WO1998031794A1 - Polypeptide liant le facteur vegf - Google Patents

Polypeptide liant le facteur vegf Download PDF

Info

Publication number
WO1998031794A1
WO1998031794A1 PCT/JP1998/000140 JP9800140W WO9831794A1 WO 1998031794 A1 WO1998031794 A1 WO 1998031794A1 JP 9800140 W JP9800140 W JP 9800140W WO 9831794 A1 WO9831794 A1 WO 9831794A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
vegf
polypeptide
immunoglobulin
primer
Prior art date
Application number
PCT/JP1998/000140
Other languages
English (en)
French (fr)
Inventor
Mikio Niwa
Masaji Okamoto
Tomoe Matsumoto
Toshiaki Segawa
Original Assignee
Toa Gosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Gosei Co., Ltd. filed Critical Toa Gosei Co., Ltd.
Priority to JP53411198A priority Critical patent/JP3837748B2/ja
Priority to US09/142,956 priority patent/US6348333B1/en
Publication of WO1998031794A1 publication Critical patent/WO1998031794A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Definitions

  • the present invention relates to a polypeptide useful as an angiogenesis inhibitor, and the polypeptide is effective as a medicine, a diagnostic agent, and a test agent, and is used in those technical fields.
  • Some diseases are known to be associated with pathological angiogenesis that is closely related to their symptoms and etiology.
  • a typical disease is solid cancer.
  • cancer tissue In order for cancer tissue to grow beyond 1 to 2 mm in diameter, it is necessary for new blood vessels to extend from existing blood vessels to reach the cancer tissue. The growth of cancer tissue is explosively accelerated only after reaching (J. Folkman, J. Natl. Cancer Inst., 82: 4 (1990)).
  • diabetic retinopathy may involve pathological neovascularization of the retina, which may cause blindness.
  • Vascular endothelial cells are the cells that form the innermost layer of blood vessels. Angiogenesis is caused by the proliferation and growth of vascular endothelial cells under the stimulation of growth factors, bioactive substances or mechanical damage. Things.
  • b FGF basic Fibroblast Growth Factor
  • FGF acidic Fibroblast Growth Fact or
  • VE GF Vascular Endothelial cell Growth Factor
  • PD-E CGF P latelet-Derived Endothelial Cell Growth Factor
  • TNF Tuour Necrosis Factor-H
  • PD GF Plateelet Derived Growth Factor
  • EGF Epidermal Growth Factor
  • TGF-a Transforming Growth Factor-
  • TGF-? Tran sforming Growth Factor- /?
  • HGF Hepatocyte Growth Factor
  • VEGF vascular endothelial cell growth factor
  • VEGF receptor Other than that, it is expressed only in very limited cells.
  • VEGF is a glycoprotein having a molecular weight of 40,000 to 45,000 and exists as a dimer (PW Leung et al., Science 246: 1306 (1989); PJ Keck et al., Science: 246 6: 1319 (1989) )), Which acts by binding to VEGF receptor and promotes cell growth and membrane permeability.
  • VEGF vascular endothelial growth factor
  • Anti-VEGF neutralizing antibodies show antitumor activity against carrier cancer mice (KJ Kim et al., Nature, 362: 841 (1993); S. Kondo et al., Bichem. Biophys. Res. Commun., 194: 1234 (1993)).
  • VEGF receptor Yuichi is FLT (M. Shibuya, et al., Onco gene, 5: 519 (1990); C. DeVries et al., Science, 255: 989 (1992)) and KDR ( BI Terman et al., Bichem.Biophys.Res.Commun., 187: 1579 (1992))
  • FLT FLT
  • KDR KDR
  • the extracellular region of FLT and KDR has a structure composed of seven immoglobulin-like domains as shown in FIG.
  • soluble soluble cDNA was cloned (RL Kendal and KA Thomas, Proc. Natl. Acad. Sci.
  • Polypeptides corresponded to the first to sixth immunoglobulin-like domains in the extracellular region of FLT, and bound VEGF with the same affinity as the native FLT and inhibited VEGF activity. It is also known that the first to sixth domains of the extracellular region expressed by genetic engineering of KDR bind to VEGF (RL Kendal et al., Bichem. Biophys. Res. Commun., 201: 326 (1994)).
  • the mouse anti-VEGF neutralizing monoclonal antibody exhibits antitumor properties, it can be expected that the anti-VEGF neutralizing monoclonal antibody can be used as an anticancer agent.
  • a mouse antibody when administered to a human, a human antibody to the mouse antibody is produced, and may be neutralized or cause anaphylactic shock.
  • chimeric mouse antibodies SL Morrison et al., Proc. Natl. Acad. Sci. USA, 81: 6851 (198 9)
  • humanization are used to neutralize the antibody. It is necessary to bring the amino acid sequence of the mouse antibody closer to the amino acid sequence of the human antibody while maintaining the same.
  • the extracellular region of VEGF receptor specifically binds to VEGF with high affinity and can inhibit VEGF activity, and thus may be used as an angiogenesis inhibitor.
  • VEGF receptor since it is originally a human polypeptide, it is administered to humans. Even so, it can be expected that the antibody appearance rate is low.
  • polypeptides that are not naturally present in large amounts in the body are metabolized very quickly when administered.
  • the soluble form of CD4 the HIV receptor, has a blood half-life of 15 minutes (DJ Capon et al., Nature, 337: 525 (1989)); The median half-life was 30 minutes (I. Rutenfranz and H. Kirchner, J. Interferon Res., 8: 573 (1988)).
  • a method for extending the blood half-life there is known a method in which a fusion polypeptide with a molecule having a long blood half-life such as an antibody molecule is genetically engineered and used.
  • the dimer is mediated through the Fc region and one molecule can bind to the ligand at two places, when binding to a ligand on a solid phase such as a membrane surface or extracellular matrix, The effect of significantly improving the affinity can also be expected.
  • the molecular weight of the original polypeptide is preferably small because the fusion increases the molecular weight.
  • the larger the molecular weight the larger the molecular weight of the DNA to be treated when creating a recombinant host producing a fusion polypeptide by genetic engineering.
  • the larger the molecular weight of the DNA to be introduced the lower the efficiency of introduction into the host and the lower the frequency of obtaining recombinants.
  • the higher the molecular weight of the recombinant polypeptide to be produced the lower the production amount tends to be.
  • polypeptides having a high molecular weight have the disadvantage of poor infiltration into the affected area (DM Lane et al., Br. J. Cancer, 70: 521 ( 1994)). Disclosure of the invention
  • polypeptides that can inhibit angiogenesis by specifically inhibiting VEGF, and particularly those that have a small internal molecular weight of the polypeptides related to the extracellular region of VEGF receptor. I worked hard. As a result, it was found that a polypeptide containing the first immunoglobulin-like domain to the second immunoglobulin-like domain in the extracellular region of KDR binds to VEGF specifically and with high affinity, and can inhibit VEGF activity. The present invention has been completed.
  • polypeptide generally refers to amino acids that are covalently linked to each other by peptide bonds, and is not limited in length.
  • polypeptide of the present invention those comprising the first immunoglobulin-like domain to the second immunoglobulin-like domain in the extracellular region of KDR are preferable because of their low molecular weight, but these include other domains. Also included are those that are for example, a polypeptide comprising all of the first to third immunoglobulin-like domains from the first immunoglobulin-like domain, a polypeptide comprising all of the first to fourth immunoglobulin-like domains from the first immunoglobulin-like domain, the first immunoglobulin-like domain Polypeptides including all the globulin-like domains to the fifth immunoglobulin-like domains are also included in the polypeptide of the present invention.
  • a polymorphism in which any one or two domains of the fifth immunoglobulin-like domain are deleted from the third immunoglobulin-like domain among the first immunoglobulin-like domain to the fifth immunoglobulin-like domain Peptides are also included in the polypeptides of the present invention.
  • the amino acid sequence of these domains in the polypeptide of the present invention may have some amino acids mutated by substitution or the like. This amino acid modification can be performed by those skilled in the art using a known method.
  • polypeptides of too high molecular weight such as polypeptides containing all of the first to sixth immunoglobulin-like domains or Polypeptides containing all of the immunoglobulin-like domains from the 1st immunoglobulin-like domain to the 7th immunoglobulin-like domain can naturally bind to VEGF specifically and with high affinity, but the molecular weight is too large. It is unsatisfactory to achieve the object of the invention of the present application that expression by recombinant DNA technology is easy to perform and infiltration into the affected area is rapid. "
  • each domain corresponds to the entire amino acid sequence of KDR shown in SEQ ID NO: 1 already published. Is defined as a domain containing an amino acid sequence having the following residue numbers: The following residue numbers are the same as those in SEQ ID NO: 1. That is, it shows the residue number counted from the N-terminus of mature KDR ("Ala" at position 1 in SEQ ID NO: 1).
  • the present invention also includes a polypeptide in which the above-mentioned extracellular region of KDR is fused with another protein (for example, Fc region of immunoglobulin).
  • Human vascular endothelial cells for example, human umbilical cord-derived vascular endothelial cells (sold by Iwaki Glass, Morinaga Milk Industries, Kurabo Industries, etc.) are cultured and subjected to the acidic phenol method (P. Chomzynski and N. Sacchi, Anal.
  • poly (A) + RNA is prepared using oligo dT cellulose.
  • reverse transcriptase and oligo dT are prepared using oligo dT cellulose.
  • the DNA of the target portion can be amplified by the PCR method ("PCR Protocols", Michael A. Innis et. Al., Academic Press Inc., 1990).
  • PCR Protocols Michael A. Innis et. Al., Academic Press Inc.
  • the following primers may be used.
  • Primers DNA can be synthesized with a DNA synthesizer (Applied Biosystems, Nippon Millipore Limited) or you can order custom DNA (Saddy Technology).
  • a DNA synthesizer Applied Biosystems, Nippon Millipore Limited
  • custom DNA Saddy Technology
  • Upstream primer 5, N (3-5) X (6) ATGGAGAGCAAGGTGCTGCTG (SEQ ID NO: 2), Downstream primer: 5, N (3-5) Y (6) ACGCTCTAGGACTGTGAGCTG (SEQ ID NO: 3), 1st ⁇
  • the upstream primer 5, N (3-5) X (6) ATGGAGAGCMGGTGCTGCTG (SEQ ID NO: 2)
  • the downstream primer 5, N (3-5) Y (6) AGATTCCATGCCACTTCCAAA (SEQ ID NO: 4) may be used.
  • N represents A, C s G, one of T, X or ⁇ restriction enzyme recognition sequences
  • the numbers in parentheses indicate the number of bases.
  • ⁇ (3 to 5) indicates that there are 3 to 5 of any of A, C, G, and T
  • ⁇ (6) or ⁇ (6) indicates a restriction that recognizes 6 bases.
  • These restriction enzyme recognition sequences are preferably sequences that do not exist in the DNA fragment to be amplified and the vector into which it is to be inserted. .
  • a downstream primer can be appropriately designed with reference to the nucleotide sequence described in SEQ ID NO: 1 to amplify a DNA fragment encoding the desired C-terminal.
  • the coding sequence for the polypeptide When incorporated into an expression vector, the coding sequence for the polypeptide must be located in the forward direction relative to the promoter.
  • the portion corresponding to the KDR DNA sequence is not necessarily limited to 21 bases, but may be about 17 to 25 bases.
  • the PCR conditions may be the standard conditions described in the above-mentioned “PCR Protocolsj”. However, since the progress of the reaction differs depending on the type ⁇ quantity and the primer sequence, in order to carry out the reaction efficiently, one set of parameters (for example, Mg ++ The concentration, annealing temperature, extension reaction time, number of cycles, etc.
  • the DNA polymerase used for PCR is pull-free from Taq polymerase (3 ' (Xonuclease)
  • the reliability (Fidelity) of PCR amplification is increased by using active Pfu polymerase (Stratagene) or Taq polymerase plus Pfu polymerase (WM Barnes Natl. Acad. Sci. US A 91: 2216 (1994)).
  • the sequence of the DNA fragment to be amplified by PCR is known, so after amplification, check the size by agarose gel electrophoresis, collect from the gel, digest with the appropriate restriction enzymes, and examine the electrophoresis pattern. This makes it possible to determine whether the desired DNA fragment has been obtained.
  • Agarose gel electrophoresis, recovery of DNA fragments from gels, and digestion with restriction enzymes can be performed according to “Molecular Cloning” described above. DNA can be recovered from gels using kits that use commercially available glass beads (for example, Bio-Rad). Prep-A-Gene) can be used.
  • the recovered DNA fragment is digested at both ends with a restriction enzyme capable of cleaving X (6) and Y (6), deproteinized by phenol treatment, ethanol-precipitated, and buffered with a suitable buffer such as TE (10 mM Dissolve in Tris-HCl (pH7.5) / l mM EDTA).
  • a suitable buffer such as TE (10 mM Dissolve in Tris-HCl (pH7.5) / l mM EDTA).
  • TE mM Dissolve in Tris-HCl (pH7.5) / l mM EDTA
  • the appropriate cloning site of the expression vector is cleaved with a restriction enzyme capable of cleaving X (6) and Y (6), and agarose gel electrophoresis is performed to recover DNA. You. In this way, small fragments between the X (6) and Y (6) cleavage sites can be removed.
  • the DNA fragment to be inserted and the cut vector DNA are added, for example, so that the ratio of vector DNA: inserted DNA fragment becomes 1: 5 to 1:10, and T4 DNA ligase is used.
  • T4 DNA ligase is used to perform a Reigession reaction.
  • the ligated product is added to Escherichia coli competent cells, transformed, and first transformed into a medium containing the antibiotic corresponding to the selection technique (eg, ambivisillin resistance, kanamycin resistance, etc.) encoded in the vector.
  • Select transformants with material resistance Recombinants in which the DNII fragment has been inserted into the expression vector are selected by examining the restriction enzyme cleavage pattern of the plasmid of each antibiotic-resistant transformant.
  • each of the transformants is transformed into a type I bacterial cell, and PCR is performed using a primer obtained by amplifying the DNA fragment to be inserted, thereby determining whether the target DNA fragment is amplified or not. You can find out.
  • a series of operations for obtaining these Escherichia coli recombinants can be performed according to the above-mentioned “molecular cloning”.
  • Various hosts can be used to produce the polypeptides of the present invention.
  • brevis Gram-negative or Gram-positive bacteria such as Bacillus thuringensis, Pichia pastoris, Shizosacci (Bacillus thuringensis), and Bacillus thuringensis.
  • yeasts such as haromyces pombe, Saccharomyces cerevisiae, fungi such as genus Aspergi llus, Sf9 (from Spo doptera frugiperda), Sf21, TN5 (from Trichoplusia ni), BN4 mol ), Such as bizoid cells, CH0 (derived from Chinese hamster ovaries), COS cells (derived from monkey kidney) Mammalian cells are available, such as.
  • a suitable vector may be used depending on the type of the host. Prior to obtaining the final transformed cells, a shuttle vector between the host producing the polypeptide of the present invention and Escherichia coli should be prepared. It will be easier to obtain the recombinant DNA once in E.
  • Transformation methods for obtaining a recombinant host producing the polypeptide of the present invention include the competent cell method for Escherichia coli and the combi- tive cell method for Bacillus (K. Bott and GA Willson, J. Bacteriol., 94). : 562 (1967)), the protoplast method (M. Mandel and A. Higa, J. Mol. Biol., 53: 159 (1970)), and the yeast protoplast method (M. Broker et al., BioTechniques, 5: 516 (1987)), the lipofectin method for insect cells and mammalian cells (RW Mai one et al., Pro Natl. Acad. Sci.
  • a plasmid or viral DNA capable of replication in the host to be used is used, and the DNA encoding the portion to be expressed may be incorporated downstream of a strong promoter that functions in the host. If the gene to be expressed does not have a translation initiation codon, it must be added.
  • a prokaryotic cell is used as a host, a ribosome binding sequence is required (J. R. MacLaughlin et al., J. Biol. Chem., 256: 11283 (1981)).
  • a vector that has a portion of the host chromosomal DNA and cannot replicate in the host causes homologous recombination with the host chromosome, and places the vector in the host chromosome.
  • mice myeloma cells transformed with the pSV vector recombinant into the peritoneal cavity of SCID mice or nude mice, and to recover recombinant polypeptides from ascites o Transgenic animals using the DNA of the present invention (G. Wright at al., Bio / Technology, 9: 830 (1991)) or transgenic plants (M. Owen et al., Bio / Technology, 10 : 790 (1992)) could be used as a host.
  • the signal peptide coding portion of KDR may be used as it is.
  • DNA encoding the signal peptide of the secreted protein of the host used may be used.
  • the outer membrane proteins OmpA, OmpFs phosphatase PhoA, Maltos-binding protein MalB, and Bacillus spp. DNA encoding a signal peptide such as a protease can be used. When expressed in a cell, it may be used by removing the signal peptide coding portion other than the initiation codon.
  • exogenous polypeptide is highly expressed in bacterial cells, formation of inclusion bodies often occurs.In this case, after solubilizing with 8 M urea, a few gZml of polypeptide is obtained.
  • the polypeptide of the present invention obtained by the method as described above can be purified by a general biochemical method. For example, ammonium sulfate precipitation, ion exchange chromatography, gel filtration, hydrophobic chromatography, and the like can be used. Since the polypeptide of the present invention has affinity for heparin, affinity chromatography using heparin resin can be used. In the case of a fusion polypeptide with another polypeptide, it can be purified by utilizing the properties of the partner polypeptide (M. Uhlen et al., Methods Enzymol., 185: 129 ( 1990)).
  • the partner of the fusion polypeptide is the Fc region of an antibody
  • protein A sepharose or protein G sepharose E. Harlow and D. Lane, "Ant i bodies ", Cold Spring Harbor Laboratoly Press, 1988)
  • GST DB Smith and FS Johnson, Gene, 67:31 (1988)
  • chloramphenic acid transphorase chloramphenic acid sepharose
  • histidine oligomer Ni + + -NTA (nitryltriacetic acid) agarose affinity chromatography (FH Arnold, Bio / Tecnology, 9: 151 (1991)) can be used.
  • the fraction containing the polypeptide of the present invention can be detected by EIA or Western analysis using an antibody that reacts with the polypeptide.
  • the antibody that reacts with the polypeptide of the present invention synthesizes an oligopeptide corresponding to the amino acid sequence at positions 25 to 39 from the N-terminus and binds to a carrier protein such as bovine serum albumin or KLH (keyhole lymphet hemocyanine).
  • the conjugate is prepared by immunizing a heron and other conjugates by standard methods (E. Harlow anr D. Lane, "Antibodies", Cold Spring Harbor Press, 1988).
  • the fusion polypeptide of the present invention can be produced by producing a fusion polypeptide of the polypeptide of the present invention with another polypeptide in Escherichia coli and purifying it using the characteristics of the fusion partner polypeptide as described above and using it as an immunogen. Antibodies that react with the polypeptide are obtained.
  • the polypeptide of the present invention binds to VEGF, it can be purified using its activity as an index.
  • the solution containing the polypeptide of the present invention before purification is appropriately diluted, and a 96-well polystyrene microtiter plate is mixed. To make a blocked plate.
  • the plate so that specifically bind VEGF it can be confirmed that binding of radioactivity remaining in Ueru Using 125 1-labeled V EGF.
  • the fraction of the chromatography performed for purifying the polypeptide of the present invention and 125 I-VEGF are brain-cubated, and then transferred to a plate of this plate, and the remaining radioactivity is measured.
  • the polypeptide of the present invention binds to VEGF and inhibit VEGF from binding to VEGF receptors. That is, since the polypeptide of the present invention inhibits VEGF activity, it inhibits the proliferation of vascular endothelial cells stimulated by VEGF and inhibits the promotion of vascular permeability by VEGF. Furthermore, the polypeptides of the present invention inhibit angiogenesis by VEGF in vivo and inhibit tumor growth.
  • the polypeptide of the present invention is effectively used as a therapeutic agent for various diseases including cancer, and further as a diagnostic agent and a test agent for those diseases.
  • FIG. 1 is a schematic diagram showing the configuration of the domain of the KDR extracellular region.
  • Figure 2 is a Otorajiogu Rafi one after electrophoresis of covalent crosslinking products of the culture supernatant and the 125 I- VEGF 165 cells infected with recombinant baculovirus expressing the "EDK13".
  • FIG. 3 is a diagram showing inhibition of VEGF-dependent thymidine uptake promotion of HUVEC by the culture supernatant of EDK13 expression. .
  • Fig. 4A shows Western analysis of anti-EDK peptide serum in the body fluid of the silkworm infected with the EDK12 / hIgG-Fc fusion gene-recombinant virus. It is a figure which shows the western analysis by peptide serum.
  • FIG. 5 shows the SDS-PAGE patterns of purified VK12H and purified VK13H.
  • FIG. 6 shows the binding ability of purified VK12H and purified VK13H to VEGF-coated plates.
  • HUVEC HUVEC (Kurabo Ltd.) about lx 10 7 cells was added to lml of I SOGEN (Wako Pure Chemical Industries, Ltd.), disrupting the cells were further shaken for 5 minutes plus I SOGEN of 9ml in Bae Dzusuru. Add 1 ml of chloroform to this solution, shake for 1 minute, centrifuge at 10,000 rpm for 10 minutes, collect the supernatant, add 1/10 volume of 3M sodium acetate (pH 5.2) and mix. Then, 2.5 volumes of ethanol were added. The precipitate was recovered by centrifugation, washed with 75% ethanol, dried, and dissolved in 100 1 of heat-sterilized pure water. 102 ⁇ g of RNA was obtained.
  • HUVEC poly (A) + RNA The dried precipitate was dissolved in 201 heat-sterilized pure water to obtain HUVEC poly (A) + RNA. Using this solution, an oligo (dT) -primed HUVEC double-stranded cDNA solution 1001 was obtained using a Pharmacia cDNA synthesis kit according to the manual.
  • Reaction solution composition (in 50 ⁇ 1): PCR reaction conditions 5 zl LA-PCR buffer (Takara Shuzo) 1) One cycle of 95 ° C, 1.5 minutes 0.25 mM dNTPs 2) 95 ° 1 minute, 58 ° C, 1 minute,
  • the Bramer sequence is as follows.
  • Bleima II 2 5'-TTCTCGMTTCTTAGTGGTGGTGGTGGTGGTGACGCTCTAGGACTGTGAGCTG-3, (SEQ ID NO: 6)
  • the underlined part of "primer 1" corresponds to the N-terminal coding sequence of KDR, and the underlined part of "primer 2" corresponds to the C-terminal coding sequence of the sixth immunoglobulin-like domain.
  • the reaction mixture was treated with an equal volume of chloroform to remove mineral oil from 5 ⁇ l of the reaction solution, the aqueous layer was collected, 10% SDS was added, and the mixture was kept at 60 ° C for 5 minutes.
  • This solution was treated with an equal volume of TE-saturated phenol, the aqueous layer was recovered, and the DNA fragment was recovered by ethanol precipitation.
  • the dried precipitate was dissolved in 301 TE and subjected to agarose gel electrophoresis. A DNA fragment of approximately 2.0 Kbp was cut out, and a DNA fragment was recovered using “Prep-A-Genej (manufactured by BioRad) according to the manual. The DNA fragment was then digested with BamHI, and the reaction mixture was used in equal volumes.
  • BamHI-digested DNA fragments were recovered from the aqueous layer using “Prep-A-Gene”.
  • the BamHI-digested DNA fragment was phosphorylated at the 5 ′ end using “T4 Polynucleoti de Kinase” (Takara Shuzo). From this reaction solution, an aqueous layer treated with an equal amount of TE-saturated phenol was recovered, and precipitated with ethanol to recover a 5'-terminal phosphorylated BajnHI-digested DNA fragment.
  • plasmid vector pUC118 HincII / BAP-treated DNA (Takara Shuzo) was digested with BamHI, the reaction solution was treated with an equal amount of TE-saturated phenol, and the aqueous layer was subjected to “Prep-A-Gene Was used to collect BamHI-digested pUC118 HincII / BAP-treated DNA.
  • the DNA fragment thus obtained and the plasmid DNA were mixed at a molar ratio of 10: 1, and the mixture was subjected to Raige-shion (Raige-short kit, manufactured by Takara Shuzo).
  • E. coli JM109 competent cells (Takara Shuzo) were transformed with this ligation solution, and 2xT containing 7 ampicillin was transformed.
  • the plasmid “pEDKH8” obtained as described above is digested with BamHI and EcoRI, the reaction solution is treated with an equal amount of TE-saturated phenol, and the aqueous layer is digested with BamHI and EcoRI using “Prep-AG enej”.
  • 1 ⁇ g of plasmid pVL1393 manufactured by Phar Ingen, which is a transfer vector for recombinant baculovirus, was digested with BamHI and EcoRI, and the reaction solution was diluted with an equal volume of TE-saturated phenol.
  • the BamHI and EcoRI digested pVL1393 fragment was recovered from the aqueous layer using “Prep-A-Gene”.
  • the DNA fragment thus obtained and the plasmid DNA were mixed at a molar ratio of 10: 1, and ligated.
  • Escherichia coli JM using this ligature solution Transformation was performed on 109 competent cells, plated on 2 XTY medium containing 75 ⁇ g / ml of ampicillin, and cultured at 37 ° C. overnight.
  • the appearing ambicilin-resistant colonies were pierced with a toothpick, transferred to the above-mentioned PCR reaction solution from which the type III was removed, and then subjected to PCR in the same manner as described above with 30 cycles.
  • This plasmid DNA was sequenced using the primer 1 or primer 1-2 (according to the method of “Molecular Cloning” described above), and the sequence of about 150 bases from upstream and downstream was examined. It was identical to the nucleotide sequence of the DNA coding for the outer region (EDK).
  • PCR was performed under the following conditions.
  • Reaction solution composition (in 50 1): PCR reaction conditions
  • the primer sequences are as follows.
  • Primer 1 5
  • SEQ ID NO: 5 5
  • Primer 3 5'-TTCTCGAATTCTTAGTGGTGGTGGTGGTGGTGAGATTCCATGCCACTTCC-3 ' Column number: 7)
  • the reaction solution 501 was treated with an equal volume of chloroform to remove mineral oil, the aqueous layer was collected, 10% SDS was added, and the mixture was kept at 60 ° C for 5 minutes.
  • This solution was treated with an equal amount of TE-saturated phenol, the aqueous layer was recovered, and ethanol precipitation was performed to recover DNA fragments.
  • the dried precipitate was dissolved in 30% TE and electrophoresed on agarose gel. A DNA fragment of about 1.0 Kbp was cut out, and the DNA fragment was recovered using "Prep-A-Gene" according to the manual.
  • this DNA fragment was digested with BamHI and EcoRI, the reaction solution was treated with an equal amount of TE-saturated phenol, and a BamHI- and EcoRI-digested DNA fragment was recovered from the aqueous layer using ⁇ Prep-A-Gene '' .
  • plasmid pVL133, 1ig a transfer vector for recombinant baculovirus
  • digestion solution is treated with an equal amount of TE-saturated phenol.
  • the BamHI and EcoRI digested pVL1393 fragments were recovered using "Prep-A-Gene”.
  • the DNA fragment thus obtained and the plasmid DNA were mixed at a molar ratio of 10: 1 to perform ligation.
  • a competent cell of Escherichia coli JM109 was transformed, plated on 2 XTY medium containing 75 g / ml of ambicilin, and cultured at 37 ° C overnight.
  • the appearing ambicilin-resistant colonies were pierced with a toothpick, transferred to the above-mentioned PCR reaction solution from which the type I was removed, and then subjected to PCR in the same manner as described above with 30 cycles.
  • the reaction mixture was subjected to agarose gel electrophoresis, and a single colony was further isolated from colonies giving a 1.0 kbp band, and named "pb EDK13".
  • E. coli cells harboring "pED KH22" or “pb EDK13” were cultured overnight at 37 ° C in 10 Oml of 2 x TY medium containing 5 O jug / m1 of ampicillin. Extract the plasmid DNA by the alkaline method and follow the instructions in the manual. Purification was performed using a column exchange column (Diagen GimbH, manufactured by QIAGEN) to obtain about 100 zg of plasmid DNA, each dissolved in 200 TE1 of TE.
  • TMN- peeled FH medium 80% confluency state of S f 9 cells cultured with (PharMingen Ltd.) (Invitrogen Corp., Ltd.) at bi petting, 30 seeded 2x l 0 6 amino cells in dishes of diameter 35mm After allowing to adsorb to the surface by standing for a minute, the medium was replaced with 1.5 ml of serum-free medium Ex-Ce 11400 (Iwaki Glass).
  • This recombinant virus was named "BEDK13M”. “As a result of plaque assay performed according to the manual of Invitrogen corp.j, the virus size of these viruses was about 3 ⁇ 10 6. Using the obtained original virus stock, according to the manual of“ In vitrogen corp. ” About 30 ml of the virus solution amplified in three steps (about 5 ⁇ 10 7 / ml in Thailand and Japan) was used.
  • Sf9 cells were infected with the recombinant virus “BEDK 13M” with moi5 (moi is the ratio of virus particles to cell number), and the culture supernatant cultured for 7 days was added to 125 I-V EGF (100,000 cpm / ng, manufactured by Amersham) 200, OO cpm and 100 ⁇ 1? Placed in 63-0.1% BSA at room temperature for 1.5 hours. 25 m to this solution M disuccinylsuberate / dimethylsulfoxide / PBS solution was added in 41 and allowed to stand at room temperature for 40 minutes, followed by mixing 1Z10 volumes of 1M Tris-HCl (pH 6.8). The sample was subjected to SDS-polyacrylamide gel electrophoresis under non-reducing conditions under the Laemmli method, and signals were detected by autoradiography (Fig. 2).
  • a covalent cross-linked product with a molecular weight of 98,000 was detected (Fig. 2B, lane 1), whereas the DNA encoding the extracellular region of FLT, which is the VEGF receptor, was defined as a promoter.
  • No covalent cross-linked product was observed in the control virus-infected cell culture supernatant prepared by infecting the recombinant virus inserted in the opposite direction (Fig. 2A, lane 3).
  • Lane 1 in FIG. 2A shows the result of using the culture supernatant obtained by infecting “BEDK16” with moi5 and culturing for 7 days as a positive control, and lane 3 using the control virus-infected cells described above.
  • Lanes 2 and 4 are the results of adding 100-fold unlabeled VEGF 165 (R & D) to the reactions of lanes 1 and 3, respectively.
  • the 250 Kd band indicated by the arrow in the figure is a covalently crosslinked product of a dimer of a polypeptide consisting of the first to sixth immunoglobulin-like domains of 01 and a dimer of VEGF 165 .
  • Lane 1 in Fig. 2B uses the culture supernatant infected with "BEDK 13M", and lane 2 shows the result of adding 100 times unlabeled VEGF (R & D) to the reaction in lane 1.
  • the molecular weight of the VEGF 165 dimer is 42,000, it is 56,000 when subtracted from the molecular weight of the covalent cross-linked product of 98,000.
  • the molecular weight predicted from the amino acid sequence is approximately 56,000, indicating that cells infected with "BEDK 13M” express a polypeptide consisting of the first to third immunoglobulin-like domains of EDK It was confirmed that.
  • the polypeptide expressed from "BEDK 13M" was named "EDK 13".
  • HUVEC human umbilical cord-derived vascular endothelial cells
  • VEGF vascular endothelial growth factor
  • primer 11 The sequence of primer 11 is shown above.
  • the sequence of Primer 14 is as follows. Primer 4: 5 TJXG CAG AAgATTT ⁇ CTCCGGACTCAGAACCACATCATA-3, (SEQ ID NO: 8)
  • the wavy line of primer 4 corresponds to the sequence encoding the 5 amino acids on the N-terminal side of the hinge of the human IgG1-Fc region (however, the antisense strand), and the underlined portion is the second immunoglobulin of EDK (position 205- 21 1) corresponding to the sequence encoding the like domain (however, the antisense strand).
  • primer 1 The sequence of primer 1 is shown above.
  • the sequence of Primer 14 is as follows. Primer 5: .5, TTTGTCACAAGATTTGGGCTCAGATTCCATGCCACTTCCAAA-3 J (SEQ ID NO: 9)
  • the wavy line of the primer 5 corresponds to the sequence coding for the 5 amino acids on the N-terminal side of the hinge of the human IgG1-Fc region (however, the antisense strand), and the underlined portion is the third immunoglobulin (313) of EDK. (Positions 319 to 319).
  • a human strain Oblas Toma IM9 strain (Dainippon Pharmaceutical Co., Ltd.) was cultured in RPMI 1640 medium (GIBCO BRL).
  • a cDNA solution was prepared at 100 ⁇ 1 from 4 ⁇ 10 7 cells in the same manner as described above, and a human IgG 1 -Fc DNA fragment was amplified by two-step PCR.
  • Reaction solution composition (in 100 1): Reaction conditions of PCR
  • primer 6 and primer 7 are as follows. Primer 6: 5'-TCTTGTGACAAAACTCACACATGC-3 '(SEQ ID NO: 10) Primer 7: 5'-CGGAGACAGGGAGAGGCTCTTCTG-3' (SEQ ID NO: 11)
  • Primer 8 and Primer 9 were added to the above PCR reaction solution at a concentration of 200 nM, and a reaction was carried out for 15 cycles under conditions (2) and 1 cycle under conditions (3) in Table 5.
  • primer 8 and primer 9 are as follows.
  • Primer 8 5'-GAGCCCAAATCTTGAGACAAA-3 '(SEQ ID NO: 12)
  • Buraima 9 5, -TTCTTCTAGATTAGTGGTGGTGGTGGTGGTGTTTACCCGGAGACAGGGA-3 5 ( SEQ ID NO 13)
  • Primer 8 corresponds to the sequence coding for the N-terminal amino acid of human IgG1-Fc
  • the dotted line of primer 9 is the restriction enzyme XbaI recognition cleavage sequence
  • the double underlined is the s top codon (but anti- The sense strand)
  • the underlined part is the sequence of 6 histidine codons (antisense strand)
  • the wavy part is the sequence encoding the C-terminal amino acid of human IgG1-Fc
  • Purified DNA fragments of 0.7 Kbp encoding human IgG1-Fc were obtained from each PCR reaction solution in the same manner as described above, and each of them was prepared as 201 TE (10 mM Tris-HCl, pH 7.5, 1 mM EDTA -2Na) buffer.
  • Reaction solution composition (in 100 1): Reaction conditions of PCR
  • Reaction solution composition (in 100 1): PCR reaction conditions
  • LA-PCR buffer (Takara Shuzo) 1) One cycle at 95 ° C for 2 minutes 0.25 mM dNTPs 2) Slowly cool to 200 nM primer 1 at 50 ° C at 95 ° C for 1 minute and 15 minutes for 1 minute 3 cycles of 200 nM Primer 9 at 72 ° C for 1 minute
  • the silkworm nucleopolyhedrovirus transfer vector pBMO050 (S. Maeda, Gene transfer vectors of a baculovirus) digested with EcoRI and Xbal was used. Bombyx mori, and their use for expression of foreign genes in insect cells, Invertebrate cell system applications, p. 167 Vol.I Ed.By J. Mitsuhashi, CRC Press, 1989) Obtained. Next, in order to obtain a recombinant virus, these plasmid DNAs and CP d virus (T.
  • VEGF 121 Culture supernatant of single clones obtained by limiting dilution (S. Ko ndo et al., BBA., 1243, p. 195, 1995) co one you encountered a Imuron 2 strip (manufactured by Dynatech) EIA was performed using a POD-labeled anti-human IgG antibody (manufactured by MBL) as the secondary antibody and a clone showing color development was selected. Since the culture supernatant was considered to contain a recombinant virus were grown to further Bomo 15 about 10 8 / ml of virus to infect All c cells.
  • a 15-residue peptide was synthesized from the proline at position 5 in the amino acid sequence number table of EDK using MAP resin, and immunized with a heron three times every two weeks to obtain an antiserum.
  • the culture supernatant containing each recombinant virus was mixed to the feed, 5 old silkworm 1 per Ri to 10 4 to 10 5 viral recovered reared fluid 6 days 5 days administration of anti melanization
  • phenylthiourea was added and stored at 180 ° C.
  • the EDK12 / hIgG-Fc fusion protein and EDK13 / hIgG-Fc fusion protein were named VK12H and VK13H.
  • VEGF-coated plates As a result, a 100-fold diluted non-recombinant virus-infected silkworm body fluid was used as a control on VEGF-coated plates. No color was formed when 5 g / ml human IgG 1 (BioPur AG, # 10-31-1212, Switzerland) was added, and strong color was generated when purified VK 12H and VK 13 H were used. Colored. In addition, the color development was inhibited by excess VEGF 165 (R & D) added from outside. These indicate that VK12H and VK13H specifically bind to VEGF.
  • the fusion protein of the first and second domains of the KDR extracellular region and human IgG1-Fc and the fusion of the first to third domains of the KDR extracellular region and human IgG1-Fc was found to have VEGF binding ability.
  • the polypeptide of the present invention can inhibit angiogenesis induced by VEGF stimulation, it can be used for the treatment of solid cancer and other diseases associated with pathological angiogenesis. Antibody is difficult to produce even when administered to humans. Furthermore, since the molecular weight is smaller than that of a conventional polypeptide (RLKendal and K.A. Thomas, Proc. Nat 1., Acad. Sci., U.S.A., 90: 10705 (1993)), recombinant DNA It can be easily expressed by the drug and can quickly invade the affected area.
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type Other nucleic acids (synthetic DNA)
  • Sequence type nucleic acid
  • Sequence type Other nucleic acids (synthetic DNA)
  • Sequence type nucleic acid
  • Sequence type Other nucleic acids (synthetic DNA)
  • Sequence type nucleic acid
  • Sequence type Other nucleic acids (synthetic DNA)
  • Sequence type nucleic acid
  • Sequence type Other nucleic acids (synthetic DNA)
  • Sequence type nucleic acid
  • Sequence type Other nucleic acids (synthetic DNA) Array
  • Sequence type nucleic acid
  • Sequence type Other nucleic acids (synthetic DNA)
  • Sequence type nucleic acid
  • Sequence type Other nucleic acids (synthetic DNA)
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type Other nucleic acids (synthetic DNA)
  • Sequence type nucleic acid
  • Sequence type Other nucleic acids (synthetic DNA)
  • Sequence type nucleic acid
  • Sequence type Other nucleic acids (synthetic DNA)

Description

明細書
VEGF結合性ポリべプチド
技術分野
本発明は、 血管新生阻害剤として有用なポリペプチドに関するものであり、 当 該ポリペプチドは医薬、 診断薬、 検査薬として有効なものであり、 それらの技術 分野において利用されるものである。 背景技術
幾つかの疾病では、 その症状や病因と密接に関連した病理的血管新生を伴うこ とが知られている。 中でも代表的な疾病は固形ガンで、 ガン組織が直径 1~ 2m mを越えて増殖するためには、 既存血管から新生血管が延びてガン組織まで到達 することが必要であり、 血管がガン組織に到達して初めてガン組織の増殖が爆発 的に加速される (J. Folkman, J. Natl. Cancer Inst., 82:4 (1990)) 。 また、 糖尿病性網膜症では網膜に病理的血管新生を伴い、 それが失明の原因となってい ることがある。 さらに慢性関節リューマチ、 乾せん、 血管腫、 強皮症、 血管新生 緑内障などの疾病においても病理的血管新生を伴い、 それが主な症状の一つとな つている (J. Folkman, N. Engle. J. Med., 320:1211 (1989)) 。 従って、 血管 新生を阻害する物質は、 ガンや前述の疾病の治療に利用できる可能性があるもの である。
血管内皮細胞は血管の最も内側の層を形成している細胞であり、 血管新生は、 血管内皮細胞が成長因子や生理活性物質あるいは機械的損傷などの刺激を受けて 、 増殖することによって引き起こされるものである。
直接または間接的に血管内皮細胞の増殖を刺激する成長因子として、 b F G F (basic Fibroblast Growth Factor)、 a F G F (acidic Fibroblast Growth Fact or) VE GF (Vascular Endothelial cell Growth Factor )s PD-E CGF(P latelet - Derived Endothelial Cell Growth Factor) T N F (Tumour Necrosis Factor-ひ)、 PD GF(Platelet Derived Growth Factor)ヽ E G F (Epidermal G rowth Factor), TGF-a (Transforming Growth Factor- )s TGF- ?(Tran sforming Growth Factor-/? )、 H G F (Hepatocyte Growth Factor)が知られてい る (L. Diaz-Flores et al., Histol.Histopath. , 9:807 (1994)) 。 これらの中 で、 VEGF (血管内皮細胞増殖因子) は血管内皮細胞に極めて特異的に作用す る点で他の成長因子と区別できるものであり、 言い換えれば、 VEGFのレセプ 夕一は血管内皮細胞以外ではごく限られた細胞でしか発現しないものである。
VEGFは、 分子量 4万〜 4万 5千の糖タンパク質で 2量体として存在し (P. W. Leung et al., Science 246:1306 (1989); P. J. Keck et al., Science :24 6:1319(1989)) 、 V E G Fレセプ夕一に結合することによって作用し、 細胞の増 殖を促進したり膜透過性を促進するものである。
VEGFとガンとの関係を示唆する報告には以下のようなものがある。
多くのガン細胞は VE GFを分泌する (S. Kondo et al., Bichem. Biophys. Res. Commun. , 194:1234(1993)) 。 ガン組織切片を抗 V E G F抗体で染色すると ガン組織およびその周辺の新生血管が強く染色される (H. F. Dvorak et al., J . Exp. Med. 174:1275(1991); L. F. Brown at al., Cancer Res., 53:4727 (19 93)) 。 VEGFレセプ夕一の一つが遺伝的に不活化されたマウスでは移植された ガンの増殖が抑制される (B. Millauer et al.,. Nature, 367:576 (1994)) 。 抗 VE GF中和抗体が坦ガンマウスに対して抗腫瘍活性を示す (K. J. Kim et al. , Nature, 362:841 (1993); S. Kondo et al., Bichem. Biophys. Res. Commun. , 194:1234(1993)) 。
以上の事実から、 ガン細胞が分泌する VE GFは腫瘍血管新生において主要な 役割を果していると考えられる。
一方、 VEGFのレセプ夕一は、 ヒトでは FLT (M. Shibuya, et al., Onco gene, 5:519 (1990); C. DeVries et al., Science, 255:989 (1992)) と KDR (B. I. Terman et al., Bichem. Biophys. Res. Commun. , 187:1579 (1992)) の 2種類が知られており、 FLTおよび KDRの細胞外領域は図 1に示されるよう な 7つのィムノグロブリン様ドメインからなる構造を有している。 F L Tに関し ては可溶性型レセブ夕一の cDNAがクロ一ニングされており (R. L. Kendal a nd K. A. Thomas, Proc. Natl. Acad. Sci. U. S. A., 90:10705 (1993)) 、 この c D N Aによりコードされるポリベプチドは F L Tの細胞外領域の第 1〜第 6ィ ムノグロプリン様ドメインと対応しており、 本来の FLTと同程度の親和性で V EGFと結合し VEGF活性を阻害した。 また KDRについても遺伝子工学的に 発現させた細胞外領域の第 1〜第 6 ドメインが V E G Fに結合することが知られ ている (R. L. Kendal et al., Bichem. Biophys. Res. Commun., 201:326 (199 4)) 。
上記したように、 マウスの抗 VEGF中和モノクローナル抗体が抗腫瘍性を示 すことから、 抗 VEGF中和モノクローナル抗体は抗ガン剤として利用可能であ ると期待できる。 しかしながら、 マウスの抗体を人に投与するとマウス抗体に対 するヒ卜抗体が産生され、 中和されたりアナフィラキシーショックを引き起こし たりする場合がある。 このようなことを回避するためには、 マウス抗体のキメラ 化 (S. L. Morrison et al., Proc. Natl. Acad. Sci. U. S. A., 81:6851 (198 9)) やヒト化を行い、 中和能を損なわないようにしながらマウス抗体のアミノ酸 配列をヒト抗体のアミノ酸配列に近づける必要がある。 しかしながら、 そのため には高度の技術と知識、 経験、 労力が必要であり、 成果はケースバイケースで必 ずしも成功するとは限らず、 100%のヒト化ができるものではない。 他の方法 としてはヒト抗体そのものを産生するトランスジエニックマウスを用いて免疫す る方法があるが (S. Wagner et al., Nucleic Acid Res., 22:1389(1994)) 、 や はり高度の専門的な技術が必要である。
前述のように VEGFレセプ夕一の細胞外領域は、 V E G Fに対し特異的に高 親和性で結合し、 VEGF活性を阻害できるので血管新生阻害剤として利用する ことが考えられる。 しかも元々ヒト由来のポリべプチドであるために人に投与し ても抗体出現率は低いことが期待できる。 しかし一方では、 本来体内に多量に存 在しないポリべプチドは投与されると極めて速やかに代謝されてしまうものであ る。 例えば、 HI Vのレセプ夕一である CD 4の可溶性型の血中半減期は 15分 であり (D. J. Capon et al., Nature, 337:525 (1989)) 、 イン夕一フエロンァ の場合は血中半減期は 30分であった (I. Rutenfranz and H. Kirchner, J. In terferon Res., 8:573 (1988)) 。
血中半減期を延長する方法として、 抗体分子のような血中半減期の長い分子と の融合ポリベプチドを遺伝子工学的に作成し利用する方法が知られている。
CD 4の例では抗体 I gG 1の F c領域とのキメラにした場合に血中半減期が 15分から 48時間に延長された (D. J. Capon et al., Nature, 337:525 (198 9)) 。 また抗体の F c領域との融合ポリペプチドにすることによって抗体が持つ ているエフヱクタ一機能、 即ち捕体依存性細胞障害活性 (D. B. Amos et al., T ransplantation, 7:220 (1969)) および抗体依存性細胞障害活性 (Α· Y. Liu et al., Proc. Natl. Acad. Sci. U. S. A., 84:3439 (1987)) を誘導できる効果も 期待できる。 更に F c領域を介して 2量体ィヒされ 1分子が 2箇所でリガンドに結 合できるようになるため、 膜表面や細胞外マ卜リクスなどの固相上のリガンドに 結合する場合には親和性が格段に向上する効果も期待できる。
抗体との融合ポリべプチドを利用する場合に 、 融合により分子量が大きくな るので元のポリペプチドは分子量が小さいことが望ましい。 何故なら、 分子量が 大きいと遺伝子操作で融合ポリべプチドを生産する組換え宿主を作成する際に、 扱う D N Aの分子量が大きくなるからである。 一般に導入する D N Aの分子量が 大きい程、 宿主への導入効率が悪くなり、 組換え体が得られる頻度が低下する。 また一般に生産させようとする組換えポリべプチドの分子量が大きい程、 産生量 が低くなる傾向がある。 更に固形ガンの治療に利用する場合には、 分子量の大き いポリペプチドは患部への浸潤性が悪いという欠点を有している (D. M. Lane e t al., Br. J. Cancer, 70:521 (1994) )。 発明の開示
本発明者らは、 V E G Fを特異的に阻害することにより血管新生を阻害できる ポリべプチド、 特に V E G Fレセプ夕一の細胞外領域に関するポリべプチドの内 分子量が小さいポリべプチドを見いだすことを目的として鋭意努力した。 その結 果、 K D Rの細胞外領域の第 1ィムノグロブリン様ドメインから第 2ィムノグロ プリン様ドメインを含むポリべプチドが V E G Fに特異的かつ高親和性で結合し 、 V E G F活性を阻害できることを見いだし、 本発明を完成した。 なお、 本明細 書において 「ポリペプチド」 とは、 アミノ酸同士がペプチド結合によって共有結 合しているもの一般を指し、 長さの制限はないものとする。
本発明のポリべプチドとしては、 K D Rの細胞外領域の第 1ィムノグロブリン 様ドメインから第 2ィムノグロブリン様ドメインからなるものが、 分子量が小さ いために好ましいが、 これらに他のドメインを含んでいるものも含まれる。 例え ば、 第 1ィムノグロプリン様ドメインから第 3ィムノグロブリン様ドメインの全 てを含むポリペプチド、 第 1ィムノグロブリン様ドメインから第 4ィムノグロブ リン様ドメインの全てを含むポリべプチド、 第 1ィムノグロブリン様ドメインか ら第 5ィムノグロプリン様ドメインの全てを含むポリべプチド等も本発明のポリ ペプチドに含まれる。 また、 第 1ィムノグロブ.リン様ドメインから第 5ィムノグ ロブリン様ドメインのうち、 第 3ィムノグロブリン様ドメインから第 5ィムノグ ロブリン様ドメインの任意の 1つまたは 2つのドメインが欠失しているポリべプ チドも、 本発明のポリペプチドに含まれる。 なお、 V E G Fに結合して V E G F の活性を阻害することができる限り、 本発明のポリぺプチドにおけるこれらドメ ィンのアミノ酸配列は、 一部のアミノ酸が置換などにより変異していてもよい。 このアミノ酸の改変は当業者であれば、 公知の方法を用いて行うことができる。 しかし、 余り分子量が大きいポリペプチド、 例えば第 1ィムノグロブリン様ド メインから第 6ィムノグロブリン様ドメインの全てを含むポリぺプチドまたは第 1ィムノグロブリン様ドメインから第 7ィムノグロブリン様ドメインの全てを含 むポリペプチドも当然のことに、 V E G Fに特異的かつ高親和性で結合しうるも のであるが、 分子量が大きすぎるので 「組換え DNA技術による発現が行いやす く、 患部への浸潤も速やかである」 という本願発明の目的を達成するには不満足 なものである。
なお、 KDRの各ドメインの境界は明確に区別されるものではないが、 本明細 書においては各ドメインは、 それぞれ、 すでに公表されている配列番号: 1に示 される K D Rの全ァミノ酸配列中の以下の残基番号のァミノ酸配列を含むドメイ ンと定義される。 下記の残基番号は、 配列番号: 1のものと同じである。 即ち、 成熟 KDRの N末端 (配列番号: 1の 1位の 「Ala」 ) から数えた残基番号を 示す。
第 1ィムノグロブリン 1〜; 115
第 2ィムノグロブリン 116〜 214
第 3ィムノグロブリン 218〜319
第 4ィムノグロブリン 319〜 392
第 5ィムノグロブリン 393〜 533
第 6ィムノグロブリン 534〜 645
第 7ィムノグロブリン 646〜 750
さらに本発明は、 上記 KDRの細胞外領域と他のタンパク質 (例えば、 ィムノ グロプリンの F c領域) とが融合したポリべプチドも含む。
これらのポリぺプチドは次のような手順を経て生産することができる。 ヒト血 管内皮細胞、 例えばヒト臍帯由来血管内皮細胞 (岩城硝子、 森永乳業、 クラボウ などが販売) を培養し酸性フエノール法 (P. Chomzynski and N. Sacchi, Anal.
Biochem., 162:156 (1987)) により全 RNAを抽出し、 オリゴ dTセルロースに よってポリ (A) +RNAを調製する。 これを錶型として逆転写酵素とオリゴ dT
( 12〜 16) プライマ一を用いて 1本鎖 cDNAまたは 2本鎖 cDNAを合成 する。 ポリ (A) +RNAの調製法、 cDNAの調製法については J.サンブルック (J. Sambrook) らの 「分子クローニング (Molecular Cloning) 」 (Cold Sprin g Harbor Laboratory Press, 1989) に従って行うことができる。 また市販のポリ (A) +RNA調製試薬 (01igotex-dT30 :宝酒造製) や cDNA合成 キット ( フアルマシアバイオシステム製) を用いても行うことができる。 既に cDNAラ イブラリーからクローニングされた KDR cDNAがある場合は、 直接、 発現 させようとする領域の DNAを適当な制限酵素で切り出し、 発現ベクターに導入 してもよい。
次に得られた c DNAを銪型として P CR法 (" PCR Protocols" , Michael A . Innis et. al., Academic Press Inc., 1990) により目的部分の D N Aを増幅す ることができる。 例えば、 以下のようなプライマーを使用すればよい。 プライマ — DNAは DNA合成機 (アプライ ドバイオシステムズ製、 日本ミリポアリミテ ッド製など) で合成するか、 カスタム DNAを注文することができる (サヮディ テクノロジー) 。 例えば第 1〜第 6ィムノグロブリン様ドメインをコードする c DN Aを得る場合は、
上流プライマー: 5, N ( 3~5 ) X ( 6 ) ATGGAGAGCAAGGTGCTGCTG (配列番号: 2) 、 下流プライマ一: 5, N(3〜5)Y(6)ACGCTCTAGGACTGTGAGCTG (配列番号: 3) 、 第 1〜第 3ィムノグロブリン様ドメインをコ一.ドする cDN Aを得る場合は、 上 流プライマ一: 5, N(3〜5)X(6)ATGGAGAGCMGGTGCTGCTG (配列番号: 2) 、 下 流プライマ一: 5, N ( 3-5 ) Y ( 6 )AGATTCCATGCCACTTCCAAA (配列番号: 4) を用 いればよい。
配列中、 Nは A、 Cs G、 Tの何れか、 Xまたは Υは制限酵素認識配列、 括弧 内の数字は塩基数を表す。 具体的には、 Ν(3〜5)は A、 C、 G、 Tの何れかが 3 〜5個存在することを示し、 Χ(6)または Υ(6)は、 6塩基を認識する制限酵素の 認識配列を示す。 これらの制限酵素認識配列は、 増幅しょうとする DNA断片お よびそれを挿入しょうとするベクタ一には存在しない配列にすることが望ましい 。 配列番号: 1に記載の塩基配列を参考にして適宜下流プライマーを設計し、 所 望の C末端をコードする DN A断片を増幅することができる。 また発現ベクター に組み込まれた時には、 ポリべプチドのコ一ディング配列はプロモーターに対し て順方向に配置していなければならない。 プライマ一配列中、 KDR DNA配 列と対応する部分は必ずしも 21塩基に限定する必要はなく 17〜25塩基程度 でもよい。 PCRの条件は前述の 「PCR Protocolsj記載の標準的条件でよいが、 鍊型の量ゃプラィマ一配列によって反応の進み方が異なるので、 効率よく行うた めに、 各パラメ一夕一 (例えば Mg++濃度、 アニーリング温度、 延長反応時間、 サイクル数など) を適宜変更し、 至適化することができる。 PCRに使用する D N Aポリメラ一ゼは、 T a qポリメラーゼよりプル一フリーデイング (3' ェク ソヌクレアーゼ) 活性のある P f uポリメラ一ゼ (Stratagene製) か Taqポリ メラ一ゼに Pf uポリメラーゼを添加したものを用いた方が P CR増幅時の信頼 性 (Fidelity) が増す (W. M. Barnes, Proc. Natl. Acad. Sci. U. S. Aり 91: 2216 (1994)) 。
この場合の P CRで増幅しょうとする DNA断片は配列が既知なので、 増幅後 ァガロースゲル電気泳動でサイズを確認し、 またゲルより回収して、 適当な制限 酵素で消化し、 その電気泳動パターンを調べることにより目的の DN A断片が得 られたかどうか判断することができる。 ァガロースゲル電気泳動、 DNA断片の ゲルからの回収、 制限酵素による切断は前述の 「Molecular Cloningj に従って行 うことができる。 また DNAのゲルからの回収には市販のグラスビーズを利用し たキット (例えばバイオラッ ド製 Prep-A-Gene) を使用することができる。
回収した DN A断片は、 X(6)および Y(6)を切断できる制限酵素で断片の両端 を消化し、 フヱノール処理により除タンパクを行い、 エタノール沈澱し、 適当な バッファ一、 例えば TE (lOmM Tris-HCl(pH7.5)/l mM EDTA) に溶かす。 同様に して適当な発現ベクターのクローニング用部位を、 X(6)および Y(6)を切断でき る制限酵素で切断し、 ァガロースゲル電気泳動を行い、 ぺク夕一 DNAを回収す る。 このようにすることによって X (6 )および Y (6 )切断部位間の小さな断片を除 くことができる。 これらの挿入しょうとする D N A断片および切断したベクター D N Aを、 例えばべクタ一 D N A:挿入 D N A断片の比が 1 : 5〜 1 : 1 0にな るように加え、 T 4 D N Aリガ一ゼを用いてライゲ一シヨン反応を行う。 ライゲ —シヨン産物を大腸菌コンビテント細胞に加え、 形質転換を行い、 ベクターにコ ードされた選択マ一力一 (例えば、 アンビシリン耐性、 カナマイシン耐性など) に対応する抗生物質を含む培地でまず抗生物質耐性の形質転換体を選択する。 発現ベクターに D N Α断片が挿入された組換え体は、 抗生物質耐性の各形質転 換体が持つプラスミ ドの制限酵素切断パターンを調べて選択する。 または各形質 転換体を菌体ごと鍩型として、 挿入しょうとする D N A断片を増幅したプライマ 一を用いて P C Rを行うことにより、 目的とする D N A断片が増幅されるか否か で組換え体かどうか調べることができる。 これらの大腸菌の組換え体を得る一連 の操作は前述の 「分子クローニング」 に従って行うことができる。
本発明のポリべプチドを生産させるために様々な宿主を利用することができる o 例えば大腸菌 (Escherichia coli) 、 シュ一ドモナス (Pseudomonas) 属細菌、 枯草菌 (Bacillus subtilis) 、 バチルス · プレビス ( Baci llus brevis) 、 バチ ルス · リケニフォルミス (Bacil lus l iqueniformis) 、 バチルス 'チューリンゲ ンシス (Bacillus thuringensis) などのグラ厶陰性またはグラム陽性細菌、 ビキ ァ ·ノ ストリス (Pichia pastoris) 、 シゾサッカロミセス ·ボンべ (Shizosacc haromyces pombe) 、 サッカロミセス -セレビシェ (Saccharomyces cerevisiae) などのような酵母、 ァスペルギルス (Aspergi llus) 属のような真菌類、 Sf9(Spo doptera frugiperda由来)、 Sf21、 TN5(Trichoplusia ni由来)、 BN4(Bombyx moli )などのような毘虫細胞、 CH0 (チャイニーズハムスター卵巣由来) 、 C O S細胞 (サル腎臓由来) などのような哺乳類細胞が利用できる。 ベクターは宿主の種に よってそれぞれ適したベクターを利用すればよい。 最終的な形質転換細胞を得る 前に、 本発明のポリべプチドを生産しょうとする宿主と大腸菌とのシャトルべク 夕一を用い、 一度大腸菌で組換え DN Aを得るのがより容易であろう。 本発明の ポリべプチドを生産する組換え宿主を得るための形質転換方法は、 大腸菌ではコ ンピテント細胞法、 バチルス属ではコンビテント細胞法 (K. Bott and G. A. Wi llson, J. Bacteriol., 94:562 (1967)) 、 プロトプラスト法 (M. Mandel and A . Higa, J. Mol. Biol., 53:159(1970)) 、 酵母ではプロトプラスト法 (M. Bro ker et al., BioTechniques, 5:516 (1987)) 、 昆虫細胞およびほ乳類細胞ではリ ポフエクチン法 (R. W. Mai one et al., Pro Natl. Acad. Sci. U. S. A., 86 :6077 (1989)) 、 リン酸カルシウム法 (F. L. Graham and A. J. van der Eb, V irology, 52:456 (1973)) により行うことができる。 またエレクトロボレ一ショ ン法 (バイオラッド社パンフレツ ト等参照) は前述の全ての細胞に応用可能であ る。
基本的には、 使用する宿主内で複製可能なプラスミ ドまたはウィルス DNAを 用い、 発現させたい部分をコードする DNAをその宿主内で機能する強力なプロ モーターの下流に組入れればよい。 発現させようとする遺伝子に翻訳開始コドン がない場合には、 これを付加する必要がある。 また原核細胞を宿主に用いる場合 はリボソーム結合配列が (J. R. MacLaughlin et al., J. Biol. Chem., 256:11 283 (1981)) 必要である。 宿主染色体 DNAの一部を有し、 宿主内で複製できな いベクターを用いて宿主染色体と相同組換えを起こさせ、 宿主染色体内にベクタ
—ごと組込む方法も利用することができる (特開平 4- 278092号、 D. J. King et al., Biochem. J., 281:317 (1992)) 。 また、 培養細胞ではなく、 動物あるいは 植物固体を宿主とする方法も利用可能である。 例えばカイコのウィルスである Bm NPVの組換えウィルスを作成しカイコに接種することにより、 培養細胞を宿主とす る場合に比べ、 より高い生産性でカイコ体液からポリペプチドが得られるであろ う (河合秀樹、 下群洋一郎、 バイオインダストリ一、 8:39 (1991)) 。 pSV系べク 夕一の組換え体で形質転換したマウスミエローマ細胞を SCIDマウスやヌードマウ スの腹腔に移植し、 腹水から組換えポリべプチドを回収することも可能であろう o 本発明の D N Aを用いたトランスジエニック動物 (G. Wright at al., Bio/Te chnology, 9:830 ( 1991 ) ) あるいはトランスジエニック植物 (M. Owen et al., Bio/Technology, 10:790 ( 1992)) を宿主として利用することも可能であろう。 本発明のポリべプチドを細胞外に分泌させるには、 真核細胞を宿主に用いる場 合は K D Rのシグナルべプチドコ一ディング部分をそのまま使用すればよい。 細 菌を用いる場合には、 使用する宿主の分泌タンパク質のシグナルべプチドをコ一 ドする D N Aを利用することができるであろう。 例えば、 大腸菌では外膜タンパ ク質である OmpA、 OmpFs フォスファタ一ゼである PhoA、 マルト一ス結合タンパク 質である MalB、 バチルス (Bacillus) 属では塩基配列が既知のアミラーゼ、 アル 力リフォスファターゼ、 セリンプロテアーゼなどのシグナルぺプチドをコ一ドす る D N Aを利用することができる。 また細胞内に発現させる場合には、 開始コド ン以外のシグナルペプチドコーディング部分を除いて利用すればよい。 また、 細 菌の細胞内で外来性のポリぺプチドを高発現させた場合にはしばしば封入体の形 成が起こるが、 その場合は 8 M尿素で可溶化後、 数〃 gZm lのポリペプチド濃 度まで希釈し透析により徐々に尿素を除くことで活性の何割かが回収できるであ ろう。 また、 大腸菌内で大腸菌チォレドキシンを同時に高発現させることにより 、 封入体を生じさせにくくさせることも可能である。
前述のような方法で得られた本発明のポリべプチドは、 一般的な生化学的方法 により精製することができる。 例えば硫酸アンモニゥム沈澱、 イオン交換クロマ トグラフィ一、 ゲル濾過、 疎水性クロマトグラフィーなどを利用することができ る。 本発明のポリペプチドはへパリン親和性を有するので、 へパリン樹脂による ァフィ二テイクロマトグラフィ一を利用することができる。 他のポリべプチドと の融合ポリべプチドの場合は、 相手のポリべプチドが有する特性を利用して精製 することが可能である (M. Uhlen et al ., Methods Enzymol. , 185 : 129 ( 1990)) 。 例えば融合ポリベプチドの相手が抗体の F c領域である場合にはプロテイン A セファロ一スあるいはプロテイン Gセファロ一ス (E. Harlow and D. Lane, "Ant i bodies", Cold Spring Harbor Laboratoly Press, 1988) 、 グノレ夕チオン卜ラン スフエラ一ゼ (GST) である場合にはグル夕チオンセファロース (D. B. Smit h and F. S. Johnson, Gene, 67:31 (1988)) 、 クロラムフエニコ一ル卜ランスフ エラ一ゼである場合にはクロラムフエニコ一ルセファロース、 ヒスチジンオリゴ マ一である場合には Ni+ + -NTA(nitryltriacetic acid)ァガロースを用いたァフィ 二ティクロマトグラフィー (F. H. Arnold, Bio/Tecnology, 9:151 (1991)) を利 用することができる。
本発明のポリべプチドを含む画分は本ポリべプチドに反応する抗体を用いた E I Aあるいはウエスタン解析によって検出することができる。 本発明のポリべプ チドと反応する抗体は、 N末端より 25番目〜 39番目のアミノ酸配列に対応す るオリゴペプチドを合成し、 牛血清アルブミンあるいは KLH(keyhole lymphet hemocyanine)などのキヤリア一タンパク質とのコンジュゲイ トを作成しゥサギな どに標準的な方法で免疫することで得られる (E. Harlow anr D. Lane, "Antibo dies", Cold Spring Harbor Press, 1988) 。 また本発明ポリペプチドと他のポリ ぺプチドとの融合ポリべプチドを大腸菌で生産し、 前述のように融合相手のポリ ベプチドの特性を利用して精製して免疫原として用いても本発明のポリべプチド に反応する抗体は得られる。
本発明のポリべプチドは VEGFに結合するので、 その活性を指標として精製 することもできる。 例えば E I A用に抗体固相化プレートを調製するのと同様の 要領で、 精製前の本発明のポリペプチドを含む溶液を適当に希釈し、 96穴のポ リスチレン製マイクロタイ夕一プレートをコ一トしてブロッキング処理したプレ —トを作成する。 このプレートは VEGFを特異的に結合するので、 1251標識 V EGFを使用すればゥエルに残る放射活性から結合が確認できる。 本発明のポリ ぺブチドを精製するために行ったクロマトグラフィーの画分と125 I— VEGFを ブレインキュベ一卜してからこのプレートのゥヱルに移し、 残る放射活性を測定 する。 その画分に本発明のポリペプチドが存在すれば、 プレインキュベーション 中に VE GFに結合し、 プレート上の本発明のポリべプチドと拮抗してプレート に結合しにくくなることで、 存在が確認できる。 ' 本発明のポリべプチドは、 VEGFに結合して VEGFが VEGFレセプ夕一 に結合することを阻害する。 すなわち、 本発明のポリペプチドは VEGF活性を 阻害するので、 VEGF刺激による血管内皮細胞の増殖を阻害し、 VEGFによ る血管透過性促進を阻害する。 更に、 本発明のポリペプチドは、 インビボで VE GFによる血管新生を阻害し、 腫瘍の増殖を阻害する。
従って、 本発明のポリペプチドは、 ガンをはじめとする各種疾病の治療薬とし て、 さらにはそれらの疾病の診断薬、 検査薬として有効に利用されるものである
図面の簡単な説明
図 1は、 KDR細胞外領域のドメインの構成を表す模式図である。
図 2は、 「EDK13」 を発現する組換えバキュロウィルスを感染させた細胞 の培養上清と125I- VEGF165との共有架橋産物の電気泳動後のォートラジオグ ラフィ一である。
図 3は、 HUVECの VEGF依存性チミジン取り込み促進の EDK 13発現 培養上清による阻害を示す図である。 .
図 4 Aは、 EDK12/hIgG- Fc融合遺伝子組換えウィルス感染カイコ体液の抗 E D K ペプチド血清によるウエスタン解析を、 図 4Bは、 EDK13/hIgG-Fc融合遺伝子組換 えウィルス感染カイコ体液の抗 EDKぺプチド血清によるウエスタン解析を示す 図である。
図 5は、 精製 VK12Hおよび精製 VK13Hの SDS— PAGEパターンを 示す図である。
図 6は、 VEGFコートプレートに対する精製 VK 12Hおよび精製 VK 13 Hの結合能を示す図である。 発明を実施するための最良の形態
<KDR細胞外領域 (EDK) の部分断片を発現する組換えバキュロウィルス の作成 >
• ヒト臍帯由来血管内皮細胞 (HUVEC) cDNAの調製
HUVEC (クラボウ製) 約 lx 107個の細胞に lmlの I SOGEN (和光 純薬工業製) を加え、 ぺヅスルで細胞を破砕し更に 9mlの I SOGENを加え 5分間振とうした。 この溶液に lmlのクロロフオルムを添加し 1分間振とうし 、 10, 000 r pmで 10分間遠心し、 上清を回収し、 1/10容の 3M酢酸 ナトリウム (pH5.2) を添加して混合し更に 2.5容のエタノールを添加した 。 遠心して沈澱を回収し、 75%エタノールで沈澱を洗浄し乾燥して 100 1 の加熱滅菌した純水に溶解した。 102〃gの RNAが得られた。 この溶液に 1 0%SDSを l zl添加し 100 21の 「01igotex-dT30 (宝酒造製) 」 を添加し 65 °Cで 5分間保温した後、 氷中にて急冷した。 この溶液に 20 1の 5M塩化 ナトリウムを混合し 37°Cで 10分間保温した。 この懸濁液を 15, 000 r p mで 15分間遠心し、 沈澱を 100〃 1の加熱滅菌した純水に懸濁し 65 で 5 分間保温した。 この懸濁液を 15, 000 rpmで 15分間遠心した上清を回収 してエタノール沈澱を行った。 乾燥した沈澱を 20 1の加熱滅菌した純水に溶 解し、 HUVECポリ (A) +RNAとした。 以下この溶液を用いフアルマシアの c DNA合成キヅ トを用い、 マニュアルに従って oligo(dT)プライミングの HUV E C 2重鎖 c D N A溶液 100 1を得た。
• KDR細胞外領域 (EDK) の部分断片をコードする DNAのクロ一ニング 上記で得た HUVEC由来 cDNAを鎵型として、 以下の条件で P C Rを行つ た。
表 1
反応液組成 (50〃 1中) : PCRの反応条件 5 zl LA-PCR buffer (宝酒造製) 1) 95 °C、 1.5分を 1サイクル 0.25 mM dNTPs 2) 95 ° 1分、 58°C、 1分、
200 nM プライ.マ一 1 72°C、 2.5分を 35サイクル
200 nM プライマ一 2 3) 72。C、 5分を 1サイクル
ij l HUVEC cDNA
0.5 U LA-Taq polymerase (宝酒造製)
ブラィマー配列は以下の通りである。
ブライマ一 1: 5, - TTCTCGGATCCTATAAATATGGAGAGCMGGTGCTGCTGGCCGTC- 3, (配列番 号: 5)
ブライマ一 2: 5' -TTCTCGMTTCTTAGTGGTGGTGGTGGTGGTGACGCTCTAGGACTGTGAGCTG- 3, (配列番号: 6 )
「プライマー 1」 の下線部は KDRの N末端コーディング配列に、 「プライマー 2 」 の下線部は第 6ィムノグロプリン様ドメインの C末端コ一ディング配列に対応 する。
反応液 5 Ομ.1からミネラルオイルを除くために等量のクロロフオルムで処理 し、 水層を回収し、 1 0%SD Sを 1 1添加し、 60°Cで 5分間保温した。 こ の溶液を等量の TE飽和フエノールで処理し、 水層を回収し、 エタノール沈澱し て DN A断片を回収した。 乾燥した沈澱を 30 1の TEに溶解し、 ァガロース ゲル電気泳動にかけた。 およそ 2.0Kbpの DNA断片を切り出し、 「Prep-A- Genej (バイオラッ ド製) を使用しマニュアルに従い D NA断片を回収した。 次 にこの DN A断片を BamHIで消化し、 その反応液を等量の T E飽和フエノールで処 理し、 水層から 「Prep- A-Gene」 を用いて BamHI消化 D N A断片を回収した。 この BamHI消化 DN A断片に対して 「T4ポリヌクレオチドキナーゼ (Τ4 Polynucleoti de Kinase) 」 (宝酒造製) を用いて、 5 '末端のリン酸化を行った。 この反応液 から等量の T E飽和フエノ一ルで処理した水層を回収し、 ェ夕ノ一ル沈澱し 5 '末 端リン酸化 BajnHI消化 DNA断片を回収した。 同様にプラスミ ドベクタ一 pUC 118 HincII/BAP処理済み DNA (宝酒造 製) 1 /gを BamHIで消化し、 その反応液を等量の T E飽和フエノールで処理し、 その水層から 「Prep-A- Gene」 を用いて BamHI消化 p U C 118 HincII/BAP処理 済み DNAを回収した。 このようにして得られた DNA断片とプラスミ ド DNA を 10 : 1のモル比で混合し、 ライゲ一シヨン (ライゲ一シヨンキヅ ト、 宝酒造 製) を行った。 このライゲ一シヨン溶液を用いて大腸菌 JM 109のコンビテン トセル (宝酒造製) を形質転換し、 7 のアンピシリンを含む 2xT
Υ培地 ( 11中 16 gトリプトン、 10g酵母エキス、 5 g塩化ナトリウム、 1 .5g寒天) にプレーティングし 37。Cで一夜培養した。 出現するアンビシリン耐 性コロニーを爪楊枝で突き、 50〃g/mlのアンビシリンを含む 1 Omlの 2 xT Y培地で 37°Cで 1夜培養し、 回収した菌体からアルカリ法 (前述の 「Mole cular Cloningjの方法に従った) でプラスミ ド DN Aを抽出し、 「pED KH 8」 と名付けた。
• KDR細胞外領域 (EDK) の部分断片を発現する組換えバキュロウィルス の作成用組換えトランスファ一ベクタ一の構築
*第 1〜第 6ィムノグロブリン様ドメインを発現する組換えバキュロウィルス の作成用組み換えトランスファーベクタ一の構築
上記のようにして得られたプラスミ ド 「pEDKH8」 を BamHIおよび EcoRIで 消化し、 その反応液を等量の TE飽和フエノールで処理し、 水層から 「Prep-A-G enej を用いて BamHI、 EcoRI消化 D N A断片を回収した。 同様に組換えバキュロウ ィルス用トランスファ一ベクタ一であるプラスミ ド p VL 1393 (Phar ingen 製) 1〃gを BamHIおよび EcoRIで消化し、 その反応液を等量の T E飽和フエノー ルで処理し、 水層から 「Prep-A-Gene」 を用いて BamHI、 EcoRI消化 pVL 1393 断片を回収した。
このようにして得られた DN A断片とプラスミ ド DNAを 10 : 1のモル比で 混合し、 ライゲ一シヨンを行った。 このライゲ一シヨン溶液を用いて大腸菌 JM 1 09のコンビテントセルを形質転換し、 75〃g/mlのアンピシリンを含む 2 X T Y培地にプレーティングし 37 °Cで一夜培養した。 出現するアンビシリン 耐性コロニーを爪楊枝で突き、 前述の P CR反応液から铸型を除いた溶液 1 5 1に移し、 サイクル数を 30回にして前述と同様に P CRを行った。 P CR後の 反応液をァガロースゲルで電気泳動し、 2.0 kbpのバンドを与えるコロニーか ら更にシングルコロニーを単離し、 「pEDKH 22」 と名付けた。 このプラス ミ ド DNAを、 プライマー 1あるいはプライマ一 2を用いてシーケンシング (前述 の 「分子クローニング」 の方法に従った) を行い、 上流および下流から約 150 塩基の配列を調べたところ、 KDR細胞外領域 (EDK) コーディング DNAの 塩基配列と一致した。
*第 1〜第 3ィムノグロプリン様ドメインを発現する組換えバキュロウィルス の作成用組換えトランスファ一ベクタ一の構築
上記のようにして得られたプラスミ ド 「pEDKH22」 を铸型として、 以下 の条件で PCRを行った。
表 2
反応液組成 (50 1中) : PCRの反応条件
5 1 LA-PCR buffer (宝酒造製) 1) 9 5°C、 1.5分を 1サイクル
0.25 mM dNTPs 2) 9 5°C、 1分、 58°C、 1分、
200 nM プライマ一 1 72°C、 2.5分を 35サイクル
200 nM プライマ一 3 3) 72°C、 5分を 1サイクル
HUVEC cDNA
0.5 U LA-Taq polymerase (宝酒造製)
プライマ一配列は以下の通りである。
プライマ一 1: 5,-TTCTCGGATCCTATMATATGGAGAGCMGGTGCTGCTGGCCGTC-3, (配列番 号: 5)
プライマー 3: 5'-TTCTCGAATTCTTAGTGGTGGTGGTGGTGGTGAGATTCCATGCCACTTCC-3' (配 列番号: 7 )
「プライマー 3」 の下線部は第 3ィムノグロプリン様ドメインの C末端コ一ディン グ配列に対応する。
反応液 5 0 1からミネラルオイルを除くために等量のクロロフオルムで処理 し、 水層を回収し、 1 0%SD Sを 1 1添加し、 6 0°Cで 5分間保温した。 こ の溶液を等量の TE飽和フヱノールで処理し、 水層を回収し、 エタノール沈澱し DNA断片を回収した。 乾燥した沈澱を 30〃 1の T Eに溶解し、 ァガロースゲ ルで電気泳動した。 およそ 1.0 Kbpの DNA断片を切り出し、 「Prep-A-Gene 」 を使用しマニュアルに従い DNA断片を回収した。 次にこの DNA断片を BamH Iおよび EcoRIで消化し、 その反応液を等量の TE飽和フエノールで処理し、 水層 から 「Prep-A-Gene」 を用いて BamHI、 EcoRI消化 D N A断片を回収した。
同様に組換えバキュロウィルス用トランスファ一ベクターであるプラスミ ド p VL 1 3 9 3、 1 igを BamHIおよび EcoRIで消化し、 その反応液を等量の TE飽 和フヱノールで処理し、 水層から 「Prep-A-Gene」 を用いて BamHI、 EcoRI消化 pV L 1 3 9 3断片を回収した。
このようにして得られた DN A断片とプラスミ ド DNAを 1 0 : 1のモル比で 混合し、 ライゲーシヨンを行った。 このライゲーシヨン溶液を用いて大腸菌 JM 1 0 9のコンビテントセルを形質転換し、 7 5 g/mlのアンビシリンを含む 2 X TY培地にプレーティングし 3 7°Cで一夜培養した。 出現するアンビシリン 耐性コロニーを爪楊枝で突き、 前述の P CR反応液から铸型を除いた溶液 1 5 1に移し、 サイクル数を 3 0回にして前述と同様に P CRを行った。 P CR後の 反応液 ァガロースゲル電気泳動し、 1.0 kb pのバンドを与えるコロニーから 更にシングルコロニーを単離し、 「pb EDK 1 3」 と名付けた。
「pED KH 2 2」 もしくは 「p b EDK 1 3」 を持つ大腸菌を 5 O jug/m 1のアンピシリンを含む 1 0 Omlの 2 xTY培地で 3 7°Cで 1夜培養し、 回収 した菌体からアルカリ法でプラスミ ド DNAを抽出し、 マニュアルに従ってィォ ン交換カラム (Diagen GimbH, QIAGEN製) で精製し、 各々 200〃1の TEに溶解 した約 100 zgのプラスミ ド DNAを得た。
• EDKの部分断片を発現する組換えバキュロウィルスの作成
TMN— FH培地 (PharMingen製) で培養した 80 %コンフルエンシーの状態 の S f 9細胞 (Invitrogen Corp.製) をビペッティングで剥し、 2x l 06個の細 胞を直径 35mmのディッシュに撒き 30分放置して表面に吸着させた後、 培地 を無血清培地である Ex— Ce 11400 (岩城硝子製) 1.5 mlに交換した。 12 1中に 「pbEDK 13」 4〃1 ( 2 g) 、 欠失バキュロウィルス D N A ( BaculoGold, PharMingen製) 2〃1 ( 20 n g) を混合した溶液とリポフエクチン を滅菌純水で 2倍希釈した溶液 12 1を混合し 15分放置した後、 全量 24 1 を前述のディッシュに添加し混合した。 このディッシュを湿潤箱に入れ 27 で 1昼夜静置培養した後、 培地を 2.5mlの TMN— FHに置換し 27°Cで 4日間 静置培養した。 培地を回収し遠心した上清をオリジナルウイルスストツクとし、 この組換えウィルスを 「BEDK13M」 と名づけた。 「Invitrogen corp.jの マニュアルに従いプラークアツセィを行った結果、 これらのウィルスタイ夕一は およそ 3 X 106であった。 得られたオリジナルウィルスストック を用い、 「In vitrogen corp. 」 のマニュアルに従って 3段階に増幅したウィル ス溶液約 30 ml (タイ夕一はおよそ 5x 107/ml) を i た。
同様にして、 「pEDKH22」 を用い組換えウィルス 「BEDK 16」 を作 成した。
<組換えウィルス感染 S f 9細胞発現産物の解析 >
125I—VEGF165との共有結合架橋産物
S f 9細胞に組換えウィルス 「BEDK 13M」 を m.o.i.5 (m.o.i.とはウイ ルス粒子:細胞数の比のこと) で感染させ、 7日間培養した培養上清に125 I—V EGF (100,000cpm/ng、 Amersham製) を 200, O OO cpm添加し、 10 0〃1の?63— 0.1 %B S A中で室温で 1.5時間置いた。 この溶液に 25 m M ジサクシニルスべレート(disuccinylsuberate)/ジメチルスルホキシド(dime thylsulfoxide)/PB S溶液を 4 1添加し室温で 40分間置いた後、 1M Tris- HCl(pH6.8)を 1Z10容混合した。 このサンプルについてレムリ法、 非還元条件 で SDS—ポリアクリルアミ ドゲル電気泳動を行った後、 オートラジオグラフィ によりシグナルを検出した (図 2)。
その結果、 分子量 98, 000の共有結合架橋産物が検出できた (図 2B、 レ —ン 1) のに対して、 VEGFレセプ夕一である FLTの細胞外領域をコードす る DNAをプロモーターとは逆向きに挿入した組換えウィルスを感染させ作成し たコントロールウイルス感染細胞培養上清では共有結合架橋産物が観察されなか つた (図 2A、 レーン 3) 。 図 2Aのレーン 1は、 陽性対照として 「BEDK1 6」 を m.o.i.5で感染させ、 7日間培養した培養上清を使用し、 レーン 3は前述の コントロールウィルス感染細胞を使用した結果である。 レーン 2及び 4は、 それ ぞれレーン 1および 3の反応に 100倍の非標識 VEGF165 (R&D製) を添加し た結果である。 図中矢印で示した 250 Kdのバンドは、 ∑01の第1~第6ィ ムノグロブリン様ドメインからなるポリべプチドの 2量体と VEGF165の 2量 体との共有結合架橋産物である。 図 2 Bのレーン 1は 「BEDK 13M」 を感染 させた培養上清を使用し、 レーン 2はレーン 1の反応に 100倍の非標識 VEG F (R&D製) を添加した結果である。
VEGF1652量体の分子量が 42, 000であるので、 共有結合架橋産物の分 子量 98, 000から差し引くと、 56, 000である。 アミノ酸配列から予想 される分子量はおよそ 56, 000であり、 このことから、 「BEDK 13M 」 を感染させた細胞は ED Kの第 1〜第 3ィムノグロプリン様ドメインからなる ポリべプチドを発現していることが確認された。 「BEDK 13M」 から発現さ れるポリぺプチドを 「EDK 13」 と名づけた。
•組換えトランスファーベクターへの挿入 DNAの塩基配列解析
プラスミ ド 「pbEDK 13」 にクローニングした DNAの塩基配列を確認す るためにシーケンシングを行った結果、 「pbEDK 13」 の挿入 DNAの KD R細胞外領域の第 1〜第 3ィムノグロブリン様ドメインと対応する領域の塩基配 列はブル一ス I.夕一マン (Bruce I.Terman) らが報告した KD R遺伝子の配列 ( 配列番号: 1) と比較して 2箇所異なっているだけのものであった (配列番号: 1で 382番目の Tが Aに、 636番目の Tが Cに置換) 。 その結果アミノ酸配 列では、 109番目のセリンがスレオニンになっていた。
• VEGFの生物活性の阻害
VEGFによるヒト臍帯由来血管内皮細胞 (HUVEC) のチミジン取り込み 促進に対する、 「EDK13」 発現培養上清による阻害を調べた。 HUVECを 96穴コラーゲンコートプレート (岩城硝子製) に 3000個/ゥヱル /100 μ.\ (EGM— UV培地、 クラボウ製) で撒き、 37°C、 5%( 02で24時間培 養した。 洗浄用培地で 2回洗浄した後、 20 ng/mlの VEGF165を 50〃1 とサンプル 50 zlをゥエルに添加して 4日間培養した。 5 i/2 nmo 1 e s/mlの3 H—チミジン (Amersham製) を 10 1ゥエルに添加して更に 24 時間培養した。 PBSで 2回洗浄した後、 トリプシン/ EDT Aで細胞を剥し、 セルハーべス夕一 (Cambridge Technology Inc.製) でグラスフィル夕一に回収し 液体シンチレ一シヨンカウンタ一で放射活性を測定した (図 3) 。 対照として用 いた野性株 (wt) ウィルス感染培養上清をサ プルとして添加した場合に比べ、 「EDK13」 発現培養上清を添加した場合は、 有意に VEGF依存性のチミジ ン取り込みが阻害された。 この結果から 「EDK 13」 は、 VEGFによる HU VE Cのチミジン取り込みの促進、 即ち DN A合成の促進を阻害することが明ら かとなつた。
<KDR細胞外領域 (EDK) の部分断片と IgG-Fc領域の融合タンパク質の機能
• KDR細胞外領域の部分断片と IgG-Fc領域の融合タンパク質のカイコ体液での 発現 * EDK部分断片をコードする DNAの調製
先に得たプラスミ ド 「pEDKH22」 DNAを鍊型として以下の条件で P CR を行い、 E D Kの第 1〜第 2ィムノグロブリン様ドメインまたは第 1〜第 3ィム ノグロブリン様ドメインをコ一ドする DN A断片を増幅した。
表 3 EDKの第 1〜第 2ィムノグロプリン様ドメイン DN Aの増幅反応 反応液組成 (10 中) : PCRの反応条件
10〃 1 LA-PCR buffer (宝酒造製) 1) 96°C、 2分を 1サイクル 0.25 mM dNTPs 2) 950C、 1分、 60。C、 1分 200 nM プライマ一 1 72°C、 1分を 30サイクル 200 nM プライマ一 4 3) 72°C、 10分を 1サイクル 1 JULも ED H22
1.0 U LA-Taq polymerase (宝酒造製)
プライマ一 1の配列は先に示した。 プライマ一 4の配列は以下の通りである。 プライマー 4: 5 TJXG CAG AAgATTT^ CTCCGGACTCAGAACCACATCATA-3, (配列番号 8 )
プライマー 4の波線部はヒ卜 I gG 1— F c領域ヒンジの N末端側 5アミノ酸を コードする配列 (ただしアンチセンス鎖) に対応し、 下線部は EDKの第 2ィム ノグロプリン ( 205位〜 21 1位) 様ドメインをコ一ドする配列 (ただしアン チセンス鎖) に対応する。
表 4 E D Kの第 1〜第 3ィムノグロブリン様ドメイン D N Aの増幅反応 反応液組成 ( 100〃1中) : PCRの反応条件
10 il LA-PCR buffer (宝酒造製) 1) 96°C、 2分を 1サイクル 0.25 mM dNTPs 2) 950C、 1分、 60°C、 1分 200 nM プライマ一 1 72°C, 1分を 30サイクル 200 nM プライマ一 5 3) 72°C、 10分を 1サイクノレ 1 juLg EDKH22 1.0 U LA-Taq polymerase (宝酒造製)
プライマー 1の配列は先に示した。 プライマ一 4の配列は以下の通りである。 プライマ一 5: .5, TTTGTCACAAGATTTGGGCTCAGATTCCATGCCACTTCCAAA-3J (配列番号 9 )
プライマ一 5の波線部はヒト I gG 1— F c領域ヒンジの N末端側 5アミノ酸をコ —ドする配列 (ただしアンチセンス鎖) に対応し、 下線部は EDKの第 3ィムノグ ロブリン (3 13位〜 319位) 様ドメインをコードする配列 (ただしアンチセ ンス鎖) に対応する。
前述と同様の方法でそれぞれの P C R反応液から EDKの第 1〜第 2ィムノグ ロブリン様ドメインをコードする 0.6Kbpの精製 DNA断片および第 1〜第 3ィム ノグロブリン様ドメインをコ一ドする 0.9Kbpの精製 DNA断片得て、 それそ'れ 2 0 z 1 TE(10 mM Tris-HCl, pH7.5, 1 mM EDTA-2Na)バッファーに溶解した。 * ヒト I gG 1— F c領域をコードする DNA断片の調製
ヒ トリンフオブラス トーマ IM9株 (大日本製薬 (株)) を RPMI 1640培 地 (GIBCO BRL製) で培養した。 4X 107の細胞から c D N A溶液を前述と同様 にして 100〃 1調製し、 2段階の P CRによってヒト I gG 1— F c DNA断 片を増幅した。
表 5 ヒト I gG 1— F c DNAの増幅反応
反応液組成 ( 100 1中) : P C Rの反応条件
10 1 LA-PCR buffer (宝酒造製) 1)94°C、 2分を 1サイクル
0.25 mM dNTPs 2)94°C、 1分、 60。C、 1分
200 nM プライマ一 6 72°C、 1分を 20サイクル
200 nM プライマー 7 3) 72°C、 10分を 1サイクル
1 I M9 cDNA
1.0 U LA-Taq polymerase (宝酒造製)
プライマ一 6およびブライマ一 7の配列は以下の通りである。 プライマ一 6: 5' -TCTTGTGACAAAACTCACACATGC-3' (配列番号 10 ) プライマ一 7: 5' -CGGAGACAGGGAGAGGCTCTTCTG-3' (配列番号 1 1 )
上記の P CR反応液にプライマ一 8とプライマー 9を 200 nMになるように添加し 、 表 5の (2) の条件で 15サイクル、 (3) の条件で 1サイクル反応を行った ο
プラィマー 8とブライマ一 9の配列は以下の通り。
プライマー 8: 5' -GAGCCCAAATCTTGAGACAAA-3' (配列番号 12 )
ブラィマー 9: 5, -TTCTTCTAGATTAGTGGTGGTGGTGGTGGTGTTTACCCGGAGACAGGGA-35 (配 列番号 13 )
プライマー 8はヒト I gG 1— F cの N末端アミノ酸をコ一ドする配列と対応し、 ブラィマー 9の点線部は制限酵素 X b a I認識切断配列、 2重下線部は sトップコ ドン (ただしアンチセンス鎖) 、 下線部は 6個のヒスチジンコドン (ただしアン チセンス鎖) 、 波線部はヒト I gG 1— F cの C末端アミノ酸をコードする配列
(ただしアンチセンス鎖) と対応する。
前述と同様の方法でそれぞれの P CR反応液からヒト I gG 1— F cをコード する 0.7Kbpの精製 DNA断片得て、 それぞれ 20 1 TE(10 mM Tris-HCl, pH7 .5, 1 mM EDTA-2Na)バッファーに溶解した。
* EDK部分断片とヒト I gG 1— F cの融合タンパク質をコードする DNAの 調製
前述の様にして得た E D Kの第 1〜第 2ィムノグロブリン様ドメイン (EDK12 ) DNAまたは EDKの第 1〜第 3ィムノグロブリン様ドメイン (EDK13) DNAと ヒト I gGl— Fc (hlgGl-Fc) DNAを以下の P CRによって融合した。
表 6 EDK12 DNAとヒト I gG l— Fc DNAの融合反応
反応液組成 ( 100 1中) : P C Rの反応条件
10〃 1 LA-PCR buffer (宝酒造製) 1)95°C、 2分を 1サイクル
0.25 mM dNTPs 2)95。C、 1分、 15分で50°〇 200 nM プライマ一 1 まで徐冷し 1分、 72°C、 1分 200 nM プライマ一 9 を 3サイクル
ED 12 DNA 3) 94°C 1分、 60°C 1分 2 zl hlgGl-Fc DNA 72°C 1分を 30サイクル 1.0 U LA-Taq polymerase (宝酒造製) 4) 72°C 10分を 1サイクル 表 7 EDK13 DNAとヒト I gG 1 F c DN Aの融合反応
反応液組成 ( 100 1中) : P CRの反応条件
10 / 1 LA-PCR buffer (宝酒造製) 1) 95°C 2分を 1サイクル 0.25 mM dNTPs 2) 95°C、 1分、 15分で 50°C 200 nM ブライマ一 1 まで徐冷し 1分、 72°C、 1分 200 nM プライマ一 9 を 3サイクル
1μ.\ EDK13 DNA 3) 94°C 1分、 60°C 1分 2 zl hlgGl-Fc DNA 72°C 1分を 30サイクル 1.0 U LA-Taq polymerase (宝酒造製) 4) 72°C、 10分を 1サイクル 前述と同様にしてそれぞれの P CR反応液から 1.3 Kbpの精製 EDK12/hIgGl-Fc 融合 D N Aと 1.6Kbpの精製 EDK12/hIgGl- Fc融合 D N Aを得た。
* カイコ発現用組換えウィルスの作成
前述と同様にして上記のそれぞれの D N A断片の両端を制限酵素 EcoRIおよび Xb alで消化後、 EcoRIおよび Xbalで消化したカイコ核多角体ウィルストランスファー ベクタ一 pBMO050 (S. Maeda, Gene transfer vectors of a baculovirus Bombyx mori, and their use for expression of foreign genes in insect c ells Invertebrate cell system applications, p. 167 Vol. I Ed. By J. Mitsuhashi, CRC Press, 1989) へ導入し、 それぞれの精製組換えプラスミ ドを得 た。 次に組換えウィルスを得るために、 これらのプラスミ ド DNAとカイコ核多 角体ウィルスのシスティンプロテア一ゼ欠失変異体である CP dウィルス (T. S uzuki et al., Journal of General Virology, 78, p. 3073, 1997、 特開平 7— 303488) DNAをカイコ由来培養細胞 B oMo 15 All。細胞 (J. Kobay ashi, et al., Cytotechnology 8, p. 103, 1992) にリポフエクチン試薬 (Gibe oBRL製) を用いて、 マニュアルに従いコトランスフエクシヨンを行った。
次に限界希釈法により得たシングルクローンの培養上清を VEGF121 (S. Ko ndo et al., BBA., 1243, p. 195, 1995) をコ一トしたィムロン 2ストリップ ( ダイナテック製) と 2次抗体に POD標識抗ヒト I gG抗体 (MB L製) に用い て E IAを行い、 発色を示すクローンを選択した。 培養上清には組換えウィルス が含まれていると考えられたので、 更に BoMo 15 All c細胞に感染させウイ ルスを 108/ml程度まで増殖させた。
* 抗 EDKペプチド血清の作成
EDKのアミノ酸配列番号表の 5位のプロリンから 15残基のぺプチドを MA Pレジンを用いて合成し、 ゥサギの 2週間ごとに 3回免疫し抗血清を得た。
* カイコ幼虫へのウィルス接種
それぞれの組換えウィルスを含む培養上清を飼料に混入し、 5令のカイコ 1当た りに 104〜105のウィルスを投与し 5日から 6日飼育し体液を回収しメラニン 化を防ぐためにフエ二ルチオウレァを添加し一 80°Cに保存した。
* カイコ幼虫での発現と発現産物の確認
これらのサンプルを用いて、 サムブルックらのラボマニュアル 「分子クロ一二 ング」 (J. Sambrook, E.F. Fritsch and T. Maniatis, "Molecular Cloning: A laboratory manual (2nd edition)", ed. by N. Ford et al. , p.18.1-p.18.75 , Cold Spring Harbor Laboratory Press, New York (1989)) 記載の方法に従い SD S—ポリアクリルアミ ドゲル電気泳動 (SDS-PAGE) し、 200倍希釈した抗 EDKぺプチド血清を用いてウエスタン解析を行ったところ、 コントロール体液 には見られない、 予想分子量と一致する特異的な免疫反応産物が見られた。 即ち EDK12/hIgG- Fc融合体の組換えウィルスの場合は分子量約 55、 000、 EDK13/h IgG-Fc融合体の組換えウィルスの場合は分子量約 65、 000のバンドが免疫反 応バンドが見られた (図 4A、 4B) 。 これらの結果から確かに EDK部分断片 の発現が確認された。 また EDK12/hIgG-Fc融合タンパク質および EDK13/hIgG-Fc融 合タンパク質を VK 12H、 VK13Hと名づけた。
* カイコ体液からの VK 12Hおよび VK 13Hの精製
操作は 0°C〜4°Cを保って行った。 回収保存したカイコ体液を室温で溶解後に
15000 r pmで 10分遠心し、 上清をポアサイズ 0. 45 imのフィル夕一 を通し不溶物を除いた。 これに各ストック溶液を添加し、 終濃度 20 mM Tris-HCl
(ρΗδ.Ο), 150 mM KCl, 0.1¾ NP-40, 1 mM imidasol-HCl (pH8.0)の溶液にした。 この溶液を Hi-Trap Chelating/Cu2t (フアルマシア製) にロードし、 同バッファ一 で洗浄し、 更に 40 mM imidazol-HCl (pH8.0)の同バッファーで洗浄した。 次に 0. 3 M imidazol-HCl (ρΗ8.0), 0.5 M KCl溶液で溶出した。 SDS- PAGEを行い回収した ところ、 ウエスタン解析で親察されたバンドに相当するタンパク質が精製された
(図 5) 。
*精製 VK 12 Hおよび VK 13 Hの V EG F結合能の確認
100 1の 100 ngVEGFi2i/ml PBS (食塩りん酸バッファ一) をィムロン 2ストリツプのゥエルに添加し 4。Cで一夜置いた。 ゥエル内の液を捨て 300 1の 1%BSA (牛血清アルブミン) /PBSを添加し、 室温で 2時間ブロッキ ングした。 次に 100 1の希釈した精製 VK 12 Hおよび VK 13 H溶液を添 加し室温で 1時間置いた後、 0. 1%BSA/PBSでゥヱルを 6回洗浄した。 0. 1 %B S A/PB Sで 1000倍に希釈した 100〃 1の POD標識抗ヒト I gG抗体 (MBL製) を添加し 1時間室温で置き、 0. 1%BSA/PBSで ゥエルを 6回洗浄した。 100 1の 10 mM酢酸ナトリウム(pH5.2)、 0.15%過酸 化水素、 1錠/ 201111の0?0 (オルトフヱ二レンジァミン) 錠 (和光純薬) を添加し 30分呈色反応を行い、 100 1の 2 N硫酸を添加して反応を停止し 、 492 nmの吸光度を測定した (図 6 ) 。 その結果、 VEGFコートプレート でコントロールとして 100倍希釈非組換えウィルス感染カイコ体液を用いた場 合や 5 g/mlヒ卜 I gG 1 (BioPur AG製, #10-31-1212, スイス) を添加し た場合は全く発色せず、 精製 VK 12Hおよび VK 13 Hを用いた場合は強く発 色した。 また、.これらの発色は外から添加した過剰 VEGF165 (R&D製) によ つての発色は阻害された。 これらのことは、 VK 12 Hおよび VK 13 Hは VE GFに特異的に結合することを示している。 以上の結果から、 KDR細胞外領域 の第 1〜第 2ドメインとヒ卜 I gG 1— F cの融合タンパク質および KDR細胞 外領域の第 1〜第 3ドメインとヒト I gG 1— F cの融合タンパク質は VEGF 結合能を有している事が判明した。 産業上の利用可能性
本発明のポリぺプチドは、 V E G F刺激による血管新生を阻害することができ るので、 固形ガンその他の病理学的血管新生を伴う疾病の治療に利用でき、 また 、 ヒト由来のアミノ酸からなるので、 ヒトに投与しても抗体ができにくい。 更に 、 従来のポリペプチド (R.L.Kendal and K . A. Thomas , Proc . Nat 1. , Acad . Sc i . , U . S .A., 90:10705(1993)) より分子量が小さいので、 組換え D N Aによる発現が行い やすく、 患部へも速やかに浸潤できる。
配列表
( 1 ) 出願人氏名:東亞合成株式会社
(2) 発明の名称: VEGF結合性ポリペプチド
( 3 )整理番号: T l— 807PCT
( 4 ) 出願番号:
(5) 出願日:
(6)優先権のもととなった出願をした国名および出願番号: 日本国、 特願平 9 一 19706号
(7)優先日 :平成 9年 1月 17曰
(8) 配列の数: 13 配列番号: 1
配列の長さ : 2295
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖状
配列の種類: cDNA
起源
生物名: ヒト
細胞の種類:胎盤組織
配列の特徴
特徴を表す記号: CD S
存在位置: 1. . 1014
特徴を決定した方法: E 特徴を表す記号: CD S 存在位置: 1 0 1 5 . . 2 2 9 5
特徴を決定した方法: S 特徴を表す記号: sig peptide
存在位置: 1 . . 5 7
特徴を決定した方法: S 特徴を表す記号: mat peptide
存在位置: 5 8 . . 2 2 9 2
特徴を決定した方法: S 配列
ATG GAG AGC AAG GTG CTG CTG GCC GTC GCC CTG TGG CTC TGC GTG GAG 48
Met Glu Ser Lys Val Leu Leu Ala Val Ala Leu Trp Leu Cys Val Glu
-15 -10 -5
ACC CGG GCC GCC TCT GTG GGT TTG CCT AGT GTT TCT CTT GAT CTG CCC 96
Thr Arg Ala Ala Ser Val Gly Leu Pro Ser Val Ser Leu Asp Leu Pro
1 5 10
AGG CTC AGC ATA CAA AAA GAC ATA CTT ACA ATT AAG GCT AAT ACA ACT 144
Arg Leu Ser l ie Gin Lys Asp He Leu Thr l ie Lys Ala Asn Thr Thr
15 20 25
CTT CAA ATT ACT TGC AGG GGA CAG AGG GAC TTG GAC TGG CTT TGG CCC 192
Leu Gin l ie Thr Cys Arg Gly Gin Arg Asp Leu Asp Trp Leu Trp Pro 30 35 40 45
AAT AAT CAG AGT GGC AGT GAG CAA AGG GTG GAG GTG ACT GAG TGC AGC 240
Asn Asn Gin Ser Gly Ser Glu Gin Arg Val Glu Val Thr Glu Cys Ser 50 55 60
GAT GGC CTC TTC TGT AAG ACA CTC ACA ATT CCA AAA GTG ATC GGA AAT 288 Asp Gly Leu Phe Cys Lys Thr Leu Thr l ie Pro Lys Val l ie Gly Asn
65 70 75
GAC ACT GGA GCC TAC AAG TGC TTC TAC CGG GAA ACT GAC TTG GCC TCG 336 Asp Thr Gly Ala Tyr Lys Cys Phe Tyr Arg Glu Thr Asp Leu Ala Ser
80 85 90
GTC ATT TAT GTC TAT GTT CM GAT TAC AGA TCT CCA TTT ATT GCT TCT 384 Val l ie Tyr Val Tyr Val Gin Asp Tyr Arg Ser Pro Phe l ie Ala Ser
95 100 105
GTT AGT GAC CM CAT GGA GTC GTG TAC ATT ACT GAG AAC AAA AAC AAA 432 Val Ser Asp Gin His Gly Val Val Tyr l ie Thr Glu Asn Lys Asn Lys 110 115 120 125
ACT GTG GTG ATT CCA TGT CTC GGG TCC ATT TCA AAT CTC AAC GTG TCA 480 Thr Val Val l ie Pro Cys Leu Gly Ser l ie Ser Asn Leu Asn Val Ser
130 135 140
CTT TGT GCA AGA TAC CCA GAA AAG AGA TTT GTT CCT GAT GGT AAC AGA 528 Leu Cys Ala Arg Tyr Pro Glu Lys Arg Phe Val Pro Asp Gly Asn Arg
145 150 155
ATT TCC TGG GAC AGC AAG AAG GGC TTT ACT ATT CCC AGC TAC ATG ATC 576 l ie Ser Trp Asp Ser Lys Lys Gly Phe Thr l ie Pro Ser Tyr Met He
160 165 170
AGC TAT GCT GGC ATG GTC TTC TGT GAA GCA AAA ATT AAT GAT GAA AGT 624 Ser Tyr Ala Gly Met Val Phe Cys Glu Ala Lys l ie Asn Asp Glu Ser
175 180 185
TAC CAG TCT ATT ATG TAC ATA GTT GTC GTT GTA GGG TAT AGG ATT TAT 672 Tyr Gin Ser l ie Met Tyr He Val Val Val Val Gly Tyr Arg l ie Tyr 190 195 200 205
GAT GTG GTT CTG AGT CCG TCT CAT GGA ATT GAA CTA TCT GTT GGA GAA 720
Asp Val Val Leu Ser Pro Ser His Gly l ie Glu Leu Ser Val Gly Glu
210 215 220
AAG CTT GTC TTA AAT TGT ACA GCA AGA ACT GAA CTA AAT GTG GGG ATT 768
Lys Leu Val Leu Asn Cys Thr Ala Arg Thr Glu Leu Asn Val Gly He
225 230 235
GAC TTC AAC TGG GAA TAC CCT TCT TCG AAG CAT CAG CAT AAG AAA CTT 816
Asp Phe Asn Trp Glu Tyr Pro Ser Ser Lys His Gin His Lys Lys Leu
240 245 250
GTA AAC CGA GAC CTA AAA ACC CAG TCT GGG AGT GAG ATG AAG AAA TTT 864
Val Asn Arg Asp Leu Lys Thr Gin Ser Gly Ser Glu Met Lys Lys Phe
255 260 265
TTG AGC ACC TTA ACT ATA GAT GGT GTA ACC CGG AGT GAC CAA GGA TTG 912
Leu Ser Thr Leu Thr l ie Asp Gly Val Thr Arg Ser Asp Gin Gly Leu 270 275 280 285
TAC ACC TGT GCA GCA TCC AGT GGG CTG ATG ACC AAG AAG AAC AGC ACA 960
Tyr Thr Cys Ala Ala Ser Ser Gly Leu Met Thr Lys Lys Asn Ser Thr
290 295 300
TTT GTC AGG GTC CAT GAA AAA CCT TTT GTT GCT TTT GGA AGT GGC ATG 1008
Phe Val Arg Val His Glu Lys Pro Phe Val Ala Phe Gly Ser Gly Met
305 310 315
GAA TCT CTG GTG GAA GCC ACG GTG GGG GAG CGT GTC AGA ATC CCT GCG 1056
Glu Ser Leu Val Glu Ala Thr Val Gly Glu Arg Val Arg l ie Pro Ala
320 325 330 s usy ^ΐθ ^ID uio 9 dsy nio i¾ J9S Say dJi nig n]g s OJJ
88W VW IW V99 VOO 9V0 0X1 DVD 9V9 3X0 I0V VDV D31 W3 W9 191 ID3
09 9S 09
j OJJ usy J¾ J9S ΐ¾Λ BIV ui9 0Jd nig usy 3 "Ϊ0
Ο^ΐ DVI VOO OW VDV 0X0 V3I 013 I0D WD 03V 330 0V3 OW 309 D9X 0V3
o ss oe nio nio na u^g dJi J (Ιαχ S TH m S TH S IH OJJ OJJ OJJ 3Π ^IV
Ζ6£ΐ WD 9V0 911 9V0 931 XVI 991 0V0 DIV 3V3 XVO D03 033 103 IIV 039
Z ' 02 9T
J^I ΪΒΛ J S Q J¾ ng J¾ uio J¾ J¾ 1 ujg J J9S dsy i IVX 019 93V 101 VDV 3X0 33V WO I0V 00V 333 OVl 3V0 3VX 031 1V3
o go oo
ΙΒΛ ojj J9 9 U ng JQS sX d \ \ uig OJJ OJJ〖ΒΛ J 1¾
%Zl 019 133 131 OXV VXD XOI VW 9V9 X99 IXV DVD 303 VOO OXD 1VI OID
96C 06C 98£
Ι¾Λ Π97 J8S ΐ¾Λ S TH J8S u g syfq iqg s J9S 9Π OJJ usy J
XIO SID IDI 0X9 919 XVO 39V DVO OW 9V9 9W VOX IIV 3D3 IW 03V
08C OA
na 9Π Ι¾Λ J¾ J usv J¾ dsv SJV nig J8S ΐ¾Λ nig
OOZT XIO OXV OXD XOV OVI IW V99 VDV 0V9 V9V W9 IDV 91D WO 9IV IIV S9G 09C 9SC 09C jqi Π9ΐ Ϊ¾Λ S TH 3 ^IV s q 9Π J SJH usy J9S OJJ d\ \
ZSU 93V DXO VIO IVD D3D 039 VW IXV VOV 3V0 XW 031 9V3 XIO ODD VIV
s e O SC8
Χΐ9 usy sA JAI dJi sAq i OJJ OJJ OJJ J na α χ s i 0Π V39 XW VW XVX 301 VW VIV W9 VDO 303 VDO DVI IDD 113 DVI OW ce
M00/86Jf/XDJ 6LUIS6 OAV 0Z6T IVX OVO V99 WO DV9 OVO 311 331 V39 XVV 9W 113 0V9 9IV OXV DIX S09 009 S6S 069
9|I dsy usy jqx J8S usy Jas 9¾ J¾ ^IV usy na S ti da na
XXV OVD IW V3V DDV IW I3X Oil 9IV ODV 030 IW Oil VW 9DI lid
98S 089 92.S jq丄 dsy Π91 usy s SXQ 八 OJJ J¾ OJJ no Cig \^ S IH Θ Π Z8T XOV XVD SIX 3W 9W 391 1X3 IOD VOV 330 DXI 9V9 V99 DI9 IVO OIV
0A9 99S 09S
OJd n9i ojj uio OJJ ½ ne sX J djj, J¾ ng usy nig oqd J¾
9iZT V3D DID 133 DVD VDO 090 XIO 9W OVX DOX VOV OID DW 3V9 III 93V
9S9 0S9 9
J3S Say dsy ¾tV J S io da na J9 nig iqg nig J¾ OJJ
XOX VOV 3V9 VDO 13V MI 901 9X1 131 OID ODV 3V9 OVO 9V9 I3V ODD
0 9 9S9 OSS
UT9 ^9W dsv OJd uio nd^ J¾ an njg OJJ Say J¾ ΐ¾Λ S TH 9¾d
0891 OVO 9XV 0V9 130 WD 3XX IDV IXV W3 133 Χ9ΰ 99V ODV DI9 OVO Oil Z 0Z9 GTS 0Ϊ9
J9S i ΪΒΛ Say nig Say Ι¾Λ usy ΐ¾Λ ¾IV nig s s q
2C9T DDI OXV 319 93V 0V9 V3D V9V 999 3XD WV OW OID 009 W9 XDI WV
SOS 009 S6 j ¾iv J9S \ usv BIV ¾iv «ΐΰ 911 Ι¾Λ naq J¾ J8S Ι¾Λ J
^8 1 3IX XDD VDI SID IW VD9 909 WD OIV IID 110 30V 13V VI3 XDV
06 5S OS sA'i usy s q A\Q n|g a\ i ngq v\y aqj u^g usy s i usy n^g 8{i
9CST WV 3W VW VD3 W9 IIV VI3 139 XXI W3 IW VW XW XID W9 IXV
9lf Ol 99
K
QPl00IS6d£llDd 6LIZ/86 OAS. Leu l ie Met Glu Leu Lys Asn Ala Ser Leu Gin Asp Gin Gly Asp Tyr
610 615 620
GTC TGC CTT GCT CAA GAC AGG AAG ACC AAG AAA AGA CAT TGC GTG GTC 1968
Val Cys Leu Ala Gin Asp Arg Lys Thr Lys Lys Arg His Cys Val Val
625 630 635
AGG CAG CTC ACA GTC CTA GAG CGT GTG GCA CCC ACG ATC ACA GGA AAC 2016
Arg Gin Leu Thr Val Leu Glu Arg Val Ala Pro Thr l ie Thr Gly Asn
640 645 650
CTG GAG AAT CAG ACG ACA AGT ATT GGG GAA AGC ATC GAA GTC TCA TGC 2064
Leu Glu Asn Gin Thr Thr Ser l ie Gly Glu Ser He Glu Val Ser Cys
655 660 665
ACG GCA TCT GGG AAT CCC CCT CCA CAG ATC ATG TGG TTT AAA GAT AAT 2112
Thr Ala Ser Gly Asn Pro Pro Pro Gin l ie Met Trp Phe Lys Asp Asn 670 675 680 690
GAG ACC CTT GTA GAA GAC TCA GGC ATT GTA TTG AAG GAT GGG AAC CGG 2160
Glu Thr Leu Val Glu Asp Ser Gly He Val Leu Lys Asp Gly Asn Arg
695 700 705
AAC CTC ACT ATC CGC AGA GTG AGG AAG GAG GAC GAA GGC CTC TAC ACC 2208
Asn Leu Thr l ie Arg Arg Val Arg Lys Glu Asp Glu Gly Leu Tyr Thr
710 715 720
TGC CAG GCA TGC AGT GTT CTT GGC TGT GCA AAA GTG GAG GCA TTT TTC 2256
Cys Gin Ala Cys Ser Val Leu Gly Cys Ala Lys Val Glu Ala Phe Phe
725 730 735
ATA ATA GAA GGT GCC CAG GAA AAG ACG AAC TTG GAA XXX 2295
He He Glu Gly Ala Gin Glu Lys Thr Asn Leu Glu Stop
740 745 750 配列番号: 2
配列の長さ : 21
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 (合成 DNA)
配列
ATGGAGAGCA AGGTGCTGCT G 21 配列番号: 3
配列の長さ : 21
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 (合成 DNA)
配列
ACGCTCTAGG ACTGTGAGCT G 21 配列番号: 4
配列の長さ: 21
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 (合成 DNA)
配列 AGATTCCATG CCACTTCCAA A 21 配列番号: 5 .
配列の長さ : 4 5
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 (合成 D N A)
配列
TTCTCGGATC CTATAAATAT GGAGAGCAAG GTGCTGCTGG CCGTC 45 配列番号: 6
配列の長さ: 5 3
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 (合成 D N A)
配列
TTCTCGAATT CTTAGTGGTG GTGGTGGTGG TGACGCTCTA GGACTGTGAG CTG 53 配列番号: 7
配列の長さ : 5 0
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 (合成 D N A) 配列
TTCTCGAATT CTTAGTGGTG GTGGTGGTGG TGAGATTCCA TGCCACTTCC 50 配列番号: 8
配列の長さ : 4 2
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 (合成 D N A )
配列
TTTGTCACAA GATTTGGGCT CCGGACTCAG AACCACATCA TA 42 配列番号: 9
配列の長さ : 4 2
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 (合成 D N A )
配列
TTTGTCACAA GATTTGGGCT CAGATTCCAT GCCACTTCCA AA 42 配列番号: 1 0
配列の長さ : 2 4
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状 配列の種類:他の核酸 (合成 D N A)
配列
TCTTGTGACA AAACTCACAC ATGC 24 配列番号: 1 1
配列の長さ: 2 4
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 (合成 D N A)
配列
CGGAGACAGG GAGAGGCTCT TCTG 24 配列番号: 1 2
配列の長さ : 2 1
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 (合成 D N A)
配列
GAGCCCAAAT CTTGAGACAA A 21 配列番号: 1 3
配列の長さ : 4 9
配列の型:核酸
鎖の数:一本鎖 トポロジー:直鎖状
配列の種類:他の核酸 (合成 DNA)
配列
TTCTTCTAGA TTAGTGGTGG TGGTGGTGGT GTTTACCCGG AGACAGGGA 49

Claims

O 98/31794 41 請求の範囲
1. KDRの細胞外領域を構成するポリペプチドの一部であって、 少なくとも第 1ィムノグロブリン様ドメイン及び第 2ィムノグロブリン様ドメイン及びを含む が第 6ィムノグロプリン様ドメインを構成するアミノ酸配列の少なくとも一部を 欠く、 VEGFに結合して VEGFの活性を阻害することができるポリべプチド ο
2. さらに少なくとも第 3ィムノグロブリン様ドメインを含む請求項 1記載のポ リぺプチド。
3. 請求項 1または 2記載のポリべプチドをコ一ドする DNA。
4. 請求項 3記載の DN Aを含むベクター。
5. 請求項 4記載のベクターを保持する形質転換体。
PCT/JP1998/000140 1997-01-17 1998-01-16 Polypeptide liant le facteur vegf WO1998031794A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP53411198A JP3837748B2 (ja) 1997-01-17 1998-01-16 Vegf結合性ポリペプチド
US09/142,956 US6348333B1 (en) 1997-01-17 1998-01-16 VEGF-binding KDR polypeptide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/19706 1997-01-17
JP1970697 1997-01-17

Publications (1)

Publication Number Publication Date
WO1998031794A1 true WO1998031794A1 (fr) 1998-07-23

Family

ID=12006734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000140 WO1998031794A1 (fr) 1997-01-17 1998-01-16 Polypeptide liant le facteur vegf

Country Status (3)

Country Link
US (1) US6348333B1 (ja)
JP (1) JP3837748B2 (ja)
WO (1) WO1998031794A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024766A1 (ja) * 2002-09-12 2004-03-25 Oncotherapy Science, Inc. Kdrペプチド及びこれを含むワクチン
JP2007510403A (ja) * 2003-10-16 2007-04-26 アプライド リサーチ システムズ エーアールエス ホールディング ナームロゼ フェンノートシャップ ケモカイン変異体の治療への使用
US7928072B2 (en) 2004-09-13 2011-04-19 Genzyme Corporation Multimeric constructs
US8703713B2 (en) 2007-08-24 2014-04-22 Onco Therapy Science, Inc. Combination therapy for pancreatic cancer using an antigenic peptide and chemotherapeutic agent
US8975229B2 (en) 2009-06-11 2015-03-10 Oncotherapy Science, Inc. Methods for treating a disease caused by choroidal neovascularization
US9441029B2 (en) 2010-08-06 2016-09-13 Genzyme Corporation VEGF antagonist compositions and uses thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040132675A1 (en) * 2002-02-08 2004-07-08 Calvin Kuo Method for treating cancer and increasing hematocrit levels
EP2281885A1 (en) 2003-08-27 2011-02-09 Ophthotech Corporation Combination therapy for the treatment of ocular neovascular disorders
AU2004296376B2 (en) * 2003-12-05 2010-03-04 Bristol-Myers Squibb Company Inhibitors of type 2 vascular endothelial growth factor receptors
US7422741B2 (en) 2004-03-05 2008-09-09 Vegenics Limited VEGFR-3 fusion proteins
BRPI0719597A2 (pt) 2006-11-22 2013-12-17 Adnexus A Bristol Myers Squibb R & D Company Produtos terapêuticos objetivados baseados em proteínas manipuladas para receptores de quinases de tirosina, incluindo igf-ir
EP2125895B1 (en) * 2007-02-02 2015-04-08 Vegenics Pty Ltd Vegf receptor antagonists for treating organ transplant alloimmunity and arteriosclerosis
WO2009102421A2 (en) 2008-02-14 2009-08-20 Bristol-Myers Squibb Company Targeted therapeutics based on engineered proteins that bind egfr
JP2011520961A (ja) 2008-05-22 2011-07-21 ブリストル−マイヤーズ スクイブ カンパニー 多価フィブロネクチンをベースとする足場ドメインタンパク質
TWI496582B (zh) 2008-11-24 2015-08-21 必治妥美雅史谷比公司 雙重專一性之egfr/igfir結合分子
US9562089B2 (en) 2010-05-26 2017-02-07 Bristol-Myers Squibb Company Fibronectin based scaffold proteins having improved stability

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE348110T1 (de) 1992-10-28 2007-01-15 Genentech Inc Hvegf rezeptor als vegf antagonist
ATE281469T1 (de) 1993-03-25 2004-11-15 Merck & Co Inc Inhibitor des wachstumsfaktors für gefäss- endothelzellen
GB9410534D0 (en) 1994-05-26 1994-07-13 Lynxvale Ltd Improvements in or relating to growth factor inhibitors
US6100071A (en) * 1996-05-07 2000-08-08 Genentech, Inc. Receptors as novel inhibitors of vascular endothelial growth factor activity and processes for their production

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BIOCHEM. BIOPHYS. RES. COMMUN., (1994), Vol. 201, No. 1, RICHARD L.K. et al., "Specificity of Vascular Endothelial Cell Growth Factor Receptor Ligand Binding Domains", pages 326-330. *
J. BIOL. CHEM., (1995), Vol. 270, No. 25, STELA G. et al., "Platelet Factor-4 Inhibits the Mitogenic Activity of VEGF121 and VEGF165 Using Several Concurrent Mechanisms", pages 15059-15065. *
MOL. CELL. BIOL., (1993), Vol. 13, No. 9, ZE W. et al., "Identification of the Ligand-Binding Regions in the Macrophage Colony-Stimulating Factor Receptor Extracellular Domain", pages 5348-5359. *
PROC. NATL. ACAD. SCI. U.S.A., (1993), Vol. 90, RICHARD L.K. et al., "Inhibition of Vascular Endothelial Cell Growth Factor Activity by an Endogenously Encoded Soluble Receptor", pages 10705-10709. *
PROC. NATL. ACAD. SCI. U.S.A., (1995), Vol. 92, LLOYD P.A. et al., "Suppression of Retinal Neovascularization In Vivo by Inhibition of Vascular Endothelial Growth Factor (VEGF) Using Soluble VEGF-Receptor Chimeric Proteins", pages 10457-10461. *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8206719B2 (en) 2002-09-12 2012-06-26 Oncotherapy Science, Inc. KDR peptides and vaccines comprising the same
US8574586B2 (en) 2002-09-12 2013-11-05 Oncotherapy Science, Inc. KDR peptides and vaccines comprising the same
CN100352843C (zh) * 2002-09-12 2007-12-05 肿瘤疗法科学股份有限公司 Kdr肽和包括该肽的疫苗
US7514084B2 (en) 2002-09-12 2009-04-07 Oncotherapy Science, Inc. KDR peptides and vaccines comprising the same
US7695720B2 (en) 2002-09-12 2010-04-13 Oncotherapy Science, Inc. KDR peptides and vaccines comprising the same
US8574585B2 (en) 2002-09-12 2013-11-05 Oncotherapy Science, Inc. KDR peptides and vaccines comprising the same
WO2004024766A1 (ja) * 2002-09-12 2004-03-25 Oncotherapy Science, Inc. Kdrペプチド及びこれを含むワクチン
CN103073620A (zh) * 2002-09-12 2013-05-01 肿瘤疗法科学股份有限公司 Kdr肽和包括该肽的疫苗
JP2007510403A (ja) * 2003-10-16 2007-04-26 アプライド リサーチ システムズ エーアールエス ホールディング ナームロゼ フェンノートシャップ ケモカイン変異体の治療への使用
US7928072B2 (en) 2004-09-13 2011-04-19 Genzyme Corporation Multimeric constructs
US8658602B2 (en) 2004-09-13 2014-02-25 GenzymeCorporation Multimeric constructs
US9815892B2 (en) 2004-09-13 2017-11-14 Genzyme Corporation Multimeric constructs
US8703713B2 (en) 2007-08-24 2014-04-22 Onco Therapy Science, Inc. Combination therapy for pancreatic cancer using an antigenic peptide and chemotherapeutic agent
US8975229B2 (en) 2009-06-11 2015-03-10 Oncotherapy Science, Inc. Methods for treating a disease caused by choroidal neovascularization
US9441029B2 (en) 2010-08-06 2016-09-13 Genzyme Corporation VEGF antagonist compositions and uses thereof

Also Published As

Publication number Publication date
US6348333B1 (en) 2002-02-19
JP3837748B2 (ja) 2006-10-25

Similar Documents

Publication Publication Date Title
US6270993B1 (en) VEGF-binding polypeptide
DK2310509T3 (en) Single chain molecules TNFSF
WO1998031794A1 (fr) Polypeptide liant le facteur vegf
DK2970512T3 (en) IMMUNO MODULATOR FUSION PROTEINS AND PROCEDURES FOR PRODUCING THEREOF
JP3298874B2 (ja) 上皮細胞に特異的な成長因子をコードするdna
JP2009515521A (ja) レセプターアイソフォームおよびリガンドアイソフォームの産生のための方法
KR20180120245A (ko) 유도성 결합 단백질 및 사용 방법
KR101551306B1 (ko) 뉴로필린1 특이적 결합 펩타이드 및 이 펩타이드가 융합된 융합 단백질, 및 이의 용도
CA2840221A1 (en) P97-antibody conjugates and methods of use
AU2006315825A1 (en) Hepatocyte growth factor intron fusion proteins
CZ302303B6 (cs) Homodimerní fúzní protein vykazující inhibicní aktivitu na angiogenezi, zpusob jeho produkce, molekula DNA a replikovatelný expresní vektor
WO2001002440A1 (en) Fusion peptides comprising a peptide ligand domain and a multimerization domain
KR102118635B1 (ko) 세포질 침투 항체에 융합된 rna 분해효소를 포함하는 면역독소
CN116675777A (zh) 包含补体抑制结构域的多特异性配体结合分子及其用途
KR102216576B1 (ko) Pd-1과 결합력이 증가된 pd-l1 변이체
JP3891306B2 (ja) Vegf結合性ポリペプチド
KR100418329B1 (ko) 직렬 연쇄체를 갖는 면역접합체
CN112724263B (zh) 改造抗cd20单克隆抗体以提高其药物疗效的方法及其应用
JPH09255700A (ja) Vegf結合性ポリペプチド
AU2015271882B2 (en) p97-antibody conjugates and methods of use
KR20220006013A (ko) 보체 경로 억제제를 포함하는 융합단백질 및 이의 용도

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09142956

Country of ref document: US

122 Ep: pct application non-entry in european phase