WO1997047561A1 - Procedimiento biologico de depuracion de residuos liquidos de alta carga contaminante y/o alta toxicidad, en especial purines y alpechines - Google Patents

Procedimiento biologico de depuracion de residuos liquidos de alta carga contaminante y/o alta toxicidad, en especial purines y alpechines Download PDF

Info

Publication number
WO1997047561A1
WO1997047561A1 PCT/ES1997/000146 ES9700146W WO9747561A1 WO 1997047561 A1 WO1997047561 A1 WO 1997047561A1 ES 9700146 W ES9700146 W ES 9700146W WO 9747561 A1 WO9747561 A1 WO 9747561A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological
reactor
aerobic
bacteria
liquid
Prior art date
Application number
PCT/ES1997/000146
Other languages
English (en)
French (fr)
Inventor
Joan Vila Reyes
Original Assignee
Bio Specific Systems, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bio Specific Systems, S.L. filed Critical Bio Specific Systems, S.L.
Publication of WO1997047561A1 publication Critical patent/WO1997047561A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a biological method of purification of liquid residues of high pollutant load and / or high toxicity.
  • the present invention relates to a biological method of purification of the type in which the elimination of contamination of the liquid residue is carried out by metabolic and physical-chemical, aerobic and / or anoxic action of bacteria adapted to the liquid residue. purifying and fixed to a support means for bacteria, and comprising one or more of the following steps:
  • the process of the present invention finds its main application in the purification of pig purines and olives apricots.
  • the quality of the water and the procedure to be used for its purification is usually determined based on the initial and final value of certain parameters, such as the Biological Oxygen Demand (BOD), the Chemical Oxygen Demand (COD), the concentration in phosphorus, in nitrogen - in its nitric, ammoniacal and organic forms -, in chlorides, in certain metals, such as copper, iron or chromium, among others.
  • BOD Biological Oxygen Demand
  • COD Chemical Oxygen Demand
  • concentration in phosphorus in nitrogen - in its nitric, ammoniacal and organic forms -, in chlorides, in certain metals, such as copper, iron or chromium, among others.
  • the values of these parameters are usually expressed in mg / 1 or parts per million (ppm). Parameters such as salt content, measured in units of conductivity or ⁇ Sv / cm, concentration in inhibitory materials, expressed in equitox / m 3 and Ph.
  • the residual liquid, coming from a process is subjected to a first treatment
  • Preliminary physical residue for the removal of coarse and sandy materials and bodies consisting of a roughing and / or a sieving and / or a centrifugation and / or a dewatering and / or a degreasing, among others.
  • the effluent from the previous stage is treated in another preliminary physical process, in which the suspended solids that have not been eliminated in the previous stage are eliminated by sedimentation, flocculation and / or coagulation.
  • the residue is subjected to a physical-chemical treatment for the elimination by precipitation and decantation of the decantable polluting substances, by means of the addition of flocculants and coagulants adapted for the formation of final sludges.
  • the so-called physico-chemical procedures usually have their end at this stage, obtaining a purified final effluent and a sludge containing the contaminants initially present in the wastewater, whose destination is generally its evacuation.
  • the residue as stated, has a high BOD and / or a content in organic materials miners so high that a physical-chemical treatment is insufficient, it must be treated in later stages, in what constitutes a biological purification procedure.
  • the effluent from the previous stage is treated in at least one aerobic biological reactor in which bacteria are inoculated and to which air is provided to acquire aerobic conditions.
  • the residual water can also be treated in an anoxic biological reactor, for the possible denitrification of the nitrogen compounds, and in at least one clarification raft, for the separation of the biomass contained in a biological sludge from the purified final effluent.
  • Biological purification procedures have basically three advantages. First, the degrading action is carried out only by a group of bacteria, which has the ability to grow and multiply using pollutants and self-perpetuating indefinitely. Consequently, the use of flocculants, chelants and thickeners is nil or very reduced, so that these types of procedures have a low cost in additives.
  • energy consumption is low. Indeed, the energy requirements are only caused by the need to keep the spill and the bacterial population in contact (homogenization), maintain a sufficient level of oxygen (aeration) and keep the process monitoring mechanisms in operation, pumping fluids and bacterial retroinoculation.
  • the biological purification procedures provide a purified final water more easily integrated into the natural environment than that resulting from physical-chemical procedures, since in reality they do nothing but imitate nature.
  • a discharge of wastewater, in non-excessive concentration, to a channel or to the land is naturally cleared by the bacteria existing in these media. Pollution occurs when the concentration or volume of discharges exceeds the natural purification capacity of the environment.
  • biological purification technology concentrates, intensifies and optimizes this natural system, adapting it to the concentration of the contaminant.
  • the microbial biomass produced in the purification process is easily reusable.
  • Effluent liquid waste from some industrial or livestock processes such as the raising of pigs or the production of olive oil
  • Effluent liquid waste from the raising of pigs known as purines and those from the pressing of olives, called alpechines, currently constitute two cases of purification not effectively solved and, consequently, two important capital problems which should be given a solution.
  • high pollutant load is used for COD values equal to or greater than 4,000 mg 0 2 / l.
  • the largest volume of wastewater that requires purification is produced by urban concentrations, whose typical pollutant concentration, measured in COD, ranges between 200 and 1,500 mg 0 2 / l, which is a low or medium pollutant load, per the general.
  • Market dynamics establish that the vast majority of wastewater treatment technologies have been developed to treat this type of wastewater, of basically domestic origin.
  • a typical yield of 95% reduction in pollutants is sufficient so that these purified urban wastewater can be discharged into a public channel without problems.
  • the initial contamination parameters of the treated wastewater are much lower than those previously mentioned between 20,000 and 100,000 mg 0 2 / l. COD, not being suitable for the treatment of such wastewater, as noted in usual practice.
  • a biological purification procedure is generically characterized by three component or functional facets, namely: - bacteria (and other microorganisms) that must degrade the organic matter present in the contaminated water;
  • the contact system of the bacteria with the environment there are basically two types of commercially used biological treatment systems, namely A) the activated sludge system, in which the bacteria are kept in suspension in the water and they go grouping forming flocs that are subsequently decanted to realign to the biological reactor or evacuate from the system as biological sludge; Y
  • the activated sludge system Due to the dynamics of the bacteria in suspension in the wastewater, the activated sludge system has great limitations when a large concentration of biomass is needed, which, in turn, is necessary when you want to degrade a wastewater with A high concentration in organic pollution.
  • the current biological purification technology suffers from the inconvenience of the necessary adaptation time of the bacterial culture to the environment in which the waste to be treated in the biological reactors is located, which results in a transitional period several months, obviously undesirable, during which the sewage station cannot operate at full capacity.
  • the present invention provides a biological method for the purification of liquid residues of high pollutant load and / or high toxicity, of novel concept, which is essentially characterized in that it comprises the additional stage of a liquid effluent feedback phase from the outlet of at least one of the aerobic biological reactors as influent inside the aerobic biological reactor itself, to dilute the feed with the stabilized liquid at its outlet, in order to dilute the contaminating component below the maximum concentration admitted by the bacteria.
  • the flow rate of said feedback phase is four to fifteen times greater than the feed rate of the aerobic biological reactor.
  • the adaptation of the bacteria to the liquid residue to be purified is carried out independently and externally to any of the biological reactors used in the process, the bacteria being inoculated to the biological reactors when their Biochemical characteristics are already adapted for the immediate action of biological purification on the liquid waste to be treated.
  • the adaptation time of the bacteria to the environment can be achieved, once inoculated, is zero, consequently eliminating the undesirable transitional period. In this way, the treatment plant can operate at full capacity from the moment it is started up.
  • said support medium for bacteria is completely submerged in at least one of the biological reactors used in the process, leaving a fraction of the population of bacteria suspended in the fluid. of the reactor, in equilibrium with the rest of the bacterial population anchored in the support medium. It has been found that the support form according to the present invention and the consequent balance between the bacteria anchored therein and those that remain in suspension, gives the bacteria a much greater resistance to toxicity than can be achieved currently with the procedures conventional.
  • a second stage of liquid effluent feedback is carried out from the exit of the first aerobic biological reactor as an influent inside an anoxic biological reactor, said aerobic reactor being adapted for the conversion of ammoniacal compounds into nitrates, while the anoxic reactor is adapted for denitrification of said nitrates with the obtaining of nitrogen gas.
  • pig manure highly contaminating and toxic, can be purified up to concentration values in pollutants much lower than the currently authorized maximum and the final purified water is suitable for being discharged into public channels with a high level of integration into the natural environment, which is not possible with conventional biological purification procedures.
  • the effluent liquid of said first aerobic biological reactor is introduced into a biological refining reactor, which operates alternatively under anoxic and aerobic conditions, in which biological sludge from other phases is re-dominated prior to the procedure, to compensate for the lack of organic matter, saving the need to add external organic matter, thanks to the endogenous operation of the refining reactor itself, a clarifier preferably being interposed between said aerobic reactor and said refining reactor.
  • the process of the present invention makes it possible to dispense with the organic additives that current procedures require, which is one of the causes of the high operating costs of the treatment plants Current biologicals.
  • Fig. 1 is an operation principle scheme of an embodiment according to the process of the present invention
  • Fig. 2 is another scheme, similar to that of Fig. 1, but of another embodiment of the process of the invention.
  • the present invention consists of a biological purification procedure applicable for wastewater of high pollutant load, based on the use of bacteria, specifically adapted to the biological reactors that intervene independently and externally to them, with submerged support for bacteria in said biological reactors and with internal recirculation systems or between anoxic-aerobic sections.
  • the biological method of purification of liquid residues 1 of high pollutant load and / or high toxicity of the present invention comprises, in a known manner, a first preliminary physical treatment 3 of the residue in order to remove materials and thick and sandy bodies.
  • This physical treatment Preliminary 3 may typically consist of roughing, sieving, centrifugation, sanding, degreasing, or a combination of these or other physical treatments.
  • a second preliminary physical treatment 4 which consists in the elimination by sedimentation and / or flocculation and / or coagulation of the suspended solids that have not been able to be eliminated in the first preliminary physical treatment 3.
  • One of the phases of the process is a physical-chemical treatment 5 of the residue, with which to obtain the elimination by precipitation and decantation of the decantable contaminant substances, by means of the addition of flocculants and coagulants adapted for the formation of final sludges 6
  • this physical-chemical treatment 5 is carried out as a phase immediately after the preliminary treatments 3, 4, while in the exemplary embodiment of Fig. 2 it is carried out carried out as the penultimate phase of the procedure.
  • phase of the procedure consist of a biological treatment of the effluent residue 7 of the immediate previous stage in an aerobic biological reactor 8, in which the bacteria are inoculated and to which air is provided so that it acquires aerobic conditions, thanks to means known aeration 21.
  • the baths are adapted to the liquid waste to be purified and a part of them are fixed to support means 2, while the other part is suspended in the middle of the biological reactor.
  • the examples shown in the drawings comprise a single aerobic reaction phase, carried out in one or several aerobic biological reactors 8, arranged in series and provided with aerators 21.
  • Another stage is a biological treatment of the effluent residue from the previous immediate stage 9, which is carried out in at least one anoxic biological reactor 10, intended for the possible denitrification of the nitrogenous compounds, arranged upstream of the first aerobic biological reactor 8 (Fig. 2).
  • the procedure also consists in a manner known per se of a final physical treatment of the effluent from the previous immediate stage in at least one clarification raft 20 for the separation of the biomass contained in a biological sludge 11 from the purified final effluent 12 .
  • a recirculation 13 of part of said biological sludge 11 to at least one of said biological reactors 8, 10 completes the phases of an anoxic / aerobic biological clearance of known type.
  • a first innovative feature of the process of the present invention is the fact that the adaptation of the bacteria to the liquid residue to be purified is carried out independently and externally to any of the biological reactors 8, 10 used in the process.
  • the metabolic properties of the bacteria have already been adapted for the immediate action of biological purification on the residual liquid waste to be treated, they are inoculated without more than the biological reactors 8, 10. Thanks to this, the transitional period of acquisition of the The nominal regime of the biological reactors 8, 10, as well as in general that of the global treatment plant, is significantly reduced, if not completely suppressed.
  • the type of culture or family of microbial flora most suitable for the particular waste to be treated is selected and its characteristics are optimized in an external process in which the microorganisms are subjected to a high oxygenation rate and fed with the own liquid residue 7, 9 to be purified by bacteria.
  • the adaptation of the latter is carried out in a reactor (not shown in the drawings), independent of the reactors 8, 10.
  • the period required to obtain an optimized bacterial culture varies between one and three months. From this moment the production of the specific and optimized crop is constant and is used continuously in the operation of the treatment plant in which the process of the invention is applied.
  • the biochemical characteristics of the crop that are obtained externally are: a high oxygen consumption, implying a high rate of oxidation of organic matter; a high exoproteolytic activity, which results in rapid hydrolysis of the protein material, which is a very important component in most of the spills to which this invention is applied; and a high content of cellular exopolysaccharides, which enhance the rapid absorption and flocculation of both colloidal matter and bacteria in suspension of the system.
  • Another essential feature of the process of the present invention is the fact that said support medium 2 for bacterial culture is completely immersed in at least one of the biological reactors 8, 10 used in the process, leaving a fraction of the population of bacteria in suspension in the reactor fluid 8, 10, in equilibrium with the remaining fraction anchored in the support medium 2.
  • solid support 2 preferably of plastic material resistant to the medium of the biological reactors, totally submerged therein
  • the microorganisms colonize the surface of the submerged support 2, being fixed by means of exopolymers (although structures called “pilli” and certain protein adhesins also intervene).
  • the set of microbial biomass that forms on top of a solid is called “biofilm”, “fixed biomass” or “adhered biomass”.
  • submerged solid support 2 in the Biological actor 8, 10 derive mainly from the fact that it is possible to produce more biomass, have greater degradation activity and more resistance to toxic products and that the space requirement is lower than in the same reactor without supports.
  • This greater biomass and activity is due to the fact that the microbial biofilm that forms in the liquid-solid interface contains higher bacterial density and the fixed bacteria are more active than those dispersed in the liquid phase.
  • the mechanisms of ecto-cellular degradation, substrate uptake, retention of enzymes and substrates and transport of substrates, are more effective because the exopolymer weft that constitutes the biofilm acts in the sense of facilitating the interaction between substrates ⁇ cough, ectoenzymes and bacteria.
  • the submerged support 2 has a high surface / volume ratio and a type of surface that facilitates the bacteria to be easily anchored.
  • the submerged support 2 of the present invention and its operating conditions allow to establish a dynamic of renewal of the biofilm bacteria anchored in the support 2 towards the suspension in the liquid (and vice versa), thanks to which the anchored bacteria are they find in balance with the suspended ones, favoring their degrading action notably.
  • the optimization of the active biofilm layer of the present invention - achieved thanks to the aforementioned renewal dynamics - has been shown to be much more important than the optimization of the surface ratio / volume of media, in view of the system's debugging capacity bacterial, recommended by current procedures, whereby the submerged support 2 of the present invention is much more effective than most known complex and therefore expensive supports, which only tend to optimize the surface / volume ratio.
  • Another characteristic and innovative feature of the process of the present invention is that it comprises the additional stage of a feedback phase 15 of the liquid effluent from the outlet 14 of at least one of the aerobic biological reactors 8 as influent inside the own aerobic biological reactor 8, as shown in the drawings.
  • This is intended to dilute the feed 7 of the aerobic reactor 8 with the liquid stabilized at its outlet, thanks to which the contaminating component is diluted below the maximum concentration admitted by the baths, with which they can develop its metabolic action.
  • the flow rate of said feedback phase 15 is four to fifteen times greater than the feed rate 7 of the aerobic biological reactor 8.
  • the invention For denitrification of ammoniacal components existing in very high concentrations in the liquid residue 2, such as pig slurries, the invention comprises the stage of a second feedback 16 of the liquid effluent from the outlet 14 of the first aerobic biological reactor 8 as influent inside said biological reactor anoxic 10.
  • the said aerobic reactor 8 is thus adapted for the conversion of the ammoniacal compounds into nitrates
  • the anoxic reactor 10 is adapted for denitrification of said nitrates with the obtaining of nitrogen gas.
  • the bacteria present in said reactor 10 have all the organic material of the feed 9 to produce the desired denitrification, and therefore the purification, which should be understood which is a significant advantage over known procedures, since it effectively allows the purification of liquid waste with a high content of ammonia contaminants, such as pig purines.
  • Another innovative and characteristic feature of the invention is the inclusion in the process of a stage consisting in the supply of the outgoing effluent from the first aerobic biological reactor 8 to a refining biological reactor 19.
  • the reactor 19 also comprises the submerged support 2, in which the bacteria obtained according to the present invention are inoculated.
  • This biological refining reaction carried out in the reactor 19 can alternatively be carried out under anoxic conditions, to obtain an additional denitrification, or aerobic, for the production of a further degradation of the organic matter or the additional nitrification of the residual ammonium
  • the alternation and duration of aerobic and anoxic sequences is determined based on the desired balance of the output parameters.
  • the refining reactor 19 comprises an air insufflation system 21, which can be identical to that of the reactor aerobic 8.
  • the maintenance of the necessary biomass concentration in the aforementioned refining reactor 19 is carried out by the continuous inoculation of biological active sludge 11 from reactors 8, 10. Thanks to this, the lack of organic matter is compensated, saving the need to add external organic matter, such as methanol or any other easily metabolizable substance, due to the endogenous functioning of the refining reactor 19. This allows considerable savings in nutrients for the bacteria and facilitates the formation of decantable flocs , which should be understood as an important advantage with respect to conventional biological purification procedures.
  • a second clarifier is interposed 22.
  • the forced aeration means 21 of the aerobic 8 and refining reactors 19 allow to keep the biomass not anchored in suspension and circulate the water through of the submerged supports 2, in order to achieve the dynamic renewal between the anchored biomass and the suspended biomass and a good contact of the nutrients of the residual water and the dissolved oxygen with the bacteria.
  • An alpine scrubber station was designed and built, based on the process of the present invention, for a capacity of 4 m 3 / day.
  • the process scheme responds to that shown in Fig. 1.
  • Alpechines arrive at the station in tank trucks or containers and empty and homogenize in a tank (not shown).
  • the process consists of roughing 3 and settling 4, followed by a physical-chemical treatment 5 with lime ((OH) 2 Ca), from which, after neutralization they are fed to an aerobic biological reactor 8.
  • the solids after passing through a thickener 20, are dried in a filter press (not shown) and are evacuated in containers for use as agricultural fertilizer or landfill.
  • the aerobic biological reactor 8 has the submerged support 2 according to the invention and is aerated by air insufflation means 21, also having a recirculation 15 of at least six times its feed flow 7.
  • the clarified residual liquid in 20 is evacuated to the drain (submarine emissary in this case).
  • the decanted biological sludge 11 is realigned to the aerobic biological reactor 8.
  • the extreme difficulty of the biological degradation of the alpechines derives from its content in phenols and polyphenols. Therefore, for the phase of specific adaptation of the bacteria according to the invention, commercial freeze-dried bacteria resistant to phenols were started, which were adapted externally to the plant. Given the toxicity of this residue, these bacteria must be re-harvested (in small quantities) periodically to the reactor 8.
  • Table 1 shows the analytical evolution of the main parameters at the entrance and exit of the procedure.
  • a research purification station was designed and built, also based on the process of the present invention, of industrial size, next to a breeding farm of 950 mothers (and the corresponding piglets), with a purification capacity of 25 - 30 m 3 / day of slurry.
  • the process scheme is the one corresponding to Fig. 2.
  • a first stage consists of a first preliminary physical treatment, specifically a sieve 3.
  • the turbid liquid separates It is mixed with a polyelectrolyte prepared in a tank and fed to a centrifuge 4, where it is subjected to the second preliminary stage of physical separation.
  • the effluent liquid part of the centrifuge 4 is fed to the anoxic biological reactor 10, from where it passes to the aerobic reactor 8, with a recirculation between reactors 8 to 10 four to fifteen times greater than the feed rate of the reactor 10, according to the present invention.
  • Reactors 8, 10 have a submerged support system 2 such as that described in the present invention.
  • the resulting treated liquid Downstream of the aerobic reactor 8, the resulting treated liquid is decanted in clarifier 22, from which biological sludge 11 is recirculated to reactors 8 and 10 in the form of sludge 13 and / or extracted from the system by 6, after dehydration in the centrifuge 4.
  • the effluent from the clarifier 22 is fed to a refining biological reactor 19, which also incorporates the bacterial culture anchored in the submerged support 2 according to the invention with the adapted bacteria as explained.
  • the refining reactor 19 can alternatively operate in aerobic or anoxic mode, depending on the parameter to be eliminated (COD, NH 4 + , N0 3 " ) •
  • a physical-chemical treatment is carried out in tank 5, where phosphorus derivatives are precipitated, the rest of suspension materials, and a part of the residual organic matter.
  • the precipitated solids are they decant in a third clarifier 20, whose effluent was found to be a purified and transparent liquid that could be poured into the river or reused.
  • Table 2 shows the typical analytical data of the main parameters and their evolution in the different phases of the process, obtained with the treatment of purmes in the purifier of Example 2, which applied the principles of the present invention.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

Procedimiento biológico de depuración de residuos líquidos de alta carga contaminante y/o alta toxicidad. La depuración se verifica por acción de bacterias, adaptadas al residuo externamente as los reactores que intervienen en el procedimiento y fijadas a unos medios de soporte sumergidos en los reactores. El procedimiento comprende: un primer y un segundo tratamiento físico preliminar; un tratamiento físico-químico; un tratamiento en por lo menos un reactor biológico aerobio; un tratamiento en por lo menos un reactor biológico anóxico, dispuesto aguas arriba del primer reactor aerobio; un tratamiento en por lo menos una balsa de clarificación; por lo menos una recirculación de parte del fango generado en los reactores biológicos a por lo menos uno de ellos; una retroalimentación desde por lo menos uno de los reactores biológicos aerobios al mismo; una segunda etapa de realimentación desde la salida del primer reactor aerobio al interior del reactor anóxico; y un tratamiento en un reactor de afino, que funciona alternativamente en condiciones anóxicas y aerobias.

Description

D E S C R I P C I Ó N
"PROCEDIMIENTO BIOLÓGICO DE DEPURACIÓN DE RESIDUOS LÍQUIDOS DE ALTA CARGA CONTAMINANTE Y/O ALTA TOXICIDAD, EN ESPECIAL PURINES Y ALPECHINES"
Sector técnico de la invención. -
La presente invención se refiere a un procedimiento biológico de depuración de residuos líquidos de alta carga contaminante y/o alta toxicidad.
En particular la presente invención se refiere a un procedimiento biológico de depuración del tipo en los que la eliminación de la contaminación del residuo líquido se lleva a cabo por acción metabólica y físico-química, aerobia y/o anóxica de bacterias adaptadas al residuo líquido a depurar y fijadas a unos medios de soporte para las bacterias, y que comprende una o varias de las etapas siguientes:
- un primer tratamiento físico preliminar del resi¬ duo para la eliminación de las materias y cuerpos gruesos y arenosos, consistente en un desbaste y/o un tamizado y/o una centrifugación y/o un desarenado y/o un desengrasado, entre otros;
- un segundo tratamiento físico preliminar del resi¬ duo, consistente en la eliminación por sedimentación y/o floculación y/o coagulación de los sólidos en suspensión que no han podido ser eliminados en la etapa anterior; - un tratamiento físico-químico del residuo para la eliminación por precipitación y decantación de las substan¬ cias contaminantes decantables, mediante la adición de flocu¬ lantes y coagulantes adaptados para la formación de unos lodos finales; - un tratamiento biológico del residuo efluente de la etapa inmediata anterior en por lo menos un reactor bio¬ lógico aerobio en el cual se inoculan las mencionadas bacte- rias y al que se proporciona aire para que adquiera condicio¬ nes aerobias;
- un tratamiento biológico del residuo efluente de la etapa inmediata anterior, que se lleva a cabo en al menos un reactor biológico anóxico, previsto para la eventual des¬ nitrificación de los compuestos nitrogenados, uno de los cuales está dispuesto aguas arriba del primer reactor bioló¬ gico aerobio;
- un tratamiento físico final del efluente de la etapa inmediata anterior en por lo menos una balsa de clari¬ ficación para la separación de la biomasa contenida en un fango biológico del efluente final depurado; y
- por lo menos una recirculación de parte de dicho fango biológico a por lo menos uno de dichos reactores bioló- gicos.
El procedimiento de la presente invención encuentra su principal aplicación en la depuración de purines de cerdo y de alpechines de aceitunas.
Antecedentes de la invención. - En la actualidad es conocido depurar las aguas re¬ siduales municipales, con o sin mezclar con aguas de esco- rrentía, y aguas residuales de origen industrial en estacio¬ nes depuradoras físico-químicas o biológicas.
La calidad de las aguas y el procedimiento a uti- lizar para su depuración se suele determinar en función del valor inicial y final de determinados parámetros, como la De¬ manda Biológica de Oxígeno (D.B.O.), la Demanda Química de Oxígeno (D.Q.O.) , la concentración en fósforo, en nitrógeno - en sus formas nítrica, amoniacal y orgánica -, en cloruros, en determinados metales, tales como cobre, hierro o cromo, entre otros. Los valores de estos parámetros vienen nor¬ malmente expresados en mg/1 o partes por millón (ppm) . También se emplean parámetros como el contenido en sales, medido en unidades de conductividad o μSv/cm, la concentra- ción en materias inhibidoras, expresada en equitox/m3y el Ph. Como regla general, las depuradoras físico-químicas son adecuadas para aquellas aguas residuales cuya D.B.O. está por debajo de un determinado valor, lo cual viene a indicar que su biodegradabilidad es baja, o lo que es lo mismo, que su contenido en materia orgánica no es tan importante como para justificar la implantación de un procedimiento biológico de depuración.
Complementariamente, las depuradoras que emplean un procedimiento biológico de depuración encuentran su utilidad en aquellas aguas residuales cuya D.B.O. es relativamente elevada.
Genéricamente y de un modo conocido, en los procedi¬ mientos de depuración de aguas residuales o residuos líqui¬ dos, el líquido residual, procedente de un proceso (agropecu- - ario, industrial o terciario) , es sometido a un primer trata¬ miento físico preliminar del residuo para la eliminación de las materias y cuerpos gruesos y arenosos, consistente en un desbaste y/o un tamizado y/o una centrifugación y/o un desa¬ renado y/o un desengrasado, entre otros. Seguidamente, el efluente de la etapa anterior es tratado en otro proceso físico preliminar, en el que se eliminan, por sedimentación, floculación y/o coagulación, los sólidos en suspensión que no han podido ser eliminados en la etapa anterior. Posteriormente, el residuo es sometido a un trata¬ miento físico-químico para la eliminación por precipitación y decantación de las substancias contaminantes decantables, mediante la adición de floculantes y coagulantes adaptados para la formación de unos lodos finales. Los procedimientos denominados físico-químicos tienen normalmente su final en esta etapa, obteniéndose de ella un efluente final depurado y un lodo que contiene las substancias contaminantes inicial- mente presentes en el agua residual, cuyo destino es general¬ mente su evacuación. Cuando el residuo, como se ha dicho, presenta una alta D.B.O. y/o un contenido en materiales orgánicos conta- minantes tan elevado como para que un tratamiento físico- químico sea insuficiente, debe ser tratado en fases pos¬ teriores, en lo que constituye un procedimiento biológico de depuración. En este, el efluente de la etapa anterior es tratado en por lo menos un reactor biológico aerobio en el cual se inoculan bacterias y al que se proporciona aire para que ad¬ quiera condiciones aerobias.
El agua residual puede ser tratada igualmente en un reactor biológico anóxico, para la eventual desnitrificación de los compuestos nitrogenados, y en por lo menos una balsa de clarificación, para la separación de la biomasa contenida en un fango biológico del efluente final depurado.
Es conocido que el fango biológico citado sea re- circulado parcialmente a por lo menos uno de dichos reactores biológicos.
Por las patentes US 2,788,127, US 2,875,151 y US 4,874,518, por ejemplo, es conocido disponer uno de los reac¬ tores anóxicos de una estación depuradora biológica aguas arriba del primer reactor biológico aerobio, de modo que el flujo residual entrante es tratado biológicamente, tras efluir de los tratamientos preliminar y físico-químico, primero de forma anóxica, es decir con la cantidad de oxígeno necesaria para garantizar el metabolismo bacteriano, proce- dente de la descomposición de los nitratos.
Están reconocidas ampliamente las ventajas de los tratamientos biológicos para la depuración de las aguas resi¬ duales. En estos procedimientos la depuración se lleva a cabo por procesos aerobios y anaerobios, en los que el agente fundamental lo constituyen las bacterias. Los protozoos, algas y ciertos tipos de gusanos y larvas, asumen funciones reguladoras del proceso.
Los procedimientos biológicos de depuración presen¬ tan, básicamente, tres ventajas. En primer lugar, la acción degradadora la lleva a cabo únicamente un conjunto de bacterias, que tiene la capacidad de crecer y multiplicarse utilizando las sustancias contaminantes y que se autoperpetúan indefinidamente. Conse¬ cuentemente, la utilización de floculantes, quelantes y espe¬ santes es nula o muy reducida, por lo que este tipo de procedimientos presentan un bajo coste en aditivos.
En segundo lugar, el consumo energético es bajo. Efectivamente, los requerimientos energéticos únicamente se originan por la necesidad de mantener en contacto el vertido y la población bacteriana (homogeneización) , mantener un nivel de oxígeno suficiente (aireación) y mantener en funcio¬ namiento los mecanismos de seguimiento del proceso, bombeo de fluidos y retroinoculación bacteriana.
Por último, cabe indicar que los procedimientos bio¬ lógicos de depuración proporcionan un agua final depurada más fácilmente integrable en el medio natural que la resultante de procedimientos físico-químicos, ya que en realidad no hacen más que imitar a la naturaleza. Un vertido de aguas residuales, en concentración no excesiva, a un cauce o a la tierra es depurado, de manera natural, por las bacterias existentes en estos medios. La contaminación se produce cuando la concentración o volumen de los vertidos sobrepasa la capacidad natural de depuración del medio. En este caso la tecnología de depuración biológica concentra, intensifica y optimiza este sistema natural, adecuándolo a la concentración del contaminante.
Dada la nula o escasa adición de productos químicos, la biomasa microbiana producida en el proceso de depuración es fácilmente reutilizable.
Los residuos líquidos efluentes de algunos procesos industriales o ganaderos, tales como la crianza de cerdos o la producción de aceite de oliva, se encuentran tan altamente concentrados en materias orgánicas contaminantes y tóxicas que no pueden denominarse con absoluto rigor como "aguas residuales", sino que deben tratarse como "residuos líqui- dos", aunque en la presente memoria nos referimos a ellos indistintamente como tales o como "aguas residuales". Los residuos líquidos efluentes de la crianza de cerdos, conocidos como purines y los del prensado de las aceitunas, denominados alpechines, constituyen, actualmente, dos casos de depuración no solucionado efectivamente y, por consiguiente, dos problemas de capital importancia a los cuales conviene dar una solución.
Debe entenderse que en el estado de la técnica, la expresión "alta carga contaminante" se emplea para valores de la D.Q.O. iguales o superiores a 4.000 mg 02/l. El mayor volumen de aguas residuales que exigen depuración es producido por las concentraciones urbanas, cuya concentración de contaminantes típica, medida en D.Q.O. , oscila entre 200 y 1.500 mg 02/l, lo cual se trata de una carga contaminante baja o media, por lo general. La dinámica del mercado establece que la gran mayo¬ ría de las tecnologías de depuración de aguas residuales se hayan desarrollado para tratar este tipo de aguas residuales, de origen básicamente doméstico.
Un rendimiento típico de reducción del 95% de los contaminantes, es suficiente para que estas aguas residuales urbanas depuradas puedan verterse a un cauce público sin problemas.
Más recientemente se han aplicado las tecnologías biológicas tradicionales, adaptadas y mejoradas, a vertidos de origen industrial, pero su campo de aplicación se limita a contaminantes en concentraciones y características de biodegradabilidad no muy lejanas a las de los vertidos urbanos y con rendimientos no muy superiores al 95%, y nunca superiores al 98%. Hay residuos líquidos con muy alta carga de conta¬ minación, con valores de D.Q.O. superiores a los 20.000 mg 02/l e incluso que pueden llegar a superar los 100.000 mg 02/l, para los que estas tecnologías tradicionales de depura¬ ción biológica, incluso mejoradas, son insuficientes. Estas altas concentraciones dificultan el logro del necesario equilibrio crecimiento de biomasa/concentración del sustrato en el reactor biológico, producen un rápido agota¬ miento del oxígeno en la zona de alimentación, y, por tanto, impiden un correcto aprovechamiento y distribución de éste. Además, si estas altas concentraciones llevan asociados productos tóxicos o inhibidores, el crecimiento bacteriano se detiene o incluso puede producirse mortalidad o detención del metabolismo de las bacterias. Todos estos efectos producen deficiencias en el proceso de depuración, o pueden llegar a impedirlo. Aun cuando estas deficiencias no se produjeran, con las tecnologías tradicionales se pueden conseguir, en el mejor de los casos, rendimientos cercanos al 98%, con lo que el agua residual "depurada" tendría valores de varios miles de D.Q.O., totalmente inaceptable para ser vertida a un cauce público o difícilmente reutilizable para la mayoría de los usos.
Se han producido intentos para conseguir procedi¬ mientos biológicos adecuados para el tratamiento de aguas residuales de alta carga contaminante y/o tóxicas, con eleva¬ do contenido en amonio, derivados nitrogenados y compuestos de fósforo.
En este sentido, las patentes US 4,948,514,
US 4,956,094, US 5,076,927, US 5,252,214 y US 5,344,562 describen sendos procedimientos para el tratamiento de aguas residuales con este tipo de contaminantes, particularmente aplicables a la eliminación de fosfatos y de amoníaco.
Sin embargo, en todos los documentos citados, los parámetros de contaminación iniciales de las aguas residuales tratadas son muy inferiores a los anteriormente citados comprendidos entre 20.000 y 100.000 mg 02/l. de D.Q.O., no siendo aptos para el tratamiento de tales aguas residuales, tal como se constata en la práctica habitual. En efecto, un procedimiento de depuración biológico está genéricamente caracterizado por tres facetas componentes o funcionales, a saber: - las bacterias (y otros microorganismos) que deben degradar la materia orgánica presente en las aguas contaminadas;
- un sistema que permita el contacto entre las bac¬ terias, el agua residual que debe depurarse y el oxígeno que necesiten las bacterias para su me- tabolismo; y
- una "ingeniería", o diseño, dimensionado y distri¬ bución de los procesos unitarios, los reactores biológicos, sistemas de aireación, agitación, re- circulación de aguas y de fangos biológicos, que intervienen en el procedimiento y son necesarios para el adecuado funcionamiento del mismo.
Los sistemas de tratamiento biológico tradicionales aplicados a aguas residuales de alta carga, incluidos los descritos en los documentos citados, tienen importantes limitaciones en cada uno de los mencionados tres componentes.
Efectivamente, en lo tocante a las bacterias utilizadas en las depuradoras biológicas tradicionales, éstas provienen comúnmente de los fangos biológicos procedentes de otras depuradoras de aguas residuales urbanas. Este tipo de bacte- rías no se adapta a las condiciones extremas derivadas de una alimentación con una carga contaminante de 20 a 100 veces superior a las de su medio natural de desarrollo.
Para casos especiales (o incluso para reactivar depura¬ doras convencionales) , en el mercado se dispone de bacterias liofilizadas específicas para algunos tipos de contaminantes (hidrocarburos, fenoles, etc.) . La simple inoculación de bacterias de este tipo se ha mostrado irregular en sus resultados y casi siempre con una eficacia temporal limitada, si no va acompañada de otras acciones como las que se explí- can más adelante al describir la presente invención.
Por lo que respecta al sistema de contacto de las bacterias con el medio, cabe decir que básicamente hay dos tipos de sistemas de tratamiento biológico comercialmente utilizados, a saber A) el sistema de los fangos activados, en el que las bacterias se mantienen en suspensión en el agua y se van agrupando formando flóculos que se decantan posteriormente para reinocularse al reactor biológico o evacuarse del sistema como fango biológico; y
B) el sistema de los filtros percoladores, donde en un depósito vertical relleno de un soporte (generalmente del tipo de anillos denominado "rashig" o similar) se rocía por arriba el agua residual a tratar que percola entre las uni¬ dades del relleno donde se anclan las bacterias, que absorben el oxígeno del aire ocluido en los intersticios entre las unidades de relleno; en algunas ocasiones se produce una corriente de aire forzado que circula a contracorriente del líquido a través del relleno.
Por la propia dinámica de las bacterias en suspensión en el agua residual, el sistema de fangos activados tiene grandes limitaciones cuando se necesita una gran concentra¬ ción de biomasa, lo cual, a su vez, es necesario cuando se quiere degradar un agua residual con una gran concentración en contaminación orgánica.
Se han desarrollado muchos tipos de relleno-soporte que mejoran la relación superficie/volumen y aumentan, por tanto, la capacidad de generación de masa bacteriana, tales como los descritos en la patente alemana DE-A-4, 107,406 y en la patente europea EP-A-630 859. Sin embargo, en estos soportes no se consigue evitar la formación de caminos preferenciales, tanto para el agua residual como para el aire, de lo cual se deriva el inconveniente de que es prácticamente imposible la optimización del necesario contacto bacterias/agua resi¬ dual/aire. Por esta razón, entre otras, estos soportes conocidos no son suficientes para la degradación de aguas residuales con alta carga contaminante.
Las soluciones conocidas con soportes en lecho fluido y flujo ascendente, aunque mejoran el sistema en algunos as¬ pectos, también se han mostrado insuficientes para depurar aguas residuales de alta carga. Por lo que respecta a la ingeniería de proceso, un buen diseño de los procesos unitarios del procedimiento y la interrelación entre ellos permite que el conjunto de bacte¬ rias y el soporte de éstas funcione con la mayor eficacia posible. Para que el sistema pueda degradar altas cargas orgánicas es necesaria una aireación forzada de muy alto ren- dimiento, unos sistemas que mantengan un íntimo contacto entre las bacterias y la masa de agua residual a depurar y unas recirculaciones necesarias para reinocular fangos bacte¬ rianos o para evitar el contacto de una carga contaminante excesiva contra la masa bacteriana. Por último, cabe hacer mención de que la tecnología actual de depuración biológica adolece del inconveniente que representa el necesario tiempo de adaptación del cultivo bacteriano al medio en el que se encuentra el residuo a depurar en los reactores biológicos, de lo cual resulta un período transitorio de varios meses, obviamente indeseable, durante el que la estación depuradora no puede operar a pleno rendimiento.
Por consiguiente, es de desear la existencia de un procedimiento de depuración de aguas residuales o residuos líquidos de alta carga contaminante o con gran contenido en productos tóxicos que solucione los problemas e inconvenien¬ tes citados, a fin de obtener unos resultados muy superiores y alcanzar un grado de depuración mucho mejor que con cual¬ quier otro de los procedimientos conocidos y aplicados hasta el momento y que, en concreto, sea efectivamente adecuado para la depuración de purines de cerdo y de alpechines.
Explicación de la invención. -
A este fin, la presente invención proporciona un procedimiento biológico de depuración de residuos líquidos de alta carga contaminante y/o alta toxicidad, de novedoso concepto, que esencialmente se caracteriza porque comprende la etapa adicional de una fase de retroalimentación del efluente líquido desde la salida de por lo menos uno de los reactores biológicos aerobios como influente al interior del propio reactor biológico aerobio, para diluir la alimentación al mismo con el líquido estabilizado a su salida, a fin de diluir el componente contaminante por debajo de la concen¬ tración máxima admitida por las bacterias .
Según una forma de realización preferida, el caudal de dicha fase de retroalimentación es de cuatro a quince veces mayor que el caudal de alimentación del reactor biológico aerobio.
De acuerdo con otra característica de la presente invención, la adaptación de las bacterias al residuo líquido a depurar se lleva a cabo independiente y externamente a cualquiera de los reactores biológicos utilizados en el procedimiento, siendo inoculadas las bacterias a los reacto¬ res biológicos cuando sus características bioquímicas ya están adaptadas para la inmediata acción de depuración biológica sobre el residuo líquido a tratar.
Gracias a que la adaptación de las bacterias es externa y ajena al reactor biológico, se puede lograr que el tiempo de adaptación de las bacterias al medio, una vez inoculadas, sea nulo, eliminándose consiguientemente el indeseable período transitorio. De esta suerte, la depuradora puede funcionar a pleno rendimiento desde el mismo instante de su puesta en marcha.
Según otra característica de la presente invención, el citado medio de soporte para las bacterias se sumerge total- mente en por lo menos uno de los reactores biológicos utili¬ zados en el procedimiento, quedando una fracción de la población de bacterias en suspensión en el fluido del reac¬ tor, en equilibrio con el resto de la población bacteriana anclada en el medio de soporte. Se ha constatado que la forma de soporte según la presente invención y el consiguiente equilibrio entre las bacterias ancladas en él y las que quedan en suspensión, proporciona a las bacterias una resistencia a la toxicidad mucho mayor que la que se puede lograr actualmente con los procedimientos convencionales.
Además, la conjunción de características citadas se ha mostrado, sorprendentemente, eficaz en alto grado a los efectos de eliminar la toxicidad del residuo líquido a tratar mediante el procedimiento.
De acuerdo con otra característica de la presente invención, para la desnitrificación de los componentes amoniacales existentes en concentraciones muy elevadas en el residuo líquido, tal como purines de cerdo, se lleva a cabo una segunda etapa de realimentación del efluente líquido desde la salida del primer reactor biológico aerobio como in- fluente al interior de un reactor biológico anóxico, estando el citado reactor aerobio adaptado para la conversión de los compuestos amoniacales en nitratos, en tanto que el reactor anóxico está adaptado para la desnitrificación de dichos nitratos con la obtención de nitrógeno gas. Merced a ello, los purines de cerdo, altamente con¬ taminantes y tóxicos, pueden ser depurados hasta valores de concentración en contaminantes muy inferiores a los máximos actualmente autorizados y el agua depurada final es apta para ser vertida a cauces públicos con un alto nivel de integra- ción en el medio natural, lo cual no es posible con los procedimientos biológicos de depuración convencionales.
Según otra forma de realización preferida de la presente invención, el líquido efluente del citado primer reactor biológico aerobio se introduce en un reactor biológico de afino, que funciona alternativamente en condiciones anóxicas y aerobias, en el que se reinoculan los fangos biológicos procedentes de otras fases anteriores del procedimiento, para la compensación de la falta de materia orgánica, salvando la necesidad de adicionar materia orgánica exterior, gracias al funcionamiento endógeno del propio reactor de afino, estando preferiblemente interpuesto un clarificador entre dicho reac¬ tor aerobio y dicho reactor de afino.
Gracias a ello, el procedimiento de la presente in¬ vención permite prescindir de los aditivos orgánicos que los procedimientos actuales requieren, que es una de las causas de los elevados costes de explotación de las depuradoras biológicas actuales.
Breve descripción de los dibuios.-
A continuación se hará la descripción detallada de las formas de realización preferidas de la presente invención, para mejor comprensión de la cual se acompaña de unos dibu¬ jos, dados meramente a modo de ejemplo no limitativo, en los cuales : la Fig. 1 es un esquema de principio de funcionamiento de una forma de realización según el procedimiento de la presente invención; y la Fig. 2 es otro esquema, semejante al de la Fig. 1, pero de otra forma de realización del procedimiento de la invención.
Descripción detallada de los dibujos. - La presente invención consiste en un procedimiento biológico de depuración aplicable para aguas residuales de alta carga contaminante, basado en la utilización de bacte¬ rias, adaptadas específicamente a los reactores biológicos que intervienen, independiente y externamente a éstos, con soporte sumergido para las bacterias en dichos reactores biológicos y con sistemas de recirculación interna o entre secciones anóxica-aerobia.
El procedimiento según la invención se aplica, con resultados hasta ahora no conseguidos por ningún otro, para la depuración, entre otros residuos líquidos, de purines de cerdo y alpechines, consiguiendo una calidad del agua resi¬ dual depurada suficiente, incluso, para su vertido a cauce público continental, tales como ríos y lagos, entre otros. Tal como se aprecia en los dibujos, el procedimiento biológico de depuración de residuos líquidos 1 de alta carga contaminante y/o alta toxicidad de la presente invención comprende, de un modo en sí conocido, un primer tratamiento físico preliminar 3 del residuo a fin de eliminar las mate¬ rias y cuerpos gruesos y arenosos. Este tratamiento físico preliminar 3 puede consistir, típicamente, en un desbaste, un tamizado, una centrifugación, un desarenado, un desengrasado, o una combinación de estos u otros tratamientos físicos.
A continuación, el agua residual se somete a un segundo tratamiento físico preliminar 4, que consiste en la elimi¬ nación por sedimentación y/o floculación y/o coagulación de los sólidos en suspensión que no han podido ser eliminados en el primer tratamiento físico preliminar 3.
Una de las fases del procedimiento es un tratamiento físico-químico 5 del residuo, con el que obtener la eli¬ minación por precipitación y decantación de las substancias contaminantes decantables, mediante la adición de floculantes y coagulantes adaptados para la formación de unos lodos finales 6. En el ejemplo de procedimiento mostrado en la Fig. 1, este tratamiento físico-químico 5 se lleva a cabo como una fase inmediatamente posterior a los tratamientos preliminares 3, 4, mientras que en el ejemplo de realización de la Fig. 2 se lleva a cabo como fase penúltima del procedimiento. Alguna de las fases del procedimiento consiste en un tratamiento biológico del residuo efluente 7 de la etapa inmediata anterior en un reactor biológico aerobio 8, en el cual se inoculan las bacterias y al que se proporciona aire para que adquiera condiciones aerobias, gracias a unos medios conocidos de aireación 21.
Estas bacterias son las responsables de la eliminación de la contaminación del residuo líquido, gracias a su acción metabólica y físico-química, aerobia y/o anóxica. Las bacte¬ rias están adaptadas al residuo líquido a depurar y una parte de ellas están fijadas a unos medios de soporte 2, mientras que la otra parte están en suspensión en el medio del reactor biológico.
Los ejemplos mostrados en los dibujos comprenden una única fase de reacción aerobia, llevada a cabo en uno o varios reactores biológicos aerobios 8, dispuestos en serie y dotados de unos aireadores 21. Otra etapa es un tratamiento biológico del residuo efluente de la etapa inmediata anterior 9, que se lleva a cabo en por lo menos un reactor biológico anóxico 10, previs¬ to para la eventual desnitrificación de los compuestos ni- trogenados, dispuesto aguas arriba del primer reactor bioló¬ gico aerobio 8 (Fig. 2) .
El procedimiento consta, igualmente de un modo en sí conocido, de un tratamiento físico final del efluente de la etapa inmediata anterior en por lo menos una balsa de clarificación 20 para la separación de la biomasa contenida en un fango biológico 11 del efluente final depurado 12.
Por último, una recirculación 13 de parte de dicho fango biológico 11 a por lo menos uno de dichos reactores bioló¬ gicos 8, 10, completa las fases de una depuración biológica anóxico/aerobia de tipo conocido.
Una primera característica innovadora del procedimiento de la presente invención es el hecho de que la adaptación de las bacterias al residuo líquido a depurar se lleva a cabo independiente y externamente a cualquiera de los reactores biológicos 8, 10 utilizados en el procedimiento. Cuando las propiedades metabólicas de las bacterias ya han sido adapta¬ das para la inmediata acción de depuración biológica sobre el residuo líquido residual a tratar, se inoculan sin más a los reactores biológicos 8, 10. Gracias a ello, el período transitorio de adquisición del régimen nominal de los reacto¬ res biológicos 8, 10, así como en general el de la estación depuradora global, queda notablemente reducido, cuando no completamente suprimido.
Para dicha adaptación externa, se selecciona el tipo de cultivo o familia de flora microbiana más adecuada al residuo particular a depurar y sus características se optimizan en un proceso externo en el cual los microorganismos se someten a una alta tasa de oxigenación y se alimentan con el propio residuo líquido 7, 9 a depurar por acción de las bacterias. Así, la adaptación de estas últimas se lleva a cabo en un reactor (no representado en los dibujos) , independiente de los reactores 8, 10.
Se ha constatado que el período necesario para obtener un cultivo de bacterias optimizado varía entre uno y tres meses. A partir de este momento la producción del cultivo especifico y optimizado es constante y se utiliza de manera continua en el funcionamiento de la planta depuradora en que se aplica el procedimiento de la invención. Las característi¬ cas bioquímicas del cultivo que se obtiene externamente son: un alto consumo de oxígeno, implicando una elevada tasa de oxidación de la materia orgánica; una elevada actividad exoproteolítica, que tiene como consecuencia una rápida hidrólisis del material proteico, que es un componente muy importante en la mayoría de los vertidos a los que se aplica esta invención; y un alto contenido en exopolisacáridos celulares, que potencian la rápida absorción y floculación tanto de la materia coloidal como de las bacterias en suspen¬ sión del sistema.
Otra característica esencial del procedimiento de la presente invención es el hecho de que el citado medio de soporte 2 para el cultivo bacteriano se sumerge totalmente en por lo menos uno de los reactores biológicos 8, 10 utilizados en el procedimiento, quedando una fracción de la población de bacterias en suspensión en el fluido del reactor 8, 10, en equilibrio con la fracción restante anclada en el medio de soporte 2.
De acuerdo con la invención, pueden emplearse diferentes tipos de soporte sólido 2, preferiblemente de material plástico resistente al medio de los reactores biológicos, sumergido totalmente en éstos. Los microorganismos colonizan la superficie del soporte sumergido 2, fijándose por medio de exopolímeros (aunque tam¬ bién intervienen unas estructuras denominadas "pilli" y cier¬ tas adhesinas proteicas) . El conjunto de la biomasa micro¬ biana que se forma encima de un sólido se denomina "biofilm" , "biomasa fijada" o "biomasa adherida".
Las ventajas del soporte sólido sumergido 2 en el re- actor biológico 8, 10 derivan principalmente de que se consi¬ gue producir más biomasa, tener mayor actividad degradadora y más resistencia a productos tóxicos y de que el requeri¬ miento de espacio es menor que en el mismo reactor sin soportes. Esta mayor biomasa y actividad es debida a que el biofilm microbiano que se forma en la interfase líquido- sólido contiene mayor densidad bacteriana y las bacterias fijadas son más activas que las dispersas en la fase líquida. Una posible explicación de este hecho sorprendente puede responder a lo siguiente:
Por una parte, los mecanismos de degradación ecto- celular, captación de sustratos, retención de enzimas y sustratos y transporte de sustratos, son más eficaces debido a que la trama de exopolímeros que constituye el biofilm actúa en el sentido de facilitar la interacción entre sustra¬ tos, ectoenzimas y bacterias.
Por otra parte, en la interfase sólida se concentran y acumulan con preferencia a la fase líquida los nutrientes, el oxígeno y las bacterias. Para optimizar estas propiedades, el soporte sumergido 2 tiene una alta relación superficie/volumen y un tipo de superficie que facilite que se puedan anclar fácilmente las bacterias.
El soporte sumergido 2 de la presente invención y sus condiciones de funcionamiento permiten establecer una dinámi¬ ca de renovación de las bacterias del biofilm anclado en el soporte 2 hacia la suspensión en el líquido (y viceversa) , gracias a lo cual las bacterias ancladas se encuentran en equilibrio con las suspendidas, favoreciéndose notablemente su acción degradadora.
A efectos de la capacidad de depuración del cultivo bac¬ teriano, la optimización de la capa activa de biofilm de la presente invención - conseguida gracias a la mencionada dinᬠmica de renovación - se ha mostrado mucho más importante que la optimización de la relación superficie/volumen de los so¬ portes, de cara a la capacidad de depuración del sistema bacteriano, preconizada por los procedimientos actuales, por lo que el soporte sumergido 2 de la presente invención es mucho más eficaz que la mayoría de soportes conocidos comple¬ jos y por ende caros, que solamente tienden a optimizar la relación superficie/volumen.
Por otra parte, también se ha comprobado que el hecho de sumergir completamente el soporte 2, cuya flora bacteriana está en equilibrio con las bacterias en suspensión, permite el empleo de materiales sencillos y baratos, tales como por ejemplo manguera corrugada de PVC, cortada en longitudes desde una hasta una vez y media su diámetro, y de diferentes diámetros, según el tamaño del reactor biológico.
Con ello queda determinado un procedimiento cuyo diagra¬ ma de bloques y de principio de funcionamiento es el que se muestra en la Fig. 1. Una depuradora biológica realizada de acuerdo con dicho procedimiento es altamente eficaz, tal como se ha comprobado y se justifica más adelante, para la depura¬ ción de residuos de alpechines en particular y para la depuración de materia orgánica con alto contenido en hidratos de carbono y/o alta toxicidad, en general.
Otra característica propia e innovadora del procedi¬ miento de la presente invención es que comprende la etapa adicional de una fase de retroalimentación 15 del efluente líquido desde la salida 14 de por lo menos uno de los reac- tores biológicos aerobios 8 como influente al interior del propio reactor biológico aerobio 8, tal como se muestra en los dibujos. Ello tiene por objeto diluir la alimentación 7 del reactor aerobio 8 con el líquido estabilizado a su sali¬ da, merced a lo cual el componente contaminante queda diluido por debajo de la concentración máxima admitida por las bacte¬ rias, con lo que éstas pueden desarrollar su acción metabóli- ca.
Preferiblemente, el caudal de dicha fase de retroa¬ limentación 15 es de cuatro a quince veces mayor que el caudal de alimentación 7 del reactor biológico aerobio 8.
Para la desnitrificación de los componentes amoniacales existentes en concentraciones muy elevadas en el residuo líquido 2, tal como purines de cerdo, la invención comprende la etapa de una segunda realimentación 16 del efluente lí¬ quido desde la salida 14 del primer reactor biológico aerobio 8 como influente al interior del mencionado reactor biológico anóxico 10. El citado reactor aerobio 8 está así adaptado para la conversión de los compuestos amoniacales en nitratos, en tanto que el reactor anóxico 10 está adaptado para la desnitrificación de dichos nitratos con la obtención de nitrógeno gas. Al reducirse en el reactor anóxico 10 los ni¬ tratos a nitrógeno, las bacterias presentes en dicho reactor 10 disponen de la totalidad de materia orgánica de la alimen¬ tación 9 para producir la deseada desnitrificación, y por ende la depuración, lo cual debe entenderse que supone una notable ventaja con respecto a los procedimientos conocidos, puesto que permite efectivamente lograr una depuración de los residuos líquidos con alto contenido en contaminantes amonia¬ cales, tales como los purines de cerdos.
Otra característica innovadora y propia de la invención es la inclusión en el procedimiento de una etapa consistente en la alimentación del efluente saliente del primer reactor biológico aerobio 8 a un reactor biológico de afino 19.
El reactor 19 comprende igualmente el soporte sumergido 2, en el cual se inoculan las bacterias obtenidas según la presente invención.
Esta reacción biológica de afino llevada a cabo en el reactor 19 puede realizarse alternativamente en condiciones anóxicas, para la obtención de una desnitrificación adi¬ cional, o aerobias, para la producción de una ulterior degra- dación de la materia orgánica o la nitrificación adicional del amonio residual. La alternancia y la duración de las se¬ cuencias aerobia y anóxica se determina en función del equilibrio buscado de los parámetros de salida.
Obviamente, para la necesaria aireación de esta fase aerobia, el reactor de afino 19 comprende un sistema de insuflación de aire 21, que puede ser idéntico al del reactor aerobio 8.
El mantenimiento de la concentración de biomasa ne¬ cesaria en el citado reactor de afino 19 se lleva a cabo mediante la inoculación continua de fangos activos biológicos 11 procedentes de los reactores 8, 10. Merced a ello, se compensa la falta de materia orgánica, salvando la necesidad de adicionar materia orgánica exterior, como metanol o cualquier otra substancia de fácil metabolización, debida al funcionamiento endógeno del propio reactor de afino 19. Ello permite un considerable ahorro en nutrientes para las bacte¬ rias y que facilita la formación de flóculos decantables, lo que debe entenderse como una importante ventaja con respecto a los procedimientos biológicos de depuración convencionales. Preferiblemente, entre dicho reactor aerobio 8 y dicho reactor de afino 19 se interpone un segundo clarificador 22. Los medios de aireación forzada 21 de los reactores aerobio 8 y de afino 19 permiten mantener la biomasa no anclada en suspensión y hacer circular el agua a través de los soportes sumergidos 2, a fin de conseguir la renovación dinámica entre la biomasa anclada y la biomasa en suspensión y un buen contacto de los nutrientes del agua residual y el oxígeno disuelto con las bacterias.
A continuación se describen ejemplos de aplicación puestos en práctica con aplicación de los principios del procedimiento de la presente invención y se describen los sorprendentes resultados obtenidos de ellos. Ejemplos prácticos. - 1. Alpechines
Se diseñó y construyó una estación depuradora de alpe- chines, basada en el procedimiento de la presente invención, para una capacidad de 4 m3/día. El esquema de proceso respon¬ de al mostrado en la Fig. 1.
Los alpechines llegan a la estación en camiones cisterna o contenedores y se vacían y homogeneizan en un tanque (no representado) .
El proceso consiste en un desbaste 3 y una sedimentación 4, seguidos a continuación de un tratamiento físico-químico 5 con cal ((OH)2Ca), de donde, previa neutralización se ali¬ mentan a un reactor biológico aerobio 8. Los sólidos, previo paso por un espesador 20, se desecan en un filtro prensa (no mostrado) y se evacúan en contenedores para su uso como fertilizante agrícola o a vertedero. El reactor biológico aerobio 8 dispone del soporte sumergido 2 según la invención y está aireado por unos medios de insuflación de aire 21, disponiendo también de una recirculación 15 de por lo menos seis veces su caudal de alimentación 7.
El líquido residual clarificado en 20 se evacúa al desagüe (emisario submarino en este caso) . Los fangos bioló¬ gicos 11 decantados se reinoculan al reactor biológico aerobio 8. La extrema dificultad de la degradación biológica de los alpechines deriva de su contenido en fenoles y polifenoles. Por ello, para la fase de adaptación específica de las bacterias según la invención, se partió de bacterias liofili- zadas comerciales resistentes a los fenoles, que se adaptaron externamente a la planta. Dada la toxicidad de este residuo, estas bacterias deben reinocularse (en pequeñas cantidades) periódicamente al reactor 8. En la Tabla 1 se muestra la evolución analítica de los principales parámetros a la entrada y a la salida del procedimiento.
Figure imgf000024_0001
Tabla 1
Es de notar la sorprendente reducción de los parámetros de toxicidad obtenidos por la aplicación del procedimiento de la presente invención aplicado a la depuración de alpechines, logros no obtenidos con ninguna de las tecnologías conocidas actualmente.
2. Purines de cerdo
Se diseñó y construyó una estación depuradora de inves¬ tigación, igualmente basada en el procedimiento de la presen¬ te invención, de tamaño industrial, junto a una granja de cría de 950 madres (y los correspondientes lechones) , con capacidad de depuración de 25 - 30 m3/día de purines. El esquema de proceso es el que corresponde a la Fig. 2.
Los purines procedentes de la granja o del exterior por cisternas se recogen en una balsa agitada de homogeneización
(no representada) desde donde se bombean a la planta depura- dora.
El proceso comienza con dos etapas de separación de sólidos, que se eliminan como fertilizante orgánico. Una primera etapa consiste en un primer tratamiento físico preliminar, en concreto un tamiz 3. El líquido turbio separa- do se mezcla con un polielectrolito preparado en un tanque y se alimenta a una centrífuga 4, en donde es sometido a la segunda etapa preliminar de separación física. La parte líquida efluente de la centrífuga 4 se alimenta al reactor biológico anóxico 10, de donde pasa al reactor aerobio 8, con una recirculación entre reactores 8 a 10 de cuatro a quince veces mayor que el caudal de alimentación del reactor 10, según la presente invención. Los reactores 8, 10 disponen de un sistema de soporte sumergido 2 tal como el descrito en la presente invención.
En una planta piloto de 2 m3 de volumen de reacción, ajena a la propia depuradora, se produjo, después de meses de adaptación, el cultivo bacteriano, que se inoculó a los reac¬ tores 8, 10 en el mismo momento de la puesta en marcha de la planta depuradora. Este cultivo bacteriano se produjo de acuerdo con los principios de la presente invención.
Aguas abajo del reactor aerobio 8, el liquido tratado resultante es decantado en el clarificador 22, de donde los fangos biológicos 11 se recirculan a los reactores 8 y 10 en forma de fango 13 y/o se extraen del sistema por 6, previa deshidratación en la centrífuga 4.
De acuerdo con la invención, para mejorar los parámetros del agua residual depurada, el efluente del clarificador 22 se alimenta a un reactor biológico de afino 19, que también tiene incorporado el cultivo bacteriano anclado en el soporte sumergido 2 según la invención con las bacterias adaptadas según se ha explicado. De acuerdo con la invención, el reactor de afino 19 puede funcionar alternativamente en modo aerobio o anóxico, según el parámetro que quede por eliminar (D.Q.O. , NH4 +, N03 ")
Por último, tras otra decantación en un segundo cla¬ rificador (no representado) , también provisto de recircu¬ lación de fangos activos, se pasa a un tratamiento físico- químico en el tanque 5, donde se precipitan los derivados de fósforo, el resto de materias de suspensión, y una parte de la materia orgánica residual. Los sólidos precipitados se decantan en un tercer clarificador 20, cuyo efluente se comprobó que era un líquido depurado y transparente que se podía verter a río o ser reutilizado.
En la Tabla 2 se muestran los datos analíticos típicos de los principales parámetros y su evolución en las diferen¬ tes fases del proceso, obtenidos con el tratamiento de purmes en la depuradora del Ejemplo 2, que aplicaba los principios de la presente invención.
Figure imgf000026_0001
Tabla 2
Debe entenderse, a la vista de la Tabla 2, que gracias al procedimiento de la presente invención aplicado a la depuración de purines, se consiguen parámetros del agua resi¬ dual depurada nunca conseguidos hasta ahora por ningún otro procedimiento conocido de depuración de residuos líquidos o aguas residuales de alta carga contaminante orgánica.
Descrita suficientemente la naturaleza de la invención, así como la manera de ponerla en práctica, se hace notar que todo cuanto no altere, cambie o modifique su principio fundamental, puede quedar sometido a variaciones de detalle. En este sentido, debe entenderse que las depuradoras biológicas en las que se aplique como principio de funcio¬ namiento el procedimiento de la presente invención, pueden comprender procesos unitarios adicionales distintos de los explicados, siempre y cuando el procedimiento se ajuste al ámbito de protección de las características aquí reivindica¬ das.
Debe igualmente entenderse que los parámetros de concen- tración de contaminantes de las aguas residuales a tratar pueden ser cualesquiera, sin quedar restringidos a los valores indicados, sin por ello salirse del ámbito de protec¬ ción del concepto inventivo.
Lo esencial y por lo que se solicita patente de in- vención, por veinte años, es lo que queda resumido en las siguientes reivindicaciones.

Claims

R E I V I N D I C A C I O N E S
1.- Procedimiento biológico de depuración de residuos líquidos (1) de alta carga contaminante y/o alta toxicidad, del tipo en los que la eliminación de la contaminación del residuo líquido se lleva a cabo por acción metabólica y físico-química, aerobia y/o anóxica de bacterias adaptadas al residuo líquido a depurar y fijadas a unos medios de soporte (2) para las bacterias, y que comprende una o varias de las etapas siguientes: - un primer tratamiento físico preliminar (3) del resi¬ duo para la eliminación de las materias y cuerpos gruesos y arenosos, consistente en un desbaste y/o un tamizado y/o una centrifugación y/o un desarenado y/o un desengrasado, entre otros; - un segundo tratamiento físico preliminar (4) del resi¬ duo, consistente en la eliminación por sedimentación y/o floculación y/o coagulación de los sólidos en suspensión que no han podido ser eliminados en la etapa anterior;
- un tratamiento físico-químico (5) del residuo para la eliminación por precipitación y decantación de las substan¬ cias contaminantes decantables, mediante la adición de flocu¬ lantes y coagulantes adaptados para la formación de unos lodos finales (6) ;
- un tratamiento biológico del residuo efluente (7) de la etapa inmediata anterior en por lo menos un reactor bio¬ lógico aerobio (8) en el cual se inoculan las mencionadas bacterias y al que se proporciona aire para que adquiera con¬ diciones aerobias;
- un tratamiento biológico del residuo efluente de la etapa inmediata anterior (9) , que se lleva a cabo en por lo menos un reactor biológico anóxico (10) , previsto para la eventual desnitrificación de los compuestos nitrogenados, uno de los cuales está dispuesto aguas arriba del primer reactor biológico aerobio (8) ; - un tratamiento físico final del efluente de la etapa inmediata anterior en por lo menos una balsa de clarificación (20) para la separación de la biomasa contenida en un fango biológico (11) del efluente final depurado (12) ; y
- por lo menos una recirculación (13) de parte de dicho fango biológico a por lo menos uno de dichos reactores bioló¬ gicos (8, 10) , caracterizado porque comprende la etapa adicional de una fase de retroalimentación (15) del efluente líquido desde la salida (14) de por lo menos uno de los reactores biológicos aerobios (8) como influente al interior del propio reactor biológico aerobio (8) , para diluir la alimentación al mismo con el líquido estabilizado a su salida y diluir por consi¬ guiente el componente contaminante por debajo de la concen¬ tración máxima admitida por las bacterias.
2.- Procedimiento según la reivindicación 1, carac¬ terizado porque el caudal de dicha fase de retroalimentación (15) es de cuatro a quince veces mayor que el caudal de ali¬ mentación (7) del reactor biológico aerobio (8) .
3.- Procedimiento según una cualquiera de las rei- vindicaciones anteriores, caracterizado porque la adaptación de las bacterias al residuo líquido a depurar se lleva a cabo independiente y externamente a cualquiera de los reactores biológicos utilizados en el procedimiento, siendo inoculadas las bacterias a los reactores biológicos cuando sus caracte- rísticas bioquímicas ya están adaptadas para la inmediata acción de depuración biológica sobre el residuo líquido a tratar.
4.- Procedimiento según una cualquiera de las rei¬ vindicaciones anteriores, caracterizado porque el citado medio de soporte (2) para las bacterias se sumerge totalmente en por lo menos uno de los reactores biológicos utilizados en el procedimiento, quedando una fracción de la población de bacterias en suspensión en el fluido del reactor, en equilib¬ rio con la fracción restante anclada en el medio de soporte.
5.- Procedimiento según cualquiera de las reivindi¬ caciones anteriores, caracterizado porque, para la desni- trificación de los componentes amoniacales existentes en concentraciones muy elevadas en el residuo líquido (2) , tal como purines de cerdo, se lleva a cabo una segunda etapa de realimentación (16) del efluente líquido desde la salida (14) del primer reactor biológico aerobio (8) como influente al interior del mencionado reactor biológico anóxico (10) , estando el citado reactor aerobio adaptado para la conversión de los compuestos amoniacales en nitratos, en tanto que el reactor anóxico (10) está adaptado para la desnitrificación de dichos nitratos con la obtención de nitrógeno gas.
6.- Procedimiento según la reivindicación 5, carac¬ terizado porque el líquido efluente del citado primer reactor biológico aerobio (8) se introduce en un reactor biológico de afino (19) , que funciona alternativamente en condiciones anóxicas y aerobias, en el que se reinoculan los fangos biológicos (11) procedentes de otras fases anteriores (8, 10) del procedimiento, para la compensación de la falta de materia orgánica, salvando la necesidad de adicionar materia orgánica exterior, gracias al funcionamiento endógeno del propio reactor de afino, estando preferiblemente interpuesto un clarificador (22) entre dicho reactor aerobio (8) y dicho reactor de afino (19) .
PCT/ES1997/000146 1996-06-12 1997-06-06 Procedimiento biologico de depuracion de residuos liquidos de alta carga contaminante y/o alta toxicidad, en especial purines y alpechines WO1997047561A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP9601316 1996-06-12
ES9601316A ES2108658B1 (es) 1996-06-12 1996-06-12 Procedimiento biologico de depuracion de residuos liquidos de alta carga contaminante y/o alta toxicidad, en especial purines y alpechines.

Publications (1)

Publication Number Publication Date
WO1997047561A1 true WO1997047561A1 (es) 1997-12-18

Family

ID=8295138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1997/000146 WO1997047561A1 (es) 1996-06-12 1997-06-06 Procedimiento biologico de depuracion de residuos liquidos de alta carga contaminante y/o alta toxicidad, en especial purines y alpechines

Country Status (2)

Country Link
ES (1) ES2108658B1 (es)
WO (1) WO1997047561A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041044A1 (de) * 1999-03-31 2000-10-04 Argus Umweltbiotechnologie GmbH Verfahren zur Reinigung von Phenole enthaltendem Abwasser
CN103833135A (zh) * 2014-03-07 2014-06-04 浦华环保有限公司 活性污泥污水处理装置及污水处理工艺
CN104058558A (zh) * 2014-07-10 2014-09-24 南京农业大学 一种猪场污水的循环利用方法
CN106630388A (zh) * 2016-11-24 2017-05-10 天津市环境保护科学研究院 一种工业园区污水处理的整体节能方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2151389B1 (es) * 1998-04-08 2001-07-01 Ros Roca Sa Procedimiento biologico de degradacion de residuos liquidos especialmente purines de porcino y/o vacuno.
ES2371612B1 (es) * 2009-07-17 2012-11-21 Depuración Biológica Y Bacteriológica De Aguas Residuales S.L. Instalación para la depuración de purines.

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928190A (en) * 1972-11-17 1975-12-23 Degremont Method of biological purification of sewage
EP0000006A1 (en) * 1977-06-06 1978-12-20 Stamicarbon B.V. Process for nitrification of waste water
GB2077712A (en) * 1980-06-13 1981-12-23 Saps Anticorrosion Process for aerobic biotreatment
EP0293521A2 (de) * 1987-06-04 1988-12-07 GebràœDer Sulzer Aktiengesellschaft Verfahren zur biologischen Reinigung von Wasser oder Abwasser von organischen stickstoffhaltigen verunreinigungen
FR2620439A1 (fr) * 1987-09-14 1989-03-17 Sgn Soc Gen Tech Nouvelle Procede et dispositif de traitement par fermentation methanique d'eaux residuaires lipidiques
FR2674844A1 (fr) * 1991-04-03 1992-10-09 Omnium Traitement Valorisa Procede et installation de traitement d'epuration de lisiers d'animaux.
US5156742A (en) * 1992-02-25 1992-10-20 Smith & Loveless, Inc. Liquid treatment method and apparatus
US5288407A (en) * 1992-04-06 1994-02-22 Henderson And Bodwell Denitrification system
WO1995025695A1 (en) * 1994-03-24 1995-09-28 Thames Water Utilities Limited Improvements in biological aerated filters

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928190A (en) * 1972-11-17 1975-12-23 Degremont Method of biological purification of sewage
EP0000006A1 (en) * 1977-06-06 1978-12-20 Stamicarbon B.V. Process for nitrification of waste water
GB2077712A (en) * 1980-06-13 1981-12-23 Saps Anticorrosion Process for aerobic biotreatment
EP0293521A2 (de) * 1987-06-04 1988-12-07 GebràœDer Sulzer Aktiengesellschaft Verfahren zur biologischen Reinigung von Wasser oder Abwasser von organischen stickstoffhaltigen verunreinigungen
FR2620439A1 (fr) * 1987-09-14 1989-03-17 Sgn Soc Gen Tech Nouvelle Procede et dispositif de traitement par fermentation methanique d'eaux residuaires lipidiques
FR2674844A1 (fr) * 1991-04-03 1992-10-09 Omnium Traitement Valorisa Procede et installation de traitement d'epuration de lisiers d'animaux.
US5156742A (en) * 1992-02-25 1992-10-20 Smith & Loveless, Inc. Liquid treatment method and apparatus
US5288407A (en) * 1992-04-06 1994-02-22 Henderson And Bodwell Denitrification system
WO1995025695A1 (en) * 1994-03-24 1995-09-28 Thames Water Utilities Limited Improvements in biological aerated filters

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041044A1 (de) * 1999-03-31 2000-10-04 Argus Umweltbiotechnologie GmbH Verfahren zur Reinigung von Phenole enthaltendem Abwasser
CN103833135A (zh) * 2014-03-07 2014-06-04 浦华环保有限公司 活性污泥污水处理装置及污水处理工艺
CN103833135B (zh) * 2014-03-07 2016-07-06 浦华环保股份有限公司 活性污泥污水处理装置及污水处理工艺
CN104058558A (zh) * 2014-07-10 2014-09-24 南京农业大学 一种猪场污水的循环利用方法
CN104058558B (zh) * 2014-07-10 2016-04-06 南京农业大学 一种猪场污水的循环利用方法
CN106630388A (zh) * 2016-11-24 2017-05-10 天津市环境保护科学研究院 一种工业园区污水处理的整体节能方法
CN106630388B (zh) * 2016-11-24 2020-05-22 天津市环境保护科学研究院 一种工业园区污水处理的整体节能方法

Also Published As

Publication number Publication date
ES2108658A1 (es) 1997-12-16
ES2108658B1 (es) 1998-07-01

Similar Documents

Publication Publication Date Title
CN103910463B (zh) 一种bc城市污水处理新工艺
JP3729332B2 (ja) アップフロー嫌気反応器を含む廃水処理装置、及び、それを利用した廃水処理方法
CN102149645A (zh) 污泥处理方法和装置及其在污水生物处理中的应用
CN106430845A (zh) 餐厨垃圾废水处理装置
CN201864644U (zh) 一体化脱氮除磷污水处理池
CN109761455A (zh) 一种合成及发酵类制药工业污水的处理方法
CN105384302A (zh) 养殖废水的处理***及其方法
CN102786184A (zh) 两级a/o—mbr脱氮除磷装置
CN105174622A (zh) 适于处理高浓度有机废水的***及其方法
CN101693576B (zh) 二级吸附快速处理无剩余污泥排放生活污水处理技术
CN105923763B (zh) 一种可渗透硫自养反硝化生物墙强化废水脱氮工艺
CN205035225U (zh) 高浓度氨氮有机废水的处理***
CN202729946U (zh) 一种两级a/o—mbr脱氮除磷装置
CN105152330B (zh) 一种用于垃圾渗滤液的处理方法
CN1693235A (zh) 气升式深水型氧化沟
CN105110571A (zh) 高浓度氨氮有机废水的处理***及其方法
KR101489134B1 (ko) 하폐수 고도처리 방법
WO1997047561A1 (es) Procedimiento biologico de depuracion de residuos liquidos de alta carga contaminante y/o alta toxicidad, en especial purines y alpechines
CN111747605A (zh) 一种多级物化-生化联用的生活污水处理***和处理方法
KR101074255B1 (ko) 활성화 조류를 이용한 하폐수 처리장치
KR100643843B1 (ko) 생물학적 여과를 포함하여 처리할 수 있는 복합기능형 오폐수처리용 반응조
CN210559922U (zh) 一种污水处理***
CN207259331U (zh) 一种餐厨垃圾浆料发酵废水处理装置
KR100530555B1 (ko) 소규모의 생물학적 오하수 고도 처리 장치 및 방법
CN207259332U (zh) 一种餐厨垃圾发酵废水处理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase