WO1997023727A1 - Motor - Google Patents

Motor Download PDF

Info

Publication number
WO1997023727A1
WO1997023727A1 PCT/JP1996/003769 JP9603769W WO9723727A1 WO 1997023727 A1 WO1997023727 A1 WO 1997023727A1 JP 9603769 W JP9603769 W JP 9603769W WO 9723727 A1 WO9723727 A1 WO 9723727A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
coil
phase
current
ring
Prior art date
Application number
PCT/JP1996/003769
Other languages
French (fr)
Japanese (ja)
Inventor
Muneaki Takara
Original Assignee
Muneaki Takara
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Muneaki Takara filed Critical Muneaki Takara
Publication of WO1997023727A1 publication Critical patent/WO1997023727A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K25/00DC interrupter motors or generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
    • H02K33/10Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs wherein the alternate energisation and de-energisation of the single coil system is effected or controlled by movement of the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • H02K7/075Means for converting reciprocating motion into rotary motion or vice versa using crankshafts or eccentrics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays

Definitions

  • the present invention relates to an electric device
  • the output power was generally the same even if the number of windings was increased for both the AC motor and the DC motor.Therefore, the AC motor can be made more formally compact.
  • the mainstream is the adoption of AC motors, and concludes that most manufacturers of DC motors have stopped developing and manufacturing.
  • this cycle DC also has properties similar to AC, so DC and AC can be combined.
  • the present invention particularly targets motors ⁇ 'This DC cycle device resembles the conventional vehicle distributor and the identification coil, and the DC motor commutator.However, these conventional devices are used only to generate frequencies. Is not captured, it is merely for the purpose of tuning the rotation, not for the purpose of controlling the rotation, because the rotation control of the DC motor is performed by voltage and current, and the rotation control of the engine is controlled by the fuel feeding. Because it is done in big and small:
  • AC motors have an inverter as an AC motor control device that incorporates frequency as a necessary condition in rotation control.
  • This converts commercial AC, which is a general power supply, to DC, and converts this DC to electronic power.
  • the purpose is to control the AC motor by controlling the frequency and voltage by making the element as close as possible to general AC again.
  • the aim of the present invention is merely to control the frequency for direct current without losing the properties of the direct current and the coil.- If this idea is effective, it is presumed that the AC motor can also rotate. However, there is no need to consider the use of DC with this frequency separately for DC motors and AC motors.It is important to note that not only rotors but also stators can use AC motors for DC motors. Because it is well known: Disclosure of the invention
  • switch means is provided separately from the rotating shaft of the motor, and the switch means receives DC and commutates or interrupts the DC to apply the applied output to the exciting coil of the motor.
  • a motor is provided that is configured to variably control the commutation or intermittent frequency of the applied output independently of the rotation state of the motor without using the rotation position information of the rotating shaft of the motor.
  • FIG. 1 is a diagram showing an example of the overall configuration of the electric device of the present invention.
  • FIG. 2 is a diagram showing a connection relationship between rings of the rotary switch according to the embodiment.
  • FIG. 3 is a cross-sectional view of the rotary switch of the embodiment.
  • FIG. 4 is a cross-sectional view of a battery input ring portion of the rotary switch according to the embodiment.
  • FIG. 5 is a diagram showing the coil connection of the motor of the embodiment:
  • FIG. 6 is a diagram illustrating general coil wiring of the motor according to the embodiment.
  • FIG. 7 is a diagram illustrating general coil wiring of the motor according to the embodiment.
  • FIG. 8 is a diagram showing the output waveform from the rotary switch of the embodiment:
  • FIG. 9 shows another embodiment of the rotary switch:
  • FIG. 10 is a diagram showing a torque measuring method in the electric device of the embodiment.
  • FIG. 11 is a diagram showing a torque measuring method in the electric device of the embodiment.
  • Figure 2 is a diagram showing another embodiment of the present invention (when applied to a star connection of a three-phase induction motor).
  • Fig. 13 is a diagram showing the output waveform of the rotary switch in the embodiment of Fig. 14.
  • Fig. 14 is a cross-sectional view of an electromagnetic biston type electric motor.
  • Fig. 15 is an external view of the cylinder and the piston part of this electromagnetic piston motor.
  • Figure 16 is a diagram showing a modification of the brush
  • Fig. 17 is a diagram showing an example of an electromagnetic biston engine with a 6-unit assembly:
  • Fig. 18 is a diagram illustrating how to drive an electromagnetic biston engine with a 6-unit assembly with 3-phase AC power
  • Fig. 19 is a diagram for explaining how to drive an electromagnetic biston engine with a six-unit assembly with a battery using a mechanical commutator.
  • FIG. 2 () illustrates the direction of the exciting current of the exciting coil in the embodiment of FIG. 16:
  • Figure 21 shows a rotary switch of an electromagnetic piston engine with a six-unit assembly.
  • FIG. 22 is a diagram showing a wiring mode of each electrode in the rotary switch.
  • FIG. 23 is a view showing a motor of another embodiment to which the present invention is applied.
  • FIG. 24 is a diagram showing a rotary switch applied to the motor of FIG. 23-FIG. 25 is a diagram showing a connection example between each ring of the rotary switch
  • FIG. 26 is a view showing a modification of the two-piece ring of the rotary switch.
  • FIG. 1 is a view showing the entire configuration of the embodiment apparatus.
  • 4 is a rotary switch
  • 2 is an auxiliary motor for rotating the rotary switch
  • 3 is a DC battery for supplying a direct current to the rotary switch
  • 1 is a three-phase induction motor supplied with operating current from a rotary switch 4
  • the rotary switch 4 has a shape in which nine rings are conveniently fixed to a rotary shaft 41, and a rotary 42 is mounted on the rotary shaft 41, and the rotary shaft 2 1 of the auxiliary motor 2 is provided.
  • a belt is stretched between the bridge and ⁇ 2 attached to the motor, and by rotating the catching motor 2, the rotating shaft 4 1 of the rotary switch 1 can also be rotated. 2 can set the rotation speed arbitrarily.
  • FIG. 3 shows the overall configuration of the rotary switch 4, and FIG. 2 shows the electrical connection of the ring fixed to the rotary shaft 41.
  • nine rings are conveniently mounted on the rotary shaft 41.
  • Three rings Rb to Rb3 are for battery current input, and six rings Rul, Ru2, Rvl, Rv2, Kwl, Rw2 are This is for supplying power to the motor 1.
  • Two brushes B b and B b ′ are provided at intervals of 90 on each of the battery current input rings Rb 1 to Rb 3 as shown in FIG.
  • the two brushes Bb and Bb ' are connected to the positive terminal (+) and the negative terminal (one) of the battery 3, respectively.
  • Rings Rul, Ru2, Rvl, Rv2, Rwl, and Rw2 are non-cut annular bodies, and rings Rul and Ru2 are used to supply power to the u-phase coil of the motor described later.
  • RV1 and RV2 are used to supply power to the V-phase coil
  • rings Rw1 and Rw2 are used to supply power to the w-phase coil
  • used to supply the battery current input ring Rb1 to Rb3 and the coil -ring Ku l, Ru 2, Rv l , R v 2 s Kw l, and R w 2 are connected by a conductive sign line as shown in Figure 2: it should be noted that the wiring to the rotary shaft 41 in fact It is performed through the provided grooves, etc .:
  • the coil for power supply Ru1, Ru, Rvl, Kv2, Kw] and Kw2 have output extraction brushes Bu1, Bu2, Bvl, ⁇ .
  • ⁇ w 1, Bw 2 is in sliding contact with the output take-out brush Bu Bu 2 is to the u-phase coil of motor 1 described later, output take-out brushes BV1, 132 are to the phase coil, and output take-out brush Bw 1, Bw 2 are connected to the w-phase coil respectively
  • This rotary switch 4 can extract the current of positive / negative commutation from the coil power supply rings Rul, Ru2, Rvl, Rv2, Rwl, and Rw2 every time each of the four split rings rotates 90 times.
  • Fig. 8 shows the voltages extracted from each pair of the power supply rings Ru l, Ru 2, Rv l, Rv 2, Rwl, and Rw2 for the u-phase, V-phase, and w-phase coils. waveform.
  • 3-phase induction motor 1 specifically, c manufacturers are using by modifying the following products: Fuji Electrical Co.
  • This motor has 36 stator winding grooves, and has three coils of u-phase, V-phase, and w-phase, and these phase coils are star-connected to each other.
  • the winding of each phase is composed of two windings (shown by a solid line and a dotted line in FIGS. 6 and 7 described later), and the windings on the diagonal line are illustrated in FIG.
  • the number of turns of this u-phase wound at two opposing positions is 32 turns at 1 turn position and the winding force at 1 turn position is 3 turns, so the total number of turns is 96 turns.
  • Phase, V phase, and w phase windings are wound by 1 2 ( ⁇
  • the motor 1 is modified as shown in FIG.
  • the u-phase, V-phase, and w-phase were connected in a staggered manner, but the star connection was cut off at the center where they were connected to each other, and the windings of each phase became two pairs.
  • the winding was separated at the beginning and end of the winding into one by one, and the beginning and end of one were connected to terminals 1 and 2, and the beginning and end of the remaining one were Connect to terminals 3 and ⁇
  • This is done for each of u-phase, v-phase, and w-phase. Therefore, the number of windings is conveniently 12 and the number of terminals is also 12.
  • Each I-turn has 96 turns.
  • the number of turns in the u-phase, V-phase, and w-phase is 96 turns when one is connected, and 92 turns when two are connected in series.
  • the resistance value of 96 turns for one wire is 1 ⁇ , so the resistance value for 192 turns when two wires are connected in series is 2 ⁇ .
  • the DC battery 3 uses two “YU AS A MF 38132 OR PAFECTA” connected in series.
  • the 24 V alternator of the car is turned by a motor, and the battery is charged and used as a power source for this electric device.
  • the operation of this electric device is based on rotating the rotary switch 4 with the auxiliary motor 2, thereby commutating the DC output of the battery 3 and supplying it to the coils of each phase of the motor 1, thereby rotating the motor 1.
  • the commutation frequency of the current (voltage) supplied to each phase coil of the motor 1 can be controlled by adjusting the rotation speed of the auxiliary motor 2 to an arbitrary value. That is, a 50 cm L steel material 8 was fixed to the wheel 12 of the motor 1 by welding, and the other end of the steel material 8 was The stationary torque meter (load cell) 6 for measuring the static torque was placed so as to receive the pressing force from the L steel material 8 which received the rotational force of the motor.
  • Kyowa Electric Manufacturing Torque Meter Name Strain gauge type load cell Beam type Model LUB-5K1 and instrumentation width gauge WG 1-300 E3. This static torque meter 6 was measured with a load of 50 cm, and 0 11 ⁇ adjustment was 0.624.
  • the wiring on the negative terminal (1) side of the battery 3 was clamped using a clamp measuring instrument 5, and the magnitude of the I) C current flowing through the wiring was measured.
  • the rotation of the motor using the ACZDC Digital Clamp Meter MODEL SK-77 1U manufactured by Riki Ise Co., Ltd. was measured with an optical sensor by attaching a seal to the motor shaft. did:
  • the measurement was performed for each of the 96 turns with one winding and the 192 turns with two windings connected in series.
  • Tornolec measured by static torque meter 1.65 ⁇ ; 1.85 kgm
  • the measurement results showed that the current at 192 turns was less than half that at 96 turns, while the torque was an approximate value.
  • This rotation was measured at a rotation speed of the rotary switch 4 of 1600 rpm and an output of 53 Hz or equivalent, and was measured while charging the battery 3 from the alternator.
  • the output voltage of the battery 3 was 28.4 V DC Met
  • the u-phase, V-phase, and w-phase coils of the motor can be rotated with these three-phase cycle direct currents even if the three-phase induction motors are separated in a star but are star-connected.
  • three three-part Rb to R The configuration of b3 remains as it is, and as shown in Fig. 12, the extraction rings Rul, Ru2, Rvl, Rv2, Rwl, and Kw2 have only one of the pairs of phases (that is, 3) and connect the wires to the terminals (3 terminals) of each phase of the motor.
  • the extraction rings Rul, Ru2, Rvl, Rv2, Rwl, and Kw2 have only one of the pairs of phases (that is, 3) and connect the wires to the terminals (3 terminals) of each phase of the motor.
  • the efficiency may be improved.
  • the setting of the number of turns is a ratio of ⁇ : 2 (that is, 96 turns and 192 turns), but the upper limit of the number of turns is theoretically infinite. Establishing the proper spacing between each of the drop lines will likely work in a better direction-.
  • the present invention is not limited to an AC motor, but can be applied to a normal DC motor. That is, a commutation current or an intermittent current taken out of the rotary switch 4 is supplied to a coil of the DC motor. Further, the form of the rotary switch 4 is not limited to that of the above-described embodiment. For example, as shown in FIG.
  • brushes Bu, Bu ′, ⁇ , ⁇ ′, Bw, Bw are fixed to the rotating shaft, and the rings for taking out the output of each phase are slid on the outer peripheral side with brushes Bu, Bu,, ⁇ ⁇ , ⁇ ', Bw, Bw' may be provided to other words, the cylindrical insulator 43 u, 43 v, and 43w provided on the rotary shaft 41, respectively 9 (): a pair of brush B u arranged at intervals, B u ', Fix ⁇ , ⁇ ', Bw, Bw'.Ring Rb1, Rb2 Which are supplied with a DC input from the battery 3 via the brushes Br 1 and Br 2, and each of the brushes Bu, Bu ′, ⁇ , ⁇ ′, Bw, Bw, and the rings Rbl, R The connection between b2 is shown in Fig.
  • Output extraction rings Ru, Rv, and Rw are each divided into four parts, and 1 2 0: one by hand can thereby reduce the size of the rotary Suitsuchi to shift the dividing position, in Kakaro rotary switch, if we increase the 4 split ring 8, 1 6, 3 2 and minutes harm 4 to, 6 OH 80 () rpm for z divided by 90 () rpm, 90 () rpm for 8 divided, 450 rpm for 16 divided, 2 25 rpm for 3 divided, small enough to allow division The required cycle of rotation can be extracted with a smaller rotation, and the distributor method shown in Fig. 9 is good for this.
  • This rotary switch 4 is not limited to a mechanical type, but is an electronic device.
  • the DC input from the battery is commutated or intermittent when the electronic element is turned on and off, and the output is applied to the motor coil, and the frequency of the commutation or intermittent output is arbitrary.
  • a rotation position detection mechanism consisting of a Hall element and the like for detecting the rotation position of the brushless DC motor is connected to the rotation axis of the brushless DC motor.
  • An excitation current may be created by determining the excitation timing of the motor coil, and the coil of the motor to be controlled may be driven.
  • the rotation of the brushless DC motor is controlled by an electronic circuit separate from the rotation axis of the motor.
  • the brushless DC motor is similar to the present invention, but as described below, the brushless DC motor is In contrast to applying a PWM (Halss width modulated) output to the coil in accordance with the rotational position, the present invention commutates or interrupts the DC applied to the coil regardless of the rotor rotational position. The difference is that the frequency is changed.
  • the brushless ⁇ ⁇ ⁇ ) C motor detects the position of the rotor with a sensor such as a Hall element, energizes each stator coil with a transistor, and uses the applied voltage to control the speed.
  • the system uses a microphone mouth computer for the speed control unit and functions in combination with the PWM bar amp. This allows the starting current to be programmed and the current in the locked state of the motor to be set arbitrarily.
  • the sensorless brushless DC motor is energized by turning on the transistor to energize the stator coil.
  • the driving method and control is to create the energization timing by comparing the induced voltage of each coil, and to control the drive by turning on the transistor.
  • the current drive control of brushless DC motors is based on detecting the rotation of the rotor or energizing timing by comparing the induced voltage of the stator coil. It is based on the rotation, which is different from the fact that the rotor follows the rotating magnetic field of the stator coil like an AC motor.
  • the energization of the stator coil is performed by giving a frequency even in the case of direct current, incorporating the use of voltage, current, and frequency in direct current, and applying a direct current to the stator coil. It is necessary to take measures to maintain the rotating magnetic field vibration: This makes it possible for the first time to make the most of the characteristics of DC in a motor.
  • the present invention can be applied to a special type of electric motor as follows. The following describes an application to an electromagnetic biston-type electric motor that obtains power by reciprocating a piston in a cylinder by electromagnetic force: First, the basic configuration of this electric motor will be described.
  • Two electrodes 6 are mounted on the outer side of the top of the outer cylinder 3.
  • the two electrodes 6 penetrate the inner wall of the outer cylinder 3 and are connected to the conductors at both ends of the exciting coil 5, respectively, so that the exciting coil 5 can be excited through the electrodes 6.
  • the interior of the piston 1 is hollow and the tip side is open, and a permanent magnet 7 is fixed to the base end so that the S pole side faces the biston base face.
  • a connecting portion 9 is fixed to the surface on the N-pole side, and a connector 10 is pivotally supported in a shaft hole 9 a of the connecting portion 9.
  • a shaft hole 1 at the other end of the connector 10 is provided.
  • 0 a is supported by a crankshaft of a crank mechanism (not shown).
  • An exciting coil 8 for a booster (hereinafter referred to as a booster coil) is wound around the connecting portion 9, and lead wires at both ends of the booster coil 8 are provided.
  • a booster coil is wound around the connecting portion 9, and lead wires at both ends of the booster coil 8 are provided.
  • Biston 1 is supported inside the cylinder 2 by bearings 15 so that it can smoothly reciprocate (vertically move) in the cylinder axis direction. Piston 1 reciprocates the distance indicated by in the figure.
  • the bearings 15 are arranged at two positions, upper and lower, along the circumferential direction of the inner wall of the cylinder 2 (that is, the outer wall of the piston 1), so that the piston 1 and the cylinder 2 are not magnetically coupled.
  • a so-called roller may be used in place of the bearing 15 made of ceramic.
  • a brush electrode 14 (hereinafter simply referred to as a brush) penetrates the cylinder 2 from the outer wall side to the inner wall side.
  • the tip of the brush 14 is in sliding contact with the copper plate electrode 12 .
  • the other end of the brush 14 is further penetrated through the outer cylinder 3 so that current can flow from outside.
  • the brush 1 4 may be manufactures in force one Bonn are, it may also be so as to reduce the decrease rubbing by sliding the tip in a so-called co outlet les, in FIG. 1 6
  • Brush 4 The configuration with the tip at the end is shown.
  • the cylindrical electrode 14a is rotatably attached to the tip, and this circular electrode 14a rotates while rotating with the surface of the copper plate electrode 12. make contact Note that the contact mechanism for feeding the booster coil 8 is not limited to the above-described contact mechanism using the copper plate electrode 12 and the brush 14.
  • a variety of contact mechanisms can be adopted, such as attaching a ring electrode that rotates one turn in the circumferential direction of the crankshaft to the crankshaft side, and providing a sliding contact mechanism with a brush that slides with the ring electrode.
  • the operation of the electromagnetic biston engine will be described below.
  • the booster coil 8 continues to flow a current in the direction of strengthening the magnetic pole of the permanent magnet 7.
  • the power to the booster coil 8 can be supplied by supplying current through the brush 4 that slides on the copper plate electrode 12, so that the piston 1 and the permanent magnet 7 Whole by the magnetic force of Takoiru 8 is magnetized to the S pole:
  • Excitation of the exciting coil 5 is performed as follows: During the period when the piston 1 moves from the top dead center to the bottom dead center (in the direction from top to bottom in the figure), the cylinder 2 has the S pole and the outside. While the cylinder 3 passes current in the direction of magnetization to the N pole, during the period from bottom dead center to top dead center (direction from bottom to top in the figure), cylinder 2 has the N pole and outer cylinder 3 A current flows in the direction in which the magnetic field is magnetized to the S pole. This energization current is periodically repeated.
  • Fig. 17 shows an embodiment in which an electromagnetic biston engine is configured by using a plurality of the above-mentioned motors.
  • the combination of the above-described one cylinder and one his- ton is combined into one assembly (assembl y)
  • This example has 6 stations
  • the assembly is an electromagnetic pistonton engine.
  • the six assemblies are arranged in series, and the outer cylinders 3 of each assembly are magnetically coupled.
  • the first assembly is numbered sequentially from the left side of the drawing.
  • the second assembly is referred to as the sixth assembly.
  • the permanent magnets 7 are arranged and the booster coils 8 are excited so that all the pistons 1 of the first to sixth assemblies have the S pole at the tip end.
  • crankshaft 40 When the pistons of the first to sixth assemblies are mounted on the crankshaft 40 at their top dead centers at 60 : the crank angle at the same interval when the first assembly is referred to (0.).
  • the phase difference of the crank angle between the first and second assemblies, between the third and fourth assemblies, and between the fifth and sixth assemblies should be I80 ::, respectively.
  • the third ace The phase difference between the crank angles between the assemblies and between the third and fifth assemblies should be 120: 0, respectively.
  • the crankshaft 40 is rotatably supported by the engine body with bearings 41.
  • the exciting current is supplied from the inverter 42 to each exciting coil 5 of the first to sixth assemblies.
  • the inverter 42 converts the DC output of the battery 43 into a three-phase AC output and supplies it to each exciting coil 5. -The frequency of this three-phase AC output can be freely changed.
  • a DC current is supplied to each booster coil 8 of the first to sixth assemblies from the battery 43 via the brush 14. The current flows in the direction in which the tip of the piston 1 becomes the south pole,
  • Fig. 18 (A) shows how power is supplied from the inverter 42 to each of the exciting coils 5.
  • the exciting coils 5 of the first and second assemblies have three-phase AC R • S The phases are connected in opposite phases, and the exciting coils 5 of the third and fourth assemblies have three-phase alternating current S and T phases! /, Are connected in opposite phases, and the exciting coils 5 of the fifth and sixth assemblies are connected with the T and R phases of the three-phase alternating current in opposite phases-
  • Fig. 18 (B) shows the first The positions of the pistons of the first to sixth assemblies with respect to the crank angle with respect to the standard (0:) are shown.
  • Fig. 18 (C) shows the relationship between the three-phase AC and the crank angle.
  • the excitation coil 5 has a maximum at the center position of the piston traverse, and the direction of the excitation current at the top or bottom dead center of the piston.
  • the repulsive force and the suction force begin to work almost 0 at the first and second assemblies, and at the third and fourth assemblies at the crank angle ().
  • the increasing suction force and the repulsive force work close to the peak value, respectively, and in the fifth and sixth assemblies, they approach the heak value, and the decreasing repulsive force and the suction force work respectively.
  • Fig. 19 shows another example of an electromagnetic piston motor with a six-unit assembly.
  • Fig. 20 shows an exciting coil 5 for generating an S-pole or a ⁇ -pole in cylinder 2 for the polarity of the magnetic pole of biston 1.
  • This embodiment shows a method in which the three-phase alternating current is not used to supply the exciting coil 5 with the pistons of the first, third, and fifth assemblies being flush with each other (that is, the crank is used). With the same angle), the pistons of the second, fourth, and sixth assemblies should be at the same height, and the piston positions of the first, third, and fifth assemblies and the second, fourth, and sixth assemblies should be in opposite phases. I do.
  • Electrodes 51 to 54 are undivided rings. Electrodes 55 and 56 are diametrically divided two-part rings. There are two split rings 5 5 and 5 6 split at the same crank angle position and split into split pieces 55 a and 55 b and split pieces 56 a and 56 b respectively.
  • the brushes (electrodes) 6 1 to 6 4 are in sliding contact with each other, and the brushes 6 1 and 6 2 are connected to the exciting coils 5 of the first, third and fifth assemblies, respectively, and the brushes 6 3 and 6 4 Are the excitation coils of the second, fourth, and fifth assemblies, respectively.
  • crankshaft When connected as above, the crankshaft is 18 (). For every rotation, split ring
  • FIG. 21 shows the rotary switch of this embodiment:
  • the rings 51 to 54 and the split rings 55, 56 in the embodiment of FIG. 19 are separated from the crankshaft, and are instead rotated by a motor whose rotation speed can be controlled.
  • the motor is mounted on a rotating shaft, and is referred to as a rotating switch here for convenience.
  • the motor is mounted on the rotating shaft of the rotating switch via a flywheel or a rocket.
  • the rotating shaft 60 is rotatably supported on the case 57 by the bearing 58, and the rotating shaft 60 is provided with the above-mentioned two-part ring 55, 56, ring 51- 6 4 Attach Case 5 7 to Brush 6 1 to 6 8 is pushed out against each ring 5 1 to 5 6 by pressing it with a spring 5 9: ring 5 1 to 5 4 and split ring 5 5,
  • electrical connection between 5 and 6 can be achieved by providing an insulator 69 inside each ring and making a through-hole in this as appropriate to allow each other's wiring to pass through.
  • the motor can freely control the rotation speed of the rotating shaft, and the rotation speed of the electromagnetic pistonton engine can be controlled accordingly.High torque is not required for the motor, so a small motor is sufficient.
  • FIG. 23 is a diagram showing an embodiment of such a motor.
  • a rotating shaft 5 is rotatably supported by a casing (not shown).
  • the rotating shaft 5 has six disk-shaped rotors la, lb, 1 c, l a ', 1, 1 c' are mounted at intervals along the axial direction.
  • the rotors la, lb, lc, l a ', 1, 1 c are each from a permanent magnet.
  • the half of the disk divided in half from the center in the axial direction is the S pole, and the other half is the N pole.
  • the adjacent magnetic poles of each rotor la, b, lc, 1 a ', lb', 1 c 'are the S pole And N poles are arranged so that they are different from each other
  • Each rotor] a, lh, lc, la ′, 1, 1c ′ can be realized by various known methods, for example, a semicircular arc outside a disk made of a non-magnetic material.
  • a plate magnet may be attached, and this plate magnet forms the outer surface as, for example, an S pole and the inner surface as an N pole.
  • stator cores 2a, 2b, 2c, 2a ', 2b', 2c ' are arranged outside the rotors la, lb, lc, la', 1b ', 1c, and each stator core 2a, 2b , 2c, 2a ', 2b', and 2c 'are made of a magnetic material such as a silicon steel plate, and the surfaces of the corresponding rotors la, lb, lc, la', 1, and lc can be surrounded from outside.
  • the side to be cut out has a semicircular cutout force to form two legs on both sides, and each of the rotors la, lb, lc, la ', 1, 1c' fits into this cutout with a gap UniNatsu and are also each stearyl one stator core 2a by which, 2b, 2c 2 a v 2 , 2 c 2 legs protruding rotor side notches' of are to have slightly different lengths.
  • the legs in front of the stator cores 2a, 2b, 2c, 2a ', 2b', 2c 'in Fig. 2 are slightly longer than the legs in the back, which results in unbalanced magnetic balance.
  • the rotors la, lb, lc, 1a ', 1, 1c' and the stator cores 2a, 2b, 2c, 2a ', 2b' are shown in FIG. , 2 c 'are drawn apart
  • Each stearyl one stator core 2a, 2b, 2c, 2 a 'N 2, 2c' are 'in the connecting rod 3 a, the starter 2h and 2 b' stator core 2a and 2 a by a connecting rod 3 h, and the stator core 2 c 2c are connected by connecting rods 3c, respectively.
  • the connecting rods are made of a magnetic material such as a silicon steel plate, and the intermediate part of the connecting rods is formed by stator cores 2a, 2b, 2c, 2a ', 2b', and 2c '.
  • connecting rod 3a has coil 4a
  • connecting rod 3b has coil 4h
  • the coupling 2 split ring 61 in c rotary shaft 5 coil 4c is wound on each of the intermediate portions in the rod 3c
  • 62 and ring-ring 6 3-66 are attach a commutator 6 3-66 were continuously
  • the ring is composed of a ring-shaped conductor
  • the two-part rings 61 and 62 are composed of conductor pieces 3 and b obtained by dividing a continuous ring-shaped conductor into two halves.
  • the conductor piece a of the split ring 61 is connected to the ring 63, the conductor piece b is connected to the ring 65, the conductor piece a of the split ring 62 is connected to the ring f54, and the conductor piece b is connected to the ring 66.
  • Brushes 71 to 76 are arranged so as to be in sliding contact with the two split rings 61, 62 and rings 64 to 66, respectively.
  • the brush 71 is connected to the positive terminal of the battery 9, and the brush 72 is connected to the negative terminal.
  • the brushes 73 and 76 are connected to each other and connected to one end (+) of the coils 4a and 4c and the other end (1) of the coil 4b.
  • the brushes 74 and 75 are connected to each other and connected to the coil 4a. , 4c and one end (+) of coil 4b.
  • the coils 4a and 4c when the coils 4a and 4c are energized, for example, when the stator cores 2a and 2c are magnetized to the S pole and the stator cores 2a 'and 2c' are magnetized to the N pole, the coil 4b energizes the stator core 2b.
  • the N-pole and the stator core 2b ' are magnetized to the S-pole and the energizing direction is reversed with the rotation of the rotating shaft 5, the respective magnetic poles of the stator cores 2a, 2b, 2c, 2a', 2b ', 2c'
  • the polarity of the magnetic poles is reversed.
  • each of the stator cores 2a, 2b, 2c, 2a ', 2, 2c has magnetic poles which are alternately opposite in the direction of the rotation axis (for example, S, N, S, N as shown in the figure). , S, N)
  • the exciting coil 4 is wound directly on the connecting rod 3 instead of directly on the rotor 1 or the stator core 2, so that the number of turns of the coil wound on the connecting rod 3 is increased by increasing the size of the motor. It is possible to increase it very much without generating a large magnetic force.
  • FIG. 24 shows such an embodiment._ This embodiment is divided into two parts in the embodiment of FIG. 23.
  • the parts of the rings 6 1 and 6 2 and the ring rings 6 3 to 6 6 are separated from the rotating shaft 5 force, and instead, are mounted on the rotating shaft 60 of the rotating switch, which is rotated by a motor whose rotation speed can be controlled.
  • the motor is mounted on the rotary shaft of this rotary switch via a flywheel or a subrocket.
  • the other configuration is the same as that of the embodiment of FIG. 23-that is, the rotary shaft 60 is used as a case.
  • each ring 6 1 to 6 6 protrudes while being pressed by the spring 5 Out 2 electrical connection between the split ring 6 and 62 and the ring 6 3-6 6, as shown in FIG. 2 5, the insulator 6 on the inside of each ring 9 can be provided, and a through hole can be appropriately opened in this, and the wires can be passed through each other.
  • the rotation speed of the rotating shaft is freely controlled by the motor, and the rotation speed of the motor is accordingly increased. Can control. Since high torque is not required for a motor, a small motor is sufficient.
  • FIG. 26 is a diagram showing such a configuration, in which four-split rings 6 1 ′ and ⁇ 2 ′ are used instead of the two-split rings 6 1 and 6 2 ( ⁇ ).
  • ( ⁇ ) is an example of the case where wires are grouped at the four-split ring 6 1 ′, 6 2, side Industrial applicability
  • the electric device of the present invention can be used as an ordinary motor and can be used as various industrial power sources.-
  • the electric device of the present invention increases the number of windings of the motor to reduce the current while rotating. The number and torque are low,

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Ac Motors In General (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

A motor which is reduced in electric current by increasing the number of turns of the motor and of which the rotating speed and torque are irrespectively not lowered. The motor is provided with a switching means separately from the rotating shaft of the motor. The switching means receives a direct current, commutates or chops the direct current and applies the output to the exciting coilof the motor. The commutating or chopping frequency of the output can be controlled variably independently from the rotating state of the motor without using the rotational position information of the rotating shaft of the motor.

Description

明 細 書  Specification
技術分野 Technical field
本発明は電動装置に関する  The present invention relates to an electric device
背景技術 Background art
電動機においては、 コイルの卷き方が様々に試行され、 今日に至っている., 特 に、 コイルは電圧一定ならば卷数が大きくなる程に電流値が小さくなる性質があ り、 この性質を活用するため直流モータおよび交流モータにおいては多種多様な 試行が成されてきた  In motors, coil winding methods have been tried in various ways, and this has been the case today. In particular, the coil has the property that the current value decreases as the number of turns increases as the number of turns increases if the voltage is constant. A wide variety of trials have been conducted on DC motors and AC motors to utilize
特に、 電動機のコイルの卷数を増やすことで大きな出力パワーを取り出す試み がされた. 例えばコィルの巻数を 2倍にした場合、  In particular, attempts were made to extract large output power by increasing the number of turns in the motor coil. For example, if the number of turns in the coil was doubled,
2倍卷きした直流モータは、  The DC motor wound twice is
①電流が半分になる  ① Current is reduced by half
②トルクは同じ  ② Same torque
③回転が半分になる  ③Half the rotation
という結果が出た 一方、 On the other hand,
2倍巻きした交流モータは、  The AC motor wound twice is
①電流が半分になる  ① Current is reduced by half
②トルクが半分になる  ②Half the torque
③回転は同じ  ③ The rotation is the same
という結果が出た- 以上で、 交流モータも直流モータも卷数を増やしても総合的 には出力パワーは同じという結果となった そこで、 交流モータのほうが形態的 にコンハク 卜にできるので、 モータの主流は交流モータの採用に流れている よ つて、 結論として、 直流使用のモータは開発と製造を中止していろメーカがほと んどである As a result, the output power was generally the same even if the number of windings was increased for both the AC motor and the DC motor.Therefore, the AC motor can be made more formally compact. The mainstream is the adoption of AC motors, and concludes that most manufacturers of DC motors have stopped developing and manufacturing.
以上に述べたように、 コイルの卷数 1に対して卷数 2を卷いたモータは総合的 なところでは、 直流も交流も同じであろと見なされてレ、る概念ができ上がつてレ、 る すなわち、 As described above, a motor with two turns for one coil turns It is considered that DC and AC are considered to be the same, and the concept is completed.
①直流の使用は、 倍巻すると、 トルクは同じだが、 ただし回転が落ちる (1) In the case of using DC, if the winding is doubled, the torque will be the same, but the rotation will drop
②交流の使用は、 倍卷すると、 回転は同じだが、 ただしトルクが落ちる これは、 トルクについては直流と交流は数式にもなつていて、 常識となってい るが、 回転はなぜそうなるのか追求が成されていない. ここで、 交流と直流の大 きな思い違いに気付くべきである. それは、 交流は周波数を持つが、 直流は持た ないという思い違いである すなわち、 交流は周波数を持たされている人為的な 電流であり、 直流は周波数も持たされていない人為的な電流であるということで ある そして交流モータは電圧と電流と周波数が活用されているが、 直流モータ は電圧と電流だけが活用されているのである。 (2) In the use of alternating current, when double winding, the rotation is the same, but the torque drops, but the torque drops. This is because DC and AC are also mathematical formulas for torque, but it is common sense, but pursue why rotation is so. It should be noted here that there is a great misconception between AC and DC. It is a misconception that AC has a frequency but DC does not. That is, AC has a frequency. DC is an artificial current without frequency, and AC motors use voltage, current and frequency, while DC motors use only voltage and current. It is being done.
以上がなぜ人為的かというと、 自然界には電気があるのであって交流も直流も 人が作り出したものだからである 人為的である以上、 発展すべきものであり、 停滞し決めつけられることではない  The reason why this is artificial is that there is electricity in the natural world, and both AC and DC are created by humans.As long as it is artificial, it must be developed, not stagnant and decided.
交流はその発生メカニズム上、 あくまでも発電機の回転子の磁極数と、 発電取 出しコイルの卷き方と回転数で作り出されてくる人為的なものであり、 例えば 4 極の回転子が 1 8 ϋ 0 r p mで回転すろ発電機から発生する周波数は 6 0 H で ある 日本の東側地域と西側地域で商用周波数に 6 0 Hz 、 5 O H '/ の違いがあ るのは明治時代に設置された発電機の違レ、だけなのである  Due to the mechanism of AC generation, AC is artificially created by the number of magnetic poles of the rotor of the generator and the winding and rotation of the generator coil.周波 数 The frequency generated from the rotating roller generator at 0 rpm is 60 H. The difference between the commercial frequency of 60 Hz and 5 OH '/ in the eastern and western regions of Japan was set up in the Meiji era. It's just the difference between the generators
さて、 以上に述べたように、 交流が人為的な電気振動を持つ電流ならば、 同じ く人為的な電気振動を持つ直流の性質を失わないサイクル直流とでも呼ぶべき電 流を作り出すことがこの発明の主眼なのである: つまり、 直流とコイルの本来の 性質を失わないサイクル直流の活用である, _ この発明は、 直流とコイルの関係を、 交流ではなし得ない、 電流値を下げて トルクすなわち電磁力が落ちない状態を 役立てたいための発明である _  By the way, as described above, if alternating current is a current having artificial electric oscillation, it is possible to create a current that can be called cycle direct current that does not lose the property of direct current having artificial electric oscillation as well. It is the main subject of the invention: In other words, it is the utilization of DC which does not lose the original properties of DC and coil, _ This invention does not make the relationship between DC and coil by AC, reduces the current value and reduces the torque It is an invention to make use of the state where the electromagnetic force does not fall _
これは、 直流の周波数装置と対象となる回転体および機器とは必然的に別々と なる力;、 組み入れることはできる: なお、 このサイクル直流は交流に似た性質も 持つので、 直流と交流を使用対象とした機器は全てこの発明の使用対象となるが, この発明では特にモータを対象としている Λ ' この直流のサイクル装置としては、 従来からある自動車のデイストリビュータ とイダニッシヨンコイル、 および直流モータのコミュテ一タが似ているが、 これ らの従来の装置はあくまでも周波数を作り出すものとしては捉えられておらず、 単に回転同調のためのものであり、 回転の制御を目的としたものではない なぜ なら直流モータの回転制御は電圧と電流でなされ、 エンジンの回転制御は燃料の 送り込みの大小でなされているからである: This is a force that inevitably separates the DC frequency device from the target rotating body and equipment; it can be incorporated: Note that this cycle DC also has properties similar to AC, so DC and AC can be combined. Although all the devices used are subject to the present invention, the present invention particularly targets motors Λ 'This DC cycle device resembles the conventional vehicle distributor and the identification coil, and the DC motor commutator.However, these conventional devices are used only to generate frequencies. Is not captured, it is merely for the purpose of tuning the rotation, not for the purpose of controlling the rotation, because the rotation control of the DC motor is performed by voltage and current, and the rotation control of the engine is controlled by the fuel feeding. Because it is done in big and small:
その点、 交流モータは回転制御に周波数も必要条件として取り入れている 交 流モータ制御の装置として、 インバ一タがある これは一般電源とされている商 用交流を直流に変え、 この直流を電子素子で再度一般交流に限りなく近く して、 周波数、 電圧を制御し、 交流モータを制御する目的のものである  In this regard, AC motors have an inverter as an AC motor control device that incorporates frequency as a necessary condition in rotation control. This converts commercial AC, which is a general power supply, to DC, and converts this DC to electronic power. The purpose is to control the AC motor by controlling the frequency and voltage by making the element as close as possible to general AC again.
これに対して、 本発明の狙いはあくまでも、 直流とコイルの性質を失わない直 流のための周波数制御にある ,- この考えが有効ならば交流モータも回転可能と推察される, さすれば、 この周 波数を持たせた直流の活用は、 あえて直流モータ、 交流モータと分けて考える必 要はない それは、 回転子のみならず、 固定子も電磁活用の直流モータは交流で も活用できることが周知だからである: 発明の開示  On the other hand, the aim of the present invention is merely to control the frequency for direct current without losing the properties of the direct current and the coil.- If this idea is effective, it is presumed that the AC motor can also rotate. However, there is no need to consider the use of DC with this frequency separately for DC motors and AC motors.It is important to note that not only rotors but also stators can use AC motors for DC motors. Because it is well known: Disclosure of the invention
以上の観点にたって、 本発明においては、 電動機の回転軸と切り離してスイツ チ手段を設け、 該スィツチ手段は直流を入力としてそれを転流または断続させて 該電動機の励磁コイルに印加する印加出力とし、 該印加出力の転流または断続の 周波数を該電動機の回転軸の回転位置情報を用いずに電動機の回転状態とは独立 して可変制御するように構成した電動装置が提供される 図面の簡単な説明  In view of the above, in the present invention, switch means is provided separately from the rotating shaft of the motor, and the switch means receives DC and commutates or interrupts the DC to apply the applied output to the exciting coil of the motor. A motor is provided that is configured to variably control the commutation or intermittent frequency of the applied output independently of the rotation state of the motor without using the rotation position information of the rotating shaft of the motor. easy explanation
図 1は本発明の電動装置の全体構成の例を示す図である  FIG. 1 is a diagram showing an example of the overall configuration of the electric device of the present invention.
図 2は実施例の回転スィツチのリングの接続関係を示す図である  FIG. 2 is a diagram showing a connection relationship between rings of the rotary switch according to the embodiment.
図 3は実施例の回転スィツチの横断面図である  FIG. 3 is a cross-sectional view of the rotary switch of the embodiment.
図 4は実施例の回転スィツチのバッテリ入力リング部分の断面図である 図 5は実施例のモータのコィル結線を示す図である: FIG. 4 is a cross-sectional view of a battery input ring portion of the rotary switch according to the embodiment. FIG. 5 is a diagram showing the coil connection of the motor of the embodiment:
図 6は実施例のモータの一般的なコイル配線を説明する図である.  FIG. 6 is a diagram illustrating general coil wiring of the motor according to the embodiment.
図 7は実施例のモータの一般的なコィル配線を説明する図である  FIG. 7 is a diagram illustrating general coil wiring of the motor according to the embodiment.
図 8は実施例の回転スィッチからの出力波形を示す図である:  FIG. 8 is a diagram showing the output waveform from the rotary switch of the embodiment:
図 9は回転スィツチの他の実施例を示す図である:  FIG. 9 shows another embodiment of the rotary switch:
図 1 0は実施例の電動装置におけるトルク計測方法を示す図である  FIG. 10 is a diagram showing a torque measuring method in the electric device of the embodiment.
図 1 1は実施例の電動装置におけるトルク計測方法を示す図である  FIG. 11 is a diagram showing a torque measuring method in the electric device of the embodiment.
図 ] 2は本発明の他の実施例 ( 3相誘導モータのスター結線に適用時) を示す 図である.  Figure 2 is a diagram showing another embodiment of the present invention (when applied to a star connection of a three-phase induction motor).
図 1 3は図 1 4の実施例における回転スィツチの出力波形を示す図である. 図 1 4は電磁ビス トン式の電動機の横断面図である.  Fig. 13 is a diagram showing the output waveform of the rotary switch in the embodiment of Fig. 14. Fig. 14 is a cross-sectional view of an electromagnetic biston type electric motor.
図 1 5はこの電磁ビストン式の電動機のシリンダとビストン部分の外観図であ る.:.  Fig. 15 is an external view of the cylinder and the piston part of this electromagnetic piston motor.
図 1 6はブラシの変形例を示す図である  Figure 16 is a diagram showing a modification of the brush
図 1 7は 6連アセンブリによる電磁式ビストン機関の例を示す図である: 図 1 8は 6連アセンブリによる電磁式ビストン機関を 3相交流電力で駆動する 仕方を説明する図である  Fig. 17 is a diagram showing an example of an electromagnetic biston engine with a 6-unit assembly: Fig. 18 is a diagram illustrating how to drive an electromagnetic biston engine with a 6-unit assembly with 3-phase AC power
図 1 9は 6連アセンブリによる電磁式ビス トン機関を機械的整流子を用いてバ ッテリで駆動する仕方を説明する図である。  Fig. 19 is a diagram for explaining how to drive an electromagnetic biston engine with a six-unit assembly with a battery using a mechanical commutator.
図 2 ()は図 1 6の実施例における励磁コイルの励磁電流の方向を説明する図で ある:.  FIG. 2 () illustrates the direction of the exciting current of the exciting coil in the embodiment of FIG. 16:
図 2 1は 6連アセンブリによる電磁式ビストン機関の回転スィッチを示す図で ある.  Figure 21 shows a rotary switch of an electromagnetic piston engine with a six-unit assembly.
図 2 2は回転スィツチにおける各電極の配線態様を示す図である  FIG. 22 is a diagram showing a wiring mode of each electrode in the rotary switch.
図 2 3は本発明を適用する他の形態のモータを示す図である  FIG. 23 is a view showing a motor of another embodiment to which the present invention is applied.
図 2 4は図 2 3のモータに適用する回転スィツチを示す図である- 図 2 5は回転スィツチの各リング間の接続例を示す図である  FIG. 24 is a diagram showing a rotary switch applied to the motor of FIG. 23-FIG. 25 is a diagram showing a connection example between each ring of the rotary switch
図 2 6は回転スィツチの 2分割リングの変形例を示す図である 発明を実施するための最良の形態 FIG. 26 is a view showing a modification of the two-piece ring of the rotary switch. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る電動装置の実施例を説明する  Hereinafter, an embodiment of an electric device according to the present invention will be described.
図 1は実施例装置の全体構成を示す図である 図 1において、 4は回転スィッ チ、 2は回転スィッチ 4を回転させるための補助モータ、 3は回転スィッチに直 流を供給する直流バッテリ、 1は回転スィツチ 4から作動電流を供給される 3相 誘導モータである,  FIG. 1 is a view showing the entire configuration of the embodiment apparatus. In FIG. 1, 4 is a rotary switch, 2 is an auxiliary motor for rotating the rotary switch 4, 3 is a DC battery for supplying a direct current to the rotary switch, 1 is a three-phase induction motor supplied with operating current from a rotary switch 4,
二こで、 回転スィッチ 4は回転軸 41にリングが都合 9個固定された形をして おり、 この回転軸 41にはフーリ 42が取り付けられていて、 捕助モータ 2の回 転軸 2 1に取り付けられたブ一リ 'λ 2との間にベルトが掛け渡されていて、 捕助 モータ 2を回転させることで、 回転スィツチ 1の回転軸 4 1 も回転できるように なっている 補助モータ 2は回転数を任意に設定できる,  The rotary switch 4 has a shape in which nine rings are conveniently fixed to a rotary shaft 41, and a rotary 42 is mounted on the rotary shaft 41, and the rotary shaft 2 1 of the auxiliary motor 2 is provided. A belt is stretched between the bridge and λ2 attached to the motor, and by rotating the catching motor 2, the rotating shaft 4 1 of the rotary switch 1 can also be rotated. 2 can set the rotation speed arbitrarily.
