WO1997000748A1 - Method of continuously casting thin cast pieces - Google Patents

Method of continuously casting thin cast pieces Download PDF

Info

Publication number
WO1997000748A1
WO1997000748A1 PCT/JP1996/001701 JP9601701W WO9700748A1 WO 1997000748 A1 WO1997000748 A1 WO 1997000748A1 JP 9601701 W JP9601701 W JP 9601701W WO 9700748 A1 WO9700748 A1 WO 9700748A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
piece
unsolidified
thickness
speed
Prior art date
Application number
PCT/JP1996/001701
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Kanazawa
Sei Hiraki
Seiji Kumakura
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to JP9503726A priority Critical patent/JP2961893B2/en
Priority to EP96918856A priority patent/EP0776716A4/en
Priority to KR1019970700984A priority patent/KR100227594B1/en
Publication of WO1997000748A1 publication Critical patent/WO1997000748A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands

Definitions

  • the present invention makes it possible to change the thickness of a thin piece by continuously releasing the rolling force during the unsolidification reduction, in particular, in a continuous manufacturing method in which the thin piece is subjected to a non-solidification reduction, thereby preventing internal defects.
  • the present invention relates to a method for continuously manufacturing thin pieces.
  • the hot-rolling direct-coupling process using such thin flakes is advantageous in that steps such as rough rolling can be omitted, so that energy saving and work rationalization of the entire iron making process can be realized more effectively. It is.
  • the thickness of the die was made equal to that of the conventional type.
  • a method for producing a thin piece by reducing unsolidified piece has been proposed. This is the so-called uncoagulation reduction method.
  • the thickness of the piece can be controlled to be variable during the production according to the steel type, production volume, coil thickness in the post-process, etc. Rather, it is also required to have an operation mode in which the rolling force is released at the time of unsolidification rolling to return to the original piece thickness or another piece thickness to continue the continuous structure. Only On the other hand, in such a case, an area where the thickness of one piece shifts to the next piece thickness. In other words, the existence of an unsteady portion is inevitable.
  • the thickness of the refractory nozzle must be reduced as compared with the conventional type, so that the nozzle breakage due to the refractory material melting easily occurs. Because of this, the nozzle life is short, and ⁇ is a conventional one? Up to 8 trains. 3 trains are the limit. Therefore, it is a major issue from the viewpoint of improving the yield, how to reduce the above-mentioned unsteady part by the limited number of ⁇ .
  • an object of the present invention is to make it possible to change the thickness of a thin piece by releasing the middle rolling force while preventing the internal defect of the piece in the unsolidified rolling continuous manufacturing method of a thin piece.
  • An object of the present invention is to provide a continuous manufacturing method of a thin piece.
  • Another object of the present invention is to provide a method for continuously producing thin pieces under an unsolidified pressure while preventing internal defects of the pieces and minimizing the length of the non-stationary part while producing the thin pieces.
  • An object of the present invention is to provide a continuous manufacturing method of a thin piece that can change a piece thickness by releasing a rolling force.
  • the operation of releasing the rolling force of the reduction roll is called the opening operation.
  • the starting point of the opening operation is the time when the change point of the piece has passed the final reduction roll, and then the releasing force is released.
  • the thickness is returned to the required thickness.
  • the solidification tip (the position where the piece is completely solidified) is always in the unsolidified rolling zone. It was noted that bulging and other problems did not occur under the same cooling conditions if they were within the range.
  • the thin piece completely solidifies in the unsolidified rolling reduction zone (2). Under the cooling condition, while moving the solidification tip to the upstream side from the end position of the rolling zone, the rolling force at the time of unsolidified rolling was released during that time,
  • the manufacturing speed is increased to a steady value of the target piece thickness.
  • the thickness of the piece can be changed without any internal defects in the piece, and the present invention has been completed.
  • the present invention is, in a broad sense, an unsolidified rolling continuous manufacturing method for manufacturing a thin piece by rolling down a piece being manufactured having an unsolidified layer in a reduction zone, for example, controlling a manufacturing speed.
  • the coagulation tip is moved to the upstream side from the end position of the rolling zone, and the rolling force at the time of unsolidified rolling is released during that time, and the thickness of the piece at that time is returned to the target piece thickness.
  • the present invention provides a method for producing a thin piece by rolling down a piece having a non-solidified layer in a rolling zone in a rolling zone. An unsolidified rolling continuous manufacturing method in which the manufacturing speed is changed.
  • the target thickness of the flakes is completely solidified in the unsolidified rolling zone after the change. Move the tip to the end of the rolling zone. While Kitaichi has upstream, at the same time, or even during changes ⁇ speed properly is opens the rolling force after change end, ⁇ thickness at that time is the target ⁇ t
  • the change of the production speed is started at the same time as or before the end point of the non-solidification rolling zone passes the change point of the piece.
  • FIG. 1 is a side longitudinal sectional view showing a configuration example of a continuous machine for carrying out the method of the present invention.
  • FIG. 2 is an explanatory diagram showing an example of a change in the piece thickness and the manufacturing speed when the piece thickness is changed according to the method of the present invention.
  • FIG. 3 is an explanatory diagram similar to FIG. 2 showing a piece thickness changing operation in a comparative example.
  • FIG. 4 is a longitudinal side view showing a piece shape in a transition period of the release of the rolling force according to the method of the present invention.
  • FIG. 5 is a longitudinal side view showing a half-piece shape in a transition period of the release of the rolling force of the comparative example.
  • FIG. 6 is a longitudinal cross-sectional view of the inside of a piece in a comparative example during a rolling force release transition period.
  • FIG. 7 is a graph showing the results of the example.
  • FIG. 1 is a schematic explanatory view showing a basic configuration of a continuous machine (hereinafter, referred to as a machine) that is desirable for carrying out the method of the present invention.
  • the machine is provided with a ⁇ type 1, a roller apron band 2 and a pinch roll band 3.
  • the machine type can be any of the usual curved type and VB type.
  • Roller-apron belt 2 is composed of four rolls, some of which are drive rolls 4 '.
  • a plurality of rolls 4 and / or drive rolls 4 * provided with a roll-down cylinder 15 for rolling down the unsolidified strip 11 into a thin strip 12 are provided in the mouth apron belt 2.
  • An unsolidified rolling reduction zone 7 composed of segments (seg) 6 is provided.
  • the unsolidified rolling zone 7 in the roller-apron zone 2 is composed of a total of about 5 segments as shown in the figure, and is located between the meniscus 10 of the molten steel 9 in the mold 1 and the length of about 6 m. Good to do.
  • the pinch roll band 3 is a normal one including eight groups of pinch rolls provided downstream of the roller-apron band 2.
  • the size of mold 1 is about 90 to 150 mm in thickness and about 1000 to 1800 mm in width. This Is set to a target thickness of about 30 to 70 bandages under unsolidification pressure. Therefore, it is desirable that the unsolidified rolling pattern in the above-mentioned machine has a rolling reduction of about 5 to 35 mm per segment.
  • a desirable range of the steady-state production speed is about 3.0 to 5.0 m / min.
  • the cooling conditions are adjusted so that such a production speed can be secured. Since these differ depending on the thickness of the piece, they may be simply referred to as a predetermined manufacturing speed in the following.
  • the rolling force was released during the production due to the relationship between the steel type composition and the production speed.For example, the original thickness was returned from 50 mm in thickness to 100 dragon and the production was continued. May need to be done.
  • the release of the rolling force is not performed immediately after the change point of the piece has passed through the reduction zone, but the manufacturing speed is reduced to the speed at which the thin piece after the reduction is completely solidified in the unsolidified reduction zone.
  • FIG. 2 is an explanatory diagram showing an example of changes in the piece thickness and the manufacturing speed when changing the piece thickness according to the method of the present invention.
  • -b In this example, let us consider a case where unsolidification rolling is performed from 100 mm thickness to 50 state in the steady state, and this is returned to 100 mm thickness again. The production speed is changed at the same time as the rolling release, that is, when the change point of the piece has passed the end point of the rolling zone.
  • the production is started at a piece thickness of 100 mm and a steady production speed of 4.0 m / min, and the unsolidified pressure is reduced to 50 iMi by the unsolidified pressure during operation.
  • the change at this time starts when the change point of the piece passes the end point of the unsolidified rolling reduction zone, immediately reduces the manufacturing speed continuously to 2.0 m / min, and simultaneously reduces the rolling force continuously.
  • the target production speed at this time is equal to or less than the target thickness, in this case, the production speed at which the thin piece having a thickness of 100 mm completely solidifies in the rolling zone. Therefore, the manufacturing speed at this time varies depending on the desired thickness of the piece. In other words, the solidification tip fluctuates as the production speed decreases and the rolling release is released.
  • the speed is not particularly limited.
  • the degree of reduction in the manufacturing speed at this time is not particularly limited, but it is preferable to reduce the speed as quickly as the machine's capability allows in order to minimize the occurrence of unsteady state.
  • the length a indicates the time required for this deceleration.
  • the manufacturing is continued at that manufacturing speed. During this time, the release of the rolling force is continued, and after the target rolling force is released, that is, after the target piece thickness is secured, the production speed starts to return to the steady speed.
  • the length b up to this point indicates the time it takes for the solidification tip, which has moved upstream from the end point of the reduction zone, to return to the end point of the reduction zone.
  • the solidification tip that has shifted to the upstream side due to the reduction of the manufacturing speed continues to gradually shift to the downstream side as the thickness of the piece increases, and after a lapse of time b, the solidification tip returns to the end position of the rolling zone. After that, the cooling speed is adjusted to increase the manufacturing speed while maintaining the solidification tip at that position.
  • the solidification tip may be located upstream of the rolling zone end position even after the elapse of the time b, and may return to the rolling zone end position by increasing the production speed.
  • the length a + b in Fig. 2 corresponds to the length of the unsteady part.
  • the length a (or b) is made as small as possible.
  • the change of the manufacturing speed is started before the change point of the piece passes through the end point of the reduction zone.
  • the mode at this time will be described as follows.
  • the point at which the manufacturing speed is changed is set based on the point at which the change point of the piece passes through the end point of the rolling zone.
  • the production speed for complete solidification at the end of the rolling zone 2. Om / min.
  • the point in time when 100 bandages are required as a steady piece thickness is first determined based on the end position of the reduction zone.
  • the thin piece when changing the piece, first, the thin piece is changed from the steady manufacturing speed to the manufacturing speed at which the thin piece completely solidifies in the unsolidified reduction zone, and the manufacturing speed at that time is, for example, Assuming that the target piece thickness is lOOmmm and the distance from the molten steel meniscus in the mold to the end of the unsolidified rolling reduction zone is 6m, the forming speed until the solidified shell thickness at that position becomes 50mm
  • the desirable range of the production speed for complete solidification in this way depends on the thickness of the mold and the length of the unsolidified rolling zone, but is generally about 1.0 to 2.0 m / min.
  • the degree of change when changing the ⁇ speed i.e., the range of speed reduction ratio or speed increasing ratio is 1. 0 ⁇ 4. 0 m / min 2 about as to the desired arbitrary.
  • medium-carbon aluminum-killed steel with the composition shown in Table 1 was produced at a steady-state production speed of 5.0 m / min.
  • the size of the mold is 100 mm thick and 1500 mm wide.
  • the uncoagulating rolling operation is performed to reduce the uncoagulated pressure down to the target thin piece size of 50 thighs and width of 1500 mm. I recovered. ⁇ ⁇ ⁇
  • the forging speed was 1.3 m / min, which completely solidified by the end of the reduction zone.
  • a piece having an unsolidified layer is rolled down during fabrication in the machine to be rolled to a thickness of 50 mm, and the rolling zone in the machine is the first segment of the roller apron belt. It was set at a distance of 3 m from the first segment to the fifth segment, and the end position of the rolling zone was 4 m from the molten steel meniscus in the ⁇ type.
  • the rolling pattern was a uniform 10 mm rolling for each segment.
  • FIG. 3 is a view showing a change in the manufacturing speed and a change in the piece thickness of this comparative example with respect to the manufacturing time. From this, it can be seen that the thickness of the piece at the end of the reduction zone, that is, the release rolls are continuously opened.
  • the piece in the transitional period had a bulging shape due to bulging as shown in FIG.
  • the transition of the thickness of the piece was smoothly performed, and there was no internal cracking or center segregation in the unsteady part, and it was good.
  • Fig. 7 shows the comparison of the internal quality in this example.
  • the internal quality code on the vertical axis is graded according to the following criteria.
  • Endoplasmic Code 0 horizontal cross-sectional area of 10 cm 2 per one porosity area ratio 0%
  • the effect of the production speed was evaluated.
  • the medium-carbon aluminum-killed steel shown in Table 1 was produced at a steady production speed of 5.
  • the target recovery thickness from a piece thickness of 50 mm was set to 100, but the forging speed at the beginning was varied and the forging speeds were set to 1.3, 2.0, and 3.0 m / min.
  • the production speed at which the pieces were completely solidified by the end of the reduction zone was 1.3 m / min.
  • the piece thickness sequentially changed from 100 to 50 to 100 mm. ⁇ The inside of the piece was good without internal cracking and deterioration of central prayer.
  • the thickness of the solidified seal was 40 mm and 33 mm, respectively, at the end of the rolling zone.
  • the irregular part changed to a drum shape as shown in Fig. 5.
  • the internal quality was 2.0 or 3.0 m / min when the structure was opened, internal cracking occurred, center segregation deteriorated, and porosity increased, leading to a decrease in yield.
  • the method of the present invention it is possible to continuously change the thickness of a piece even during a continuous production operation, and at this time, it is possible to prevent a decrease in surface texture and internal quality. Pieces can be manufactured efficiently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Metal Rolling (AREA)

Abstract

Object: to provide a method of continuously casting thin cast pieces. Constitution: a method of unsolidified rolling continuous casting, by which unsolidified cast pieces are subjected to rolling in a roller apron zone to produce thin cast pieces, and in which thin cast pieces are cast in the following steps 1 and 2: 1. a steady casting speed is temporarily decreased to a speed, at which thin cast pieces after rolling become completely solidified in an unsolidified rolling zone, and 2. after a thickness of a thin cast piece having been subjected to rolling is restored to an original thickness of the cast piece before the start of rolling, a casting speed is again increased to the original steady casting speed to release a rolling force at the time of rolling.

Description

^ P  ^ P
明 細 書 薄铸片の連続铸造方法 技術分野 Description Continuous production of thin strips Technical field
本発明は、 薄铸片の連続铸造方法、 特に未凝固圧下を行う連続铸造に際し、 未 凝固圧下の圧下力を開放して、 内質欠陥を防止しながら、 銪片厚さを変更可能と した薄铸片の連続铸造方法に関する。  The present invention makes it possible to change the thickness of a thin piece by continuously releasing the rolling force during the unsolidification reduction, in particular, in a continuous manufacturing method in which the thin piece is subjected to a non-solidification reduction, thereby preventing internal defects. The present invention relates to a method for continuously manufacturing thin pieces.
背景技術  Background art
薄板の代表的な製造方法と して、 連続踌造法により得られた鋅片を、 一旦冷却 してから圧延工程で圧延する方法が挙げられる。 この方法では、 铸造後空冷され た铸片を熱間圧延する際に、 再加熱する必要があり、 使用エネルギーのコス トの 点で不利である。  As a typical method for producing a thin plate, there is a method in which a piece obtained by a continuous production method is once cooled and then rolled in a rolling step. This method requires reheating when hot-rolling the air-cooled piece after fabrication, which is disadvantageous in terms of energy consumption.
近年、 エネルギーコス トの大幅な低減が可能であるという利点に着目 して、 連 続铸造機から出てきた錶片を冷却することなく そのまま圧延機に供給する、 熱延 直結プロセスの開発が進められており、 特に、 薄鎵片とすることで熱延直結プロ セスにおいて粗圧延工程が省略可能となることから、 今日的課題と して、 薄铸片 の連続鎳造技術を開発することに努力が払われている。  In recent years, attention has been paid to the advantage that energy costs can be significantly reduced, and the development of a hot-rolling direct-coupling process, in which chips coming out of a continuous mill are directly supplied to a rolling mill without cooling, is being promoted. In particular, the use of thin flakes makes it possible to omit the rough rolling step in the hot-rolling and direct-coupling process, so today's challenge is to develop a continuous manufacturing technology for thin flakes. Effort is being made.
そのような薄铸片を使った熱延直結プロセスは、 粗圧延などの工程省略が可能 であるため、 製鉄プロセス全体の省エネルギー、 作業合理化がさ らに一層効果的 に実現可能である点で有利である。  The hot-rolling direct-coupling process using such thin flakes is advantageous in that steps such as rough rolling can be omitted, so that energy saving and work rationalization of the entire iron making process can be realized more effectively. It is.
そこで、 薄铸片の製造に当たって、 最近では鏵型厚み自身を薄くするのではな く 、 鎵型厚みは従来と同等と して铸造し、 铸片中心部が未凝固状態のときにその ような未凝固铸片を圧下して薄铸片を製造する方法が提案されている。 いわゆる 未凝固圧下法である。  Therefore, in the production of thin flakes, recently, instead of reducing the thickness of the die itself, the thickness of the die was made equal to that of the conventional type. A method for producing a thin piece by reducing unsolidified piece has been proposed. This is the so-called uncoagulation reduction method.
ところで、 現在では、 鋼種、 生産量および後工程のコイル板厚などに応じて、 鎳造中にも铸片厚み可変に制御できることが望まれており、 铸造中の未凝固錶片 を圧下するだけではなく 、 未凝固圧下時に圧下力を開放して元の铸片厚みまたは 別の銬片厚みなどに戻して連続铸造を継続する操業形態も求められている。 しか しながら、 このような場合には、 1 の铸片厚みから次の铸片厚みに移行する領域. つまり非定常部の存在は不可避である。 By the way, at present, it is desired that the thickness of the piece can be controlled to be variable during the production according to the steel type, production volume, coil thickness in the post-process, etc. Rather, it is also required to have an operation mode in which the rolling force is released at the time of unsolidification rolling to return to the original piece thickness or another piece thickness to continue the continuous structure. Only On the other hand, in such a case, an area where the thickness of one piece shifts to the next piece thickness. In other words, the existence of an unsteady portion is inevitable.
通常、 未凝固圧下法の場合、 元の铸型厚みが小さいため、 浸漬ノズルは従来に 比べて耐火物厚みを薄くせざるを得ないので、 耐火物溶損によるノズル折損が起 こりやすい。 このため、 ノズル寿命が短く 、 連々铸は従来の?〜 8連鎳に対して. 3連铸が限界である。 したがって、 連々铸が限られている分だけ、 上記非定常部 をいかに少なくするかが、 歩留まり向上という観点から大きな課題である。  Normally, in the case of the unsolidified rolling method, since the thickness of the original mold is small, the thickness of the refractory nozzle must be reduced as compared with the conventional type, so that the nozzle breakage due to the refractory material melting easily occurs. Because of this, the nozzle life is short, and 铸 is a conventional one? Up to 8 trains. 3 trains are the limit. Therefore, it is a major issue from the viewpoint of improving the yield, how to reduce the above-mentioned unsteady part by the limited number of 铸.
しかも、 铸造中の圧下力開放時に鎵片の内質欠陥が発生し、 このような圧下力 開放による内質欠陥存在部は、 全て非定常部となる。 そのため、 特に、 歩留まり 向上を図るべく圧下力開放時の铸片の内質欠陥をも防止することができる鎵造方 法が求められている。  Moreover, when the rolling force is released during the fabrication, internal defects of the piece are generated, and the internal defect existing portion due to such releasing of the rolling force is all unsteady. Therefore, in particular, there is a demand for a manufacturing method capable of preventing the internal defect of the piece when the rolling force is released in order to improve the yield.
したがって、 圧下開放時において非定常部の長さを短くするだけでなく 、 品質 を確保することも歩留まり向上に寄与することになる。  Therefore, not only shortening the length of the non-stationary part at the time of releasing the rolling, but also ensuring the quality contributes to the improvement of the yield.
しかしながら、 従来技術にあっては、 そのような非定常部の長さを短くするこ とについてばかりでなく、 未凝固圧下に際しての圧下力開放時の铸片の内質欠陥 の防止についても何ら記載されるところがない。  However, in the prior art, there is no description not only about shortening the length of such an unsteady part, but also about preventing the internal defects of the piece when the rolling force is released during unsolidification rolling. There is nothing to be done.
発明の開示  Disclosure of the invention
こ こに、 本発明の目的は、 薄铸片の未凝固圧下連続铸造方法において、 铸片の 内質欠陥を防止しながら、 铸造中圧下力開放を行って铸片厚さを変更可能とする 薄铸片の連続铸造方法を提供することにある。  Here, an object of the present invention is to make it possible to change the thickness of a thin piece by releasing the middle rolling force while preventing the internal defect of the piece in the unsolidified rolling continuous manufacturing method of a thin piece. An object of the present invention is to provide a continuous manufacturing method of a thin piece.
本発明の別の目的は、 薄銪片の未凝固圧下連続铸造方法において、 铸片の内質 欠陥を防止するとと もに、 非定常部の長さを可及的小と しながら、 铸造中圧下力 開放を行って铸片厚さを変更可能とする薄铸片の連続铸造方法を提供することに ある。  Another object of the present invention is to provide a method for continuously producing thin pieces under an unsolidified pressure while preventing internal defects of the pieces and minimizing the length of the non-stationary part while producing the thin pieces. An object of the present invention is to provide a continuous manufacturing method of a thin piece that can change a piece thickness by releasing a rolling force.
しかし、 铸造中の圧下力開放時においては、 圧下位置の単なる制御だけでは、 非定常部長さの減少および品質の確保は不可能である。 例えば、 铸造速度一定の ままでの圧下力開放では、 完全凝固していない未凝固铸片が内部の未凝固層にか かる溶鋼静圧によりロール圧下力から開放され、 再度、 バルジングによる铸片の 膨れ現象が発生する。 このバルジングにより铸片内部の中心偏析の悪化や内部割 れが発生し、 非定常部の品質悪化を招く。 However, when the rolling force is released during construction, simply controlling the rolling position cannot reduce the length of the unsteady part and ensure quality. For example, when the rolling force is released while the production speed is kept constant, the unsolidified flakes that are not completely solidified are released from the roll rolling force by the molten steel static pressure applied to the internal unsolidified layer, and the bulging is performed again by bulging. A swelling phenomenon occurs. Due to this bulging, deterioration of center segregation inside This causes deterioration of the quality of the non-stationary part.
ここに、 圧下ロールの圧下力を開放する操作を、 開放操作と呼ぶと、 開放操作 の開始時点は、 铸片の変更点が最終圧下ロールを通過した時点としてその後、 圧 下力を開放して所要の厚さにまで戻すのであるが、 この点についての本発明者の 知見は次の通りである。  Here, the operation of releasing the rolling force of the reduction roll is called the opening operation.The starting point of the opening operation is the time when the change point of the piece has passed the final reduction roll, and then the releasing force is released. The thickness is returned to the required thickness. The inventor's knowledge on this point is as follows.
まず、 铸造中の未凝固層を有する铸片を圧下しながら、 例えば铸片厚さを大き くする方向に変更する際に、 凝固先端( 铸片が完全凝固する位置) が常に未凝固 圧下ゾーン内にあれば、 同一冷却条件でもバルジング等の問題は生じないことに 着目した。  First, while reducing the piece having an unsolidified layer during fabrication, for example, when changing the thickness of the piece to a direction that increases the thickness, the solidification tip (the position where the piece is completely solidified) is always in the unsolidified rolling zone. It was noted that bulging and other problems did not occur under the same cooling conditions if they were within the range.
そこで、 铸片厚さの変更に際して  Therefore, に 際 し て When changing the thickness of a piece
①目的とする铸片厚さにまで変更したと して、 その薄铸片が未凝固圧下ゾーン内 で完全凝固する铸造速度以下にまで、 例えば定常铸造速度からいったん低下させ ることで、 そのときの冷却条件下で、 凝固先端を圧下ゾーン終了位置より上流側 にもちきたしながら、 その間に未凝固圧下時の圧下力を開放させ、  (1) Assuming that the thickness of the thin piece has been changed to the desired (1) piece thickness, the thin piece completely solidifies in the unsolidified rolling reduction zone (2). Under the cooling condition, while moving the solidification tip to the upstream side from the end position of the rolling zone, the rolling force at the time of unsolidified rolling was released during that time,
②その铸片厚みを、 目的とする鏵片厚みに復帰させた後、 その目的とする铸片厚 さの定常铸造速度にまで銪造速度を增速する、 (2) After the thickness of the piece is returned to the target piece thickness, the manufacturing speed is increased to a steady value of the target piece thickness.
ことにより、 铸片に内質欠陥の見られない状態で铸片厚みを変更可能であること を見出し、 本発明を完成した。 As a result, it has been found that the thickness of the piece can be changed without any internal defects in the piece, and the present invention has been completed.
よって、 本発明は、 広義には、 未凝固層を有する铸造中の铸片を圧下ゾーンで 圧下することにより薄铸片を製造する未凝固圧下連続铸造方法であって、 例えば 铸造速度を制御することで、 凝固先端を圧下ゾーン終了位置より上流側にもちき たしながら、 その間に未凝固圧下時の圧下力を開放させ、 そのときの铸片厚みを- 目的とする铸片厚みに復帰させることを特徴とする薄铸片の連铳铸造方法である ( 別の面からは、 本発明は、 未凝固層を有する铸造中の铸片を圧下ゾーンで圧下 することにより薄铸片を製造する未凝固圧下連続鎳造方法であって、 铸造速度を. 変更後に目標とする厚さの薄铸片が未凝固圧下ゾーン内で完全凝固する铸造速度 以上または以下にまでいったん変更させ、 それにより凝固先端を圧下ゾーン終了 位置より上流側にもちきたしながら、 それと同時に、 または铸造速度の変更途中 にもしく は変更終了後に圧下力を開放させ、 そのときの铸片厚みが目標とする铸 t Therefore, the present invention is, in a broad sense, an unsolidified rolling continuous manufacturing method for manufacturing a thin piece by rolling down a piece being manufactured having an unsolidified layer in a reduction zone, for example, controlling a manufacturing speed. As a result, the coagulation tip is moved to the upstream side from the end position of the rolling zone, and the rolling force at the time of unsolidified rolling is released during that time, and the thickness of the piece at that time is returned to the target piece thickness. (From another aspect, the present invention provides a method for producing a thin piece by rolling down a piece having a non-solidified layer in a rolling zone in a rolling zone. An unsolidified rolling continuous manufacturing method in which the manufacturing speed is changed. The target thickness of the flakes is completely solidified in the unsolidified rolling zone after the change. Move the tip to the end of the rolling zone. While Kitaichi has upstream, at the same time, or even during changes 铸造 speed properly is opens the rolling force after change end, 铸片 thickness at that time is the target 铸 t
4 片厚みに復帰した後、 铸造速度を所定の铸造速度、 例えばそのときの定常铸造速 度に回復させることを特徵とする薄铸片の連続鎳造方法である。  4 This is a continuous manufacturing method for a thin piece, which is characterized in that after returning to the thickness of the piece, the manufacturing speed is restored to a predetermined manufacturing speed, for example, a steady manufacturing speed at that time.
本発明の好適態様によれば、 铸片の変更点が未凝固圧下ゾーンの終点を通過す ると同時にあるいはそれに先立って铸造速度の変更を開始するのが好ま しい。 図面の簡単な説明  According to a preferred embodiment of the present invention, it is preferable that the change of the production speed is started at the same time as or before the end point of the non-solidification rolling zone passes the change point of the piece. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明方法を実施するための連続铸造機の構成例を示す側面方向の縦 断面図である。  FIG. 1 is a side longitudinal sectional view showing a configuration example of a continuous machine for carrying out the method of the present invention.
図 2 は、 本発明方法にしたがって铸片厚みを変更するときの铸片厚みおよび铸 造速度の変化の例を示す説明図である。  FIG. 2 is an explanatory diagram showing an example of a change in the piece thickness and the manufacturing speed when the piece thickness is changed according to the method of the present invention.
図 3 は、 比較例における铸片厚み変更操作を示す図 2 と同様の説明図である。 図 4 は、 本発明方法による圧下力開放の過渡期の铸片形状を示す長手方向側面 図である。  FIG. 3 is an explanatory diagram similar to FIG. 2 showing a piece thickness changing operation in a comparative example. FIG. 4 is a longitudinal side view showing a piece shape in a transition period of the release of the rolling force according to the method of the present invention.
図 5 は、 比較例の圧下力開放の過渡期の铸片形状を示す長手方向側面図である。 図 6 は、 比較例の圧下力開放過渡期の铸片内質を示す長手方向縦断面図である。 図 7 は、 実施例の結果を示すグラフである。  FIG. 5 is a longitudinal side view showing a half-piece shape in a transition period of the release of the rolling force of the comparative example. FIG. 6 is a longitudinal cross-sectional view of the inside of a piece in a comparative example during a rolling force release transition period. FIG. 7 is a graph showing the results of the example.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
図 1 は、 本発明方法を実施するのに望ま しい連続铸造機 (以下、 マシンという) の基本的構成を示す模式的説明図である。  FIG. 1 is a schematic explanatory view showing a basic configuration of a continuous machine (hereinafter, referred to as a machine) that is desirable for carrying out the method of the present invention.
図中、 マシンは、 铸型 1 、 ローラーエプロン帯 2およびピンチロール帯 3を'備 えている。 マシンのタイプは通常の湾曲型および V B型など、 いずれでもよい。 ローラ一エプロン帯 2 は、 その一部が駆動ロール 4 ' 群であるロール 4群からな る。 さ らに口一ラーエプロン帯 2内には、 未凝固铸片 11を圧下して薄銪片 12とす るための、 ロール 4および または駆動ロール 4 * に圧下シリ ンダ一 5を備えた 複数のセグメ ン ト(seg) 6からなる未凝固圧下ゾーン 7が設けられている。  In the figure, the machine is provided with a 铸 type 1, a roller apron band 2 and a pinch roll band 3. The machine type can be any of the usual curved type and VB type. Roller-apron belt 2 is composed of four rolls, some of which are drive rolls 4 '. In addition, a plurality of rolls 4 and / or drive rolls 4 * provided with a roll-down cylinder 15 for rolling down the unsolidified strip 11 into a thin strip 12 are provided in the mouth apron belt 2. An unsolidified rolling reduction zone 7 composed of segments (seg) 6 is provided.
ローラ一エプロン帯 2内の未凝固圧下ゾーン 7 は、 図示のように合計 5セグメ ン 卜程度で構成し、 铸型 1 内の溶鋼 9のメニスカス 10から 6 m程度までの長さの 間に位置するのがよい。 ピンチロール帯 3 は、 ローラ一エプロ ン帯 2の下流に設 けたピンチロール 8群からなる通常のものである。  The unsolidified rolling zone 7 in the roller-apron zone 2 is composed of a total of about 5 segments as shown in the figure, and is located between the meniscus 10 of the molten steel 9 in the mold 1 and the length of about 6 m. Good to do. The pinch roll band 3 is a normal one including eight groups of pinch rolls provided downstream of the roller-apron band 2.
铸型 1 のサイズは厚みで 90〜150 mm程度、 幅で 1000~ 1800mm程度である。 これ を未凝固圧下により 30~70匪程度の目標厚さとするのである。 したがって、 上記 マシンにおいて未凝固圧下パターンは、 各セグメ ン 卜当たり 5 ~ 35mm程度の圧下 量とするのが望ま しい。 铸 The size of mold 1 is about 90 to 150 mm in thickness and about 1000 to 1800 mm in width. this Is set to a target thickness of about 30 to 70 bandages under unsolidification pressure. Therefore, it is desirable that the unsolidified rolling pattern in the above-mentioned machine has a rolling reduction of about 5 to 35 mm per segment.
定常铸造速度の望ま しい範囲は、 3. 0 〜5. 0 m/mi n 程度である。 そのような铸 造速度を確保できるように冷却条件を調整しておく。 これらは铸片厚みによって も異なるため、 以下においては単に所定鎵造速度という こと もある。  A desirable range of the steady-state production speed is about 3.0 to 5.0 m / min. The cooling conditions are adjusted so that such a production speed can be secured. Since these differ depending on the thickness of the piece, they may be simply referred to as a predetermined manufacturing speed in the following.
しかしながら、 生産スケジュールの都合により、 鋼種構成と铸造速度との関係 で鎵造中に圧下力を開放し、 例えば铸片厚さ 50mmから 100龍 へと元の鎵片厚みに 戻して铸造を継続しなければならない場合がある。  However, due to the production schedule, the rolling force was released during the production due to the relationship between the steel type composition and the production speed.For example, the original thickness was returned from 50 mm in thickness to 100 dragon and the production was continued. May need to be done.
その際、 铸造速度を低下させずに単に圧下力を開放するだけでは、 圧下により 凝固シェルが完全に圧着した部分では、 ロール圧下力を開放してもバルジングに より再度膨れる現象は認められないが、 それまでに圧下された部位で完全凝固す るまでには至っていない部分がロール圧下力から開放されると、 バルジングによ り再度膨れる現象が現れる。  At that time, simply releasing the rolling force without lowering the production speed does not cause the phenomenon of re-bulging due to bulging in the part where the solidified shell is completely pressed by rolling, even if the rolling force is released. However, when the part that has not been completely solidified in the part that has been reduced so far is released from the roll reduction force, the phenomenon of bulging due to bulging appears again.
つまり、 圧下を開始する位置から圧下が完了する部位までの部分では、 直ちに 圧下力を開放すると、 凝固先端が圧下ゾーン終了点より下流側に移行するため、 バルジングによる铸片の膨れ現象により、 内部割れの発生や中心偏折の悪化など の内質劣化が生じる可能性が高い。  In other words, in the part from the position where the rolling starts to the part where the rolling is completed, if the rolling force is released immediately, the solidification front moves to the downstream side from the end point of the rolling zone. There is a high possibility that internal quality deterioration such as cracks and center deviation will occur.
したがって圧下力の開放は、 铸片の変更点が圧下ゾーンを通過後そのまま直ち に行うのではなく、 铸造速度を圧下後の薄铸片が未凝固圧下ゾーン内で完全凝固 する速度までいったん低下させた後あるいは铸造速度低下と同時に行う ことによ り、 錶片厚みの変化、 すなわち圧下力開放の過渡期にみられるバルジング現象を 回避しながら、 漸次厚みを元厚まで戻すことが可能になる。  Therefore, the release of the rolling force is not performed immediately after the change point of the piece has passed through the reduction zone, but the manufacturing speed is reduced to the speed at which the thin piece after the reduction is completely solidified in the unsolidified reduction zone. By performing it after or at the same time as the production speed is reduced, it is possible to gradually reduce the thickness to the original thickness while avoiding the change in piece thickness, that is, the bulging phenomenon seen in the transitional period of the release of rolling force. .
このような圧下力開放方法により、 内質の劣化のない厚み変更時の過渡期の錶 片の製造が可能となり、 歩留まり低下の弊害を招く ことなく連続铸造を継続して 行う ことができる。  According to such a rolling force releasing method, it is possible to manufacture pieces during the transitional period when the thickness is changed without deterioration of the internal quality, and it is possible to continuously perform the continuous manufacturing without causing a negative effect on the yield.
図 2 に基づいて本発明方法を具体的に説明する。 図 2 は本発明方法にしたがつ て铸片厚みを変更する場合における铸片厚みおよび铸造速度の変化の例を示す説 明図である。 - b 本例では、 定常状態で铸片厚み 100mm から 50態にまで未凝固圧下を行い、 再び これを铸片厚み 100mm にまで戻す場合を考える。 铸造速度の変更は圧下開放と同 時、 つまり铸片の変更点が圧下ゾーン終了点を通過した時点に行う。 The method of the present invention will be specifically described based on FIG. FIG. 2 is an explanatory diagram showing an example of changes in the piece thickness and the manufacturing speed when changing the piece thickness according to the method of the present invention. -b In this example, let us consider a case where unsolidification rolling is performed from 100 mm thickness to 50 state in the steady state, and this is returned to 100 mm thickness again. The production speed is changed at the same time as the rolling release, that is, when the change point of the piece has passed the end point of the rolling zone.
まず、 铸片厚み 100 mm, 定常铸造速度 4. 0 m/m i n で铸造を開始し、 未凝固圧下 操業中には未凝固圧下により铸片厚み 50iMiにする。 次いで、 生産スケジュール等 の関係で铸片厚みを 50mmから 100mm に復帰させる必要が生じたとする。 このとき の変更は未凝固圧下ゾーンの終点を錶片の変更点が通過したときに開始し、 直ち に铸造速度を 2. 0 m/m i n まで連続的に低下させ、 同時に圧下力も連続的に開放す る。 このときの目標铸造速度が、 目的とする厚さ、 本例の場合、 厚さ 100mm の薄 鎵片が圧下ゾーン内で完全凝固する铸造速度以下である。 したがって、 このとき の鋅造速度は目的とする铸片厚さによって変わる。 換言すれば、 铸造速度の低下 および圧下開放に伴って凝固先端は変動するが、 この凝固先端が未凝固圧下ゾー ンの終点の上流側に必ず存在すれば、 このときの铸造速度および圧下開放の速度 は特に制限されない。  First, the production is started at a piece thickness of 100 mm and a steady production speed of 4.0 m / min, and the unsolidified pressure is reduced to 50 iMi by the unsolidified pressure during operation. Next, it is assumed that it is necessary to return the piece thickness from 50 mm to 100 mm due to the production schedule and other factors. The change at this time starts when the change point of the piece passes the end point of the unsolidified rolling reduction zone, immediately reduces the manufacturing speed continuously to 2.0 m / min, and simultaneously reduces the rolling force continuously. Open. The target production speed at this time is equal to or less than the target thickness, in this case, the production speed at which the thin piece having a thickness of 100 mm completely solidifies in the rolling zone. Therefore, the manufacturing speed at this time varies depending on the desired thickness of the piece. In other words, the solidification tip fluctuates as the production speed decreases and the rolling release is released. The speed is not particularly limited.
このときの铸造速度の減速の程度は特に制限されないが、 マシンの能力が許す 限り速やかに減速するのが非定常の発生を可及的小とするために好ま しい。 図中、 長さ aはこの減速に要する時間を示す。  The degree of reduction in the manufacturing speed at this time is not particularly limited, but it is preferable to reduce the speed as quickly as the machine's capability allows in order to minimize the occurrence of unsteady state. In the figure, the length a indicates the time required for this deceleration.
所定の铸造速度にまで減速されてから、 その铸造速度で铸造が継続される。 こ の間、 圧下力の開放は継続され、 目標の圧下力開放が実現されてから、 つまり目 標铸片厚さが確保されてから、 今度は铸造速度の定常速度への復帰を開始する。 このときまでの長さ bは、 圧下ゾーン終了点から上流側に移行していた凝固先端 が圧下ゾ一ン終了点にまで戻ってく るまでの時間を示す。  After the speed is reduced to the predetermined manufacturing speed, the manufacturing is continued at that manufacturing speed. During this time, the release of the rolling force is continued, and after the target rolling force is released, that is, after the target piece thickness is secured, the production speed starts to return to the steady speed. The length b up to this point indicates the time it takes for the solidification tip, which has moved upstream from the end point of the reduction zone, to return to the end point of the reduction zone.
つまり、 铸造速度の減速によって上流側に移行した凝固先端は铸片厚みの増加 に伴って徐々に下流側に移行しつづけ、 時間 b経過後に凝固先端は圧下ゾーン終 了位置にまで戻るのである。 その後は、 冷却条件の調整によって凝固先端をその 位置に保持しながら铸造速度の増加を図るのである。 あるいは時間 b経過後も凝 固先端は圧下ゾーン終了位置より上流側にあり、 铸造速度の增速によって圧下ゾ ーン終了位置に戻るようにしてもよい。  In other words, the solidification tip that has shifted to the upstream side due to the reduction of the manufacturing speed continues to gradually shift to the downstream side as the thickness of the piece increases, and after a lapse of time b, the solidification tip returns to the end position of the rolling zone. After that, the cooling speed is adjusted to increase the manufacturing speed while maintaining the solidification tip at that position. Alternatively, the solidification tip may be located upstream of the rolling zone end position even after the elapse of the time b, and may return to the rolling zone end position by increasing the production speed.
ところで、 図 2の長さ a + bは非定常部の長さに対応するものであり、 これを 了 By the way, the length a + b in Fig. 2 corresponds to the length of the unsteady part. End
可及的に短くすることは歩留り改善に非常に有効である。 そのための手段と して は具体的には、 長さ a (または b ) を可及的小とするのである。 Making it as short as possible is very effective for improving the yield. Specifically, the length a (or b) is made as small as possible.
すなわち、 本発明の別の態様によれば、 铸片の変更点が圧下ゾーン終了点を通 過する時点に先立って铸造速度の変更を開始するのである。 このときの態様につ いて説明すると次の通りである。  That is, according to another aspect of the present invention, the change of the manufacturing speed is started before the change point of the piece passes through the end point of the reduction zone. The mode at this time will be described as follows.
まず、 铸造速度を変更する時点、 つまり厚み変更開始時点は、 铸片の変更点が 圧下ゾーン終了点を通過する時点を基準に設定し、 そのとき変更する目標铸造速 度は、 本例では铸片厚み 100mm の場合、 圧下ゾーン終了位置で完全凝固するとき の铸造速度と して、 2. Om/m i nを求めておく。  First, the point at which the manufacturing speed is changed, that is, the point at which the thickness change is started, is set based on the point at which the change point of the piece passes through the end point of the rolling zone. In the case of a piece thickness of 100 mm, find the production speed for complete solidification at the end of the rolling zone, 2. Om / min.
次に、 生産スケジュールから、 定常の铸片厚みと して 100 匪が必要な時点を圧 下ゾーン終了位置を基準にまず決める。  Next, based on the production schedule, the point in time when 100 bandages are required as a steady piece thickness is first determined based on the end position of the reduction zone.
次いで、 铸造速度を 4. 0 m/m i n から 2. 0 m/in i n まで低下させるに要する時間を 求める。  Next, the time required to reduce the manufacturing speed from 4.0 m / min to 2.0 m / in in is determined.
例えば、 铸造速度低下の減速率を 2. 0 m/m i n 2とすると、 上記の場合、 1分間で 铸造速度は 2. 0 m/m i n となり、 少なく と も 1 分間は必要である。 また铸型内溶鋼 メニスカスから 6 mの位置にある未凝固圧下ゾ一ン終了位置までに定常铸造速度 となるには 3分間必要である。 したがって、 铸片厚さの変更点が圧下ゾーンの終 了点を出た時点または位置から 4分間以内の上流位置から铸造速度の低下を開始 すればよいことになる。 For example, when the deceleration rate of铸造slowing and 2. 0 m / min 2, the above case,铸造speed 2. 0 m / min, and the is necessary least be 1 minute 1 minute. In addition, it takes three minutes to reach a steady production speed from the molten steel in the mold to the end position of the unsolidified reduction zone located 6 m from the meniscus. Therefore, it is only necessary to start the reduction of the production speed from the point where the change point of the thickness of the strip goes out of the end point of the reduction zone or from the upstream position within 4 minutes from the position.
このように、 本発明によれば、 铸片の変更に当たってまず薄铸片が未凝固圧下 ゾーン内で完全凝固する铸造速度以下にまで定常铸造速度から変更するが、 その ときの铸造速度は、 例えば、 目標とする铸片厚さを l OOmmmと し铸型内溶鋼メニス カスから未凝固圧下ゾーン終了までの距離を 6 mとすると、 その位置での凝固シ エル厚みが 50mmになるまでの铸造速度を言う。 このように完全凝固する铸造速度 の望ま しい範囲は、 铸型の厚みや未凝固圧下ゾーン長さに依存するが、 一般には 1. 0 〜2. 0 m/m i n 程度である。  As described above, according to the present invention, when changing the piece, first, the thin piece is changed from the steady manufacturing speed to the manufacturing speed at which the thin piece completely solidifies in the unsolidified reduction zone, and the manufacturing speed at that time is, for example, Assuming that the target piece thickness is lOOmmm and the distance from the molten steel meniscus in the mold to the end of the unsolidified rolling reduction zone is 6m, the forming speed until the solidified shell thickness at that position becomes 50mm Say The desirable range of the production speed for complete solidification in this way depends on the thickness of the mold and the length of the unsolidified rolling zone, but is generally about 1.0 to 2.0 m / min.
また、 铸造速度を変えるときの変化の程度、 すなわち、 減速率または増速率の 範囲は 1. 0 〜4. 0 m/m i n 2程度とするのが望ま しい。 The degree of change when changing the铸造speed, i.e., the range of speed reduction ratio or speed increasing ratio is 1. 0 ~4. 0 m / min 2 about as to the desired arbitrary.
連続铸造であるから、 铸造速度を低下させたときには未凝固圧下ゾーンにおけ る铸造速度も同時に低下し、 未凝固铸片は凝固シ ル厚みが増大した状態で未凝 固圧下を受けることになる。 このときの圧下力は、 いわゆる圧延を加えるだけの 能力は有しないため、 凝固シェル厚みが増大すれば、 圧下はしきれずに铸片厚み も凝固シ ル厚みの 2倍に増加する。 Since it is a continuous production, when the production speed is reduced, At the same time, the solidification speed decreases, and the unsolidified flakes are subjected to unsolidification pressure with the thickness of the solidified shell increased. Since the rolling force at this time does not have the capacity to apply so-called rolling, if the thickness of the solidified shell increases, the reduction cannot be completed and the thickness of the piece increases to twice the thickness of the solidified shell.
上記の例では铸片厚さ 100删 のものを未凝固圧下によつて铸片厚さ 50匪と した ものを再び铸片厚さ 100mm に戻す場合を説明したが、 70 あるいは 80mmまで戻す 場合にあっても、 同様の操作を繰り返すことで、 行う ことができる。 ただし、 そ の場合には、 圧下ロールに位置センサーを設置し、 目標厚みに铸片厚を戻すべく、 铸造速度コン トロール、 圧下位置制御をすることが必要である。  In the above example, a case where a piece with a thickness of 100 mm was changed to 50 pieces with a piece thickness of 50 by unsolidification pressure was returned to a piece thickness of 100 mm again.However, when returning to 70 or 80 mm, Even if it is, it can be performed by repeating the same operation. However, in such a case, it is necessary to install a position sensor on the reduction roll and control the production speed control and the reduction position to return the piece thickness to the target thickness.
次に、 実施例によって本発明の具体的態様についてさ らにその作用効果とと も に言羊述する。  Next, specific examples of the present invention will be described together with their working effects by way of examples.
実施例  Example
(実施例 1 )  (Example 1)
図 1 に示す湾曲型マシンを用いて、 表 1 に示す組成の中炭素アルミ キル ド鋼を 定常铸造速度 5. 0 m/m i n で铸造した。 铸型サイズは厚み 100 mm, 幅 1500mmであり、 これを目標薄鎵片サイズ厚み 50腿、 幅 1500關にまで未凝固圧下する未凝固圧下操 業を行い、 途中から铸片厚さ 100mm にまで回復させた。 铸片厚さ lOOmni のときに 圧下ゾーン終了までに完全凝固する铸造速度は 1. 3 m/m i n であった。  Using the bending machine shown in Fig. 1, medium-carbon aluminum-killed steel with the composition shown in Table 1 was produced at a steady-state production speed of 5.0 m / min. The size of the mold is 100 mm thick and 1500 mm wide. The uncoagulating rolling operation is performed to reduce the uncoagulated pressure down to the target thin piece size of 50 thighs and width of 1500 mm. I recovered.と き に At a piece thickness of lOOmni, the forging speed was 1.3 m / min, which completely solidified by the end of the reduction zone.
本例の場合、 定常状態では、 マシン内で铸造中に未凝固層を有する铸片を圧下 して厚さ 50mmに未凝固圧下铸造し、 マシン内の圧下ゾーンはローラエプロン帯の 第 1 セグメ ン トから第 5セグメ ン トの 3 m長さの間に設け、 圧下ゾーンの終了位 置は铸型内溶鋼メニスカスから 4 mの位置と した。 また圧下パターンは各セグメ ン 卜当たり 10mmの均等圧下と した。  In the case of this example, in a steady state, a piece having an unsolidified layer is rolled down during fabrication in the machine to be rolled to a thickness of 50 mm, and the rolling zone in the machine is the first segment of the roller apron belt. It was set at a distance of 3 m from the first segment to the fifth segment, and the end position of the rolling zone was 4 m from the molten steel meniscus in the 铸 type. The rolling pattern was a uniform 10 mm rolling for each segment.
表 1  table 1
(wt )  (wt)
C S i n P S A l Fe C S i n P S A l Fe
0. 12 0. 045 0. 80 0. 015 0. 008 0. 045 ba l . 本例では、 2ス トランド形のマシンを用い、 第 1 ス トランド側では、 図 2に示 す本発明方法による圧下開放による铸片厚さの回復操作を行った。 ただし、 本例 の場合、 圧下ゾーン終了までに完全凝固する铸造速度は 1. 3 m/m i n であったから. 铸造速度はいつたん 1. 3 m/m i n にまで低下させると同時に圧下力開放を行いなが ら铸片厚みが 100 龍に回復してから定常铸造速度 5. 0m/m i nにまで回復させた。 こ の変更操作中、 凝固先端は圧下ゾーン終了点より常に上流側にあった。 0.12 0.045 0.80 0.015 0.008 0.045 ba l. In this example, a two-strand type machine was used, and on the first strand side, an operation of recovering the thickness of the piece by releasing the screw by the method of the present invention shown in FIG. 2 was performed. However, in the case of this example, the production speed at which the solidification was completely completed by the end of the reduction zone was 1.3 m / min. The production speed was reduced to 1.3 m / min and the reduction force was released at the same time. However, after the thickness of the piece recovered to 100 dragons, it was recovered to a steady production speed of 5.0 m / min. During this change operation, the solidification tip was always upstream from the end of the rolling zone.
一方、 第 2 ス トラ ンド側では、 比較例として、 定常鎵造速度を維持したままで. 変更点が圧下ゾーン通過後即座に圧下力開放を行う回復操作を行った。 第 3図は. この比較例の铸造速度の変化および铸片厚さの変化を鎵造時間に対して示す図で ある。 これから、 圧下ゾーン終了時点での铸片厚み、 つまり圧下ロールの開放が 連続的に行われているのが分かる。  On the other hand, on the second strand side, as a comparative example, a recovery operation was performed to release the rolling force immediately after the change point passed the rolling zone while maintaining the steady production speed. FIG. 3 is a view showing a change in the manufacturing speed and a change in the piece thickness of this comparative example with respect to the manufacturing time. From this, it can be seen that the thickness of the piece at the end of the reduction zone, that is, the release rolls are continuously opened.
図 4および図 5に本発明例および比較例の変更操作によって得られた铸片の非 定常部の形状をそれぞれ示す。 図中、 矢印方向が铸片の引出し方向、 つまり铸造 方向である。  4 and 5 show the shapes of the non-stationary part of the piece obtained by the changing operation of the present invention example and the comparative example, respectively. In the drawing, the direction of the arrow is the direction in which the piece is pulled out, that is, the manufacturing direction.
本発明方法を適用した第 1 ス トラ ン ド側では、 図 4に示すように過渡期の铸片 厚みを 50i iから 100 腿に漸次変更することが可能であつた。  On the first strand side to which the method of the present invention was applied, as shown in FIG. 4, it was possible to gradually change the piece thickness in the transitional period from 50ii to 100 thighs.
一方、 比較例の第 2 ス トラ ン ド側では過渡期の铸片はバルジングにより、 図 5 に示すように太鼓状に膨れた形状を呈した。  On the other hand, on the second strand side of the comparative example, the piece in the transitional period had a bulging shape due to bulging as shown in FIG.
錶片の断面組織を調査したところ、 本発明方法を適用した第 1 ス トラ ン ド側で は鎵片厚みを漸次厚く変更していく過渡期においても内質に異常はなく、 後工程 の圧延時にも圧延が可能であり、 コイルの特性も良好であった。 一方、 圧下力の 開放を即座に実施した第 2 ス トラ ン ド側では、 図 6に示すように太鼓状の鎵片の 横断面に内部割れおよび 2枚割れが発生し、 また、 中心偏析も重度の負偏析ゃ正 偏祈が散在し、 圧延時にも内部欠陥として問題となった。  Inspection of the cross-sectional structure of the piece showed that there was no abnormality in the internal quality even in the transitional period where the piece thickness was gradually increased on the first strand side to which the method of the present invention was applied. Rolling was possible at times, and the coil characteristics were good. On the other hand, on the second strand where the rolling force was released immediately, internal and double cracks occurred in the cross section of the drum-shaped piece as shown in Fig. 6, and the center segregation also occurred. Severe negative segregation / positive segregation was scattered and became an internal defect during rolling.
以上のことから、 本発明方法に従って未凝固圧下時の圧下力開放を行うことに より、 铸片内質の劣化の問題もなく铸造中に厚み変更ができ、 歩留まり向上に大 きく寄与する結果となった。  From the above, by releasing the rolling force at the time of unsolidification rolling in accordance with the method of the present invention, 変 更 the thickness can be changed during the production without the problem of deterioration of the inner material of the piece, which greatly contributes to the improvement of the yield. became.
(実施例 2 )  (Example 2)
本例では鋼種の影響を評価するもので、 実施例 1を繰り返すことで、 表 2に示 す低炭素アルミキルド鋼を定常铸造速度 5. Om/m i nで铸造した。 本例の場合も、 铸 片厚み lOOram の場合の圧下ゾ一ン終了時点までに完全凝固すると したときの铸造 速度は 1. 3m/mi nであつた。 In this example, the effect of the steel type was evaluated. Low carbon aluminum killed steel was produced at a steady production speed of 5. Om / min. Also in the case of the present example, the manufacturing speed when the solidification was completely completed by the end of the reduction zone in the case of a piece thickness of lOOram was 1.3 m / min.
表 2  Table 2
(wt% )  (wt%)
Figure imgf000012_0001
Figure imgf000012_0001
本例の結果は次の通りであつた。 The results of this example were as follows.
本発明例は铸片厚みの推移もスムースに行われ、 非定常部における内部割れも 中心偏析もなく、 良好であつた。  In the example of the present invention, the transition of the thickness of the piece was smoothly performed, and there was no internal cracking or center segregation in the unsteady part, and it was good.
一方、 比較例にあっては、 非定常部が 50→100 mmへの圧下力開放時には図 5 に 示すように太鼓状の形状を呈したばかりでなく 、 内部割れの発生はないものの、 中心偏析 · ポロシティの悪化が認められた。  On the other hand, in the comparative example, when the unsteady portion released the rolling force from 50 to 100 mm, not only did it have a drum-shaped shape as shown in Fig. 5 but there was no internal cracking, but the central segregation Deterioration of porosity was observed.
本例における内質比較を図 7 に示すが、 縦軸の内質コー ドは次の基準で段階付 けをしたものである。  Fig. 7 shows the comparison of the internal quality in this example. The internal quality code on the vertical axis is graded according to the following criteria.
内質コー ド 0 : 水平断面積 10cm2 当たりのポロシティ面積率 0 % Endoplasmic Code 0: horizontal cross-sectional area of 10 cm 2 per one porosity area ratio 0%
1 : " 0- 10% 1: "0-10%
2 : " 10〜30%2: "10-30%
3 : " 30- 50%3: "30-50%
4 : " 50- 70%4: "50-70%
5 : " 70%以上 このように、 実施例の中炭素材の場合に比較して内質の劣化は少ないものの、 歩留まり低下を招く結果に変わりはない。 5: "70% or more As described above, although the quality of the inner material is less deteriorated as compared with the case of the medium carbon material in the example, the result of lowering the yield remains unchanged.
(実施例 3 )  (Example 3)
本例では铸造速度の影響を評価するもので、 実施例 1 を繰り返すことで、 表 1 に示す中炭素アルミ キル ド鋼を定常铸造速度 5. Om/m i nで錶造した。 しかし、 本例では、 铸片厚さ 50mmからの目標回復厚さを 100關 としたが、 最初 に減速する鎵造速度を種々変え铸造速度を 1.3 、 2.0 、 3.0m/minとした。 本例の 場合、 圧下ゾーン終了までに铸片が完全凝固する铸造速度は 1.3m/minであつた。 本発明例の場合には、 铸造速度を 1.3m/minに変更したため铸片厚みは順次 100 →50→100 mmに推移した。 铸片内質は内部割れ · 中心偏祈の劣化もなく良好であ つた。 In this example, the effect of the production speed was evaluated. By repeating Example 1, the medium-carbon aluminum-killed steel shown in Table 1 was produced at a steady production speed of 5. Om / min. However, in this example, the target recovery thickness from a piece thickness of 50 mm was set to 100, but the forging speed at the beginning was varied and the forging speeds were set to 1.3, 2.0, and 3.0 m / min. In the case of this example, the production speed at which the pieces were completely solidified by the end of the reduction zone was 1.3 m / min. In the case of the present invention, since the manufacturing speed was changed to 1.3 m / min, the piece thickness sequentially changed from 100 to 50 to 100 mm.铸 The inside of the piece was good without internal cracking and deterioration of central prayer.
一方、 比較例の場合、 铸造速度は 2.0 および 3.0 m/min にまでしか低下させた かったため、 圧下ゾーン終了時に凝固シヱル厚みがそれぞれ 40議、 33 mm となり、 圧下ゾーン終了位置で未凝固層が残存し、 圧下力開放時に図 5に示すように非定 常部が太鼓状に変化した。 その内質も開放時の铸造速度 2.0 、 3.0 m/min の場合 は、 内部割れ発生 ·中心偏析悪化、 ポロシティ増加が認められ、 歩留まり低下を 招いた。  On the other hand, in the case of the comparative example, since the production speed was only reduced to 2.0 and 3.0 m / min, the thickness of the solidified seal was 40 mm and 33 mm, respectively, at the end of the rolling zone. When the rolling force was released, the irregular part changed to a drum shape as shown in Fig. 5. When the internal quality was 2.0 or 3.0 m / min when the structure was opened, internal cracking occurred, center segregation deteriorated, and porosity increased, leading to a decrease in yield.
産業上の利用の可能性  Industrial applicability
本発明方法によれば、 連続铸造操業中にあっても、 連続的に铸片厚さの変更が 可能となり、 その際に表面性状および内質の低下を防止できるため、 歩留りよく 各種サイズの铸片を効率的に製造できる。  According to the method of the present invention, it is possible to continuously change the thickness of a piece even during a continuous production operation, and at this time, it is possible to prevent a decrease in surface texture and internal quality. Pieces can be manufactured efficiently.

Claims

請 求 の 範 囲 The scope of the claims
1. 未凝固層を有する铸造中の铸片を圧下ゾーンで圧下することにより薄铸片を 製造する未凝固圧下連続铸造方法であって、 凝固先端を圧下ゾーン終了位置より 上流側にもちきたしながら、 その間に未凝固圧下時の圧下力を開放させ、 そのと きの铸片厚みを、 目的とする铸片厚みに復帰させることを特徴とする薄铸片の連 fee錄造 Λ & 0 1. An unsolidified rolling continuous manufacturing method in which a thin piece is manufactured by rolling down a piece being manufactured having an unsolidified layer in a rolling zone, while moving a solidification front to an upstream side from a rolling zone end position. , opens the rolling force at the time of unsolidified rolling therebetween, the and Kino铸片thickness, communication fee錄造lambda & 0 of thin铸片, characterized in that to return to铸片thickness of interest
2. 未凝固層を有する铸造中の铸片を圧下ゾーンで圧下することにより薄铸片を 製造する未凝固圧下連続铸造方法であって、 铸造速度を、 変更後に目標とする厚 さの薄鎵片が未凝固圧下ゾーン内で完全凝固する铸造速度以上または以下にまで いったん変更させ、 未凝固圧下時の圧下力を変更させてそのときの铸片厚みが目 標とする铸片厚みに復帰した後、 铸造速度を所定の铸造速度に回復させることを 特徵とする薄踌片の連続铸造方法。 2. An unsolidified rolling continuous production method in which a thin piece is manufactured by rolling down a piece having a non-solidified layer, which is being formed, in a reduction zone, wherein the target thickness is reduced after the manufacturing speed is changed. The piece is completely solidified in the unsolidified rolling zone. 铸 Once changed to a speed equal to or higher than the forging speed, the rolling force during unsolidified rolling was changed, and the thickness of the piece at that time returned to the target thickness 铸Thereafter, a continuous manufacturing method of a thin piece, wherein the manufacturing speed is restored to a predetermined manufacturing speed.
3, 铸片の変更点が未凝固圧下ゾ一ンの終点を通過すると同時に铸造速度の変更 を開始する請求項 2記載の薄铸片の連続铸造方法。 3. The continuous manufacturing method for a thin piece according to claim 2, wherein the change of the manufacturing speed is started at the same time as the change point of the piece passes through the end point of the unsolidified pressure reduction zone.
4, 铸片の変更点が未凝固圧下ゾーンの終点を通過するに先立って铸造速度の変 更を開始する請求項 2記載の薄铸片の連続铸造方法。 4. The continuous manufacturing method of a thin piece according to claim 2, wherein the change of the manufacturing speed is started before the change point of the piece passes through the end point of the unsolidified rolling reduction zone.
5, 未凝固層を有する铸造中の铸片を圧下ゾーンで圧下することにより薄铸片を 製造する未凝固圧下連続鍩造方法であって、 铸造速度を、 変更後に目標とする厚 さの薄铸片が未凝固圧下ゾーン内で完全凝固する铸造速度以下にまでいったん低 下させ、 未凝固圧下時の圧下力を開放させてそのときの铸片厚みが目標とする铸 片厚みに復帰した後、 铸造速度を再び所定の铸造速度に増速することを特徴とす る薄铸片の連続錶造方法。 5. An unsolidified rolling continuous production method in which a thin piece is produced by rolling down a piece having a non-solidified layer in a production zone in a rolling zone, wherein the production speed is reduced to a target thickness.铸 The piece is completely solidified in the unsolidified reduction zone 铸 They are once lowered to the manufacturing speed or less, the rolling force at the time of unsolidified reduction is released, and the thickness of the piece at that time returns to the target thickness 铸A method for continuously manufacturing a thin piece, wherein the manufacturing speed is increased to a predetermined manufacturing speed again.
6. 錶片の変更点が未凝固圧下ゾーンの終点を通過すると同時に銬造速度の低下 丄 d を開始する請求項 5記載の薄铸片の連続铸造方法。 6. When the change point of the piece passes through the end point of the unsolidified rolling reduction zone, the manufacturing speed decreases at the same time. 6. The method for continuously manufacturing a thin piece according to claim 5, wherein the step d is started.
7. 铸片の変更点が未凝固圧下ゾーンの終点を通過するに先立って铸造速度の低 下を開始する請求項 5記載の薄铸片の連続铸造方法。 7. The continuous manufacturing method for a thin piece according to claim 5, wherein the reduction of the manufacturing speed is started before the change point of the piece passes through the end point of the unsolidified rolling reduction zone.
PCT/JP1996/001701 1995-06-22 1996-06-20 Method of continuously casting thin cast pieces WO1997000748A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9503726A JP2961893B2 (en) 1995-06-22 1996-06-20 Continuous casting of thin slabs
EP96918856A EP0776716A4 (en) 1995-06-22 1996-06-20 Method of continuously casting thin cast pieces
KR1019970700984A KR100227594B1 (en) 1995-06-22 1996-06-20 Method of continuous casting thin cast pieces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP15639495 1995-06-22
JP7/156394 1995-06-22

Publications (1)

Publication Number Publication Date
WO1997000748A1 true WO1997000748A1 (en) 1997-01-09

Family

ID=15626785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001701 WO1997000748A1 (en) 1995-06-22 1996-06-20 Method of continuously casting thin cast pieces

Country Status (4)

Country Link
EP (1) EP0776716A4 (en)
KR (1) KR100227594B1 (en)
CN (1) CN1048203C (en)
WO (1) WO1997000748A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047206A (en) * 1999-07-17 2001-02-20 Sms Schloeman Siemag Ag Method and device for changing material thickness in specification of casting continued body in continuous casting equipment with continuous casting operation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518327B1 (en) * 2002-12-23 2005-10-04 주식회사 포스코 A Method of Startup Procedure of Strip in the Twin Roll Strip Casting Process
CN103192043B (en) * 2013-04-07 2016-01-20 昆明理工大学 A kind of method suppressing ingot casting centre burst to produce
CA2947828C (en) * 2014-05-14 2019-01-15 Nippon Steel & Sumitomo Metal Corporation Method for continuous-casting slab

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102224A (en) * 1977-02-18 1978-09-06 Ishikawajima Harima Heavy Ind Drawing off method and apparatus for continuous casted segment
JPS5422777B2 (en) * 1973-09-17 1979-08-09
JPS5813454A (en) * 1981-07-13 1983-01-25 Nippon Steel Corp Method and device for controlling thickness of ingot in continuous casting
JPH01271047A (en) * 1988-04-20 1989-10-30 Sumitomo Metal Ind Ltd Light rolling reduction method in continuous casting machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110533A (en) * 1990-11-07 1992-05-05 Milad Limited Partnership Method for the use of gas assistance in the molding of plastic articles to enhance surface quality
AT401744B (en) * 1993-10-14 1996-11-25 Voest Alpine Ind Anlagen METHOD AND SYSTEM FOR CONTINUOUS CASTING

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422777B2 (en) * 1973-09-17 1979-08-09
JPS53102224A (en) * 1977-02-18 1978-09-06 Ishikawajima Harima Heavy Ind Drawing off method and apparatus for continuous casted segment
JPS5813454A (en) * 1981-07-13 1983-01-25 Nippon Steel Corp Method and device for controlling thickness of ingot in continuous casting
JPH01271047A (en) * 1988-04-20 1989-10-30 Sumitomo Metal Ind Ltd Light rolling reduction method in continuous casting machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0776716A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047206A (en) * 1999-07-17 2001-02-20 Sms Schloeman Siemag Ag Method and device for changing material thickness in specification of casting continued body in continuous casting equipment with continuous casting operation

Also Published As

Publication number Publication date
EP0776716A1 (en) 1997-06-04
CN1156980A (en) 1997-08-13
EP0776716A4 (en) 1999-06-30
KR970704535A (en) 1997-09-06
KR100227594B1 (en) 1999-11-01
CN1048203C (en) 2000-01-12

Similar Documents

Publication Publication Date Title
WO1996004086A1 (en) Continuous casting method for thin cast piece and apparatus therefor
JP3065321B2 (en) Continuous casting and rolling method
WO1997000748A1 (en) Method of continuously casting thin cast pieces
WO1997000747A1 (en) Continuous casting of thin cast pieces
JP2011147985A (en) Continuous casting method and apparatus
JP2961893B2 (en) Continuous casting of thin slabs
JP5018441B2 (en) Method of drawing slab after completion of casting in continuous casting
JP3275823B2 (en) Method of controlling flow of wide thin and medium thick slabs in mold
JPH0390263A (en) Continuous casting method
JP7234785B2 (en) Casting end control method
JP7502604B2 (en) Continuous casting method and continuous casting machine
JP3042324B2 (en) Dummy bar head for continuous casting of wide thin slab
JP3063533B2 (en) Continuous casting of wide thin cast slabs
JPS6127151A (en) Continuous casting method and direct rolling method
JPH06179051A (en) Method and device for continuously producing strip
JPH08257715A (en) Continuous casting method
KR20240094604A (en) Casting method of aluminum alloy strip
JPS62270257A (en) Apparatus for producing continuously rulled stock for metal sheet
JP3312609B2 (en) Continuous casting of thin slabs
JP2002192310A (en) Method for continuously casting steel
JP4056086B2 (en) Method for producing hot rolled steel sheet
JPH091292A (en) Method for continuously casting thin cast slab
JPH1034304A (en) Production of continuously cast slab for producing seamless steel tube
JP3395387B2 (en) Continuous casting of wide thin slabs
JP2888071B2 (en) Thin slab continuous casting method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96190674.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019970700984

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1997 793257

Country of ref document: US

Date of ref document: 19970221

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1996918856

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996918856

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970700984

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970700984

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996918856

Country of ref document: EP