WO1996018533A1 - Elektromagnetisch betätigtes ventil, insbesondere für schlupfgeregelte hydraulische bremsanlagen in kraftfahrzeugen - Google Patents

Elektromagnetisch betätigtes ventil, insbesondere für schlupfgeregelte hydraulische bremsanlagen in kraftfahrzeugen Download PDF

Info

Publication number
WO1996018533A1
WO1996018533A1 PCT/DE1995/001609 DE9501609W WO9618533A1 WO 1996018533 A1 WO1996018533 A1 WO 1996018533A1 DE 9501609 W DE9501609 W DE 9501609W WO 9618533 A1 WO9618533 A1 WO 9618533A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
seat
magnet armature
chamber
pressure medium
Prior art date
Application number
PCT/DE1995/001609
Other languages
English (en)
French (fr)
Inventor
Johann Herr
Klaus Heyer
Günther HOHL
Uwe Breithaupt
Massimo Ambrosi
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP95937780A priority Critical patent/EP0796186A1/de
Priority to KR1019970703960A priority patent/KR987000204A/ko
Priority to JP8518020A priority patent/JPH11500678A/ja
Publication of WO1996018533A1 publication Critical patent/WO1996018533A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/50Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition having means for controlling the rate at which pressure is reapplied to or released from the brake
    • B60T8/5018Pressure reapplication using restrictions
    • B60T8/5025Pressure reapplication using restrictions in hydraulic brake systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/363Electromagnetic valves specially adapted for anti-lock brake and traction control systems in hydraulic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/50Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition having means for controlling the rate at which pressure is reapplied to or released from the brake
    • B60T8/5012Pressure reapplication using a plurality of valves in parallel

Definitions

  • Electromagnetically actuated valve in particular for slip-controlled hydraulic brake systems in motor vehicles
  • the invention is based on an electromagnetically actuated valve, in particular for slip-controlled hydraulic brake systems in motor vehicles, according to the preamble of claim 1.
  • Such a valve is known from DE 39 34 771 Cl, Figure 3. It has a control piston which is arranged in the valve dome and forms a stop for the magnet armature and which is guided in a longitudinally displaceable manner on a pin which starts from the valve body and penetrates the valve tappet pressed into the magnet armature.
  • the control piston with its base facing away from the anchor, delimits a control chamber which is formed in the valve dome and serves as a cylinder for the piston and which is connected to the pressure medium inlet of the known valve by a pressure medium channel penetrating the pin and the control piston at the same axis.
  • This mode of operation of the known valve can be used in slip-controlled hydraulic brake systems in which the pressure medium inlet is connected to the master brake cylinder and the pressure medium outlet is connected to a wheel brake cylinder.
  • the valve is switched into its closed position by energizing the solenoid coil and, when the pressure in the wheel brake cylinder is reduced, a pressure gradient of sufficient height is generated between the pressure medium inlet and the pressure medium outlet, this causes the above-described displacement of the control piston with the result that When opening the valve, the above-mentioned throttling of the flow cross-section takes effect as long as the pressure difference between the inlet and outlet exists.
  • the reduction in the flow cross-section has a favorable effect on the control quality and the noise behavior of the brake system due to the reduced pressure gradient in the pressure build-up of a brake slip control following a pressure reduction.
  • the full flow cross-section of the valve is available, which promotes a desired short response time of the brake system when the brake is applied.
  • the known valve is problematic in terms of production technology if it is taken into account that only very small amounts of pressure medium are displaced in modern slip-controlled hydraulic brake systems, in particular of passenger cars, which require valves of a size which is only about a fifth of the dimensions of that valve from the publication cited at the beginning corresponds. Accordingly, it is difficult to the pressure medium channel in the guide pin made of a metallic material for the magnet armature to produce by machining. In addition, a further machining operation is required in order to generate the valve sub-chamber acting as storage space by opening the guide pin on the valve seat side. Finally, the known valve is also expensive in that the valve tappet requires a gap seal on the guide pin in order to maintain the pressure balance of the magnet armature.
  • the valve according to the invention with the characterizing features of claim 1 has the advantage that the magnet armature and the valve tappet are separate and thus mutually angularly movable components, but nevertheless a reliable transmission of the pressure through the first pressure medium channel into the control chamber remote from the locking member is ensured. Production-related misalignments between the magnet armature and the valve tappet can be tolerated because they do not impair the tightness of the pressure medium channel.
  • the arrangement of the first pressure medium channel in the valve tappet simplifies the construction of the valve according to the invention compared to the known valve.
  • the design of the valve tappet as a plastic injection molded part achieves a considerable cost advantage over a valve tappet made of steel which is produced by machining.
  • the plastic injection molding technology also allows a pressure medium channel and a valve subchamber to be created in the valve tappet, which have a different cross-sectional profile, but still communicate with one another.
  • sub-claim 6 specifies a thermoplastic which withstands the high stresses in a slip-controlled hydraulic brake system with a sufficient safety reserve.
  • FIG. 1 shows a longitudinal section through an electromagnetically actuated valve in a schematically indicated brake system of a motor vehicle
  • FIGS. 2 to 4 show a longitudinal view and end views in the direction of the arrows III and IV in FIG. 2 of a valve lifter used in the valve
  • FIG. 5 shows a longitudinal section through the valve lifter along the line VV in FIG. 2.
  • a brake slip-controlled hydraulic brake system 10 of a motor vehicle which is shown in a very simplified form in FIG. 1, has a two-circuit master brake cylinder 11, from which a brake line 12 to a wheel brake cylinder 13 extends.
  • an electromagnetically actuated valve 14 which acts as an inlet valve in a slip control.
  • a bypass line 15 bypassing the valve 14 there is a non-return Valve 16 with passage direction from the wheel brake cylinder 13 to the master brake cylinder 11.
  • a return line 17 extends from the brake line 12, which bypasses the valve 14 and the check valve 16 and is connected to the brake line 12 on the master brake cylinder side.
  • In the return line 17 there is an outlet valve 18 and a return pump 19 for the wheel brake cylinder 13 removed pressure medium.
  • a storage chamber 20 is connected to the return line 17 between the outlet valve 18 and the return pump 19.
  • the electromagnetically actuated valve 14 has a valve housing 23 which is intended to be received in a valve block (not shown) and which is firmly connected to a yoke disk 24.
  • the valve housing 23 is over the yoke plate
  • pole core 25 On the pole core
  • a closed, capsule-shaped valve dome 26 is attached. It is tightly connected to the pole core 25 by welding.
  • the valve dome 26 facing away from the pole core has a hemispherical termination.
  • the valve dome 26 is encompassed by an annular magnet coil 29.
  • a bell-shaped housing 30 surrounds the magnetic coil 29. The housing 30 engages on the one hand with the valve dome 26; on the other hand, it is connected to the yoke plate 24.
  • valve dome 26 which is closed on the coil side, an essentially circular cylindrical magnet armature 33 is accommodated in a longitudinally movable manner.
  • a valve tappet 34 is assigned to the magnet armature 33 as a separate component.
  • the valve lifter 34 which has a substantially circular cross section, is produced as an injection molded part from a thermoplastic, for example from carbon fiber-filled polyaryl ether ketone (PAEK).
  • PAEK carbon fiber-filled polyaryl ether ketone
  • the valve lifter 34 is received in a longitudinal bore 35 of the pole core 25 and valve housing 23 with play.
  • the valve lifter 34 On At its end facing away from the anchor, the valve lifter 34, which is further described in more detail, carries a closing element designated by 36 (FIGS. 2, 3 and 5).
  • a sleeve-shaped valve body 39 with a stepped bore 40 is pressed, which opens into a valve seat 42 shaped like a hollow cone after a through bore 41 of smaller diameter.
  • the valve needle 36 and the valve seat 42 form a seat valve 43 of the electromagnetically actuated valve 14.
  • the seat valve 43 takes due to the action of a prestressed return spring acting on the valve stem 34 and on the valve body 39 44 its open position as the rest position, in which the valve tappet 34 is supported on the magnet armature 33 and this is axially supported on the valve dome 26.
  • the solenoid coil 29 When the solenoid coil 29 is energized, the valve 14 is moved into the blocking position, in which the valve needle 36, which is formed at the end as a spherical section 45, engages the valve seat 42.
  • the valve housing 23 is provided with a transverse bore 47 crossing the longitudinal bore 35 at right angles.
  • a valve chamber 48 accommodating the seat valve 43 is created in the penetration area of both bores 35 and 47. On the one hand, this is connected via the valve seat 42 and the central through bore 41 to the stepped bore 40 as a pressure medium inlet of the valve 14; on the other hand, a pressure medium outlet formed by the transverse bore 47 is connected to the valve chamber 48.
  • the designations inlet and outlet apply to the build-up of brake pressure in the wheel brake cylinder 13. In the case of non-slip-controlled braking, the pressure medium also flows through the valve 14 in the opposite direction.
  • the straight circular cylindrical valve needle 36 is surrounded by a hollow cylindrical recess which forms a valve partial chamber 51 which is open at the end against the valve seat 42.
  • This is enclosed on the circumferential side by a sleeve-shaped section 52 of the plunger 34 that extends coaxially with the valve needle 36.
  • the section 52 ends at the end at a distance in front of the ball section 45 of the valve needle 36, so that it can engage the valve seat 42 in the closed position of the valve 14, while the sleeve-shaped section 52 is at a short distance from the valve body 39.
  • the valve needle 36 is connected towards the bottom of the valve chamber 51 by means of two diametrically opposed webs 55 which are approximately quarter-circular in cross section with the valve lifter 34. Following the valve needle 36, a longitudinal bore 56 is formed in the valve stem 34. This communicates with the valve subchamber 51 on the valve needle side (FIGS. 3, 4 and 5). On the magnet armature end 57 of the valve tappet 34, the longitudinal bore 56 opens into a spherical zone 58. This is associated with a hollow cone-shaped countersink 60 on the end 59 close to the closing element (FIG. 1).
  • a sealing seat 61 is formed between the magnet armature 33 and the valve tappet 34 and, like the seat valve 43, has a cone-and-ball configuration.
  • the countersink 60 in the magnet armature 33 can also be hollow.
  • the longitudinal bore 56 of the valve tappet 34 is continued in the armature 33 through a stepped, continuous bore 64.
  • the longitudinal bore 56 of the valve tappet 34 and the bore 64 of the magnet armature 33 form a first pressure medium channel 65, which extends from the valve sub-chamber 51 while penetrating the sealing seat 61 to one First control chamber 66 extends between the end 67 remote from the closing element of the magnet armature 33 and the valve dome 26.
  • the sealing seat 61 ensures the leak-free passage of the first pressure medium channel 65 between the valve lifter 34 and the magnet armature 33.
  • the sealing seat 61 maintains this sealing effect even when it is at an angle, ie when the axis 68 of the magnet armature 33 and valve tappet 34 bends.
  • the radial mobility of the valve tappet 34 required in the area of the magnet armature 33 is restricted by the guide section 71 facing away from the armature.
  • This is designed as a spherical disk-shaped reinforcement that protrudes over the circumference of the valve lifter 34 and ends with a recess 72 on the sleeve-shaped section 52. While the guide section 71 engages with little play in the longitudinal bore 35, the recess 72 serves as a support surface for the return spring 44.
  • valve tappet 34 is also provided with three longitudinal flats 73 which are evenly distributed over its circumference in order to create a second pressure medium channel 74 , which starts from the valve chamber 48 outside the sleeve-shaped section 52 of the valve tappet and leads to a second control chamber 75 near the closing member between the pole core 25 and the magnet armature 33 (FIG. 1).
  • longitudinal grooves can also be provided.
  • valve 14 assumes its open position during normal braking and slip-controlled braking in pressure build-up phases, and is switched into its blocking position in pressure-maintaining and pressure reduction phases of the slip-controlled braking. If the valve 14 is electrically switched off after such phases, it automatically assumes a partially open position in the case of a sufficiently large pressure drop between the inlet and outlet sides, in which the flow cross-section of the seat valve 43 adjusts to largely constant flow rates which are lower than the full opening.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Es soll ein konstruktiv vereinfachtes, kostengünstig herstellbares Ventil für eine nach einer Schließstellung wirksame, selbsttätige Einstellung eines verminderten Durchflußquerschnitts geschaffen werden. Das Ventil (14) besitzt einen in einem Ventildom (26) längsbewegbaren Magnetanker (33) und einen Ventilstößel (34) zum Betätigen eines Sitzventils (43). Dieses liegt in einer Ventilkammer (48), von der Druckmittelkanäle (65, 74) zu beiden Stirnseiten (59, 67) des Magnetankers (33) führen. Bei aus der Schließstellung heraus öffnendem Ventil (14) wird eine zusätzlich auf den Magnetanker (33) in Schließrichtung wirkende Kraft erzeugt, aufgrund der das Sitzventil eine von seiner Ruhestellung abweichende, teilgeschlossene Stellung einnimmt. Der Magnetanker (33) und der Ventilstößel (34) sind getrennte Bauteile, die in einem Dichtsitz (61) einander angreifen. Der Ventilstößel (34) ist als Kunststoff-Spritzteil ausgebildet und weist eine Ventilteilkammer (51) sowie eine mit dieser in Verbindung stehende Längsbohrung als Teil eines Druckmittelkanals (65) auf. Das Ventil (14) ist insbesondere in schlupfgeregelten hydraulischen Bremsanlagen von Kraftfahrzeugen anwendbar.

Description

Elektromagnetisch betätigtes Ventil, insbesondere für schlupfgeregelte hydraulische Bremsanlagen in Kraftfahrzeugen
Stand der Technik
Die Erfindung geht aus von einem elektromagnetisch betätig¬ ten Ventil, insbesondere für schlupfgeregelte hydraulische Bremsanlagen in Kraftfahrzeugen, nach der Gattung des Pa¬ tentanspruchs 1.
Ein solches Ventil ist durch DE 39 34 771 Cl, Figur 3 be¬ kannt. Es weist einen im Ventildom angeordneten, einen An¬ schlag für den Magnetanker bildenden Steuerkolben auf, der auf einem vom Ventilkörper ausgehenden, den in den Magnetanker eingepreßten Ventilstößel durchdringenden Zapfen längsverschiebbar geführt ist. Der Steuerkolben begrenzt mit seinem ankerabgewandten Boden eine in den Ventildom eingeformte, als Zylinder für den Kolben dienende Steuerkammer, welche durch einen den Zapfen und den Steuerkolben gleichachsig durchdringenden Druckmittelkanal mit dem Druckmitteleinlaß des bekannten Ventils in Verbin¬ dung steht. Während der Magnetanker an beiden Stirnseiten druckausgeglichen ist, vermag in die Steuerkammer einge¬ steuerter Druck den Steuerkolben gegen einen Anschlag axial zu verschieben. Hierdurch verringert sich der Hub des Magnetankers um ein vorbestimmtes Maß, was eine Drosselung des Durchflußquerschnitts zur Folge hat.
Diese Wirkungsweise des bekannten Ventils ist nutzbar in schlupfgeregelten hydraulischen Bremsanlagen, bei denen der Druckmitteleinlaß mit dem Hauptbremszylinder und der Druckmittelauslaß mit einem RadbremsZylinder in Verbindung stehen. Wird z.B. bei einer Bremsschlupfregelung das Ventil durch Erregen der Magnetspule in seine Schließstellung geschaltet und beim Vermindern des Druckes im Radbremszy¬ linder ein Druckgefälle ausreichender Höhe zwischen dem Druckmitteleinlaß und dem Druckmittelauslaß erzeugt, so be¬ wirkt dies das vorstehend beschriebene Verschieben des Steuerkolbens mit der Folge, daß beim Öffnen des Ventils die erwähnte Drosselung des Durchflußquerschnittes wirksam wird, solange der Druckunterschied zwischen Einlaß und Aus¬ laß besteht. Die Minderung des Durchflußquerschnittes wirkt sich wegen des verringerten Druckgradienten beim auf einen Druckabbau folgenden Druckaufbau einer Bremsschlupfregelung günstig auf die Regelgüte und das Geräuschverhalten der Bremsanlage aus. Bei einer normalen Bremsung ohne Blockiergefahr steht dagegen der volle Durchflußquerschnitt des Ventils zur Verfügung, was eine angestrebte kurze Ansprechzeit der Bremsanlage bei Bremsbetätigung fördert.
Das bekannte Ventil ist fertigungstechnisch problembehaftet, wenn berücksichtigt wird, daß in modernen schlupfgeregelten hydraulischen Bremsanlagen, insbesondere von Personenkraftwagen, nur sehr geringe Druckmittelmengen verschoben werden, die Ventile in einer Größe erfordern, welche lediglich etwa ein Fünftel der Abmessungen desjenigen Ventils aus der eingangs zitierten Veröffentlichung entspricht. Dementsprechend ist es daher schwierig, den Druckmittelkanal im aus einem metallischen Werkstoff bestehenden Führungszapfen für den Magnetanker spanend zu erzeugen. Außerdem ist ein weiterer spanender Arbeitsgang erforderlich, um mittels einer ventilsitzseitigen Durchbrechung des FührungsZapfens die als Stauraum wirkende Ventilteilkammer zu erzeugen. Schließlich ist das bekannte Ventil auch insofern kostenaufwendig, als der Ventilstoßel einer Spaltdichtung am Führungszapfen bedarf, um die Druckausgeglichenheit des Magnetankers zu erhalten.
Vorteile der Erfindung
Das erfindungsgemäße Ventil mit den kennzeichnenden Merkma¬ len des Patentanspruchs 1 hat demgegenüber den Vorteil, daß der Magnetanker und der Ventilstößel getrennte und damit zueinander winkelbewegliche Bauteile sind, trotzdem aber eine sichere Übertragung des Druckes durch den ersten Druckmittelkanal in die schließgliedferne Steuerkammer gewährleistet ist. Fertigungstechnisch bedingte Schiefstände zwischen dem Magnetanker und dem Ventilstoßel können toleriert werden, da sie nicht die Dichtheit des Druckmittelkanals beeinträchtigen. Außerdem weist das erfindungsgemäße Ventil durch die Anordnung des ersten Druckmittelkanals im Ventilstößel eine bauliche Vereinfachung gegenüber dem bekannten Ventil auf. Darüberhinaus wird durch die Ausbildung des Ventilstößels als Kunststoff-Spritzgußteil ein erheblicher Kostenvorteil gegenüber einem spanend erzeugten Ventilstoßel aus Stahl erzielt. Dabei erlaubt es die Kunststoff-Spritzgießtechnik auch einen Druckmittelkanal und eine Ventilteilkammer im Ventilstößel zu erzeugen, die einen voneinander abweichenden Querschnittsverlauf haben, aber dennoch miteinander kommunizieren.
Durch die in den Unteransprüchen 2 bis 5 aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Patentanspruch 1 angegebenen Ventils möglich.
Diese Maßnahmen zeichnen sich dadurch aus, daß sie in einem einzigen Formvorgang, also ohne Nacharbeit, am Ventilstoßel erzeugbar sind.
Schließlich gibt Unteranspruch 6 ein Thermoplast an, welches den hohen Beanspruchungen in einer schlupfgeregelten hydraulischen Bremsanlage mit ausreichender Sicherheitsreserve widersteht.
Zeichnung
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschrei¬ bung näher erläutert. Es zeigen Figur 1 einen Längsschnitt durch ein elektromagnetisch betätigtes Ventil in einer sche¬ matisch angedeuteten Bremsanlage eines Kraftfahrzeugs, Figuren 2 bis 4 eine Längsansicht sowie Stirnansichten in Richtung des Pfeiles III und IV in Figur 2 gesehen eines im Ventil verwendeten Ventilstδßels und Figur 5 einen Längsschnitt durch den Ventilstößel entlang der Linie V-V in Figur 2.
Beschreibung des Ausführungsbeispiels
Eine in Figur 1 sehr vereinfacht wiedergegebene brems¬ schlupfgeregelte hydraulische Bremsanlage 10 eines Kraft¬ fahrzeugs hat einen zweikreisigen Hauptbremszylinder 11, von dem eine Bremsleitung 12 zu einem Radbremszylinder 13 aus¬ geht. Im Zuge der Bremsleitung 12 ist ein bei einer Schlupfregelung als Einlaßventil wirkendes, elektromagne¬ tisch betätigtes Ventil 14 angeordnet. In einer das Ventil 14 umgehenden Bypassleitung 15 befindet sich ein Rückschlag- ventil 16 mit Durchlaßrichtung vom Radbremszylinder 13 zum Hauptbremszylinder 11. Radbremszylinderseitig geht von der Bremsleitung 12 eine Rückführleitung 17 aus, welche das Ven¬ til 14 und das Rückschlagventil 16 umgeht und hauptbremszy- linderseitig an die Bremsleitung 12 angeschlossen ist. In der Rückführleitung 17 befinden sich ein Auslaßventil 18 und eine Rückfδrderpumpe 19 für dem Radbremszylinder 13 entnom¬ menes Druckmittel. Zwischen dem Auslaßventil 18 und der Rückförderpumpe 19 ist eine Speicherkammer 20 an die Rück¬ führleitung 17 angeschlossen.
Das elektromagnetisch betätigte Ventil 14 weist ein zur Auf¬ nahme in einem nicht dargestellten Ventilblock bestimmtes Ventilgehäuse 23 auf, welches mit einer Jochscheibe 24 fest verbunden ist. Das Ventilgehäuse 23 ist über die Jochscheibe
24 hinaus mit einem Polkern 25 fortgesetzt. Auf den Polkern
25 ist ein geschlossener, kapseiförmiger Ventildom 26 aufge¬ steckt. Er ist durch Schweißung mit dem Polkern 25 dicht verbunden. Polkernabgewandt besitzt der Ventildom 26 einen halbkugelförmigen Abschluß.
Der Ventildom 26 ist von einer ringförmigen Magnetspule 29 umgriffen. Ein glockenförmiges Gehäuse 30 umschließt die Ma¬ gnetspule 29. Das Gehäuse 30 greift einerseits am Ventildom 26 an; andererseits ist es mit der Jochscheibe 24 verbunden.
Im spulenseitig geschlossenen Ventildom 26 ist ein im we¬ sentlichen kreiszylindrischer Magnetanker 33 längsbewegbar aufgenommen. Dem Magnetanker 33 ist ein Ventilstößel 34 als getrenntes Bauteil zugeordnet. Der im wesentlichen Kreisquerschnitt aufweisende Ventilstoßel 34 ist als Spritzgußteil aus einem Thermoplast, beispielsweise aus kohlefasergefülltem Polyaryletherketon (PAEK) hergestellt. Der Ventilstoßel 34 ist in einer Längsbohrung 35 des Polkerns 25 und Ventilgehäuses 23 mit Spiel aufgenommen. An seinem ankerabgewandten Ende trägt der Ventilstoßel 34, der weiter tonten genauer beschrieben ist, ein mit 36 bezeichnetes Schließglied (Figuren 2, 3 und 5) .
In den ankerabgewandten Abschnitt der Längsbohrung 35 ist ein hülsenförmiger Ventilkδrper 39 mit einer Stufenbohrung 40 eingepreßt, welche nach einer durchmesserkleineren Durch¬ gangsbohrung 41 in einen hohlkegelfδrmig ausgeformten Ventilsitz 42 mündet. Die Ventilnadel 36 und der Ventilsitz 42 bilden ein Sitzventil 43 des elektromagnetisch betätigten Ventiles 14. Bei nicht erregter Magnetspule 29 nimmt - wie in Figur 1 gezeichnet - das Sitzventil 43 aufgrund der Wirkung einer einerseits am Ventilstoßel 34 und andererseits am Ventilkδrper 39 angreifenden, vorgespannten Rückstellfeder 44 seine Offenstellung als Ruhestellung ein, in welcher der Ventilstoßel 34 am Magnetanker 33 und dieser axial am Ventildom 26 abgestützt ist. Bei erregter Magnetspule 29 ist das Ventil 14 in die Sperrstellung überführt, in welcher die endseitig als Kugelabschnitt 45 geformte Ventilnadel 36 am Ventilsitz 42 angreift.
Das Ventilgehäuse 23 ist mit einer rechtwinklig die Längs¬ bohrung 35 kreuzenden Querbohrung 47 versehen. Im Durchdrin¬ gungsbereich beider Bohrungen 35 und 47 ist eine das Sitz¬ ventil 43 aufnehmende Ventilkammer 48 geschaffen. Diese steht einerseits über den Ventilsitz 42 und die dazu zentra¬ le Durchgangsbohrung 41 mit der Stufenbohrung 40 als Druck¬ mitteleinlaß des Ventils 14 in Verbindung; andererseits ist ein von der Querbohrung 47 gebildeter Druckmittelauslaß an die Ventilkammer 48 angeschlossen. (Die Bezeichnungen Einlaß und Auslaß sind zutreffend für den Bremsdruckaufbau im Rad¬ bremszylinder 13. Bei nicht schlupfgeregelter Bremsung wird das Ventil 14 auch in umgekehrter Richtung vom Druckmittel durchströmt. ) Wie man am besten aus Figur 5 erkennt, ist die gerade kreiszylindrische Ventilnadel 36 von einer hohlzylindrischen Ausnehmung umgeben, welche eine gegen den Ventilsitz 42 stirnseitig offene Ventilteilkammer 51 bildet. Diese ist wiederum umfangsseitig von einem gleichachsig zur Ventilnadel 36 verlaufenden hülsenförmigen Abschnitt 52 der des Stößels 34 umschlossen. Der Abschnitt 52 endet stirnseitig mit Abstand vor dem Kugelabschnitt 45 der Ventilnadel 36, so daß diese in der Schließstellung des Ventils 14 am Ventilsitz 42 anzugreifen vermag, während der hülsenförmige Abschnitt 52 einen geringen Abstand zum Ventilkδrper 39 einnimmt.
Die Ventilnadel 36 ist gegen den Boden der Ventilkammer 51 hin durch zwei diametral gegenüberliegende, im Querschnitt etwa viertelkreisförmige Stege 55 mit dem Ventilstoßel 34 verbunden. Im Anschluß an die Ventilnadel 36 ist in den Ventilstoßel 34 eine Längsbohrung 56 eingeformt. Diese kommuniziert ventilnadelseitig mit der Ventilteilkammer 51 (Figuren 3, 4 und 5) . An der magnetankerseitigen Stirnseite 57 des Ventilstδßels 34 mündet die Längsbohrung 56 in eine Kugelzone 58. Dieser ist an der schließgliednahen Stirnseite 59 des Magnetankers 33 eine hohlkegelförmige Ansenkung 60 zugeordnet (Figur 1) . Hierdurch ist zwischen dem Magnetanker 33 und dem Ventilstoßel 34 ein Dichtsitz 61 gebildet, der ebenso wie das Sitzventil 43 Kegel-Kugel-Konfiguration aufweist. Abweichend hiervon kann die Ansenkung 60 im Magnetanker 33 auch hohlkugelförmig ausgebildet sein.
Die Längsbohrung 56 des Ventilstößels 34 ist im Magnetanker 33 durch eine abgestufte, durchgehende Bohrung 64 fortgesetzt. Die Längsbohrung 56 des Ventilstößels 34 und die Bohrung 64 des Magnetankers 33 bilden einen ersten Druckmittelkanal 65, welcher sich von der Ventilteilkammer 51 unter Durchdringung des Dichtsitzes 61 bis zu einer ersten Steuerkammer 66 zwischen der schließgliedfernen Stirnseite 67 des Magnetankers 33 und dem Ventildom 26 erstreckt. Der Dichtsitz 61 stellt den leckfreien Durchgang des ersten Druckmittelkanals 65 zwischen dem Ventilstoßel 34 und dem Magnetanker 33 sicher. Diese Dichtwirkung hält der Dichtsitz 61 auch bei Schiefstand, d. h. bei abknickender Achse 68 von Magnetanker 33 und Ventilstoßel 34 aufrecht. Ein solcher Schiefstand kann insbesondere dann auftreten, wenn der Ventildom 26 verkantet auf den Polkern 24 aufgesetzt und der Magnetanker 33 mit sehr kleinem Radialspiel im Ventildom aufgenommen ist. Außerdem stellt der Dichtsitz 61 aufgrund seiner Formgebung eine Zentrierung des Ventilstoßels 34 am Magnetanker 33 unter der Wirkung der Kraft der Rückstellfeder 44 und seitens des Sitzventils 43 herrschender hydraulischer Kräfte sicher.
Die im Bereich des Magnetankers 33 erforderliche radiale Beweglichkeit des Ventilstoßels 34 ist ankerabgewandt durch einen Führungsabschnitt 71 eingeschränkt. Dieser ist als über den Umfang des Ventilstoßels 34 hervortretende kugelscheibenförmige Verstärkung ausgebildet, welche mit einem Rücksprung 72 am hülsenförmigen Abschnitt 52 endet. Während der Führungsabschnitt 71 mit geringem Spiel in der Längsbohrung 35 angreift, dient der Rücksprung 72 als Stützfläche für die Rückstellfeder 44. Außerdem ist der Ventilstößel 34 noch mit drei gleichmäßig über seinen Umfang verteilten, längslaufenden Abflachungen 73 versehen, um einen zweiten Druckmittelkanal 74 zu schaffen, welcher von der Ventilkammer 48 außerhalb des hülsenförmigen Abschnitts 52 des Ventilstößels ausgeht und zu einer zweiten, schließgliednahen Steuerkammer 75 zwischen dem Polkern 25 und dem Magnetanker 33 führt (Figur 1) . Anstelle der Abflachungen 73 können auch längslaufende Nuten vorgesehen sein. Schließlich ist noch hinzuweisen, daß umfangsseitig am Magnetanker 33 eine Dichtmanschette 76 mit gegen die erste Steuerkammer 66 gerichteter, am Ventildom 26 angreifender Dichtlippe 77 aufgenommen ist.
Die Wirkungsweise des Ventils 14 ist in der älteren DE- Anmeldung P 44 32 047.7 ausführlich beschrieben. Der Inhalt jener älteren Anmeldung soll daher Teil der Offenbarung dieser Anmeldung sein. Es wird lediglich kurz angemerkt, daß das Ventil 14 bei normalen Bremsungen und bei schlupfgeregelten Bremsungen in Druckaufbauphasen seine Offenstellung einnimmt, in Druckhalte- und Druckabbauphasen der schlupfgeregelten Bremsung in seine Sperrstellung geschaltet ist. Wird nach solchen Phasen das Ventil 14 elektrisch abgeschaltet, so nimmt es bei ausreichend großem Druckgefälle zwischen Einlaß- und Auslaßseite selbsttätig eine teiloffene Stellung ein, in welcher sich der Durchflußquerschnitt des Sitzventils 43 auf weitgehend konstante, gegenüber der vollen Öffnung geringere Durchflußmengen einstellt. Dies wird durch Staudruck bewirkt, der beim Öffnen des Sitzventils 43 in der Ventilteilkammer 51 auftritt und durch den ersten Druckmittelkanal 65 in die erste Steuerkammer 66 übertragen wird, wo er eine gegen den Stößel 34 gerichtete Kraftkomponente auf den Magnetanker 33 hervorruft, welche hydraulischen Öffnungskräften und der Kraft der Rückstellfeder 44 entgegenwirkt.

Claims

Ansprüche
1. Elektromagnetisch betätigtes Ventil (14), insbesondere für schlupfgeregelte hydraulische Bremsanlagen in Kraftfahr¬ zeugen, mit folgenden Merkmalen:
- in einem Ventildom (26) ist ein Magnetanker (33) längsbe¬ wegbar aufgenommen,
- der Ventildom (26) ist von einer Magnetspule (29) umgrif¬ fen,
- dem Magnetanker (33) ist ein Ventilstoßel (34) mit einem ankerabgewandt angeordneten Schließglied (36) eines Sitzventils (43) zugeordnet,
- in einem Gehäuse (23) des Ventils (14) ist ein Ventilkör¬ per (39) mit einem Ventilsitz (42) mit zentraler Durchgangs¬ bohrung (41) als Druckmitteleinlaß des Sitzventils (43) befestig ,
- bei nicht erregter Magnetspule (29) ist das Schließglied (36) aufgrund der Wirkung einer Rückstellfeder (44) vom Ven¬ tilsitz (42) abgehoben,
- das Schließglied (36) und der den Ventilsitz (42) aufwei¬ sende Teil des Ventilkörpers (39) befinden sich in einer Ventilkammer (48) , welche mit einem Druckmittelauslaß des Ventils (14) in Verbindung steht, - die Ventilkammer (48) weist eine als Stauraum wirkende Ventilteilkammer (51) auf, von der ein erster Druckmittelkanal (65) zu einer Steuerkammer (66) ausgeht, die zwischen der schließgliedfernen Stirnseite (67) des Magnetankers (33) und dem Ventildom (26) gelegen ist,
- von der Ventilkammer (48) geht ein zweiter, zur schlie߬ gliednahen Stirnseite (59) des Magnetankers (33) führender Druckmittelkanal (74) aus,
- ein in der Ventilteilkammer (51) erzeugter Druck vermag in der Steuerkammer (66) eine entgegen der Kraft der Rückstell¬ feder (44) wirkende Kraft hervorzurufen, aufgrund der das Sitzventil (43) eine von seiner Ruhestellung abweichende, teilgeschlossene Stellung einnimmt, gekennzeichnet durch die weiteren Merkmale:
- der Magnetanker (33) und der Ventilstoßel (34) sind als getrennte Bauteile ausgebildet und greifen unter der Wirkung der Rückstellfeder (44) in einem den ersten Druckmittelkanal (65) umgreifenden Dichtsitz (61) aneinander an, der am einen Bauteil mit einer Ansenkung (60) und am anderen Bauteil als erhabene Kugelzone (58) ausgebildet ist,
- der Ventilstoßel (34) ist, ausgehend von seiner magnetankerseitigen Stirnseite (57) , mit einer den ersten Druckmittelkanal (65) bildenden Längsbohrung (56) versehen, welche in eine hohlzylindrische, das Schließglied (36) umgreifende Ausnehmung als gegen den Ventilsitz (42) stirnseitig offene Ventilteilkammer (51) übergeht,
- der Ventilstößel (34) ist als Kunststoff-Spritzgußteil ausgebildet.
2. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß radial verlaufende Stege (55) das als gerade kreiszylindrische Ventilnadel ausgebildete Schließglied (36) mit einem diese axial wenigstens teilweise umhüllenden, hülsenförmigen Abschnitt (52) des Ventilstößels (34) verbinden.
3. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß der Ventilstoßel (34) umfangsseitig einen erhaben ausgebildeten, kugelscheibenförmigen Führungsabschnitt (71) aufweist.
4. Ventil nach Anspruch 3, dadurch gekennzeichnet, daß der Führungsabschnitt (71) des Ventilstoßels (34) gegen den Ventilsitz (42) durch einen Rücksprung (72) begrenzt ist, an dem die Rückstellfeder (44) angreift.
5. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß der zweite Druckmittelkanal (74) durch wenigstens eine längslaufende, den Kreisquerschnitt des Ventilstoßels (34) beschneidende Abflachung (73) oder Nut gebildet ist.
6. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß der Ventilstoßel (34) aus einem kohlefasergefüllten Polyaryletherketon (PAEK) besteht.
PCT/DE1995/001609 1994-02-17 1995-11-18 Elektromagnetisch betätigtes ventil, insbesondere für schlupfgeregelte hydraulische bremsanlagen in kraftfahrzeugen WO1996018533A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP95937780A EP0796186A1 (de) 1994-12-17 1995-11-18 Elektromagnetisch betätigtes ventil, insbesondere für schlupfgeregelte hydraulische bremsanlagen in kraftfahrzeugen
KR1019970703960A KR987000204A (ko) 1994-02-17 1995-11-18 자동차에 있어서의 미끄럼 제어되는 액압 브레이크장치를 위한 전자조작밸브(An Electromagnetic Control Valve for Sliping Controlled Hydraulic Brake System in Automobile)
JP8518020A JPH11500678A (ja) 1994-12-17 1995-11-18 特に自動車におけるスリップ制御される液圧ブレーキ装置のための電磁操作される弁

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4445221.7 1994-02-17
DE19944445221 DE4445221A1 (de) 1994-12-17 1994-12-17 Elektromagnetisch betätigtes Ventil, insbesondere für schlupfgeregelte hydraulische Bremsanlagen in Kraftfahrzeugen

Publications (1)

Publication Number Publication Date
WO1996018533A1 true WO1996018533A1 (de) 1996-06-20

Family

ID=6536220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/001609 WO1996018533A1 (de) 1994-02-17 1995-11-18 Elektromagnetisch betätigtes ventil, insbesondere für schlupfgeregelte hydraulische bremsanlagen in kraftfahrzeugen

Country Status (5)

Country Link
EP (1) EP0796186A1 (de)
JP (1) JPH11500678A (de)
KR (1) KR987000204A (de)
DE (1) DE4445221A1 (de)
WO (1) WO1996018533A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001030626A1 (de) * 1999-10-26 2001-05-03 Continental Teves Ag & Co. Ohg Elektromagnetventil, insbesondere für hydraulische bremsanlagen mit schlupfregelung
CN100335325C (zh) * 2000-07-27 2007-09-05 罗伯特-博希股份公司 电磁阀
FR2954445A1 (fr) * 2009-12-22 2011-06-24 Bosch Gmbh Robert Electrovanne notamment pour un module de vehicule

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062566A1 (de) * 2000-02-25 2001-08-30 Continental Teves Ag & Co. Ohg Elektromagnetventil
DE10036577A1 (de) * 2000-07-27 2002-02-07 Bosch Gmbh Robert Elektromagnetisch betätigtes Ventil, insbesondere für hydraulische Bremsanlagen von Kraftfahrzeugen
DE10322904B4 (de) * 2003-05-21 2008-08-28 Zf Lenksysteme Gmbh Ventil zur Volumenstromregelung
DE102004028871A1 (de) * 2004-06-15 2006-01-05 Hydac Electronic Gmbh Betätigungsvorrichtung, insbesondere zum Betätigen von Ventilen
DE102008042731A1 (de) * 2008-10-10 2010-04-15 Robert Bosch Gmbh Magnetventil
JP5271216B2 (ja) * 2009-09-17 2013-08-21 日立オートモティブシステムズ株式会社 ノーマルオープン型電磁弁
DE102018220673A1 (de) * 2018-11-30 2020-06-18 Continental Teves Ag & Co. Ohg Elektromagnetventil, insbesondere für schlupfgeregelte Kraftfahrzeugbremsanlagen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3934771C1 (de) * 1989-10-18 1991-03-28 Lucas Industries P.L.C., Birmingham, West Midlands, Gb
DE4031885A1 (de) * 1990-10-08 1992-04-09 Lucas Ind Plc Magnetventil
DE4035817A1 (de) * 1990-11-10 1992-05-14 Bosch Gmbh Robert Elektromagnetbetaetigtes ventil, insbesondere fuer hydraulische bremsanlagen von kraftfahrzeugen
US5145148A (en) * 1991-11-14 1992-09-08 Siemens Automotive L.P. Solenoid valve operating mechanism comprising a pin having a plastic sleeve molded onto a metal core
DE4332368A1 (de) * 1993-09-23 1995-03-30 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil, insbesondere für schlupfgeregelte hydraulische Bremsanlagen in Kraftfahrzeugen
DE4412648A1 (de) * 1994-04-13 1995-10-19 Bosch Gmbh Robert Elektromagnetisch betätigtes Ventil, insbesondere für schlupfgeregelte hydraulische Bremsanlagen in Kraftfahrzeugen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3934771C1 (de) * 1989-10-18 1991-03-28 Lucas Industries P.L.C., Birmingham, West Midlands, Gb
DE4031885A1 (de) * 1990-10-08 1992-04-09 Lucas Ind Plc Magnetventil
DE4035817A1 (de) * 1990-11-10 1992-05-14 Bosch Gmbh Robert Elektromagnetbetaetigtes ventil, insbesondere fuer hydraulische bremsanlagen von kraftfahrzeugen
US5145148A (en) * 1991-11-14 1992-09-08 Siemens Automotive L.P. Solenoid valve operating mechanism comprising a pin having a plastic sleeve molded onto a metal core
DE4332368A1 (de) * 1993-09-23 1995-03-30 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil, insbesondere für schlupfgeregelte hydraulische Bremsanlagen in Kraftfahrzeugen
DE4412648A1 (de) * 1994-04-13 1995-10-19 Bosch Gmbh Robert Elektromagnetisch betätigtes Ventil, insbesondere für schlupfgeregelte hydraulische Bremsanlagen in Kraftfahrzeugen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001030626A1 (de) * 1999-10-26 2001-05-03 Continental Teves Ag & Co. Ohg Elektromagnetventil, insbesondere für hydraulische bremsanlagen mit schlupfregelung
CN100335325C (zh) * 2000-07-27 2007-09-05 罗伯特-博希股份公司 电磁阀
FR2954445A1 (fr) * 2009-12-22 2011-06-24 Bosch Gmbh Robert Electrovanne notamment pour un module de vehicule

Also Published As

Publication number Publication date
JPH11500678A (ja) 1999-01-19
EP0796186A1 (de) 1997-09-24
DE4445221A1 (de) 1996-06-20
KR987000204A (ko) 1998-03-30

Similar Documents

Publication Publication Date Title
DE19530899C2 (de) Magnetventil, insbesondere für eine schlupfgeregelte, hydraulische Bremsanlage für Kraftfahrzeuge
EP2337716B1 (de) Magnetventil
EP0783422B1 (de) Steuerbares ventil
EP0605461B1 (de) Elektromagnetbetätigtes ventil, insbesondere für hydraulische bremsanlagen von kraftfahrzeugen
DE4236482A1 (de) Magnetventil
DE19504077A1 (de) Magnetventil mit Druckbegrenzung für schlupfgeregelte Kraftfahrzeug-Bremsanlagen
WO1992004214A1 (de) Elektromagnetventil für hydraulische bremsanlagen mit schlupfregelung
DE4426796A1 (de) Elektromagnetventil, insbesondere für schlupfgeregelte hydraulische Bremsanlagen in Kraftfahrzeugen
DE19951665A1 (de) Elektromagnetventil, insbesondere für hydraulische Bremsanlagen mit Schlupfregelung
EP0720552B1 (de) Elektromagnetisch betätigtes ventil, insbesondere für schlupfgeregelte hydraulische bremsanlagen in kraftfahrzeugen
DE19531010B4 (de) Magnetventil, insbesondere für eine schlupfgeregelte, hydraulische Bremsanlage für Kraftfahrzeuge
WO1995008461A1 (de) Elektromagnetisch betätigtes ventil, insbesondere für schlupfgeregelte hydraulische bremsanlagen in kraftfahrzeugen
EP0752942B1 (de) Elektromagnetisch betätigtes ventil, insbesondere für schlupfgeregelte hydraulische bremsanlagen in kraftfahrzeugen
DE19943532A1 (de) Elektromagnetventil
EP1817216B1 (de) Elektromagnetisch betätigbares ventil, insbesondere in einer bremsanlage eines kraftfahrzeuges
WO1996018533A1 (de) Elektromagnetisch betätigtes ventil, insbesondere für schlupfgeregelte hydraulische bremsanlagen in kraftfahrzeugen
DE19635690B4 (de) Magnetventil für eine schlupfgeregelte, hydraulische Fahrzeugbremsanlage
DE4433364A1 (de) Elektromagnetisch betätigtes Ventil, insbesondere für schlupfgeregelte hydraulische Bremsanlagen in Kraftfahrzeugen
DE4339694A1 (de) Elektromagnetisch betätigtes Ventil, insbesondere für schlupfgeregelte hydraulische Bremsanlagen in Kraftfahrzeugen
DE19531009A1 (de) Magnetventil, insbesondere für eine schlupfgeregelte, hydraulische Bremsanlage für Kraftfahrzeuge
DE4429211A1 (de) Elektromagnetisch betätigtes Ventil, insbesondere für schlupfgeregelte hydraulische Bremsanlagen in Kraftfahrzeugen
WO1995008460A1 (de) Elektromagnetisch betätigtes ventil, insbesondere für schlupfgeregelte hydraulische bremsanlagen in kraftfahrzeugen
DE4432046A1 (de) Elektromagnetisch betätigtes Ventil, insbesondere für schlupfgeregelte hydraulische Bremsanlagen in Kraftfahrzeugen
WO1998033687A1 (de) Mehrwege-regelventil
DE4432047A1 (de) Elektromagnetisch betätigtes Ventil, insbesondere für schlupfgeregelte hydraulische Bremsanlagen in Kraftfahrzeugen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995937780

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1996 518020

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1019970703960

Country of ref document: KR

ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 860279

Date of ref document: 19970617

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1995937780

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970703960

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1995937780

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995937780

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019970703960

Country of ref document: KR