JPH1034304A - Production of continuously cast slab for producing seamless steel tube - Google Patents

Production of continuously cast slab for producing seamless steel tube

Info

Publication number
JPH1034304A
JPH1034304A JP20045496A JP20045496A JPH1034304A JP H1034304 A JPH1034304 A JP H1034304A JP 20045496 A JP20045496 A JP 20045496A JP 20045496 A JP20045496 A JP 20045496A JP H1034304 A JPH1034304 A JP H1034304A
Authority
JP
Japan
Prior art keywords
slab
roll
producing
seamless steel
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20045496A
Other languages
Japanese (ja)
Other versions
JP3646417B2 (en
Inventor
Tatsuro Katsumura
龍郎 勝村
Takashi Ariizumi
孝 有泉
Yutaka Tsuchida
裕 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP20045496A priority Critical patent/JP3646417B2/en
Publication of JPH1034304A publication Critical patent/JPH1034304A/en
Application granted granted Critical
Publication of JP3646417B2 publication Critical patent/JP3646417B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the producing cost of a seamless steel tube containing Cr by using saddle type roll having a prescribed angle range of an opening angle at the caliber bottom in one pair of rolls. SOLUTION: Rolling reduction is applied to a cast billet 1 during continuous casting through a round mold with one pair of rolls 43 arranged near the completion of solidifying of the cast billet 2. Successively, in a method for producing a tube stock for the seamless steel tube by cutting off the cast billet to make a round billet and using a Mannesman piercing method, the saddle type roll having 70 deg.<=δ<=115 deg. opening angle δ45 at the caliber bottom is used as one pair of rolls 43, or a flat roll as one side roll in one pair of rolls and the saddle type roll having 100 deg.<=δ<=140 deg. opening angle δ45 at the caliber bottom as the other side roll, are used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、その連続鋳造(以
後、単に鋳造と記す。)ままの鋳片の内部品質が、継目
無鋼管用素材としては問題のある炭素量の多い炭素鋼
や、合金鋼等の丸ビレット(以後、単にビレットと記
す。)、および、従来は、鋳造ままの状態では熱間加工
性(以後、単に加工性と記す。)が悪く、継目無鋼管用
素材としては使用できなかった、Cr含有鋼のビレット
の内部品質の改善方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a continuous cast (hereinafter simply referred to as "casting") cast iron having a high internal carbon content, which is a problem as a material for a seamless steel pipe. Round billets of alloy steel and the like (hereinafter simply referred to as billets) and conventionally, as-cast hot workability (hereinafter simply referred to as workability) are poor. The present invention relates to a method of improving the internal quality of a Cr-containing steel billet that could not be used.

【0002】[0002]

【従来の技術】継目無鋼管は一般的には、ビレットを用
いてマンネスマン穿孔法等により中空の素管とし、その
後にエロンゲータ、プラグミルまたはマンドレルミル等
の圧延機により延伸し、最終的にはサイザーやストレッ
チレデューサにより定径化する工程を経て製品とされ
る。
2. Description of the Related Art A seamless steel pipe is generally formed into a hollow tube by a Mannesmann perforation method using a billet, and then drawn by a rolling mill such as an elongator, plug mill or mandrel mill. It is made into a product through the process of sizing with a stretch reducer.

【0003】この継目無鋼管製造用のビレットには、低
炭素鋼の様に比較的簡単に鋳造可能な鋼種の場合は、鋳
造ままのものを用いる。しかし、ステンレス鋼等の加工
性の劣るCr含有鋼種の場合は、鋳造ままのビレットを
用いると、マンネスマン穿孔時に素管の内面に疵が発生
することが多い。
[0003] As a billet for producing a seamless steel pipe, in the case of a steel type which can be cast relatively easily, such as a low carbon steel, an as-cast one is used. However, in the case of Cr-containing steel such as stainless steel, which is inferior in workability, if an as-cast billet is used, flaws often occur on the inner surface of the raw tube at the time of Mannesmann drilling.

【0004】Cr含有鋼の加工性が劣る主な原因は、C
r量の増加により、鋳造時に偏析やポロシティが発生し
やすくなり、内質が劣った鋳片になるためである。加工
性に特に大きな影響を与えるポロシティは、鋳片の最終
凝固時に発生する空隙に、粘度が高い等の理由により溶
鋼が供給され難いことにより、発生する。
[0004] The main cause of poor workability of Cr-containing steel is C
This is because, when the amount of r increases, segregation and porosity tend to occur at the time of casting, and the slab becomes inferior in quality. Porosity, which has a particularly large effect on the workability, is caused by the fact that it is difficult to supply molten steel to voids generated at the time of final solidification of a slab due to high viscosity and the like.

【0005】図14は、溶鋼中のCr量と溶鋼の粘度と
の関係を示したものであるが、溶鋼中のCr量が増すに
したがって、溶鋼の粘度が増すこと、および、Cr量が
13%前後で粘度がピークを示すことがわかる。
FIG. 14 shows the relationship between the amount of Cr in the molten steel and the viscosity of the molten steel. As the amount of Cr in the molten steel increases, the viscosity of the molten steel increases and the amount of Cr increases by 13%. %, The viscosity shows a peak.

【0006】図15は、Cr量の少ない範囲での、溶鋼
中のCr量と粘度との関係を示したものであるが、Cr
量が0.5%を越えると粘度の上昇が顕著になることが
わかる。
FIG. 15 shows the relationship between the Cr content in molten steel and the viscosity in a range where the Cr content is small.
It can be seen that when the amount exceeds 0.5%, the increase in viscosity becomes remarkable.

【0007】上記の様な欠陥を含むビレットを用いて、
過酷な加工方法であるマンネスマン穿孔を行なうと、素
管の内面には、ポロシティや偏析に起因した疵が発生す
る。このため、Crを含有する鋼種においては、内部品
質を向上させるための圧延を行なったビレットを用いる
ことが必須とされてきた。
[0007] Using a billet containing the above-mentioned defects,
When the Mannesmann drilling, which is a severe processing method, is performed, flaws due to porosity and segregation occur on the inner surface of the raw tube. For this reason, in the case of steel containing Cr, it has been essential to use a billet that has been rolled to improve the internal quality.

【0008】つまり、鋳造ままのビレットを用いて製管
を行うと、内面疵の発生が懸念される場合には、鋳片を
分塊圧延してポロシティを機械的に圧着させ、内部品質
の優れたビレットを得ることで、この問題を回避してい
た。
[0008] In other words, when pipe production is performed using an as-cast billet, if there is a fear of occurrence of internal flaws, the slab is subjected to slab-rolling to mechanically press the porosity to achieve excellent internal quality. This problem was avoided by obtaining a billet.

【0009】例えば、特開平61−140301号公報
には、Cr含有鋼の大断面のブルームを鋳造し、加熱後
に分塊圧延等により矩形断面の鋼片とし、さらに小断面
のビレットを製造する技術が示されている。
For example, Japanese Patent Application Laid-Open No. 61-140301 discloses a technique of casting a bloom having a large cross section of Cr-containing steel, forming a steel slab having a rectangular cross section by slab rolling and the like after heating, and producing a billet having a smaller cross section. It is shown.

【0010】しかしながら、鋳造後に切断して加工を行
う場合は、圧延後の鋼片の端面が凹凸のある形状となる
ため、ビレットにするためには、端面の形状を整えるた
めの切断工程が必要となる。また、発生するクロップを
廃棄することになり、歩留が低下する。加工を行うため
の再加熱も当然、製品コストを増大させる。したがっ
て、経済性から見ると優れた解決策ではない。
However, in the case of cutting and working after casting, since the end face of the slab after rolling has an irregular shape, a cutting step for adjusting the end face shape is necessary in order to form a billet. Becomes In addition, the generated crop is discarded, and the yield decreases. Reheating for processing naturally increases the product cost. Therefore, it is not a good solution from an economic point of view.

【0011】ビレットにする段階で圧延を行なわずに内
質を向上させる手段としては、先ず、鋳造中の電磁攪拌
処理がある。ただし、広く実施されているこの処理の効
果は、ポロシティの発生を防止するほどは大きくない。
As means for improving the internal quality without rolling at the stage of forming a billet, there is an electromagnetic stirring process during casting. However, the effect of this widely practiced process is not great enough to prevent porosity.

【0012】内質を向上させる他の手段として、鋳造中
のインライン軽圧下法あるいは、大圧下法も比較的広く
採用されている。特公昭59−16862号公報や、特
開平63−183765号公報に開示されている技術が
これにあたる。これらの技術は、スラブやブルームの内
質改善方法として良く知られており、ポロシティの消滅
や、偏析の低減化が可能である。鋳造中あるいは直後に
加工を加えるため再加熱が不要であり、結果的に製造コ
ストも低減できる技術である。
As another means for improving the internal quality, an in-line light reduction method during casting or a large reduction method is relatively widely adopted. The technology disclosed in Japanese Patent Publication No. 59-16682 and Japanese Patent Application Laid-Open No. 63-183765 correspond to this. These techniques are well known as a method for improving the internal quality of slabs and blooms, and can eliminate porosity and reduce segregation. This is a technique that requires no reheating because processing is performed during or immediately after casting, and as a result, manufacturing costs can be reduced.

【0013】しかし、丸鋳片に対して、例えば、板状鋳
片の圧下に用いる様な、鋳片の移送方向に対しての垂直
断面が矩形である、平型のロールにより圧下を加える
と、ロールに接触した部分は平面化し、他方、ロールに
接触していない部分は膨らみ、ビレットの断面形状は偏
平化し、さらには角形に近づく。
However, when rolling is applied to a round slab by a flat roll having a rectangular cross section perpendicular to the direction in which the slab is transported, such as used for rolling a plate-shaped slab, for example. The portion that is in contact with the roll is flattened, while the portion that is not in contact with the roll is bulged, and the cross-sectional shape of the billet is flattened, and further approaches a square.

【0014】断面形状が角形に近づくと、ビレットの回
転を利用するマンネスマン穿孔時の、噛み込みが不安定
となるなどの操業上の問題が発生する。また、マンネス
マン穿孔後の素管、および最終製品である継目無鋼管
の、管軸方向に対しての垂直断面内(以後、C断面とす
る。)の肉厚変動(偏肉)が大きくなる。
When the cross-sectional shape approaches the rectangular shape, operational problems such as instability of biting during Mannesmann drilling utilizing the rotation of the billet occur. In addition, the variation in wall thickness (uneven thickness) in the cross section perpendicular to the pipe axis direction (hereinafter referred to as C cross section) of the raw pipe after the Mannesmann perforation and the seamless steel pipe as the final product increases.

【0015】この問題に対し、特開平7−108358
号公報には、楕円形鋳型により断面形状が楕円形の鋳片
を得て、それを、ラウンド孔型ロールにより長径方向に
圧下し、真円断面のビレットを得る技術が示されてい
る。この方法は圧下後の形状の問題は解決しているが、
鋳造時の湯流れが真円断面鋳型を用いた場合に比較して
不均一になり、それに起因する湯面変動やパウダーの巻
き込みが、新たな欠陥の原因になる。また、必要な圧下
量に対応して鋳型を数多く準備する必要があること、内
部品質に問題の無い鋼種の場合も圧下をかけることにな
りコストが上昇すること等の問題もあり、やはり有効な
解決策ではない。
To solve this problem, Japanese Patent Application Laid-Open No. 7-108358
Japanese Patent Laid-Open Publication No. H11-163873 discloses a technique of obtaining a slab having an elliptical cross-sectional shape using an elliptical mold, and rolling it down in the major axis direction using a round hole roll to obtain a billet having a true circular cross section. Although this method solves the problem of the shape after rolling,
The flow of the molten metal during casting becomes non-uniform as compared with the case of using a mold having a perfect circular cross-section, and fluctuations in the molten metal level and entrainment of the powder resulting therefrom cause new defects. In addition, there are problems such as the need to prepare a large number of molds corresponding to the required amount of reduction, and the use of steel types that do not have a problem with the internal quality, resulting in increased costs due to the reduction. Not a solution.

【0016】[0016]

【発明が解決しようとする課題】以上に述べた様に、加
工性の劣る鋼、特にCr含有鋼においては、鋳造ままの
ビレットのポロシティ等の問題を、ビレットの形状を大
きく劣化させることなく、有効、かつ、経済的に解決す
る方法は皆無の状態である。電磁撹拌処理は、それ単独
では、ビレットの中心部におけるポロシティの発生の防
止効果は小さい。また、鋳造中の鋳片に圧下を加え内質
改善を行う方法では、圧下により断面形状が偏平化し、
マンネスマン穿孔時の噛み込みが不安定になり、また、
得られる素管には偏肉が発生する等の問題がある。
As described above, in the case of a steel having inferior workability, in particular, a Cr-containing steel, problems such as porosity of an as-cast billet can be solved without significantly deteriorating the shape of the billet. There is no effective and economic solution. The electromagnetic stirring treatment alone has only a small effect of preventing the occurrence of porosity at the center of the billet. In addition, in the method of improving the internal quality by reducing the slab during casting, the cross-sectional shape is flattened by the reduction,
Biting at the time of Mannesmann perforation becomes unstable,
The obtained raw tube has problems such as uneven thickness.

【0017】楕円形の鋳片は欠陥が多く、また、能率も
下がり、経済性も低い。鋳片を切断後に再加熱し、穿孔
前圧延を行なう方法の場合は、得られる素管は問題のな
いものであるが、製造能率が低く、また経済的でもな
い。
Elliptical slabs have many defects, are less efficient, and are less economical. In the case of a method in which the slab is cut and then reheated and pre-piercing rolling is performed, the obtained raw tube has no problem, but the production efficiency is low and it is not economical.

【0018】[0018]

【課題を解決するための手段】本発明は上記した問題
を、丸鋳片の鋳造時に鋳片の内部品質を向上させる圧下
を、比較的簡単で安価な設備を用い、ビレットの形状を
大きく劣化させることなく、能率的に、また、経済的に
行うものである。本発明によって得られるビレットで
は、ポロシティ等が大きく減少しており、それを用いて
マンネスマン穿孔して得られた素管は、Cr含有鋼の場
合も内面疵は少ない。また、ビレットの形状は従来の軽
圧下法、あるいは大圧下法に比較して格段に優れてお
り、そのため、本発明により製造したビレットを用い
て、マンネスマン穿孔を行なう場合は、穿孔時の安定性
が優れており、また、素管の形状も良好であり、偏肉率
も小さい。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems by reducing the pressure required to improve the internal quality of a slab during the casting of a round slab by using relatively simple and inexpensive equipment and greatly deteriorating the billet shape. It is done efficiently and economically without letting them do it. In the billet obtained by the present invention, the porosity and the like are greatly reduced, and the pipe obtained by perforating the billet using the porosity has few inner surface flaws even in the case of Cr-containing steel. In addition, the billet shape is much better than the conventional light reduction method or large reduction method, and therefore, when performing Mannesmann drilling using the billet manufactured according to the present invention, the stability at the time of drilling is considered. Is excellent, the shape of the raw tube is also good, and the wall thickness unevenness is small.

【0019】第1発明は、 円形鋳型により連続鋳造中の鋳片に、鋳片の凝固完了点
近傍に設置した一対のロールにより圧下を加え、続いて
切断して丸ビレットとし、マンネスマン穿孔法により継
目無鋼管製造用の素管を製造する方法において、前記一
対のロールにカリバー底の開き角δが、 70°≦δ≦115° である鞍型ロールを用いる継目無鋼管製造用連続鋳造鋳
片の製造方法である。
According to a first aspect of the present invention, a slab being continuously cast by a circular mold is rolled down by a pair of rolls installed near a solidification completion point of the slab, and subsequently cut into a round billet by a Mannesmann perforation method. In the method for producing a base tube for producing a seamless steel pipe, a continuous cast slab for producing a seamless steel pipe using a saddle type roll in which an opening angle δ of a caliber bottom is 70 ° ≦ δ ≦ 115 ° for the pair of rolls. It is a manufacturing method of.

【0020】また、第2発明は、円形鋳型により連続鋳
造中の鋳片に、鋳片の凝固完了点近傍に設置した一対の
ロールにより圧下を加え、続いて切断して丸ビレットと
し、マンネスマン穿孔法により継目無鋼管製造用の素管
を製造する方法において、前記一対のロールの一方に平
ロールを、他の一方のロールにカリバー底の開き角δ
が、 100°≦δ≦140° である鞍型ロールを用いる継目無鋼管製造用連続鋳造鋳
片の製造方法である。
In a second aspect of the present invention, a slab being continuously cast by a circular mold is reduced by a pair of rolls installed near a solidification completion point of the slab, and subsequently cut into a round billet to be subjected to Mannesmann perforation. In a method of manufacturing a raw pipe for manufacturing a seamless steel pipe by a method, a flat roll is provided on one of the pair of rolls, and an opening angle δ of a caliber bottom is provided on the other roll.
Is a method for producing a continuous cast slab for producing a seamless steel pipe using a saddle type roll in which 100 ° ≦ δ ≦ 140 °.

【0021】第3発明は、第1発明において、連続鋳造
中の鋳片の軸心部の固相率fsが0.3≦fs≦1の状
態で、鋳片に体積減少率が、0.1〜7%の範囲内の圧
下を加える継目無鋼管製造用連続鋳造鋳片の製造方法で
ある。ただし、体積減少率=(ビレットC断面の面積減
少率)×(鋳造速度)
According to a third aspect of the present invention, in the first aspect, the volume reduction rate of the slab is 0.1% when the solid phase ratio fs at the axial center portion of the slab during continuous casting is 0.3 ≦ fs ≦ 1. This is a method for producing a continuous cast slab for producing a seamless steel pipe in which a reduction in the range of 1 to 7% is applied. However, volume reduction rate = (area reduction rate of billet C cross section) x (casting speed)

【0022】第4発明は、第2発明において、連続鋳造
中の鋳片の軸心部の固相率fsが0.3≦fs≦1の状
態で、鋳片に体積減少率が、0.1〜5%の範囲内の圧
下を加える継目無鋼管製造用連続鋳造鋳片の製造方法で
ある。ただし、体積減少率=(ビレットC断面の面積減
少率)×(鋳造速度)
According to a fourth aspect of the present invention, in the second aspect, the volume reduction rate of the slab is 0.1% when the solid phase ratio fs at the axial center of the slab during continuous casting is 0.3 ≦ fs ≦ 1. This is a method for producing a continuous cast slab for producing a seamless steel pipe by applying a reduction in the range of 1 to 5%. However, volume reduction rate = (area reduction rate of billet C cross section) x (casting speed)

【0023】また、第5発明は、第1〜第4の発明のい
ずれかにおいて、鋳片が、Cr含有量が0.5重量%を
超える難加工性の継目無鋼管製造用の高Cr含有鋼であ
る継目無鋼管製造用連続鋳造鋳片の製造方法である。
According to a fifth aspect of the present invention, in any one of the first to fourth aspects of the invention, the slab has a high chromium content for producing a difficult-to-work seamless steel pipe having a chromium content of more than 0.5% by weight. This is a method for producing a continuous cast slab for producing a seamless steel pipe that is steel.

【0024】本発明においては、丸鋳片の鋳造時に内部
品質を向上させる圧下を加える。圧下を加える手段に
は、1対の鞍型ロール(以後、鞍型ロールをVロールと
記す。また、1対の鞍型ロールをVVロールと、平ロー
ルをFロールと、1対の平ロールとVロールをFVロー
ルと、1対の平ロールをFFロールと記す。)または、
FVロールを用いる。
In the present invention, a reduction for improving the internal quality is applied at the time of casting a round slab. As means for applying the reduction, a pair of saddle-type rolls (hereinafter, saddle-type rolls are referred to as V-rolls. Also, a pair of saddle-type rolls, a VV roll, a flat roll, an F-roll, and a pair of flat rolls And a V roll are referred to as an FV roll, and a pair of flat rolls is referred to as an FF roll.)
An FV roll is used.

【0025】一方、または、両方のロールにVロールを
用いることにより、従来のFFロールを用いた圧下に比
較して、鋳片の偏平率ε(以後、εと記す。)を大きす
ることなく、効果的な圧下を加えることができる。
By using V rolls for one or both rolls, the flatness ε of the slab (hereinafter referred to as ε) does not increase as compared with the conventional reduction using FF rolls. , Effective reduction can be applied.

【0026】これは、VVロールや、FVロールを使用
することより、ロールと鋳片との接触点が少なくとも3
点以上になり、ロールが鋳片を拘束しやすくなるため、
圧下量を大きくしてもεは大きくならない。
This is because the point of contact between the roll and the slab is at least three times by using a VV roll or an FV roll.
Point or more, and the roll is easier to restrain the slab,
Even if the rolling amount is increased, ε does not increase.

【0027】また、その結果として、偏平化に起因する
マンネスマン穿孔時の噛み込み不良等の問題や、穿孔後
の素管の偏肉の問題も、従来のFFロール圧下方式に比
較して大幅に小さくなる。
As a result, problems such as poor biting at the time of perforating a Mannesmann due to flattening and a problem of uneven wall thickness of the raw tube after perforation are greatly increased as compared with the conventional FF roll reduction method. Become smaller.

【0028】逆に、従来程度のεを許容する場合は、大
きな圧下をかけることが可能であり、ビレットの品質を
より大きく改善でき、マンネスマン穿孔時の内面疵の発
生が抑えられる。さらに、圧下が鋳片の中心部に向かっ
てかかるため、鋳片の中心部に圧縮応力場が形成されや
すくなり、圧下量あたりの鋳片の内部品質向上効果が大
きい点も重要である。
Conversely, when ε of the conventional level is allowed, a large reduction can be applied, the quality of the billet can be further improved, and the occurrence of inner surface flaws at the time of Mannesmann drilling can be suppressed. Furthermore, since the reduction is applied toward the center of the slab, it is also important that a compressive stress field is easily formed in the center of the slab, and the effect of improving the internal quality of the slab per reduction amount is large.

【0029】VVロールで圧下をかける場合の、カリバ
ー底の開き角度δ(以後、δと記す。)は、圧下を均一
にかける上からは、90°が最適である。ただし、90
°の上下の一定の範囲内の場合は、εを大きく上げずに
有効な圧下をかけることができる。その好ましい範囲
は、 70°≦δ≦115° である。δが70°未満か、または、115°を越える
場合は、εが大きくなる。
In the case of applying a reduction with a VV roll, the opening angle δ (hereinafter, referred to as δ) of the caliber bottom is optimally 90 ° from the viewpoint of applying the reduction uniformly. However, 90
In a certain range above and below °, effective reduction can be applied without greatly increasing ε. The preferred range is 70 ° ≦ δ ≦ 115 °. When δ is less than 70 ° or exceeds 115 °, ε becomes large.

【0030】FVロールを用いる場合は、δは120°
が最適であるが、同様に上下の一定の範囲内の場合は、
εを大きく上げずに有効な圧下をかけることができる。
好ましい範囲は 100°≦δ≦140° である。
When the FV roll is used, δ is 120 °
Is optimal, but also within a certain range up and down,
An effective reduction can be applied without greatly increasing ε.
A preferred range is 100 ° ≦ δ ≦ 140 °.

【0031】圧下は、鋳片の凝固が完了する以前に行な
う必要がある。一方、凝固が余り進んでいない状態で行
なうと、その後の凝固過程で、ポロシティや偏析が発生
するため好ましくない。効果が大きく現れる鋳片の軸芯
部の固相率fs(以後、fsと記す.)の下限は、0.
3である。即ち、鋳片の軸芯部の30%以上が固相の状
態で、圧下を行なうことが好ましい。この値以下の場合
は、圧下後に若干のポロシティが発生し、また偏析も大
きくなる。
The reduction must be performed before the solidification of the slab is completed. On the other hand, if the solidification is not sufficiently advanced, porosity and segregation occur in the subsequent solidification process, which is not preferable. The lower limit of the solid phase ratio fs (hereinafter, referred to as fs) of the shaft core portion of the slab, in which the effect is large, is 0.
3. That is, it is preferable to perform the reduction in a state where at least 30% of the shaft core of the slab is in a solid phase. If it is less than this value, some porosity will be generated after rolling down, and segregation will also increase.

【0032】fsの上限値は1である。すなわち、完全
に凝固した後も、凝固直後であれば圧下は有効である。
したがって、 0.3≦fs≦1 の状態で圧下を行なうことが好ましい。圧下量は、鋳片
の体積減少率で判断する。
The upper limit of fs is 1. In other words, even after complete solidification, the reduction is effective immediately after solidification.
Therefore, it is preferable to perform the reduction in the condition of 0.3 ≦ fs ≦ 1. The amount of reduction is determined by the volume reduction rate of the slab.

【0033】体積減少率の定義は 体積減少率=(ビレットC断面の面積減少率)×(鋳造
速度) である。
The volume reduction rate is defined as: volume reduction rate = (area reduction rate of billet C cross section) × (casting speed).

【0034】VVロールで圧下する場合は、体積減少率
が最大7%までは、εを大きく上げずに圧下を行うこと
が可能である。一方、圧下による内面品質の向上効果、
すなわち、マンネスマン穿孔後の素管の内面疵の発生率
は、体積減少率が0.1%以上で顕著となり、体積減少
率の増加と共に小さくなる。したがって、VVロールに
よる圧下時の好ましい体積減少率の範囲は、0.1〜7
%である。
In the case of rolling down with a VV roll, the rolling down can be performed without greatly increasing ε until the volume reduction rate reaches a maximum of 7%. On the other hand, the effect of improving the inner surface quality by rolling down,
That is, the incidence rate of the inner surface flaw of the raw tube after the Mannesmann perforation becomes significant when the volume reduction rate is 0.1% or more, and decreases as the volume reduction rate increases. Therefore, the preferable range of the volume reduction rate during the rolling by the VV roll is 0.1 to 7
%.

【0035】FVロールで圧下する場合は、体積減少率
が最大5%までは、εを大きく上げずに圧下を行うこと
が可能である。一方、圧下の内面品質の向上効果は、こ
の場合も、体積減少率が、0.1%以上で顕著となる。
したがって、FVロールによる圧下時の好ましい体積減
少率の範囲は、0.1〜5%である。
When rolling down with an FV roll, it is possible to perform rolling down without increasing ε greatly, up to a maximum volume reduction rate of 5%. On the other hand, in this case, the effect of improving the inner surface quality under rolling is also remarkable when the volume reduction rate is 0.1% or more.
Therefore, the preferable range of the volume reduction rate during the rolling by the FV roll is 0.1 to 5%.

【0036】上記の範囲内の体積減少率の圧下を、鋳片
が上記のfsの状態において、VVロール、またはFV
ロールにより加えることにより、本発明の効果はより優
れたものとなる。なお、本発明は鋼種を問わず、鋳片の
内質の向上に有効であるが、溶鋼の粘度が高く、鋳造中
にポロシティや偏析が発生しやすい鋼種、すなわち、
0.5%を越える量のCrを含有する鋼に適用する場合
に、特にその効果が著しい。
When the slab is in the above-mentioned fs state, the VV roll or the FV
By adding with a roll, the effect of the present invention becomes more excellent. In addition, the present invention is effective for improving the internal quality of the slab, regardless of the steel type, but the viscosity of the molten steel is high, and porosity and segregation are likely to occur during casting, that is, steel types,
The effect is particularly remarkable when applied to steel containing Cr in an amount exceeding 0.5%.

【0037】[0037]

【発明の実施の形態】図3は本発明の目的である、加工
性の良い継目無鋼管製造用鋳片の製造の実施の形態を示
す概略図である。鋳型1に注入された溶鋼は鋳片2にな
る。なお、本発明の実施においては、凝固中に電磁攪拌
処理を行った。鋳片2は図示した様に、凝固しつつある
状態で垂直方向から水平方向に曲げられる。鋳片2の引
抜き速度はピンチロール3により一定速度に制御され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 is a schematic view showing an embodiment of the production of a cast piece for producing a seamless steel pipe having good workability, which is the object of the present invention. The molten steel injected into the mold 1 becomes a slab 2. In the practice of the present invention, electromagnetic stirring was performed during solidification. As shown, the slab 2 is bent from a vertical direction to a horizontal direction while solidifying. The speed of drawing the slab 2 is controlled to a constant speed by the pinch roll 3.

【0038】本発明においては、ピンチロール3の下流
側に、圧下ロール4を設置して鋳片に圧下を加え、その
内質を向上させる。図1は、圧下ロールの1形態である
VVロール41により、鋳片2を圧下している状態を示
す概略図である。鋳片2はVVロール41と、4点で接
触している。
In the present invention, a reduction roll 4 is provided on the downstream side of the pinch roll 3 to apply a reduction to the cast slab to improve the internal quality. FIG. 1 is a schematic view showing a state where a slab 2 is being reduced by a VV roll 41 which is one form of a reduction roll. The slab 2 is in contact with the VV roll 41 at four points.

【0039】また、図2は、圧下ロールの他の形態であ
るFVロール42により、鋳片2を圧下している状態を
示す概略図である。鋳片2はFVロール42と、3点で
接触している。なお、43はVロール、44はFロー
ル、45はVロールのδである。
FIG. 2 is a schematic diagram showing a state in which the slab 2 is being reduced by an FV roll 42 which is another form of the reduction roll. The slab 2 is in contact with the FV roll 42 at three points. In addition, 43 is a V roll, 44 is an F roll, and 45 is δ of a V roll.

【0040】本発明は直径が340mm以下の鋳片に適
用した場合に、その効果が特に顕著に認められる。鋳片
の直径が340mmを越える場合は、鋳造時の軸芯部の
冷却速度が遅く、ポロシティが生成しにくく、また、熱
応力による軸芯割れも起こりにくいためである。
When the present invention is applied to a slab having a diameter of 340 mm or less, the effect is particularly remarkably recognized. If the diameter of the slab exceeds 340 mm, the cooling rate of the shaft core during casting is low, porosity is hardly generated, and the shaft core crack due to thermal stress is unlikely to occur.

【0041】FVロールにより、鋳片を圧下する場合
は、Fロールのロール軸は固定型とし、Vロールのロー
ル軸を可変型とすると、鋳片の寸法が変化する場合に、
鋳造設備周辺のパスラインに関係する設備を調整する頻
度が減少し、生産能率の低下を防ぐことができる。
When the slab is reduced by the FV roll, the roll axis of the F roll is fixed, and when the roll axis of the V roll is variable, when the size of the slab changes,
The frequency of adjusting equipment related to the pass line around the casting equipment is reduced, and a decrease in production efficiency can be prevented.

【0042】なお、VVロール41、およびFVロール
42による圧下は、上記の例では、鋳片2を水平方向に
移送しつつ行なっているが、もちろん、鋳片2を垂直ま
たは、斜め方向に移送中に圧下をかけることも可能であ
る。
In the above example, the reduction by the VV roll 41 and the FV roll 42 is performed while the slab 2 is transferred in the horizontal direction. However, the slab 2 is transferred in the vertical or oblique direction. It is also possible to apply a reduction inside.

【0043】[0043]

【実施例】図4は、VVロールにより圧下を行なった実
施例(1対のVロールのδは同一であり、90°および
120℃の2水準)、および、FFロールを用いた比較
例を、横軸は体積減少率、縦軸は鋳片のεをとり示した
ものである。13%Cr鋼であり、鋳片の外径は170
mmである。(以後の図5〜図13も同じ)なお、ε
は、以下の式で定義した。
FIG. 4 shows an example in which a VV roll was used to reduce the pressure (a pair of V rolls had the same δ, two levels of 90 ° and 120 ° C.) and a comparative example using an FF roll. The horizontal axis shows the volume reduction rate, and the vertical axis shows ε of the slab. 13% Cr steel, slab outer diameter 170
mm. (The same applies to FIGS. 5 to 13 hereinafter.)
Is defined by the following equation.

【0044】ε(%)={1−(鋳片のある断面中での
最短径部長さ)/(同一断面中の最長径部長さ)}×1
00
Ε (%) = {1− (length of shortest diameter portion in section with cast slab) / (length of longest diameter portion in same section)} × 1
00

【0045】FFロールを用いた比較例は、体積減少率
の増加に伴いεの増大が著しいが、実施例のεの増加は
いずれの場合も小さい。特に、δが90°の場合のε
は、比較例の1/3程度である。
In the comparative example using the FF roll, the increase in ε is remarkable as the volume reduction rate increases, but the increase in ε in the examples is small in each case. In particular, ε when δ is 90 °
Is about 1/3 of the comparative example.

【0046】図5は、FVロール(Vロールのδは、1
20°または140℃)により圧下を行なった場合の実
施例、および、FFロールを用いた比較例を、横軸は体
積減少率、縦軸は鋳片のεをとり示したものである。実
施例のεの増加はいずれの場合も小さい。特に、δが1
20°のVロールを用いることにより、FFロールの場
合に比較して、同一の体積減少率におけるεは1/2に
なっている。
FIG. 5 shows an FV roll (δ of the V roll is 1).
(20 ° or 140 ° C.), the horizontal axis indicates the volume reduction rate, and the vertical axis indicates the ε of the slab in the example in which the reduction was performed at 20 ° or 140 ° C.) and the comparative example using the FF roll. The increase in ε in the examples is small in each case. In particular, δ is 1
By using the 20 ° V-roll, ε at the same volume reduction rate is 1 / compared to the case of the FF roll.

【0047】図6は、VVロールを用いた場合(1対の
Vロールのδは同一)の、δとεとの関係を示した図で
ある。体積減少率は4〜5%である。δが小さ過ぎた
り、大き過ぎたりする場合は当然εは大きくなる。な
お、80°≦δ≦105°の場合の、εは3%以下であ
り、δがこの範囲の場合は、圧下後の形状が特に良好な
ことがわかる。
FIG. 6 is a diagram showing the relationship between δ and ε when a VV roll is used (δ of a pair of V rolls is the same). The volume reduction rate is 4-5%. When δ is too small or too large, ε naturally becomes large. It should be noted that, when 80 ° ≦ δ ≦ 105 °, ε is 3% or less, and when δ is within this range, the shape after rolling is particularly good.

【0048】図7は、FVロールを用いた場合の、Vロ
ールのδとεとの関係を示した図である。体積減少率は
4〜5%である。δが小さ過ぎたり、大き過ぎたりする
場合は当然εは大きくなる。110°≦δ≦130°の
場合のεは4%以下であり、δがこの範囲の場合は、圧
下後の形状が特に良好なことがわかる。
FIG. 7 is a diagram showing the relationship between δ and ε of a V roll when an FV roll is used. The volume reduction rate is 4-5%. When δ is too small or too large, ε naturally becomes large. When 110 ° ≦ δ ≦ 130 °, ε is 4% or less, and when δ is in this range, the shape after rolling is particularly good.

【0049】なお、上記の図4〜図7の実施例および比
較例は、いずれもfs:0.5の状態で圧下を加えたも
のであるが、εに対するfsの影響はほとんどない。す
なわち、εは体積減少率とδで決定される。
In each of the examples and comparative examples shown in FIGS. 4 to 7 described above, the reduction was applied in the state of fs: 0.5, but the influence of fs on ε was hardly affected. That is, ε is determined by the volume reduction rate and δ.

【0050】上記の図4〜図7に示した条件で圧下して
得られたビレット、および、fsが異なった状態で、圧
下を行なった鋳片からのビレットを用いて、マンネスマ
ン穿孔試験を行なった。試験本数は同一条件下で10本
である。まず、マンネスマン穿孔後の素管の内面を調査
して、疵の発生状態を調査した。
Using a billet obtained by rolling under the conditions shown in FIGS. 4 to 7 and a billet from a pressed slab with different fs, a Mannesmann drilling test was performed. Was. The number of test pieces is 10 under the same conditions. First, the inner surface of the raw tube after the Mannesmann perforation was examined to examine the state of occurrence of flaws.

【0051】図8に、VVロールにより、種々の体積減
少率の圧下を行なった鋳片からのビレットの、マンネス
マン穿孔後の内面疵発生率を示す。圧下を行なっていな
い比較例の疵の発生率は、100%であった。0.1%
以上、3%未満の体積減少率の圧下により、内面疵の発
生率は10〜40%程度に低下した。
FIG. 8 shows the rate of occurrence of internal flaws after the Mannesmann perforation of the billet from the slab which was subjected to various reductions in volume by the VV roll. The rate of occurrence of flaws in the comparative example in which the rolling was not performed was 100%. 0.1%
As described above, the reduction rate of the volume reduction rate of less than 3% reduced the occurrence rate of the inner surface flaw to about 10 to 40%.

【0052】また、体積減少率:3%以上、5%未満の
圧下により、内面疵の発生率は0〜10%程度に低下し
た。5%以上の圧下を加えた場合は、疵の発生は認めら
れなかった。したがって、内面疵の発生防止の観点から
は、効果が目立ち始める体積減少率の範囲は、0.1%
以上、好ましい範囲は3%以上、最適範囲は5%以上で
ある。なお、fsが、0.2と小さい場合は、やや、内
面疵発生率は高くなる。fsが、0.4と1の場合の差
はない。
The rate of occurrence of internal flaws was reduced to about 0 to 10% by reducing the volume by 3% or more and less than 5%. When a reduction of 5% or more was applied, no flaw was observed. Therefore, from the viewpoint of preventing the occurrence of inner surface flaws, the range of the volume reduction rate at which the effect starts to be conspicuous is 0.1%.
As described above, the preferable range is 3% or more, and the optimum range is 5% or more. In addition, when fs is as small as 0.2, the inner surface flaw occurrence rate becomes slightly higher. There is no difference when fs is 0.4 and 1.

【0053】図9は、FVロールにより、同様の圧下を
行なった場合の試験結果である。VVロールの場合と似
た傾向を示しているが、fs、体積減少率が共に小さい
場合の疵の発生率が、VVロールの場合と比較してやや
高く、体積減少率が4〜5%の範囲においても多少の差
が認められる。
FIG. 9 shows the test results when the same rolling was performed by the FV roll. It shows a tendency similar to that of the VV roll, but the flaw generation rate when both fs and volume reduction rate are small is slightly higher than that of the VV roll, and the volume reduction rate is in the range of 4 to 5%. Some slight differences are also observed.

【0054】図10は、種々のfsの状態で、VVロー
ルおよびFVロールにより、圧下を行い、ビレットと
し、マンネスマン穿孔した場合の内面疵発生率を示した
ものである。体積減少率は3%である。fsが0.2の
場合の内面疵発生率は20%、fsが0.4の場合は1
0%に低下する。0.5〜0.8の範囲にある場合は、
疵の発生は認められなかった。なお、fsが0.9以上
では、内面疵発生率は再び大きくなる。
FIG. 10 shows the rate of occurrence of inner surface flaws when a VN roll and an FV roll were used to reduce the pressure in various fs states to form a billet and perforated by Mannesmann. The volume reduction rate is 3%. The internal flaw occurrence rate is 20% when fs is 0.2, and 1 when fs is 0.4.
0%. If it is in the range of 0.5 to 0.8,
No flaw was found. In addition, when fs is 0.9 or more, the incidence rate of inner surface flaws increases again.

【0055】図11は、FVロールを用いた場合のVロ
ールのδと、得られたビレットをマンネスマン穿孔した
場合の穿孔性および、素管の偏肉率との関係を示したも
のである。縦軸に示した穿孔性を示す評点は、穿孔が通
常の真円断面のビレットと同じ状態で行なえた場合を評
点1とし、穿孔中に異音が発生した場合を評点2、さら
に穿孔中に噛み込み不良が発生した場合を評点3とし
た。
FIG. 11 shows the relationship between the δ of the V-roll when the FV roll is used, the piercing properties when the obtained billet is perforated by Mannesmann, and the wall thickness unevenness of the raw tube. The score indicating the piercing property shown on the vertical axis was scored 1 when the drilling was performed in the same state as a billet having a normal perfect circular cross section, scored 2 when abnormal noise occurred during drilling, and further evaluated during drilling. The case where the biting failure occurred was rated as 3.

【0056】なお、噛み込み不良の状態とは、マンネス
マン穿孔が不可能なことではなく、素管の先端部近傍の
形状が不良になる部分が著しく長くなる(3m以上)こ
とに対応している。また、異音が発生する状態とは、形
状が不良になる部分が長くなる(1m以上、3m未満)
ことに、ほぼ対応する。なお、真円断面のビレットの場
合は、形状が不良になる部分の長さは1m未満である。
The state of poor biting does not mean that Mannesmann drilling is not possible but corresponds to the fact that the portion near the tip end of the raw tube where the shape is defective becomes extremely long (3 m or more). . In addition, the state where abnormal noise occurs means that the portion where the shape is defective becomes longer (1 m or more and less than 3 m).
It almost corresponds. In the case of a billet having a perfect circular cross section, the length of the portion where the shape becomes defective is less than 1 m.

【0057】偏肉率は穿孔後の形状不良部分を除いた断
面の測定値で評価した。具体的には、真円ビレットを用
いた場合に発生する偏肉率の3〜4%を基準値とし、こ
れに対して偏肉率の増加が5%未満の場合を評点1、5
%以上、10%未満を評点2、さらに10%以上、15
%未満を評点3、15%以上を評点4とした。
The uneven thickness ratio was evaluated by a measured value of a section excluding a defective shape portion after perforation. Specifically, 3 to 4% of the uneven thickness rate generated when using a perfect circular billet is set as a reference value, and when the increase of the uneven thickness rate is less than 5%, the score is 1,5.
% Or more and less than 10%, a score of 2, further 10% or more, 15
% And a score of 3 and 15% or more, respectively.

【0058】図11より、Vロールのδが、110°≦
δ≦130°の範囲内にある場合には、穿孔性評点、偏
肉率評点ともに極めて良好なことがわかる。また、δ
が、100°≦δ≦140°の範囲内の場合も良好であ
る。しかし、δが155°の場合の偏肉率評点は劣って
おり、この結果からも、FFロールで圧下した場合に
は、穿孔時の噛込み性が悪化し、偏肉率も大きくなるこ
とが理解できる。
FIG. 11 shows that the δ of the V roll is 110 ° ≦
When δ ≦ 130 °, it is understood that both the piercing property score and the uneven thickness rate score are extremely good. Also, δ
However, it is also good when the angle is in the range of 100 ° ≦ δ ≦ 140 °. However, the thickness deviation rate score when δ is 155 ° is inferior. From this result, when the FF roll is used to reduce the thickness, the biting property at the time of perforation deteriorates, and the thickness deviation rate increases. It can be understood.

【0059】図12は、VVロールを用いて圧下を行な
った場合の、ビレットのεと穿孔性評点および、素管の
偏肉率評点との関係を示したものである。εが大きくな
るにしたがって、穿孔性評点、偏肉率評点共に大きくな
るが、εが5%以下、したがって、δが70°≦δ≦1
10°(図6)の範囲にある場合は、穿孔性評点、偏肉
率評点ともに良好なことがわかる。また、εが3.5%
未満になると、穿孔性評点、偏肉率評点ともにさらに良
くなることがわかる。
FIG. 12 shows the relationship between the ε of the billet, the piercing property score, and the grade of the wall thickness unevenness when the rolling was performed using a VV roll. As ε increases, both the piercing property score and the uneven thickness rate score increase, but ε is 5% or less, and therefore δ is 70 ° ≦ δ ≦ 1.
It can be seen that in the case of being in the range of 10 ° (FIG. 6), both the piercing property evaluation and the uneven thickness evaluation are good. In addition, ε is 3.5%
It can be seen that when the value is less than 1, both the piercing property score and the uneven thickness rate score are further improved.

【0060】図13は、FVロールを用いて圧下を行な
った場合の同様の結果である。εが大きくなるにしたが
って、穿孔性評点、偏肉率評点共に大きくなるが、εが
4.5%以下、したがって、δが70°≦δ≦110°
(図7)の範囲内にある場合は、穿孔性評点、偏肉率評
点ともに良好なことがわかる。また、εが2.5%以下
になると、穿孔性評点、偏肉率評点ともにさらに良くな
ることがわかる。
FIG. 13 shows a similar result in the case where the reduction was performed using an FV roll. As ε increases, both the piercing property score and the uneven thickness rate score increase, but ε is 4.5% or less, and therefore δ is 70 ° ≦ δ ≦ 110 °.
When it is within the range of (FIG. 7), it can be seen that both the piercing property score and the uneven thickness rate score are good. Further, it can be seen that when ε is 2.5% or less, both the piercing property score and the uneven thickness rate score are further improved.

【0061】以上に示した様に、本発明の方法を適用す
ると、ビレットの内質が向上し、したがって、マンネス
マン穿孔時の内面疵発生率は大幅に低下し、しかも、圧
下量を大きくしてもεは大きくならないため、マンネス
マン穿孔性の劣化も小さく、また得られた素管の偏肉も
低く抑制できることが明らかとなった。
As described above, when the method of the present invention is applied, the internal quality of the billet is improved, and therefore, the incidence of inner surface flaws at the time of perforating Mannesmann is greatly reduced, and the reduction amount is increased. However, since ε does not become large, it is clear that the deterioration of the Mannesmann piercing property is small, and the wall thickness deviation of the obtained raw tube can be suppressed to be low.

【0062】なお、本発明の方法により、ビレットを製
造する場合は、製品の継目無鋼管の内面疵の発生状態
と、マンネスマン穿孔性、素管の偏肉率等を考慮して、
最適の体積減少率を採用する。たとえば、偏肉率に対す
る要求が強い場合は、若干の内面疵の発生を許容し、体
積減少率が低めの、例えば、2%程度の体積減少率の圧
下を行なってビレットとする。逆に、偏肉率に対する要
求が大きくない場合は、体積減少率を例えば、5%程度
に上げたビレットを製造して、内面疵の発生を少なくす
る。
When a billet is manufactured by the method of the present invention, the state of occurrence of inner surface flaws of the seamless steel pipe of the product, the Mannesmann piercing property, the wall thickness unevenness of the raw pipe, etc. are taken into consideration.
Use the optimal volume reduction rate. For example, when there is a strong demand for the wall thickness unevenness, generation of a slight inner surface flaw is allowed, and the billet is reduced by reducing the volume reduction rate at a relatively low volume reduction rate, for example, about 2%. Conversely, when the demand for the wall thickness unevenness is not large, a billet whose volume reduction rate is increased to, for example, about 5% is manufactured to reduce the occurrence of inner surface flaws.

【0063】[0063]

【発明の効果】本発明の完成により、従来は不可能であ
った、Cr含有鋼の連続鋳造によるビレットが、連続鋳
造設備に変更を加えることなく可能となった。ビレット
の断面形状を損ねることなく、また、寸法精度も従来と
変わらない状態で、内質が大幅に改善されたビレットが
製造可能になったことにより、付加価値の高いCr含有
鋼の継目無鋼管の製造コストの低減が可能になったこと
の意義は極めて大きい。
As a result of the completion of the present invention, a billet made by continuous casting of Cr-containing steel, which was not possible in the past, has become possible without changing the continuous casting equipment. Highly value-added seamless steel pipe made of Cr-containing steel by making it possible to manufacture billets with significantly improved internal quality without damaging the cross-sectional shape of the billet and maintaining the same dimensional accuracy as before. The significance of the fact that the production cost of the device can be reduced is extremely significant.

【0064】また、通常の炭素鋼等の連続鋳造ままのビ
レットの製造においても、内質の大幅な改善が、低コス
トで可能になったことにより、製品歩留りの向上、生産
能率の向上等の大きな効果が得られれることになった。
In addition, in the production of billets of ordinary carbon steel or the like as it is continuously cast, a significant improvement in the internal quality has become possible at a low cost, thereby improving the product yield and the production efficiency. A great effect was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】VVロールによる本発明の実施の状態を示す図
である。
FIG. 1 is a diagram showing a state of an embodiment of the present invention using a VV roll.

【図2】FVロールによる本発明の実施の状態を示す図
である。
FIG. 2 is a diagram showing an embodiment of the present invention using an FV roll.

【図3】本発明の実施の形態を示す概略図である。FIG. 3 is a schematic diagram showing an embodiment of the present invention.

【図4】VVロールによる体積減少率とεとの関係を示
す図である。
FIG. 4 is a diagram showing a relationship between a volume reduction rate by a VV roll and ε.

【図5】FVロールによる体積減少率とεとの関係を示
す図である。
FIG. 5 is a diagram showing a relationship between a volume reduction rate by an FV roll and ε.

【図6】VVロールのδとεの関係を示す図である。FIG. 6 is a diagram showing a relationship between δ and ε of a VV roll.

【図7】FVロールのVロールのδとεの関係を示す図
である。
FIG. 7 is a diagram showing the relationship between δ and ε of a V roll of an FV roll.

【図8】VVロールの圧下による、体積減少率、fs
と、マンネスマン穿孔後の素管の内面疵の発生率との関
係を示す図である。
FIG. 8 shows a rate of volume reduction, fs, by reduction of a VV roll.
It is a figure which shows the relationship between the inner surface flaw of the pipe after Mannesmann perforation, and the incidence rate.

【図9】FVロールの圧下による、体積減少率、fs
と、マンネスマン穿孔後の素管の内面疵の発生率との関
係を示す図である。
FIG. 9 shows a volume reduction rate, fs, by reduction of an FV roll.
It is a figure which shows the relationship between the internal surface flaw of the pipe after Mannesmann perforation, and the incidence rate of an inner surface flaw.

【図10】VVロール、およびFVロールの圧下によ
る、fsと、マンネスマン穿孔後の素管の内面疵の発生
率との関係を示す図である。
FIG. 10 is a diagram showing the relationship between fs and the incidence rate of inner surface flaws of a raw tube after Mannesmann perforation by reduction of a VV roll and an FV roll.

【図11】FVロールのVロールのδと穿孔性評点およ
び、偏肉率評点との関係を示す図である。
FIG. 11 is a diagram showing the relationship between δ of a V roll of an FV roll, a piercing property score, and a thickness deviation rate score.

【図12】VVロールによる圧下後のεと穿孔性評点お
よび、偏肉率評点との関係を示す図である。
FIG. 12 is a graph showing the relationship between ε after reduction by a VV roll, a piercing property score, and a thickness deviation rate score.

【図13】FVロールによる圧下後のεと穿孔性評点お
よび、偏肉率評点との関係を示す図である。
FIG. 13 is a diagram showing the relationship between ε after reduction by an FV roll, a piercing property score, and a thickness deviation rate score.

【図14】溶鋼中のCr量と溶鋼の粘度との関係を示す
図である。
FIG. 14 is a diagram showing the relationship between the amount of Cr in molten steel and the viscosity of molten steel.

【図15】溶鋼中のCr量と溶鋼の粘度との関係を示す
図である。
FIG. 15 is a graph showing the relationship between the amount of Cr in molten steel and the viscosity of molten steel.

【符号の説明】[Explanation of symbols]

1・・・・鋳型 2・・・・鋳片 3・・・・ピンチロール 4・・・・圧下ロール 41・・・VVロール 42・・・FVロール 43・・・Vロール(鞍型ロール) 44・・・Fロール(平ロール) 45・・・カリバー底の開き角度δ DESCRIPTION OF SYMBOLS 1 ... Mold 2 ... Cast piece 3 ... Pinch roll 4 ... Roll-down roll 41 ... VV roll 42 ... FV roll 43 ... V roll (saddle type roll) 44: F roll (flat roll) 45: Open angle δ of caliber bottom

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B22D 11/00 B22D 11/00 A D 11/20 11/20 C C22C 38/00 301 C22C 38/00 301Z 38/18 38/18 ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location B22D 11/00 B22D 11/00 AD 11/20 11/20 C C22C 38/00 301 C22C 38 / 00 301Z 38/18 38/18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】円形鋳型により連続鋳造中の鋳片に、鋳片
の凝固完了点近傍に設置した一対のロールにより圧下を
加え、続いて切断して丸ビレットとし、マンネスマン穿
孔法により継目無鋼管製造用の素管を製造する方法にお
いて、前記一対のロールにカリバー底の開き角δが、 70°≦δ≦115° である鞍型ロールを用いることを特徴とする継目無鋼管
製造用連続鋳造鋳片の製造方法。
1. A slab being continuously cast by a circular mold is subjected to pressure reduction by a pair of rolls installed near a solidification completion point of the slab, and subsequently cut into a round billet, and a seamless steel pipe is formed by a Mannesmann drilling method. In the method for producing a raw pipe for production, a continuous casting for producing a seamless steel pipe is characterized in that a saddle type roll having an opening angle δ of a caliber bottom is 70 ° ≦ δ ≦ 115 ° is used as the pair of rolls. Casting slab manufacturing method.
【請求項2】円形鋳型により連続鋳造中の鋳片に、鋳片
の凝固完了点近傍に設置した一対のロールにより圧下を
加え、続いて切断して丸ビレットとし、マンネスマン穿
孔法により継目無鋼管製造用の素管を製造する方法にお
いて、前記一対のロールの一方に平ロールを、他の一方
のロールにカリバー底の開き角δが、 100°≦δ≦140° である鞍型ロールを用いることを特徴とする継目無鋼管
製造用連続鋳造鋳片の製造方法。
2. A slab being continuously cast by a circular mold is subjected to rolling down by a pair of rolls installed near a solidification completion point of the slab, and subsequently cut into a round billet, and a seamless steel pipe is formed by a Mannesmann drilling method. In the method for producing a raw tube for production, a flat roll is used as one of the pair of rolls, and a saddle type roll having an opening angle δ of the caliber bottom of 100 ° ≦ δ ≦ 140 ° is used as the other one of the rolls. A method for producing a continuous cast slab for producing a seamless steel pipe.
【請求項3】連続鋳造中の鋳片の軸心部の固相率fsが
0.3≦fs≦1の状態で、鋳片に体積減少率が、0.
1〜7%の範囲内の圧下を加えることを特徴とする、請
求項1に記載の継目無鋼管製造用連続鋳造鋳片の製造方
法。ただし、体積減少率=(ビレットC断面の面積減少
率)×(鋳造速度)
3. The slab having a solid phase ratio fs of 0.3 ≦ fs ≦ 1 during continuous casting with a solid phase ratio fs of 0.3 ≦ fs ≦ 1.
The method for producing a continuous cast slab for producing a seamless steel pipe according to claim 1, wherein a reduction in a range of 1 to 7% is applied. However, volume reduction rate = (area reduction rate of billet C cross section) x (casting speed)
【請求項4】連続鋳造中の鋳片の軸心部の固相率fsが
0.3≦fs≦1の状態で、鋳片に体積減少率が、0.
1〜5%の範囲内の圧下を加えることを特徴とする、請
求項2に記載の継目無鋼管製造用連続鋳造鋳片の製造方
法。ただし、体積減少率=(ビレットC断面の面積減少
率)×(鋳造速度)
4. The method according to claim 1, wherein the solidification ratio fs at the axial center portion of the slab during continuous casting is 0.3 ≦ fs ≦ 1, and the volume reduction ratio of the slab is 0.
The method for producing a continuous cast slab for producing a seamless steel pipe according to claim 2, wherein a reduction within a range of 1 to 5% is applied. However, volume reduction rate = (area reduction rate of billet C cross section) x (casting speed)
【請求項5】鋳片が、Cr含有量が0.5重量%を超え
る難加工性の継目無鋼管製造用の高Cr含有鋼であるこ
とを特徴とする、請求項1〜請求項4のいずれかに記載
の継目無鋼管製造用連続鋳造鋳片の製造方法。
5. The slab according to claim 1, wherein the slab is a high Cr content steel for producing a hard-to-work seamless steel pipe having a Cr content exceeding 0.5% by weight. The method for producing a continuous cast slab for producing a seamless steel pipe according to any one of the above.
JP20045496A 1996-07-30 1996-07-30 Manufacturing method of continuous cast slab for seamless steel pipe manufacturing Expired - Lifetime JP3646417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20045496A JP3646417B2 (en) 1996-07-30 1996-07-30 Manufacturing method of continuous cast slab for seamless steel pipe manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20045496A JP3646417B2 (en) 1996-07-30 1996-07-30 Manufacturing method of continuous cast slab for seamless steel pipe manufacturing

Publications (2)

Publication Number Publication Date
JPH1034304A true JPH1034304A (en) 1998-02-10
JP3646417B2 JP3646417B2 (en) 2005-05-11

Family

ID=16424579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20045496A Expired - Lifetime JP3646417B2 (en) 1996-07-30 1996-07-30 Manufacturing method of continuous cast slab for seamless steel pipe manufacturing

Country Status (1)

Country Link
JP (1) JP3646417B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297756A (en) * 2008-06-16 2009-12-24 Jfe Steel Corp Continuous casting method for round slab for seamless steel tube
JP2010052042A (en) * 2008-07-30 2010-03-11 Jfe Steel Corp Continuous casting method for round slab for seamless steel pipe
JP2010052043A (en) * 2008-07-31 2010-03-11 Jfe Steel Corp Continuous casting method and equipment for round slab
JP2021514840A (en) * 2019-02-01 2021-06-17 東北大学Northeastern University Equipment and method to realize core reduction processing technology in the solidification process of continuous casting of circular billets

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297756A (en) * 2008-06-16 2009-12-24 Jfe Steel Corp Continuous casting method for round slab for seamless steel tube
JP2010052042A (en) * 2008-07-30 2010-03-11 Jfe Steel Corp Continuous casting method for round slab for seamless steel pipe
JP2010052043A (en) * 2008-07-31 2010-03-11 Jfe Steel Corp Continuous casting method and equipment for round slab
JP2021514840A (en) * 2019-02-01 2021-06-17 東北大学Northeastern University Equipment and method to realize core reduction processing technology in the solidification process of continuous casting of circular billets

Also Published As

Publication number Publication date
JP3646417B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
JP3139402B2 (en) Unsolidified rolling method of slab
EP1284167B1 (en) Method for manufacturing seamless steel pipe
JP3237518B2 (en) Manufacturing method of chrome alloy steel round billet slab
JP5157664B2 (en) Continuous casting method of round slabs for seamless steel pipes
JPH09295113A (en) Production of round cast billet by continuous casting
JP3646417B2 (en) Manufacturing method of continuous cast slab for seamless steel pipe manufacturing
JP3214377B2 (en) Manufacturing method of continuous cast slab for seamless steel pipe
JP5343746B2 (en) Continuous casting method of round slabs for seamless steel pipes
JP3104635B2 (en) Manufacturing method of round billet slab by continuous casting
EP3034197B1 (en) Method for manufacturing round billet
JP3533834B2 (en) Method for producing round billet for producing Cr-containing seamless steel pipe with good workability
JP3648825B2 (en) Manufacturing method of continuous cast round slab for seamless steel pipe manufacturing with good workability
JP3104627B2 (en) Unsolidified rolling production method of round billet
JPH09201601A (en) Production of continuously cast round billet for producing seamless steel pipe having good workability
JP3214379B2 (en) Manufacturing method of continuous cast slab for seamless steel pipe
JP3228212B2 (en) Method and apparatus for producing round billet slabs by continuous casting
JP2019076931A (en) Continuous casting method for slab for seamless steel pipe
JP3058091B2 (en) Method and apparatus for manufacturing continuous billet of round billet
JP3533831B2 (en) Method for producing round billet for producing Cr-containing seamless steel pipe with good workability
JP3092543B2 (en) Manufacturing method of round billet slab by continuous casting
JPH11156512A (en) Unsolidified press down manufacturing method of blank beam
JP5387205B2 (en) Continuous casting method and continuous casting equipment for round slab
JP3317260B2 (en) Manufacturing method of round billet slab by continuous casting
JP3356085B2 (en) Manufacturing method of round slab for seamless steel pipe
JP3402250B2 (en) Manufacturing method of round billet slab by continuous casting

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

EXPY Cancellation because of completion of term