WO1998015871A1 - Method of manufacturing liquid crystal display, optically inspecting instrument, and optically inspecting method - Google Patents

Method of manufacturing liquid crystal display, optically inspecting instrument, and optically inspecting method Download PDF

Info

Publication number
WO1998015871A1
WO1998015871A1 PCT/JP1997/003562 JP9703562W WO9815871A1 WO 1998015871 A1 WO1998015871 A1 WO 1998015871A1 JP 9703562 W JP9703562 W JP 9703562W WO 9815871 A1 WO9815871 A1 WO 9815871A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
alignment film
liquid crystal
light
analyzer
Prior art date
Application number
PCT/JP1997/003562
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshitada Oshida
Yasuo Yahagi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO1998015871A1 publication Critical patent/WO1998015871A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing

Definitions

  • the present invention relates to a method for manufacturing a liquid crystal display device, a device for inspecting a liquid crystal alignment film, and a method for inspecting a liquid crystal alignment film.
  • liquid crystal display devices represented by the TFT (thin film transistor) system have been rapidly increasing in production volume and reducing costs.
  • the liquid crystal is sandwiched between glass substrates, the direction of the liquid crystal is controlled by the voltage applied to the electrodes formed on the substrate surface, and the display function is realized by changing the polarization state of the transmitted light. .
  • the liquid crystal is oriented in a certain direction at the boundary with the glass surface regardless of whether or not a voltage is applied.
  • the orientation film is completed by thinly applying a chain polymer such as polyimide on a glass substrate, and imparting orientation characteristics to the coating film by rubbing or the like. That is, the orientation of the molecules on the film surface is aligned in one direction. Thereby, the liquid crystal molecules are aligned in the direction along the alignment film molecules.
  • This conventional measurement method is based on the fact that the polarization changes slightly when the laser light passes through the alignment film, the phase change between two orthogonal polarizations of the laser light, and the light heterodyne method. It is measured using
  • a substrate is irradiated with linearly polarized light, and a polarizing plate is provided that transmits polarized light orthogonal to the irradiated linearly polarized light among reflected light,
  • a rubbing inspection device that detects the transmitted light with a TV camera is disclosed.
  • the anisotropy of the alignment film after rubbing is extremely small, and the method shown in the above-described conventional technique has low detection sensitivity even if it is used in a transmission type, so that the detection is difficult. It proved difficult to measure.
  • the liquid crystal is suspended between the two substrates that have been subjected to alignment treatment, and the alignment is performed through the optical anisotropy of the liquid crystal molecules, which aligns with the orientation direction of the molecules on the surface of the sandwiched alignment film. He was checking the condition of the membrane.
  • the method of checking only the alignment film requires a great deal of time when a part or all of the substrate is viewed as a two-dimensional screen. For example, even if a 1 mm diameter could be detected in 1 second, it would take 100 seconds to detect 100 ⁇ 10 mm and the resolution would be only 1 mm. If the dimensions of the entire board are 200 mm x 300 mm, it takes about 17 hours. become.
  • the intensity of the detection light is about one million to one hundred million of the intensity of the incident light. Therefore, it cannot be detected by the conventional detection method using the ⁇ image.
  • the light source close to the highly directional light source or a point light source, and temporally using c temporally incoherent light using Inkohiren Bok high power light source
  • the purpose of this method is to remove variations in the detection signal due to multiple reflection of an object having a layer structure.
  • the light emitted from this light source is converted by an illumination optical system into a collimated light beam having a desired directivity and a desired spread.
  • the parallel light beam is converted into a linearly polarized light having a high degree of polarization by a polarizer having a high extinction ratio, and the linearly polarized light is incident on a liquid crystal alignment film.
  • the light transmitted through the alignment film is transmitted through an analyzer having a high extinction ratio, and the transmitted light is received by a one-dimensional or two-dimensional ultra-high-sensitivity imaging device. Further, at this time, an imaging optical system that brings the liquid crystal alignment film and the imaging sensor surface of the ultra-high sensitivity imaging device into an imaging relationship is provided between the liquid crystal alignment film and the ultra-high sensitivity imaging device. Based on the information obtained by the array sensor in this way, a defect in the alignment film is detected by the processing device. Thus, a very slight change in the optical anisotropy of the liquid crystal alignment film is detected as a two-dimensional image.
  • the polarization directions of the light passing through the polarizer and the analyzer are shifted by 90 degrees from each other. I do.
  • the processing apparatus is provided with a function of providing a mechanism for relatively rotating with respect to the apparatus, collecting a plurality of images obtained at different rotation angles, and detecting a defect of the alignment film from the plurality of images.
  • a very small optical anisotropy or a very small change in optical anisotropy can be detected by using a Dranthamson prism or a Glan-Taylor prism having a high extinction ratio.
  • the state of the alignment applied to the alignment film can be determined in a two-dimensional image. Inspection of misalignment, alignment failure, etc. becomes possible. Further, by feeding back the results to the means for imparting the orientation characteristics, a high-quality manufacturing process can be obtained.
  • FIG. 1 is a configuration diagram of a manufacturing system showing an example of an embodiment of a method of manufacturing a liquid crystal display device of the present invention.
  • FIG. 2 is a perspective view of an optical inspection device according to the present invention.
  • FIG. 4 is a cross-sectional view showing a part of an optical system of the optical inspection apparatus according to the present invention.
  • FIG. 4 is a plan view showing a relationship between a rubbing direction of an alignment film, an optical principal axis, and incident polarized light.
  • FIG. 5 is a diagram showing the relationship between the orientation direction, the state of the incident polarized light, the detected image, and the detected signal in the present invention, and FIG. FIG.
  • FIG. 7 is a cross-sectional view showing a part of an optical system of an optical inspection apparatus according to the present invention.
  • FIG. FIG. 8 is a cross-sectional view showing a part of the optical system of the optical inspection device according to the present invention, and
  • FIG. 9 is a flowchart showing a flow of a method for manufacturing a liquid crystal display device according to the present invention.
  • FIG. 9 shows a first embodiment of the present invention.
  • the basic structure of a liquid crystal display device consists of two substrates and liquid crystal sealed between them.
  • An alignment film is formed on at least one of the substrates, and this film is provided with alignment characteristics.
  • FIG. 9 illustrates a process of forming an alignment film on the two substrates after the completion of the two substrates.
  • an orientation film made of a material containing a polyimide or the like is applied to the substrate on which the pattern has been formed by an orientation film applicator. Since the coating film contains a solvent, it is dried or fired in step 120 to remove the solvent.
  • the orientation direction of the constituent polymer of the orientation film is random and almost optically isotropic.
  • step 130 the alignment characteristics are imparted to the alignment film surface.
  • the imparting of the orientation film characteristics is usually performed by a method called rubbing.
  • rubbing is performed by rubbing a hairy cloth wound on a rotating cylindrical drum against the surface of the alignment film.
  • the polymer on the surface of the orientation film is oriented in the running direction of the cloth.
  • the liquid crystal molecules are aligned in the alignment direction on the substrate surface.
  • the orientation of the polymer formed on the alignment film surface slightly changes depending on the rubbing conditions such as the number of rotations of the drum and the amount of pressing the drum.
  • the rubbing cloth is worn due to the orientation property imparted by contacting and rubbing the cloth, so that the imparted orientation property changes from moment to moment.
  • the lighting inspection which is the last step shown in step 190 in FIG. 9, it is impossible to judge whether the state of the alignment film is normal or not, and sometimes a large number of defects are generated.
  • step 140 in FIG. 9 in the process from the time when the alignment film is provided with the alignment characteristics to the time when the liquid crystal is sealed, the liquid crystal is inspected for the alignment characteristics without dripping the liquid crystal on the substrate surface. Details of this inspection will be described later, but if it was possible to perform inspection without liquid crystal, which was difficult in the past, based on the results obtained in this inspection, if a rubbing defect occurred, for example, Judgment of this condition from the inspection results and clarification of the cause, such as replacement of the cloth, change of the number of revolutions or change of the pressing amount.
  • Such feedback to the rubbing device is sometimes performed manually, but if the relationship between the inspection result and the cause of the defect is clear, the cause is automatically determined from the obtained inspection result, and It is also possible to automatically change the setting condition of the rubbing device through the signal line 14 1 ′.
  • Inspection of the above-mentioned orientation characteristics may be performed once, for example, from 100 to 100 substrates flowing in the mass production line.However, when rubbing cannot be performed stably, the total number of substrates flowing is determined. You may inspect.
  • the substrate having at least no abnormality moves to the next step, for example, the formation of the sealing material shown in step 150.
  • the sealing material is linearly formed so as to surround a slightly larger area than the liquid crystal display portion.
  • the TFT substrate and the color filter substrate are superimposed, and in step 160, liquid crystal is sealed in the area surrounded by the seal, and further sealed so that the liquid crystal does not leak outside.
  • the liquid crystal display device completed in this way performs the lighting inspection step 190 and ends.
  • a light source close to a point light source, such as xenon, metal halide, or mercury lamp
  • a point light source such as xenon, metal halide, or mercury lamp
  • a spherical mirror, elliptical mirror, parabolic mirror, or condensing lens (not shown)
  • the emitted light is converted into a parallel light beam 30 by a lens or the like (not shown).
  • the spectral beam width obtained in this way is not narrow, that is, a parallel light flux 30 with high directivity, which is temporally incoherent, is put through the hole of the dark box 50, and the mirror 301 in the dark box 50 is inserted. To reflect.
  • the light transmitted through the Gram Thompson prism 31 is almost completely linearly polarized light, and its polarization direction is x. It faces the direction and passes through the hole of the dark box 50.
  • a rotary table 5 is provided on the dark box 50, and a hole is formed in the rotary table.
  • a substrate stage 52 is fixed on the rotating upper surface of the turntable 5.
  • the substrate stage 52 also has a hole, and the substrate 10 of the liquid crystal display device mounted on the upper surface of the substrate stage 52 can move in two directions in the plane of the substrate.
  • the transmitted light extinction ratio is incident on Guramuto Thomson prism 3 2 1 0 6, by the imaging optical system 4, ultra high imaging surface sensitivity imaging device 2 forming the surface of the substrate 1 0 (not shown) Image.
  • Gram Thompson Prism 3 2 is y.
  • the alignment direction of the alignment film on the substrate surface is x because it is adjusted to pass only polarized light of the same direction.
  • Direction or y When oriented, the principal axis of the optical anisotropy of the alignment film is x. Or y.
  • the light passing through the substrate is x.
  • Ultra-high sensitivity imaging device 2 is cooled by Peltier device Although it is a three-chip CCD camera that was rejected, it is different from a normal TV camera.Each CCD is cooled by a Peltier element and can control scanning for imaging 1/30 seconds. It is possible to store images in a longer time. In this embodiment, re-image storage is performed for one second. As a result, it is possible to detect the above-mentioned slight leakage of light, at which no image signal can be obtained with a normal TV camera.
  • the ultra-high-sensitivity image pickup device 2 placed on the rotary table 5 in FIG. 2 and rotating integrally with the substrate stage 52 is rotated by 45 °, as shown in FIG. If the polarization direction of the linearly polarized light incident on the substrate and the rubbing direction, that is, the principal axis of the optical anisotropy of the alignment film is 45 ° (T direction), the anisotropy of the orientation generated by the rubbing is obtained. A bright image is obtained in the ultra-high sensitivity imaging device 2 in proportion to the optical anisotropy according to the characteristics.
  • a particularly bright streak pattern is also observed in a part of this bright image.
  • the rubbing condition is hardly understood and the screen becomes dark. Become.
  • the rubbing condition appears clearly in the T direction. Therefore, the rotary table 5 is rotated to the darkest state, the direction of rubbing can be determined from the rotation angle, the table is rotated by 45 ° from this direction, and the amount of optical anisotropy is determined from the intensity of the obtained image. I understand.
  • the present invention uses the ultra-high-sensitivity imaging device 2, if there is a foreign substance on the substrate or a minute dust or projection or dent called so-called rubbing waste (this state is denoted by R, the optical characteristics of this state are denoted by R).
  • the incident linearly polarized light is scattered and the polarization is disturbed, so that even in the state in the P direction in FIG. (Of course, the polarization is also disturbed in the T state, so these defects can be detected as bright dot-like (streak-like images in the case of scratches)). That is, from the images obtained in the P and T directions, the information on the orientation characteristics obtained by rubbing (this optical characteristic is referred to as D) and the information on the foreign matter and scratches (optical characteristics R) are separated and simultaneously obtained. Will be obtained.
  • FIG. 5 is a diagram showing this separation method.
  • two images in which the orientation direction and the direction of the incident linearly polarized light are the P and T directions shown in FIG. 5 are collected.
  • the imaging screen in the state of P, a bright dot-like image is obtained with only foreign matters such as rubbing scraps and scratches.
  • the image in the T direction not only the rubbing debris but also the rubbing streaks appear brightly, and as shown in the signal on the AA cross section, the entire screen is brightened. This indicates that the entire surface of the alignment film is uniformly aligned.
  • the P direction and the T direction of Zoshin No. SP and S tau is obtained, for example, from the SP the Rabingukuzu etc.
  • the S tau - orientation intensity signal is obtained from S P.
  • the alignment film is usually formed by rubbing a film of several hundreds of A and molecularly orienting the layer on the outermost surface of the film, so that the thickness of the optically anisotropic layer is 50 to 100 A is said to be. Therefore, the film is biased in the direction of the optical main axis.