図 3にはこの回転スィツチ 4の全体構成が、 また図 2には回転軸 41に固定さ れるリングの電気接続状態が示されるい 図 3において、 回転軸 4 1上には都合 9 個のリングが配列されて取り付けられており、 このうち 3つのリング R b 〜 R b 3はバッテリ一電流入力用、 6つのリング Ru l、 R u 2 , Rv l、 R v 2、 Kw l、 Rw 2はモータ 1への給電用のものである— バッテリー電流入力用のリ ング Rb l〜Rb 3の各々には図 4に示すようにそれぞれ二つブラシ B b、 B b ' が 90 の間隔をおいて接触するようになっており、 それらの二つのブラシ B b、 B b' はそれぞれバッテリ 3の正極端子 (+ ) と負極端子 (一) に接続さ れる リング Rb l〜Rb 3の各々は図 2に示すように 4分割された 4分割リン グであり、 その分割の切込み位置はそれぞれ】 20 ずつずれている: 給電用の リング Ru l、 Ru 2、 Rv l、 Rv 2、 Rw l、 R w 2は切込みのない環体で あり、 リング Ru l、 R u 2は後述するモータ】の u相コイルへの給電用、 リン グ R V 1、 R V 2は V相コィルへの給電用、 リング R w 1、 R w 2は w相コィル への給電用である, バッテリ電流入力用リング R b 1〜R b 3とコイル給電用リ ング Ku l、 Ru 2、 Rv l、 R v 2 s Kw l、 R w 2とは図 2に示すように電 気配線で接続されている: なお、 この配線は実際には回転軸 41に設けられた溝 などを介して行われる: コイル給電用リング Ru 1、 Ru , Rv l、 Kv 2、 Kw】 、 K w 2には出力取出し用ブラシ B u 1、 Bu 2、 B v l、 Β ν 2、 Β w 1、 Bw 2を摺動接触させている 出力取出し用ブラシ Bu Bu 2は後述す るモータ 1の u相コイルへ、 出力取出し用ブラシ B V 1、 13 2は 相コィルへ、 出力敢出し用ブラシ Bw 1、 Bw 2は w相コイルへそれぞれ接続される FIG. 3 shows the overall configuration of the rotary switch 4, and FIG. 2 shows the electrical connection of the ring fixed to the rotary shaft 41. In FIG. 3, nine rings are conveniently mounted on the rotary shaft 41. Are arranged and mounted, of which three rings Rb to Rb3 are for battery current input, and six rings Rul, Ru2, Rvl, Rv2, Kwl, Rw2 are This is for supplying power to the motor 1. — Two brushes B b and B b ′ are provided at intervals of 90 on each of the battery current input rings Rb 1 to Rb 3 as shown in FIG. The two brushes Bb and Bb 'are connected to the positive terminal (+) and the negative terminal (one) of the battery 3, respectively. As shown in the figure, the ring is divided into four parts, and the cut positions of the divisions are shifted by 20 each. Rings Rul, Ru2, Rvl, Rv2, Rwl, and Rw2 are non-cut annular bodies, and rings Rul and Ru2 are used to supply power to the u-phase coil of the motor described later. RV1 and RV2 are used to supply power to the V-phase coil, rings Rw1 and Rw2 are used to supply power to the w-phase coil, and used to supply the battery current input ring Rb1 to Rb3 and the coil -ring Ku l, Ru 2, Rv l , R v 2 s Kw l, and R w 2 are connected by a conductive sign line as shown in Figure 2: it should be noted that the wiring to the rotary shaft 41 in fact It is performed through the provided grooves, etc .: The coil for power supply Ru1, Ru, Rvl, Kv2, Kw] and Kw2 have output extraction brushes Bu1, Bu2, Bvl, Βν. 2, Β w 1, Bw 2 is in sliding contact with the output take-out brush Bu Bu 2 is to the u-phase coil of motor 1 described later, output take-out brushes BV1, 132 are to the phase coil, and output take-out brush Bw 1, Bw 2 are connected to the w-phase coil respectively
この回転スィッチ 4は、 それぞれの 4分割リングが 90 回転する毎に、 コ ィル給電用リング Ru l、 Ru 2、 Rv l、 Rv 2、 Rw l、 Rw 2から正負が 転流した電流が取り出せるようになっている., 図 8には u相、 V相、 w相の各コ ィル給電用リング Ru l、 Ru 2、 Rv l、 Rv 2、 Rw l、 Rw2の各対から 取り出される電圧波形が示されている. 図示するように U相、 V相、 W相は互い に位相が 1 2 (Γ ずれた電圧波形となる この回転スィッチ 4を小容量のモータ 2で回転させ、 モータ 2の任意の回転で、 モータ 1への出力に任意の周波数を持 たすことができる ちなみに、 回転スィッチ 4が 1 8 () ()回転 (r pm) では 6 ()回の転流を生じるので、 交流 60Hz に相当すると考えられる This rotary switch 4 can extract the current of positive / negative commutation from the coil power supply rings Rul, Ru2, Rvl, Rv2, Rwl, and Rw2 every time each of the four split rings rotates 90 times. Fig. 8 shows the voltages extracted from each pair of the power supply rings Ru l, Ru 2, Rv l, Rv 2, Rwl, and Rw2 for the u-phase, V-phase, and w-phase coils. waveform. as illustrated U-phase, V-phase, W-phase rotates the rotary switch 4 phases each other becomes 1 2 (gamma shifted voltage waveform in the motor 2 of small capacity, the motor 2 In any rotation of the motor, the output to the motor 1 can have any frequency.By the way, the rotation switch 4 generates 6 () commutations at 18 () () rotations (r pm). , Which is considered to be equivalent to AC 60Hz
3相誘導モータ 1は、 具体的には、 次の製品を改造して使用している c 製造者:富士電気 (株) 3-phase induction motor 1, specifically, c manufacturers are using by modifying the following products: Fuji Electrical Co.
F V MOTOR F V MOTOR
I NVERTAR DR I VE MOTOR I NVERTAR DR I VE MOTOR
2. 2 kW 4 F 型 MUA6 1 07A  2.2 kW 4 F type MUA6 107A
このモータは、 ステ一タの卷溝の数は 36個であり、 u相、 V相、 w相の 3つ のコイルを有しており、 これらの各相のコイルは互いにスター結線されている 各相の卷線は 2本 (後述の図 6、 図 7では実線と点線で示す) で構成されており、 この卷線が図 7に u相につ!、て例示するように対角線上の対向する二つの位置に 卷かれている この u相の卷数は 1卷位置 32ターンで 3卷位置に卷力^ 1ている ので計 96ターンとなる かかる卷線が図 6に示すように u相、 V相、 w相の各 卷線が 1 2 (Γ ずつずれてそれぞれ卷き込まれている  This motor has 36 stator winding grooves, and has three coils of u-phase, V-phase, and w-phase, and these phase coils are star-connected to each other. The winding of each phase is composed of two windings (shown by a solid line and a dotted line in FIGS. 6 and 7 described later), and the windings on the diagonal line are illustrated in FIG. The number of turns of this u-phase wound at two opposing positions is 32 turns at 1 turn position and the winding force at 1 turn position is 3 turns, so the total number of turns is 96 turns. Phase, V phase, and w phase windings are wound by 1 2 (Γ
このモータ 1を本実施例では図 5に示すように改造している。 まず、 u相、 V 相、 w相が互いにスタ一結線されていたものを、 そのスター結線の互いを連結す る中央での連結を切り、 かつ各相の卷線が 2本 1組となっていたものをその卷線 の卷初めと卷終りで切り離して 1本ずつとし、 そのうちの 1本の巻始めと卷終り を端子①と②に接続し、 残り 1本の卷始めと卷終りを端子③と④に接続する こ れを u相、 v相、 w相のそれぞれについて行う よって卷線の数は都合 1 2本、 端子の数も 1 2個となる それぞれの I本の卷数は 96ターンであり、 この 2本 を直列接続するとその巻数は倍の 1 92ターンとなる: したがって、 u相、 V相, w相の卷数は 1本時に 96ターン、 2本直列接続時に】 92ターンとなる- この 実施例では 1本時の 96タ一ンの抵抗値は 1 Ωであるので、 2本直列接続時の 1 92ターンの抵抗値は 2 Ωとなる In this embodiment, the motor 1 is modified as shown in FIG. First, the u-phase, V-phase, and w-phase were connected in a staggered manner, but the star connection was cut off at the center where they were connected to each other, and the windings of each phase became two pairs. The winding was separated at the beginning and end of the winding into one by one, and the beginning and end of one were connected to terminals ① and ②, and the beginning and end of the remaining one were Connect to terminals ③ and こ This is done for each of u-phase, v-phase, and w-phase. Therefore, the number of windings is conveniently 12 and the number of terminals is also 12. Each I-turn has 96 turns. In series, the number of turns is doubled to 192 turns: Therefore, the number of turns in the u-phase, V-phase, and w-phase is 96 turns when one is connected, and 92 turns when two are connected in series. The resistance value of 96 turns for one wire is 1 Ω, so the resistance value for 192 turns when two wires are connected in series is 2 Ω.
直流バッテリー 3は 「YU AS A MF 38132 OR PAFECTA」 を 2個直列接続して用いており、 自動車の 24 V用オルタネータをモータで回し、 バッテリーチャージしながらこの電動装置の電源として利用している  The DC battery 3 uses two “YU AS A MF 38132 OR PAFECTA” connected in series. The 24 V alternator of the car is turned by a motor, and the battery is charged and used as a power source for this electric device.
この電動装置の運転は、 捕助モータ 2で回転スィツチ 4を回転させることで、 バッテリ 3の直流出力を転流させてモータ 1の各相のコイルに供給し、 モータ 1 を回転させることによる. モータ 1の各相のコイルに供給する電流 (電圧) の転 流の周波数は補助モータ 2の回転数を任意のものに調整することで制御できる,, かかる運転により、 モータ 1で得られたトルクを図 1 0、 図 1 1に示すように して計測した すなわち、 モータ 1のフ一リ 1 2に 50 c mの L鋼材 8を溶接に より固定し、 そのし鋼材 8の他端側に、 モータ】 の回転力を受けた L鋼材 8によ り押圧力を受けるようにして静止トルク測定用の静止トルク計 (ロードセル) 6 を配置した この静止トルク計は具体的には、 「 (株) 共和電業製造 トルク計 名称:ひずみゲージ式 ロードセルビーム型 型式 LUB— 5K1 と計装用增 幅器 WG 1 - 300 E3である. この静止トルク計 6を 50 c mの荷重受けで計測 し、 0 11^調整は0. 624でなした また、 この電動装置での消費電流を測 定するために、 バッテリ 3の負極端子 (一) 側の配線をクランプ計測器 5を用い てクランプすることで、 同配線を流れる I)C電流の大きさを測定した: このバッ テリ電流計測に使用したクランブ計測器 5は 「力イセ株式会社製造 ACZDC ディジタルクランプメータ MODEL S K— 77 1 ュ」 を用いた モータの 回転は、 モータ軸にシールを貼り、 光センサで計測した:  The operation of this electric device is based on rotating the rotary switch 4 with the auxiliary motor 2, thereby commutating the DC output of the battery 3 and supplying it to the coils of each phase of the motor 1, thereby rotating the motor 1. The commutation frequency of the current (voltage) supplied to each phase coil of the motor 1 can be controlled by adjusting the rotation speed of the auxiliary motor 2 to an arbitrary value. That is, a 50 cm L steel material 8 was fixed to the wheel 12 of the motor 1 by welding, and the other end of the steel material 8 was The stationary torque meter (load cell) 6 for measuring the static torque was placed so as to receive the pressing force from the L steel material 8 which received the rotational force of the motor. Kyowa Electric Manufacturing Torque Meter Name: Strain gauge type load cell Beam type Model LUB-5K1 and instrumentation width gauge WG 1-300 E3. This static torque meter 6 was measured with a load of 50 cm, and 0 11 ^ adjustment was 0.624. In order to measure the current consumption of the device, the wiring on the negative terminal (1) side of the battery 3 was clamped using a clamp measuring instrument 5, and the magnitude of the I) C current flowing through the wiring was measured. The rotation of the motor using the ACZDC Digital Clamp Meter MODEL SK-77 1U manufactured by Riki Ise Co., Ltd. was measured with an optical sensor by attaching a seal to the motor shaft. did:
測定は卷線を 1本とした 96ターンの場合と 2本直列接続した 1 92ターンの 場合とのそれぞれにつ V、て行った 測定結果は以下のとおりである  The measurement was performed for each of the 96 turns with one winding and the 192 turns with two windings connected in series.
計測結果 静止トルクは、 回転スィッチ 4の回転数 60 r pmで出力 2 Hz 相当で運転し て計測した Measurement result The static torque was measured by operating the rotary switch 4 at a rotational speed of 60 rpm and an output of 2 Hz.
[96ターン時〕  [At 96 turns]
バッテリ :}の直流出力電圧: DC 24 V  Battery:} DC output voltage: DC 24 V
バッテリ 3の出力電流: 36 A  Battery 3 output current: 36 A
静止トルク計で計測した卜ノレク : 1. 65〜; 1. 85 k g m  Tornolec measured by static torque meter: 1.65 ~; 1.85 kgm
〔 i 92ターン)  (I 92 turns)
バッテリ 3の直流出力電圧: D C 24 V  DC output voltage of battery 3: DC 24 V
バッテリ 3の出力電流: 1 6. 1 Λ  Output current of battery 3: 16.1 1
静止トルク計で計測したトルク : 1. 55〜 75 k gm  Torque measured by static torque meter: 1. 55 to 75 kgm
このように、 計測結果は、 1 92ターン時の電流は 96タ一ン時の半分以下で、 一方、 トルクは近似の値となつた。 Thus, the measurement results showed that the current at 192 turns was less than half that at 96 turns, while the torque was an approximate value.
次にモータ】の回転数とバッテリ電流との関係を計測した.  Next, the relationship between the rotation speed of the motor and the battery current was measured.
この回転計測は回転スィッチ 4の回転数 1 600 r pmで出力 53 Hz 相当で 運転して計測した またバッテリ 3にオルタネ一タからチャージをしながら実施 した バッテリ 3の出力電圧は DC 28. 4 Vであった  This rotation was measured at a rotation speed of the rotary switch 4 of 1600 rpm and an output of 53 Hz or equivalent, and was measured while charging the battery 3 from the alternator.The output voltage of the battery 3 was 28.4 V DC Met
〔96ターン〕  (96 turns)
モータ】の回転数: 1 569〜 1 57 () r p m  Number of rotations of the motor]: 1 569 ~ 1 57 () r p m
バッテリ 3の出力電流: DC 1. 5〜2. 1 A  Output current of battery 3: DC 1.5 to 2.1 A
ノくッテリ : 3の直流出力電圧: 28. 4 V  Battery: 3 DC output voltage: 28.4 V
〔1 92ターン〕  (1 92 turns)
モータ 1の回転数: 1 543〜: I 547 r pm  Number of rotations of motor 1: 1 543 ~: I 547 r pm
ノくッテリ 3の出力電流: DC ϋ. 7〜0. 9Α  Output current of battery 3: DC ϋ.7 ~ 0.90
ノく ッテリ 3の直流出力電圧: 28. 4 V  DC output voltage of battery 3: 28.4 V
この結果からも分かるように、 モータの卷線を 9 βタ一ンから 1 92ターンへ と 2倍卷きしても、 96ターン時に比べてトルクと回転数がほぼ変わらず、 一方、 電力値は半分以下となるという結果となつた よってこのサイクル直流は非常に 有益である  As can be seen from this result, even if the winding of the motor is wound twice from 9β turn to 192 turns, the torque and the number of revolutions are almost the same as in the case of 96 turns, while the electric power value This cycle DC is very useful
なお、 上述の実施例ではモータ】の u相、 V相、 w相のコイルをそれぞれば ばらに分離したが、 これらをスター結線させた 3相誘導モータであっても、 この 3相のサイクル直流で同 3相誘導モータを回転させることができる この場合、 3つの 3分割 R b 〜 R b 3の構成はそのままで、 図 1 2に示されるように、 取 出しリング Ru l、 Ru 2、 Rv l、 Rv 2、 Rw l、 Kw 2に各相の対のうち の一方だけ (つまり都合 3個) を用いてその電線をモータの各相の端子 (3つの 端子) に接続すればよい また図 1 3に示されるように、 各タイミングにおいて、 u相、 V相、 w相の電圧を加算したものは 0になるように、 各相の出力電圧波形 を調整する この調整は後述するように回転スィツチを電子回路で構成してその 電子回路で行うようにするとよい: なお、 スター結線に代えてデルタ結線したも のに対しても本発明は当然有効であるが、 今回は実験はしていない: In the above embodiment, the u-phase, V-phase, and w-phase coils of the motor The three-phase induction motor can be rotated with these three-phase cycle direct currents even if the three-phase induction motors are separated in a star but are star-connected. In this case, three three-part Rb to R The configuration of b3 remains as it is, and as shown in Fig. 12, the extraction rings Rul, Ru2, Rvl, Rv2, Rwl, and Kw2 have only one of the pairs of phases (that is, 3) and connect the wires to the terminals (3 terminals) of each phase of the motor. As shown in Fig. 13, at each timing, the voltage of u-phase, V-phase, and w-phase Adjust the output voltage waveform of each phase so that the sum becomes 0. This adjustment should be performed by using an electronic circuit for the rotary switch as described later. The present invention is naturally effective for a delta connection instead, Times are not the experiment:
さらに、 3相を 4相以上必要な相条件を設定すれば、 より効率は良くなる可能 性がある,、 また、 単相モータに適用することも可能である: また今回実験したモ ータ 1の卷数の設定は、 卷数が〗 : 2の比 (すなわち 96ターンと 1 92ター ン) であるが、 卷数の上限は理論的には無限である, さらにコンデンサーを回転 スィツチとモータの引込み線のそれぞれに適切な線間に設定することは、 能力の より良い方向に働くと思われる-.  Furthermore, if three or more phase conditions are set that require four or more phases, the efficiency may be improved. In addition, it is possible to apply the present invention to a single-phase motor. The setting of the number of turns is a ratio of〗: 2 (that is, 96 turns and 192 turns), but the upper limit of the number of turns is theoretically infinite. Establishing the proper spacing between each of the drop lines will likely work in a better direction-.
また、 本発明は交流モータだけに限られず、 通常の直流モータに対しても適用 できることは勿論のことである すなわち上記回転スィツチ 4から取り出された 転流電流または断続電流を直流モータのコィルに供給すればよいのである: また、 回転スィツチ 4の形態は上述の実施例のものに限定されるものではなく、 例えば図 9に示されるように、 ブラシ Bu、 B u ' 、 Β ν、 Βν' 、 Bw、 B w, を回転軸に固定し、 その外周側に各相の出力取出し用リング Ru、 Rv、 R wをブラシ B u、 Bu, 、 Βν、 Β ν ' 、 Bw、 Bw' に摺動するように設けて もよい すなわち、 回転軸 41に絶縁体の円柱 43 u、 43 v、 43wを設けて、 それぞれに 9 (): 間隔で配置された 1対のブラシ B u、 B u ' 、 Βν、 Β ν' 、 Bw、 Bw' を固定する また、 ノくッテリ入力用のリング R b 1、 R b 2を設け、 これにブラシ B r 1、 B r 2を介してバッテリ 3から直流入力を与える 各ブラ シ B u、 B u ' 、 Β ν、 Β ν ' 、 Bw、 Bw, とリング Rb l、 R b 2間の接続 は図 9に示す. 出力取出し用リング Ru、 Rv、 Rwはそれぞれ 4分割し、 互い に 1 2 0 : ずつ分割位置をずらす これにより回転スィツチを小型化できる また、 かかろ回転スィッチにおいては、 4分割リングを 8、 1 6 , 3 2と分害 4 して増やしていけば、 6 O H z に対して 4分割で] 8 0 () r p mなら、 8分割で 9 0 () r p m、 1 6分割で 4 5 0 r p m、 3 分割で 2 2 5 r p mと、 分割を許 容できる範囲まで小さな回転となっていく 必要なサイクルをより小さい回転で 取り出すことができ、 これには図 9のデイス卜リビュータ方式が良好である- この回転スィツチ 4は機械式のものに限られるものではなく、 電子回路で構成 することもできる すなわち、 バッテリからの直流入力を電子素子のオン Zオフ で転流または断続させてその出力をモータのコイルに印加するようにし、 その転 流または断続出力の周波数を任意に設定できるように回路を構成すればよい- こ れにはブラシレス D Cモータの制御回路を転用してその出力周波数を可変制御で きるように改造すればよい。 Further, the present invention is not limited to an AC motor, but can be applied to a normal DC motor. That is, a commutation current or an intermittent current taken out of the rotary switch 4 is supplied to a coil of the DC motor. Further, the form of the rotary switch 4 is not limited to that of the above-described embodiment. For example, as shown in FIG. 9, brushes Bu, Bu ′, Βν, Βν ′, Bw, Bw, are fixed to the rotating shaft, and the rings for taking out the output of each phase are slid on the outer peripheral side with brushes Bu, Bu,, 、 ν, Βν ', Bw, Bw' may be provided to other words, the cylindrical insulator 43 u, 43 v, and 43w provided on the rotary shaft 41, respectively 9 (): a pair of brush B u arranged at intervals, B u ', Fix Βν, Βν ', Bw, Bw'.Ring Rb1, Rb2 Which are supplied with a DC input from the battery 3 via the brushes Br 1 and Br 2, and each of the brushes Bu, Bu ′, Βν, Βν ′, Bw, Bw, and the rings Rbl, R The connection between b2 is shown in Fig. 9. Output extraction rings Ru, Rv, and Rw are each divided into four parts, and 1 2 0: one by hand can thereby reduce the size of the rotary Suitsuchi to shift the dividing position, in Kakaro rotary switch, if we increase the 4 split ring 8, 1 6, 3 2 and minutes harm 4 to, 6 OH 80 () rpm for z divided by 90 () rpm, 90 () rpm for 8 divided, 450 rpm for 16 divided, 2 25 rpm for 3 divided, small enough to allow division The required cycle of rotation can be extracted with a smaller rotation, and the distributor method shown in Fig. 9 is good for this. This rotary switch 4 is not limited to a mechanical type, but is an electronic device. That is, the DC input from the battery is commutated or intermittent when the electronic element is turned on and off, and the output is applied to the motor coil, and the frequency of the commutation or intermittent output is arbitrary. Configure the circuit so that it can be set to Bayoi - the Re This may be modified to its output frequency by diverting the control circuit of the brushless DC motor to cut a variable control.
また、 上記のように電子回路で出力周波数を可変制御することにかえて、 ブラ シレス D Cモータの回転位置を検出するためのホール素子等からなる回転位置検 出機構をブラシレス D Cモータの回転軸から切り離し、 代わりに、 他のモータに より回転される独立の回転軸に取り付け、 この回転軸の回転数を該他のモータに より可変制御できるようにし、 その回転位置検出機構からの出力に基づいてモー タコイルの励磁タイミングを決めて励磁電流を作成し、 制御対象のモータのコィ ルを駆動するようにしてもよレ、  Also, instead of variably controlling the output frequency with the electronic circuit as described above, a rotation position detection mechanism consisting of a Hall element and the like for detecting the rotation position of the brushless DC motor is connected to the rotation axis of the brushless DC motor. Separately, instead, attached to an independent rotating shaft that is rotated by another motor, so that the rotation speed of this rotating shaft can be variably controlled by the other motor, and based on the output from the rotation position detecting mechanism. An excitation current may be created by determining the excitation timing of the motor coil, and the coil of the motor to be controlled may be driven.
なお、 ブラシレス D Cモータもモータの回転軸と別体の電子回路により回転を 制御しているので、 一見、 本願発明に類似しているが、 以下に述べるように、 ブ ラシレス D Cモータはそのロータの回転位置に応じてコイルに P WM (ハルス幅 変調) された出力を印加しているのに対して、 本願発明はロータの回転位置と無 関係にコイルに印加する直流を転流または断続させてその周波数を変えている点 で大きく異なっている.  The rotation of the brushless DC motor is controlled by an electronic circuit separate from the rotation axis of the motor. At first glance, the brushless DC motor is similar to the present invention, but as described below, the brushless DC motor is In contrast to applying a PWM (Halss width modulated) output to the coil in accordance with the rotational position, the present invention commutates or interrupts the DC applied to the coil regardless of the rotor rotational position. The difference is that the frequency is changed.
すなわち、 ブラシレス Γ) Cモータは回転子の位置をホール素子等のセンサで検 出し、 トランジスタで各ステータコイルに通電していく そして印加電圧による 速度制御である F— V方式の進んだ方式の P Lし方式は、 速度制御部にマイク 口コンビュ一タを使用し、 P WMのハヮ一アンフと組み合わせて機能させている これは始動電流をフログラムすることができ、 モータのロック状態における電流 を任意に設定できる. In other words, the brushless モ ー タ) C motor detects the position of the rotor with a sensor such as a Hall element, energizes each stator coil with a transistor, and uses the applied voltage to control the speed. The system uses a microphone mouth computer for the speed control unit and functions in combination with the PWM bar amp. This allows the starting current to be programmed and the current in the locked state of the motor to be set arbitrarily.
また、 センサレスブラシレス D Cモータの駆動も トランジスタの O Nによりス テータコィルに通電を行う そしてその駆動方法と制御は各コィルの誘起電圧を 比較することにより通電タイミングを作成し、 トランジスタの O Nにより駆動制 御をする- 現在のブラシレス D Cモータの駆動制御は全て回転子の回転を検出するか、 ま たはステ一タコイルの誘起電圧の比較により通電タイミングをとつている. この ことは装置の作動が回転子の回転に準じていることであり、 交流モータのように ステータコイルの回転磁界に回転子が準じていることとは異なる—  Also, the sensorless brushless DC motor is energized by turning on the transistor to energize the stator coil.The driving method and control is to create the energization timing by comparing the induced voltage of each coil, and to control the drive by turning on the transistor. -The current drive control of brushless DC motors is based on detecting the rotation of the rotor or energizing timing by comparing the induced voltage of the stator coil. It is based on the rotation, which is different from the fact that the rotor follows the rotating magnetic field of the stator coil like an AC motor.
以上、 現在の電圧と電流による直流での駆動制御方法では、 回転子の動きに準 じる限り、 ステ一タコイルの卷数を増やせば増やす程に、 トルクは落ちないが回 転数は落ちているのである これは卷数を増やす程の電圧、 電流の遅れのためで ある そこで、 ステータコイルの卷数を增やしても、 回転子の回転数を落とさな い状態を維持するためには、 常時、 回転子の回転を維持するための固定子側の磁 界の回転振動が必要となり、 ステ一タコィルに回転子を準じさせなければならな い  As described above, in the current drive control method using direct current based on voltage and current, as long as the number of turns of the stator coil is increased, the torque does not decrease but the number of rotations decreases as long as the number of turns of the stator coil increases, as long as the rotor moves. This is due to the delay of voltage and current as the number of turns increases. Therefore, even if the number of turns of the stator coil is reduced, it is necessary to maintain the state where the number of turns of the rotor does not decrease. In order to maintain the rotation of the rotor at all times, the rotor's magnetic field needs to be rotated and vibrated, and the stator must be made to conform to the rotor.
そのためには、 本願発明で行っているように、 ステータコイルに対しての通電 は、 直流であっても周波数を与えて直流における電圧、 電流、 そして周波数の活 用を組み入れ、 直流によるステータコイルの回転磁界振動を維持する方法を取ら ねばならない: このことで初めて直流の特質をモータに最高に活かせるのである さらに本発明は以下のような特殊な形態の電動機にも適用できるものである まず、 シリンダ内でビストンが電磁力により往復運動することで動力を得る電磁 ビス トン式の電動機に適用する場合について説明する: まず初めに、 この電動機 の基本的な構成について説明する  To this end, as is done in the present invention, the energization of the stator coil is performed by giving a frequency even in the case of direct current, incorporating the use of voltage, current, and frequency in direct current, and applying a direct current to the stator coil. It is necessary to take measures to maintain the rotating magnetic field vibration: This makes it possible for the first time to make the most of the characteristics of DC in a motor. Further, the present invention can be applied to a special type of electric motor as follows. The following describes an application to an electromagnetic biston-type electric motor that obtains power by reciprocating a piston in a cylinder by electromagnetic force: First, the basic configuration of this electric motor will be described.
図 1 4は電磁ビストン式の電動機の実施例の横断面図である また、 図 1 5は この電動機のシリンダとビストン部分の外観図である- 図】 4において、 1はピ ストン、 2はシリンダ、 3は外側シリンダ、 4、 9は連結部であり、 ともに珪素 鋼板で作られている: シリンダ 2と外側シリンダ 3は頂部が閉じられた形状にな つている シリンダ 2の頂部外壁には連結部 4が一体成形されており、 シリンダ は連結部 4が外側シリンダ 3の頂部内壁に当接するようにして外側シリンダ 3 の内部に収容され、 この連結部 4が外側シリンダ 3の頂部に敢付けネジ】 6で固 定されている この連結部 4には励磁コイル 5が卷回される 外側シリンダ 3の 頂部外側には二つの電極 6が取り付けられ、 この二つの電極 6は外側シリンダ 3 の内壁側に貫通して励磁コイル 5の両端の導線にそれぞれ接続され、 この電極 6 を通して励磁コイル 5を励磁できるようになっている、 Fig. 14 is a cross-sectional view of an embodiment of an electromagnetic piston-type electric motor. Fig. 15 is an external view of a cylinder and a piston part of the electric motor. In Fig. 4, 1 is a piston, and 2 is a cylinder. , 3 are outer cylinders, 4 and 9 are coupling parts, both made of silicon steel plate: Cylinder 2 and outer cylinder 3 have closed tops. The connecting part 4 is integrally formed on the top outer wall of the cylinder 2, and the cylinder is housed inside the outer cylinder 3 so that the connecting part 4 comes into contact with the top inner wall of the outer cylinder 3. Is fixed to the top of the outer cylinder 3 with a screw [6]. An exciting coil 5 is wound around the connecting portion 4. Two electrodes 6 are mounted on the outer side of the top of the outer cylinder 3. The two electrodes 6 penetrate the inner wall of the outer cylinder 3 and are connected to the conductors at both ends of the exciting coil 5, respectively, so that the exciting coil 5 can be excited through the electrodes 6.
ピス トン 1は、 内部が空洞であって先端側が開口しており、 基端側には永久磁 石 7が S極側がビス トン基端面に向かうようにして固定してある. この永久磁石 7の N極側の面には連結部 9が固定してあり、 さらにこの連結部 9の軸孔 9 aに はコンロッ ド 1 0が軸支されている このコンロッ ド 1 0の他端の軸孔 1 0 aは 図示しないクランク機構のクランク軸に軸支される- 連結部 9にはブースタ用励 磁コイル 8 (以下、 ブースタコイルと称する) が卷回されており、 このブースタ コイル 8の両端の導線は、 ビストンの外壁側面に軸方向に延びるように埋め込ん だ銅板電極 1 2にそれぞれ接続される:  The interior of the piston 1 is hollow and the tip side is open, and a permanent magnet 7 is fixed to the base end so that the S pole side faces the biston base face. A connecting portion 9 is fixed to the surface on the N-pole side, and a connector 10 is pivotally supported in a shaft hole 9 a of the connecting portion 9. A shaft hole 1 at the other end of the connector 10 is provided. 0 a is supported by a crankshaft of a crank mechanism (not shown). An exciting coil 8 for a booster (hereinafter referred to as a booster coil) is wound around the connecting portion 9, and lead wires at both ends of the booster coil 8 are provided. Are connected to the copper plate electrodes 12 embedded in the outer wall side of the biston so as to extend in the axial direction, respectively:
ビストン 1はシリンダ 2の内部にベアリング 1 5により支持されており、 シリ ンダ軸方向に滑らかに往復運動 (上下運動) できるようになつている: ピス トン 1は図中に で示す距離を往復運動する ベアリング 1 5はシリンダ 2の内 壁 (すなわちピストン 1の外壁) の円周方向に沿って、 上下の 2つの位置に配置 されており、 ピス トン 1 とシリンダ 2が磁気的に結合しないようにセラミックで 製造されている このベアリング 1 5に代えていわゆるコロを用いてもよい シリンダ 2にはブラシ電極 1 4 (以下、 単にブラシと称する) が外壁側から内 壁側に貫通しており、 このブラシ 1 4の先端は前記の銅板電極 1 2に摺動接触す るようになっている ブラシ 1 4の他端はさらに外側シリンダ 3を貫通して外部 から電流を流すことができるようになつている このブラシ 1 4は力一ボンで製 造してもよいし、 先端部をいわゆるコ口にして摺動による擦り減りを低減させる ようにしてもよレ、 図 1 6にはブラシ] 4の先端をコ口にした場合の構成が示さ れる 図示のように、 先端に円筒形の電極 1 4 aを回転自在に取り付け、 この円 简電極 1 4 aが銅板電極 1 2の面と回転しながら接触するようにする なお、 ブースタコイル 8給電用の接点機構は、 上述の銅板電極 1 2とブラシ 1 4による接点機構に限られるものではなく、 例えばコンロッ ド 1 0の内側を空洞 にしてそこにブースタコイル 8の導線を通し、 クランク軸側にクランク軸円周方 向に一回転するリング電極を取り付け、 これと摺動するブラシを設けた摺動接点 機構を設けるなど、 種々の接点機構が採用可能である- この電磁式ビストン機関の動作を以下に述べる- このビス トン機関の作動中、 ブースタコイル 8には永久磁石 7の磁極の強さを 強化する方向に電流を流し続ける 後述するようにビストン 1はシリンダ 2内を 往復運動するが、 ブースタコイル 8への給電は、 銅板電極 1 2に摺動するブラシ 4を通して電流を供給することで行える これによりピス トン 1は永久磁石 7 とブースタコイル 8の磁力により全体が S極に磁化される: Biston 1 is supported inside the cylinder 2 by bearings 15 so that it can smoothly reciprocate (vertically move) in the cylinder axis direction. Piston 1 reciprocates the distance indicated by in the figure. The bearings 15 are arranged at two positions, upper and lower, along the circumferential direction of the inner wall of the cylinder 2 (that is, the outer wall of the piston 1), so that the piston 1 and the cylinder 2 are not magnetically coupled. A so-called roller may be used in place of the bearing 15 made of ceramic. A brush electrode 14 (hereinafter simply referred to as a brush) penetrates the cylinder 2 from the outer wall side to the inner wall side. The tip of the brush 14 is in sliding contact with the copper plate electrode 12 .The other end of the brush 14 is further penetrated through the outer cylinder 3 so that current can flow from outside. The brush 1 4 may be manufactures in force one Bonn are, it may also be so as to reduce the decrease rubbing by sliding the tip in a so-called co outlet les, in FIG. 1 6 Brush 4 The configuration with the tip at the end is shown. As shown in the figure, the cylindrical electrode 14a is rotatably attached to the tip, and this circular electrode 14a rotates while rotating with the surface of the copper plate electrode 12. Make contact Note that the contact mechanism for feeding the booster coil 8 is not limited to the above-described contact mechanism using the copper plate electrode 12 and the brush 14. A variety of contact mechanisms can be adopted, such as attaching a ring electrode that rotates one turn in the circumferential direction of the crankshaft to the crankshaft side, and providing a sliding contact mechanism with a brush that slides with the ring electrode. The operation of the electromagnetic biston engine will be described below. During the operation of the biston engine, the booster coil 8 continues to flow a current in the direction of strengthening the magnetic pole of the permanent magnet 7. The power to the booster coil 8 can be supplied by supplying current through the brush 4 that slides on the copper plate electrode 12, so that the piston 1 and the permanent magnet 7 Whole by the magnetic force of Takoiru 8 is magnetized to the S pole:
励磁コイル 5の励磁は次のようにして行う すなわち、 ピス トン 1が上死点か ら下死点 (図中を上から下に向かう方向) に向かう期間中は、 シリンダ 2が S極、 外側シリンダ 3が N極に磁化される方向に電流を流す 一方、 下死点から上死点 (図中を下から上に向かう方向) に向かう期間中は、 シリンダ 2が N極、 外側シ リンダ 3が S極に磁化される方向に電流を流す— この励磁電流の通電を周期的に 繰り返す。  Excitation of the exciting coil 5 is performed as follows: During the period when the piston 1 moves from the top dead center to the bottom dead center (in the direction from top to bottom in the figure), the cylinder 2 has the S pole and the outside. While the cylinder 3 passes current in the direction of magnetization to the N pole, during the period from bottom dead center to top dead center (direction from bottom to top in the figure), cylinder 2 has the N pole and outer cylinder 3 A current flows in the direction in which the magnetic field is magnetized to the S pole. This energization current is periodically repeated.
上記のようにして励磁コイル 5を励磁すると、 ビス トン 1が下死点から上死点 に向かう間は、 ピス トン 1 の S極とシリンダ 2の N極とが吸引し合い、 ビストン 1はこの吸引力により上死点に向かって上昇する. ビス トン 1が上死点に達した ら、 励磁コイル 5の励磁電流を反転させる: これによりシリンダ 2は S極に磁化 されるので、 ヒストン 1の S極とシリンダ 2の S極は今度は互いに反発し合い、 その反発力によりビス トン 1は下方向に押し出され、 下死点に向かって下降する 下死点に達したら、 再び励磁コイル 5の励磁電流を反転させる. これを繰り返す ことによりピストン 1はシリンダ 2内を往復運動することになり、 この往復運動 はコンロッド 1 0を介してクランク軸 1 1の回転運動に変換される:  When the excitation coil 5 is excited as described above, while biston 1 moves from bottom dead center to top dead center, the south pole of piston 1 and the north pole of cylinder 2 attract each other, and biston 1 It rises toward the top dead center due to the attractive force. When the biston 1 reaches the top dead center, the exciting current of the exciting coil 5 is reversed: This causes the cylinder 2 to be magnetized to the S pole, so that the histone 1 This time, the S pole and the S pole of the cylinder 2 repel each other, and the repulsive force pushes the biston 1 downward and descends toward the bottom dead center. Reversing the excitation current. By repeating this, the piston 1 reciprocates in the cylinder 2, and this reciprocation is converted into the rotation of the crankshaft 11 via the connecting rod 10:
図 1 7には上述の電動機を複数台用いて電磁式ビス トン機関を構成した場合の 実施例が示される ここでは便宜上、 上述の一つのシリンダと一つのヒス トンの 組合せを一つのアセンブリ (assembl y) と称することにする この実施例は 6連 アセンブリの電磁式ビストン機関である 図示されるように、 6つのアセンブリ を直列に配置し、 各ァセンブリの外側シリンダ 3を磁気的に結合させる 便宜上、 図面左側から順番に番号を付けて第 1アセンブリ、 第 2アセンブリ . · ·第 6ァ センプリと称することにする- 第 1〜第 6アセンブリの各ピストン 1は全て先端側が S極となるように永久磁 石 7の配置およびブースタコイル 8の励磁を行う, 第 1〜第 6ァセンブリの各ピ ストンは、 第 1アセンブリを基準 (0。 ) とした時、 それらの上死点がそれぞれ 6 0 : クランク角ごとの等間隔でクランク軸 4 0に取り付けられている ここで、 第 1と第 2アセンブリ間、 第 3と第 4ァセンブリ間および第 5と第 6ァセンブリ 間はクランク角の位相差がそれぞれ I 8 0 :: あるようにする: また、 第 1と第 3 アセンブリ間、 および第 3と第 5アセンブリ間はクランク角の位相差がそれぞれ 1 2 0 : あるようにする。 クランク軸 4 0はエンジン本体にベアリング 4 1で回 転自在に支持されている Fig. 17 shows an embodiment in which an electromagnetic biston engine is configured by using a plurality of the above-mentioned motors. For convenience, the combination of the above-described one cylinder and one his- ton is combined into one assembly (assembl y) This example has 6 stations The assembly is an electromagnetic pistonton engine. As shown, the six assemblies are arranged in series, and the outer cylinders 3 of each assembly are magnetically coupled. For convenience, the first assembly is numbered sequentially from the left side of the drawing. The second assembly is referred to as the sixth assembly.- The permanent magnets 7 are arranged and the booster coils 8 are excited so that all the pistons 1 of the first to sixth assemblies have the S pole at the tip end. , When the pistons of the first to sixth assemblies are mounted on the crankshaft 40 at their top dead centers at 60 : the crank angle at the same interval when the first assembly is referred to (0.). Here, the phase difference of the crank angle between the first and second assemblies, between the third and fourth assemblies, and between the fifth and sixth assemblies should be I80 ::, respectively. And the third ace The phase difference between the crank angles between the assemblies and between the third and fifth assemblies should be 120: 0, respectively. The crankshaft 40 is rotatably supported by the engine body with bearings 41.
第 1〜第 6アセンブリの各励磁コイル 5にはインバータ 4 2から励磁電流を供 給する インバ一タ 4 2はバッテリ 4 3の直流出力を 3相交流出力に変換して各 励磁コイル 5に供給する- この 3相交流出力の周波数は自由に変えることができ る また第 1〜第 6アセンブリの各ブースタコイル 8にはブラシ 1 4を介してバ ッテリ 4 3から直流電流を供給する . この直流電流はピス トン 1先端が S極とな る方向に流す,  The exciting current is supplied from the inverter 42 to each exciting coil 5 of the first to sixth assemblies.The inverter 42 converts the DC output of the battery 43 into a three-phase AC output and supplies it to each exciting coil 5. -The frequency of this three-phase AC output can be freely changed. Also, a DC current is supplied to each booster coil 8 of the first to sixth assemblies from the battery 43 via the brush 14. The current flows in the direction in which the tip of the piston 1 becomes the south pole,
図 1 8 (A) にはインバータ 4 2から各励磁コイル 5への給電の仕方が示され る 図示されるように、 第 1と第 2アセンブリの励磁コイル 5には 3相交流の R • S相が互いに逆相で接続され、 第 3と第 4アセンブリの励磁コイル 5には 3相 交流の S · T相が互!/、に逆相で接続され、 第 5と第 6アセンブリの励磁コイル 5 には 3相交流の T · R相が互いに逆相で接続される- 図 1 8 ( B ) には、 第 1ァ センプリを基準 (0 : ) とした時のクランク角に対する第 1〜第 6アセンブリの 各ピス トンの位置が示されろ また、 図 1 8 ( C ) には 3相交流とクランク角と の関係が示される- 上述のように接続すると、 各アセンブリでは、 励磁コイル 5に、 ピス トンの往 復動の中央位置で最大となり、 ビストンの上死点または下死点で励磁電流の方向 J 5 が反転するよ ϋに電流が流れる この結果、 クランク角() では、 第 1、 第 2ァ センプリでは反発力と吸引力がそれぞれ 0近く力 ^働き始め、 第 3、 第 4ァセン プリではヒ一ク値に近い増加中の吸引力と反発力がそれぞれ働き、 第 5、 第 6ァ センブリではヒーク値に近レ、減少中の反発力と吸引力がそれぞれ働く またクラ ンク角 6 CT では、 第 1、 第 2アセンブリではピーク値に近い増加中の吸引力と 反発力がそれぞれ働き、 第: 第 4アセンブリではヒーク値に近い減少中の吸引 力と反発力がそれぞれ働き、 第 5、 第 6アセンブリでは反発力と吸引力がそれぞ れ 0近くから働き始める: このように、 吸引 ·反発の関係がクランク角に応じて 第 1〜第 6アセンブリを逐次にシフトしていく これにより、 各アセンブリのビ ス トンの往復動の周期は、 同期モータの原理と同様にして、 3相交流の周波数に すべりなく同期することになる よって、 インバ一タ 4 2で発生する 3相交流の 周波数を可変制御してやれば、 それに応じてこの電磁ビス トン式機関の回転数を 可変制御することができる, Fig. 18 (A) shows how power is supplied from the inverter 42 to each of the exciting coils 5. As shown in the figure, the exciting coils 5 of the first and second assemblies have three-phase AC R • S The phases are connected in opposite phases, and the exciting coils 5 of the third and fourth assemblies have three-phase alternating current S and T phases! /, Are connected in opposite phases, and the exciting coils 5 of the fifth and sixth assemblies are connected with the T and R phases of the three-phase alternating current in opposite phases-Fig. 18 (B) shows the first The positions of the pistons of the first to sixth assemblies with respect to the crank angle with respect to the standard (0:) are shown. Fig. 18 (C) shows the relationship between the three-phase AC and the crank angle. Shown-When connected as described above, in each assembly, the excitation coil 5 has a maximum at the center position of the piston traverse, and the direction of the excitation current at the top or bottom dead center of the piston. As a result, at the crank angle (), the repulsive force and the suction force begin to work almost 0 at the first and second assemblies, and at the third and fourth assemblies at the crank angle (). The increasing suction force and the repulsive force work close to the peak value, respectively, and in the fifth and sixth assemblies, they approach the heak value, and the decreasing repulsive force and the suction force work respectively. In the first and second assemblies, increasing suction force and repulsion force near the peak value act, respectively.In the fourth assembly, the decreasing suction force and repulsion force near the heak value act respectively, and the fifth and In the 6 assembly, the repulsive force and the suction force each start to work near 0: Thus, the relationship between suction and repulsion shifts the 1st to 6th assemblies sequentially according to the crank angle. Reciprocating of the piston of the assembly During the period, the three-phase AC frequency is synchronized with the frequency of the three-phase AC without slipping in the same way as in the principle of the synchronous motor. Variable speed control of the electromagnetic biston engine,
図 1 9には 6連アセンブリによる電磁式ビストン機関の他の例が示される, 図 2 0にはビストン 1の磁極の極性に対し、 シリンダ 2に S極または Ν極発生する ための励磁コイル 5の励磁電流の極性が示される: この実施例は励磁コイル 5へ の給電に 3相交流を用いない方法である 第 1、 第 3、 第 5アセンブリのピス ト ンを同じ高さにし (すなわちクランク角を同じにし) 、 第 2、 第 4、 第 6ァセン プリのビストンを同じ高さにし、 第 1、 第 3、 第 5アセンブリと第 2、 第 4、 第 6アセンブリのピストン位置は逆相とする。  Fig. 19 shows another example of an electromagnetic piston motor with a six-unit assembly. Fig. 20 shows an exciting coil 5 for generating an S-pole or a Ν-pole in cylinder 2 for the polarity of the magnetic pole of biston 1. This embodiment shows a method in which the three-phase alternating current is not used to supply the exciting coil 5 with the pistons of the first, third, and fifth assemblies being flush with each other (that is, the crank is used). With the same angle), the pistons of the second, fourth, and sixth assemblies should be at the same height, and the piston positions of the first, third, and fifth assemblies and the second, fourth, and sixth assemblies should be in opposite phases. I do.
クランク軸に 6つのリング状の電極 5 1〜5 6を取り付ける: 電極 5 1〜5 4 は分割されていないリングである また電極 5 5、 5 6は直径方向に 2分割され た 2分割リングである- 2分割リング 5 5、 5 6はともに同じクランク角位置で 分割し、 分割片 5 5 a、 5 5 bと分割片 5 6 a、 5 6 bとにそれぞれ分ける リング 5 1〜 5 4はそれぞれブラシ (電極) 6 1〜 6 4と摺動接触するように し、 ブラシ 6 1、 6 2はそれぞれ第 1、 第 3、 第 5アセンブリの励磁コイル 5に 接続し、 ブラシ 6 3、 6 4はそれぞれ第 2、 第 4、 第 5アセンブリの励磁コイル Attach six ring-shaped electrodes 51 to 56 to the crankshaft: Electrodes 51 to 54 are undivided rings. Electrodes 55 and 56 are diametrically divided two-part rings. There are two split rings 5 5 and 5 6 split at the same crank angle position and split into split pieces 55 a and 55 b and split pieces 56 a and 56 b respectively. The brushes (electrodes) 6 1 to 6 4 are in sliding contact with each other, and the brushes 6 1 and 6 2 are connected to the exciting coils 5 of the first, third and fifth assemblies, respectively, and the brushes 6 3 and 6 4 Are the excitation coils of the second, fourth, and fifth assemblies, respectively.
5に接続する ·_ また 2分割リング 5 5はブラシ 6 5、 6 7に直径線上でそれぞれ 摺動接触するようにし、 2分割リング 5 6はブラシ電極 6 66 8に直径線上で それぞれ摺動接触するようにする ブラシ 6 5 , 6 8はバッテリのフラス (+ ) 側端子に接続し、 ブラシ 6 6、 6 7はマイナス (一) 側端子に接続する 分割片 5 5 a、 5 6 aをそれぞれリング 5 1、 5 2に接続し、 分割片 5 5 b、 5 6 bを それぞれリング 5 3、 5 4に接続する また、 第]〜第 6アセンブリのヒストン 側ブースタコイル 8にはバッテリ 4 3からそれぞれ並列に直流電流を同じ方向に 流すようにする 5 Connect the two split rings 5 5 to the brushes 6 5 and 6 7 in sliding contact with each other on the diameter line, and the two split rings 5 6 to the brush electrodes 6 6 and 6 8 on the diameter line. Brushes 6 5, 6 8 should be connected to the positive (+) terminal of the battery, and brushes 6 6, 6 7 should be connected to the negative (1) terminal. 6a is connected to the rings 51, 52, respectively, and the split pieces 55b, 56b are connected to the rings 53, 54, respectively. Also, on the histone side booster coil 8 of the 6th to 6th assemblies Make DC current flow in the same direction from battery 43 in parallel
以上のように接続すると、 クランク軸が 1 8 ()。 回転する毎に、 2分割リング When connected as above, the crankshaft is 18 (). For every rotation, split ring
5 5、 5 6での電流の反転により、 第 1〜第 6アセンブリの励磁コイル 5に流れ る励磁電流の方向が反転することになり、 シリンダ 2内では吸引力と反発力に交 互に切り替わるよう磁場が反転することになる 55 The direction of the current flowing in the exciting coil 5 of the first to sixth assemblies is reversed due to the reversal of the current at 5 and 56, so that the cylinder 2 alternately switches to the attractive force and the repulsive force. The magnetic field will be reversed
次に、 図 1 9の実施例の電磁式ピス トン機関に前述の回転スィッチを適用して 本発明の電動装置を構成する場合について説明す. 図 2 1はかかる実施例の回転 スィッチを示す: この実施例は図 1 9の実施例におけるリング 5 1〜5 4と 2分 割リング 5 5、 5 6の部分をクランク軸から切り離し、 代わりに、 回転速度が制 御可能なモータで回転される回転軸に取り付けたものであり、 これをここでは便 宜上、 回転スィッチと称する. モータはこの回転スィッチの回転軸にフ一リある いはスフロケットを介して取り付けられる その他の構成は図 1 9の実施例と同 じである すなわち、 回転軸 6 0をケース 5 7にベアリング 5 8により回転自在 に支持し、 この回転軸 6 0に前述の 2分割リング 5 5、 5 6、 リング 5 1〜6 4 を取り付ける ケース 5 7からブラシ 6 1〜6 8を各リング 5 1〜5 6に対して スプリング 5 9で押圧しつつ突き出す: リング 5 1 〜 5 4と 2分割リング 5 5、 Next, a description will be given of a case where the above-described rotary switch is applied to the electromagnetic piston engine of the embodiment of FIG. 19 to constitute the electric motor of the present invention. FIG. 21 shows the rotary switch of this embodiment: In this embodiment, the rings 51 to 54 and the split rings 55, 56 in the embodiment of FIG. 19 are separated from the crankshaft, and are instead rotated by a motor whose rotation speed can be controlled. The motor is mounted on a rotating shaft, and is referred to as a rotating switch here for convenience. The motor is mounted on the rotating shaft of the rotating switch via a flywheel or a rocket. That is, the rotating shaft 60 is rotatably supported on the case 57 by the bearing 58, and the rotating shaft 60 is provided with the above-mentioned two-part ring 55, 56, ring 51- 6 4 Attach Case 5 7 to Brush 6 1 to 6 8 is pushed out against each ring 5 1 to 5 6 by pressing it with a spring 5 9: ring 5 1 to 5 4 and split ring 5 5,
5 6間の電気接続は、 図 2 2に示されるように、 それぞれのリングの内側に絶縁 体 6 9を設け、 これに適宜に貫通孔をあけて互いの配線を通せばよい 上述のよ うに構成すると、 モータで回転軸の回転速度を自由に制御することで、 それに応 じて電磁式ビストン機関の回転速度も制御できる モータとしては高いトルクは 必要ないので、 小型のもので足りる As shown in Fig. 22, electrical connection between 5 and 6 can be achieved by providing an insulator 69 inside each ring and making a through-hole in this as appropriate to allow each other's wiring to pass through. With this configuration, the motor can freely control the rotation speed of the rotating shaft, and the rotation speed of the electromagnetic pistonton engine can be controlled accordingly.High torque is not required for the motor, so a small motor is sufficient.
次に、 以下のような形態の電動機に本発明を適用する場合について説明する まず回転スィツチを適用しない場合におけるこの電動機の基本的構造について説 明する 図 2 3は係るモータの実施例を示す図である 図 2 3において、 図示しない筐 体に回転軸 5が回転可能に支持される 回転軸 5には 6つの円盤形のロータ l a 、 l b 、 1 c , l a'、 1 、 1 c'が軸方向に沿って間隔を置いて並べられて取り付 けられる 各ロータ l a 、 l b 、 l c 、 l a'、 1 、 1 c はそれぞれ永久磁石か らなり、 円盤を軸方向に中心から二分割した半分が S極、 残り半分が N極になる 各ロータ l a 、 】 b 、 l c 、 1 a'、 l b' , 1 c'の隣り合う磁極は S極と N極が互 い違いになるように配置される Next, a description will be given of a case where the present invention is applied to a motor having the following configuration. First, a basic structure of the motor in a case where a rotary switch is not applied will be described. FIG. 23 is a diagram showing an embodiment of such a motor. In FIG. 23, a rotating shaft 5 is rotatably supported by a casing (not shown). The rotating shaft 5 has six disk-shaped rotors la, lb, 1 c, l a ', 1, 1 c' are mounted at intervals along the axial direction.The rotors la, lb, lc, l a ', 1, 1 c are each from a permanent magnet. The half of the disk divided in half from the center in the axial direction is the S pole, and the other half is the N pole. The adjacent magnetic poles of each rotor la, b, lc, 1 a ', lb', 1 c 'are the S pole And N poles are arranged so that they are different from each other
各ロータ】 a 、 l h 、 l c 、 l a'、 1 、 1 c'の実現方法としては種々の公知 の方法が可能であり、 例えば非磁性体からなる円盤の外側に半円の円弧形の板磁 石を張りつけてもよく、 この板磁石は外側面を例えば S極、 内側面を N極などの ように形成する,  Each rotor] a, lh, lc, la ′, 1, 1c ′ can be realized by various known methods, for example, a semicircular arc outside a disk made of a non-magnetic material. A plate magnet may be attached, and this plate magnet forms the outer surface as, for example, an S pole and the inner surface as an N pole.
ロータ l a 、 l b 、 l c 、 l a'、 1 b'、 1 c の外側にはステータコア 2 a 、 2 b 、 2c 、 2a'、 2 b' , 2 c'が配置される, 各ステータコア 2a 、 2b , 2c 、 2a'、 2b'、 2c'は珪素鋼板などの磁性材料からなり、 対応する各ロータ l a 、 l b 、 l c 、 l a'、 1 、 l c を外側から取り囲むことができるようにロータに 面する側が半円形に切り欠力れて両脇に二つの脚部をなし、 この切欠き部分に各 ロータ l a 、 l b 、 l c 、 l a'、 1 、 1 c'が間隙を持ってそれぞれ嵌合するよ うになつている また各ステ一タコア 2a 、 2b 、 2c 2 a v 2 、 2 c'の切 欠き部のロータ側に突出した 2つの脚部は長さが若干異なるようにしてある。 例 えば図 2中の各ステータコア 2a 、 2b 、 2c 、 2a'、 2 b'、 2 c'の手前の脚部 を奥の脚部よりも若干長く してあり、 これにより磁気的バランスが不平衡になる ようにしてある なお、 図 2 3では図を見やすくするために、 ロータ l a 、 l b 、 l c 、 1 a'、 1 、 1 c'とステータコア 2a 、 2b 、 2c 、 2 a'、 2 b'、 2 c'は 離して描いてある The stator cores 2a, 2b, 2c, 2a ', 2b', 2c 'are arranged outside the rotors la, lb, lc, la', 1b ', 1c, and each stator core 2a, 2b , 2c, 2a ', 2b', and 2c 'are made of a magnetic material such as a silicon steel plate, and the surfaces of the corresponding rotors la, lb, lc, la', 1, and lc can be surrounded from outside. The side to be cut out has a semicircular cutout force to form two legs on both sides, and each of the rotors la, lb, lc, la ', 1, 1c' fits into this cutout with a gap UniNatsu and are also each stearyl one stator core 2a by which, 2b, 2c 2 a v 2 , 2 c 2 legs protruding rotor side notches' of are to have slightly different lengths. For example, the legs in front of the stator cores 2a, 2b, 2c, 2a ', 2b', 2c 'in Fig. 2 are slightly longer than the legs in the back, which results in unbalanced magnetic balance. In FIG. 23, the rotors la, lb, lc, 1a ', 1, 1c' and the stator cores 2a, 2b, 2c, 2a ', 2b' are shown in FIG. , 2 c 'are drawn apart
各ステ一タコア 2a 、 2b 、 2c 、 2 a' N 2 、 2c'は、 ステータコア 2a と 2 a'が連結棒 3 a で、 スタータ 2h と 2 b'が連結棒 3 h で、 ステータコア 2 c と 2 c が連結棒 3 c でそれぞれ連結される この連結棒は珪素鋼板などの磁性材料 からなり、 連結棒の中間部分はステータコア 2a 、 2b 、 2c 、 2 a'、 2 b'、 2 c'から離してあろ 連結棒 3a にはコイル 4a 、 連結棒 3b にはコイル 4h が、 また連結棒 3c にはコイル 4c がそれぞれの中間部分に巻かれる c 回転軸 5には 2分割リング 6 1、 62とリング 6 3〜66が整流子として取り 付けられる リング 6 3〜 66は連続したリング状の導体からなり、 2分割リン グ 6 1、 6 2は連続したリング状の導体を半分に 2分割した導体片3、 bからな る。 2分割リング 6 1の導体片 aはリング 63に、 導体片 bはリング 65に接続 され、 2分割リング 6 2の導体片 aはリング f54に、 導体片 bはリング 6 6に接 れる。 Each stearyl one stator core 2a, 2b, 2c, 2 a 'N 2, 2c' are 'in the connecting rod 3 a, the starter 2h and 2 b' stator core 2a and 2 a by a connecting rod 3 h, and the stator core 2 c 2c are connected by connecting rods 3c, respectively.The connecting rods are made of a magnetic material such as a silicon steel plate, and the intermediate part of the connecting rods is formed by stator cores 2a, 2b, 2c, 2a ', 2b', and 2c '. Separately, connecting rod 3a has coil 4a, connecting rod 3b has coil 4h, The coupling 2 split ring 61 in c rotary shaft 5 coil 4c is wound on each of the intermediate portions in the rod 3c, 62 and ring-ring 6 3-66 are attach a commutator 6 3-66 were continuously The ring is composed of a ring-shaped conductor, and the two-part rings 61 and 62 are composed of conductor pieces 3 and b obtained by dividing a continuous ring-shaped conductor into two halves. The conductor piece a of the split ring 61 is connected to the ring 63, the conductor piece b is connected to the ring 65, the conductor piece a of the split ring 62 is connected to the ring f54, and the conductor piece b is connected to the ring 66.
2分割リング 6 1、 6 2、 リング 64〜 6 6にはブラシ 7 1 〜76がそれぞれ 摺接するように配置されており、 ブラシ 7 1はバッテリ 9のプラス端子に、 ブラ シ 72はマイナス端子にそれぞれ接続される. また、 ブラシ 73と 7 6は互いに 接続されてコイル 4a 、 4c の一端 (+ ) とコイル 4b の他端 (一) に接続され、 ブラシ 74と 75は互いに接続されてコイル 4a 、 4c の他端 (一) とコイル 4 b の一端 (+ ) に接続される。  Brushes 71 to 76 are arranged so as to be in sliding contact with the two split rings 61, 62 and rings 64 to 66, respectively.The brush 71 is connected to the positive terminal of the battery 9, and the brush 72 is connected to the negative terminal. The brushes 73 and 76 are connected to each other and connected to one end (+) of the coils 4a and 4c and the other end (1) of the coil 4b. The brushes 74 and 75 are connected to each other and connected to the coil 4a. , 4c and one end (+) of coil 4b.
このような接続により、 回転軸 5の回転に伴って、 2分割リング 6 1 、 6 2の 導体片 aにブラシ 7 1、 72が接触するときと導体片 b に接触するときでは、 コ ィノレ 4a 〜4c に流れる電流方向が反転し、 またコイル 4a と 4c の励磁電流と コイル 4b の励磁電流では方向が逆であるから、 各ステータコア 2a 、 2h 、 2 c 、 2a 、 2h'、 2c に現れる磁極は空間的に異極が交互に現れ、 かつそれらの 磁極が周期的に S極と N極に反転する r With such a connection, when the brushes 71 and 72 contact the conductor piece a of the two split rings 61 and 62 and the conductor piece b with the rotation of the rotary shaft 5, the coil 4a 4c is reversed, and the directions of the exciting currents of the coils 4a and 4c and the exciting current of the coil 4b are opposite, so the magnetic poles appearing in each stator core 2a, 2h, 2c, 2a, 2h ', 2c r is spatially appear opposite poles are alternately and their poles reversed periodically to S and N poles
具体的には、 コイル 4a 、 4c の通電により例えばステ一タコア 2a 、 2c が S極、 ステ一タコア 2a'、 2c'が N極に磁化されるときには、 コイル 4b の通電 によりステ一タコア 2b が N極、 ステータコア 2b'が S極に磁化され、 回転軸 5 に回転に伴って通電方向が反転すると各ステ一タコア 2 a 、 2b 、 2c 、 2 a'、 2b'、 2 c'の各磁極の極性が反転する— このように、 各ステ一タコア 2a 、 2b 、 2c 、 2a'、 2 、 2c には回転軸方向に交互に逆の磁極 (例えば図示のように S、 N、 S、 N、 S、 N) が発生する  Specifically, when the coils 4a and 4c are energized, for example, when the stator cores 2a and 2c are magnetized to the S pole and the stator cores 2a 'and 2c' are magnetized to the N pole, the coil 4b energizes the stator core 2b. When the N-pole and the stator core 2b 'are magnetized to the S-pole and the energizing direction is reversed with the rotation of the rotating shaft 5, the respective magnetic poles of the stator cores 2a, 2b, 2c, 2a', 2b ', 2c' The polarity of the magnetic poles is reversed. Thus, each of the stator cores 2a, 2b, 2c, 2a ', 2, 2c has magnetic poles which are alternately opposite in the direction of the rotation axis (for example, S, N, S, N as shown in the figure). , S, N)
この装置の動作を説明する: いま、 回転軸 5の回転位置により、 2分割リング 6 1、 6 2の導体片 aがブラシ 7 1、 72に摺接しているとする: このときにコ ィル 4a 、 4b 、 4c に流れる励磁電流により、 ステ一タコア 2a 、 2c , 2 b' が S極に磁化され、 ステ一タコア 2h 、 2a'、 2c が N極に磁化される. これに より、 ステ一タコア 2a 、 2c 、 2 の S極とロータ 1 a 、 1 c 、 1 b'の N極と の間に磁気吸引力が働き、 またステ一タコア 2h 、 2a 、 2c'の N極とロータ ] h 、 l a 、 1 の S極との間に磁気吸引力が働き、 回転軸 5は図中を手前方向 (矢印方向) に回転する : The operation of this device will be described: Now, suppose that the conductor piece a of the two split rings 61 and 62 is in sliding contact with the brushes 71 and 72 depending on the rotational position of the rotary shaft 5. The excitation current flowing through 4a, 4b, 4c causes the stator cores 2a, 2c, 2b ' Is magnetized to the S pole, and the stator cores 2h, 2a ', 2c are magnetized to the N pole. Thus, the S poles of the stator cores 2a, 2c, 2 and the rotors 1a, 1c, 1b' are magnetized. The magnetic attraction acts between the N pole of the rotor core and the magnetic attraction acts between the N pole of the stator cores 2h, 2a, and 2c 'and the S pole of the rotor, h, la, and 1. Rotates in the figure forward (in the direction of the arrow) :
この回転により、 やがて回転軸 5の回転位置は、 2分割リング 6 丄、 6 2の導 体片 b がブラシ 7 1、 7 2に摺接するようになる このときに励磁コイル 4a 、 4b 、 4c に流れる励磁電流が反転して、 ステ一タコア 2a 、 2c 、 2b'が N極 に磁化され、 ステ一タコア 2b 、 2a'、 2c'が S極に磁化される. これにより、 ステータコア 2a 、 2c , 2 b'の Ν極とロータ 1 a 、 l c 、 l h'の S極との間に 磁気吸引力が働き、 同じくステ一タコア 2h 、 2a'、 2c の S極とロータ l b 、 l a 、 1 c'の N極との間に磁気吸引力が働き、 回転軸 5はさらに図中を手前方向 (矢印方向) に回転する 以下、 同様にして回転軸 5は回転し続ける  Due to this rotation, the rotating position of the rotating shaft 5 eventually comes to the point where the conductor piece b of the two split rings 6 6 and 6 2 comes into sliding contact with the brushes 7 1 and 7 2. At this time, the exciting coils 4a, 4b and 4c The flowing exciting current is reversed, and the stator cores 2a, 2c, 2b 'are magnetized to the N pole, and the stator cores 2b, 2a', 2c 'are magnetized to the S pole. As a result, the stator cores 2a, 2c, Magnetic attraction acts between the Ν pole of 2b 'and the S pole of the rotor 1a, lc, lh', and the S pole of the stator core 2h, 2a ', 2c and the rotor lb, la, 1c. Magnetic attraction acts between the N pole of 'and the rotating shaft 5 rotates further in the direction of the drawing (the direction of the arrow).
このような構成においては、 励磁コイル 4はロータ 1またはステータコア 2に 直接巻かれるのではなく連結棒 3に巻かれるようになっているので、 連結棒 3に 卷くコイルの巻数を、 モータを大型化させることなく、 非常に多くすることが可 能となり、 大きな磁力を発生することができる..  In such a configuration, the exciting coil 4 is wound directly on the connecting rod 3 instead of directly on the rotor 1 or the stator core 2, so that the number of turns of the coil wound on the connecting rod 3 is increased by increasing the size of the motor. It is possible to increase it very much without generating a large magnetic force.
次に二の電動機に前述の回転スィツチを適用して本発明の電動装置を構成する 場合について説明する: 図 24はかかる実施例を示す _ この実施例は図 2 3の実 施例における 2分割リング 6 1、 6 2とリングリング 6 3〜 6 6の部分を回転軸 5力、ら切り離し、 代わりに、 回転速度が制御可能なモータで回転される、 回転ス ィツチの回転軸 6 0に取り付けたものである, モータはこの回転スィツチの回転 軸にフ一リあるいはスブロケットを介して取り付けられる この他の構成は図 2 3の実施例と同じである- すなわち、 回転軸 6 0をケースに 5 7にベアリング 5 8により回転自在に指示 し、 この回転軸 6〔)に前述の 2分割リング 6 1、 6 2とリング 6 3〜 6 6を取り 付ける ケース 5 7からブラシ 7 1〜7 6を各リング 6 1〜6 6に対してスプリ ング 5 で押圧しつつ突き出す 2分割リング 6 1 、 6 2とリング 6 3〜 6 6の 間の電気接続は、 図 2 5に示されるように、 それぞれのリングの内側に絶縁体 6 9を設け、 これに適宜に貫通孔をあけて互いの配線を通せばよい 上述のように 構成すると、 モータで回転軸の回転速度を自由に制御することで、 それに応じて モータの回転速度も制御できる。 モータとしては高いトルクは必要ないので、 小 型のもので足りる. Next, a description will be given of a case where the above-described rotary switch is applied to the second electric motor to configure the electric motor of the present invention: FIG. 24 shows such an embodiment._ This embodiment is divided into two parts in the embodiment of FIG. 23. The parts of the rings 6 1 and 6 2 and the ring rings 6 3 to 6 6 are separated from the rotating shaft 5 force, and instead, are mounted on the rotating shaft 60 of the rotating switch, which is rotated by a motor whose rotation speed can be controlled. The motor is mounted on the rotary shaft of this rotary switch via a flywheel or a subrocket. The other configuration is the same as that of the embodiment of FIG. 23-that is, the rotary shaft 60 is used as a case. 7 is rotatably instructed by bearings 5 8, and the above-mentioned two-part rings 61, 62 and rings 63-66 are attached to this rotary shaft 6 [). Each ring 6 1 to 6 6 protrudes while being pressed by the spring 5 Out 2 electrical connection between the split ring 6 and 62 and the ring 6 3-6 6, as shown in FIG. 2 5, the insulator 6 on the inside of each ring 9 can be provided, and a through hole can be appropriately opened in this, and the wires can be passed through each other. With the configuration described above, the rotation speed of the rotating shaft is freely controlled by the motor, and the rotation speed of the motor is accordingly increased. Can control. Since high torque is not required for a motor, a small motor is sufficient.
この回転スィッチを使用する場合には、 2分割リング 6 1、 2 6をさらに 4分 割、 8分割と分けていけば、 ロータの回転速度に対して回転スィッチの回転軸 6 ()の回転速度を 1 Z 2、 1ノ4と下げて使用することができる。 図 2 6はかかる 構成を示す図であり、 2分割リング 6 1、 6 2に代えて 4分割リング 6 1 ' 、 β 2 ' を用いている ( Α) はリング 6 3〜6 6側で配線をまとめる場合、 (Β ) は 4分割リング 6 1 ' 、 6 2, 側で配線をまとめる場合の例である 産業上の利用可能性  When using this rotary switch, if the two-part rings 61, 26 are further divided into four and eight parts, the rotation speed of the rotary shaft 6 () of the rotary switch with respect to the rotor speed Can be used as low as 1Z2, 1No4. FIG. 26 is a diagram showing such a configuration, in which four-split rings 6 1 ′ and β 2 ′ are used instead of the two-split rings 6 1 and 6 2 (Α). (Β) is an example of the case where wires are grouped at the four-split ring 6 1 ′, 6 2, side Industrial applicability
本発明の電動装置は普通のモータとして利用できるもので、 種々の産業上の動 力源として用いることができる- 本発明の電動装置はモータの卷数を多く して電 流を下げる一方、 回転数と トルクは下がらなレ、  The electric device of the present invention can be used as an ordinary motor and can be used as various industrial power sources.- The electric device of the present invention increases the number of windings of the motor to reduce the current while rotating. The number and torque are low,
置を提供できる, Can provide the device,

Claims

請 求 の 範 囲 The scope of the claims
1 - 電動機の回転軸と切り離してスィッチ手段を設け、 該スィッチ手段は直流を 入力としてそれを転流または断続させて該電動機の励磁コイルに印加する印加出 力とし、 該印加出力の転流または断続の周波数を該電動機の回転軸の回転位置情 報を用いずに電動機の回転状態とは独立して可変制御するように構成した電動装 置 1-Switch means is provided separately from the rotating shaft of the motor, and the switch means receives a direct current as input and commutates or intermittently converts it into an applied output to be applied to an exciting coil of the motor. An electric device configured to variably control the frequency of the intermittent operation independently of the rotation state of the motor without using the rotation position information of the rotating shaft of the motor.
2 . 前記電動機は交流電動機である請求項 1記載の電動装置„  2. The electric device according to claim 1, wherein the electric motor is an AC motor.
3 . 前記電動機は直流電動機である請求項 1記載の電動装置: 3. The electric device according to claim 1, wherein the electric motor is a DC motor.
4 . 前記スィッチ手段は、 直流入力用のリングおよびモータの励磁コイル電流供 給用のリングと、 それらのリングに摺動するブラシとを有し、 該リングは必要に 応じて分割されており、 該リングまたは該ブラシのいずれか一方を前記回転軸に 取り付けた機械構造からなる請求項 1記載の電動装置 _  4. The switch means has a DC input ring, a motor excitation coil current supply ring, and a brush that slides on the ring, and the ring is divided as necessary. The electric device according to claim 1, wherein the electric device has a mechanical structure in which one of the ring and the brush is attached to the rotating shaft.
5 . 願スィツチ手段は電子回路で構成される請求項 1記載の電動装置  5. The electric device according to claim 1, wherein the request switch means is constituted by an electronic circuit.
PCT/JP1996/003769 1995-12-25 1996-12-24 Motor WO1997023727A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP7/337422 1995-12-25
JP33742295 1995-12-25
JP3183296 1996-02-20
JP8/31832 1996-02-20
JP8/320988 1996-11-16
JP8320988A JPH09289793A (en) 1995-12-25 1996-11-16 Electrically driven device

Publications (1)

Publication Number Publication Date
WO1997023727A1 true WO1997023727A1 (en) 1997-07-03

Family

ID=27287489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003769 WO1997023727A1 (en) 1995-12-25 1996-12-24 Motor

Country Status (2)

Country Link
JP (1) JPH09289793A (en)
WO (1) WO1997023727A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707990A (en) * 2019-10-16 2020-01-17 合肥学院 AC/DC motor control system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100409561C (en) * 2006-08-04 2008-08-06 广州华南智信微***有限公司 Driving system for brushless motor of electric vehicle
JP5851800B2 (en) * 2011-11-01 2016-02-03 和徳 寺薗 Auxiliary power unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142626A (en) * 1975-06-02 1976-12-08 Hitachi Ltd An ac machine controller
JPH06117355A (en) * 1992-10-06 1994-04-26 Takahisa Nakayama Reciprocating engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142626A (en) * 1975-06-02 1976-12-08 Hitachi Ltd An ac machine controller
JPH06117355A (en) * 1992-10-06 1994-04-26 Takahisa Nakayama Reciprocating engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707990A (en) * 2019-10-16 2020-01-17 合肥学院 AC/DC motor control system

Also Published As

Publication number Publication date
JPH09289793A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
US11218038B2 (en) Control system for an electric motor/generator
US20200007016A1 (en) Brushless electric motor/generator
US6093992A (en) Electrical machine with dual excitation, especially a motor vehicle alternator
US20150097372A1 (en) Three phase flux switching generator in a three stage wound field synchronous machine
US20090302787A1 (en) Induction and switched reluctance motor
US7576468B2 (en) Commutation of brushless electrodynamic machines
US20100295397A1 (en) Electromechanical Machine
CA2024384A1 (en) Double air gap alternator
RU2356154C1 (en) Electrical machine with double-pack inductor (versions)
US10923996B2 (en) DC motor-dynamo
EP4068573A1 (en) A cogging electric machine and a method of operating the cogging electric machine
WO1997023727A1 (en) Motor
RU2069441C1 (en) Synchronous machine
RU2716489C2 (en) Electromechanical converter
JP3147920B2 (en) Low voltage motor
RU2161852C2 (en) Submersible electric motor with permanent magnets
KR910006290B1 (en) Rotary electric machine
KR100610157B1 (en) Rotary machine serves as generaroe and vibrator
KR200225225Y1 (en) Blushless dc motor
JPH10201285A (en) Brushless dc motor
KR200368951Y1 (en) Rotary machine serves as generaroe and vibrator
KR890004920B1 (en) Electric motor
RU2096895C1 (en) Induction electrical machine
RU2125183C1 (en) Electromagnetic power supply
RU2414789C1 (en) Electric machine with modulated magnetomotive force of armature

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase