WO1997044471A2 - Plants de pomme de terre a activite reduite de la phosphorylase cytosolique de l'amidon et a comportement en germination modifie - Google Patents

Plants de pomme de terre a activite reduite de la phosphorylase cytosolique de l'amidon et a comportement en germination modifie Download PDF

Info

Publication number
WO1997044471A2
WO1997044471A2 PCT/EP1997/002513 EP9702513W WO9744471A2 WO 1997044471 A2 WO1997044471 A2 WO 1997044471A2 EP 9702513 W EP9702513 W EP 9702513W WO 9744471 A2 WO9744471 A2 WO 9744471A2
Authority
WO
WIPO (PCT)
Prior art keywords
tubers
plants
cytosolic
wild
transgenic potato
Prior art date
Application number
PCT/EP1997/002513
Other languages
German (de)
English (en)
Other versions
WO1997044471A3 (fr
Inventor
Jens Kossmann
Martin Steup
Elke Duwenig
Original Assignee
MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. filed Critical MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.
Priority to EP97923093A priority Critical patent/EP0906438A2/fr
Priority to AU28992/97A priority patent/AU2899297A/en
Publication of WO1997044471A2 publication Critical patent/WO1997044471A2/fr
Publication of WO1997044471A3 publication Critical patent/WO1997044471A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8267Seed dormancy, germination or sprouting

Definitions

  • the present invention relates to transgenic potato plants which contain cells with a reduced activity of the cytosolic starch phosphorylase compared to wild-type plants.
  • the tubers of such potato plants show a different germination behavior compared to tubers of wild-type plants, which leads to the formation of an increased number of shoot ends and consequently to an increased number of stolens and tubers. Such plants also have an increased yield.
  • the yield from the agricultural cultivation of potatoes is primarily determined by the number of shoot ends that are formed per tuber. Normally, a germinating potato tuber forms only one, sometimes 2 to 3, shoot ends, the growth of further potentially existing side shoots being suppressed due to the apikaidominance of these shoot ends. Starting from the shoot ends, stolons are formed during the further growth of the potato plants, on which the tubers are later formed. Since the crop yield correlates with the number of stolons formed by the developed shoots, there is an effort to manipulate the germination of potato plants in such a way that the largest possible number of "eyes" germinate and develop into shoot ends.
  • One method is to break off the first sprout of a tuber, which suppresses the growth of further sprouts due to its apica dominance. This leads to the growth of further shoots.
  • Another method is to pre-germinate the potatoes to be laid out fine under regulated conditions in special containers (see e.g. Bouman, kannbau 47 (1996), 18-21; van de Waart, etcbau 44 (1993), 18-20).
  • Bouman, istbau 47 (1996), 18-21; van de Waart, cauliflower 44 (1993), 18-20 are very cost-intensive since, in addition to the special containers, they also require storage rooms in which both the light and the temperature conditions can be regulated.
  • a genetic engineering manipulation of potato plants was already proposed in DE-A1 42 13 444 in such a way that enzymes involved in starch metabolism are inhibited. Appropriate approaches for increased sprout formation of the potato tubers are not yet known. There is therefore a need for potato plants or processes in which the labor-intensive or cost-intensive steps described above are unnecessary and which lead to an increased number
  • the present invention is therefore based on the object of providing potato plants whose tubers form a large number of shoot ends when germinated.
  • the invention relates to transgenic potato plants that contain cells with a compared to wild-type plants, i.e. corresponding non-transformed plants, contain at least 60% reduced activity of the cytosolic starch phosphoryl.
  • the activity of the cytosolic starch phosphorylase is reduced by at least 80% and particularly preferably by at least 95% compared to wild-type potato plants.
  • cytosolic starch phosphorylase is understood to mean the isoform of starch phosphorylase (EC 2.4.1.1) localized in the cytoplasm of plant cells, which also is known as isoform H or I. This differs from the second, the plastid isoform, in that it shows, for example, a much higher affinity for highly branched glucans (Shimomura et al., J. Biochem. (Tokyo) 91 (1982), 703-717; Yang and Steup, Plant Physiol. 94, 960-969) and a low affinity for oligoglucans.
  • the enzyme catalyzes the reversible phosphorolysis of ⁇ -1, 4-glucans.
  • the activity of the starch phosphorylase can be determined, for example, as described in Parvin and Smith (Anal. Biochem. 27 (1969), 65-72), Conrads et al. (Biochim. Biophys. Acta 882 (1986), 452-463), Steup and Latzko (Planta 145 (1979), 69-75), Steup (In. Methods in Plant Biochemistry 3; Academic Press Limited (1990), 103- 128) or Sonnewald et al. (Plant Mol. Biol. 27: 567-576 (1995)).
  • the activity of the cytosolic starch phosphorylase is preferably reduced in all or in almost all cells of the plant. At least, however, in the bulbs and the shoot ends that develop from them.
  • tubers of potato plants which have such a reduced activity of the cytosolic starch phosphorylase show a drastically changed germination behavior compared to tubers of wild-type plants. Germination here means the growth of shoot ends from tubers.
  • tubers of wild-type plants usually form 1, at most 2 to 3, shoot ends during normal germination. To increase the number of shoots, either the elimination of the apikai shoot or a pre-germination under special conditions is necessary.
  • tubers of the potato plants according to the invention which contain cells with a reduced cytosolic starch phosphorylase, show a drastically increased number of shoot ends when germinated, in particular after storage at 20 ° C. in the dark. This leads to the formation of more stolons and consequently more tubers per plant. Overall, the tuber yield per plant increases. This concerns both the number of tubers per plant and the total fresh weight of tubers per plant.
  • the average number of shoots which are formed per tuber when germination takes place after storage for 5 months at 20 ° C. in the dark is at least doubled in comparison to wild-type plants ⁇ zen, ie corresponding non-transformed plants.
  • the number of shoot ends which are formed per budding eye when the germination takes place after storage for 5 months at 20 ° C. in the dark is at least doubled in comparison to tubers of wild-type Plants, ie corresponding non-transformed plants.
  • the plants according to the invention also have an increased yield with regard to the number of tubers and the weight of the tubers.
  • the number of tubers per plant is preferably at least 20%, preferably at least 50% and particularly preferably at least 100% higher than in corresponding ones non-transformed plants under the same growth conditions.
  • the fresh tuber weight of all tubers per plant is preferably at least 10%, preferably at least 15% and particularly preferably at least 20% higher than in corresponding non-transformed plants under the same growth conditions.
  • the activity of the cytosolic starch phosphorylase in the cells of the potato plants according to the invention can be reduced in principle by various methods known to the person skilled in the art.
  • the activity of the cytosolic starch phosphorylase is reduced by inhibiting the expression of endogenous genes which code for this enzyme.
  • Molecular biological techniques based on an antisense, ribozyme or a cosuppression effect are preferred.
  • a corresponding RNA is expressed in the antisense orientation. This preferably has a length of at least 30 nucleotides, preferably of at least 50 nucleotides and particularly preferably of at least 100 nucleotides.
  • the expressed antisense-RNA should have a high homology to the transcripts expressed endogenously in the plant, which encode cytosolic starch phosphorylase.
  • the homology is preferably at least 90%, preferably at least 95% and particularly preferably at least 99%.
  • an RNA is expressed which can specifically cleave transcripts of cytosolic starch phosphorylase.
  • the expression of ribozymes for reducing the activity of certain enzymes in cells is also known to the person skilled in the art and is described, for example, in EP-Bl 0 321 201.
  • the expression of ribozymes in plant cells was described, for example, in Feyter et al. (Mol. Gen. Genet. 250 (1996), 329-338).
  • the cosuppression effect is based on the expression of a sense RNA which expresses the expression suppressed by endogenous starch phosphorylase mRNA.
  • the implementation of these techniques is known to the person skilled in the art.
  • the method of cosuppression is described, for example, in Jorgensen (Trends Biotechnol. 8 (1990), 340-344), Niebel et al. (Curr. Top. Microbiol. Immuno. 197 (1995), 91-103), Flavell et al. (Curr. Top Microbiol. Immuno. 197 (1995), 43-46), Palaqui and Vaucheret (Plant. Mol. Biol. 29 (1995), 149-159), Vaucheret et al. (Mol. Gen. Genet. 248 (1995), 311-317), de Borne et al. (Mol. Gen. Genet. 243 (1994), 613-621) and other sources.
  • the reduction in the activity of a cytosolic starch phosphorylase in the cells is achieved by producing transgenic potato plants which contain a recombinant DNA molecule which is stably integrated into the genome and comprises the following elements:
  • the promoter of the patatin gene B33 from potato is suitable for expression in the tubers of the potato plants (Rocha-Sosa et al., EMBO J.8 (1989), 23-29).
  • the 35S promoter of the CaMV (Franck et al., Cell 21 (1980), 285-292) is suitable, for example, for constitutive expression.
  • DNA sequences which encode a potato cytosolic starch phosphorylase have already been described (see, for example, Mori et al., J. Biol. Chem. 266 (1991), 18446-18453). With the help of these DNA sequences it is possible for the person skilled in the art to isolate further sequences using standard methods which cyto- encode potato starch phosphorylase, if necessary.
  • the activity of the cytosolic starch phosphorylase can also be reduced by inactivating the endogenously present genes which code for this enzyme. Techniques for this are, for example, transposon mutagenesis or gene tagging. Alternatively, there is also the possibility of expressing antibodies in the cells which specifically recognize cytosolic starch phosphorylase.
  • the present invention relates to propagation material of the potato plants according to the invention, in particular seeds and particularly preferably potato tubers. These contain cells with a reduced activity of the cytosolic starch phosphorylase in comparison with tubers of wild-type plants and an altered germination behavior as described above.
  • the invention also relates to the use of nucleic acid molecules which encode a cytosolic starch phosphorylase or parts thereof for the production of transgenic potato plants with a reduced activity of the cytosolic starch phosphorylase, in particular by at least 60% in comparison to corresponding non-transfor ⁇ mated plants, preferably by at least 80% and particularly preferably by at least 95% and a changed germination behavior.
  • Figure 1 shows schematically the plasmid pBin-Anti-STPI K ⁇ r ⁇ .
  • cSTP 1.7 approx. 1.7 kb long DNA fragment which comprises part of the coding region for cytosolic starch phosphorylase from potato and is linked in antisense orientation to the 35S promoter.
  • FIG. 2 shows two polyacrylamide gels for detecting the activity of the cytosolic starch phosphorylase in leaf (A) and tuber tissue (B) transgenic potato plants which have been transformed with the plasmid pBin-Anti-STPI K ⁇ n .
  • Raw protein extracts from leaf and tuber tissue were separated in a non-denaturing polyacrylamide gel (discontinuous system; 12% and 4% (w / v) acrylamide).
  • the separating gel contained 2.4% (w / v) glycogen.
  • Approx. 20 ⁇ g protein was applied per lane.
  • the electrophoresis was carried out at 100 volts for 4 h. The direction of migration is from the top (cathode) to the bottom (anode).
  • the gels were incubated overnight in 20 mM glucose-1-phosphate / 100 mM citrate, pH 6.0 at room temperature. Protein bands with starch-synthesizing activity are visible as blue bands.
  • the cytosolic starch phosphorase (STPI) is strongly inhibited in its mobility by the immobilized polysaccharide.
  • the plastidic starch phosphorylase (STPII) is not so badly affected in its rate of migration.
  • FIG. 3 shows the germination behavior of tubers of wild-type plants (S. tuberosum L. cv Desiree; right) in comparison to tubers of transformed line cSTP 9 (left) after storage for 5 months at 20 ° C in the dark.
  • FIG. 4 shows the germination behavior of tubers from wild-type plants (center) in comparison to tubers of the transformed lines cSTP 6 (left) and cSTP 7 (right) after storage for 10 months at 20 ° C. in the dark .
  • FIG. 5 shows a statistical overview of the number of shoot ends formed on average per tuber or per 25 tuber in tubers of wild-type plants (cDesi) or the transformed lines (cSTP-6, -7, -9, -14, - 15, -16 and -18) after storage for 5 months at 20 ° C in the dark.
  • FIG. 6 shows a statistical overview of the average number of shoot ends formed per "eye" in tubers from wild-type plants (cDesi) and tubers in transformed lines (cSTP-6, -7, -9, -14, -15, -16 and -18).
  • the E.coli strain DH5 ⁇ (Bethesda Research Laboratories, Gaithersburgh, USA) was used for cloning.
  • the DNA was transferred by direct transformation using the Höfgen & Willmitzer method (Nucleic Acids Res. 16 (1988), 9877).
  • the plasmid DNA of transformed Agrobacteria was isolated by the method of Birnboim, & Doly (Nucleic Acids Res. 7 (1979), 1513-1523) and analyzed by gel electrophoresis after a suitable restriction cleavage.
  • the membrane was prehybridized in NSEB buffer for 2 h at 68 ° C. and then hybridized in NSEB buffer overnight at 6B ° C. in the presence of the radioactively labeled sample.
  • Potato plants are kept in the greenhouse under the following conditions:
  • the plants are kept in individual pots (200 cm 2 , 15 cm deep) and watered daily.
  • the tubers are harvested 4 months after the transfer of the tissue culture plants into the greenhouse.
  • Tubers with a fresh weight of 8-16 g are used for biochemical analyzes. The fresh weight is determined immediately after harvesting.
  • the harvested tubers are washed and stored in boxes at 20 ° C for 5 to 10 months in the dark. Examples
  • an antisense construct which encodes an anti-sense RNA to transcripts which encode cytosolic starch phosphorylase from potato
  • part of the coding region described in Mori et al. (loc. cit.) described cDNA amplified by means of PCR from a ⁇ ZAP cDNA library from tuber tissue.
  • a 1.7 kb Asp718 / Smal fragment was inserted with smooth ends into the Smal interface of the binary plant transformation vector pBIN19 (Bevan, Nucl. Acids Res. 12 (1984), 8711-8721). This contains the 35S promoter of the CaMV and the polyadenylation signal of the octopine synthase gene. Restriction digestion ensured that the coding region was arranged in an antisense orientation to the promoter.
  • the resulting construct was designated pBin-Anti-STPI Km (see FIG. 1).
  • the vector pBin-Anti-STP Km was introduced into the Agrobacterium tumefaciens strain C58C1: pGV2260 (Höfgen and Willmitzer, Nucl. Acid Res. 16
  • RNA from leaf or tuber material was isolated from various independent lines of the transgenic potato plants produced according to Example 2 and analyzed by means of Northern blot analysis for the expression of mRNA which encodes cytosolic starch phosphorylase.
  • mRNA which encodes cytosolic starch phosphorylase.
  • samples from wild-type plants Solanum tuberosum L. cv. Desiree
  • the detection of the activity of the cytosolic starch phosphorylase in tissues of the transformed potato plants was carried out by the method of Steup (In: Methods in Plant Biochemistry 3, Academic Press Limited (1990), 103-128).
  • crude protein extracts were first obtained from the tissues to be examined by freezing tissue in extraction buffer (100 mM HEPES-NaOH, pH 7.5; 1 mM EDTA, 10% (vol. / Vol.) Glycerol; 5 mM DTT , 200 mg Na 2 S0 3 ; 150 mg Na 2 S 2 0 5 ) homogenized. After centrifugation, the clear supernatant was separated in a polyacrylamide gel.
  • Electrophoresis was carried out as described in Steup and Latzko (Planta 145 (1979), 69-759). Here a non-de- natural discontinuous system used (12% or 4% (w / v) acrylamide).
  • the separating gel contained 2.4% (w / v) glycogen.
  • the gel was run after the gel run in a solution of 20 mM glucose-1-phosphate / 100 mM citrate; pH 6.0 incubated overnight at room temperature. The gel was then incubated in a Lugolian solution for 5 min. Decolorization was carried out by extensive washing with water over a longer period of time. Blue color indicates the presence of starch-synthesizing enzyme activities.
  • the activity of the cytosolic starch phosphorylase can subsequently be determined, for example, by densitometric analysis of the corresponding protein bands.
  • FIG. 2 shows a polyacrylamide gel in which seven independent transgenic potato lines produced according to Example 2 were tested for their activity on cytosolic starch phosphorylase.
  • tubers of the plants were stored at 20 ° C. and the germination behavior of the tubers was examined after various periods.
  • Figure 3 shows a comparison of tubers of Solanum tuberosum L. cv. Desiree (wild type) and tubers of the line cSTPI-9 transformed with the plasmid pBin-Anti-STPI Km , each of which had been stored at 20 ° C. for 5 months.
  • FIG. 4 shows a comparison of wild-type tubers and tubers from two other transformed lines (cSTPI-6 and cSTPI-7) which have been stored at 20 ° C. for 10 months. It is clear from the two figures that the tubers of the transformed lines, which have a reduced activity of the cytosolic starch phosphorylase, have a drastically changed germination behavior.
  • the bulbs of the transformed lines form on the one hand significantly more shoot ends per bulb and also more shoot ends per out of no eye. Furthermore, more eyes usually germinate in the tubers of the transformed plants with reduced activity of the cytosolic starch phosphorylase.
  • a statistical evaluation according to - is shown in FIGS. 5 and 6.
  • the potato plants growing from the tubers of the transformed plants furthermore show an increased yield (in fresh bulb weight / plant). This is shown in the following table using the example of the transformed lines cStP6, cSTP7, cSTP9, CSTP14, CSTP15, CSTP16 and cSTP18.
  • the table shows that plants with a reduced activity of the cytosolic starch phosphorylase on the one hand form more tubers per plant than Wild-type plants and, moreover, the fresh tuber weight per plant is significantly higher than in wild-type plants.
  • the transformed potato plants do not differ from wild-type plants with regard to the starch formed in the tubers.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

L'invention concerne des pommes de terre transgéniques qui contiennent des cellules à activité réduite de la phosphorylase cytosolique de l'amidon, comparativement aux plantes de type sauvage. Les tubercules de ce type de pommes de terre présentent, comparativement aux tubercules de plantes de type sauvage, un comportement en germination radicalement changé, qui entraîne la formation d'un nombre élevé d'extrémités de pousses et par conséquent un nombre élevé de stolons et de tubercules. Les plantes issues de ce type de tubercules permettent d'obtenir des rendements plus élevés.
PCT/EP1997/002513 1996-05-17 1997-05-15 Plants de pomme de terre a activite reduite de la phosphorylase cytosolique de l'amidon et a comportement en germination modifie WO1997044471A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP97923093A EP0906438A2 (fr) 1996-05-17 1997-05-15 Plants de pomme de terre a activite reduite de la phosphorylase cytosolique de l'amidon et a comportement en germination modifie
AU28992/97A AU2899297A (en) 1996-05-17 1997-05-15 Potato plants with reduced cytosolic starch phosphorylasis and modified germination

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19619917A DE19619917A1 (de) 1996-05-17 1996-05-17 Kartoffelpflanzen mit einer verringerten Aktivität der cytosolischen Stärkephosphorylase und einem veränderten Keimungsverhalten
DE19619917.4 1996-05-17

Publications (2)

Publication Number Publication Date
WO1997044471A2 true WO1997044471A2 (fr) 1997-11-27
WO1997044471A3 WO1997044471A3 (fr) 1997-12-24

Family

ID=7794572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/002513 WO1997044471A2 (fr) 1996-05-17 1997-05-15 Plants de pomme de terre a activite reduite de la phosphorylase cytosolique de l'amidon et a comportement en germination modifie

Country Status (4)

Country Link
EP (1) EP0906438A2 (fr)
AU (1) AU2899297A (fr)
DE (1) DE19619917A1 (fr)
WO (1) WO1997044471A2 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040503A1 (fr) * 1997-03-10 1998-09-17 Planttec Biotechnologie Gmbh Molecules d'acide nucleique codant la phosphorylase d'amidon provenant du maïs
WO2000023597A2 (fr) * 1998-10-16 2000-04-27 Scottish Crop Research Institute Promoteurs specifiques de tissu pour expression genique
FR2868080A1 (fr) * 2004-03-29 2005-09-30 Genoplante Valor Soc Par Actio Procede d'amelioration des plantes
WO2006056468A1 (fr) * 2004-11-27 2006-06-01 Metanomics Gmbh Accroissement dans le rendement par la reduction de l'expression genetique
WO2010046422A2 (fr) 2008-10-22 2010-04-29 Basf Se Utilisation d'herbicides de type auxine sur des plantes cultivées
WO2010046423A2 (fr) 2008-10-22 2010-04-29 Basf Se Utilisation d'herbicides sulfonylurées sur des plantes cultivées
WO2014053395A1 (fr) 2012-10-01 2014-04-10 Basf Se Utilisation de composés de n-thio-anthranilamide sur des plantes cultivées
WO2014079820A1 (fr) 2012-11-22 2014-05-30 Basf Se Utilisation de composés d'anthranilamides pour réduire les infections virales véhiculées par les insectes
EP3028573A1 (fr) 2014-12-05 2016-06-08 Basf Se Utilisation d'un triazole fongicide sur des plantes transgéniques
WO2016091674A1 (fr) 2014-12-12 2016-06-16 Basf Se Utilisation de cyclaniliprole sur des plantes cultivées
WO2016162371A1 (fr) 2015-04-07 2016-10-13 Basf Agrochemical Products B.V. Utilisation d'un composé de carboxamide insecticide contre les nuisibles sur des plantes cultivées
EP3338552A1 (fr) 2016-12-21 2018-06-27 Basf Se Utilisation d'un fongicide tetrazolinone sur des plantes transgéniques
CN114085838A (zh) * 2021-12-02 2022-02-25 甘肃农业大学 马铃薯stu-miRn220及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0530978A2 (fr) * 1991-08-08 1993-03-10 Advanced Technologies (Cambridge) Limited Modification de l'accumulation de saccharose
WO1995026407A1 (fr) * 1994-03-25 1995-10-05 National Starch And Chemical Investment Holding Corporation Procede pour produire une fecule modifiee a partir de plants de pommes de terre
DE4444460A1 (de) * 1994-11-29 1996-05-30 Inst Genbiologische Forschung Verfahren zur Steigerung des Ertrags sowie zur Veränderung des Blühverhaltens bei Pflanzen
WO1996024679A1 (fr) * 1995-02-10 1996-08-15 Monsanto Company Expression de la phosphorylase du sucrose dans des plantes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4213444A1 (de) * 1992-04-18 1993-10-28 Inst Genbiologische Forschung Verfahren zur Herstellung von Kartoffelpflanzen, deren Knollensprossung unterdrückt ist

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0530978A2 (fr) * 1991-08-08 1993-03-10 Advanced Technologies (Cambridge) Limited Modification de l'accumulation de saccharose
WO1995026407A1 (fr) * 1994-03-25 1995-10-05 National Starch And Chemical Investment Holding Corporation Procede pour produire une fecule modifiee a partir de plants de pommes de terre
DE4444460A1 (de) * 1994-11-29 1996-05-30 Inst Genbiologische Forschung Verfahren zur Steigerung des Ertrags sowie zur Veränderung des Blühverhaltens bei Pflanzen
WO1996024679A1 (fr) * 1995-02-10 1996-08-15 Monsanto Company Expression de la phosphorylase du sucrose dans des plantes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BHATT A AND KNOWLER J.T.: "Tissue distribution and change in potato starch phosphorylase mRNA levels in wounded tissue and sprouting tubers" EUROPEAN JOURNAL OF BIOCHEMISTRY, Bd. 204, 1992, BERLIN,DE, Seiten 971-975, XP002044530 *
HAGENIMANA V. AND SIMARD R.E.: "Amylolytic activity in germinating sweetpotato (Ipomoea batatas L.) roots" JOURNAL OF AMERICAN SOCIETY OF HORTICULTURAL SCIENCE, Bd. 119, Nr. 2, 1994, ITHACA,US, Seiten 313-320, XP002044529 *
SONNEWALD U. ET AL.: "A second L-type isozyme of potato glucan phosphorylase: cloning, antisense inhibition and expression analysis" PLANT MOLECULAR BIOLOGY, Bd. 27, 1995, DORDRECHT NL, Seiten 567-576, XP002044528 in der Anmeldung erwähnt *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040503A1 (fr) * 1997-03-10 1998-09-17 Planttec Biotechnologie Gmbh Molecules d'acide nucleique codant la phosphorylase d'amidon provenant du maïs
US6353154B1 (en) 1997-03-10 2002-03-05 Planttec Biotechnologie Gmbh Forschung & Entwicklung Nucleic acid molecules encoding starch phosphorylase from maize
US6686514B2 (en) 1997-03-10 2004-02-03 Planttec Biotechnologie Gmbh Forshung & Entwicklung Nucleic acid molecules encoding starch phosphorylase from maize
WO2000023597A2 (fr) * 1998-10-16 2000-04-27 Scottish Crop Research Institute Promoteurs specifiques de tissu pour expression genique
WO2000023597A3 (fr) * 1998-10-16 2000-07-27 Scottish Crop Research Inst Promoteurs specifiques de tissu pour expression genique
FR2868080A1 (fr) * 2004-03-29 2005-09-30 Genoplante Valor Soc Par Actio Procede d'amelioration des plantes
WO2005097999A1 (fr) * 2004-03-29 2005-10-20 Genoplante-Valor Procede d'amelioration des plantes
US7982095B2 (en) 2004-11-27 2011-07-19 Metanomics Gmbh Increase in yield by reducing gene expression
WO2006056468A1 (fr) * 2004-11-27 2006-06-01 Metanomics Gmbh Accroissement dans le rendement par la reduction de l'expression genetique
AU2005308906B2 (en) * 2004-11-27 2012-01-12 Metanomics Gmbh Increase in yield by reducing gene expression
WO2010046422A2 (fr) 2008-10-22 2010-04-29 Basf Se Utilisation d'herbicides de type auxine sur des plantes cultivées
WO2010046423A2 (fr) 2008-10-22 2010-04-29 Basf Se Utilisation d'herbicides sulfonylurées sur des plantes cultivées
WO2014053395A1 (fr) 2012-10-01 2014-04-10 Basf Se Utilisation de composés de n-thio-anthranilamide sur des plantes cultivées
WO2014079820A1 (fr) 2012-11-22 2014-05-30 Basf Se Utilisation de composés d'anthranilamides pour réduire les infections virales véhiculées par les insectes
EP3028573A1 (fr) 2014-12-05 2016-06-08 Basf Se Utilisation d'un triazole fongicide sur des plantes transgéniques
WO2016091674A1 (fr) 2014-12-12 2016-06-16 Basf Se Utilisation de cyclaniliprole sur des plantes cultivées
WO2016162371A1 (fr) 2015-04-07 2016-10-13 Basf Agrochemical Products B.V. Utilisation d'un composé de carboxamide insecticide contre les nuisibles sur des plantes cultivées
EP3338552A1 (fr) 2016-12-21 2018-06-27 Basf Se Utilisation d'un fongicide tetrazolinone sur des plantes transgéniques
CN114085838A (zh) * 2021-12-02 2022-02-25 甘肃农业大学 马铃薯stu-miRn220及其应用
CN114085838B (zh) * 2021-12-02 2023-08-15 甘肃农业大学 马铃薯stu-miRn220及其应用

Also Published As

Publication number Publication date
AU2899297A (en) 1997-12-09
DE19619917A1 (de) 1997-11-20
EP0906438A2 (fr) 1999-04-07
WO1997044471A3 (fr) 1997-12-24

Similar Documents

Publication Publication Date Title
DE69133347T2 (de) Plasmide, die die DNA-Sequenzen für die Veränderung des Kohlehydrat- und Proteingehalts bzw. Komposition in Pflanzen enthalten, sowie diese Plasmide enthaltende Pflanzen und Pflanzenzellen
DE4004800C2 (de) Im Habitus und Ertrag veränderte transgene Pflanzen
DE69333079T2 (de) Expressionskassette und plasmid für eine expression spezifisch für schliesszellen und ihre verwendung zur einführung in transgene pflanzenzellen und pflanzen
DE19509695A1 (de) Verfahren zur Herstellung einer modifizieren Stärke in Pflanzen, sowie die aus den Pflanzen isolierbare modifizierte Stärke
DE4441408A1 (de) DNA-Sequenzen aus Solanum tuberosum kodierend Enzyme, die an der Stärkesynthese beteiligt sind, Plasmide, Bakterien, Pflanzenzellen und transgene Pflanzen enhaltend diese Sequenzen
DE19653176A1 (de) Neue Nucleinsäuremoleküle aus Mais und ihre Verwendung zur Herstellung einer modifizierten Stärke
EP0906438A2 (fr) Plants de pomme de terre a activite reduite de la phosphorylase cytosolique de l'amidon et a comportement en germination modifie
DE4035756A1 (de) Neue plasmide zur herstellung von im habitus und ertrag veraenderten transgenen pflanzen
DE19502053A1 (de) Verfahren und DNA-Moleküle zur Steigerung der Photosyntheserate in Pflanzen, sowie Pflanzenzellen und Pflanzen mit gesteigerter Photosyntheserate
DE69432988T2 (de) Für ammonium-transporter kodierende dna-sequenzen und dieser enthaltende, plasmide, bakterien, hefen und pflanzenzellen
DE19752647C1 (de) Reduktiion des Chlorophyllgehaltes in Ölpflanzensamen
DE19734218A1 (de) Verfahren zur Ertragssteigerung in Pflanzen
DE69837396T2 (de) Genetisches verfahren
EP0918849A1 (fr) Cellules vegetales et plantes transgeniques a formation acetyle-coa modifiee
WO1996013595A1 (fr) Procede permettant de modifier la floraison de plantes
DE60008962T2 (de) Klonierung einer N-Methyltransferase, die an der Koffeinbiosynthese beteiligt ist
DE19529696A1 (de) Transgene Pflanzenzellen und Pflanzen mit gesteigerter Glykolyserate
WO1999022011A1 (fr) Reduction de la teneur en chlorophylle dans des graines de plantes oleagineuses
EP1105511A1 (fr) Plantes transgeniques et cellules vegetales presentant une expression reduite des inhibiteurs d'invertase
DE19914792A1 (de) Metabolische Selektionsmarker für Pflanzen
DE19607697C2 (de) Speicherwurzelgewebespezifisches Regulon der Zuckerrübe
EP1112367B1 (fr) Agents et procede pour la modification du metabolisme glutamique dans des plantes, en particulier dans des betteraves a sucre
DE19632121C2 (de) Transgene Pflanzenzellen und Pflanzen mit veränderter Acetyl-CoA-Bildung
EP1346054B1 (fr) Acides nucleiques codant pour des invertases vacuolaires, cellules vegetales et plantes contenant ces acides nucleiques, ainsi que leur utilisation
DE4408629A1 (de) Verfahren zur Inhibierung der Blütenbildung in Pflanzen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997923093

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97541502

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1997923093

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1997923093

Country of ref document: EP