  • Light The relative difference between the phases of the respective light waves received by the transmission of two mutually orthogonal linearly polarized light through the film is only about 0.01 to 0.1 °. As a result, even at the time of maximum detection where the main axis of the alignment film between the orthogonal polarizer and the analyzer forms 45 ° with this direction, 1.3 of the light transmitted through the polarizer is reduced to 1/8 to 1.
  • the proportion of parallel light with directivity within 2 degrees can be achieved. Is about 5.6%.
  • the incident light 30 shown in FIG. 2 the illuminance of the luminous flux of this incident light 30 is 704 lumen, the diameter is 18.8 mm, and the illuminance of the light transmitted through the polarizer is Approximately 800 000 looks.
  • the magnification of the imaging optical system is 1 times the illuminance is small alignment film optical anisotropy as described above 1. 3 X 1 0 8 minutes 1-1.
  • the extinction ratio of the polarizer and the optical element used as the analyzer is 1: 1 like a polarizing plate made by stretching a normal polymer. If the thickness is about 0.00, the alignment film of the liquid crystal display device having a small optical anisotropy cannot be inspected. Therefore, the extinction ratio is 1: 1 0 6 or more desired properly 1: it is necessary to use a Glan-Thompson prism Ya Gran Thera prism with optical anisotropy crystal of calcite or the like in 1 0 7 or more.
  • FIG. Calcite which is usually used for Glan-Thompson prisms or Glan-Terra prisms, used as a polarizer or analyzer with a high extinction ratio, is either natural or man-made. The degree is the largest. Therefore, if the orientation characteristics of the entire surface of the substrate are examined in a unit of 20 mm square in order to inspect the orientation characteristics of the substrate, in the case of 200 mm ⁇ 300 mm, 150 seconds (1 second) can be simply obtained as 1 screen I second. Min) It will take.
  • the embodiment of FIG. 6 shows a method for solving this problem.
  • the parallel linearly polarized light 30 ′ transmitted through the Glan-Thompson prism 31 is converted into an enlarged parallel linearly polarized light 301 by the lenses 41 and 42, and is incident on the substrate 10.
  • the expanded light 30 2 transmitted through the substrate 10 is again converted into a parallel beam 30 ′′ having a beam diameter similar to that of the parallel linearly polarized light 30 ′ by the lens 4 3 and the lens 4 4 and is incident on the Glan-Thompson prism 32.
  • the reduced image of the surface of the substrate is formed on the sensor surface of the ultra-high-sensitivity imaging device by the imaging optical system 4 as in the example of the embodiment of Fig. 2.
  • the image obtained in this way can realize the above-described functions of the present invention only with a difference in reduction magnification in principle from that described in the above-described embodiment.
  • the entire alignment film on the substrate can be inspected in a short time. For example, if the reduction magnification of the imaging optical system is set to 1/5, the above detection range and one screen If the same detection time is set for the same condition, detection can be performed in one minute, which is sufficiently applicable to the manufacturing process.
  • the optical system when the optical system is interposed between the polarizer and the analyzer, if the optical system has a very slight non-uniform refractive index, that is, if striae occurs, the non-uniform refractive index becomes nonuniform.
  • the measurement data of the optical anisotropy of the alignment film is included in the measurement data, making accurate measurement impossible. The same problem occurs even if the glass substrate on which the alignment film is formed has optical anisotropy. In each case, these error factors must be removed.
  • the method of removing the error factors differs depending on the case of the optical system and the case of the substrate glass as described below.
  • a description will be given of a method of removing an error using a substrate glass.
  • the film is placed in a drying (firing) device 120 ′ such as a furnace to remove the solvent of the orientation film.
  • the substrate before imparting the alignment characteristics is brought to the optical inspection apparatus 140 ′ shown in FIG. 2 described above (1413), and the alignment film before the alignment characteristics described above is imparted. And the substrate glass are quantitatively measured.
  • the biaxially oriented film 1 1 and glass total optical anisotropy before the alignment treatment applied to the substrate 1 0 x B, and y B, y B side of the direction light and theta B phase advances with respect to x B direction of the light.
  • the main axis of the eye optical anisotropy formed by integrating the orientation film and the glass is. naturally, if ultra-sensitive imaging apparatus In the case of shooting an image to by Li optical anisotropy in place in the field of view are different, the main axis of the optical anisotropy for each location (x B (x, y) , y B (x, y)) the finding.
  • x B by location within the normal field of view (x, y), y B (x, y) because not differ too greatly, the main axis (x B (x, y) , y B (x, y )), I (x, y) is obtained from three or more angles ( ⁇ . + ⁇ 2 ( B ) n ) in several degrees or several tens of degrees of soil, and for example, three angles ( ⁇ . + ⁇ — 2 ⁇ ⁇ ), ( ⁇ ⁇ + ⁇ -2 ⁇ ⁇ ) 2 ⁇ ( ⁇ 0 + ⁇ -2 ⁇ ⁇ ) ⁇ ⁇ Imaging intensity I!
  • the anisotropy intensity ⁇ B is obtained from the following equation: As described above, when the optical anisotropy differs depending on the location in the field of view to be imaged, the principal axis (x B (x, y), y B (x, y)) is obtained by rotating 45 ° from B.
  • ⁇ ⁇ ⁇ x (x, y), y B (x, y) depending on the location in the field of view if differ too large, the main shaft (x B (x, y) , y B (x, y)) with a total of three or more angle in average soil a few degrees from that or the soil several tens of degrees of I (x, seeking y), for example, three cases I, (x, y), I 2 (x, y), the three sets of data of I 3 (x, y), from the third data at each point (x, y) The maximum value is obtained, and the anisotropy intensity 0 B (x, y) is obtained from this value.
  • the substrate 10 provided with the orientation property is transferred again to the optical inspection apparatus 140 '(1314), and the optical anisotropy after the orientation property is applied is performed in exactly the same manner as before the orientation property is applied.
  • direction (x L '(x, y ), y L' (x, y)) and intensity 6 L '(x, y) is determined. There was thus determined (x L '(x, y ), y L' (x, y)) and e L '(x, y) is not a single value of the alignment film which is imparted with orientation characteristics
  • the value includes the anisotropy of glass.
  • the optical anisotropy of the alignment film before imparting the alignment characteristics was measured in advance as described above because the alignment film was sufficiently thin (several hundreds) and the method of forming the alignment film was a method that did not generate anisotropy.
  • x B (x, y), y B (x, y)) ⁇ And 0 B (x, y) almost represent the optical anisotropy of the glass itself, so there is often no problem if the optical anisotropy of the alignment film before imparting the orientation characteristics can be almost ignored. . If the anisotropy of the alignment film before imparting the alignment characteristics cannot be ignored, the same optical anisotropy may be measured in the state of the elementary glass before the application of the alignment film.
  • AD ⁇ 0 L 'IL' I 0 L 'A
  • T. L .— ' is the inverse matrix of T'
  • T 1 1 T L. It is.
  • the components of the matrix T L .0 are represented by ⁇ ⁇ 2 ⁇ 21 T 22 , they are cos (—), sin ( ⁇ — -sin (-;) and cos ((// — ⁇ L ′), respectively.
  • P ' is the component PM P 1 2 P 21 and P 22 are 100 and the complex number exp (i L L ), respectively.
  • Equation 5 T on the right side. — 1 , P L. And T. L., The known quantity der Li obtained by the above measurement, the left side of the P B and T. B is also a known quantity obtained by the above measurement. Therefore, if this (Equation 5) is rewritten,
  • T LD P LT BL T 0 have -. 1 P L To have T 0 B - 1 P - i
  • the feed pack is supplied to the alignment film coating device 110 ′, the drying (firing) device 120 ′, and the alignment characteristic imparting device 130 ′ according to the inspection result.
  • This feedback conveys the contents of the feed pack from the processing unit 6 to each device by signals 144, 144, and 141 when the contents of the control are clearly determined. If the control content is not established, the condition of each device is determined by human intervention.
  • the target of the feed pack is the orientation film coating device 110 ', the drying (firing) device 120', and the orientation. Characterizing device 1 30 'force is not limited to this.
  • the defect is detectable by the optical inspection device of the present invention due to the defect of the alignment film substrate of the liquid crystal display device and occurs during the manufacturing process of the liquid crystal display device, what kind of feedback target is provided It can be applied to various processes, equipment and materials.
  • the target of this error removal is specific to the optical system of the optical inspection device.
  • the error is measured in advance and stored in the processing device 6 as a correction value before the inspection. Therefore, the following measurement for removing errors is often performed before the production flow of liquid crystal display devices.
  • Error factors caused by optical systems can be roughly classified into two types.
  • the first factor is that scratches and debris on the inside and the exit surface of the polarizer 31 and on the inside and surface of the lenses 41, 42, 43 and 44, and on the inside and the entrance surface of the analyzer 32. This is an error associated with the generation of polarization components other than linearly polarized light due to scattering of incident linearly polarized light due to scratches and dust.
  • the second factor is an error due to the generation of polarization components other than linearly polarized light formed by the polarizer due to optical system striae inserted between the polarizer and the analyzer.
  • the error due to its influence in the discrimination between scratches and dust and the measurement of optical anisotropy and the method of removing the error are described. Since the scratches and dust are not located on the focal plane of the imaging optical system (conjugate with the imaging surface), they do not form a clear image of the scratches and dust, but become a wide and blurred image. In addition, since the polarizer and analyzer are almost completely orthogonal to each other, and these elements have a very high extinction ratio, a considerable amount of noise and noise is generated for the target with very small optical anisotropy to be measured. There is a possibility. Therefore, with the object 10 removed prior to the measurement of the object, the imaging optics was formed on the surface of the object assuming that the object 10 was temporarily placed.
  • the direction s (x, y) of the optical anisotropy is exactly the same as when measuring the object.
  • the degree ⁇ s (x, y) are determined by (x, y) on the imaging surface.
  • the imaging optical system 4 and the ultra-sensitive image pickup device 2 are rotated as a unit, so the lenses 41, 42, 43, and 44 for expanding the field of view are rotated. If is fixed in the same way as the prisms 31 and 32, the scratches and dust attached to this optical system rotate on the imaging surface according to the rotation of the imaging system. Since the center of rotation on the imaging surface is known in advance, it is possible for the control device 6 to automatically control the bright spot due to scratches and dust from the rotation angle of the rotary table.
  • an alignment film of liquid crystal as an object is applied, and a substrate subjected to alignment treatment is mounted, and measurement is performed by the method described in the above embodiment.
  • the object is measured with the imaging optical system 4 and the ultra-high-sensitivity imaging device 2 integrated and rotated while the object is "present” * "absent".
  • the entire field of view usually becomes dark, but if there are scratches or dust, this part becomes bright. Shine. This shine is almost always irrespective of the rotation angle.
  • the brightness changes greatly as shown in Fig. 5 depending on the angle of rotation.
  • the second factor namely, the identification of errors due to the occurrence of polarization components other than linearly polarized light formed by the polarizer due to the stria of the optical system inserted between the polarizer and the analyzer, etc.
  • the glass material used for the lenses of the optical systems 41, 42, 43, and 44 for expanding the visual field shown in Fig. 6 a material with sufficiently small optical anisotropy, that is, a material with small striae, was used. If the focal length of these lenses is selected to be relatively large, the above optical anisotropy ⁇ s (x, y) becomes a relatively small value.
  • linearly polarized light passing through the polarizer 31 is light having sufficient directivity
  • light passing through an optically anisotropic portion D such as striae in each of the lenses 41 to 44 is targeted. It passes through a part D 'corresponding to that part D of the object. D and D 'are different from the case where these two points are in perfect optical conjugate (imaging) relation, and are closer to the relation between the object and the image as in the case of some defocus relation. As a first-order approximation, the effect corresponding to this defocus blur is ignored.
  • the optical system shown in FIG. 6 will be described below as an example.
  • the optical anisotropy generated by the pair of lenses 41 and 42 and the pair of lenses 43 and 44 is calculated as (x, y) (x, y) ( Anisotropic Direction), ⁇ (x, y) (degree of anisotropy), and ⁇ L2 (x, y), 0 ⁇ (x, y).
  • the analyzer detects the incident linearly polarized light A.
  • Equation 7 corresponding to (Equation 4) holds for linearly polarized light A D in the emitting direction.
  • Equation 7 L 1 (x, y), ⁇ L1 (x, y), ⁇ L2 (x, y), and ⁇ L2 (x, y) If the measurement is performed using a sample, the optical anisotropy of the target object can be obtained as L (x, y) and 0 L (x, y) using the matrix operation formula (Equation 7).
  • the visual field expanding optical system shown in FIG. 6 is fixed to the prism, it may be rotated integrally with the object 10 and the imaging optical system 4.
  • the image signal of dust or scratches of the magnifying optical system or the image signal of optical anisotropy such as striae becomes fixed without rotating.
  • the arithmetic processing for removing the error factor becomes relatively easy.
  • the orientation film on the substrate 10 is normally given the orientation characteristics under the same conditions unless the model is changed in the production line, so that the orientation direction is constant unless otherwise specified.
  • the orientation strength that is, the magnitude of the optical anisotropy ⁇ , is almost the same. Defective alignment films that cause defective LCD devices are discriminated as deviations from a certain threshold of and 0. For this reason, the angle at which the substrate 10 and the imaging system 4 rotate integrally is a fixed value ⁇ .
  • the angle may be limited to an angle of 45 ° to 45 °. Then, the data of two more screens near this angle are rotated by a desired amount using a known phase plate 33 shown in FIG. 8 to obtain the detailed optical anisotropy of the alignment film. Generate quantitative data. Although not shown in FIG. 8, the measurement is automatically performed by using the control circuit 6 shown in FIG. 2, and the result is fed back to the orientation characteristic applying means.
  • the object to be inspected or the object to be measured described in the above embodiment is the orientation film substrate of the liquid crystal display device
  • the optical inspection device or optical inspection method of the present invention is not limited to this object.
  • Especially used for inspection of striae of transparent optical members such as optical glass, inspection of optical anisotropy and optical distortion of lenses and optical parts, etc. Can be detected separately.
  • the present invention it has become possible to detect a two-dimensional image even with an optical anisotropy of 0.1 ° or less, which has been conventionally difficult. As a result, it is possible to detect defects in the alignment film in a short time before the liquid crystal is sealed, particularly after the alignment characteristics are given to the alignment film of the liquid crystal display device. As a result, it is possible to produce liquid crystal display devices with high performance and high yield at high yields, and there is a significant industrial contribution.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Mathematical Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

In order to detect the defects of the alignment film substrate of a liquid crystal display by a noncontact and nondestructive inspection method within a time short enough to be practically acceptable, after the orientation characteristics are given to the alignment film, a highly-directional approximately perfect linearly polarized light is applied to the alignment film while liquid crystal does not exist on its surface, and the transmitted light is directed to a photodetector with a high extinction ratio and detected by forming the image of the alignment film surface on an extra-high sensitivity image pickup device. The incident linear polarized light, the photodetector and the substrate of the alignment film are rotated around the optical axis of an image forming system, the direction of anisotropy, the value of anisotropy, foreign substances and flaws on the alignment film are detected by a nondestructive inspection method, and the inspection results are fed back to the manufacturing process. With this constitution, as the defects of the alignment film can be detected in a short time before liquid crystal is sealed in the liquid crystal display, the immediate feedback to the alignment characteristics imparting process can be realized, and hence the liquid crystal display having excellent performance can be manufactured with a high yield.

Description

明 細 書 液晶表示装置の製造方法、 光学的検査装置及び光学的検査方法 技術分野  Description Liquid crystal display device manufacturing method, optical inspection device and optical inspection method
本発明は液晶表示装置の製造方法及び液晶配向膜の検査装置、 並びに 液晶配向膜の検査方法に関する。 背景技術  The present invention relates to a method for manufacturing a liquid crystal display device, a device for inspecting a liquid crystal alignment film, and a method for inspecting a liquid crystal alignment film. Background art
T F T (薄膜トランジスタ) 方式に代表される液晶表示装置は、 近年 の情報機器の普及に伴い生産量の増大とコス卜の低減が急速に進んでい る。  With the spread of information devices in recent years, liquid crystal display devices represented by the TFT (thin film transistor) system have been rapidly increasing in production volume and reducing costs.
液晶表示装置の生産工程の中で最も重要な工程の 1つに、 配向膜の形 成がある。 液晶はガラス基板の間に挟まれて、 基板面に形成された電極 に印加される電圧により液晶の方向が制御され、 透過する光の偏光状態 を変化させることにより、 表示機能を実現している。 このとき、 電圧の 印加の有無に関係なく、 液晶がガラス面との境界で一定の方向に向いて いることが不可欠である。 これを実現させているのが配向膜である。 配 向膜はポリイミ ド等の鎖状の高分子をガラス基板に薄く塗布し、 この塗 布膜にラビング等により配向特性を付与して完成する。 すなわち膜表面 の分子の配向を一方向に揃える。 これにより液晶分子がこの配向膜分子 に沿って方向を揃えることになる。  One of the most important processes in the production process of liquid crystal display devices is the formation of an alignment film. The liquid crystal is sandwiched between glass substrates, the direction of the liquid crystal is controlled by the voltage applied to the electrodes formed on the substrate surface, and the display function is realized by changing the polarization state of the transmitted light. . At this time, it is essential that the liquid crystal is oriented in a certain direction at the boundary with the glass surface regardless of whether or not a voltage is applied. This is realized by the alignment film. The orientation film is completed by thinly applying a chain polymer such as polyimide on a glass substrate, and imparting orientation characteristics to the coating film by rubbing or the like. That is, the orientation of the molecules on the film surface is aligned in one direction. Thereby, the liquid crystal molecules are aligned in the direction along the alignment film molecules.
このように配向膜の性能を決めるのは、 膜表面の極めて薄い層の分子 の配向であるため、 この薄い層の配向特性を単独で検査することは、 従 来極めて困難であった。 即ち、 従来の光学検査では、 光学的な異方性が 非常に小さいため、 例えばレーザ光を用いて 1 m m径を 1点ずつ、 しか P Since the performance of an alignment film is determined by the orientation of molecules in an extremely thin layer on the film surface, it has been extremely difficult to inspect the orientation characteristics of the thin layer alone. That is, in the conventional optical inspection, since the optical anisotropy is very small, for example, a laser beam is used to measure a 1 mm diameter one point at a time. P
2 も 1点に秒単位の時間をかけて測定していた。 この従来の測定法は、 レ 一ザ光が配向膜を通過するときにわずかに偏光が変化することを、 レー ザ光の直交する 2つの偏光ごとの位相の変化を、 光へテロダイン法等を 用いて測定している。 2 also measured one point in seconds. This conventional measurement method is based on the fact that the polarization changes slightly when the laser light passes through the alignment film, the phase change between two orthogonal polarizations of the laser light, and the light heterodyne method. It is measured using
また従来技術として、 特開平 6 - 5 9 2 3 0号公報に示すように、 基 板に直線偏光の光を照射し、 反射光のうち照射直線偏光と直交する偏光 を通す偏光板を設け、 その透過光を T Vカメラで検出するラビング検査 装置が開示されている。  Further, as a conventional technique, as shown in Japanese Patent Application Laid-Open No. 6-59230, a substrate is irradiated with linearly polarized light, and a polarizing plate is provided that transmits polarized light orthogonal to the irradiated linearly polarized light among reflected light, A rubbing inspection device that detects the transmitted light with a TV camera is disclosed.
しかし、 液晶表示装置の配向膜のような、 光学的異方性 Θが 0 . 1 ° 程度の対象を検出したり、 計測することについては配慮されていなかつ た。  However, no consideration has been given to detecting or measuring an object having an optical anisotropy 程度 of about 0.1 °, such as an alignment film of a liquid crystal display device.
また、 反射光の偏光状態が変化することについても配慮されていなか つた。  Also, no consideration was given to changes in the polarization state of the reflected light.
即ち、 前述した通り、 ラビングを行った後の配向膜の異方性は極僅か であり、 上記従来技術に示された方法では、 例え透過型にして用いても 検出感度が低く、 検出したり計測したりすることが困難であることが分 かった。  That is, as described above, the anisotropy of the alignment film after rubbing is extremely small, and the method shown in the above-described conventional technique has low detection sensitivity even if it is used in a transmission type, so that the detection is difficult. It proved difficult to measure.
このような状況のため、 従来は、 配向処理した 2枚の基板の間に液晶 を垂らし、 挟み込み配向膜面の分子の配向方向に倣って配向する液晶分 子の光学的異方性を通して、 配向膜の出来具合をチェックしていた。 上記した従来技術のようなレーザ光を用いる方法では、 配向膜単独で チェックする方法は、 基板の一部あるいは全部の配向処理の出来具合を 2次元画面として見ようとすると、 多大な時間を要する。 例えば、 仮り に 1 m m径を 1秒で検出できたとしても、 1 0 X 1 O m mを検出するの に 1 0 0秒を要するだけでなく、 分解能は僅か 1 m mになる。 また、 基 板全体の寸法を 2 0 0 X 3 0 0 m mとすると、 約 1 7時間を要すること になる。 Due to this situation, conventionally, the liquid crystal is suspended between the two substrates that have been subjected to alignment treatment, and the alignment is performed through the optical anisotropy of the liquid crystal molecules, which aligns with the orientation direction of the molecules on the surface of the sandwiched alignment film. He was checking the condition of the membrane. In the method using a laser beam as in the above-described conventional technique, the method of checking only the alignment film requires a great deal of time when a part or all of the substrate is viewed as a two-dimensional screen. For example, even if a 1 mm diameter could be detected in 1 second, it would take 100 seconds to detect 100 × 10 mm and the resolution would be only 1 mm. If the dimensions of the entire board are 200 mm x 300 mm, it takes about 17 hours. become.
また、 配向膜の表面の極く薄い層 (数十 A ) のみが光学的異方性を持 つているので、 検出光の強度は、 入射光の強度の百万から一億分の一程 度になってしまい、 従来の τ ν画像で検出する方法では、 検出不可能で ある。  In addition, since only a very thin layer (several tens of A) on the surface of the alignment film has optical anisotropy, the intensity of the detection light is about one million to one hundred million of the intensity of the incident light. Therefore, it cannot be detected by the conventional detection method using the τν image.
一方、 液晶を垂らしてチェックする方法は、 チェック後、 例えば、 垂 らした液晶を除去してその基板を用いて製品を作ることは、 ほとんど不 可能であるため、 破壊検査になってしまう。 発明の開示  On the other hand, in the method of checking by dropping the liquid crystal, it is almost impossible to make a product using the substrate after the check, for example, by removing the dropped liquid crystal, which results in a destructive inspection. Disclosure of the invention
本発明は、 上記課題を解決するために、 指向性の高い光源または点光 源に近い光源で、 かつ時間的にインコヒーレン卜な高出力光源を用いる c 時間的にインコヒーレントな光を用いる理由は、 特に層構造の対象物の 多重反射による検出信号のバラツキを除去するためである。 この光源よ り出射した光を、 照明光学系により、 指向性が高い所望の広がりを持つ た平行光束に変換する。 この平行光束を、 高い消光比を有する偏光子に より偏光度の高い直線偏光にし、 この直線偏光を、 液晶配向膜に入射さ せる。 配向膜透過光を、 高い消光比を有する検光子を透過させ、 透過し た光を、 1次元または 2次元の超高感度撮像装置で受光する。 さらに、 この際液晶配向膜と超高感度撮像装置の撮像センサ面を結像関係にする 結像光学系を、 液晶配向膜と超高感度撮像装置の間に設ける。 このよう にしてアレイセンサで得られた情報を元に、 配向膜の欠陥を処理装置に より検出する。 このようにして、 液晶配向膜の光学的異方性の極僅かな 変化を 2次元画像として検出する。 Why the present invention, in order to solve the above problems, the light source close to the highly directional light source or a point light source, and temporally using c temporally incoherent light using Inkohiren Bok high power light source The purpose of this method is to remove variations in the detection signal due to multiple reflection of an object having a layer structure. The light emitted from this light source is converted by an illumination optical system into a collimated light beam having a desired directivity and a desired spread. The parallel light beam is converted into a linearly polarized light having a high degree of polarization by a polarizer having a high extinction ratio, and the linearly polarized light is incident on a liquid crystal alignment film. The light transmitted through the alignment film is transmitted through an analyzer having a high extinction ratio, and the transmitted light is received by a one-dimensional or two-dimensional ultra-high-sensitivity imaging device. Further, at this time, an imaging optical system that brings the liquid crystal alignment film and the imaging sensor surface of the ultra-high sensitivity imaging device into an imaging relationship is provided between the liquid crystal alignment film and the ultra-high sensitivity imaging device. Based on the information obtained by the array sensor in this way, a defect in the alignment film is detected by the processing device. Thus, a very slight change in the optical anisotropy of the liquid crystal alignment film is detected as a two-dimensional image.
ここで、 配向膜の微小な光学的異方性を検出可能にするため、 上記偏 光子および検光子の通す光の偏光の方向は、 互いに 9 0度ずれるように する。 Here, in order to be able to detect the minute optical anisotropy of the alignment film, the polarization directions of the light passing through the polarizer and the analyzer are shifted by 90 degrees from each other. I do.
さらに、 上記偏光子および検光子の通す光の偏光の方向は、 互いに 9 0度ずれるようにした状態を保ちながら、 偏光子及び検光子を結像光学 系の光軸の周リに対象物に対して相対的に回転する機構を備え、 異なる 回転角で得られた複数の画像を採取し、 当該複数画像から配向膜の欠陥 を検出する機能を、 上記処理装置に持たせる。  Furthermore, while maintaining the state in which the directions of polarization of the light passing through the polarizer and the analyzer are shifted from each other by 90 degrees, the polarizer and the analyzer are focused on the object around the optical axis of the imaging optical system. The processing apparatus is provided with a function of providing a mechanism for relatively rotating with respect to the apparatus, collecting a plurality of images obtained at different rotation angles, and detecting a defect of the alignment film from the plurality of images.
また、 上記偏光子と配向膜の間にはビーム拡大光学系を、 配向膜と上 記検光子の間にはビーム縮小光学系を配置することにより、 比較的小さ く安価な、 消光比の高い上記偏光子と検光子を用いて、 配向膜の広い範 囲を一度に 2次元的に検出することが可能になる。  In addition, by providing a beam expanding optical system between the polarizer and the alignment film and a beam reducing optical system between the alignment film and the analyzer, it is relatively small, inexpensive, and has a high extinction ratio. Using the polarizer and the analyzer, it becomes possible to detect a wide range of the alignment film two-dimensionally at a time.
上記偏光子及び検光子は、 消光比の高いダラントムソンプリズムもし くはグランテーラプリズムを用いることにより、 極微小な光学的異方性 あるいは極微小な光学的異方性の変化が検出できる。  As the polarizer and the analyzer, a very small optical anisotropy or a very small change in optical anisotropy can be detected by using a Dranthamson prism or a Glan-Taylor prism having a high extinction ratio.
液晶表示装置の製造方法において、 このように液晶を垂らさずに、 即 ち液晶がない状態で配向膜の光学的特性が分かれば、 配向膜に付与した 配向の状態が 2次元画像的に分かリ、 配向不良等を検査することが可能 になる。 更に、 この結果を配向特性を付与している手段にフィードバッ クすることにより、 良質の製造プロセスが得られるものである。 図面の簡単な説明  In the method of manufacturing a liquid crystal display device, if the optical characteristics of the alignment film are known without dripping the liquid crystal, that is, in the absence of the liquid crystal, the state of the alignment applied to the alignment film can be determined in a two-dimensional image. Inspection of misalignment, alignment failure, etc. becomes possible. Further, by feeding back the results to the means for imparting the orientation characteristics, a high-quality manufacturing process can be obtained. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の液晶表示装置の製造方法の実施形態の例を示す製 造システム構成図であり、 第 2図は、 本発明による光学的検査装置の斜 視図であり、 第 3図は、 本発明による光学的検査装置の光学系の一部を 示す断面図であり、 第 4図は、 配向膜のラビング方向と光学的主軸及び 入射偏光の関係を示す平面図であり、 第 5図は、 本発明で配向方向と入 射偏光の状態と検出像、 検出信号の関係を示す図であり、 第 6図は、 本 発明による光学的検査装置の光学系の一部を示す断面図であり、 第 7図 は、 本発明による光学的異方性の影響除去法を説明するためのガラス基 板の平面図であり、 第 8図は、 本発明による光学的検査装置の光学系の 一部を示す断面図であり、 第 9図は、 本発明による液晶表示装置の製造 方法のフローを示すフロー図である。 発明を実施するための最良の形態 FIG. 1 is a configuration diagram of a manufacturing system showing an example of an embodiment of a method of manufacturing a liquid crystal display device of the present invention. FIG. 2 is a perspective view of an optical inspection device according to the present invention. FIG. 4 is a cross-sectional view showing a part of an optical system of the optical inspection apparatus according to the present invention. FIG. 4 is a plan view showing a relationship between a rubbing direction of an alignment film, an optical principal axis, and incident polarized light. FIG. 5 is a diagram showing the relationship between the orientation direction, the state of the incident polarized light, the detected image, and the detected signal in the present invention, and FIG. FIG. 7 is a cross-sectional view showing a part of an optical system of an optical inspection apparatus according to the present invention. FIG. FIG. 8 is a cross-sectional view showing a part of the optical system of the optical inspection device according to the present invention, and FIG. 9 is a flowchart showing a flow of a method for manufacturing a liquid crystal display device according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の第 1の実施の形態を、 第 9図に示す。 液晶表示装置の基本的 構成は、 2枚の基板と、 その間に封入された液晶から成っている。 少な くとも一方の基板には配向膜が形成され、 この膜に配向特性が付与され る。 第 9図には、 2枚の基板が完成した後、 この基板に配向膜を形成す る工程が図示されている。 パターンが形成された基板には、 先ず工程 1 1 0で配向膜塗布機によリポリイミ ド等を含む材料から成る配向膜が塗 布される。 塗布膜には溶媒が含まれているため、 工程 1 2 0で乾燥ある いは焼成され、 溶媒が除去される。 この段階での配向膜は構成している 高分子の配向方向はランダムであり、 光学的にほぼ等方的である。  FIG. 9 shows a first embodiment of the present invention. The basic structure of a liquid crystal display device consists of two substrates and liquid crystal sealed between them. An alignment film is formed on at least one of the substrates, and this film is provided with alignment characteristics. FIG. 9 illustrates a process of forming an alignment film on the two substrates after the completion of the two substrates. First, in step 110, an orientation film made of a material containing a polyimide or the like is applied to the substrate on which the pattern has been formed by an orientation film applicator. Since the coating film contains a solvent, it is dried or fired in step 120 to remove the solvent. At this stage, the orientation direction of the constituent polymer of the orientation film is random and almost optically isotropic.
このため、 工程 1 3 0で配向膜表面に配向特性が付与される。 この配 向膜特性の付与は、 通常ラビングと呼ばれる方法で行われる。 ラビング 装置では、 回転円筒ドラムに巻きつけた毛の立った布を配向膜表面に擦 り付けることによりラビングを行う。 このようにラビングを行うと、 配 向膜の表面の高分子は布の走行方向に配向することになる。 この結果、 液晶分子は、 基板表面でこの配向方向に向きを揃える。 このラビングを 行うとき、 例えば、 ドラムの回転数、 ドラムの押しつけ量等々のラビン グの条件によって、 配向膜表面に形成される高分子の配向が微妙に変化 する。 また布を接触、 摩擦させることにより配向特性を付与しているた め、 ラビング布が摩耗し、 付与される配向特性も時々刻々変化して来る。 従来は、 第 9図の工程 1 9 0で示す最後の工程である点灯検査までいか ないと、 配向膜の状態が正常か否かが判断できず、 時には大量の不良を 発生させることも有った。 For this reason, in step 130, the alignment characteristics are imparted to the alignment film surface. The imparting of the orientation film characteristics is usually performed by a method called rubbing. In the rubbing device, rubbing is performed by rubbing a hairy cloth wound on a rotating cylindrical drum against the surface of the alignment film. When rubbing is performed in this manner, the polymer on the surface of the orientation film is oriented in the running direction of the cloth. As a result, the liquid crystal molecules are aligned in the alignment direction on the substrate surface. When this rubbing is performed, the orientation of the polymer formed on the alignment film surface slightly changes depending on the rubbing conditions such as the number of rotations of the drum and the amount of pressing the drum. In addition, the rubbing cloth is worn due to the orientation property imparted by contacting and rubbing the cloth, so that the imparted orientation property changes from moment to moment. Conventionally, until the lighting inspection, which is the last step shown in step 190 in FIG. 9, it is impossible to judge whether the state of the alignment film is normal or not, and sometimes a large number of defects are generated. Was.
そこで第 9図の工程 1 4 0で示す様に、 配向膜に配向特性を付与した 後から液晶を封入するまでの間の工程で、 液晶を基板表面に垂らさずに- 配向特性を検査する。 この検査の詳細は後述するが、 従来困難であった このような液晶無しでの検査が可能になれば、 この検査で得られた結果 を元に、 例えばラビングの不良が発生すれば、 その不良の状態をこの検 査結果から判断し、 その原因を明らかにし、 例えば布の交換、 回転数の 変更あるいは押しつけ量の変更等を行う。 このようなラビング装置への フィードバックは人手で行うこともあるが、 検査結果と不良の原因の関 係が明確になっていれば、 得られた検査結果から自動的にその原因を判 断し、 信号線 1 4 1 ' を通してラビング装置の設定条件を自動的に変更 することも可能である。  Therefore, as shown by step 140 in FIG. 9, in the process from the time when the alignment film is provided with the alignment characteristics to the time when the liquid crystal is sealed, the liquid crystal is inspected for the alignment characteristics without dripping the liquid crystal on the substrate surface. Details of this inspection will be described later, but if it was possible to perform inspection without liquid crystal, which was difficult in the past, based on the results obtained in this inspection, if a rubbing defect occurred, for example, Judgment of this condition from the inspection results and clarification of the cause, such as replacement of the cloth, change of the number of revolutions or change of the pressing amount. Such feedback to the rubbing device is sometimes performed manually, but if the relationship between the inspection result and the cause of the defect is clear, the cause is automatically determined from the obtained inspection result, and It is also possible to automatically change the setting condition of the rubbing device through the signal line 14 1 ′.
上記の配向特性の検査は、 量産ラインで流れて来る基板の例えば 1 0 0枚から 1 0 0 0枚に 1回行えばよいが、 ラビングが安定にできないよ うなときには流れて来る基板の全数を検査してもよい。  Inspection of the above-mentioned orientation characteristics may be performed once, for example, from 100 to 100 substrates flowing in the mass production line.However, when rubbing cannot be performed stably, the total number of substrates flowing is determined. You may inspect.
検査が終わり、 少なく とも異常の無い基板は、 次の工程である例えば 工程 1 5 0で示されるシール材形成に移る。 ここでは、 基板間に挟み込 む液晶が外部に漏れず、 封入するために、 シール材が液晶表示部分より やや大きい範囲を囲むように線状に形成される。 T F T基板とカラ一フ ィルタ基板が重ね合わされ、 工程 1 6 0でこのシールで囲まれた領域に 液晶が封入され、 更に液晶が外部に漏れないように封じられる。 このよ うにして完成した液晶表示装置は点灯検査工程 1 9 0を行い終了する。 次に、 第 9図の工程 1 4 0で示した配向特性検査の内容の詳細を示す 本発明の実施形態について、 第 2図及び第 3図を用いて説明する。 キセノン、 メタルハライ ドあるいは水銀ランプ等の点光源に近い光源 (図示せず) から出射した光を、 球面鏡、 楕円面鏡、 放物面鏡或いは集 光レンズ等 (図示せず) を用いてピンホール (図示せず) に集光し、 こ こから出た光をレンズ等 (図示せず) により平行光束 3 0にする。 この ようにして得られたスペク トル幅の狭くない、 即ち時間的にインコヒ一 レントな指向性の高い平行光束 3 0を暗箱 5 0の穴から中に入れ、 暗箱 5 0内のミラー 3 0 1で反射させる。 反射した光は上方に向かい、 消光 比が 1 0一 sのグラムトムソンプリズム 3 1 に入射させる。 グラムトムソ ンプリズム 3 1 を透過した光はほぼ完全に直線偏光であり、 その偏光方 向は x。方向を向いており、 暗箱 5 0の穴を通過する。 暗箱 5 0の上に は回転テーブル 5が装備されており、 この回転テーブルの回転中心には 穴が開いている。 After the inspection is completed, the substrate having at least no abnormality moves to the next step, for example, the formation of the sealing material shown in step 150. Here, in order to prevent the liquid crystal sandwiched between the substrates from leaking out and enclosing the liquid crystal, the sealing material is linearly formed so as to surround a slightly larger area than the liquid crystal display portion. The TFT substrate and the color filter substrate are superimposed, and in step 160, liquid crystal is sealed in the area surrounded by the seal, and further sealed so that the liquid crystal does not leak outside. The liquid crystal display device completed in this way performs the lighting inspection step 190 and ends. Next, an embodiment of the present invention showing the details of the orientation characteristic inspection shown in step 140 of FIG. 9 will be described with reference to FIGS. 2 and 3. FIG. Light emitted from a light source (not shown) close to a point light source, such as xenon, metal halide, or mercury lamp, is pinhole-formed using a spherical mirror, elliptical mirror, parabolic mirror, or condensing lens (not shown). (Not shown), and the emitted light is converted into a parallel light beam 30 by a lens or the like (not shown). The spectral beam width obtained in this way is not narrow, that is, a parallel light flux 30 with high directivity, which is temporally incoherent, is put through the hole of the dark box 50, and the mirror 301 in the dark box 50 is inserted. To reflect. The reflected light directed upward, the extinction ratio to be incident on the Gram-Thompson prism 3 1 1 0 one s. The light transmitted through the Gram Thompson prism 31 is almost completely linearly polarized light, and its polarization direction is x. It faces the direction and passes through the hole of the dark box 50. A rotary table 5 is provided on the dark box 50, and a hole is formed in the rotary table.
回転テーブル 5の回転する上面には、 基板ステージ 5 2が固定されて いる。 この基板ステ一ジ 5 2にも穴が開いており、 この基板ステージ 5 2の上面に乗せた液晶表示装置の基板 1 0は、 この基板の面内 2方向に 移動可能である。  A substrate stage 52 is fixed on the rotating upper surface of the turntable 5. The substrate stage 52 also has a hole, and the substrate 10 of the liquid crystal display device mounted on the upper surface of the substrate stage 52 can move in two directions in the plane of the substrate.
暗箱 5 0、 回転テーブル 5及び基板ステージ 5 2の穴を通過した直線 偏光は、 基板 1 0を透過する。 透過した光は消光比が 1 0— 6のグラムト ムソンプリズム 3 2に入射し、 結像光学系 4により、 超高感度撮像装置 2の撮像面 (図示せず) に基板 1 0の表面を結像する。 グラムトムソン プリズム 3 2は y。方向の偏光のみを通過するように調整されているた め、 基板面上の配向膜の配向方向が x。方向または y。方向を向いている と、 配向膜の光学的異方性の主軸は x。または y。方向に向くので、 基板 を透過する光は x。方向の直線偏光になる。 従ってグラムトムソンプリ ズム 3 2を透過する光は、 原理的には 0に成る。 実際には消光比が 0で ないため、 極僅か光が漏れる。 超高感度撮像装置 2はペルチェ素子で冷 却された 3板式 C C Dカメラであるが、 通常の T Vカメラとは異なリ各 C C Dはペルチェ素子で冷却されていると共に、 撮像のための走査をコ ントロールすることができるため、 1 / 3 0秒より長い時間で画像蓄積 することが可能である。 本実施例では 1秒間に亘リ画像蓄積を行ってい る。 この結果、 通常の T Vカメラでは全く画像信号が得られないような 上記の極僅かな光の漏れも検出できる。 The linearly polarized light that has passed through the holes in the dark box 50, the rotary table 5, and the substrate stage 52 transmits through the substrate 10. The transmitted light extinction ratio is incident on Guramuto Thomson prism 3 2 1 0 6, by the imaging optical system 4, ultra high imaging surface sensitivity imaging device 2 forming the surface of the substrate 1 0 (not shown) Image. Gram Thompson Prism 3 2 is y. The alignment direction of the alignment film on the substrate surface is x because it is adjusted to pass only polarized light of the same direction. Direction or y. When oriented, the principal axis of the optical anisotropy of the alignment film is x. Or y. The light passing through the substrate is x. Direction linearly polarized light. Therefore, the light transmitted through the Gram Thompson prism 32 becomes 0 in principle. Actually, since the extinction ratio is not 0, very little light leaks. Ultra-high sensitivity imaging device 2 is cooled by Peltier device Although it is a three-chip CCD camera that was rejected, it is different from a normal TV camera.Each CCD is cooled by a Peltier element and can control scanning for imaging 1/30 seconds. It is possible to store images in a longer time. In this embodiment, re-image storage is performed for one second. As a result, it is possible to detect the above-mentioned slight leakage of light, at which no image signal can be obtained with a normal TV camera.
このような構成によリ、 第 2図の回転テーブル 5上に載り基板ステ一 ジ 5 2と一体的に回転する超高感度撮像装置 2を 4 5 ° 回転して、 第 4 図に示すように、 基板に入射する直線偏光の偏光方向とラビングの方向 即ち配向膜の光学的異方性の主軸とが 4 5 ° に成るようにする ( T方向) と、 ラビングにより発生した配向の異方性に応じた光学的異方性に比例 し、 超高感度撮像装置 2に明るい像が得られる。  According to such a configuration, the ultra-high-sensitivity image pickup device 2 placed on the rotary table 5 in FIG. 2 and rotating integrally with the substrate stage 52 is rotated by 45 °, as shown in FIG. If the polarization direction of the linearly polarized light incident on the substrate and the rubbing direction, that is, the principal axis of the optical anisotropy of the alignment film is 45 ° (T direction), the anisotropy of the orientation generated by the rubbing is obtained. A bright image is obtained in the ultra-high sensitivity imaging device 2 in proportion to the optical anisotropy according to the characteristics.
この明るい像の一部には、 特に明るい筋状のパターンも観察される。 このように配向膜の光学的主軸と入射直線偏光が一致する方向を P方向、 4 5 ° を成す方向を T方向とすると、 P方向では、 ラビングの状況がほ とんど分からず画面が暗くなる。 一方 T方向では、 ラビングの状況が鮮 明に現れる。 従って、 回転テーブル 5を回転させ最も暗くなる状態にし、 この回転角からラビングの方向が分かり、 この方向からテ一ブルを 4 5 ° 回転し、 得られる画像の強度から光学的異方性の量が分かる。 従来は、 超高感度撮像装置 2が無かった、 或いは用いられていなかつたため、 T 方向の状態でもほとんど検出できない暗い画像であつたが、 十分な階調 の像が検出できるようになつたため、 光学的異方性の量を求めることが 可能になった。 更に従来のレーザスポッ トによる検出では、 1 m mスポ ッ 卜の分解能でしかデータが得られなかったが、 超高感度撮像装置 2の 分解能で決まる解像度で、 詳細な 2次元的な多量のデータが約 1秒以内 で得られる。 更に本発明では超高感度撮像装置 2を用いているため、 もし基板上に 異物や、 いわゆるラビングクズと呼ばれる微小なごみまたは突起或いは 凹みが存在する状態 (この状態を Rとし、 この状態の光学的特性をやは リ Rとする) であると、 ここで入射直線偏光が散乱され、 偏光が乱れる ため、 ラビング筋等は見えない上記第 4図の P方向の状態でも、 これら の欠陥が明るい点状の像として検出できる (当然 Tの状態でも同じよう に偏光が乱れるためこれら欠陥が明るい点状 (傷の場合には筋状) の像 として検出できる) 。 即ち P方向と T方向で得られる画像から、 ラビン グにより得られた配向特性 (この光学的特性を Dとする) に関する情報 と、 異物、 傷等に関する情報 (光学特性 R ) が分離して同時に得られる ことになる。 A particularly bright streak pattern is also observed in a part of this bright image. In this way, if the direction in which the optical principal axis of the alignment film and the incident linearly polarized light coincide with each other is the P direction, and the direction forming 45 ° is the T direction, in the P direction, the rubbing condition is hardly understood and the screen becomes dark. Become. On the other hand, the rubbing condition appears clearly in the T direction. Therefore, the rotary table 5 is rotated to the darkest state, the direction of rubbing can be determined from the rotation angle, the table is rotated by 45 ° from this direction, and the amount of optical anisotropy is determined from the intensity of the obtained image. I understand. Conventionally, there was no ultra-high-sensitivity imaging device 2 or it was not used, so it was a dark image that could hardly be detected even in the state of T direction.However, it became possible to detect an image with sufficient gradation, It has become possible to determine the amount of dynamic anisotropy. Furthermore, in the conventional detection using a laser spot, data could only be obtained with a resolution of 1 mm spot.However, a large amount of detailed two-dimensional data was obtained at a resolution determined by the resolution of the ultra-high sensitivity imaging device 2. Obtained within one second. Further, since the present invention uses the ultra-high-sensitivity imaging device 2, if there is a foreign substance on the substrate or a minute dust or projection or dent called so-called rubbing waste (this state is denoted by R, the optical characteristics of this state are denoted by R). In this case, the incident linearly polarized light is scattered and the polarization is disturbed, so that even in the state in the P direction in FIG. (Of course, the polarization is also disturbed in the T state, so these defects can be detected as bright dot-like (streak-like images in the case of scratches)). That is, from the images obtained in the P and T directions, the information on the orientation characteristics obtained by rubbing (this optical characteristic is referred to as D) and the information on the foreign matter and scratches (optical characteristics R) are separated and simultaneously obtained. Will be obtained.
第 5図はこの分離の方法を示した図である。 前述したように配向方向 と入射直線偏光の方向が第 5図に示す P及び T方向の 2つの像を採取す る。 撮像画面として図示しているように Pの状態の時には、 ラビングク ズ等の異物や傷のみが明るい点状の像が得ら' 'れる。 他方、 T方向の像は ラビングクズ以外にラビングすじが明るく現れるだけでなく、 A A断面 での信号に示すように、 画面全体が明るくなつている。 これは配向膜全 面が一様に配向していることを示す。 このように P方向と T方向の像信 号 S Pと S τが得られるので、 例えば S Pからはラビングクズ等をまた S τ - S Pからは配向強度信号が得られる。 FIG. 5 is a diagram showing this separation method. As described above, two images in which the orientation direction and the direction of the incident linearly polarized light are the P and T directions shown in FIG. 5 are collected. As shown in the imaging screen, in the state of P, a bright dot-like image is obtained with only foreign matters such as rubbing scraps and scratches. On the other hand, in the image in the T direction, not only the rubbing debris but also the rubbing streaks appear brightly, and as shown in the signal on the AA cross section, the entire screen is brightened. This indicates that the entire surface of the alignment film is uniformly aligned. Since the P direction and the T direction of Zoshin No. SP and S tau is obtained, for example, from the SP the Rabingukuzu etc. The S tau - orientation intensity signal is obtained from S P.
このように、 配向膜の異方性に関する特性 Dまたは Z及び配向膜の微 小な凹凸欠陥或いは配向膜上に載る微小異物に関する特性 Rを分離検出 することが可能となった。  As described above, it is possible to separate and detect the characteristic D or Z relating to the anisotropy of the alignment film and the characteristic R relating to minute unevenness defects of the alignment film or minute foreign matter placed on the alignment film.
配向膜は、 通常数百 Aの膜にラビング等を行い、 この膜の極表面の層 を分子配向させて形成されるため、 光学的に異方な層の厚さは 5 0〜 1 0 0 Aであるといわれている。 従って、 この膜の光学的主軸の方向に偏 光する 2つの互いに直交する直線偏光が膜を透過することによリ受ける それぞれの光の波の位相の相対的な差は、 僅かに 0. 0 1〜0. 1 ° 程 度となる。 この結果直交する偏光子と検光子の間の配向膜の主軸がこの 方向と 4 5° をなす最大検出時においても偏光子を透過した光の 1 . 3 乂 1 08分の 1〜 1. 3 X 1 06分の 1 しか検光子を透過して来ない。 例えば、 点光源に近い 2 0 0 Wのショ一トアーク水銀ランプを用い、 全光束が 1 2 5 0 0ル一メンとなっても、 このうち 2度以内の指向性を 有する平行光にできる割合は約 5. 6 %となる。 これを第 2図で示す入 射光 3 0として用いた場合、 この入射光 3 0の光束の照度は 7 04ルー メンで、 径が 1 8. 8 mmとなり、 偏光子を透過する光の照度は約 8 0 0 ◦ 0ルックスとなる。 結像光学系の倍率を 1倍とすると光学的異方性 が上記のように小さな配向膜ではこの照度は 1 . 3 X 1 08分の 1〜 1 . 3 X 1 06分の 1 になるため、 撮像装置の撮像面では 0. 0 6〜0. 0 0 0 6ルックスにしかならない。 光源のパワーを大きく し撮像面に達す る光の強度を大きくすることは不可能ではないが、 通常ランプの出力を 大きくすると光源の面積が大きくなリ、 2 0 0 Wのランプの数倍の照度 が限界である。 従って撮像装置の感度は 0. 1ルックス以下でなければ ならない。 The alignment film is usually formed by rubbing a film of several hundreds of A and molecularly orienting the layer on the outermost surface of the film, so that the thickness of the optically anisotropic layer is 50 to 100 A is said to be. Therefore, the film is biased in the direction of the optical main axis. Light The relative difference between the phases of the respective light waves received by the transmission of two mutually orthogonal linearly polarized light through the film is only about 0.01 to 0.1 °. As a result, even at the time of maximum detection where the main axis of the alignment film between the orthogonal polarizer and the analyzer forms 45 ° with this direction, 1.3 of the light transmitted through the polarizer is reduced to 1/8 to 1. Only one third of the 3 X 10 6 penetrates the analyzer. For example, if a short-arc mercury lamp of 200 W close to a point light source is used and the total luminous flux becomes 125 lumens, the proportion of parallel light with directivity within 2 degrees can be achieved. Is about 5.6%. When this is used as the incident light 30 shown in FIG. 2, the illuminance of the luminous flux of this incident light 30 is 704 lumen, the diameter is 18.8 mm, and the illuminance of the light transmitted through the polarizer is Approximately 800 000 looks. When the magnification of the imaging optical system is 1 times the illuminance is small alignment film optical anisotropy as described above 1. 3 X 1 0 8 minutes 1-1. In 3 X 1 0 1/6 Therefore, on the imaging surface of the imaging device, it is only 0.06 to 0.006 looks. It is not impossible to increase the power of the light source to increase the intensity of light reaching the imaging surface.However, increasing the output of a normal lamp increases the area of the light source, which is several times that of a 200 W lamp. Illuminance is at its limit. Therefore, the sensitivity of the imaging device must be less than 0.1 lux.
このような極微弱な照度を検出することは通常の撮像装置では不可能 である。 また通常の撮像装置を画像蓄積しても、 計測可能な信号対雑音 比の撮像信号が得られない。 これを可能にするのは C C D撮像素子等を ペルチェ素子等で冷却し、 所謂シヨッ トメイズと呼ばれるような電気的 なノィズが例えば 1秒程度の十分長い時間画像蓄積しても、 問題になら ないような超高感度の撮像装置を用いる場合に限られる。 通常 TVカメ ラの撮像装置の感度は数ルックス以上であり、 約 2桁感度が不足し、 検 出できないため上記の超高感度撮像装置が不可欠となる。 また検光子を透過する光の比率が上記の様に非常に小さいため、 偏光 子及び検光子として用いる光学素子も通常の高分子を引張って作られた 偏光板のように消光比が 1 : 1 0 0 0程度のものでは上記の光学的異方 性の小さい液晶表示装置の配向膜を検査できない。 このため、 消光比が 1 : 1 0 6以上望ま しくは 1 : 1 0 7以上ある方解石等の光学的異方性結 晶を用いたグラントムソンプリズムゃグランテーラプリズムを用いる必 要がある。 It is impossible to detect such an extremely weak illuminance with a normal imaging device. Further, even if the image is stored in a normal imaging device, an imaging signal having a measurable signal-to-noise ratio cannot be obtained. This is made possible by cooling the CCD image sensor with a Peltier device, etc., so that there is no problem even if the electrical noise called so-called shot maze is accumulated for a sufficiently long time, for example, about 1 second. This is limited to the case where a super-high-sensitivity imaging device is used. Normally, the sensitivity of the imaging device of a TV camera is several lux or more, and the sensitivity is about two digits insufficient. In addition, since the ratio of light transmitted through the analyzer is very small as described above, the extinction ratio of the polarizer and the optical element used as the analyzer is 1: 1 like a polarizing plate made by stretching a normal polymer. If the thickness is about 0.00, the alignment film of the liquid crystal display device having a small optical anisotropy cannot be inspected. Therefore, the extinction ratio is 1: 1 0 6 or more desired properly 1: it is necessary to use a Glan-Thompson prism Ya Gran Thera prism with optical anisotropy crystal of calcite or the like in 1 0 7 or more.
次に第 6図を用いて本発明の実施形態を説明する。 消光比の高い偏光 子或いは検光子として用いられる、 グラントムソンプリズム、 或いはグ ランテーラプリズムに通常用いられる方解石は、 天然或いは人工のもの であるカ 、 いずれも大きさに限度が有り、 2 0 m m程度が最大である。 このため基板全面の配向特性を検査するのに 2 0 m m角単位で見るとす れば、 2 0 0 X 3 0 0 m mでは、 単純に 1画面 I秒としても 1 5 0 0秒 ( 2 5分) かかってしまう。 第 6図の実施形態は、 この問題を解決する 方法を示している。 グラントムソンプリズム 3 1 を透過した平行直線偏 光 3 0 ' をレンズ 4 1とレンズ 4 2により拡大平行直線偏光 3 0 1 にし て基板 1 0に入射させる。 基板 1 0を透過した拡大光 3 0 2はレンズ 4 3とレンズ 4 4により、 再び平行直線偏光 3 0 ' と同程度のビーム径の 平行ビーム 3 0 " にしてグラントムソンプリズム 3 2に入射させる。 こ の後は、 第 2図の実施形態の例と同様に、 結像光学系 4により基板の表 面の縮小像が超高感度撮像装置のセンサ面に結像するようにする。  Next, an embodiment of the present invention will be described with reference to FIG. Calcite, which is usually used for Glan-Thompson prisms or Glan-Terra prisms, used as a polarizer or analyzer with a high extinction ratio, is either natural or man-made. The degree is the largest. Therefore, if the orientation characteristics of the entire surface of the substrate are examined in a unit of 20 mm square in order to inspect the orientation characteristics of the substrate, in the case of 200 mm × 300 mm, 150 seconds (1 second) can be simply obtained as 1 screen I second. Min) It will take. The embodiment of FIG. 6 shows a method for solving this problem. The parallel linearly polarized light 30 ′ transmitted through the Glan-Thompson prism 31 is converted into an enlarged parallel linearly polarized light 301 by the lenses 41 and 42, and is incident on the substrate 10. The expanded light 30 2 transmitted through the substrate 10 is again converted into a parallel beam 30 ″ having a beam diameter similar to that of the parallel linearly polarized light 30 ′ by the lens 4 3 and the lens 4 4 and is incident on the Glan-Thompson prism 32. Thereafter, the reduced image of the surface of the substrate is formed on the sensor surface of the ultra-high-sensitivity imaging device by the imaging optical system 4 as in the example of the embodiment of Fig. 2.
このようにして得られた像は、 前述の実施の形態の例で説明したこと と原理的には縮小倍率が異なるだけで、 前述の本発明の機能を実現する ことができる。 このように一度に見える範囲を拡大することにより、 基 板上の配向膜全面を短時間で検査することができるようになる。 例えば 結像光学系の縮小倍率を 1 / 5にすれば、 上記の検出範囲及び 1画面あ たりの検出時間を同一の条件にすると、 1分で検出することが可能にな り、 製造工程に十分適用できる程度になる。 The image obtained in this way can realize the above-described functions of the present invention only with a difference in reduction magnification in principle from that described in the above-described embodiment. By expanding the range that can be seen at a time, the entire alignment film on the substrate can be inspected in a short time. For example, if the reduction magnification of the imaging optical system is set to 1/5, the above detection range and one screen If the same detection time is set for the same condition, detection can be performed in one minute, which is sufficiently applicable to the manufacturing process.
第 6図のように、 偏光子と検光子の間に光学系を挟むと、 この光学系 に極僅かな屈折率の不均一、 即ち脈理が生じていると、 この屈折率の不 均一が配向膜の光学的異方性の測定データに載ってしまい正確な測定が できなくなる。 これと同じ問題は、 配向膜が形成されているガラス基板 に光学的異方性があっても起こる。 いずれの場合にも、 これら誤差要因 を除去しなければならない。  As shown in FIG. 6, when the optical system is interposed between the polarizer and the analyzer, if the optical system has a very slight non-uniform refractive index, that is, if striae occurs, the non-uniform refractive index becomes nonuniform. The measurement data of the optical anisotropy of the alignment film is included in the measurement data, making accurate measurement impossible. The same problem occurs even if the glass substrate on which the alignment film is formed has optical anisotropy. In each case, these error factors must be removed.
上記の光学系起因の場合と基板ガラスに起因する場合で、 誤差要因の 除去法は以下に示すように異なる。 先ず、 基板ガラスによる誤差の除去 法から説明する。 第 1図に示すように、 酡向膜塗布装置 1 1 0 ' により 配向膜を塗布した後、 炉等の乾燥 (焼成) 装置 1 2 0 ' に入れて配向膜 溶剤を抜く。 この配向特性を付与する前の基板を、 上記に説明した第 2 図で示される光学的検査装置 1 40 ' に持ってきて ( 1 4 1 3 ) 、 上記 に説明した配向特性付与前の配向膜と基板ガラスからなる'ものの異方性 を定量的に測定する。  The method of removing the error factors differs depending on the case of the optical system and the case of the substrate glass as described below. First, a description will be given of a method of removing an error using a substrate glass. As shown in FIG. 1, after the orientation film is applied by the orientation film applicator 110 ′, the film is placed in a drying (firing) device 120 ′ such as a furnace to remove the solvent of the orientation film. The substrate before imparting the alignment characteristics is brought to the optical inspection apparatus 140 ′ shown in FIG. 2 described above (1413), and the alignment film before the alignment characteristics described above is imparted. And the substrate glass are quantitatively measured.
第 7図に示すように、 基板 1 0に塗布された配向処理する前の配向膜 1 1とガラスのトータルの光学的異方性の 2軸を xB、 yBとし、 yB方 向の光が xB方向の光に対して Θ B位相が進むとする。 xBと基板上に固 定された X軸の成す角を </Bとする。 入射直線偏光 Pの X軸と成す角を < とし、 検光子を通す方向のべク トルを Dとし、 Xと成す角を 。する。 入 射直線光の強度を I。とすると、 検光子通過後の強度 Iは (数式 1 ) で 与えられる。 As shown in FIG. 7, the biaxially oriented film 1 1 and glass total optical anisotropy before the alignment treatment applied to the substrate 1 0 x B, and y B, y B side of the direction light and theta B phase advances with respect to x B direction of the light. x B and the angle formed by the fixed and the X-axis on the substrate and </ B. Let <be the angle formed by the X axis of the incident linearly polarized light P, and let D be the vector in the direction through which the analyzer passes, and define the angle formed by X. I do. I is the intensity of the incident linear light. Then, the intensity I after passing through the analyzer is given by (Equation 1).
I = {cos( φ ΰ+ φ - 2 φ B)sin( θ B/2) - cos ( D - ) cos ( 0 B/2) } 2 I 0 φ I = {cos (φ ΰ + φ-2 φ B ) sin (θ B / 2) -cos ( D- ) cos (0 B / 2)} 2 I 0 φ
(数式 1 ) 偏光子及び検光子が直交するとき cos( D— は 0になる。 また光学 的主軸が偏光子及び検光子に 45° の角度を成すときには — 2 < Bは 0になる。 このような条件の時には、 (Formula 1) Cos ( D — is 0 when the polarizer and analyzer are orthogonal, and — 2 < B is 0 when the main optical axis forms a 45 ° angle with the polarizer and analyzer. Sometimes,
I =sin( Θ B/2" 1 o I = sin (Θ B / 2 "1 o
(数式 2 ) となり、 Iは最大となる。 < Bが (//。または に等しい時、 | (/ D— | が冗 2であるため、 Iは最小値となり、 理論的には Iは 0になる。 即 ち、 第 2図に示す基板 1 0と撮像系 (結像光学系 4と超高感度撮像装置 2 ) を一体化したものと、 偏光子 3 1と検光子 3 2を一体化したものと の相対的な回転によリ 。 + 一 2 を変化させることにより、 超高感 度撮像装置の検出強度が最小となる状態にし、 この状態の時の相対的な 回転角を第 2図の回転テーブル 5に付けられた分度器 (図示せず) で目 視または自動で読み取る。 通常上記の最小値となる角度の読み取りは第 2図の制御回路 6を用いて自動的に行う。 この角度及びこれと直角が、 配向処理する前の配向膜とガラスを一体化したものめ光学的異方性の主 軸 (xB, y B) である。 当然のことながら、 もし超高感度撮像装置で撮 像する視野内で場所によリ光学的異方性が異なる場合には、 各場所ごと に光学的異方性の主軸 (xB(x,y), y B(x,y)) を求める。 しかし、 通常 視野内の場所による xB(x,y), y B(x,y)が余り大きく違わないので、 主 軸 (xB(x,y), y B(x,y)) の平均的なものから土数度或いは土数十度に おける計 3個以上の角度(< 。+ ψ- 2 ( B)nで I (x,y)を求め、 例えば 3 つの角度(Ψ。+ Ψ— 2 ψΒ) 、 (ψΌ+ ψ - 2 ψβ)2^ (φ0+ ψ - 2 φΒ)ζ における撮像強度 I ! (x,y)、 I 2(x,y)、 I 3 (x,y)の 3組のデータから、 各点(x,y)で 3データから最小値となる角度 < 。+ < — 2 ( Bを求めれば、 各点における異方性の主軸の方向 (xB(x,y), yB(x,y)) が求まる。 し かし、 第 6図で説明したような広い視野を撮像しない場合には、 1つの 視野内では ( xB(x,y), y B(x,y) ) は場所(x, y)によらずほぼ一定にな るなることが多い。 (Equation 2), and I becomes the maximum. When < B is equal to (//. Or, | (/ D — | is redundant 2. Therefore, I becomes the minimum value, and theoretically I becomes 0. That is, the substrate shown in FIG. This is based on the relative rotation between a unit in which 10 and the imaging system (the imaging optical system 4 and the ultra-sensitive imaging device 2) are integrated, and a unit in which the polarizer 31 and the analyzer 32 are integrated. By changing + 1-2, the detection intensity of the ultra-sensitive imaging device is minimized, and the relative rotation angle in this state is determined by the protractor attached to the rotary table 5 in FIG. (Not shown) Visually or automatically read in. Normally, the reading of the minimum angle is automatically performed using the control circuit 6 shown in Fig. 2. This angle and the right angle to the angle before the orientation processing are performed. the main axis of the eye optical anisotropy formed by integrating the orientation film and the glass (x B, y B) is. naturally, if ultra-sensitive imaging apparatus In the case of shooting an image to by Li optical anisotropy in place in the field of view are different, the main axis of the optical anisotropy for each location (x B (x, y) , y B (x, y)) the finding. However, x B by location within the normal field of view (x, y), y B (x, y) because not differ too greatly, the main axis (x B (x, y) , y B (x, y )), I (x, y) is obtained from three or more angles (<. + Ψ−2 ( B ) n ) in several degrees or several tens of degrees of soil, and for example, three angles ( Ψ. + Ψ— 2 ψ Β ), (ψ Ό + ψ-2 ψ β ) 2 ^ (φ 0 + ψ-2 φ Β ) Imaging intensity I! (X, y), I 2 (x, y ), I 3 (x, y) from the three sets of data, at each point (x, y), the angle that becomes the minimum value from the three data <. + <— 2 (If B is found, the anisotropy at each point the main axis of the direction (x B (x, y) , y B (x, y)) is obtained. Mr However, if no imaging a wide field of view as described in FIG. 6 is within one field of view (x B (x, y) , y B (x, y)) is the location (x, y) In most cases, it becomes almost constant.
次に、 相対的な回転により < 。+ ( — 2 Bを変化させ、 この状態から 4 5 ° 回転した状態で撮像する。 この時の撮像強度 I (x,y)を求めると、 I。が予め求められているので、 上記の式から異方性の強度 θ Bが求まる。 上記したように、 撮像する視野内で場所によリ光学的異方性が異なる場 合には、 各場所ごとの光学的異方性の主軸 ( xB(x,y), y B(x,y)) から 4 5° 回転した状態で強度を求める。 しかし、 視野内の場所による χΒ (x,y), y B(x,y)が余り大きく違わなければ、 主軸 ( xB(x,y), y B(x,y) ) の平均的なものから土数度或いは土数十度における計 3個以上の角度 で I (x,y)を求め、 例えば 3つの場合 I , (x,y)、 I 2 (x,y)、 I 3 (x,y)の 3組のデータから、 各点(x,y)で 3データから最大値を求め、 この値か ら異方性の強度 0 B(x,y)を求める。 Next, by relative rotation <. + (— 2 B is changed, and the image is rotated 45 ° from this state. When the imaging intensity I (x, y) at this time is obtained, I. is obtained in advance. The anisotropy intensity θ B is obtained from the following equation: As described above, when the optical anisotropy differs depending on the location in the field of view to be imaged, the principal axis (x B (x, y), y B (x, y)) is obtained by rotating 45 ° from B. However, にる x (x, y), y B (x, y) depending on the location in the field of view if differ too large, the main shaft (x B (x, y) , y B (x, y)) with a total of three or more angle in average soil a few degrees from that or the soil several tens of degrees of I (x, seeking y), for example, three cases I, (x, y), I 2 (x, y), the three sets of data of I 3 (x, y), from the third data at each point (x, y) The maximum value is obtained, and the anisotropy intensity 0 B (x, y) is obtained from this value.
このようにして配向特性を付与する前の光学的異方性の方向 ( xB(x, y), y B(x,y) ) と強度 0 B (x, y)が求まったので、 次に第 1図のラビング 等による配向特性付与装置 1 3 0 ' に基板を移し ( 1 4 1 3 ) 、 この装 置で配向膜に配向性を付与する。 In this way, the direction (x B (x, y) , y B (x, y)) of the optical anisotropy of before granting orientation characteristics and strength 0 B (x, y) so was Motoma', following Then, the substrate is transferred to an orientation characteristic imparting apparatus 130 'by rubbing or the like shown in FIG. 1 (1413), and the orientation is imparted to the alignment film by this apparatus.
配向特性を付与された基板 1 0を再び光学的検査装置 1 4 0 ' に移し ( 1 3 1 4 ) 、 上記配向特性付与前と全く同じ方法によリ配向特性付与 後の光学的異方性の方向 ( xL' (x,y), y L' (x,y)) と強度 6 L' (x,y) を求める。 このようにして求めた ( xL' (x,y), y L' (x,y) ) 及び eL' (x,y)は、 配向特性を付与された配向膜の単独の値では無く、 ガラスの 異方性を含んだ値になっている。 配向特性付与前の配向膜の光学的異方 性は配向膜が十分薄く (数百人) 、 また配向膜の成膜法が異方性を発生 しない方法であるため、 上記の予め測定した ( xB(x,y), y B(x,y) ) 及 び 0 B(x,y)はほぼガラスそのものの光学的異方性を表しているため、 配 向特性付与前の配向膜の光学的異方性はほとんど無視しても問題ない場 合が多い。 もし配向特性付与前の配向膜の異方性が無視できない場合に は、 配向膜を塗布する前の素ガラスの状態で同様の光学的異方性の測定 をしておけばよい。 既に計測されている (xB(x,y), yB(x,y) ) 及び 0 B(x,y)と新たに計測された ( x L, (x y), y L' (x,y) ) と 0 L' (x y)か ら、 真の配向膜の光学的異方性 (xL(x y), y L(x,y) ) と 0 L(x y)を求 める。 この具体的方法を以下に示す。 The substrate 10 provided with the orientation property is transferred again to the optical inspection apparatus 140 '(1314), and the optical anisotropy after the orientation property is applied is performed in exactly the same manner as before the orientation property is applied. direction (x L '(x, y ), y L' (x, y)) and intensity 6 L '(x, y) is determined. There was thus determined (x L '(x, y ), y L' (x, y)) and e L '(x, y) is not a single value of the alignment film which is imparted with orientation characteristics The value includes the anisotropy of glass. The optical anisotropy of the alignment film before imparting the alignment characteristics was measured in advance as described above because the alignment film was sufficiently thin (several hundreds) and the method of forming the alignment film was a method that did not generate anisotropy. x B (x, y), y B (x, y))及 And 0 B (x, y) almost represent the optical anisotropy of the glass itself, so there is often no problem if the optical anisotropy of the alignment film before imparting the orientation characteristics can be almost ignored. . If the anisotropy of the alignment film before imparting the alignment characteristics cannot be ignored, the same optical anisotropy may be measured in the state of the elementary glass before the application of the alignment film. (X B (x, y), y B (x, y)) and 0 B (x, y) that have already been measured and newly measured (x L , (xy), y L ′ (x, y)) and 0 L '(xy) or al, optical anisotropy of the true alignment film (x L (xy), y L (x, y)) and 0 L calculated Mel the (xy). The specific method will be described below.
ここで基板上に固定した(x y)座標と xB(x,y)、 X L ' (ズ )及び , y)との成す角をそれぞれ B(x,y)、 L' (x y)及び L(x,y)とする。 入 射直線偏光の複素振幅を Aとし、 Aは X軸と(//の角を成すとする。 Aが χ。軸と平行、 y。はこれから反時計回りに 9 0 ° の方向とする。 ( x0 y。) 座標から (xL' , Y ' ) 座標への変換マ卜リックスを T。L 'とし、 偏光子 3 1を通り配向処理された配向膜とガラスを通った光の複素振幅 の (x y。) 座標成分で表された値 ADは (数式 3 ) で表される。 Here it was fixed on a substrate (xy) coordinates and x B (x, y), XL '( 's) and, respectively, angle between y) B (x, y) , L' (xy) and L ( x, y). Let A be the complex amplitude of the incoming linearly polarized light, and A be the angle of (//) with the X axis. A is parallel to the 軸 axis, and y is the direction of 90 ° counterclockwise. (x 0 y.) from the coordinates (x L ', Y') the conversion Ma Bok helix to coordinate and T. L ', of the light passing through the alignment film and glass polarizer 3 1 is as alignment treatment complex The value A D represented by the (xy.) Coordinate component of the amplitude is represented by (Equation 3).
A D = ^ 0 L ' I L ' I 0 L ' A AD = ^ 0 L 'IL' I 0 L 'A
(数式 3 ) ここで T。L.—'は T 'の逆マトリックスで、 T 1 T L. = E Eは単 位マトリックスであり、 T 一 1 = T L.。である。 マトリックス T L.0の 成分を ΤΗ Τι 2 Τ21 T22で表すと、 それぞれは cos( — ) , sin(< — -sin ( - ;)及び cos ((//— ψ L' ) である。 また P 'はその 成分 PM P1 2 P21及び P22がそれぞれ 1 0 0及び複素数 exp(i ø L ) である。 以上に示したマトリックス Tと Pのサフィックスの採り方をそ のまま用いれば ADと Aはガラス基板、 配向特性を付与された配向膜を 順次通り過ぎることから、 次のマトリックスの式 (数式 4 ) で表される とになる
Figure imgf000018_0001
(Equation 3) where T. L .— 'is the inverse matrix of T', T 1 T L. = EE is the identity matrix, and T 1 1 = T L. It is. If the components of the matrix T L .0 are represented by ΤΗ Τι 2 Τ 21 T 22 , they are cos (—), sin (<— -sin (-;) and cos ((// — ψ L ′), respectively. In addition, P 'is the component PM P 1 2 P 21 and P 22 are 100 and the complex number exp (i L L ), respectively. If the suffix of the matrix T and P shown above is used as it is, a D and a glass substrate, since it sequentially past the alignment film imparted with orientation characteristic is expressed by the following matrix (equation 4) Becomes
Figure imgf000018_0001
(数式 4 ) (数式 3 ) と (数式 4 ) とから次式 (数式 5 ) が得られる。 (Formula 4) From (Formula 3) and (Formula 4), the following formula (Formula 5) is obtained.
I LD I^ L T BL ^ BI OB™ 丄, 0ぃ f L ' l o * I LD I ^ L T BL ^ BI OB ™ 丄, 0 ぃ f L 'l o *
(数式 5 ) 右辺の T。 —1 、 PL.及び T。L.は、 上記の計測で得られた既知の量であ リ、 左辺の PB及び T。Bも上記の計測で得られた既知の量である。 従つ て、 この (数式 5、) を書き直すと、 (Equation 5) T on the right side. — 1 , P L. And T. L., The known quantity der Li obtained by the above measurement, the left side of the P B and T. B is also a known quantity obtained by the above measurement. Therefore, if this (Equation 5) is rewritten,
T LD P LT B L= T0い -1 PL. Toい T0 B1 P ― i T LD P LT BL = T 0 have -. 1 P L To have T 0 B - 1 P - i
(数式 6 ) と表せ、 右辺はすべて既知の計測値である。 このマトリックス式から、 未知の配向特性を付与された配向膜の配向方向と X軸の成す角 及び 光学的異方性の強さである位相値 Θ Lを求めることが可能となる。 この 検査の過程で、 上記第 5図で説明したよ >に、 配向膜に付いているラビ ングクズゃ異物や傷の情報も含めて光学的検査装置の処理 (回路) 装置(Equation 6), and all the right-hand sides are known measurement values. From this matrix equation, it is possible to determine the angle between the orientation direction and the X-axis of the orientation film having the unknown orientation property and the phase value ΘL which is the strength of the optical anisotropy. In the process of this inspection, as described in Fig. 5 above, the rubbing chips attached to the alignment film were processed by the optical inspection device, including information on foreign matter and scratches.
6で識別されるため、 この検査結果に応じて配向膜塗布装置 1 1 0 ' 、 乾燥 (焼成) 装置 1 2 0 ' 並びに配向特性付与装置 1 3 0 ' にフィード パックする。 このフィードバックは、 制御の内容が明確に決まっている 場合には処理装置 6から各装置へのフィ一ドパックの内容を信号 1 4 3 , 1 4 2および 1 4 1で伝える。 制御内容が確立していない場合には、 人 が介在して各装置の条件出しを行う。 なお第 1図ではフィードパックの 対象が配向膜塗布装置 1 1 0 ' 、 乾燥 (焼成) 装置 1 2 0 ' 並びに配向 特性付与装置 1 3 0 ' になっている力 このようなものに限定される分 けでない。 即ち、 液晶表示装置の配向膜基板の不良に起因し、 本発明の 光学的検査装置で検出可能な欠陥で、 液晶表示装置の製造工程中で発生 するものであれば、 フィードバックの対象はどのような工程、 装置、 材 料にも行うことができる。 Since it is identified by 6, the feed pack is supplied to the alignment film coating device 110 ′, the drying (firing) device 120 ′, and the alignment characteristic imparting device 130 ′ according to the inspection result. This feedback conveys the contents of the feed pack from the processing unit 6 to each device by signals 144, 144, and 141 when the contents of the control are clearly determined. If the control content is not established, the condition of each device is determined by human intervention. In Fig. 1, the target of the feed pack is the orientation film coating device 110 ', the drying (firing) device 120', and the orientation. Characterizing device 1 30 'force is not limited to this. That is, if the defect is detectable by the optical inspection device of the present invention due to the defect of the alignment film substrate of the liquid crystal display device and occurs during the manufacturing process of the liquid crystal display device, what kind of feedback target is provided It can be applied to various processes, equipment and materials.
以上でガラス基板に起因する誤差の除去方法の説明を終わリ、 次に光 学系に起因する誤差の除去方法を第 6図を用いて示す。 なおこの誤差除 去の対象は、 光学的検査装置の光学系固有のものが多いが、 このような ものに対しては、 検査に先立ち事前に誤差が計測され補正値として処理 装置 6に記憶されている場合が多く、 このため以下の誤差除去のための 計測は、 液晶表示装置の生産の流れの前に行われる事が多い。  This concludes the description of the method of removing the error caused by the glass substrate. Next, the method of removing the error caused by the optical system will be described with reference to FIG. In many cases, the target of this error removal is specific to the optical system of the optical inspection device. For such an object, the error is measured in advance and stored in the processing device 6 as a correction value before the inspection. Therefore, the following measurement for removing errors is often performed before the production flow of liquid crystal display devices.
光学系に起因する誤差要因は、 大きく 2つに分類できる。 第 1の要因 は、 偏光子 3 1の内部及び出射面上とレンズ 4 1 、 4 2、 4 3及び 4 4 の内部及び表面の傷やごみ、 並びに検光子 3 2の内部及び入射面上の傷 やごみによる入射直線偏光の散乱による直線偏光以外の偏光成分の発生 に伴う誤差である。 第 2の要因は、 偏光子と検光子の間に挿入された光 学系の脈理等による偏光子で形成された直線偏光以外の偏光成分の発生 による誤差である。  Error factors caused by optical systems can be roughly classified into two types. The first factor is that scratches and debris on the inside and the exit surface of the polarizer 31 and on the inside and surface of the lenses 41, 42, 43 and 44, and on the inside and the entrance surface of the analyzer 32. This is an error associated with the generation of polarization components other than linearly polarized light due to scattering of incident linearly polarized light due to scratches and dust. The second factor is an error due to the generation of polarization components other than linearly polarized light formed by the polarizer due to optical system striae inserted between the polarizer and the analyzer.
先ず傷とごみの識別と光学的異方性の計測におけるその影響による誤 差とその誤差の除去法を述べる。 傷やごみは結像光学系の焦点面上に位 置 (撮像面と共役) しないため、 明確な傷やごみの像とはならず、 広が つたぼけた像となる。 しかも偏光子と検光子をほとんど完全に直交させ、 かつ非常に消光比の高いこれら素子を用いているため、 計測しようとす る非常に小さい光学的異方性の対象に対し、 かなり大きなノイズとなる 可能性がある。 そこで対象物の計測にさきがけて対象物 1 0を除去した 状態で、 対象物 1 0が仮りに置かれたとした時の対象物表面に結像光学 系 4のピントを合わせて結像光学系 4と超高感度撮像装置 2を一体にし て回転させながら、 対象物を計測する時と全く同じように光学的異方性 の方向 s (x,y)と程度 Θ s (x,y)を撮像面上の(x,y)で求める。 ここで注 意しなければならないことは、 結像光学系 4と超高感度撮像装置 2を一 体にして回転させているから視野拡大のためのレンズ 4 1、 4 2、 4 3 及び 4 4がプリズム 3 1及び 3 2と同じように固定であれば、 この光学 系に付いている傷やごみは撮像系の回転に応じて撮像面上を回転する。 撮像面上の回転中心は予め分かっているので、 回転テーブルの回転角度 から傷ゃごみによる輝点を制御装置 6で自動的に掌握することが可能で ある。 First, the error due to its influence in the discrimination between scratches and dust and the measurement of optical anisotropy and the method of removing the error are described. Since the scratches and dust are not located on the focal plane of the imaging optical system (conjugate with the imaging surface), they do not form a clear image of the scratches and dust, but become a wide and blurred image. In addition, since the polarizer and analyzer are almost completely orthogonal to each other, and these elements have a very high extinction ratio, a considerable amount of noise and noise is generated for the target with very small optical anisotropy to be measured. There is a possibility. Therefore, with the object 10 removed prior to the measurement of the object, the imaging optics was formed on the surface of the object assuming that the object 10 was temporarily placed. While focusing the system 4 and rotating the imaging optical system 4 and the ultra-sensitive imaging device 2 integrally, the direction s (x, y) of the optical anisotropy is exactly the same as when measuring the object. ) And the degree Θ s (x, y) are determined by (x, y) on the imaging surface. It should be noted here that the imaging optical system 4 and the ultra-sensitive image pickup device 2 are rotated as a unit, so the lenses 41, 42, 43, and 44 for expanding the field of view are rotated. If is fixed in the same way as the prisms 31 and 32, the scratches and dust attached to this optical system rotate on the imaging surface according to the rotation of the imaging system. Since the center of rotation on the imaging surface is known in advance, it is possible for the control device 6 to automatically control the bright spot due to scratches and dust from the rotation angle of the rotary table.
次に対象物である液晶の配向膜を塗布し、 配向処理した基板を搭載し、 上記の実施形態で説明した方法で計測を行う。 結像光学系 4と超高感度 撮像装置 2を一体にして回転させながら、 対象物が 「有り」 * 「無し」 の状態で計測する時、 上記 「有り」 の際、 第 5図で説明したように、 入 射直線偏光と配向膜の配向方向が一致すると (配向膜が異方性の支配的 要因であるとして) 、 通常視野全体が暗くなるが、 傷やごみが有るとこ の部分が明るく輝く。 この輝きは上記回転の角度に依存せずほぼ常に輝 いている。 光学的異方性に関わるものは、 上記回転の角度により第 5図 のように明るさが大きく変化する。 このことを用いて、 対象物 「有り」 の状態で回転させて計測した結果と、 「無し」 の状態で回転させて計測 した結果を比較することにより、 対象物の傷ごみを分離できる。 即ち、 対象物が無い状態で回転させたときに変化せず明るく残る部分 N。 (回 転テーブルの回転に伴い撮像面上を回転する) は、 対象物以外の例えば 第 6図の視野拡大光学系 4 1、 4 2、 4 3及び 4 4のように偏光子と検 光子の間の光学系に付いている傷やごみである。 従って対象物 「有り」 の状態で回転させたときに変化せず明るく残る部分 N s (回転テーブル の回転に伴い撮像面上を回転する) から上記の部分 N。を差し引いた部 分が、 対象物にある傷やごみであることが分かる。 Next, an alignment film of liquid crystal as an object is applied, and a substrate subjected to alignment treatment is mounted, and measurement is performed by the method described in the above embodiment. When the object is measured with the imaging optical system 4 and the ultra-high-sensitivity imaging device 2 integrated and rotated while the object is "present" * "absent". Thus, when the direction of the incident linearly polarized light and the orientation of the alignment film match (assuming that the alignment film is the dominant factor in anisotropy), the entire field of view usually becomes dark, but if there are scratches or dust, this part becomes bright. Shine. This shine is almost always irrespective of the rotation angle. As for those related to optical anisotropy, the brightness changes greatly as shown in Fig. 5 depending on the angle of rotation. By using this fact, it is possible to separate the garbage of the target object by comparing the result measured by rotating the object with "present" and the result measured by rotating the object with "no". That is, a portion N that remains bright without being changed when rotated without an object. (Rotating on the imaging surface with the rotation of the rotating table) is a function other than the target object, for example, the polarizer and the analyzer as shown in the field-of-view expanding optical systems 41, 42, 43 and 44 in Fig. 6. Scratches and dust on the optical system in between. Therefore, when the object is rotated in the state of “presence”, the portion that remains bright without being changed is N s (rotary table Rotates on the imaging surface with the rotation of). It can be seen that the portion where is subtracted is scratches or dust on the object.
次に第 2の要因、 即ち偏光子と検光子の間に挿入された光学系の脈理 等によリ、 偏光子で形成された直線偏光以外の偏光成分が発生すること による誤差の識別と、 誤差の排除法を説明する。 第 6図の視野拡大の光 学系 4 1、 4 2、 4 3及び 4 4のレンズに用いられているガラス材料と して、 光学的異方性が十分小さい即ち脈理の小さい素材を用い、 またこ れらレンズの焦点距離が比較的大きなものを選べば、 上記の光学的異方 性 Θ s (x,y)は比較的小さな値になる。 レンズの焦点距離を大きく、 即ち レンズのパワーを小さくすれば、 レンズ面に入射する光のレンズ面での 入射角が 0に近づき、 グラムトムソンプリズム (偏光子) 3 1で形成さ れた直線偏光以外の偏光成分を小さく押さえることができるためである c しかし、 このようなグラムトムソンプリズム (偏光子) 3 1で形成され た直線偏光以外の偏光成分が脈理ゃ視野拡大の光学系によって発生した としても、 その値が十分小さければ問題ない場合もある。 しかし配向膜 の極小さな異方性を計測しょうとすると、 問題になることが多い。 偏光 子 3 1 を通過する直線偏光は十分な指向性を有する光であるため、 4 1 〜4 4の各レンズにある脈理等の光学的異方性の部分 Dを通る光は、 対 象物のその部分 Dに対応する部分 D ' を通る。 Dと D ' はこれら 2点が 完全な光学的共役 (結像) 関係にある場合とは異なり、 若干のデフォー カス関係の時のような物体と像の関係に近い。 一次近似としてこのデフ ォ一カスのぼけに相当する影響を無視する。 第 6図の光学系を 1例とし て以下説明する。 Next, the second factor, namely, the identification of errors due to the occurrence of polarization components other than linearly polarized light formed by the polarizer due to the stria of the optical system inserted between the polarizer and the analyzer, etc. Explain the error elimination method. As the glass material used for the lenses of the optical systems 41, 42, 43, and 44 for expanding the visual field shown in Fig. 6, a material with sufficiently small optical anisotropy, that is, a material with small striae, was used. If the focal length of these lenses is selected to be relatively large, the above optical anisotropy Θ s (x, y) becomes a relatively small value. If the focal length of the lens is increased, that is, the power of the lens is reduced, the angle of incidence of the light incident on the lens surface approaches 0, and the linearly polarized light formed by the Gram-Thompson prism (polarizer) 31 But c is because the polarization components can be suppressed small non, generated by such gram-Thompson prism (polarizer) 3 polarization component other than linearly polarized light formed 1 in an optical system large striae Ya field In some cases, there is no problem if the value is small enough. However, it is often problematic to measure the very small anisotropy of the alignment film. Since linearly polarized light passing through the polarizer 31 is light having sufficient directivity, light passing through an optically anisotropic portion D such as striae in each of the lenses 41 to 44 is targeted. It passes through a part D 'corresponding to that part D of the object. D and D 'are different from the case where these two points are in perfect optical conjugate (imaging) relation, and are closer to the relation between the object and the image as in the case of some defocus relation. As a first-order approximation, the effect corresponding to this defocus blur is ignored. The optical system shown in FIG. 6 will be described below as an example.
前述の対象物の場合と同様な記号を用いて説明する。 レンズ 4 1 と 4 2の組によるものと 4 3と 4 4の組によるものとにより発生する光学的 異方性を、 対象物上の座標(x, y)換算でそれぞれ (x,y) (異方性の方 向)、 θ (x,y) (異方性の程度)、 および < L2 (x,y)、 0 ^ (x,y)とする。 この時、 対象物全体 (例えばガラスと配向膜を含めた) の光学的異方性 を L(x,y)、 0 L(x,y)で表すと、 入射直線偏光 Aに対する検光子の検光 する方向の直線偏光 ADに対し、 (数式 4 ) に相当する次式 (数式 7 ) が成り立つ。 The description will be made using the same symbols as in the case of the above-described target object. The optical anisotropy generated by the pair of lenses 41 and 42 and the pair of lenses 43 and 44 is calculated as (x, y) (x, y) ( Anisotropic Direction), θ (x, y) (degree of anisotropy), and < L2 (x, y), 0 ^ (x, y). At this time, if the optical anisotropy of the whole object (including, for example, the glass and the alignment film) is represented by L (x, y) and 0 L (x, y), the analyzer detects the incident linearly polarized light A. The following equation (Equation 7) corresponding to (Equation 4) holds for linearly polarized light A D in the emitting direction.
Α θ = Γ L 2 D P L 2 L L 2 P L 1 L 1 L ^ L I ^ L L 1 \ Α θ = Γ L 2 D P L 2 L L 2 P L 1 L 1 L ^ L I ^ L L 1 \
(数式 7 ) L1 (x,y)、 Θ L1 (x,y), < L2(x,y)、 および Θ L2 (x,y)は、 対象物が無い 状態或いは予め定量的に分かっているサンプルを用いて計測しておけば. マトリックス演算式 (数式 7 ) を用いて対象物の光学的異方性を L(x, y)、 0 L(x,y)を求めることができる。 (Equation 7) L 1 (x, y), Θ L1 (x, y), < L2 (x, y), and Θ L2 (x, y) If the measurement is performed using a sample, the optical anisotropy of the target object can be obtained as L (x, y) and 0 L (x, y) using the matrix operation formula (Equation 7).
第 6図に示した視野拡大光学系はプリズムに対し固定されているが、 対象物 1 0と結像光学系 4とに一体化して回転してもよい。 この場合に は、 回転テ'一ブルの回転に伴って、 拡大光学系のごみや傷の画像信号或 いは脈理等の光学的異方性の画像信号は回転せず固定となるため、 誤差 要因を除去する演算処理が比較的楽になる。  Although the visual field expanding optical system shown in FIG. 6 is fixed to the prism, it may be rotated integrally with the object 10 and the imaging optical system 4. In this case, with the rotation of the rotary table, the image signal of dust or scratches of the magnifying optical system or the image signal of optical anisotropy such as striae becomes fixed without rotating. The arithmetic processing for removing the error factor becomes relatively easy.
次に第 8図を用いて本発明の実施形態を説明する。 第 8図の 3 1 ' 3 Next, an embodiment of the present invention will be described with reference to FIG. Fig. 8 3 1 '3
2 ' は人工方解石で出きているグランテーラプリズムである。 人工方解 石であるため傷、 欠陥がほとんど無く、 消光比は 1 0,ある。 基板 1 0 の上の配向膜は、 通常生産ラインでは機種変更等が無ければ同じ条件で 配向特性が付与されるため、 配向方向は特別なことが無い限り、 一定方 向 を向いており、 また配向の強さ即ち光学的異方性の大きさ øもほぼ 同じ程度の値になっている。 液晶表示装置の不良品を発生する配向膜不 良は と 0のある閾値からの外れとして弁別されることになる。 このた め、 基板 1 0と結像系 4を一体にして回転する角度 は、 一定の値 < 。 P 2 'is a Glan-Taylor prism that comes out of artificial calcite. Since it is artificial calcite, there are almost no scratches or defects, and the extinction ratio is 10. The orientation film on the substrate 10 is normally given the orientation characteristics under the same conditions unless the model is changed in the production line, so that the orientation direction is constant unless otherwise specified. The orientation strength, that is, the magnitude of the optical anisotropy ø, is almost the same. Defective alignment films that cause defective LCD devices are discriminated as deviations from a certain threshold of and 0. For this reason, the angle at which the substrate 10 and the imaging system 4 rotate integrally is a fixed value <. P
2 1 と ^。から 4 5 ° の角度に限定して用いればよい。 そして、 この角度の 近辺の更に 2画面のデータは第 8図に示す既知の位相板 3 3を用いてこ れを所望の量回転させることによリ、 配向膜の光学的異方性の詳細な定 量データを出す。 第 8図には図示されていないが第 2図で示される制御 回路 6を用いて自動的に計測され、 その結果を配向特性付与手段にフィ ードバックされる。 2 1 and ^. The angle may be limited to an angle of 45 ° to 45 °. Then, the data of two more screens near this angle are rotated by a desired amount using a known phase plate 33 shown in FIG. 8 to obtain the detailed optical anisotropy of the alignment film. Generate quantitative data. Although not shown in FIG. 8, the measurement is automatically performed by using the control circuit 6 shown in FIG. 2, and the result is fed back to the orientation characteristic applying means.
フィ一ドバックが実際に行われるのは、 例えばラビング筋が一定方向 に向かず部分的に異なる方向を向いていることが分かったり、 ラビング クズが全面に検出されたり等などいろいろなケースがあり得る。 これら それぞれの現象に対して、 対策法は徐々に蓄積されていくので、 それら を制御回路 (コンピュータ) に取り込み、 可能な範囲で直接配向特性付 与手段に自動的にフイードバック 1 4 1するようにする。 自動的にフィ ―ドバックできないところがもしあれば手動でフィードバック 1 4 1 ' を行う。  There are various cases in which feedback is actually performed, for example, it is known that the rubbing streaks are not in a certain direction but in a partially different direction, or rubbing scratches are detected on the entire surface. . Countermeasures are gradually accumulated for each of these phenomena, so they are taken into the control circuit (computer) and automatically fed back to the directing property imparting means as much as possible. I do. Provide feedback 1 4 1 'manually if there are any places that cannot be automatically fed back.
上記実施形態で説明した被検査物或いは被測定物は液晶表示装置の配 向膜基板であつたが、 本発明の光学的検査装置或いは光学的検査方法は この対象に限定されるものでは無い。 特に光学ガラス等の透明光学部材 の脈理検査、 レンズ、 光学部品等の光学的異方性、 光学的歪の検査に使 い、 従来困難であった極僅かな光学的異方性、 極微小な傷ごみ等を分離 して検出することができる。 産業上の利用可能性  Although the object to be inspected or the object to be measured described in the above embodiment is the orientation film substrate of the liquid crystal display device, the optical inspection device or optical inspection method of the present invention is not limited to this object. Especially used for inspection of striae of transparent optical members such as optical glass, inspection of optical anisotropy and optical distortion of lenses and optical parts, etc. Can be detected separately. Industrial applicability
本発明により、 従来困難であった 0 . 1 ° 以下の光学的異方性でも 2 次元像として検出することが可能になった。 この結果、 特に液晶表示装 置の配向膜に配向特性を付与した後、 液晶を封入する前に配向膜の不良 を短時間で検出することが可能になリ、 配向特性付与工程に即座にフィ ードバックができるようになり、 高い歩留ま りで、 優れた性能の液晶表 示装置を生産することが可能になり、 工業的貢献は極めて大きいものが ある。 According to the present invention, it has become possible to detect a two-dimensional image even with an optical anisotropy of 0.1 ° or less, which has been conventionally difficult. As a result, it is possible to detect defects in the alignment film in a short time before the liquid crystal is sealed, particularly after the alignment characteristics are given to the alignment film of the liquid crystal display device. As a result, it is possible to produce liquid crystal display devices with high performance and high yield at high yields, and there is a significant industrial contribution.

Claims

請 求 の 範 囲 - 2枚の液晶基板の少なくとも一方に配向膜を塗布し、 該配向膜に配 向特性を付与し、 該 2枚の液晶基板の間に液晶を封入する工程を有す る液晶表示装置の製造方法において、 配向膜に配向特性を付与した後. かつ液晶を封入する前の液晶基板に、 指向性を有する直線偏光を照射 し、 透過した光を消光比の高い検光子に入射させ、 該検光子を透過し た光を撮像装置で受光し、 かつ配向膜と撮像装置の間に結像光学系を 設け、 配向膜面と撮像装置のセンサ面を互いに共役な関係で結び、 撮 像装置で得られた情報を元に配向膜の光学的特性を検出することによ り、 配向膜の検査を行うことを特徴とする液晶表示装置の製造方法。. 上記配向膜の光学的特性は、 配向膜の異方性に関する特性 Dまたは ノ及び配向膜の微小な凹凸欠陥或いは配向膜上に載る微小異物に関す る特性 Rであり、 特性 Dと特性 Rを分離して検出することを特徴とす る請求の範囲 1項記載の液晶表示装置の製造方法。Scope of Claim-A step of applying an alignment film to at least one of the two liquid crystal substrates, imparting alignment characteristics to the alignment film, and enclosing liquid crystal between the two liquid crystal substrates. In the manufacturing method of the liquid crystal display device, after imparting the alignment characteristics to the alignment film, and irradiating the liquid crystal substrate with the directivity of linearly polarized light before enclosing the liquid crystal, the transmitted light is converted to an analyzer with a high extinction ratio. The incident light is transmitted through the analyzer, the light is received by the imaging device, and an imaging optical system is provided between the alignment film and the imaging device. A method for manufacturing a liquid crystal display device, comprising: inspecting an alignment film by detecting optical characteristics of the alignment film based on information obtained by an imaging device. The optical characteristics of the above-mentioned alignment film are the characteristic D relating to the anisotropy of the alignment film or the characteristic R relating to the fine irregularities of the alignment film or the minute foreign matter placed on the alignment film. 2. The method for manufacturing a liquid crystal display device according to claim 1, wherein the detection is performed separately.
. 上記検査の結果を、 上記配向特性を付与する手段にフィードバック することを特徴とする請求の範囲 1項記載の液晶表示装置の製造方法 c . 上記直線偏光および検光子の通す光の偏光の方向は互いに 9 0度ず れるようにした状態を保ちながら、 上記直線偏光及び検光子を結像光 学系の光軸を中心に上記液晶基板に対して相対的に回転させ、 異なる 回転角で得られた複数の画像を採取し、 当該複数画像から配向膜の光 学的特性を検出することを特徴とする請求の範囲 1項記載の液晶表示 装置の製造方法。. The results of the above testing method c. The direction of polarization of the light passing through the above-mentioned linearly polarized light and the analyzer for the liquid crystal display device in the range 1 claim of claim, characterized in that the feedback to the means for imparting the orientation characteristics While maintaining the state of being shifted 90 degrees from each other, the linearly polarized light and the analyzer are rotated relative to the liquid crystal substrate around the optical axis of the imaging optical system, and obtained at different rotation angles. 2. The method for manufacturing a liquid crystal display device according to claim 1, wherein a plurality of obtained images are collected, and optical characteristics of the alignment film are detected from the plurality of images.
. 上記異なる回転角で得られた複数の画像の、 上記液晶基板上の所望 の場所に相当する画素強度について、 上記相対的な回転角度の変化に 伴う変化を求め、 当該回転角度と該画素強度の変化から光学的異方性 に関する情報を上記各場所で求め、 当該情報に基づいて配向膜の特性 を検出することを特徴とする請求の範囲 4項記載の液晶表示装置の製 造方法。 With respect to the pixel intensity corresponding to a desired position on the liquid crystal substrate of the plurality of images obtained at the different rotation angles, a change accompanying the relative rotation angle is obtained, and the rotation angle and the pixel intensity are determined. Changes in optical anisotropy 5. The method for manufacturing a liquid crystal display device according to claim 4, wherein information on the alignment film is obtained at each of the above locations, and characteristics of the alignment film are detected based on the information.
. 上記相対的回転角度の変化に伴う上記液晶基板上の所望の場所に相 当する画素強度の変化が最小になる角度を求め、 当該角度を配向方向 または配向方向と直角な方向とし、 当該最小となる角度から 4 5 ° の 相対回転角度における上記液晶基板上の所望の場所に相当する画素強 度を求め、 当該画素強度の値から光学的異方性の程度を検出し、 配向 方向と、 光学的異方性の程度を所望の複数の画素に渡り求めることを 特徴とする請求の範囲 4項記載の液晶表示装置の製造方法。 Obtain an angle at which a change in pixel intensity corresponding to a desired position on the liquid crystal substrate due to a change in the relative rotation angle is minimized, and set the angle as an alignment direction or a direction perpendicular to the alignment direction. The pixel intensity corresponding to the desired position on the liquid crystal substrate at a relative rotation angle of 45 ° from the angle obtained is obtained, the degree of optical anisotropy is detected from the value of the pixel intensity, and the orientation direction and 5. The method for manufacturing a liquid crystal display device according to claim 4, wherein the degree of optical anisotropy is determined over a plurality of desired pixels.
. 上記配向膜に配向特性を付与する前に配向膜が形成された液晶基板 に指向性が高くかつほぼ完全な直線偏光を照射し、 透過した光を消光 比の高い検光子に入射させ、 該検光子を透過した光を超高感度撮像装 置で受光し、 かつ配向膜と超高感度撮像装置の間に結像光学系を設け、 配向膜面と超高感度撮像装置のセンサ面を互いに共役な関係で結び、 超高感度撮像装置で得られた情報を元に配向特性を付与する前の配向 膜の光学的特性を検出し、 配向特性を付与する前の配向膜の光学的特 性のデータを用いて上記配向特性を付与した後の配向膜の光学的特性 のデータを補正することを特徴とする請求の範囲 1項記載の液晶表示 装置の製造方法。 Before imparting alignment characteristics to the alignment film, the liquid crystal substrate on which the alignment film is formed is irradiated with almost perfect linearly polarized light with high directivity, and the transmitted light is made incident on an analyzer having a high extinction ratio. The light transmitted through the analyzer is received by the ultra-sensitive imaging device, and an imaging optical system is provided between the alignment film and the ultra-sensitive imaging device. Based on the information obtained by the ultra-high-sensitivity imaging device, the optical characteristics of the alignment film before the alignment characteristics are detected are detected based on the information obtained by the ultra-high-sensitivity imaging device, and the optical characteristics of the alignment film before the alignment characteristics are applied. 2. The method for manufacturing a liquid crystal display device according to claim 1, wherein the data of the optical characteristics of the alignment film after the alignment characteristics are provided is corrected using the data of (1).
. 指向性の高い光源または点光源に近い光源で、 かつ時間的にインコ ヒ一レン トな高出力光源と、 当該光源よリ出射した光を指向性の高い 所望の広がりを持った平行光束に変換する照明光学系と、 該平行光束 を入射させる高い消光比を有する偏光子と、 該偏光子の透過光を対象 物に入射させた後、 その透過光を入射させる高い消光比を有する検光 子と、 該検光子を透過した光を受光する超高感度撮像装置とからなり、 かつ対象物と超高感度撮像装置の間に結像光学系を具備し、 対象物と 超高感度撮像装置のセンサ面を互いに共役な関係で結び、 超高感度撮 像装置で得られた情報を元に対象物の光学的特性を検出する処理装置 を備えたことを特徴とする光学的検査装置。 A light source with a high directivity or a light source close to a point light source, and a high-output light source that is temporally incoherent, and converts the light emitted from the light source into a parallel beam with a high directivity and a desired spread. An illumination optical system for conversion, a polarizer having a high extinction ratio for inputting the parallel light beam, and an analysis having a high extinction ratio for inputting the transmitted light of the polarizer to an object after transmitting the transmitted light of the polarizer. And an ultra-high sensitivity imaging device that receives light transmitted through the analyzer, In addition, an imaging optical system is provided between the object and the ultra-high-sensitivity imaging device, and the object and the sensor surface of the ultra-high-sensitivity imaging device are connected in a conjugate relationship with each other, and information obtained by the ultra-high-sensitivity imaging device is obtained. An optical inspection device comprising a processing device for detecting an optical characteristic of an object based on the information.
9 . 上記超高感度撮像装置は半導体アレイセンサからなる超高感度撮像 装置であリ、 当該アレイセンサは冷却器により冷却されているととも に、 1 3 0秒よリ長い時間で画像蓄積していることを特徴とする請 求の範囲 8項記載の光学的検査装置。 9. The ultra-high-sensitivity imaging device is an ultra-high-sensitivity imaging device composed of a semiconductor array sensor. The array sensor is cooled by a cooler and accumulates images for a long time of 130 seconds. The optical inspection device according to claim 8, wherein the optical inspection device is characterized in that:
1 0 . 上記超高感度撮像装置はアバランシ: n (雪崩) 型の撮像装置であ ることを特徴とする請求の範囲 8項記載の光学的検査装置。  10. The optical inspection apparatus according to claim 8, wherein the ultra-high sensitivity imaging apparatus is an avalanche: n (avalanche) type imaging apparatus.
1 1 . 上記偏光子および検光子の通す光の偏光の方向は互いに 9 0度ず れるようにしたことを特徴とする請求の範囲 8項記載の光学的検査装 置。  11. The optical inspection device according to claim 8, wherein the polarization directions of the light passing through the polarizer and the analyzer are shifted by 90 degrees from each other.
1 2 . 上記超高感度撮像装置の感度は 0 . 1ルックス以下であることを 特徴とする請求の範囲 8項記載の光学的検査装置。'  12. The optical inspection device according to claim 8, wherein the sensitivity of the ultra-high sensitivity imaging device is 0.1 lux or less. '
1 3 . 上記偏光子および検光子の通す光の偏光の方向は互いに 9 0度ず れるようにした状態を保ちながら、 偏光子及び検光子を結像光学系の 光軸の周りに相対的に回転する機構を備え、 異なる回転角で得られた 複数の画像を採取し、 当該複数画像から対象物の光学的特性を検出す る機能を上記処理装置が有することを特徴とする請求の範囲 8項記載 の光学的検査装置。  13 3. While keeping the polarization directions of the light passing through the polarizer and the analyzer at 90 degrees from each other, the polarizer and the analyzer are relatively moved around the optical axis of the imaging optical system. 9. The processing apparatus according to claim 8, wherein the processing device has a function of acquiring a plurality of images obtained at different rotation angles, and detecting optical characteristics of the object from the plurality of images. Optical inspection device according to the item.
1 4 . 上記処理装置は、 上記複数の画像から対象物の異方性に関する特 性 Dまたは 及び対象物の微小な凹凸欠陥或いは対象物上に載る微小 異物に関する特性 Rを分離可能ならしめる検出機能を具備することを 特徴とする請求の範囲 1 3項記載の光学的検査装置。  1 4. The above-mentioned processing device is a detection function that makes it possible to separate the characteristic D relating to the anisotropy of the object and / or the characteristic R relating to minute unevenness defects of the object or minute foreign substances on the object from the plurality of images. 14. The optical inspection apparatus according to claim 13, comprising:
5 . 上記処理装置は、 上記複数の画像のその内少なく とも 2つは、 一 方が上記偏光子を透過した光の偏光方向と対象物の光学的異方性の主 軸が一致した状態での画像であリ、 他方は該偏光方向と該主軸が互い に 4 5 ° を成している状態であり、 当該 2つの状態で得られた画像か ら対象物の異方性に関する特性 Dまたはノ及び対象物の微小な凹凸欠 陥或いは対象物上に載る微小異物に関する特性 Rを分離可能ならしめ る検出機能を具備したことを特徴とする請求の範囲 1 4項記載の光学 的検査装置。 5. The processing device may include at least two of the plurality of images The other is an image in which the polarization direction of the light transmitted through the polarizer and the principal axis of the optical anisotropy of the object coincide with each other, and the other is that the polarization direction and the principal axis are at 45 ° to each other. The characteristic D relating to the anisotropy of the object from the images obtained in the two conditions, and the characteristic R relating to the minute irregularity defect of the object or the minute foreign matter placed on the object. 15. The optical inspection apparatus according to claim 14, further comprising a detection function for enabling separation of the optical inspection apparatus.
6 . 上記偏光子と対象物の間にビーム拡大光学系が、 対象物と上記検 光子の間にはビーム縮小光学系がそれぞれ配置されたことを特徴とす る請求の範囲 8項記載の光学的検査装置。  6. The optical device according to claim 8, wherein a beam expanding optical system is arranged between the polarizer and the object, and a beam reducing optical system is arranged between the object and the analyzer. Inspection equipment.
7 . 上記偏光子及び検光子はグラントムソンプリズムもしくはダラン テーラプリズムからなることを特徴とする請求の範囲 8項記載の光学 的検査装置。 7. The optical inspection apparatus according to claim 8, wherein the polarizer and the analyzer are each composed of a Glan-Thompson prism or a Dalanthera prism.
8 . 時間的にインコヒーレントで、 高出力で、 指向性が高く所望の広 がりを持った平行光束を高い消光比を有する偏光子に入射させ、 該偏 光子の透過光を対象物に入射させた後、 その透過光を高い消光比を有 する検光子に入射させ、 該検光子を透過した光を超高感度撮像装置で 受光し、 かつ対象物と超高感度撮像装置の間に結像光学系を設け、 対 象物と超高感度撮像装置のセンサ面を互いに共役な関係で結び、 超高 感度撮像装置により得られた対象物に関する光学的情報を元に対象物 の光学的特性を検出することを特徴とする光学的検査方法。 8. A parallel luminous flux that is temporally incoherent, has high output, is highly directional, and has a desired spread is incident on a polarizer having a high extinction ratio, and the transmitted light of the polarizer is incident on an object. After that, the transmitted light is made incident on an analyzer having a high extinction ratio, the light transmitted through the analyzer is received by an ultra-high sensitivity imaging device, and an image is formed between the object and the ultra-high sensitivity imaging device. An optical system is provided to connect the object and the sensor surface of the ultra-sensitive image sensor in a conjugate relationship with each other, and based on the optical information about the object obtained by the ultra-sensitive image sensor, the optical characteristics of the object are determined. An optical inspection method characterized by detecting.
9 . 上記偏光子および検光子の通す光の偏光の方向は互いに 9 0度ず れるようにした状態を保ちながら、 偏光子及び検光子を結像光学系の 光軸の周りに相対的に回転させ、 異なる回転角で得られた複数の画像 を採取し、 当該複数画像から対象物の光学的特性を検出することを特 徴とする請求の範囲 1 8項記載の光学的検査方法。 9. Rotate the polarizer and the analyzer relatively around the optical axis of the imaging optical system while keeping the polarization directions of the light passing through the polarizer and the analyzer at 90 degrees from each other. 19. The optical inspection method according to claim 18, wherein a plurality of images obtained at different rotation angles are collected, and optical characteristics of the object are detected from the plurality of images.
2 0 . 上記複数の画像から対象物の異方性に関する特性 Dまたは/及び 対象物の微小な凹凸欠陥或いは対象物上に乗る微小異物に関する特性 Rを分離することを特徴とする請求の範囲 1 9項記載の光学的検査方 法。 20. The method according to claim 1, wherein the characteristic D relating to the anisotropy of the object or / and the characteristic R relating to the minute irregularity defect of the object or the minute foreign matter on the object is separated from the plurality of images. Optical inspection method described in clause 9.
2 1 . 上記複数の画像はその内少なくとも 2つは、 一方が上記偏光子を 透過した光の偏光方向と対象物の光学的異方性の主軸が一致した状態 での画像であり、 他方は該偏光方向と該配向方向が互いに 4 5 ° を成 している状態であリ、 当該 2つの状態で得られた画像から配向膜の異 方性に関する特性 Dまたは/及び配向膜の微小な凹凸欠陥或いは配向 膜上に載る微小異物に関する特性 Rを分離することを特徴とする請求 の範囲 2 0項記載の光学的検査方法。 2 1. At least two of the plurality of images are images in a state where the polarization direction of light transmitted through the polarizer and the principal axis of the optical anisotropy of the object coincide with each other, and the other is the other. In the state where the polarization direction and the alignment direction are at 45 ° to each other, the characteristic D relating to the anisotropy of the alignment film or / and the minute unevenness of the alignment film is obtained from the images obtained in the two states. 21. The optical inspection method according to claim 20, wherein a characteristic R relating to a defect or a minute foreign substance placed on the alignment film is separated.
2 2 . 上記異なる回転角で得られた複数の画像の、 上記対象物の所望の 場所に相当する画素強度について、 上記相対的な回転角度の変化に伴 う変化を求め、 当該回転角度と該画素強度の変化から光学的異方性に 関する情報を上記各場所で求め、 当該情報に基づいて対象物の光学的 特性を検出することを特徴とする請求の範囲 1 8項記載の光学的検査 方法。 22. For a plurality of images obtained at the different rotation angles, for a pixel intensity corresponding to a desired position of the object, a change accompanying the relative rotation angle is determined, and the rotation angle and the rotation angle are determined. The optical inspection according to claim 18, wherein information on optical anisotropy is obtained at each of the above locations from a change in pixel intensity, and the optical characteristics of the object are detected based on the information. Method.
2 3 . 上記相対的回転角度の変化に伴う画素番地の画像強度の変化が最 小になる角度を求め、 当該角度を対象物の光学的異方性の主軸方向と し、 当該角度と 4 5 ° の相対回転角度における上記対象物の所望の場 所に相当する画素番地の強度を求め、 この画素強度から光学的異方性 の程度を検出し、 これら配向方向と、 光学的異方性の程度を所望の複 数の画素に渡り求めることを特徴とする請求の範囲 1 8項記載の光学 的検査方法。  23. Obtain the angle at which the change in the image intensity at the pixel address due to the change in the relative rotation angle is minimized, and set the angle as the principal axis direction of the optical anisotropy of the object. The intensity of a pixel address corresponding to a desired location of the object at a relative rotation angle of °° is obtained, and the degree of optical anisotropy is detected from the pixel intensity. 19. The optical inspection method according to claim 18, wherein the degree is obtained over a plurality of desired pixels.
2 4 . 上記偏光子と検光子の通す光の偏光がほぼ平行な状態での画像を 採取しておき、 当該画像情報を補正値として用いることを特徴とする 請求の範囲 1 8項記載の光学的検査方法。 24. An image in which the polarization of light passing through the polarizer and the analyzer is substantially parallel is collected, and the image information is used as a correction value. The optical inspection method according to claim 18.
PCT/JP1997/003562 1996-10-07 1997-10-06 Method of manufacturing liquid crystal display, optically inspecting instrument, and optically inspecting method WO1998015871A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/265738 1996-10-07
JP26573896A JPH10111237A (en) 1996-10-07 1996-10-07 Manufacture of liquid crystal display device, method and apparatus for optical inspection

Publications (1)

Publication Number Publication Date
WO1998015871A1 true WO1998015871A1 (en) 1998-04-16

Family

ID=17421314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003562 WO1998015871A1 (en) 1996-10-07 1997-10-06 Method of manufacturing liquid crystal display, optically inspecting instrument, and optically inspecting method

Country Status (2)

Country Link
JP (1) JPH10111237A (en)
WO (1) WO1998015871A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG119174A1 (en) * 2002-11-18 2006-02-28 Nihon Micronics Kk Method and apparatus for inspecting display base plate
CN101256157B (en) * 2008-03-26 2010-06-02 广州中国科学院工业技术研究院 Method and apparatus for testing surface defect
CN101261234B (en) * 2008-03-26 2010-06-09 广州中国科学院工业技术研究院 Surface flaw detection device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352070A (en) * 1998-06-11 1999-12-24 Masami Nishiko Surface inspection system
JP2000028340A (en) * 1998-07-11 2000-01-28 Masami Nishiko Alignment layer inspection system
KR20010077785A (en) * 2000-02-08 2001-08-20 구본준, 론 위라하디락사 method for rubbing on the substrate for liquid crystal display device
CN100392378C (en) * 2003-01-22 2008-06-04 友达光电股份有限公司 Method and device for detecting polyemid
JP4568064B2 (en) * 2004-09-28 2010-10-27 株式会社 日立ディスプレイズ Optical anisotropic axis measuring device
JP4646035B2 (en) * 2006-04-07 2011-03-09 株式会社 日立ディスプレイズ Rubbing angle measuring device, liquid crystal display device and optical film manufacturing method
JP5875040B2 (en) * 2011-10-18 2016-03-02 国立大学法人 新潟大学 Method for detecting cut surface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643546A (en) * 1987-06-25 1989-01-09 Kazuhiro Date Detection of solid surface and internal defect by photoelasticity method
JPH0659230A (en) * 1992-06-08 1994-03-04 Nikon Corp Rubbing inspecting device
JPH06148638A (en) * 1992-11-09 1994-05-27 Casio Comput Co Ltd Inspecting method for liquid crystal cell
JPH07261092A (en) * 1994-03-22 1995-10-13 Hamamatsu Photonics Kk Polarization microscope system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643546A (en) * 1987-06-25 1989-01-09 Kazuhiro Date Detection of solid surface and internal defect by photoelasticity method
JPH0659230A (en) * 1992-06-08 1994-03-04 Nikon Corp Rubbing inspecting device
JPH06148638A (en) * 1992-11-09 1994-05-27 Casio Comput Co Ltd Inspecting method for liquid crystal cell
JPH07261092A (en) * 1994-03-22 1995-10-13 Hamamatsu Photonics Kk Polarization microscope system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG119174A1 (en) * 2002-11-18 2006-02-28 Nihon Micronics Kk Method and apparatus for inspecting display base plate
CN101256157B (en) * 2008-03-26 2010-06-02 广州中国科学院工业技术研究院 Method and apparatus for testing surface defect
CN101261234B (en) * 2008-03-26 2010-06-09 广州中国科学院工业技术研究院 Surface flaw detection device

Also Published As

Publication number Publication date
JPH10111237A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
JP4628824B2 (en) Film defect inspection apparatus and film manufacturing method
US20090315988A1 (en) Observation device, inspection device and inspection method
WO2016088623A1 (en) Substrate examination device
US20060158643A1 (en) Method and system of inspecting mura-defect and method of fabricating photomask
JP5610462B2 (en) Inspection method and inspection apparatus based on photographed image
JP2008175565A (en) Flaw detector of light transmissive member, and flaw detection method
JP4692892B2 (en) Surface inspection device
WO1998015871A1 (en) Method of manufacturing liquid crystal display, optically inspecting instrument, and optically inspecting method
JP2009063383A (en) Inspection device and inspection method
US8223328B2 (en) Surface inspecting apparatus and surface inspecting method
JP2012083125A (en) End face inspection device
JP4462232B2 (en) Surface inspection device
JP4825833B2 (en) Pattern inspection apparatus and pattern inspection method
CN111610198A (en) Defect detection device and method thereof
JP2006078426A (en) Apparatus and method for inspecting defect
JP4506723B2 (en) Surface inspection device
JP2008039444A (en) Method and apparatus for inspecting foreign matter
JP4552202B2 (en) Surface inspection device
JP2006317314A (en) Flaw inspection device
JP2010096596A (en) Evaluation device
JP2010271186A (en) Defect inspection apparatus
JP2008046075A (en) Optical system, and thin film evaluation device and evaluating method
JP2000074849A (en) Foreign matter detecting method and device
JP2008241469A (en) Defect inspection apparatus
JP5299764B2 (en) Evaluation apparatus and evaluation method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase