and the electrode in contact with the sealing portion is lost. Will be shorted. Therefore, sealing in a vacuum or in a discharge gas could not be realized. In addition, in the method of sealing using a capacitor, a sufficient degree of vacuum was not obtained because the binder volatilized during heating, and the discharge gas could not be efficiently filled. In addition, there was a problem that the inside of the cell was contaminated by the volatile binder.
本発明の第 1 の目的は、 減圧雰囲気中で加熱封止可能とすることによ り、 製造工程を簡略化し、 プラズマディスプレイパネルの製造コスト低 減を図-ることにある。  A first object of the present invention is to simplify the manufacturing process and reduce the manufacturing cost of a plasma display panel by enabling heat sealing in a reduced-pressure atmosphere.
更に本発明の第 2の目的は、 表示画像のコン トラス トが良く、 放電寿 命が長く、 かつ強度的信頼性の高いプラズマディスプレイパネルおよび その製造方法を提供することにある。 発明の開示  Further, a second object of the present invention is to provide a plasma display panel having good contrast of a displayed image, a long discharge life, and high strength and reliability, and a method of manufacturing the same. Disclosure of the invention
上記目的を達成するため、 本発明の第 1 の発明では、 電極を有する一 対の基板を電極が対向するように配置し、 基板周囲を封止部材で密閉し、 内部空間に放電ガスを封入して放電空間として用いるプラズマディスプ レイパネルにおいて、 前記基板周囲の封止部が均一な非晶質相から構成 されることを特徴とするプラズマディスプレイパネルが提供される。 また、 本発明の第 2の発明では、 電極を有する一対の基板を電極が対 向するように配置し、 基板周囲を封止部材で密閉し、 内部空間に放電ガ スを封入して放電空間として用いるプラズマディスプレイパネルにおい て、 前記一対の基板のうちの画像情報を表示する側の基板面積に対し有 効表示面積が 9 0〜 9 5 %の範囲であることを特徴とするプラズマディ スプレイパネルが提供される。 In order to achieve the above object, according to a first aspect of the present invention, there is provided an electrode having an electrode. In a plasma display panel in which a pair of substrates are arranged so that electrodes face each other, the periphery of the substrates is sealed with a sealing member, and a discharge gas is sealed in an internal space and used as a discharge space, the sealing portion around the substrates is uniform. A plasma display panel characterized by being composed of an amorphous phase is provided. Further, in the second invention of the present invention, a pair of substrates having electrodes are arranged so that the electrodes face each other, the periphery of the substrates is sealed with a sealing member, and a discharge gas is sealed in the internal space to form a discharge space. A plasma display panel, wherein the effective display area is in the range of 90 to 95% of the area of the pair of substrates on the side displaying image information of the pair of substrates. Is provided.
また、 本発明の第 3の発明では、 電極を有する一対の基板を電極が対 向するように配置し、 基板周囲を封止部材で密閉し、 内部空間に放電ガ スを封入して放電空間として用いるプラズマディスプレイパネルにおい て、 前記基板周囲の封止部で封入された内部空間を減圧し、 または放電 ガスを封入する排気管が前記基板上に存在せず、 前記基板の外表面が平 滑であることを特徴とするプラズマディスプレイパネルが提供される。  In the third aspect of the present invention, a pair of substrates having electrodes are arranged so that the electrodes face each other, the periphery of the substrates is sealed with a sealing member, and a discharge gas is sealed in the internal space to form a discharge space. In the plasma display panel used as the above, the internal space sealed by the sealing portion around the substrate is depressurized, or the exhaust pipe for charging the discharge gas does not exist on the substrate, and the outer surface of the substrate is smooth. A plasma display panel is provided.
また、 本発明の第 4の発明では、 電極を有する一対の基板を電極が対 向するように配置し、 基板周囲を封止部材で密閉し、 内部空間に放電ガ スを封入して放電空間として用いるプラズマディスプレイパネルにおい て、 前記基板が酸化バナジウムを主体とする封着用ガラスで封止されて いることを特徴とするプラズマディスプレイパネルが提供される。  In the fourth invention of the present invention, a pair of substrates having electrodes are arranged so that the electrodes face each other, the periphery of the substrates is sealed with a sealing member, and a discharge gas is sealed in the internal space to form a discharge space. The present invention provides a plasma display panel, wherein the substrate is sealed with a sealing glass mainly composed of vanadium oxide.
第 4の発明において、 封着用ガラスが、 更に酸化リン, 酸化アンチモ ン, 酸化ニオブを含むことが好ましい。  In the fourth invention, it is preferable that the sealing glass further contains phosphorus oxide, antimony oxide, and niobium oxide.
更に、 第 4の発明においては、 封着用ガラスが、 以下の酸化物に換算 して、 V 26 4 0〜 6 5重量0 /0, P 2 0 5 1 5〜 3 0重量0 /0, S b 23 5 〜 3 0重量%, 1^ 13 25 1 〜 1 5重量%, 13〇 0 〜 1 0重量0 /0 の範囲内にあるガラスから構成されることがより好ましい。 Further, in the fourth invention, the sealing glass is, in terms of the following oxides, V 26 4 0-6 5 weight 0/0, P 2 0 5 1. 5 to 3 0 wt 0/0 , S b 23 5-3 0% by weight, 1 ^ 13 251 to 1 5% by weight, and is more preferably composed of a glass in 13_Rei 0-1 0 within the range of weight 0/0.
また、 本発明の第 5の発明では、 電極を有するー对の S i 0 2 _ R 2〇 — R〇系ガラス基板 (R : アルカリ金属元素またはアルカリ土類金属元 素) を電極が対向するように配置し、 基板周囲を封止部材で密閉し、 内 部空間に放電ガスを封入して放電空間として用いるプラズマディスプレ ィパネルにおいて、 前記基板周囲の封止部が熱膨張係数 6 0 X 1 0一7 〜 8 0 X 1 0— 7 / °C, ガラス転移温度 4 0 0 °C以下である均一なガラス相 から構成されることを特徴とするプラズマディスプレイパネルが提供さ れる。 Further, in the fifth invention of the present invention, the electrodes oppose an S i 0 2 _R 2 〇—R〇 glass substrate (R: an alkali metal element or an alkaline earth metal element) having an electrode. In a plasma display panel used as a discharge space by sealing the periphery of the substrate with a sealing member and enclosing a discharge gas in the internal space, the sealing portion around the substrate has a thermal expansion coefficient of 60 X 1 0 one 7 ~ 8 0 X 1 0- 7 / ° C, a plasma display panel, characterized in that they are composed of a glass transition temperature 4 0 0 ° C or less is homogeneous glass phase is provided.
本発明の第 6の発明では、 電極を有する一対の基板を電極が対向する ように配置し、 基板周囲を封止部材で密閉し、 内部空間に放電ガスを封 入して放電空間として用いるプラズマディスプレイパネルにおいて、 前 記基板周囲の封止部の気泡量が 1 0 0個/龍2 以下であり、 かつ気泡サ ィズが平均径 1 0 μ m以下であることを特徴とするプラズマディスプレ ィパネルが提供される。 In the sixth aspect of the present invention, a pair of substrates having electrodes are arranged so that the electrodes face each other, the periphery of the substrates is sealed with a sealing member, a discharge gas is sealed in an internal space, and a plasma used as a discharge space is formed. In the display panel, the amount of air bubbles in the sealing portion around the substrate is 100 or less per dragon 2 and the average bubble size is 10 μm or less. Is provided.
本発明の第 7の発明では、 電極を有する一対の基板を電極が対向する ように配置し、 基板周囲を封止部材で密閉し、 内部空間に放電ガスを封 入して放電空間として用いるプラズマディスプレイパネルにおいて、 前 記基板周囲の封止部の接合強度が 3点曲げ試験で 4 O M P a以上であつ て、 かつ封止相の幅が 1 cm以下であることを特徴とするプラズマディス プレイパネルが提供される。  In a seventh aspect of the present invention, a pair of substrates having electrodes are arranged so that the electrodes face each other, the periphery of the substrates is sealed with a sealing member, and a discharge gas is sealed in an internal space and used as a discharge space. A plasma display panel, wherein the bonding strength of the sealing portion around the substrate is 4 OMPa or more in a three-point bending test and the width of the sealing phase is 1 cm or less. Is provided.
上記第 1〜第 7の発明で提供されるプラズマディスプレイパネルは、 プラズマディスプレイ表示装置に適用されることが好ましい。  The plasma display panel provided in the first to seventh inventions is preferably applied to a plasma display device.
本発明の第 8の発明では、 電極を有する一対の基板を電極が対向する ように配置し、 基板周囲を封止部材で密閉し、 内部空間に放電ガスを封 入して放電空間として用いるプラズマディスプレイパネルの封止部材が、 酸化物に換算して、 V 2 0 5 4 0〜 6 5重量%, P 2 0 5 1 5〜 3 0重 量0 /0, S b 2a 5〜 3 0重量%, N b 2 0 5 1〜 1 5重量%, P b 0 0〜 1 0重量%の範囲であるガラスから構成されることを特徴とするプ ラズマディスプレイパネルの封止部材が提供される。 In the eighth invention of the present invention, the electrodes face a pair of substrates having electrodes. The surroundings of the substrate are sealed with a sealing member, the discharge gas is sealed in the internal space, and the sealing member of the plasma display panel used as the discharge space is converted to oxides, V 2 0 5 4 0-6 5 wt%, P 2 0 5 1 5~ 3 0 by weight 0/0, S b 2a. 5 to 3 0 wt%, N b 2 0 5 1~ 1 5 wt%, P b 0 0 A sealing member for a plasma display panel is provided, which is made of glass in a range of up to 10% by weight.
本発明の第 9の発明では、 電極をそれぞれ形成した前面基板と背面基 板とを、 該電極が対向するように向き合わせた後、 該前面基板と該背面 基板の間にガラス棒を該基板周囲に配置し、 該基板を加熱して封止する 工程と、 前記前面板と前記背面板と封止部材とで囲まれる空間を減圧し た後、 放電ガスを封入する工程と、 を含むことを特徴とするプラズマデ ィスプレイパネルの製造方法が提供される。  According to a ninth aspect of the present invention, after a front substrate and a rear substrate on which electrodes are respectively formed are opposed so that the electrodes face each other, a glass rod is inserted between the front substrate and the rear substrate. Heating the substrate and sealing the substrate; and reducing the pressure of the space surrounded by the front plate, the back plate, and the sealing member, and then sealing the discharge gas. A method for manufacturing a plasma display panel is provided.
本発明の第 1 0の発明では、 少なく とも、 前面板に電極を形成するェ 程と、 前記電極上に誘電体を成膜する工程と、 前記誘電体上に保護膜を 成膜する工程と、 背面板に電極を形成する工程と、 前記背面板上に隔壁 を形成する工程と、 前記隔壁および背面板表面に蛍光体層を形成するェ 程と、 電極を対向させた前記前面板と前記背面板との間にガラス棒を該 基板周囲に配置した後、 加熱して封止する工程と、 前記前面板と前記背 面板と-封止部材とで囲まれる空間を減圧した後、 放電ガスを封入するェ 程と、 を含むことを特徴とするプラズマディスプレイパネルの製造方法 が提供される。  In the tenth aspect of the present invention, at least a step of forming an electrode on the front plate, a step of forming a dielectric on the electrode, and a step of forming a protective film on the dielectric Forming an electrode on the back plate, forming a partition on the back plate, forming a phosphor layer on the partition and the surface of the back plate; and forming the front plate with electrodes facing each other. Disposing a glass rod between the back plate and the substrate, heating and sealing; and reducing the pressure of the space surrounded by the front plate, the back plate and the sealing member, And a method of manufacturing a plasma display panel, comprising:
本発明の第 1 1 の発明では、 内部空間を減圧可能な加熱炉中で、 電極 をそれぞれ形成した前面基板と背面基板とを、 該電極が対向するように 向き合わせ、 該前面基板と該背面基板の間にガラス棒を該基板周囲に配 置したものを、 該加熱炉を減圧した後、 該基板を加熱して封止する工程 と、 該加熱炉中に放電ガスを導入することによリ該前面基板と該背面基 板の間に放電ガスを封入する工程と、 を含むことを特徴とするプラズマ ディスプレイパネルの製造方法が提供される。 According to the eleventh aspect of the present invention, in a heating furnace capable of reducing the internal space, a front substrate and a rear substrate on which electrodes are respectively formed are faced so that the electrodes face each other, and the front substrate and the rear substrate are opposed to each other. A process in which a glass rod is placed between substrates around the substrate, and after the heating furnace is depressurized, the substrate is heated and sealed. And a step of introducing a discharge gas into the heating furnace to enclose the discharge gas between the front substrate and the rear substrate, thereby providing a method of manufacturing a plasma display panel. .
本発明の第 1 0又は第 1 1の発明において、 ガラス棒が酸化バナジゥ ムを主成分とするガラスであることが好ましい。  In the tenth or eleventh aspect of the present invention, it is preferable that the glass rod is a glass mainly composed of vanadium oxide.
更に、 本発明の第 1 0又は第 1 1の発明のガラス棒が結晶質ガラスか らなるフイラ一を含まないことが好ましい。  Further, the glass rod of the tenth or eleventh invention of the present invention preferably does not include a filler made of crystalline glass.
更に上記ガラス棒が、 少なく とも酸化リン, 酸化アンチモン, 酸化二 ォブを含むことが好ましい。  Further, it is preferable that the above-mentioned glass rod contains at least phosphorus oxide, antimony oxide, and dioboxide.
また、 上記ガラス棒が、 酸化物に換算して、 V25 4 0〜 6 5重量 %, P 206 1 5〜 3 0重量0 /0, S bz 03 5〜 3 0重量%, N b25 1〜 1 5重量%, P b 0 0〜 1 0重量%の範囲であることが好ましい。 ここで、 上記のように封着部材の組成範囲を限定した理由を各成分に ついて述べる。 V205が 4 0重量%未満ではガラスの特性温度が高くな り、 封着温度の上昇を招くため、 プラズマディスプレイパネルに使用す るには好ましくない。 一方、 V25が 6 5重量%を超えると耐候性が悪 くなり、 ガラス封止部の信頼性が損なわれる。 205が 1 5重量%未満 では結晶化し易く良好なガラス封止ができない。 一方、 P25が 3 0重 量% ¾超えるとガラスの特性温度が高くなリ、 封着温度の上昇を招くた め、 プラズマディスプレイパネルに使用するには好ましくない。 Sb203 が 5重量%未満では耐候性が悪く、 ガラス封止の信頼性に欠ける。 一方、 S b23が 3 0重量%を超えると結晶化し易く、 良好なガラス封止が難 しい。 N b 205が 1重量%未満では、 熱膨張率が大きく、 接合強度が低 下したり、 ガラス封止部にクラックが発生することがある。 一方、 N b25が 1 5重量%を超えると結晶化し易く、 良好なガラス封止が難 しい。 ? 〇が 1 0重量%を超えると真空または減圧下での良好なガラ ス封止ができない上に、 公害問題の観点からも多量の添加は好ましくな い。 図面の簡単な説明 Further, the glass rod, in terms of oxide, V 25 4 0-6 5 wt%, P 2 0 6 1 5~ 3 0 wt 0/0, S b z 0 3 5~ 3 0 wt %, N b 25 1-1 5 wt%, it is preferable that P b 0 0~ 1 0 wt% range. Here, the reasons for limiting the composition range of the sealing member as described above will be described for each component. V 2 0 5 is Ri a high characteristic temperature of the glass is less than 4 0% by weight, because it causes an increase in sealing temperature, not preferred to use the plasma display panel. On the other hand, V 25 6 5 exceeds wt%, the weather resistance poor no longer, it is impaired reliability of the glass sealing portion. 2 0 5 can not easily good glass sealing crystallized in less than 1 5% by weight. On the other hand, P 25 3 0 by weight% ¾ exceeded, a higher characteristic temperature of the glass is Li, because that causes an increase in sealing temperature, not preferred for use in the plasma display panel. Sb 2 0 3 is poor weather resistance is less than 5 wt%, unreliable glass sealing. On the other hand, it tends to crystallize and S b 23 exceeds 3 0 wt%, good glass sealing flame arbitrary. The N b 2 0 5 is less than 1 wt%, high thermal expansion coefficient, the bonding strength or beat low, cracks may occur in the glass sealing part. On the other hand, it tends to crystallize as N b 25 exceeds 1 5 wt%, good glass sealing flame New ? If 〇 exceeds 10% by weight, good glass sealing under vacuum or reduced pressure cannot be performed, and addition of a large amount is not preferable from the viewpoint of pollution problems. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 スプレイパネルの封止部の断面を表す模式図 である。  FIG. 1 is a schematic diagram showing a cross section of a sealing portion of a spray panel.
第 2図は、 模擬封止試験片の作製方法を表す模式図である。 発明を実施するための最良の形態  FIG. 2 is a schematic view illustrating a method for producing a simulated sealing test piece. BEST MODE FOR CARRYING OUT THE INVENTION
従来技術において、 封着部材としてガラスペース 卜を用いるのは、 現 在用いられている酸化鉛を主体とする封着ガラスの熱膨張係数がガラス 基板の熱膨張係数に比べて大きいため、 熱膨張係数を小さくするための フィラ一を酸化鉛ガラス粉末に混合しなくてはならないためである。 す なわち、 ガラス粉末とフィラー粉末を有機系バインダ一でペース 卜状に したものを、 接合時に加熱して固化, 接着する。 フイラ一としては、 酸 化珪素粉末が多く用いられている。  In the prior art, a glass paste is used as the sealing member because the thermal expansion coefficient of the currently used sealing glass mainly composed of lead oxide is larger than the thermal expansion coefficient of the glass substrate. This is because filler for reducing the coefficient must be mixed with the lead oxide glass powder. That is, the paste made of glass powder and filler powder in an organic binder is heated and solidified and bonded at the time of joining. Silicon oxide powder is often used as a filter.
それに対して、 本発明では熱膨張係数がガラス基板に近いバナジウム 系ガラスを封着材として用いるため、 ペース卜状にする必要がないとい う特徴がある。 以下に、 本発明の実施例を述べる。  On the other hand, in the present invention, since a vanadium-based glass having a thermal expansion coefficient close to that of a glass substrate is used as a sealing material, there is a feature that it is not necessary to form a paste. Hereinafter, examples of the present invention will be described.
(実施例 1 )  (Example 1)
各種組成のガラスがプラズマディスプレイパネルの封止部材として適 当であるかどうかを判別するために、 ガラス基板と封止用ガラスとスぺ —サだけで模擬封止試験片を作製した。 ガラス基板とスぺーザには、 S i 〇2— R 2 0— R O系ガラス (R : アルカリ金属元素またはアルカリ 土類金属元素) であるソーダライムガラスを用いた。 封止用ガラスには 酸化バナジウム系ガラスと酸化鉛系ガラスを用いた。 In order to determine whether glasses of various compositions are suitable as sealing members for plasma display panels, simulated sealing test pieces were prepared using only a glass substrate, sealing glass, and a spacer. S i 〇 2 — R 20 — RO glass (R: alkali metal element or alkali) Soda lime glass which is an earth metal element) was used. Vanadium oxide glass and lead oxide glass were used for the sealing glass.
封止用ガラスは所定の配合比でガラス原料を配合および混合し、 電気 炉中 1 1 0 0 °Cで 2時間熔融, 混合した後、 融液を黒鉛治具に流し込み 急冷することにより作製した。 作製した酸化バナジゥム系ガラスの組成 と特性とを第 1表に、 酸化鉛系ガラスの組成と特性とを第 2表に示す。 ここで第 2表中、 試料 Cは低熱膨張化のため、 フィラーに P b T i 0 3 を用いている。 転移温度, 熱膨張係数については、 5 0 X 2 0匪の円柱 に加工したガラスを測定試料として、 熱膨張計を用いて、 空気中、 昇温 速度 5 °C Zmin で測定した。 耐水性については、 一辺が 5匪の立方体に 加工したガラス片を 7 0 °Cの蒸留水 4 O ccに 2時間浸したときの重量減 少率で評価した。 また、 作製したガラスを封止に用いるために、 酸化バ ナジゥム系ガラスでガラス棒を、 酸化鉛系ガラスでガラスペース 卜を作 製した。 ガラス棒はガラス力レツ 卜をフアイバ一線引き装置の炉内に入 れ、 再瑢融させてファイバーを引き、 所定の長さに切断して作製した。 ガラスペース 卜はガラスカレッ トをボールミルで粉砕しガラス粉末とし, ガラス粉末とフィラーとを所定の比率で混合し、 さらにビークル (酢酸 イソアミル +ニトロセルロース) を添加することにより作製した。 The glass for sealing was prepared by mixing and mixing glass raw materials at a predetermined mixing ratio, melting and mixing at 110 ° C for 2 hours in an electric furnace, then pouring the melt into a graphite jig and quenching. . Table 1 shows the composition and properties of the prepared vanadium oxide glass, and Table 2 shows the composition and properties of the lead oxide glass. Here in Table 2, for Sample C a low thermal expansion, is used P b T i 0 3 to the filler. The transition temperature and the coefficient of thermal expansion were measured using a glass processed into a 50 × 20 banded cylinder as a measurement sample using a thermal dilatometer in air at a heating rate of 5 ° C Zmin. The water resistance was evaluated by the weight reduction rate when a glass piece processed into a cube with five sides was immersed in 4 Occ of distilled water at 70 ° C for 2 hours. In addition, in order to use the produced glass for sealing, a glass rod was made of vanadium oxide glass and a glass paste was made of lead oxide glass. A glass rod was prepared by putting a glass force reticle into a furnace of a fiber drawing apparatus, re-melting the fiber, drawing a fiber, and cutting the fiber into a predetermined length. The glass paste was prepared by pulverizing a glass cullet with a ball mill into a glass powder, mixing the glass powder with a filler at a predetermined ratio, and then adding a vehicle (isoamyl acetate + nitrocellulose).
第 1表 式 試料組成 (重量%) 転移温度 熱膨張係数 耐水性 o. v2o5 P20B Sb203 Nb206 PbO (°C) (10~V°C) (%)Table 1 Formula Sample composition (% by weight) Transition temperature Coefficient of thermal expansion Water resistance o.v 2 o 5 P 2 0 B Sb 2 0 3 Nb 2 0 6 PbO (° C) (10 to V ° C) (%)
1 53 22 15 5 5 344 71 ぐ 0.011 53 22 15 5 5 344 71 g 0.01
2 66 15 9 5 5 300 65 0.102 66 15 9 5 5 300 65 0.10
3 60 15 13 5 5 320 68 ぐ 0.013 60 15 13 5 5 320 68 g 0.01
4 45 30 15 5 5 371 70 <0.014 45 30 15 5 5 371 70 <0.01
5 39 30 21 5 5 435 67 <0.015 39 30 21 5 5 435 67 <0.01
6 61 14 15 5 5 322 68 <0.016 61 14 15 5 5 322 68 <0.01
7 55 20 15 5 5 334 71 <0.017 55 20 15 5 5 334 71 <0.01
8 50 25 15 5 5 350 73 <0.018 50 25 15 5 5 350 73 <0.01
9 44 31 15 5 5 405 70 <0.019 44 31 15 5 5 405 70 <0.01
1 0 56 30 4 5 5 330 70 0.311 0 56 30 4 5 5 330 70 0.31
1 1 55 30 5 5 5 333 71 ぐ 0.011 1 55 30 5 5 5 333 71 g 0.01
1 2 45 15 30 5 5 371 70 <0.011 2 45 15 30 5 5 371 70 <0.01
1 3 44 15 31 5 5 376 69 <0.011 3 44 15 31 5 5 376 69 <0.01
1 59.5 20 15 0.5 5 323 86 <0.011 59.5 20 15 0.5 5 323 86 <0.01
1 5 59 20 15 1 5 325 80 <0.011 5 59 20 15 1 5 325 80 <0.01
1 6― 45 20 15 15 5 371 63 <0.011 6− 45 20 15 15 5 371 63 <0.01
1 7 44 20 15 16 5 376 59 く 0.011 7 44 20 15 16 5 376 59 ku 0.01
1 8 55 23 20 2 346 77 く 0.01 第 2表 1 8 55 23 20 2 346 77 ku 0.01 Table 2
Figure imgf000013_0001
Figure imgf000013_0001
模擬封止試験片の作製方法を第 2図を用いて説明する。 酸化バナジゥ ム系ガラスを用いた試験片は、 第 2図( a )のように 2 0 X 2 0 X 2. 8 のガラス基板 1 1の上に 2 X 1 6 X 0. 2のガラス棒 1 3 を 4本配置し、 1 0 X 1 0 X 0. 1 3 のスぺ一サ 1 2 を中央に配置した後、 第 2図( b ) のようにガラス基板 1 1 を上から合わせ重り 1 4 をのせて 4 5 0 °Cで封 止して作製した。 酸化鉛系ガラスを用いた試験片は、 第 2図( c )のよう に 2 0 X 2 0 X 2. 8 のガラス基板 1 1 の上にディスペンサーを用いて ガラスペース 卜 1 5 を塗布し、 乾燥させた後、 1 0 X 1 0 X 0. 1 3 の スぺ一サ 1 2 を中央に配置し、 第 2図( d )のようにガラス基板 1 1 を上 から合わせ重り 1 4 をのせて 4 5 0 °Cで封止して作製した。  The method for producing the simulated sealing test piece will be described with reference to FIG. As shown in FIG. 2 (a), a test piece using vanadium oxide glass was placed on a 20 × 20 × 2.8 glass substrate 11 with a 2 × 16 × 0.2 glass rod. After placing the four pieces 3 and the spacer 12 of 10 X 10 X 0.13 in the center, as shown in Fig. 2 (b), the glass substrate 11 is put on from above and the weight 1 4 and sealed at 450 ° C. As shown in Fig. 2 (c), a test piece using lead oxide glass was coated with a glass paste 15 on a 20 x 20 x 2.8 glass substrate 11 using a dispenser. After drying, place a spacer 12 of 10 X 10 X 0.13 in the center, and as shown in Fig. 2 (d), align the glass substrate 11 from above and put a weight 14 on it. And sealed at 450 ° C.
得られた模擬封止試験片の諸特性を第 3表に示す。 封止に用いたガラ スは第 1表, 第 2表の組成のもので試料 No.も対応している。 なお、 気 泡に関しては封着部の断面を光学顕微鏡で観察し、 その数と平均径を調 ベた。 接合強度については封着部を含むようにパネルを直方体に切り出 し、 3点曲げ試験によって封着部で折って評価した。 第 3表 式枓 接合部の 接合強度 気泡 Table 3 shows the properties of the obtained simulated sealing test piece. The glass used for sealing has the composition shown in Tables 1 and 2 and corresponds to the sample number. For the bubbles, the cross section of the sealed portion was observed with an optical microscope, and the number and average diameter were measured. The bonding strength was evaluated by cutting the panel into a rectangular parallelepiped so as to include the sealing part, and folding it at the sealing part by a three-point bending test. Table 3 Bonding strength of joint
No. 状況 (M P a ) 数(個 腿 I2) 平均径(μ m) No. Status (MP a) the number (pieces thigh I 2) Mean diameter (mu m)
1 良好 66 50 3 1 Good 66 50 3
2 良好 58 60 4 2 Good 58 60 4
3 良好 59 50 3 3 Good 59 50 3
4 良好 49 60 3 4 Good 49 60 3
5 接合せず ― ― 一 5 Not joined ― ― one
6 結晶化 10 80 5 6 Crystallization 10 80 5
7 良好 61 50 3 7 Good 61 50 3
8 良好 60 50 3 8 Good 60 50 3
9 接合せず ― 一 一 9 No bonding-1
1 0 良好 55 5.0 4 1 0 Good 55 5.0 4
1 1 良好 57 50 3 1 1 Good 57 50 3
1 2 良好 47 60 3 1 2 Good 47 60 3
1 3 結晶化 8 80 51 3 Crystallization 8 80 5
1 4 良好 20 70 6 1 4 Good 20 70 6
1 5 良好 51 50 3 1 5 Good 51 50 3
- 1 6 良好 43 60 3 -1 6 Good 43 60 3
1 7 結晶化 9 90 9  1 7 Crystallization 9 90 9
1 8 良好 62 52 31 8 Good 62 52 3
A 接合せず A without joining
B クラック 10 700 50  B crack 10 700 50
C 良好 34 500 C good 34 500
30 第 1表の試料 N o. 1, 3, 4からわかるように、 本発明の酸化バナジ ゥムを主成分とするガラスは低い転移温度を持ち、 フィラーなしで低い 熱膨張係数を実現している。 この結果、 封止部が均一な非晶質相によつ て構成されるため、 第 3表からわかるように、 気泡が小さい上に少なく、 大きな接合強度が得られる。 これに対し、 従来から封止に用いられてき た P b〇系ガラスについては、 第 2表, 第 3表の試料 Aのように小さい 熱膨張係数をフイラ一なしで実現すると、 転移温度が 4 0 0 °C以上に高 くなり、 低温では封着できなくなる。 封着温度が上がるとプラズマディ スプレイパネルにおいては、 基板やリブ材の変形を招くので好ましくな い。 試料 Bのように転移温度の低いガラスは熱膨張係数が大きく、 基板 の熱膨張係数とのマッチングがとれないために、 ガラス封止部や基板に クラックが入る。 そこでフィラ一を混合して熱膨張係数を下げた試料 C のようなガラスが広く一般的に用いられているが、 バインダ一を混ぜて ペース 卜にして用いるために第 3表に示したように気泡が大きくかつ多 い。 このことが接合強度に反映されて、 低い接合強度しか得られないと いう結果になっている。 本発明の組成の酸化バナジゥムを主成分とする ガラスは、 第 1表からわかるように気泡量 1 0 0個/ 2 以下であり、 かつ気泡サイズが平均径 1 Ο μ πι以下であり、 その上ガラス自身の強度 が高いので 4 O M P a以上の高い接合強度が得られている。 ここで第 1 表, 第 3表を用いて組成限定の理由を説明する。 試料 N o. 2のように V 25が 6 5重量%を超えると耐水性が悪くなり、 ガラス封止部の信頼 性に欠ける。 また、 試料 N o. 5のように V 25が 4 0重量 より少ない と転移温度が高くなリ、 封着温度が高くなり過ぎ、 プラズマディスプレ ィパネルの封止には適切でない。 S i 〇 2 — R 2〇一 R〇系ガラスを基板 に用いる場合には、 封着温度を基板を変形させない温度に抑える必要が あり、 転移温度として 4 0 0 °C以下である必要がある。 さらに、 試料 N o . 6〜 9からわかるように、 P 26が 3 0重量%を超えると転移温度 が高くなるため、 封着温度が高くなリ過ぎ、 一方、 P 25が 1 5重量% 未満では結晶化を起こして封止部が脆くなり、 高い接合強度が得られな くなる。 また、 試料 N o. 1 0〜 1 3からわかるように、 S b 23が 3 0 重量%を超えると結晶化を起こして高い接合強度が得られず、 一方、 5 重量%未満では耐水性が悪くなる。 また、 試料 N o. 1 4〜 1 7からわか るように、 N b 25が 1 5重量%を超えると結晶化を起こす上に熱膨張 係数が小さくなり過ぎるために封止部に圧縮応力がかかり高い接合強度 が得られず、 N b 25が 1重量%未満では、 逆に熱膨張係数が大きく、 封止部に引張り応力がかかりやはり高い接合強度が得られない。 なお、 この結果から、 ソ一ダライムガラスのような S i 〇2— R 2〇一 R〇系ガ ラスを基板に用いる場合には、 十分な接合強度を得るためには封止部の 熱膨張係数が 6 0 X 1 0一7〜 8 0 X 1 0— 7 Z°Cの範囲内にあることが必 要であり、 本発明組成のガラスによってそれが達成されることがわかる c なお、 試料 N 0 . 1 8のように P b〇を添加しなく ともプラズマディスプ レイパネルの封止に適したガラスの作製が可能であり、 公害上の問題か ら P b〇の添加量はできるだけ低く抑えることが好ましい。 30 As can be seen from Samples Nos. 1, 3, and 4 in Table 1, the glass based on vanadium oxide of the present invention has a low transition temperature and achieves a low coefficient of thermal expansion without a filler. . As a result, since the sealing portion is constituted by a uniform amorphous phase, as can be seen from Table 3, the bubbles are small and small, and a large bonding strength can be obtained. On the other hand, in the case of Pb〇-based glass that has been used for sealing in the past, if a small thermal expansion coefficient was realized without a filler as in Sample A in Tables 2 and 3, the transition temperature would be 4%. The temperature rises to more than 0 ° C, making it impossible to seal at low temperatures. If the sealing temperature is increased, it is not preferable for the plasma display panel because the substrate and the rib material are deformed. Glass with a low transition temperature, such as sample B, has a large coefficient of thermal expansion and cannot match the coefficient of thermal expansion of the substrate, causing cracks in the glass seal and the substrate. For this reason, glass such as Sample C, in which the filler is mixed to lower the coefficient of thermal expansion, is widely used, but as shown in Table 3, it is necessary to mix the binder and use it as a paste. Large and many bubbles. This is reflected in the joint strength, which results in only low joint strength being obtained. Glass oxidation Banajiumu composition of the present invention as a main component, or 0 amount of bubbles 1 0 As can be seen from Table 1/2 or less, and is a cell size mean diameter 1 Ο μ πι below, on the Since the strength of the glass itself is high, a high bonding strength of 4 OMPa or more has been obtained. Here, the reasons for limiting the composition will be explained using Tables 1 and 3. Sample N o. V 25 as 2 exceeds 6 5 wt%, the water resistance is deteriorated, unreliable glass sealing portion. If V 2 〇5 is less than 40% by weight, as in sample No. 5 , the transition temperature becomes too high, and the sealing temperature becomes too high, which is not suitable for sealing plasma display panels. When S i S 2 — R 2 〇 R〇 glass is used for the substrate, the sealing temperature must be kept at a temperature that does not deform the substrate. Yes, and the transition temperature must be less than 400 ° C. Furthermore, the sample N o. As can be seen from 6-9, since the transition temperature P 26 exceeds 3 0% by weight is high, Li too sealing temperature is high, whereas, P 25 1 If the content is less than 5% by weight, crystallization occurs and the sealing portion becomes brittle, so that high bonding strength cannot be obtained. In Sample N o. 1 as seen from 0 to 1 3, S b 23 3 0 wt% greater than a is not obtained a high bonding strength cause crystallization, whereas, water is less than 5 wt% Worse. Further, the sample N o. 1. 4 to 1 7 KaraWaka so that the compression on the sealing portion to the thermal expansion coefficient becomes too small on the cause and crystallization N b 25 exceeds 1 5 wt% stress takes high without bonding strength can be obtained, N b in 25 is less than 1 wt%, the thermal expansion coefficient is large in the opposite, not too high bonding strength takes tensile stress in the sealing portion can be obtained. Incidentally, from this result, S i 〇 2 as source one da-lime glass - in the case of using R 2 〇 one R_〇 system glass substrate, in order to obtain a sufficient bonding strength of the sealing portion heat the expansion coefficient in the range of 6 0 X 1 0 one 7 ~ 8 0 X 1 0- 7 Z ° C is required, c Note it can be seen that it is achieved by the glass of the present invention the composition, It is possible to produce glass suitable for plasma display panel sealing without adding Pb〇 as in sample N 0.18, and keep the amount of Pb〇 as low as possible due to pollution problems. Is preferred.
(実施例 2 )  (Example 2)
実施例 1 で説明した第 1表試料 N o. 1 の酸化バナジウム系ガラス棒と 第 2表試料 Cの酸化鉛系ガラスペース 卜を封止部材に用いて実際にブラ ズマディスプレイパネルを作製したので以下にその製造方法を述べる。  A plasma display panel was actually manufactured using the vanadium oxide-based glass rod of Table 1 Sample No. 1 described in Example 1 and the lead oxide-based glass paste of Table 2 Sample C as sealing members. The manufacturing method will be described below.
まず、 一対のソ一ダライムガラス基板を用意し洗浄を行った。 このガ ラス基板の一方 (背面基板) に銀ペース トを用いた厚膜印刷法により、 ァドレス電極パタ一ンを形成した。 このァ ドレス電極を形成した面に、 P b〇系ガラスペース 卜を用い厚膜印刷と乾燥を繰り返すことにより、 バリアリブを形成した。 次いで、 厚膜印刷法によって蛍光体層を形成す ることにより、 放電セルが形成された背面基板を得た。 First, a pair of soda lime glass substrates was prepared and washed. An undressed electrode pattern was formed on one of the glass substrates (back substrate) by a thick film printing method using silver paste. On the surface where this address electrode is formed, Barrier ribs were formed by repeating thick film printing and drying using a Pb〇-based glass paste. Next, a phosphor substrate was formed by a thick film printing method to obtain a back substrate on which discharge cells were formed.
他方のガラス基板 (前面基板) には、 まず透明電極パターンを形成し た。 透明電極材料としては I T 0 ( I ndium T in Oxi de)を用いスパッタ リ ング法により成膜した後パターン加工を行った。 次に、 この電極の導電 性を向上させるため、 パターンの各電極部にバス電極を形成した。 この 電極を形成した面に、 厚膜印刷法によって誘電体層を形成した。 さらに、 得られた誘電体膜表面に、 E B (El ectron Beam) 蒸着法により M g〇保 護膜を形成した。 以上により、 前面基板が得られた。  First, a transparent electrode pattern was formed on the other glass substrate (front substrate). Using ITO (Indium Tin Oxide) as a transparent electrode material, pattern processing was performed after forming a film by a sputtering method. Next, in order to improve the conductivity of this electrode, a bus electrode was formed at each electrode portion of the pattern. A dielectric layer was formed on the surface on which the electrodes were formed by a thick film printing method. Further, a Mg〇 protection film was formed on the surface of the obtained dielectric film by EB (Electron Beam) evaporation. Thus, a front substrate was obtained.
次に、 前面基板と背面基板を位置合わせし、 排気管の取付けと基板周 縁部のガラスによる封止を行った。  Next, the front substrate and the rear substrate were aligned, the exhaust pipe was attached, and the periphery of the substrate was sealed with glass.
まず、 封止部材に酸化バナジウム系ガラス棒を用いた本発明のプラズ マディスプレイパネルの作製方法では、 背面基板に排気管を取付けた後、 背面基板上の基板周囲に上記酸化バナジウム系ガラス棒を配置し仮固定 を行った。 その上で前面基板と背面基板との位置合わせを行い、 4 5 0 °Cの熱処理を施すことによって封止を行った。  First, in the method for manufacturing a plasma display panel of the present invention using a vanadium oxide-based glass rod as the sealing member, after attaching an exhaust pipe to the rear substrate, the vanadium oxide-based glass rod is placed around the substrate on the rear substrate. It was placed and temporarily fixed. After that, the front substrate and the rear substrate were aligned with each other, and heat treatment was performed at 450 ° C. to perform sealing.
一方、 封止部材に酸化鉛系ガラスを用いたプラズマディスプレイパネ ルの作製方法では、 背面基板に酸化鉛系ガラスペース 卜をデイスペンザ —を用いて塗布し、 乾燥した後ペース 卜の仮焼成を行った。 さらに背面 基板に排気管を取付けた後、 前面基板と背面基板との位置合わせを行い, 4 5 0 °Cの熱処理を施すことによって封止を行った。  On the other hand, in a method of manufacturing a plasma display panel using lead oxide glass as a sealing member, a lead oxide glass paste is applied to a rear substrate using a dispenser, dried, and then prebaked. Was. Furthermore, after the exhaust pipe was attached to the rear substrate, the front substrate and the rear substrate were aligned with each other, and sealed by performing a heat treatment at 450 ° C.
以上のようにして組み立てた 2種類のパネルについて、 基板及び封止 部材で囲まれる空間内の空気を排気管から排気し、 この排気管を介して この空間内に放電ガス (X e と N eの混合ガス) を入れた。 最後に、 局 部加熱による排気管の焼きちぎり (チップオフ) を行い、 放電ガスを封 止した。 以上により、 2種類のプラズマディスプレイパネルを作製した。 第 1 図に得られたプラズマディスプレイパネルの封着部の断面図を模 式的に示す。 なお、 実際のパネル断面に見られる電極, 放電セルは簡略 化のため描いていない。 第 1 図( a )に本発明の封止部材に酸化バナジゥ ム系ガラス棒を用いたプラズマディスプレイパネルを、 ( b )に比較例と して封止部材に酸化鉛系ガラスを用いたプラズマディスプレイパネルを 示す。 本発明の前面基板 1 と背面基板 2 との封止部が均一な非晶質相 3 によって構成され、 気泡がほとんど見られないのに対して、 比較例の前 面基板 1 と背面基板 2 との封止部はフィラー 4がガラス相 6 と混在して おり、 気泡 5が多く見られる。 Regarding the two types of panels assembled as described above, the air in the space surrounded by the substrate and the sealing member is exhausted from the exhaust pipe, and the discharge gas (X e and Ne Mixed gas). Finally, the bureau The exhaust pipe was cut off (chip-off) due to partial heating, and the discharge gas was sealed. As described above, two types of plasma display panels were produced. FIG. 1 schematically shows a cross-sectional view of a sealing portion of the obtained plasma display panel. The electrodes and discharge cells seen in the actual panel cross section are not shown for simplicity. FIG. 1 (a) shows a plasma display panel using a vanadium oxide-based glass rod as a sealing member of the present invention, and (b) shows a plasma display panel using a lead oxide-based glass as a sealing member as a comparative example. Show the panel. The sealing portion between the front substrate 1 and the rear substrate 2 of the present invention is formed of a uniform amorphous phase 3 and almost no bubbles are observed, whereas the front substrate 1 and the rear substrate 2 of the comparative example are different from each other. In the sealing portion, filler 4 is mixed with glass phase 6, and many bubbles 5 are seen.
第 4表に 2種類のプラズマディスプレイパネルの諸特性を示す。 気泡 に関しては封着部の断面を光学顕微鏡で観察し、 その数と平均径を調べ た。 接合強度については封着部を含むようにパネルを直方体に切り出し、 3点曲げ試験によって封着部で折って評価した。 寿命は 1万時間の点灯 試験を行い、 輝度の低下のないものを〇、 低下のあるものを Xで表した c さらに、 コン トラス 卜は封着部近傍にコン トラス 卜の低下のないものを 〇、 低下のあるものを Xで表した。 第 4表からわかるように、 本発明の パネルの封止部には気泡が少なくかつ小さいことから、 大きな接合強度 が得られている。 すなわち、 実際のパネルでも 4 0 M P a以上の接合強 度が得られ、 封止相の幅も 1 cm以下にすることができた。 プラズマディ スプレイパネルをマルチパネル化するにあたって、 つなぎ目の非表示領 域を 1 cm以下にする必要があることから、 4 0ィ ンチ以上の大画面に対 応するには接合強度として 4 O M P a以上が必要である。 本発明のフィ ラーを含まない非晶質から成る低融点ガラスでできたガラス棒を用いれ ばマルチパネル化に必要な封止幅, 接合強度を満足することがわかった さらに本発明のパネルでは、 放電時の封止部材からのガスの放出がない ために長時間を経ても輝度の低下がなく、 表示領域全体に良好なコン 卜 ラス 卜が得られることが確認された。 Table 4 shows the characteristics of the two types of plasma display panels. Regarding bubbles, the cross section of the sealed part was observed with an optical microscope, and the number and average diameter were examined. The bonding strength was evaluated by cutting the panel into a rectangular parallelepiped so as to include the sealing part, and folding it at the sealing part by a three-point bending test. Life performs lighting test of 10,000 hours, those that do not decrease in brightness 〇, further c representing what reduction in X, those that do not decrease in con truss Bok Con truss Bok in the vicinity sealing portion 〇 、 X with a decrease. As can be seen from Table 4, since the sealing portion of the panel of the present invention has few and small bubbles, a large bonding strength is obtained. That is, the bonding strength of 40 MPa or more was obtained in the actual panel, and the width of the sealing phase could be reduced to 1 cm or less. In order to make the plasma display panel a multi-panel, the non-display area at the joints must be 1 cm or less.Therefore, to support a large screen of 40 inches or more, the bonding strength must be 4 OMPa or more. is necessary. A glass rod made of an amorphous low-melting-point glass not containing a filler according to the present invention is used. It has been found that, for example, the sealing width and bonding strength required for a multi-panel are satisfied. Further, in the panel of the present invention, since the gas is not released from the sealing member at the time of discharge, the luminance is reduced even after a long time. As a result, it was confirmed that a good contrast could be obtained over the entire display area.
第 4表  Table 4
Figure imgf000019_0001
Figure imgf000019_0001
(実施例 3 ) (Example 3)
実施例 1 と同じ方法で、 第 1表の試料 N o. 1 の組成を持つ酸化バナジ ゥム系ガラス棒を作製した。 このガラス棒を用い実施例 2 と異なる方法 でプラズマディスプレイパネルを作製したので以下にその製造方法を述 ベる。  In the same manner as in Example 1, a vanadium oxide glass rod having the composition of Sample No. 1 in Table 1 was produced. A plasma display panel was manufactured using this glass rod by a method different from that in Example 2, and the manufacturing method will be described below.
まず、 一対のソーダライムガラス基板を用意し洗浄を行った。 このガ ラス基板の一方 (背面基板) に銀ペース トを用いた厚膜印刷法により、 ァドレス電極バターンを形成した。 このァ ドレス電極を形成した面に、 P b 0系ガラスペーストを用い厚膜印刷と乾燥を繰り返すことにより、 パリアリブを形成した。 次いで、 厚膜印刷法によって蛍光体を塗布する と同時に背面基板周囲にガラス棒を配置し、 5 0 0 °Cに加熱して蛍光体 の焼成とガラス棒の背面基板への融着を行つた。 First, a pair of soda lime glass substrates was prepared and washed. An address electrode pattern was formed on one of the glass substrates (back substrate) by a thick film printing method using silver paste. On the surface on which the address electrode was formed, a thick rib was formed by repeating printing and drying using a Pb0-based glass paste. Next, the phosphor is applied by the thick-film printing method, and at the same time, a glass rod is placed around the rear substrate, and the phosphor is heated to 500 ° C. Was fired and the glass rod was fused to the rear substrate.
他方のガラス基板 (前面基板) には、 実施例 2 と同じ方法でバス電極, 誘電体, M g〇保護膜を形成した。  On the other glass substrate (front substrate), a bus electrode, a dielectric, and a Mg〇 protective film were formed in the same manner as in Example 2.
次に、 背面基板に排気管を取付け、 前面基板と背面基板を位置合わせ し、 4 5 0 °Cの熱処理を施すことによって、 背面基板周囲に融着したガ ラス棒を再熔融させて封止を行った。  Next, an exhaust pipe is attached to the rear substrate, the front substrate is aligned with the rear substrate, and a heat treatment at 450 ° C is performed to remelt the glass rod fused around the rear substrate and seal it. Was done.
以上のようにして組み立てたパネルについて、 基板及び封止部材で囲 まれる空間内の空気を排気管から排気し、 この排気管を介してこの空間 内に放電ガス (X e と N eの混合ガス) を入れた。 最後に、 局部加熱に よる排気管の焼きちぎり (チップオフ) を行い、 放電ガスを封止した。 以上により、 プラズマディスプレイパネルを作製した。  For the panel assembled as described above, the air in the space surrounded by the substrate and the sealing member is exhausted from the exhaust pipe, and the discharge gas (mixing of Xe and Ne) is introduced into this space through this exhaust pipe. Gas). Finally, the exhaust gas was cut off (tip-off) by local heating, and the discharge gas was sealed. Thus, a plasma display panel was manufactured.
本発明のプラズマディスプレイパネルの製造方法では、 ガラス棒を基 板に融着することにより、 前面基板と背面基板との位置合わせの時にガ ラス棒が動く という実施例 2の製造方法の問題点が解消され、 作業性が 向上した。 このことにより、 歩留まり良くプラズマディスプレイパネル を作製できた。 また、 ガラス棒を 5 0 0 °Cに加熱しても結晶化を起こさ なかった。 さらに、 このガラス棒はフイラ一を含まない非晶質から成る 低融点ガラスであるために、 一度 5 0 0 °Cに加熱しても特性温度の上昇 を起こさず、 4 5 0 °Cで封止することができた。  The method of manufacturing a plasma display panel of the present invention has a problem of the manufacturing method of Example 2 in which the glass rod is moved when the front substrate and the rear substrate are aligned by fusing the glass rod to the substrate. This has been resolved and workability has improved. As a result, a plasma display panel could be manufactured with good yield. No crystallization occurred even when the glass rod was heated to 500 ° C. Furthermore, since this glass rod is an amorphous low-melting glass that does not contain filler, it does not raise its characteristic temperature even if it is once heated to 500 ° C, and is sealed at 450 ° C. I was able to stop.
(実施例 4 )  (Example 4)
実施例 1 と同じ方法で、 第 1表の試料 N o. 1 の組成を持つ酸化バナジ ゥム系ガラス棒を作製した。 このガラス棒を用い実施例 2, 3 と異なる 方法でプラズマディスプレイパネルを作製したので以下にその製造方法 を述べる。  In the same manner as in Example 1, a vanadium oxide glass rod having the composition of Sample No. 1 in Table 1 was produced. A plasma display panel was manufactured using this glass rod by a method different from those in Examples 2 and 3. The manufacturing method is described below.
まず、 実施例 3 と同じ方法で、 放電セルを有し封止に用いるガラス棒 を融着した背面基板と電極, 誘電体, 保護膜を形成した背面基板を作製 した。 次に、 両基板を電極が対向するように合わせ、 炉内に設置した。 続いて、 炉内を減圧下で 3 5 0 °Cに加熱した後、 炉内に放電ガスを封入 した。 この雰囲気が放電ガスとなった炉内で背面基板と前面基板とを 4 5 0 °Cに加熱し、 背面基板周囲に融着したガラス棒を再熔融させて封 止を行った。 First, in the same manner as in Example 3, a glass rod having a discharge cell and used for sealing was used. We fabricated a back substrate fused with and a back substrate on which electrodes, a dielectric, and a protective film were formed. Next, both substrates were aligned so that the electrodes faced each other, and were placed in a furnace. Subsequently, the furnace was heated to 350 ° C under reduced pressure, and then the discharge gas was sealed in the furnace. The back substrate and the front substrate were heated to 450 ° C. in a furnace where the atmosphere became a discharge gas, and the glass rod fused around the back substrate was melted again and sealed.
本発明のプラズマディスプレイパネルの製造方法により、 排気管の取 付け, 焼きちぎりの工程が不要と成り、 製造コス トを低減することがで きた。 また、 放電セルを均一にかつ短時間で真空排気することができた ため、 実施例 2および 3の製造方法よりも歩留まり良くプラズマデイス プレイパネルを作製できた。 なお、 本プラズマディスプレイパネルの封 止部に用いたガラスには鉛が微量にしか含まれていないため、 封止部は 絶縁性であった。 産業上の利用可能性  According to the method for manufacturing a plasma display panel of the present invention, the steps of attaching and burning off the exhaust pipe are not required, and the manufacturing cost can be reduced. In addition, since the discharge cells could be evacuated uniformly and in a short time, a plasma display panel could be manufactured with higher yield than the manufacturing methods of Examples 2 and 3. Since the glass used for the sealing portion of the present plasma display panel contained only a trace amount of lead, the sealing portion was insulative. Industrial applicability
放電寿命が長く、 高コン トラス ト, 高強度のプラズマディスプレイパ ネルを低コス トかつ歩留まり良く製造することができる。  A plasma display panel with a long discharge life, high contrast, and high strength can be manufactured with low cost and high yield.

Claims

請 求 の 範 囲 The scope of the claims
1 . 電極を有する一対の基板を電極が対向するように配置し、 基板周囲 を封止部材で密閉し、 内部空間に放電ガスを封入して放電空間として用 いるプラズマディスプレイパネルにおいて、  1. In a plasma display panel in which a pair of substrates having electrodes are arranged so that the electrodes face each other, the periphery of the substrates is sealed with a sealing member, and a discharge gas is filled in an internal space to be used as a discharge space,
前記基板周囲の封止部が均一な非晶質相から構成されることを特徴と するプラズマディスプレイパネル。  A plasma display panel, wherein the sealing portion around the substrate is made of a uniform amorphous phase.
2 . 電極を有する一対の基板を電極が対向するように配置し、 基板周囲 を封止部材で密閉し、 内部空間に放電ガスを封入して放電空間として用 いるプラズマディスプレイパネルにおいて、  2. In a plasma display panel in which a pair of substrates having electrodes are arranged so that the electrodes face each other, the periphery of the substrates is sealed with a sealing member, and a discharge gas is sealed in the internal space and used as a discharge space,
前記一対の基板のうちの画像情報を表示する側の基板面積に対し有効 表示面積が 9 0〜 9 5 %の範囲であることを特徴とするプラズマディス プレイパネル。  A plasma display panel, wherein an effective display area is in a range of 90% to 95% with respect to an area of the substrate on the image information display side of the pair of substrates.
3 . 電極を有する一対の基板を電極が対向するように配置し、 基板周囲 を封止部材で密閉し、 内部空間に放電ガスを封入して放電空間として用 いるプラズマディスプレイパネルにおいて、  3. In a plasma display panel in which a pair of substrates having electrodes are arranged so that the electrodes face each other, the periphery of the substrates is sealed with a sealing member, and a discharge gas is sealed in the internal space and used as a discharge space,
前記基板周囲の封止部で封入された内部空間を減圧し、 または放電ガ スを封入する排気管が前記基板上に存在せず、 前記基板の外表面が平滑 であることを特徴とするプラズマディスプレイパネル。  A plasma characterized in that the internal space enclosed by the sealing portion around the substrate is decompressed, or an exhaust pipe for enclosing discharge gas does not exist on the substrate, and the outer surface of the substrate is smooth. Display panel.
4 . 電極を有する一対の基板を電極が対向するように配置し、 基板周囲 を封止部材で密閉し、 内部空間に放電ガスを封入して放電空間として用 いるプラズマディスプレイパネルにおいて、 前記基板が酸化バナジウム を主体とする封着用ガラスで封止されていることを特徴とするプラズマ ディスプレイパネル。  4. In a plasma display panel in which a pair of substrates having electrodes are arranged so that the electrodes face each other, the periphery of the substrate is sealed with a sealing member, and a discharge gas is sealed in an internal space to be used as a discharge space, wherein the substrate is A plasma display panel sealed with a sealing glass mainly composed of vanadium oxide.
5 . 請求項 4記載の封着用ガラスが、 更に酸化リン, 酸化アンチモン, 酸化ニオブを含むことを特徴とするプラズマディスプレイパネル。 5. The plasma display panel according to claim 4, wherein the sealing glass further contains phosphorus oxide, antimony oxide, and niobium oxide.
6 . 請求項 4記載の封着用ガラスが、 以下の酸化物に換算して 6. The glass for sealing according to claim 4 is converted into the following oxide:
V206 4 0〜 6 5重量% V 2 0 6 4 0 to 65% by weight
P25 1 5〜 3 0重量% P 25 15 to 30% by weight
S b 203 5〜 3 0重量% S b 2 0 3 5 to 30% by weight
N b 25 1〜 1 5重量% N b 25 1 to 15 wt%
P b 0 0〜 1 0重量0 /0 P b 0 0~ 1 0 weight 0/0
の範囲内にあるガラスから構成されることを特徴とするプラズマデイス Characterized by being comprised of glass within the range of
7. 電極を有する一対の S i 〇2— R20— R O系ガラス基板 (R : アル 力リ金属元素またはアル力リ土類金属元素) を電極が対向するように配 置し、 基板周囲を封止部材で密閉し、 内部空間に放電ガスを封入して放 電空間として用いるプラズマディスプレイパネルにおいて、 前記基板周 囲の封止部が熱膨張係数 6 0 X 1 0―'〜 8 0 X 1 0— 7 /。C, ガラス転移 温度 4 0 0 °C以下である均一なガラス相から構成されることを特徴とす るプラズマディスプレイパネル。 7. A pair of S i 〇 2 — R 2 0 — RO glass substrates (R: metallic element or alkaline earth metal element) with electrodes are placed so that the electrodes face each other, and the periphery of the substrate Is sealed with a sealing member, and a discharge gas is sealed in the internal space and used as a discharge space. In the plasma display panel, the sealing portion around the substrate has a coefficient of thermal expansion of 60 X 10- 'to 80 X. 1 0 7 /. C. A plasma display panel comprising a uniform glass phase having a glass transition temperature of 400 ° C or less.
8. 電極を有する一対の基板を電極が対向するように配置し、 基板周囲 を封止部材で密閉し、 内部空間に放電ガスを封入して放電空間として用 いるプラズマディスプレイパネルにおいて、 前記基板周囲の封止部の気 泡量が 1 0 0個//丽 2 以下であり、 かつ気泡サイズが平均径 1 Ο μ πι以 下であることを特徴とするプラズマディスプレイパネル。 8. A plasma display panel in which a pair of substrates having electrodes are arranged so that the electrodes face each other, the periphery of the substrate is sealed with a sealing member, and a discharge gas is sealed in an internal space to be used as a discharge space, A plasma display panel, characterized in that the amount of bubbles in the sealing portion is 100 or less / 丽2 and the average size of bubbles is 1Ομπι or less.
9. 電極を有する一対の基板を電極が対向するように配置し、 基板周囲 を封止部材で密閉し、 内部空間に放電ガスを封入して放電空間として用 いるプラズマディスプレイパネルにおいて、 前記基板周囲の封止部の接 合強度が 3点曲げ試験で 4 0 M P a以上であって、 かつ封止相の幅が 1 cm以下であることを特徴とするプラズマディスプレイパネル。 9. A plasma display panel in which a pair of substrates having electrodes are arranged so that the electrodes face each other, the periphery of the substrate is sealed with a sealing member, and a discharge gas is sealed in an internal space to be used as a discharge space, A plasma display panel having a joint strength of not less than 40 MPa in a three-point bending test and a width of a sealing phase of not more than 1 cm.
1 0 . 請求項 1〜 9のいずれかに記載のプラズマディスプレイパネルを 用いたことを特徴とするプラズマディスプレイ表示装置。 10. A plasma display device using the plasma display panel according to any one of claims 1 to 9.
1 1 . 電極を有する一対の基板を電極が対向するように配置し、 基板周 囲を封止部材で密閉し、 内部空間に放電ガスを封入して放電空間として 用いるプラズマディスプレイパネルの封止部材が、 酸化物に換算して 1 1. A pair of substrates having electrodes are arranged so that the electrodes face each other, the surroundings of the substrates are sealed with a sealing member, a discharge gas is sealed in the internal space, and a sealing member for a plasma display panel used as a discharge space. But converted to oxide
V 2 0 5 4 0〜 6 5重量% V 2 0 5 4 0 to 65% by weight
P 2 0 6 1 5〜 3 0重量% P 2 0 6 1 5 to 30% by weight
S b 2 0 3 5〜 3 0重量0 /0 S b 2 0 3 5~ 3 0 weight 0/0
N b 2 0 5 1〜 1 5重量0 /0 N b 2 0 5 1~ 1 5 wt 0/0
P b 0 0〜 1 0重量%  Pb 0 0 to 10% by weight
の範囲であるガラスから構成されることを特徴とするプラズマディスプ レイパネルの封止部材。 A sealing member for a plasma display panel, which is made of glass having the following range.
1 2 . 電極をそれぞれ形成した前面基板と背面基板とを、 該電極が対向 するように向き合わせた後、 該前面基板と該背面基板の間にガラス棒を 該基板周囲に配置し、 該基板を加熱して封止する工程と、  12. After the front substrate and the rear substrate on which the electrodes are respectively formed are opposed to each other so that the electrodes face each other, a glass rod is arranged around the substrate between the front substrate and the rear substrate, and Heating and sealing;
前記前面板と前記背面板と封止部材とで囲まれる空間を減圧した後、 放電ガスを封入する工程と、  After decompressing a space surrounded by the front plate, the back plate, and the sealing member, filling a discharge gas,
を含むことを特徴とするプラズマディスプレイパネルの製造方法。 A method for manufacturing a plasma display panel, comprising:
1 3 . /少なく とも、 前面板に電極を形成する工程と、 13 ./ At least a step of forming electrodes on the front plate,
前記電極上に誘電体を成膜する工程と、  Forming a dielectric film on the electrode;
前記誘電体上に保護膜を成膜する工程と、  Forming a protective film on the dielectric,
背面板に電極を形成する工程と、  Forming an electrode on the back plate;
前記背面板上に隔壁を形成する工程と、  Forming a partition on the back plate,
前記隔壁および背面板表面に蛍光体層を形成する工程と、  Forming a phosphor layer on the surface of the partition and the back plate,
電極を対向させた前記前面板と前記背面板との間にガラス棒を該基板 周囲に配置した後、 加熱して封止する工程と、 A glass rod is provided between the front plate and the back plate with electrodes facing each other. After being arranged around, heating and sealing,
前記前面板と前記背面板と封止部材とで囲まれる空間を減圧した後、 放電ガスを封入する工程と、  After decompressing a space surrounded by the front plate, the back plate, and the sealing member, filling a discharge gas,
を含むことを特徴とするプラズマディスプレイパネルの製造方法。 A method for manufacturing a plasma display panel, comprising:
1 4 . 内部空間を減圧可能な加熱炉中で、 電極をそれぞれ形成した前面 基板と背面基板とを、 該電極が対向するように向き合わせ、 該前面基板 と該背面基板の間にガラス棒を該基板周囲に配置したものを、 14. In a heating furnace capable of decompressing the internal space, the front substrate and the rear substrate on which the electrodes are respectively formed are faced so that the electrodes face each other, and a glass rod is inserted between the front substrate and the rear substrate. What is arranged around the substrate,
該加熱炉を減圧した後、 該基板を加熱して封止する工程と、 該加熱炉中に放電ガスを導入することにより該前面基板と該背面基板 の間に放電ガスを封入する工程と、  A step of heating and sealing the substrate after depressurizing the heating furnace; and a step of sealing a discharge gas between the front substrate and the rear substrate by introducing a discharge gas into the heating furnace.
を含むことを特徴とするプラズマディスプレイパネルの製造方法。A method for manufacturing a plasma display panel, comprising:
1 5 . 請求項 1 2〜 1 4のいずれかに記載のガラス棒が酸化バナジウム を主成分とするガラスであることを特徴とするプラズマディスプレイパ ネルの製造方法。 15. A method for manufacturing a plasma display panel, wherein the glass rod according to any one of claims 12 to 14 is a glass containing vanadium oxide as a main component.
1 6 . 請求項 1 5記載のガラス棒が結晶質ガラスからなるフィラーを含 まないことを特徴とするプラズマディスプレイパネルの製造方法。 16. A method for manufacturing a plasma display panel, wherein the glass rod according to claim 15 does not include a filler made of crystalline glass.
1 7 . 請求項 1 5記載のガラス棒が、 更に少なく とも酸化リン, 酸化ァ ンチモン, 酸化ニオブを含むことを特徴とするプラズマディスプレイパ ネルの製造方法。 17. A method for manufacturing a plasma display panel, wherein the glass rod according to claim 15 further contains at least phosphorus oxide, antimony oxide, and niobium oxide.
1 8 . 請求項 1 5記載のガラス棒が、 酸化物に換算して  18. The glass rod according to claim 15 is converted into oxide.
V 2 0 B 4 0〜 6 5重量0 /0 V 2 0 B 4 0~ 6 5 weight 0/0
P 25 1 5〜 3 0重量0 /0 P 25 1 5-3 0 weight 0/0
S b 2 0 3 5〜 3 0重量0 /0 S b 2 0 3 5~ 3 0 weight 0/0
N b 2 0 5 1〜 1 5重量0 /0 N b 2 0 5 1~ 1 5 wt 0/0
P b〇 0〜 1 0重量0 /0 の範囲であることを特徴とするプラズマディスプレイパネルの製造方法。 P B_〇 0-1 0 weight 0/0 A method for manufacturing a plasma display panel, wherein
PCT/JP1997/000714 1997-03-07 1997-03-07 Plasma display panel and process for producing the same WO1998039789A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/000714 WO1998039789A1 (en) 1997-03-07 1997-03-07 Plasma display panel and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/000714 WO1998039789A1 (en) 1997-03-07 1997-03-07 Plasma display panel and process for producing the same

Publications (1)

Publication Number Publication Date
WO1998039789A1 true WO1998039789A1 (en) 1998-09-11

Family

ID=14180178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000714 WO1998039789A1 (en) 1997-03-07 1997-03-07 Plasma display panel and process for producing the same

Country Status (1)

Country Link
WO (1) WO1998039789A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6533630B1 (en) 1998-11-19 2003-03-18 Nihon Shinku Gijutsu Kabushiki Kaisha Vacuum device and method of manufacturing plasma display device
JP2006290665A (en) * 2005-04-08 2006-10-26 Boe Technology Group Co Ltd Lead-free sealing glass powder and its producing method
JP2006524419A (en) * 2003-04-16 2006-10-26 コーニング インコーポレイテッド Glass package sealed with frit and manufacturing method thereof
JP2006347840A (en) * 2005-06-17 2006-12-28 Hitachi Ltd Electroconductive joining member and image display device having spacer joined by using the electroconductive joining member
JP2007070127A (en) * 2005-09-02 2007-03-22 Hitachi Ltd Conductive member and image display device
JP2007320823A (en) * 2006-06-02 2007-12-13 Hitachi Ltd Conductive member and method for producing the same, image display device, and glass spacer
WO2010128679A1 (en) * 2009-05-08 2010-11-11 旭硝子株式会社 Glass member with sealing material layer, electronic device using same, and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111371A (en) * 1976-03-15 1977-09-19 Ibm Method of fabricating plate display unit
JPH03169345A (en) * 1989-11-30 1991-07-23 Hitachi Ltd Denitration catalyst and exhaust gas purifying apparatus using the same
JPH04264328A (en) * 1991-02-19 1992-09-21 Oki Electric Ind Co Ltd Manufacture of gas discharge display panel
JPH06263478A (en) * 1993-03-03 1994-09-20 Iwaki Glass Kk Lead-free low melting point glass
JPH0765729A (en) * 1993-08-24 1995-03-10 Fujitsu Ltd Plasma display panel and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111371A (en) * 1976-03-15 1977-09-19 Ibm Method of fabricating plate display unit
JPH03169345A (en) * 1989-11-30 1991-07-23 Hitachi Ltd Denitration catalyst and exhaust gas purifying apparatus using the same
JPH04264328A (en) * 1991-02-19 1992-09-21 Oki Electric Ind Co Ltd Manufacture of gas discharge display panel
JPH06263478A (en) * 1993-03-03 1994-09-20 Iwaki Glass Kk Lead-free low melting point glass
JPH0765729A (en) * 1993-08-24 1995-03-10 Fujitsu Ltd Plasma display panel and manufacture thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6533630B1 (en) 1998-11-19 2003-03-18 Nihon Shinku Gijutsu Kabushiki Kaisha Vacuum device and method of manufacturing plasma display device
JP2006524419A (en) * 2003-04-16 2006-10-26 コーニング インコーポレイテッド Glass package sealed with frit and manufacturing method thereof
JP2006290665A (en) * 2005-04-08 2006-10-26 Boe Technology Group Co Ltd Lead-free sealing glass powder and its producing method
JP2006347840A (en) * 2005-06-17 2006-12-28 Hitachi Ltd Electroconductive joining member and image display device having spacer joined by using the electroconductive joining member
JP2007070127A (en) * 2005-09-02 2007-03-22 Hitachi Ltd Conductive member and image display device
JP2007320823A (en) * 2006-06-02 2007-12-13 Hitachi Ltd Conductive member and method for producing the same, image display device, and glass spacer
WO2010128679A1 (en) * 2009-05-08 2010-11-11 旭硝子株式会社 Glass member with sealing material layer, electronic device using same, and manufacturing method thereof
JP5598469B2 (en) * 2009-05-08 2014-10-01 旭硝子株式会社 Glass member with sealing material layer, electronic device using the same, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5525714B2 (en) Glass composition
KR101683237B1 (en) Glass composition and glass paste composition, covering members, sealing members and electronic component using same
JP2995728B2 (en) Low dielectric constant glass composition
JP4557314B2 (en) Sealing composition and sealing low melting point glass
JP2008098147A (en) Plane display device
JP4791746B2 (en) Lead-free borosilicate glass frit and its glass paste
WO1998039789A1 (en) Plasma display panel and process for producing the same
JP2003261352A (en) Glass for display and glass part for display
KR100408456B1 (en) Display Panel Glasses
JP4941880B2 (en) Bismuth-based glass composition and bismuth-based sealing material
JPH11349347A (en) Crystalline low melting point glass composition
JP3897209B2 (en) Glass for exhaust pipe
EP0853070A1 (en) Substrate glass and plasma display made by using the same
JP2008105880A (en) Bismuth-based sealing material
JP2011225402A (en) Fire-resistant filler powder, sealing material, and method for producing the fire-resistant filler powder
WO2007114084A1 (en) Glass composition and display panel employing the same
JPH11310432A (en) Glass composition for substrate board
JP2008251318A (en) Plasma display panel
JPH11310431A (en) Glass composition for substrate board
JP5219238B2 (en) Glass paste composition
JP5025209B2 (en) Lead-free borosilicate glass frit and glass paste for forming an insulating layer
EP0850891B1 (en) Substrate glass and plasma display made by using the same
JP2008063160A (en) Glass composition for forming supporting frame and material for forming supporting frame
JP3948165B2 (en) Sealing material
JP2000357477A (en) Glass molding product for display, and glass vessel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase