WO1995028235A1 - Washing method and washing device - Google Patents

Washing method and washing device Download PDF

Info

Publication number
WO1995028235A1
WO1995028235A1 PCT/JP1995/000730 JP9500730W WO9528235A1 WO 1995028235 A1 WO1995028235 A1 WO 1995028235A1 JP 9500730 W JP9500730 W JP 9500730W WO 9528235 A1 WO9528235 A1 WO 9528235A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
fluid
cleaning liquid
liquid
cleaned
Prior art date
Application number
PCT/JP1995/000730
Other languages
French (fr)
Japanese (ja)
Inventor
Yasutaka Imajo
Koichiro Nakamura
Minoru Inada
Shunichi Kawagoe
Takeji Tsuchiya
Toshikazu Miyakogawa
Norio Toyoshima
Daisuke Kawashima
Original Assignee
Kabushiki Kaisha Toshiba
Tosei Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba, Tosei Electric Co., Ltd. filed Critical Kabushiki Kaisha Toshiba
Publication of WO1995028235A1 publication Critical patent/WO1995028235A1/en
Priority to KR1019960705744A priority Critical patent/KR970702105A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/102Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration with means for agitating the liquid

Definitions

  • the present invention relates to a cleaning method and a cleaning apparatus used for industrial cleaning of various parts and the like.
  • Halogenated! Hydrogen-based compounds have long had an adverse effect on the human body, such as liver damage and carcinogenicity, as is evident by legal regulations such as the Ordinance on Prevention of Organic Solvent Poisoning. Have been. Recently, not only the human body, but also environmental impacts such as groundwater pollution and destruction of the ozone layer have been regarded as problems. For this reason, there is a strong demand for cleaning agents and cleaning methods that can be replaced with hydrogen halide solvents and that do not affect the human body or the environment. Accordingly, various alternative cleaning agents have been proposed as cleaning agents that can replace halogenated hydrocarbon solvents, and cleaning methods using each of them have been studied.
  • the cleaning performance largely depends on the cleaning ability of the cleaning liquid, but the factors that compensate for it are the cleaning time, the temperature of the cleaning liquid, the vibration of the cleaning liquid, the injection, the stirring, and the flow between the cleaning liquid and the object to be cleaned.
  • the cleaning performance has been improved by these factors.
  • conventional methods of applying water to cleaning objects include irradiating the object to be cleaned in the cleaning liquid with ultrasonic waves, injecting the cleaning liquid, and introducing compressed air or the like into the cleaning liquid to remove bubbles.
  • a method of generating the object, a method of rotating a basket or the like containing the object to be cleaned (spin cleaning), a method of swinging the object to be cleaned, and the like have been used.
  • the method of swinging the object to be cleaned has a problem that, similarly to spin cleaning, it is difficult to increase the relative speed between the object to be cleaned and the cleaning liquid, and it is difficult to expect a sufficient cleaning effect. . If the swing speed of the object to be cleaned is too high, the object to be cleaned is likely to be damaged.
  • the cleaning liquid is sprayed from two opposing directions
  • the spray nozzle is swung to widen the spray angle, or ultrasonic cleaning and spinning are performed. Combination with cleaning is performed.
  • the liquid speed cancels out at the intermediate point, becomes almost zero, and a position where cleaning is insufficient occurs. I will. Even if the nozzle is swung, the cleaning effect cannot be obtained sufficiently except for the surface facing the nozzle. Even if the ultrasonic cleaning and the spin cleaning are combined, there arises a problem that an object to be cleaned existing in the basket cannot be sufficiently cleaned.
  • first and second spray nozzles at each corner of the cleaning tank so as to generate a swirling flow in the cleaning tank in the clockwise and counterclockwise directions around the object to be cleaned.
  • this method has a problem that the cleaning liquid in the central portion of the washing tank hardly flows, so that the object to be cleaned disposed in the central portion cannot be sufficiently provided with a cleaning effect.
  • the flow of the cleaning liquid is limited to a swirling flow along the side wall of the cleaning tank, when the cleaning is performed by arranging a plurality of large substrates or the like in parallel, the cleaning liquid is supplied to the gap between the substrates. There is a problem that it is difficult.
  • mist is generated when the compressed air expands and bursts, causing various problems.
  • water treatment equipment as a post-treatment that requires a large investment
  • solvent-based cleaning process that does not require power is attracting attention as a cleaning process that can replace halogenated hydrocarbon solvents, but solvent-based cleaning agents are flammable Many have points, and the occurrence of mist as described above may lead to an extremely unfavorable situation in terms of safety.
  • a drying step is often performed following the cleaning step, and the generation of the mist as described above affects the drying performance.
  • the conventional methods for improving the cleaning performance by mechanical force all have limited positions where the force is applied, or cause a bias in the position where the mechanical force is applied.
  • a force cannot be exerted on the entire surface of the object to be washed, which is housed in an overlapped manner with a basket or the like, so that the washing is uneven.
  • An object of the present invention is to provide a cleaning method and a cleaning apparatus capable of uniformly cleaning the entire surface of an object to be cleaned irrespective of a part or position of the object to be cleaned. Disclosure of the invention
  • a first cleaning method is a method for cleaning by immersing an object to be cleaned in a cleaning tank containing a cleaning liquid, wherein a plurality of fluids for forcibly flowing the cleaning liquid toward the object to be cleaned are jetted.
  • a fluid ejection nozzle is arranged in parallel and substantially in the same direction along one tank wall of the cleaning tank, and the plurality of fluid ejection nozzles are divided into two, and the plurality of fluids divided into two are divided.
  • a second cleaning method is a method of immersing an object to be cleaned in a cleaning tank containing a cleaning liquid for cleaning, wherein a plurality of fluid jets for injecting a fluid for forcibly flowing the cleaning liquid toward the object to be cleaned are provided.
  • a nozzle is disposed in the cleaning tank so as to surround the object to be cleaned, and the timing of jetting the fluid from the plurality of fluid ejection nozzles toward the object to be cleaned is sequentially. It is characterized in that self-cleaning is performed while changing the forced flow direction of the cleaning liquid in order by injecting while switching.
  • a third cleaning method is a method of immersing an object to be cleaned in a cleaning tank containing a cleaning liquid for cleaning, wherein at least one fluid for injecting a fluid for forcibly flowing the cleaning liquid toward the object to be cleaned is provided.
  • the cleaning is performed while changing the direction of the forced flow of the cleaning liquid by disposing an injection nozzle in the cleaning tank and moving the fluid injection nozzle.
  • the third cleaning method is characterized in that the forced flow direction of the cleaning liquid is substantially reversed by moving the fluid jet nozzle in a substantially horizontal direction.
  • a fourth cleaning method is a method in which an object to be cleaned is immersed in a cleaning tank in which a cleaning liquid is contained and an ultrasonic oscillator is disposed, and the ultrasonic wave is transmitted from the ultrasonic oscillator.
  • a fluid ejection nozzle for ejecting a fluid forcibly flowing in a direction substantially opposite to the direction is disposed in the cleaning tank, and alternately switches between ultrasonic oscillation from the ultrasonic oscillator and fluid ejection from the fluid ejection nozzle. In addition, the cleaning is performed.
  • first, second, third and fourth cleaning methods described above are characterized in that a single fluid of the cleaning liquid or a mixed fluid of the cleaning liquid and a gas is jetted from the fluid jet nozzle.
  • a first cleaning apparatus includes: a cleaning tank in which a cleaning liquid is contained, and an object to be cleaned is immersed in the cleaning liquid; and a cleaning tank in the cleaning tank, wherein the cleaning liquid is contained along one tank wall of the cleaning tank.
  • a plurality of fluid ejection nozzles which are arranged in substantially the same direction and eject fluid for forcibly flowing the washing liquid toward the object to be washed, divided into a first group and a second group;
  • Injection timing control means for alternately switching the fluid injection timing from the first group of fluid injection nozzles and the fluid injection timing from the second group of fluid injection nozzles, and substantially inverting the forced flow direction of the cleaning liquid; It is characterized by having.
  • the second cleaning device is provided with a cleaning tank for storing a cleaning liquid and immersing the object to be cleaned in the cleaning liquid, and disposed in the cleaning tank so as to surround the object to be cleaned.
  • a plurality of fluid ejection nozzles for injecting a fluid forcibly flowing toward an object toward the object to be cleaned, and sequentially switching fluid ejection timings from the plurality of fluid ejection nozzles, Injection timing control means for sequentially changing the forced flow direction of the cleaning liquid.
  • the third cleaning device is provided with a cleaning tank in which the cleaning liquid is contained and the cleaning liquid is immersed in the cleaning liquid, and is disposed movably in the cleaning tank, and the cleaning liquid is directed toward the cleaning object. It is characterized by comprising at least one fluid ejecting nozzle for ejecting a fluid to be forcibly flown, and a nozzle moving means for moving the fluid ejecting nozzle to change a forced flowing direction of the cleaning liquid.
  • the third cleaning device is characterized in that the fluid ejection nozzle is moved in a substantially horizontal direction by the nozzle movement, and the forced flowing direction of the cleaning liquid is substantially reversed.
  • the fourth cleaning device includes a cleaning tank in which a cleaning liquid is contained and an object to be cleaned is immersed in the cleaning liquid; an ultrasonic oscillator disposed in the cleaning tank; and an ultrasonic oscillator disposed in the cleaning tank.
  • a fluid ejecting nozzle for ejecting a fluid for forcibly flowing the cleaning liquid in a direction substantially opposite to an ultrasonic oscillation direction from the ultrasonic oscillator, and an ultrasonic oscillation from the ultrasonic oscillator and fluid ejection from the fluid ejecting nozzle. And means for alternately switching between.
  • a liquid feed pump for injecting the cleaning liquid as the fluid from the fluid injection nozzle is provided, or the cleaning liquid is supplied to the fluid.
  • gas introducing means disposed between the liquid feed pump and the fluid injection nozzle for mixing and introducing a compressed gas into the cleaning liquid, wherein the cleaning liquid is used as the fluid.
  • a mixture of a gas and a gas is used as the fluid.
  • the mixed fluid is ejected from the fluid ejection nozzle.
  • the forced flowing direction of the cleaning liquid can be changed. Therefore, the object to be cleaned immersed in the cleaning tank is directly exposed to the forced flow of the cleaning liquid from different directions, and the entire surface is uniformly cleaned.
  • the direction in which the cleaning liquid is forced to flow toward the object to be cleaned is changed, there is no occurrence of a stagnation point (point where the flow velocity becomes zero) in the flow of the cleaning liquid. Therefore, the cleaning is performed uniformly regardless of the position of the object to be cleaned in the cleaning tank.
  • the cleaning is performed while substantially reversing the forced flow direction of the cleaning liquid.
  • the entire surface of the object to be cleaned can be surely and uniformly cleaned.
  • the cleaning is performed while sequentially switching the forced flow direction of the cleaning liquid directly to the cleaning object, so that the entire surface of the cleaning object can be surely and uniformly cleaned.
  • the direction of the forced flow of the cleaning liquid can be changed because the fluid ejecting nozzle that ejects the fluid for forcibly flowing the cleaning liquid toward the object to be cleaned is moved. Therefore, the object to be cleaned immersed in the cleaning tank is directly exposed to the forced flow of the cleaning liquid from different directions, and the entire surface is uniformly cleaned.
  • the direction in which the cleaning liquid is forced to flow toward the object to be cleaned is continuously changed, there is no stagnation point in the flow of the cleaning liquid. Therefore, it is uniformly cleaned regardless of the position of the cleaning object in the cleaning tank.
  • the fluid ejection nozzle in a substantially horizontal direction and performing the cleaning while substantially reversing the forced flow direction of the cleaning liquid, the entire surface of the object to be cleaned can be more reliably and uniformly cleaned.
  • the cleaning liquid is forcibly flowed in a direction substantially opposite to the ultrasonic oscillation direction from the ultrasonic oscillator, so that the object to be cleaned immersed in the cleaning tank is mechanically cleaned from a different direction.
  • ultrasonic cavitation mechanically removes insoluble dirt and facilitates the removal of soluble dirt by the forced flow of the cleaning solution. It is possible to efficiently wash the objects to be cleaned that are mixed and adhered.
  • the fluid is divided as a two-phase flow of the gas and the liquid.
  • the gas becomes fine bubbles when injected. Therefore, the object to be cleaned can be more uniformly cleaned by the mechanical force of the fine bubbles.
  • generation of mist can be prevented by using gas as a balanced bubble.
  • the injection timing of the fluid for forcibly flowing the cleaning liquid from the plurality of fluid injection nozzles toward the object to be cleaned is switched, thereby changing the direction of the forced flow of the cleaning liquid.
  • the objects to be cleaned are each directly exposed to the forced flow of the cleaning liquid from different directions. Therefore, the entire surface of the object to be cleaned can be uniformly cleaned.
  • the direction in which the cleaning liquid is forced to flow toward the object to be cleaned changes, there is no stagnation point in the flow of the cleaning liquid. Therefore, the cleaning is performed uniformly regardless of the position of the object to be cleaned in the cleaning tank.
  • the forced flow direction of the cleaning liquid is substantially reversed, so that the entire surface of the object to be cleaned can be surely and uniformly cleaned.
  • the forced flow direction of the cleaning liquid directly toward the object to be cleaned changes sequentially, so that the entire surface of the object to be cleaned can be surely and uniformly cleaned.
  • the third cleaning apparatus has a nozzle moving means for moving a fluid jet nozzle for jetting a fluid for forcibly flowing the cleaning liquid to change the direction of the forced flow of the cleaning liquid.
  • the cleaning objects are each directly exposed to the forced flow of the cleaning liquid from different directions. Therefore, the entire surface of the object to be cleaned can be uniformly cleaned.
  • the forced flow direction of the cleaning liquid changes, there is no stagnation point in the flow of the cleaning liquid. Therefore, the object is uniformly washed regardless of the position of the object in the washing tank.
  • the fluid ejection nozzle in a substantially horizontal direction and substantially reversing the forced flow direction of the cleaning liquid, the entire surface of the object to be cleaned can be more reliably and uniformly cleaned.
  • the fourth cleaning apparatus has a fluid ejection nozzle for forcibly flowing the cleaning liquid in a direction substantially opposite to the direction of ultrasonic oscillation from the ultrasonic oscillator, the object to be cleaned immersed in the cleaning tank is You will be subject to specific washing from different directions. Accordingly, the entire surface of the object to be cleaned is uniformly cleaned, and the surface of the object to be cleaned is uniformly cleaned regardless of the position of the object in the cleaning tank.
  • ultrasonic cavitation removes insoluble stains in a non-dissolving manner, and the forced flow of the cleaning solution facilitates the removal of insoluble stains. It is possible to efficiently clean the objects to be cleaned that are mixed and adhered.
  • the gas is injected when the fluid is injected into the cleaning liquid. Fine bubbles can be formed. This allows the object to be cleaned to be more uniformly cleaned by the mechanical force of the fine bubbles. Can be. In addition, generation of mist can be prevented by forming gas into fine bubbles.
  • FIG. 1 is a view showing the configuration of a cleaning apparatus according to a first embodiment of the present invention
  • FIG. 2 is a view for explaining the operation of the cleaning apparatus shown in FIG. 1
  • FIG. FIG. 4 shows a schematic diagram of a cleaning liquid regenerating device in the cleaning device shown in FIG. 1
  • FIG. 5 shows a cleaning tank portion of a cleaning device according to a modified example of the first embodiment.
  • FIG. 6, is a view for explaining the operation of the cleaning apparatus whose main part is shown in FIG. 5
  • FIG. 7 is a view showing a cleaning tank part of a cleaning apparatus according to another modification of the first embodiment
  • FIG. FIG. 7 is a view for explaining the operation of the cleaning apparatus showing the main parts
  • FIG. 9 is a view showing the cleaning tank part of the cleaning apparatus according to the second embodiment of the present invention
  • FIG. FIG. 11 is a view for explaining the operation of the cleaning apparatus shown in FIG. 11.
  • FIG. 11 is a view showing a cleaning tank portion of the cleaning apparatus according to the third embodiment of the present invention
  • FIG. FIG. 11 is a diagram for explaining the operation of the cleaning device showing the main part
  • FIG. 13 is a diagram showing a cleaning device used in a specific example using a mixed fluid of a cleaning liquid and a gas
  • FIG. FIG. 13 is a view showing a cleaning tank portion of the cleaning device according to the fourth embodiment.
  • FIG. 1 is a diagram schematically showing a configuration of a cleaning apparatus according to one embodiment to which the first cleaning method of the present invention is applied.
  • the cleaning apparatus 1 shown in FIG. 1 has an immersion cleaning tank 3 in which a cleaning liquid 2 is stored.
  • a fluid ejection nozzle 4 for ejecting a fluid for forcibly flowing the washing liquid 2 is arranged.
  • four fluid ejection nozzles 4 a, 4 b, 4 c, and 4 d are arranged in parallel along a bottom surface 3 a which is one of the tank walls of the immersion cleaning tank 3.
  • Each fluid injection nozzle 4 has ten injection ports 5 opened in the same direction, that is, upwards.
  • the number of the fluid jet nozzles 4 may be set according to the flow state of the cleaning liquid to be obtained, the size of the cleaning tank 3, and the like, and is not limited to four.
  • the four fluid injection nozzles 4a, 4b, 4c, and 4d described above are a first nozzle group consisting of two outer fluid injection nozzles 4a and 4d, and two inner fluid injection nozzles 4 b, 4 c and a second nozzle group, and an injection timing control device 6 for switching the fluid injection timing for each group and substantially reversing the forced flow direction of the cleaning liquid 2 is provided. ing.
  • a cleaning liquid outlet 7 is provided at the bottom of the immersion cleaning tank 3, and the cleaning liquid outlet 7 is connected to a cleaning liquid circulation system 8.
  • a pressurizing pump (high-pressure pump) is interposed in the cleaning liquid circulation system 8 as a liquid sending pump 12 for circulating the cleaning liquid via a first cleaning liquid valve 9, a Y-strainer 10 and a filter 11. .
  • the above-described injection timing control device 6 is connected to the discharge side of the liquid sending pump 12 via an electromagnetic valve as the cleaning liquid gate valve 13.
  • a gas introduction device 14 described below is interposed between the cleaning liquid gate valve 13 and the injection timing control device 6.
  • the injection timing control device 6 performs the fluid injection for each of the first nozzle group by the outer fluid injection nozzles 4a and 4d and the second nozzle group by the inner fluid injection nozzles 4b and 4c.
  • the first and second nozzle groups have cleaning liquid circulation pipes 15 a and 15 b connected to each other so that the first and second nozzle groups can be implemented. These cleaning liquid circulation pipes 15a and 15b are connected to the cleaning liquid circulation system 8, respectively, and control the fluid injection timing for each of the first nozzle group and the second nozzle group.
  • Injection timing control solenoid valves 16a and 16b of No. 2 are inserted. The operation of these injection timing control solenoid valves 16a and 16b is controlled by a control system not shown.
  • the above-described gas introduction device 14 is for introducing a compressed gas, for example, compressed air, into the cleaning liquid 2 circulated by the liquid sending pump 12.
  • a compressed gas for example, compressed air
  • the ejector as the gas introduction device 14 is connected to a compressed air supply source 20 via a check valve 17 for backflow prevention, a compressed air flow control valve 18 and a valve 19.
  • a check valve 17 for backflow prevention a compressed air flow control valve 18
  • a valve 19 a valve 19
  • an inert gas or the like may be used as the compressed gas depending on the type of the cleaning liquid. The projector will be described later in detail.
  • the above-described cleaning apparatus 1 is configured so that the cleaning liquid 2 is delivered to the cleaning liquid regenerating means 22 via a cleaning liquid discharge pipe 21 connected near the bottom of the immersion cleaning tank 3.
  • the cleaning liquid 2 is regenerated by the cleaning liquid regenerating means 22 described above.
  • the cleaning liquid is supplied again to the immersion cleaning tank 3.
  • the cleaning liquid regenerating means 22 will be described later in detail.
  • the immersion cleaning tank 3 is provided with a cleaning heat device 23, whereby the cleaning liquid 2 can be heated or heated.
  • a direct heating device such as a heater using a flame-retardant oil or the like as a heating medium or a heater is appropriately used depending on the type of the cleaning liquid 2.
  • the immersion cleaning tank 3 ultrasonic cleaning, swing cleaning, spin cleaning, barrel cleaning, and the like of an object to be cleaned can be used in combination, if necessary.
  • a rinsing tank, a drying device, and the like are arranged following the immersion washing tank 3.
  • the second cleaning liquid inserted into the cleaning liquid sub-circulation system 24 connected to the discharge side of the liquid sending pump 12 is used. Open the valve 25 and circulate the washing liquid 2. In this way, by continuing the circulation of the cleaning liquid 2, the uniformity of the cleaning liquid 2 can be achieved. It is also preferable to open the second cleaning liquid valve 25 to continue the circulation of the cleaning liquid 2 at times other than when the cleaning step is actually being performed. At this time, the cleaning liquid gate valve 13 may be opened at the same time.
  • the cleaning liquid 2 can be forced to flow regardless of the cleaning liquid, the compressed gas, or the mixed fluid of the cleaning liquid and the compressed gas.However, prevention of mist described later and prevention of mass consumption of factory air In view of the formation of a better forced flow of the cleaning liquid 2, it is preferable to use a mixed liquid of the cleaning liquid and compressed air for the cleaning liquid L.
  • the mixed fluid of the cleaning liquid and the compressed air or the like also contributes to the improvement of the cleaning performance.
  • the injection amount of the cleaning liquid, compressed air, and the mixed fluid of these cleaning liquids is The amount is not particularly limited as long as the amount of the purified liquid 2 can be forcedly flowed, and is set according to the form of the object to be cleaned, the degree of contamination, the cleaning effect to be obtained, and the like.
  • various cleaning agents such as a non-aqueous cleaning agent such as a water-based cleaning agent and a solvent-based cleaning agent can be used.
  • a solvent-based cleaning agent is preferable.
  • Solvent-based cleaning agents include silicone-based solvents, hydrocarbon-based solvents, perfluorocarbon-based solvents, terpene-based solvents, mixed solvents of these, etc., or the addition of cleaning active ingredients such as alcohol and various additives.
  • a solvent such as an alkylamine oxide-based solvent, a polyglycol-based solvent, a terpene-based solvent, a hydrocarbon-based solvent, and a detergent containing these and a surfactant
  • a solvent-based cleaning agent that can rinse the cleaning composition with water can also be used.
  • aqueous detergent examples include aqueous solutions of inorganic acids, organic acids, alkalis, and the like, detergents containing a surfactant as a main component, and aqueous solutions of these, and those obtained by adding various additives thereto. The same applies to the cleaning liquid in other examples described later.
  • the cleaning device of the present invention is preferably combined with a cleaning agent that exerts a cleaning effect by the dissolving power of the cleaning agent itself, such as a solvent-based cleaning agent.
  • a cleaning agent that exerts a cleaning effect by the dissolving power of the cleaning agent itself, such as a solvent-based cleaning agent.
  • the diffusion of the cleaning liquid can be accelerated by the forced flow, so that the cleaning effect by the dissolving power of the cleaning agent itself can be further enhanced.
  • a solvent-based detergent dissolves dirt such as oils and fats in the detergent, which is suitable for the cleaning device of the present invention.
  • aqueous detergents contain a surfactant, and the hydrophilic and hydrophobic groups (lipophilic groups) of the surfactant take in dirt such as oils and fats and disperse them in the aqueous detergent.
  • the specific gravity of the fat is lighter than that of water, the dirt such as the fat taken in by the surfactant floats on the water surface of the aqueous detergent.
  • the cleaning object 27 stored in the basket 26 is immersed in the immersion cleaning tank 3 to remove various types of dirt such as oil and water adhered to the surface.
  • the first injection timing control solenoid valve 16a is opened and the second injection timing control solenoid valve 16b is closed, whereby the cleaning liquid 2 is opened.
  • the fluid to be ejected may be any of the cleaning liquid, the compressed gas, and the mixed fluid thereof as described above.
  • the cleaning liquid 2 is released by opening the second solenoid valve 16b for controlling the injection timing and closing the first solenoid valve 16a for controlling the injection timing.
  • the fluid to be forced to flow is jetted from the second nozzle group by the two inner fluid jet nozzles 4b and 4c.
  • the direction of the forced flow is reversed as shown by the arrow in the figure, and the flow is reversed in the left half of the immersion washing tank 3.
  • a clockwise forced flow occurs, and near the center of the immersion washing tank 3, the washing liquid 2 flows upward, and at both ends, the washing liquid 2 flows downward from above.
  • the cleaning liquid 2 is forced to flow upward from the bottom toward the object 27.
  • the forced flow of the cleaning liquid 2 mainly causes Mechanical detergency is applied to the lower surface of the object 27 to be cleaned.
  • the cleaning liquid does not have a stagnation point at a specific location, and the immersion cleaning tank 3 In this case, it is possible to prevent uneven cleaning due to the position of the object 27 to be cleaned.
  • Switching between the fluid ejection timing from the first nozzle group by the outer fluid ejection nozzles 4a and 4d and the fluid ejection timing from the second nozzle group by the inner fluid ejection nozzles 4b and 4c is as follows. Low per immersion It is preferable to switch a plurality of times in order to enhance the cleaning effect that can achieve the above-mentioned effect if performed at least once.
  • the substrate is immersed in such a way that the forced flow direction of the cleaning liquid 2 and the gap between the substrates are parallel, a passage between the substrates is formed. Since the flow of the cleaning liquid 2 is generated, and the direction of the flow is reversed by switching the fluid ejection timing, a good dirt removal effect can be obtained. Further, in the cleaning apparatus 1 of the above embodiment, since the fluid injection nozzle 4 is disposed at the bottom of the immersion cleaning tank 3, it does not affect the entry and exit of the object to be cleaned 27, and the immersion cleaning tank 3 is not affected. It is possible to achieve a reduction in size and an improvement in space efficiency.
  • the object to be cleaned 27 is not particularly limited, and is applicable to cleaning of industrial uses such as metals, ceramics, and plastics. More specifically, metal parts, surface treatment parts, electronic parts, semiconductor parts, electric parts, Precision machine parts, optical parts, glass parts, ceramic parts, etc. This is particularly effective when washing a large amount in a basket 26 or the like. However, it is also possible to wash the object 27 without cleaning the basket 26 or the like.
  • Technocare FEE-90 (trade name, manufactured by Toshiba Corporation) was used as the cleaning liquid 2, and 900 pressed parts with press working oil adhering as dirt were stored in a basket 26 as a cleaning object 27 and immersed. Washing was performed by immersing in washing tank 3 for 30 seconds.
  • the fluid mixture of the cleaning liquid and the compressed air is ejected from the fluid ejection nozzles 4, and this fluid ejection is performed by the first nozzle group by the outer fluid ejection nozzles 4a and 4d and the inner fluid ejection nozzles 4 Cleaning was performed by alternately switching between the second nozzle group by b and 4c every 30 seconds.
  • Specific conditions were as follows: pump ejection pressure 5.8 kg / cm 2 , ejection volume 26 liters Z, air pressure 4.613 ⁇ 4 / ⁇ .
  • cleaning was performed under the same conditions as in the above example, except that the cleaning liquid was allowed to flow only from below to above.
  • the pressed parts were arranged in the basket with the protrusions of the pressed parts facing upward.
  • the ejector restricts a part of the pipe 28 through which the fluid flows, and an opening 29 is provided in this part.
  • the Bernoulli principle This is a device that depressurizes and aspirates the part connected to the opening 29 by utilizing the fact that the pressure is reduced by the pressure.
  • the cleaning liquid is passed through the pipe 28 and compressed air or the like is introduced from the opening 29.
  • the pressure of the introduced air can be reduced.
  • the air pressure obtained in the factory of “ ⁇ is at most about 5 kg / cm 2
  • the pressure of the liquid discharged from the liquid sending pump (pressurizing pump) 12 is about 6 to 7 kg / cm 2. Therefore, compressed air cannot be simply introduced using a T-joint, etc.
  • the discharge pressure of the liquid is reduced to introduce compressed air, the cleaning effect will naturally decrease.
  • air at a pressure about 1 to 2 kg / cm2 lower than the pressure on the liquid side can be introduced into the cleaning liquid, so that the cleaning effect by the cleaning liquid injection is not reduced. Introducing ⁇ etc. into the cleaning solution with the air pressure of general factories is sufficient.
  • the cleaning liquid regenerating means 22 for example, as shown in FIG. 4, a means having a distillation apparatus such as a reduced pressure distillation tank 30 is preferably used.
  • the cleaning liquid regeneration means 22 shown in Fig. 4 mainly consists of the cleaning liquid supply pipe 31, the reduced pressure distillation tank 30, the condensing cooler 32, the regenerated cleaning liquid storage tank 33, the regenerated cleaning liquid circulation pump 34, etc. It is configured.
  • a cleaning liquid inlet 30 a is provided at the lower part of the vacuum distillation still 30, and the cleaning liquid inlet 30 a is connected to the liquid level regulator 35.
  • the liquid level adjuster 35 supplies the cleaning liquid via a heat exchanger 37 that exchanges heat between the steam pipe 36 connected to the upper part of the decompression still 30 and the supplied cleaning liquid, for example, via an economizer.
  • a heat exchanger 37 that exchanges heat between the steam pipe 36 connected to the upper part of the decompression still 30 and the supplied cleaning liquid, for example, via an economizer.
  • the cleaning liquid supply pipe 31 is directly connected to, for example, the cleaning liquid discharge pipe 21.
  • a cleaning liquid storage tank or the like may be provided on the way.
  • the ffi-type distillation still 30 and the condensing cooler 3 2 are connected, for example, to a condenser by a steam pipe 36, and a regenerating washing liquid storage tank 33 is connected to the lower part of the condensing cooler 32. .
  • a pressure reducing pump 38 is connected to the regeneration washing Sf tank 33, and the pressure from the liquid level regulator 35 to the pressure reducing still 30 is reduced to a predetermined pressure by the pressure reducing pump 38.
  • the washing liquid is introduced from the liquid level adjuster 35 into the vacuum distillation still 30.
  • the introduction of the cleaning liquid is performed via a solenoid valve 39.
  • a heating device 40 for example, a heater, is installed around the decompression distillation still 30. The cleaning liquid introduced into the distillation still 30 is heated by the heating device 40 under ff. Attempts to recover are vaporized.
  • the steam generated by heating at a temperature lower than the atmospheric pressure is sent to the condenser 32 through the steam pipe 36. Cooling water is supplied into the condensing cooler 32 from a cooling water supply device (not shown), and the supplied steam is condensed.
  • the condensate is stored in the regenerating cleaning liquid storage tank 33 as the regenerating cleaning liquid 41.
  • the regenerated cleaning solution 41 stored in the regenerated cleaning solution storage tank 33 is supplied to the immersion cleaning tank 3 by the regenerated cleaning solution circulation pump 34 and reused as the cleaning solution 2.
  • vacuum distillation enables direct treatment and regeneration without diluting a high-load washing solution, and also allows lower heat treatment temperatures to improve thermal efficiency. Becomes Danger is also reduced when treating flammable solvents.
  • Vacuum distillation not only increases processing efficiency and thermal efficiency, but also suppresses evaporation and thermal decomposition of various substances contained in the cleaning solution, and prevents scale from adhering to piping systems.
  • it is effective to use a silicon-based antifoaming agent in the vacuum distillation treatment.
  • the cleaning liquid 2 is always forced to flow, and the dirt separated from the object to be cleaned 27 also circulates together with the cleaning liquid 2. It is preferable to maintain the cleanliness of the cleaning liquid 2 and prevent re-adhesion of dirt.
  • the cleaning liquid regenerating means 22 is originally provided for purifying and reusing the cleaning liquid 2, but when a high-pressure pump is used as in the cleaning apparatus of the present invention.
  • the regeneration of the washing liquid is effective from the viewpoint of protecting the pump and the valve.
  • liquid stains such as oil stains
  • solid stains such as chips generated by cutting and residues of abrasive grains used in the polishing process adhere to the cleaning object brought into the cleaning device. Something you are doing. For a pump that generates high pressure, such solid dirt is a great enemy. If the amount of solid dirt is large, the pump or valve may be worn out in a short time.
  • the cleaning liquid circulation system for fluid ejection and the cleaning Although the example in which the circulation system for regenerating the liquid is installed separately has been described, the fluid injection nozzle 4 and the like can be connected to the circulation system for regenerating the cleaning liquid. Further, the liquid can be sent to the fluid ejection nozzle 4 from a separately installed washing liquid storage tank or the like.
  • two circular fluid injection nozzles 43a and 43b for injecting a fluid for forcibly flowing the cleaning liquid are concentric, and the bottom of the immersion cleaning tank 42 Are arranged in parallel along.
  • the two circular fluid injection nozzles 43a and 43b have injection ports 5 opened in the same direction, that is, upward.
  • the other configuration is the same as that of the cleaning device 1 shown in FIG. 1, and the two circular fluid injection nozzles 43 a and 43 b are respectively connected to the injection timing control device 6. That is, the outer circular fluid injection nozzle 43a is connected to the first injection timing control solenoid valve 16a, and the inner circular fluid injection nozzle 43b is connected to the second injection nozzle. It is connected to the timing control solenoid valve 16b.
  • the first injection timing control solenoid valve 16a is opened, and the second injection timing control solenoid valve 16b is closed, as shown in FIG. 6 (a).
  • the fluid for forcibly flowing the cleaning liquid 2 is ejected only from the outer circular fluid ejection nozzle 43a.
  • the cleaning liquid 2 flows from the bottom to the top at the outer periphery of the circular immersion cleaning tank 42, as shown by the arrow in the figure, and the cleaning liquid near the center. 2 flows from top to bottom.
  • the cleaning liquid 2 is forcibly flowed from the top toward the cleaning object. Due to the forced flow of the cleaning liquid 2, a mechanical cleaning power is mainly applied to the upper surface side of the object to be cleaned.
  • the cleaning liquid 2 is forcibly applied as shown in FIG. 6 (b).
  • the fluid to be flown is ejected only from the inner circular fluid ejection nozzle 43b.
  • the cleaning liquid 2 flows from the bottom to the top near the center of the circular immersion cleaning tank 42, and is washed at the outer periphery. Purified liquid 2 Flows from top to bottom. As you can see, there are some products that are not shown.
  • the cleaning liquid 2 is forcibly flown from the bottom toward the object to be cleaned. Due to the forced flow of the cleaning liquid 2, a mechanical cleaning power is mainly applied to the lower surface side of the object to be cleaned.
  • the injection from the outer circular fluid injection nozzle 43a and the injection from the inner circular fluid injection nozzle 43b are alternately switched, and the direction of the forced flow of the cleaning liquid 2 is reversed.
  • the entire surface of the object to be cleaned can be uniformly cleaned.
  • there is no stagnation point in the flow of the cleaning liquid there is no unevenness in cleaning due to the position of the object to be cleaned in the circular immersion cleaning tank 42.
  • the size of the cleaning tank is also the same as in the above-described embodiment.
  • Each fluid injection nozzle 4a, 4b, 4c and 4d for injecting a fluid for forcibly flowing the cleaning liquid are provided on the side wall 3b of the immersion cleaning tank 3 near one side wall in the immersion cleaning tank 3. They are erected in parallel. Each fluid ejection nozzle 4 has ten ejection ports 5 opened in the same direction, that is, in the horizontal direction. Other configurations are the same as those of the cleaning apparatus 1 shown in FIG.
  • the four fluid ejection nozzles 4a, 4b, 4c, and 4d are the first group of two fluid ejection nozzles 4a and 4d on the outside, and the two fluid ejection nozzles 4b and 4 on the inside.
  • the nozzles are divided into two groups, namely a second nozzle group by c, and each group is connected to the injection timing control device 6. That is, the first group of nozzles by the outer fluid injection nozzles 4a and 4d is connected to the first injection timing control solenoid valve 16a, and the first group of fluid injection nozzles by the inner fluid injection nozzles 4b and 4c. The second nozzle group is connected to a second injection timing control solenoid valve 16b.
  • the first injection timing control solenoid valve 16a is opened, and the second injection timing control solenoid valve 16b is closed, as shown in FIG. 8 (a).
  • the fluid for forcibly flowing the cleaning liquid 2 is ejected from the first nozzle group by the outer fluid ejection nozzles 4a and 4d.
  • the cleaning liquid 2 flows in the fluid ejection direction at the end of the immersion washing tank 3, as shown by the arrow in the figure, and near the center. Then it flows in the opposite direction. This Due to the forced flow of the cleaning liquid 2 toward the object to be cleaned, a mechanical cleaning force is mainly applied to the surface of the object to be cleaned on the side opposite to the fluid injection nozzle 4.
  • the ejection from the first nozzle group by the outer fluid ejection nozzles 4a and 4d and the ejection from the second nozzle group by the inner fluid ejection nozzles 4b and 4c alternate.
  • the entire surface of the object to be cleaned can be uniformly cleaned even in the case of using the upstanding fluid jet nozzle 4 as in the above-described embodiment. it can.
  • there is no stagnation point in the flow of the cleaning liquid there is no unevenness in cleaning depending on the position of the object to be cleaned in the immersion cleaning tank 3.
  • the fluid jet nozzle 4 can be easily replaced according to, for example, the shape of the object to be cleaned. It has advantages such as being able to.
  • four fluid injection nozzles 4a, 4b, 4c, 4d for injecting a fluid for forcibly flowing the cleaning liquid are arranged so as to surround the object to be cleaned. It is erected at a separate location.
  • These four fluid injection nozzles 4a, 4b, 4c, 4d are connected to injection timing control solenoid valves (not shown), respectively, and the four fluid injection nozzles 4a, 4b, 4d
  • the fluid injection timings from c and 4d can be controlled separately. That is, the cleaning device of this embodiment has an injection timing control unit (not shown) having the above-described injection timing control solenoid valve and the like.
  • the other configuration is the same as that of the cleaning apparatus 1 shown in FIG.
  • the cleaning apparatus of this embodiment first, only the first injection timing control solenoid valve is opened, and as shown in FIG. 10 (a), a fluid for forcibly flowing the cleaning liquid 2 toward the object to be cleaned is provided.
  • the first fluid ejection nozzle 4a only ejects the object to be cleaned.
  • a fluid for forcibly flowing the cleaning liquid 2 toward the object to be cleaned is jetted from only the second fluid jet nozzle 4a toward the object to be cleaned.
  • the forced flow of the cleaning liquid 2 toward the object to be cleaned is maintained, and the forced flow direction of the cleaning liquid 2 is changed. Can be changed by about 90 degrees.
  • the entire surface of the object to be cleaned can be uniformly cleaned as in the above-described embodiments. Can be.
  • no uneven cleaning occurs due to the position of the object to be cleaned in the circular immersion cleaning tank 42.
  • FIG. 11 is a diagram showing a cleaning tank portion of the cleaning apparatus of this embodiment. Near the bottom of the cleaning tank 3, two fluid injection nozzles 44 a for injecting a fluid for forcibly flowing the cleaning liquid 2 are shown. 4 4 b are arranged in parallel. These two fluid ejection nozzles 44 a and 44 b have an L-shape, and are respectively held by nozzle moving devices 45 installed outside the cleaning tank 3. The two fluid injection nozzles 44a and 44b are configured to move in the cleaning tank 3 in a substantially horizontal direction along the bottom surface by the nozzle moving device 45.
  • the two fluid injection nozzles 44a and 44b are connected to the cleaning liquid circulation system 8 with a liquid feed pump 12 and a gas introduction device 14 interposed in the same manner as the cleaning device 1 shown in FIG. ing.
  • two fluid injection nozzles 44 a and 44 b are connected to one cleaning liquid circulation pipe 15 connected to the gas introduction device 14.
  • the cleaning liquid circulation pipe 15 is formed of a flexible pipe so as not to hinder the movement of the fluid injection nozzles 44a and 44b. Other than these, see Figure 1. It has the same configuration as the cleaning device 1 shown.
  • FIG. 12 (a) when the fluid is jetted in a state where the two fluid jet nozzles 44a and 44b are respectively located at the outermost positions.
  • the cleaning liquid 2 flows from bottom to top at both ends of the immersion cleaning tank 3, and the cleaning liquid 2 flows from top to bottom near the center. Due to the forced flow of the cleaning liquid 2 toward the object to be cleaned in the vicinity of the central portion, a unique cleaning power is mainly applied to the upper surface side of the object to be cleaned.
  • the two fluid injection nozzles 44a and 44b are respectively moved toward the center of the tank as indicated by arrow B in the figure.
  • Fig. 12 (b) when the two fluid injection nozzles 44a and 44b move to the innermost positions, respectively, as shown by arrow C in the figure, Near the center, the cleaning liquid 2 flows from bottom to top, and at both ends, the cleaning liquid 2 flows from top to bottom.
  • the flow direction of the cleaning liquid 2 is 180 degrees opposite from the initial state (shown in Fig. 12 (a)). It changes continuously to the inverted state (shown in Fig. 12 (b)). Therefore, the object to be cleaned is directly exposed to the flow of the cleaning liquid 2 from both the front and back surfaces, and also from the intermediate direction, so that the entire surface of the object to be cleaned can be uniformly cleaned.
  • the injection from the fluid injection nozzles 44a and 44b is a parallel injection, there is no stagnation point in the flow of the cleaning liquid 2 even during the movement of the fluid injection nozzles 44a and 44b. Therefore, there is no unevenness in cleaning depending on the position of the object to be cleaned in the immersion cleaning tank 3.
  • one or a plurality of fluid ejection nozzles may be moved all over the immersion cleaning tank 3. It can also be configured to be moved over As described above, if the direction of flow of the cleaning liquid 2 can be changed by moving the fluid ejection nozzle, and preferably by 180 degrees, the same effect as in the above embodiment can be obtained.
  • the disposition position of the fluid injection nozzles 4 is not limited to the vicinity of the bottom of the immersion cleaning tank 3 but may be the vicinity of the side wall of the immersion cleaning tank 3. In this way, by disposing the fluid injection nozzle near the side wall of the immersion cleaning tank, the nozzle movable type A cleaning device can be applied. In this case, it is preferable to move the fluid ejection nozzle by 180 degrees or more.
  • the cleaning device shown in FIG. 13 has four fluid injection nozzles 4 for injecting a fluid for forcibly flowing the cleaning solution 2 near the bottom of the immersion cleaning tank 3, similarly to the cleaning device shown in FIG. .
  • a cleaning liquid outlet 7 is provided at the bottom of the immersion cleaning tank 3, and the cleaning liquid outlet 7 is connected to a cleaning liquid circulation system 8.
  • a first cleaning liquid valve 9, a Y-strainer 10, a filter 11, and a pressurizing pump are sequentially inserted as a liquid sending pump 12 for circulating the cleaning liquid.
  • a gas introducing device 14, for example, the above-described ejector force is connected to the discharge side of the liquid sending pump 12 via an electromagnetic valve serving as a cleaning liquid gate valve 13.
  • the gas introduction device 14 and the four fluid injection nozzles 4 are connected by a cleaning liquid circulation pipe 15.
  • the injector serving as the gas introduction device 14 is connected to a compressed air supply source 20 via a check valve 17 for backflow prevention, a compressed air gate valve 18 and a Mffi valve 19. The same applies to the cleaning liquid regenerating means 22 and the cleaning liquid heating device 23.
  • the cleaning liquid valve 13 and the compressed air gate valve 18 are both opened, so that the mixed fluid of the cleaning liquid and the compressed air or the like is jetted from the fluid jet nozzle 4 while the cleaning target (not shown) is cleaned.
  • the object can be washed.
  • the mixed fluid of the cleaning liquid and the compressed air or the like is jetted in this manner, the fluid is divided as a two-phase flow of gas and liquid, so that when this fluid is jetted into the cleaning liquid 2, the compressed air becomes It becomes fine bubbles. Therefore, uniform cleaning of the object to be cleaned can be enhanced by the mechanical force of the fine bubbles.
  • mist was generated when the pressure of the compressed air became, for example, 0.5 kg / cm 2 or more. If only compressed air is used, in order to prevent the generation of mist, the air pressure must be set to L or pneumatic pressure, where the cleaning effect is hardly obtained. won. On the other hand, by injecting a mixed fluid of the cleaning liquid and the compressed air into the cleaning liquid 2, even if the pressure of the compressed air was set to, for example, 5 kg / c or more, generation of mist could be prevented.
  • FIG. 14 is a diagram showing a cleaning tank portion of the cleaning apparatus of this embodiment.
  • An ultrasonic oscillator 46 is provided near the bottom of the immersion cleaning tank 3. Ultrasonic waves are oscillated upward from the ultrasonic oscillator 46.
  • two fluid ejection nozzles 4 for ejecting a fluid for forcibly flowing the washing liquid are arranged outside the bottom of the immersion washing tank 3. Fluid is ejected upward from these fluid ejection nozzles 4, but flows downward from two washing liquids in a substantial washing area, that is, in the vicinity of the storage position of the basket 26 or the like.
  • the ultrasonic wave The cleaning liquid 2 is forced to flow from above to below in a direction substantially opposite to the direction of ultrasonic oscillation from the oscillator 46, that is, toward the object to be cleaned.
  • the equipment and the like attached to the fluid ejection nozzle 4 are the same as those in the above-described embodiments.
  • the ultrasonic oscillation of the ultrasonic oscillator 46 and the fluid ejection from the fluid ejection nozzle 4 are configured to be alternately switched by a control system (not shown) as means for switching these operations. I have. That is, in the state where the fluid ejection from the fluid ejection nozzle 4 is stopped, the ultrasonic oscillation from the ultrasonic oscillator 46 is performed for a predetermined time, and then the ultrasound oscillation is stopped and the fluid ejection from the fluid ejection nozzle 4 is performed. It is configured to perform for a predetermined time. .
  • the cleaning liquid 2 is forcibly flown in a direction substantially opposite to the ultrasonic oscillation direction from the ultrasonic oscillator 46, and the ultrasonic oscillation from these ultrasonic oscillators 46 and the forced flow of the cleaning liquid 2 are alternately performed.
  • the object to be cleaned immersed in the immersion cleaning tank 3 receives mechanical cleaning power from both the front and back surfaces in this order. Therefore, the entire surface of the object to be cleaned is uniformly cleaned, and is uniformly cleaned regardless of the position of the object to be cleaned in the cleaning tank.
  • non-soluble stains are mechanically peeled off by ultrasonic cavitation, and removal of soluble stains is accelerated by the forced flow of the cleaning solution 2. It is possible to efficiently clean an object to be cleaned to which both and adhere to. In this way, by using the ultrasonic oscillator 46 and the fluid jet nozzle 4 for forcibly flowing the cleaning liquid 2, non-soluble dirt and soluble dirt are mixed and the cleaning target is adhered to.
  • An effective cleaning device can be configured.
  • the cleaning method and the cleaning apparatus of the present invention it is possible to suppress the occurrence of uneven cleaning depending on the part of the object to be cleaned and the position in the cleaning tank. It is possible to uniformly clean the entire surface of a large amount of the cleaning object.
  • Such a cleaning method and a cleaning apparatus are useful for cleaning for various industrial uses and the like.
  • the fourth cleaning method and the fourth cleaning apparatus in addition to the above-described effects, the object to be cleaned to which non-soluble dirt and soluble dirt are mixedly adhered can be efficiently removed. It can be washed well. Furthermore, by using a mixed fluid of a cleaning liquid and a gas as the fluid for forcibly flowing the cleaning liquid, in addition to the above effects, the cleaning effect can be enhanced while preventing the generation of mist. The ability to improve the drying properties is possible.

Landscapes

  • Cleaning By Liquid Or Steam (AREA)

Abstract

Provided in a dipping washing tank (3) which contains therein a cleansing liquid (2) are a plurality of fluid injection nozzles (4a, 4b, 4c, 4d) serving to jet a fluid which causes the cleansing liquid (2) to forcibly flow, e.g. a cleansing liquid, compressed air and a mixed fluid thereof, said fluid injection nozzles being disposed in parallel to a tank wall, e.g. a bottom surface (1a) of the dipping washing tank (3). The plurality of fluid injection nozzles (4) are divided into two groups (e.g. 4a and 4d, and 4b and 4c) so that fluid injection timing is alternately switched between the respective groups of the plurality of fluid injection nozzles (4) by an injection timing control device (6) to substantially reverse a direction of forced flow of the cleansing liquid (2). Alternatively, the fluid injection nozzles are made movable to substantially reverse a direction of forced flow of the cleansing liquid. Accordingly, it is possible to uniformly wash an entire surface of an article being washed irrespective of a part and a position of the article being washed.

Description

明 細 書  Specification
洗浄方法および洗浄装置 技術分野  Cleaning method and cleaning device
発明は、 各種部品等の工業洗浄に利用される洗浄方法および洗浄装置に関 する。 背景技術  The present invention relates to a cleaning method and a cleaning apparatus used for industrial cleaning of various parts and the like. Background art
金属部品、 メツキ部品、 塗装部品、電子部品、 半導体部品等の各種の部品に は、 その製 i e程や糸 工程等において、加工油や塵等をはじめとして様々な汚 れが付着する。 このような汚れを有する各種部品の洗浄は、 従来、 C F Cに代表 されるハロゲン化炭化水素系溶剤により行うことが一般的であつた。  Various contaminants, such as processing oil and dust, adhere to various parts such as metal parts, metal parts, painted parts, electronic parts, and semiconductor parts in the manufacturing process and in the yarn process. Conventionally, cleaning of various parts having such stains has been generally performed with a halogenated hydrocarbon solvent represented by CFC.
しかし、 ハロゲンィ! ^化水素系'翻は、有機溶剤中毒予防規則等の法的規制に より明らかなように、 以前から肝臓障害や発癌性等のように人体に悪 響を及ぼ すことが知られている。 また最近では人体だけでなく、地下水汚染やオゾン層の 破壊等、環境への影響も問題視されるに至っている。 このため、 ハロゲン 化 水素系溶剤に代替可能で、 人体や環境に悪 響を及さない洗浄剤や洗浄方法が強 く求められている。 そこで、 ハロゲン化炭化水素系溶剤に代り得る洗浄剤として、 各種の代替洗浄剤が提案されており、 それぞれを用 tヽた洗浄方法が検討されてい る。  However, it is known that Halogenated! Hydrogen-based compounds have long had an adverse effect on the human body, such as liver damage and carcinogenicity, as is evident by legal regulations such as the Ordinance on Prevention of Organic Solvent Poisoning. Have been. Recently, not only the human body, but also environmental impacts such as groundwater pollution and destruction of the ozone layer have been regarded as problems. For this reason, there is a strong demand for cleaning agents and cleaning methods that can be replaced with hydrogen halide solvents and that do not affect the human body or the environment. Accordingly, various alternative cleaning agents have been proposed as cleaning agents that can replace halogenated hydrocarbon solvents, and cleaning methods using each of them have been studied.
ところで、 洗浄性能は洗浄液の洗浄能力によるところが大であるが、 それを補 う因子としては、 洗浄時間、 洗浄液の温度、 洗浄液の振動、 噴射、 撹拌、 流動等 による洗浄液と被洗浄物との間に作用する機械力等が挙げられ、 これらにより洗 浄性能の向上を図ることが行われている。 例えば、■カを披洗浄物に作用させ る方法としては、 従来、 洗浄液中の被洗浄物に超音波を照射する方法、 洗浄液を 噴射する方法、 洗浄液中に圧縮空気等を導入して泡を発生させる方法、被洗浄物 を収容したバスケット等を回転させる方法 (スピン洗浄) 、被洗浄物を揺動させ る方法等が用いられてきた。  By the way, the cleaning performance largely depends on the cleaning ability of the cleaning liquid, but the factors that compensate for it are the cleaning time, the temperature of the cleaning liquid, the vibration of the cleaning liquid, the injection, the stirring, and the flow between the cleaning liquid and the object to be cleaned. The cleaning performance has been improved by these factors. For example, conventional methods of applying water to cleaning objects include irradiating the object to be cleaned in the cleaning liquid with ultrasonic waves, injecting the cleaning liquid, and introducing compressed air or the like into the cleaning liquid to remove bubbles. A method of generating the object, a method of rotating a basket or the like containing the object to be cleaned (spin cleaning), a method of swinging the object to be cleaned, and the like have been used.
しかしながら、 超音波照射や洗浄液、 圧縮空気等の噴射による方法では、 これ ら照射もしくは噴射に対向する面は十分に洗浄できたとしても、 反対側の照射や 噴射が直接あたらな L、面は洗浄効果を十分に得ることができないという問題があ つた。 スピン洗浄は、被洗浄物がバスケット内で移動して傷が付きやすいという 問題、 バスケットの中心付近は相対速度がほぼ零となるために洗浄効果が得られ ないという問題、 さらに被洗浄物の回転に伴って洗浄液も回転するため、被洗浄 物と洗浄液との間の相対速度力上りにくく、 十分な洗浄効果が期待しにくいとい う問題等を有している。 また、 被洗浄物を揺動させる方法は、 スピン洗浄と同様 に、 被洗浄物と洗浄液との間の相対速度を高めることが難しく、十分な洗浄効果 が期待しにくいという問題を有している。 なお、被洗浄物の揺動速度を速くし過 ぎると、被洗浄物に傷等が発生しやすくなる。 However, the method using ultrasonic irradiation or jetting of cleaning liquid, compressed air, etc. However, there was a problem that even if the surface facing the irradiation or injection could be sufficiently cleaned, the irradiation and the injection on the opposite side could not be sufficiently cleaned. The problem of spin cleaning is that the object to be cleaned moves easily in the basket and is easily scratched. The relative speed near the center of the basket is almost zero, and the cleaning effect cannot be obtained. Since the cleaning liquid also rotates with this, there is a problem that the relative speed between the object to be cleaned and the cleaning liquid is hardly increased, and a sufficient cleaning effect is hardly expected. In addition, the method of swinging the object to be cleaned has a problem that, similarly to spin cleaning, it is difficult to increase the relative speed between the object to be cleaned and the cleaning liquid, and it is difficult to expect a sufficient cleaning effect. . If the swing speed of the object to be cleaned is too high, the object to be cleaned is likely to be damaged.
そこで、上述したような問題点を補うために、 例えば対向する 2方向から洗浄 液等を噴射したり、 洗浄液等の噴射ノズルの首振りを行って噴射角度を広げたり、 あるいは超音波洗浄とスピン洗浄とを組合せる等が行われている。 これらの方法 のうち、 例えば対向する 2方向から洗浄液等を噴射した場合には、 その中間点で は液の速度が打消しあってほぼ零となり、洗浄が不十分となる位置が発生してし まう。 また、 噴射ノズルの首振りを行ったとしても、 噴射に対向する面以外は十 分に洗浄効果を得ることができない。 超音波洗浄とスピン洗浄とを組合せたとし ても、 バスケットの内部に存在する被洗浄物は十分に洗浄することができないと いうような問題が生じる。 なお、 超音波発振子を多数配置して、 洗い残しを防ぐ ことも考えられるが、装置が高価となると共に、超音波は波長が短いために、 スケット内部の部品まで十分に洗浄効果を与えることができない。  Therefore, in order to compensate for the above-mentioned problems, for example, the cleaning liquid is sprayed from two opposing directions, the spray nozzle is swung to widen the spray angle, or ultrasonic cleaning and spinning are performed. Combination with cleaning is performed. Of these methods, for example, when the cleaning liquid is sprayed from two opposing directions, the liquid speed cancels out at the intermediate point, becomes almost zero, and a position where cleaning is insufficient occurs. I will. Even if the nozzle is swung, the cleaning effect cannot be obtained sufficiently except for the surface facing the nozzle. Even if the ultrasonic cleaning and the spin cleaning are combined, there arises a problem that an object to be cleaned existing in the basket cannot be sufficiently cleaned. It is also conceivable to arrange a large number of ultrasonic oscillators to prevent unwashed parts.However, the equipment is expensive, and the ultrasonic wave has a short wavelength, so it is necessary to provide a sufficient cleaning effect to the parts inside the sket. Can not.
さらに、 洗浄槽内に被洗浄物を中心として時計回り方向および反時計回り方向 の旋回流を起こすように、 第 1および第 2の噴射ノズルを洗浄槽の各角部に設置 することが提案されている (実開平 6-2740号公報参照) 。 しかし、 この方法では 洗净槽中央部の洗浄液がほとんど流動しないため、 中央部に配置された被洗浄物 には十分に洗浄効果を付与することができないという問題がある。 また、 洗浄槽 の側壁に沿った旋回流に洗浄液の流れが限定されるため、 複数の大型基板等を平 行に配置して洗浄するような場合に、 各基板間の隙間に洗浄液を流すことが難し いというような問題を有している。 —方、圧縮空気を噴射する方法においては、上述したような洗浄効果に対する 問題点に加えて、 圧縮空気が膨張破裂する際にミストを発生させて種々の問題を 引き起こしている。 例えば、 多大な投資を必要とする後処理としての水処理設備 力不要な溶剤系洗浄プロセスは、 ハロゲン化炭化水素系溶剤に代り得る洗浄プロ セスとして注目されているものの、溶剤系洗浄剤は引火点を有するものが多く、 上述したようなミストが発生すると、 安全性の面から極めて好ましくない状況が 生じることになる。 また、 通常の洗浄装置においては、 洗浄工程に続いて乾燥ェ 程を行う場合が多く、上述したようなミストが発生すると、乾燥性能に 響を 及ぼすことになる。 Furthermore, it has been proposed to install first and second spray nozzles at each corner of the cleaning tank so as to generate a swirling flow in the cleaning tank in the clockwise and counterclockwise directions around the object to be cleaned. (See Japanese Utility Model Application Laid-Open No. 6-2740). However, this method has a problem that the cleaning liquid in the central portion of the washing tank hardly flows, so that the object to be cleaned disposed in the central portion cannot be sufficiently provided with a cleaning effect. In addition, since the flow of the cleaning liquid is limited to a swirling flow along the side wall of the cleaning tank, when the cleaning is performed by arranging a plurality of large substrates or the like in parallel, the cleaning liquid is supplied to the gap between the substrates. There is a problem that it is difficult. —On the other hand, in the method of injecting compressed air, in addition to the above-mentioned problems with the cleaning effect, mist is generated when the compressed air expands and bursts, causing various problems. For example, water treatment equipment as a post-treatment that requires a large investment The solvent-based cleaning process that does not require power is attracting attention as a cleaning process that can replace halogenated hydrocarbon solvents, but solvent-based cleaning agents are flammable Many have points, and the occurrence of mist as described above may lead to an extremely unfavorable situation in terms of safety. In addition, in a usual cleaning apparatus, a drying step is often performed following the cleaning step, and the generation of the mist as described above affects the drying performance.
上述したように、 従来の機械力による洗浄性能の向上方法は、 いずれも,力 が作用する位置が限られていたり、機械力が作用する位置に偏りが生じてしまう ため、 被洗浄物の全面に対して、特にバスケット等に重なりあって収容された被 洗浄物の全面に平均的に,力を作用させることができず、洗浄むらが生じてし まうという欠点を有していた。  As described above, the conventional methods for improving the cleaning performance by mechanical force all have limited positions where the force is applied, or cause a bias in the position where the mechanical force is applied. On the other hand, in particular, a force cannot be exerted on the entire surface of the object to be washed, which is housed in an overlapped manner with a basket or the like, so that the washing is uneven.
本発明の目的は、被洗浄物の部位や位置に関係なく、被洗浄物の全面を均一に 洗浄することを可能にした洗浄方法および洗浄装置を提供することにある。 発明の開示  SUMMARY OF THE INVENTION An object of the present invention is to provide a cleaning method and a cleaning apparatus capable of uniformly cleaning the entire surface of an object to be cleaned irrespective of a part or position of the object to be cleaned. Disclosure of the invention
本発明における第 1の洗浄方法は、 洗浄液が収容された洗浄槽内に被洗浄物 を浸漬して洗浄する方法において、前記洗浄液を前記被洗浄物に向けて強制流動 させる流体を噴射する複数の流体噴射ノズルを、 前記洗浄槽の 1つの槽壁に沿つ て平行に、 かつ略同一方向に向けて配置し、前記複数の流体噴射ノズルを 2分し て、 これら 2分された複数の流体噴射ノズルからの流体噴射時期を交互に切替え ることにより、 前記洗浄液の強制流動方向を略反転させつつ、 前記洗浄を行うこ とを特徴としている。  A first cleaning method according to the present invention is a method for cleaning by immersing an object to be cleaned in a cleaning tank containing a cleaning liquid, wherein a plurality of fluids for forcibly flowing the cleaning liquid toward the object to be cleaned are jetted. A fluid ejection nozzle is arranged in parallel and substantially in the same direction along one tank wall of the cleaning tank, and the plurality of fluid ejection nozzles are divided into two, and the plurality of fluids divided into two are divided. By alternately switching the fluid ejection timing from the ejection nozzle, the cleaning is performed while the forced flow direction of the cleaning liquid is substantially reversed.
第 2の洗浄方法は、洗浄液が収容された洗浄槽内に被洗浄物を浸漬して洗浄す る方法において、 前記洗浄液を前記被洗浄物に向けて強制流動させる流体を噴射 する複数の流体噴射ノズルを、 前記被洗浄物を囲うように前記洗浄槽内に配置し、 前記複数の流体噴射ノズルから前記被洗浄物に向けて前記流体を噴射時期を順に 切替えつつ噴射させることにより、前記洗浄液の強制流動方向を順に変化させつ つ、前言己洗浄を行うことを特徴としている。 A second cleaning method is a method of immersing an object to be cleaned in a cleaning tank containing a cleaning liquid for cleaning, wherein a plurality of fluid jets for injecting a fluid for forcibly flowing the cleaning liquid toward the object to be cleaned are provided. A nozzle is disposed in the cleaning tank so as to surround the object to be cleaned, and the timing of jetting the fluid from the plurality of fluid ejection nozzles toward the object to be cleaned is sequentially. It is characterized in that self-cleaning is performed while changing the forced flow direction of the cleaning liquid in order by injecting while switching.
第 3の洗浄方法は、洗浄液が収容された洗浄槽内に被洗浄物を浸漬して洗浄す る方法において、 前記洗浄液を前記被洗浄物に向けて強制流動させる流体を噴射 する少なくとも 1つの流体噴射ノズルを前記洗浄槽内に配置し、前記流体噴射ノ ズルを移動させることにより、前記洗浄液の強制流動方向を変化させつつ、前記 洗浄を行うことを特徴としている。 第 3の洗浄方法は、 特に前記流体噴射ノズル を略水平方向に移動させることにより、前記洗浄液の強制流動方向を略反転させ ることを特徴としている。  A third cleaning method is a method of immersing an object to be cleaned in a cleaning tank containing a cleaning liquid for cleaning, wherein at least one fluid for injecting a fluid for forcibly flowing the cleaning liquid toward the object to be cleaned is provided. The cleaning is performed while changing the direction of the forced flow of the cleaning liquid by disposing an injection nozzle in the cleaning tank and moving the fluid injection nozzle. The third cleaning method is characterized in that the forced flow direction of the cleaning liquid is substantially reversed by moving the fluid jet nozzle in a substantially horizontal direction.
4の洗浄方法は、洗浄液が収容され、 かつ超音波発振子が配置された洗浄槽 内に被洗浄物を浸漬して洗浄する方法において、 前記洗浄液を前記超音波発振子 からの超音波発振方向と略反対方向に強制流動させる流体を噴射する流体噴射ノ ズルを前記洗浄槽内に配置し、前言 音波発振子からの超音波発振と前記流体噴 射ノズルからの流体噴射とを交互に切替えつつ、 前記洗浄を行うことを特徴とし ている。 A fourth cleaning method is a method in which an object to be cleaned is immersed in a cleaning tank in which a cleaning liquid is contained and an ultrasonic oscillator is disposed, and the ultrasonic wave is transmitted from the ultrasonic oscillator. A fluid ejection nozzle for ejecting a fluid forcibly flowing in a direction substantially opposite to the direction is disposed in the cleaning tank, and alternately switches between ultrasonic oscillation from the ultrasonic oscillator and fluid ejection from the fluid ejection nozzle. In addition, the cleaning is performed.
さらに、 上述した第 1、 第 2、 第 3および第 4の洗浄方法において、前記流体 噴射ノズルから前記洗浄液の単独流体または前記洗浄液と気体との混合流体を噴 射させることを特徵としている。  Further, the first, second, third and fourth cleaning methods described above are characterized in that a single fluid of the cleaning liquid or a mixed fluid of the cleaning liquid and a gas is jetted from the fluid jet nozzle.
本発明における第 1の洗浄装置は、 洗浄液が収容され、 前記洗浄液中に被洗浄 物が浸漬される洗浄槽と、前記洗浄槽内に、 該洗浄槽の 1つの槽壁に沿って平行 に、 かつ略同一方向に向けて配置され、前記洗浄液を前記被洗浄物に向けて強制 流動させる流体を噴射する、 第 1の群と第 2の群に分けられた複数の流体噴射ノ ズルと、前記第 1の群の流体噴射ノズルからの流体噴射時期と前記第 2の群の流 体噴射ノズルからの流体噴射時期とを交互に切替え、 前記洗浄液の強制流動方向 を略反転させる噴射時期制御手段とを具備することを特徴としている。  A first cleaning apparatus according to the present invention includes: a cleaning tank in which a cleaning liquid is contained, and an object to be cleaned is immersed in the cleaning liquid; and a cleaning tank in the cleaning tank, wherein the cleaning liquid is contained along one tank wall of the cleaning tank. A plurality of fluid ejection nozzles, which are arranged in substantially the same direction and eject fluid for forcibly flowing the washing liquid toward the object to be washed, divided into a first group and a second group; Injection timing control means for alternately switching the fluid injection timing from the first group of fluid injection nozzles and the fluid injection timing from the second group of fluid injection nozzles, and substantially inverting the forced flow direction of the cleaning liquid; It is characterized by having.
第 2の洗浄装置は、洗浄液が収容され、前記洗浄液中に被洗浄物が浸漬される 洗浄槽と、 前記被洗浄物を囲うように前記洗浄槽内に配置され、 前記洗浄液を前 記被洗浄物に向けて強制流動させる流体を前記被洗浄物に向けて噴射する複数の 流体噴射ノズルと、 前記複数の流体噴射ノズルからの流体噴射時期を順に切替え、 前記洗浄液の強制流動方向を順に変化させる噴射時期制御手段とを具備すること を特徴としている。 The second cleaning device is provided with a cleaning tank for storing a cleaning liquid and immersing the object to be cleaned in the cleaning liquid, and disposed in the cleaning tank so as to surround the object to be cleaned. A plurality of fluid ejection nozzles for injecting a fluid forcibly flowing toward an object toward the object to be cleaned, and sequentially switching fluid ejection timings from the plurality of fluid ejection nozzles, Injection timing control means for sequentially changing the forced flow direction of the cleaning liquid.
第 3の洗浄装置は、洗浄液が収容され、前記洗浄液中に披洗净物が浸潰される 洗浄槽と、 前記洗浄槽内に移動可能に配置され、 前記洗浄液を前記被洗浄物に向 けて強制流動させる流体を噴射する少なくとも 1つの流体噴射ノズルと、 前記流 体噴射ノズルを移動させ、前記洗浄液の強制流動方向を変化させるノズル移動手 段とを具備することを特徴としている。 第 3の洗浄装置は、特に前記ノズル移動 により前記流体噴射ノズルを略水平方向に移動させ、前記洗浄液の強制流動方向 を略反転させることを特徴としている。  The third cleaning device is provided with a cleaning tank in which the cleaning liquid is contained and the cleaning liquid is immersed in the cleaning liquid, and is disposed movably in the cleaning tank, and the cleaning liquid is directed toward the cleaning object. It is characterized by comprising at least one fluid ejecting nozzle for ejecting a fluid to be forcibly flown, and a nozzle moving means for moving the fluid ejecting nozzle to change a forced flowing direction of the cleaning liquid. The third cleaning device is characterized in that the fluid ejection nozzle is moved in a substantially horizontal direction by the nozzle movement, and the forced flowing direction of the cleaning liquid is substantially reversed.
第 4の洗浄装置は、洗浄液が収容され、前記洗浄液中に被洗浄物が浸漬される 洗浄槽と、 前記洗浄槽内に配置された超音波発振子と、前記洗浄槽内に配置さ 前記超音波発振子からの超音波発振方向と略反対方向に前記洗浄液を強制流動さ せる流体を噴射する流体噴射ノズルと、 前記超音波発振子からの超音波発振と前 記流体噴射ノズルからの流体噴射とを交互に切替える手段とを具備することを特 徴としている。  The fourth cleaning device includes a cleaning tank in which a cleaning liquid is contained and an object to be cleaned is immersed in the cleaning liquid; an ultrasonic oscillator disposed in the cleaning tank; and an ultrasonic oscillator disposed in the cleaning tank. A fluid ejecting nozzle for ejecting a fluid for forcibly flowing the cleaning liquid in a direction substantially opposite to an ultrasonic oscillation direction from the ultrasonic oscillator, and an ultrasonic oscillation from the ultrasonic oscillator and fluid ejection from the fluid ejecting nozzle. And means for alternately switching between.
さらに、 上述した第 1、 第 2、 第 3および第 4の洗浄装置において、 前記流体 として前記洗净液を前記流体噴射ノズルから噴射させる送液ポンプを具備するこ と、 あるいは前記洗浄液を前記流体噴射ノズルから噴射させる送液ポンプと、 前 記送液ポンプと前記流体噴射ノズルとの間に配置され、前記洗浄液中に圧縮気体 を混合導入する気体導入手段とを具備し、前記流体として前記洗浄液と気体との ― 混合流体を前記流体噴射ノズルから噴射させることを特徴としている。  Further, in the first, second, third and fourth cleaning apparatuses described above, a liquid feed pump for injecting the cleaning liquid as the fluid from the fluid injection nozzle is provided, or the cleaning liquid is supplied to the fluid. A liquid feed pump for jetting from the injection nozzle; and gas introducing means disposed between the liquid feed pump and the fluid injection nozzle for mixing and introducing a compressed gas into the cleaning liquid, wherein the cleaning liquid is used as the fluid. And a mixture of a gas and a gas. The mixed fluid is ejected from the fluid ejection nozzle.
第 1および第 2の洗浄方法においては、洗浄液を被洗浄物に向けて強制流動さ せる流体を複数の流体噴射ノズルから切替えつつ噴射するため、 洗浄液の強制流 動方向を変化させることができる。 従って、 洗浄槽内に浸漬された被洗浄物は、 異なる方向からの洗浄液の強制流動にそれぞれ直接晒されることになり、 全面が 均一に洗浄される。 また、被洗浄物に向けて洗浄液を強制流動させる方向を変化 させるため、 洗浄液の流動に滞留点 (流速が零となる点) を生じることがない。 従って、 洗浄槽内の被洗浄物の位置によらずに均一に洗浄される。 そして、 第 1 の洗浄方法においては、 洗浄液の強制流動方向を略反転させつつ洗浄を行うため、 確実に被洗浄物の全面を均一に洗浄することができる。 また、 第 2の洗浄方法に おいては、 披洗浄物に直接向う洗浄液の強制流動方向を順に切替えつつ洗浄を行 うため、 確実に被洗浄物の全面を均一に洗浄することができる。 In the first and second cleaning methods, since the fluid for forcibly flowing the cleaning liquid toward the object to be cleaned is ejected while being switched from the plurality of fluid ejection nozzles, the forced flowing direction of the cleaning liquid can be changed. Therefore, the object to be cleaned immersed in the cleaning tank is directly exposed to the forced flow of the cleaning liquid from different directions, and the entire surface is uniformly cleaned. In addition, since the direction in which the cleaning liquid is forced to flow toward the object to be cleaned is changed, there is no occurrence of a stagnation point (point where the flow velocity becomes zero) in the flow of the cleaning liquid. Therefore, the cleaning is performed uniformly regardless of the position of the object to be cleaned in the cleaning tank. In the first cleaning method, the cleaning is performed while substantially reversing the forced flow direction of the cleaning liquid. The entire surface of the object to be cleaned can be surely and uniformly cleaned. In the second cleaning method, the cleaning is performed while sequentially switching the forced flow direction of the cleaning liquid directly to the cleaning object, so that the entire surface of the cleaning object can be surely and uniformly cleaned.
第 3の洗浄方法においては、 洗浄液を被洗浄物に向けて強制流動させる流体を 噴射する流体噴射ノズルを移動させるため、 洗浄液の強制流動方向を変化させる ことができる。 従って、洗浄槽内に浸漬された被洗浄物は、異なる方向からの洗 浄液の強制流動にそれぞれ直接晒されることになり、 全面が均一に洗浄される。 また、 被洗浄物に向けて洗浄液を強制流動させる方向を連続的に変化させるため、 洗浄液の流動に滞留点を生じることがない。 従って、 洗浄槽内の披洗浄物の位置 によらずに均一に洗浄される。 特に、流体噴射ノズルを略水平方向に移動させ、 洗浄液の強制流動方向を略反転させつつ洗浄を行うことによって、 より確実に被 洗浄物の全面を均一に洗浄することができる。  In the third cleaning method, the direction of the forced flow of the cleaning liquid can be changed because the fluid ejecting nozzle that ejects the fluid for forcibly flowing the cleaning liquid toward the object to be cleaned is moved. Therefore, the object to be cleaned immersed in the cleaning tank is directly exposed to the forced flow of the cleaning liquid from different directions, and the entire surface is uniformly cleaned. In addition, since the direction in which the cleaning liquid is forced to flow toward the object to be cleaned is continuously changed, there is no stagnation point in the flow of the cleaning liquid. Therefore, it is uniformly cleaned regardless of the position of the cleaning object in the cleaning tank. In particular, by moving the fluid ejection nozzle in a substantially horizontal direction and performing the cleaning while substantially reversing the forced flow direction of the cleaning liquid, the entire surface of the object to be cleaned can be more reliably and uniformly cleaned.
第 4の洗浄方法においては、 超音波発振子からの超音波発振方向と略反対方向 に洗浄液を強制流動させるため、洗浄槽内に浸漬された被洗浄物は異なる方向か らの機械的な洗浄力をそれぞれ受けることになる。 従って、被洗浄物の全面が均 —に洗浄されると共に、 洗浄槽内の被洗浄物の位置によらずに均一に洗浄される。 また、 超音波によるキヤビテイシヨンにより、非溶解性の汚れが機械的に剥がさ れると共に、 洗浄液の強制流動により溶解性の汚れの除去が促進されるため、 非 溶解性の汚れと溶解性の汚れとが混在付着する被洗浄物を効率よく洗浄すること ができる。  In the fourth cleaning method, the cleaning liquid is forcibly flowed in a direction substantially opposite to the ultrasonic oscillation direction from the ultrasonic oscillator, so that the object to be cleaned immersed in the cleaning tank is mechanically cleaned from a different direction. You will receive power. Accordingly, the entire surface of the object to be cleaned is uniformly cleaned, and the surface of the object to be cleaned is uniformly cleaned regardless of the position of the object in the cleaning tank. In addition, ultrasonic cavitation mechanically removes insoluble dirt and facilitates the removal of soluble dirt by the forced flow of the cleaning solution. It is possible to efficiently wash the objects to be cleaned that are mixed and adhered.
さらに、 上述した本発明の洗浄方法において、 特に流体噴射ノズルから洗浄液 と気体との混合流体を噴射した場合、 流体は気体と液体の二相流として分断され ているため、 この流体が洗浄液中に噴射されるときに気体は微細な気泡となる。 従って、微細な気泡による機械力によって、被洗浄物をより均一に洗浄すること ができる。 また、 気体を衡田な気泡とすることによって、 ミストの発生を防止す ることができる。  Further, in the above-described cleaning method of the present invention, particularly when a mixed fluid of a cleaning liquid and a gas is injected from the fluid injection nozzle, the fluid is divided as a two-phase flow of the gas and the liquid. The gas becomes fine bubbles when injected. Therefore, the object to be cleaned can be more uniformly cleaned by the mechanical force of the fine bubbles. In addition, generation of mist can be prevented by using gas as a balanced bubble.
また、 第 1および第 2の洗浄装置においては、複数の流体噴射ノズルから洗浄 液を被洗浄物に向けて強制流動させる流体の噴射時期を切替え、 洗浄液の強制流 動方向を変化させる噴射時期制御手段を有しているため、 洗浄槽内に浸潰された 被洗浄物は異なる方向からの洗浄液の強制流動にそれぞれ直接晒されることにな る。 従って、被洗浄物の全面を均一に洗浄することができる。 また、 被洗浄物に 向けて洗浄液を強制流動させる方向が変化するため、 洗浄液の流動に滞留点を生 じることがない。 従って、洗浄槽内の被洗浄物の位置によらずに均一に洗浄され る。 そして、 第 1の洗浄装置においては、洗浄液の強制流動方向が略反転するた め、 確実に被洗浄物の全面を均一に洗浄することができる。 また、 第 2の洗浄装 置においては、 被洗浄物に直接向う洗浄液の強制流動方向が順に変化するため、 確実に被洗浄物の全面を均一に洗浄することができる。 In addition, in the first and second cleaning apparatuses, the injection timing of the fluid for forcibly flowing the cleaning liquid from the plurality of fluid injection nozzles toward the object to be cleaned is switched, thereby changing the direction of the forced flow of the cleaning liquid. Immersed in the cleaning tank The objects to be cleaned are each directly exposed to the forced flow of the cleaning liquid from different directions. Therefore, the entire surface of the object to be cleaned can be uniformly cleaned. In addition, since the direction in which the cleaning liquid is forced to flow toward the object to be cleaned changes, there is no stagnation point in the flow of the cleaning liquid. Therefore, the cleaning is performed uniformly regardless of the position of the object to be cleaned in the cleaning tank. In the first cleaning device, the forced flow direction of the cleaning liquid is substantially reversed, so that the entire surface of the object to be cleaned can be surely and uniformly cleaned. Further, in the second cleaning device, the forced flow direction of the cleaning liquid directly toward the object to be cleaned changes sequentially, so that the entire surface of the object to be cleaned can be surely and uniformly cleaned.
第 3の洗浄装置においては、 洗浄液を強制流動させる流体を噴射する流体噴射 ノズルを移動させ、 洗浄液の強制流動方向を変化させるノズル移動手段を有して いるため、 洗浄槽内に浸漬された被洗浄物は異なる方向からの洗浄液の強制流動 にそれぞれ直接晒されることになる。 従って、被洗浄物の全面を均一に洗浄する ことができる。 また、洗浄液の強制流動方向が変化するため、 洗浄液の流動に滞 留点を生じることがない。 従って、洗净槽内の被洗浄物の位置によらずに均一に 洗浄される。 特に、 流体噴射ノズルを略水平方向に移動させ、 洗浄液の強制流動 方向を略反転させることによって、 より確実に被洗浄物の全面を均一に洗浄する ことができる。  The third cleaning apparatus has a nozzle moving means for moving a fluid jet nozzle for jetting a fluid for forcibly flowing the cleaning liquid to change the direction of the forced flow of the cleaning liquid. The cleaning objects are each directly exposed to the forced flow of the cleaning liquid from different directions. Therefore, the entire surface of the object to be cleaned can be uniformly cleaned. In addition, since the forced flow direction of the cleaning liquid changes, there is no stagnation point in the flow of the cleaning liquid. Therefore, the object is uniformly washed regardless of the position of the object in the washing tank. In particular, by moving the fluid ejection nozzle in a substantially horizontal direction and substantially reversing the forced flow direction of the cleaning liquid, the entire surface of the object to be cleaned can be more reliably and uniformly cleaned.
4の洗浄装置においては、 超音波発振子からの超音波発振方向と略反対方向 に洗浄液を強制流動させる流体噴射ノズルを有しているため、洗浄槽内に浸漬さ れた被洗浄物は異なる方向からの,的な洗净カを受けることになる。 従って、 被洗浄物の全面が均一に洗浄されると共に、 洗浄槽内の被洗浄物の位置によらず に均一に洗浄される。 また、 超音波によるキヤビテイシヨンにより、非溶解性の 汚れが«的に剥がされると共に、洗浄液の強制流動により溶解性の汚れの除去 が促進されるため、 非溶解性の汚れと溶解性の汚れとが混在付着する被洗浄物を 効率よく洗浄することができる。 Since the fourth cleaning apparatus has a fluid ejection nozzle for forcibly flowing the cleaning liquid in a direction substantially opposite to the direction of ultrasonic oscillation from the ultrasonic oscillator, the object to be cleaned immersed in the cleaning tank is You will be subject to specific washing from different directions. Accordingly, the entire surface of the object to be cleaned is uniformly cleaned, and the surface of the object to be cleaned is uniformly cleaned regardless of the position of the object in the cleaning tank. In addition, ultrasonic cavitation removes insoluble stains in a non-dissolving manner, and the forced flow of the cleaning solution facilitates the removal of insoluble stains. It is possible to efficiently clean the objects to be cleaned that are mixed and adhered.
さらに、 上述した本発明の洗浄装置において、 特に洗浄液を強制流動させる流 体を洗浄液と気体との混合流体とする気体導入手段を用いることによって、上記 流体が洗浄液中に噴射されるときに気体を微細な気泡とすることができる。 これ によって、 微細な気泡による機械力によって、被洗浄物をより均一に洗浄するこ とができる。 また、 気体を微細な気泡とすることによって、 ミストの発生を防止 することができる。 図面の簡単な説明 Further, in the above-described cleaning apparatus of the present invention, in particular, by using a gas introducing means that uses a fluid for forcibly flowing the cleaning liquid as a mixed fluid of the cleaning liquid and the gas, the gas is injected when the fluid is injected into the cleaning liquid. Fine bubbles can be formed. This allows the object to be cleaned to be more uniformly cleaned by the mechanical force of the fine bubbles. Can be. In addition, generation of mist can be prevented by forming gas into fine bubbles. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の第 1の実施例による洗浄装置の構成を示す図、 図 2は図 1に 示す洗浄装置の動作を説明するための図、 図 3は図 1に示す洗浄装置で気体導入 装置として用いたェジヱクタを示す図、 図 4は図 1に示す洗浄装置における洗浄 液再生装置の概略構成を示す図、 図 5は第 1の実施例の変形例による洗浄装置の 洗浄槽部分を示す図、 図 6は図 5に要部を示す洗浄装置の動作を説明するための 図、 図 7は第 1の実施例の他の変形例による洗浄装置の洗浄槽部分を示す図、 図 8は図 7に要部を示す洗浄装置の動作を説明するための図、 図 9は本発明の第 2 の実施例による洗浄装置の洗浄槽部分を示す図、 図 1 0は図 9に要部を示す洗浄 装置の動作を説明するための図、 図 1 1は本発明の第 3の^ m例による洗浄装置 の洗浄槽部分を示す図、 図 1 2は図 1 1に要部を示す洗浄装置の動作を説明する ための図、 図 1 3は洗浄液と気体との混合流体による具体例に使用した洗浄装置 を示す図、 図 1 4は本発明の第 4の実施例による洗浄装置の洗浄槽部分を示す図 である。 発明を実施するための形態  FIG. 1 is a view showing the configuration of a cleaning apparatus according to a first embodiment of the present invention, FIG. 2 is a view for explaining the operation of the cleaning apparatus shown in FIG. 1, and FIG. FIG. 4 shows a schematic diagram of a cleaning liquid regenerating device in the cleaning device shown in FIG. 1, and FIG. 5 shows a cleaning tank portion of a cleaning device according to a modified example of the first embodiment. FIG. 6, FIG. 6 is a view for explaining the operation of the cleaning apparatus whose main part is shown in FIG. 5, FIG. 7 is a view showing a cleaning tank part of a cleaning apparatus according to another modification of the first embodiment, FIG. FIG. 7 is a view for explaining the operation of the cleaning apparatus showing the main parts, FIG. 9 is a view showing the cleaning tank part of the cleaning apparatus according to the second embodiment of the present invention, and FIG. FIG. 11 is a view for explaining the operation of the cleaning apparatus shown in FIG. 11. FIG. 11 is a view showing a cleaning tank portion of the cleaning apparatus according to the third embodiment of the present invention, and FIG. FIG. 11 is a diagram for explaining the operation of the cleaning device showing the main part, FIG. 13 is a diagram showing a cleaning device used in a specific example using a mixed fluid of a cleaning liquid and a gas, and FIG. FIG. 13 is a view showing a cleaning tank portion of the cleaning device according to the fourth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を urn例によって詳細に説明する。  Hereinafter, the present invention will be described in detail using urn examples.
図 1は、 本発明の第 1の洗浄方法を適用した一実施例の洗浄装置の構成を模式 的に示す図である。 同図に示す洗浄装置 1は、 洗浄液 2が収容された浸漬洗浄槽 3を有している。 浸漬洗浄槽 3の底部付近には、 洗浄液 2を強制流動させる流体 を噴射する流体噴射ノズル 4が配置されている。 この^例では、 4本の流体噴 射ノズル 4 a、 4 b、 4 c、 4 dが浸漬洗浄槽 3の槽壁の 1つである底面 3 aに 沿って平行に配置されている。 各流体噴射ノズル 4はそれぞれ同一方向に、 すな わち上部に向けて開口された 10個の噴射口 5をそれぞれ有している。 なお、 流体 噴射ノズル 4の本数は、 得ようとする洗浄液の流動状態や洗浄槽 3の大きさ等に 応じて設定すればよく、 4本に限定されるものではない。 上述した 4本の流体噴射ノズル 4 a、 4 b、 4 c、 4 dは、 外側 2本の流体噴 射ノズル 4 a、 4 dによる第 1のノズル群と、 内側 2本の流体噴射ノズル 4 b、 4 cによる第 2のノズル群との 2つの群に分けられており、 各群毎に流体噴射時 期を切替えて洗浄液 2の強制流動方向を略反転させる噴射時期制御装置 6が設け られている。 FIG. 1 is a diagram schematically showing a configuration of a cleaning apparatus according to one embodiment to which the first cleaning method of the present invention is applied. The cleaning apparatus 1 shown in FIG. 1 has an immersion cleaning tank 3 in which a cleaning liquid 2 is stored. In the vicinity of the bottom of the immersion washing tank 3, a fluid ejection nozzle 4 for ejecting a fluid for forcibly flowing the washing liquid 2 is arranged. In this example, four fluid ejection nozzles 4 a, 4 b, 4 c, and 4 d are arranged in parallel along a bottom surface 3 a which is one of the tank walls of the immersion cleaning tank 3. Each fluid injection nozzle 4 has ten injection ports 5 opened in the same direction, that is, upwards. The number of the fluid jet nozzles 4 may be set according to the flow state of the cleaning liquid to be obtained, the size of the cleaning tank 3, and the like, and is not limited to four. The four fluid injection nozzles 4a, 4b, 4c, and 4d described above are a first nozzle group consisting of two outer fluid injection nozzles 4a and 4d, and two inner fluid injection nozzles 4 b, 4 c and a second nozzle group, and an injection timing control device 6 for switching the fluid injection timing for each group and substantially reversing the forced flow direction of the cleaning liquid 2 is provided. ing.
浸漬洗浄槽 3の底部には、 洗浄液導出口 7が設けられており、 この洗浄液導出 口 7は洗浄液循環系 8に接続されている。 洗浄液循環系 8には、 第 1の洗浄液弁 9、 Y型ストレーナ 1 0およびフィルタ 1 1を介して、 洗浄液を循環させる送液 ポンプ 1 2として加圧ポンプ (高圧ポンプ) が介挿されている。 送液ポンプ 1 2 の吐出側には、 洗浄液仕切り弁 1 3としての電磁弁を介して、上述した噴射時期 制御装置 6が接続されている。 洗浄液仕切り弁 1 3と噴射時期制御装置 6との間 には、後述する気体導入装置 1 4力《介挿されている。  A cleaning liquid outlet 7 is provided at the bottom of the immersion cleaning tank 3, and the cleaning liquid outlet 7 is connected to a cleaning liquid circulation system 8. A pressurizing pump (high-pressure pump) is interposed in the cleaning liquid circulation system 8 as a liquid sending pump 12 for circulating the cleaning liquid via a first cleaning liquid valve 9, a Y-strainer 10 and a filter 11. . The above-described injection timing control device 6 is connected to the discharge side of the liquid sending pump 12 via an electromagnetic valve as the cleaning liquid gate valve 13. A gas introduction device 14 described below is interposed between the cleaning liquid gate valve 13 and the injection timing control device 6.
噴射時期制御装置 6は、上記群分けされた外側の流体噴射ノズル 4 a、 4 dに よる第 1のノズル群と内側の流体噴射ノズル 4 b、 4 cによる第 2のノズル群毎 に流体噴射を実施し得るように、 第 1のノズル群および第 2のノズル群毎に接続 された洗浄液循環用配管 1 5 a、 1 5 bを有している。 これら洗浄液循環用配管 1 5 a、 1 5 bは、 それぞれ洗浄液循環系 8に接続されていると共に、 第 1のノ ズル群および第 2のノズル群毎に流体噴射時期を制御する第 1および第 2の噴射 時期制御用電磁弁 1 6 a、 1 6 bが介挿されている。 これら噴射時期制御用電磁 弁 1 6 a、 1 6 bの作動は、 図示を省略した制御系により制御される。  The injection timing control device 6 performs the fluid injection for each of the first nozzle group by the outer fluid injection nozzles 4a and 4d and the second nozzle group by the inner fluid injection nozzles 4b and 4c. The first and second nozzle groups have cleaning liquid circulation pipes 15 a and 15 b connected to each other so that the first and second nozzle groups can be implemented. These cleaning liquid circulation pipes 15a and 15b are connected to the cleaning liquid circulation system 8, respectively, and control the fluid injection timing for each of the first nozzle group and the second nozzle group. Injection timing control solenoid valves 16a and 16b of No. 2 are inserted. The operation of these injection timing control solenoid valves 16a and 16b is controlled by a control system not shown.
前述した気体導入装置 1 4は、 上記送液ポンプ 1 2により循環する洗浄液 2中 に圧縮気体、 例えば圧縮空気を導入するものであり、 この実施例ではェジヱクタ が用いられている。 気体導入装置 1 4としてのェジヱクタは、逆流防止用チエツ ク弁 1 7、 圧縮空気 ί±¾り弁 1 8および 弁 1 9を介して、 圧縮空気供給源 2 0に接続されている。 なお、 圧縮気体としては、 洗浄液の種類によっては不活性 ガス等を用いてもよい。 ェジヱクタに関しては後に詳述する。  The above-described gas introduction device 14 is for introducing a compressed gas, for example, compressed air, into the cleaning liquid 2 circulated by the liquid sending pump 12. In this embodiment, an ejector is used. The ejector as the gas introduction device 14 is connected to a compressed air supply source 20 via a check valve 17 for backflow prevention, a compressed air flow control valve 18 and a valve 19. Note that an inert gas or the like may be used as the compressed gas depending on the type of the cleaning liquid. The projector will be described later in detail.
また、上述した洗浄装置 1は、 浸漬洗浄槽 3の底部付近に接続された洗浄液排 出配管 2 1を介して、 洗浄液再生手段 2 2に洗浄液 2が送出されるよう構成され ている。 洗浄液 2は、上記洗浄液再生手段 2 2により再生され、 この再生された 洗浄液は浸漬洗浄槽 3に再供給される。 洗浄液再生手段 2 2に関しては後に詳述 する。 さらに、 浸漬洗浄槽 3には、 洗浄 熱装置 2 3が付設されており、 これ によって洗浄液 2の加温もしくは加熱力可能とされている。 洗浄液加熱装置 2 3 としては、 難燃性油等を加熱媒体とする加熱装置やヒータ等の直接的な加熱装置 が洗浄液 2の種類等に応じて適宜使用される。 Further, the above-described cleaning apparatus 1 is configured so that the cleaning liquid 2 is delivered to the cleaning liquid regenerating means 22 via a cleaning liquid discharge pipe 21 connected near the bottom of the immersion cleaning tank 3. The cleaning liquid 2 is regenerated by the cleaning liquid regenerating means 22 described above. The cleaning liquid is supplied again to the immersion cleaning tank 3. The cleaning liquid regenerating means 22 will be described later in detail. Further, the immersion cleaning tank 3 is provided with a cleaning heat device 23, whereby the cleaning liquid 2 can be heated or heated. As the cleaning liquid heating device 23, a direct heating device such as a heater using a flame-retardant oil or the like as a heating medium or a heater is appropriately used depending on the type of the cleaning liquid 2.
なお、 浸漬洗浄槽 3では、 必要に応じて超音波洗浄や、被洗浄物の揺動洗浄、 スピン洗浄、 バレル洗浄等を併用することができる。 また、必要に応じて、 浸漬 洗浄槽 3に引き続いてすすぎ槽ゃ乾燥装置等が配置される。  In the immersion cleaning tank 3, ultrasonic cleaning, swing cleaning, spin cleaning, barrel cleaning, and the like of an object to be cleaned can be used in combination, if necessary. In addition, if necessary, a rinsing tank, a drying device, and the like are arranged following the immersion washing tank 3.
上述した洗浄装置 1においては、圧縮^ tt¾Iり弁 1 8を閉じ、 かつ第 1の洗 浄液弁 9および洗浄液仕切り弁 1 3を開くことによって、 洗浄液 2を強制流動さ せる流体として洗浄液のみを流体噴射ノズル 4から噴射させることができる。 ま た、 洗浄液仕切り弁 1 3を閉じ、 かつ圧縮空気仕切り弁 1 8を開くことによって、 洗浄液 2を強制流動させる流体として圧縮空気等の気体のみを流体噴射ノズル 4 から噴射させることができる。 さらに、 洗浄液仕切り弁 1 3および圧縮空気仕切 り弁 1 5を共に開くことによって、洗浄液と圧縮空気等との混合流体を流体噴射 ノズル 4から噴射させることができる。  In the cleaning device 1 described above, by closing the compression valve 18 and opening the first cleaning liquid valve 9 and the cleaning liquid gate valve 13, only the cleaning liquid is forced to flow through the cleaning liquid 2. It can be ejected from the fluid ejection nozzle 4. Further, by closing the cleaning liquid gate valve 13 and opening the compressed air gate valve 18, only gas such as compressed air can be injected from the fluid injection nozzle 4 as a fluid for forcibly flowing the cleaning liquid 2. Further, by opening both the cleaning liquid gate valve 13 and the compressed air gate valve 15, a fluid mixture of the cleaning liquid and the compressed air can be injected from the fluid injection nozzle 4.
なお、 洗浄液 2を強制流動させる流体として圧縮空気等の気体のみを使用する 場合には、 送液ポンプ 1 2の吐出側に接続された洗浄液副循環系 2 4に介挿され た第 2の洗浄液弁 2 5を開いて洗浄液 2を循環させる。 このように、 洗浄液 2の 循環を継続させることによって、 洗浄液 2の' の均一化を図ることができる。 また、 実際に洗浄工程を実施している以外の時期についても、 同様に第 2の洗浄 液弁 2 5を開いて洗浄液 2の循環を継続させることが好ましい。 この際には、 洗 浄液仕切り弁 1 3を同時に開いておいてもよい。  When only gas such as compressed air is used as the fluid for forcibly flowing the cleaning liquid 2, the second cleaning liquid inserted into the cleaning liquid sub-circulation system 24 connected to the discharge side of the liquid sending pump 12 is used. Open the valve 25 and circulate the washing liquid 2. In this way, by continuing the circulation of the cleaning liquid 2, the uniformity of the cleaning liquid 2 can be achieved. It is also preferable to open the second cleaning liquid valve 25 to continue the circulation of the cleaning liquid 2 at times other than when the cleaning step is actually being performed. At this time, the cleaning liquid gate valve 13 may be opened at the same time.
上記したように、 洗浄液、 圧縮気体、 洗浄液と圧縮気体との混合流体のいずれ であっても、洗浄液 2を強制流動させることができるが、 後に詳述するミストの 防止や工場エアの大量消費防止、 さらには洗浄液 2のより良好な強制流動の形成 等の点から、 洗浄液ある L、は洗浄液と圧縮空気等との混合流体を用いることが望 ましい。 洗浄液と圧縮空気等との混合流体は、洗浄性能の向上にも寄与する。 ま た、 洗浄液、圧縮空気およびこれらの混合流体の噴射量は、浸漬洗浄槽 3内の洗 浄液 2を強制流動させることができる量であれば特に限定されるものではなく、 被洗浄物の形態、 汚れの程度、 得ようとする洗浄効果等に応じて設定するものと する。 As described above, the cleaning liquid 2 can be forced to flow regardless of the cleaning liquid, the compressed gas, or the mixed fluid of the cleaning liquid and the compressed gas.However, prevention of mist described later and prevention of mass consumption of factory air In view of the formation of a better forced flow of the cleaning liquid 2, it is preferable to use a mixed liquid of the cleaning liquid and compressed air for the cleaning liquid L. The mixed fluid of the cleaning liquid and the compressed air or the like also contributes to the improvement of the cleaning performance. In addition, the injection amount of the cleaning liquid, compressed air, and the mixed fluid of these cleaning liquids is The amount is not particularly limited as long as the amount of the purified liquid 2 can be forcedly flowed, and is set according to the form of the object to be cleaned, the degree of contamination, the cleaning effect to be obtained, and the like.
上述したような洗浄装置 1で用いる洗浄液 2としては、 水系洗浄剤、 溶剤系洗 浄剤のような非水系洗浄剤等、 各種の洗浄剤を使用することができるが、 本発明 の洗浄装置 1に対しては特に溶剤系洗浄剤が好適である。 溶剤系洗浄剤としては、 シリコーン系溶剤、 炭化水素系溶剤、 ペルフルォロカーボン系溶剤、 テルペン系 溶剤、 これらの混合溶剤等、 もしくはこれらにアルコール等の洗浄有効成分や各 種添加剤を加えたものが挙げられる。 また、 アルキルアミンオキサイド系 、 ポリグリコール系溶剤、 テルペン系溶剤、炭化水素系溶剤、 およびこれらと界面 活性剤とを含む洗浄剤のように、 溶剤を主成分とする «物で洗浄した後、 その 洗浄組成物を水によりすすぐことが可能な準水系洗浄剤と呼ばれる溶剤系洗浄剤 の一種を用いることもできる。  As the cleaning liquid 2 used in the cleaning device 1 as described above, various cleaning agents such as a non-aqueous cleaning agent such as a water-based cleaning agent and a solvent-based cleaning agent can be used. In particular, a solvent-based cleaning agent is preferable. Solvent-based cleaning agents include silicone-based solvents, hydrocarbon-based solvents, perfluorocarbon-based solvents, terpene-based solvents, mixed solvents of these, etc., or the addition of cleaning active ingredients such as alcohol and various additives. One. Further, after washing with an object mainly composed of a solvent, such as an alkylamine oxide-based solvent, a polyglycol-based solvent, a terpene-based solvent, a hydrocarbon-based solvent, and a detergent containing these and a surfactant, One type of solvent-based cleaning agent called a semi-aqueous cleaning agent that can rinse the cleaning composition with water can also be used.
なお、 水系洗浄剤としては、 無機酸、 有機酸、 アルカリ等の水溶液、 界面活性 剤を主成分とする洗剤およびこれらの水溶液、 さらにはこれらに各種添加剤を加 えたもの等が挙げられる。 洗浄液に関しては、 後述する他の実施例においても同 様 、ある。  Examples of the aqueous detergent include aqueous solutions of inorganic acids, organic acids, alkalis, and the like, detergents containing a surfactant as a main component, and aqueous solutions of these, and those obtained by adding various additives thereto. The same applies to the cleaning liquid in other examples described later.
本発明の洗浄装置は、 上述したように、特に溶剤系洗浄剤のように洗浄剤自体 の溶解力により洗浄効果を発揮する洗浄剤と組合せることが好ましい。 本発明の 洗浄装置によれば、 強制流動により洗浄液の拡散を速めることができるため、 洗 浄剤自体の溶解力による洗净効果をより一層高めることができる。  As described above, the cleaning device of the present invention is preferably combined with a cleaning agent that exerts a cleaning effect by the dissolving power of the cleaning agent itself, such as a solvent-based cleaning agent. According to the cleaning device of the present invention, the diffusion of the cleaning liquid can be accelerated by the forced flow, so that the cleaning effect by the dissolving power of the cleaning agent itself can be further enhanced.
また、 τΚ系洗浄剤では汚れを洗浄剤中に分散させるのに対して、 溶剤系洗浄剤 は油脂等の汚れを洗浄剤中に溶かし込むことからも、 本発明の洗浄装置に好適で あるといえる。 すなわち、 水系洗浄剤の多くは界面活性剤を含有し、 界面活性剤 の親水基や疎水基 (親油基) の働きにより油脂等の汚れを取り込み、水系洗浄剤 中に分散させる。 この際、 油脂の比重は水のそれより軽いため、 界面活性剤によ り取り込まれた油脂等の汚れは水系洗浄剤の水面上に浮上することになる。 これ 力往々にして水系洗浄剤中で洗浄された被洗浄物を引上げる際に被洗浄物に再付 着し、被洗浄物を再汚染することがある。 さらに、 界面活性剤により取り込まれ た油脂等の汚れが循環系に入り込み、 管路内の流れの澱み部に滞留して管路を汚 したり、 フィルタエレメントに付着してフィル夕の目詰まりの原因となったりす る。 溶剤系洗浄剤は水系洗浄剤とは異なり、 油脂等の汚れと互いに溶かしあって 均一相となる。 このため、 溶剤系洗净剤の液表面に浮上して出てくるものもなけ れば、 管路内での滞留やフィルタエレメントへの付着等を招くこともない。 洗净 槽内の洗浄液を強力に撹拌する本発明の洗浄装置においては、 洗浄液循環系 8等 の管路系か'不可欠であるため、 これら管路系への影響を考えると溶剤系洗浄剤の 使用が好ましいといえる。 Further, while a τΚ-based detergent disperses dirt in the detergent, a solvent-based detergent dissolves dirt such as oils and fats in the detergent, which is suitable for the cleaning device of the present invention. I can say. In other words, most aqueous detergents contain a surfactant, and the hydrophilic and hydrophobic groups (lipophilic groups) of the surfactant take in dirt such as oils and fats and disperse them in the aqueous detergent. At this time, since the specific gravity of the fat is lighter than that of water, the dirt such as the fat taken in by the surfactant floats on the water surface of the aqueous detergent. Frequently, when the object to be cleaned which has been washed in the aqueous cleaning agent is pulled up, it may be reattached to the object to be cleaned and recontaminated. In addition, it is taken up by surfactant Dirt such as oils and fats enter the circulation system and accumulate in the stagnation portion of the flow in the pipeline, contaminating the pipeline, and adhering to the filter element, causing clogging of the filter. Solvent-based detergents differ from water-based detergents in that they dissolve in oils and other stains to form a homogeneous phase. For this reason, there is no thing that floats on the liquid surface of the solvent-based detergent, and neither stays in the pipeline nor adheres to the filter element. In the cleaning apparatus of the present invention that vigorously agitates the cleaning liquid in the cleaning tank, a pipe system such as a cleaning liquid circulation system 8 is indispensable. It can be said that use is preferable.
溶剤系洗浄剤の使用が好ましいさらに他の理由としては、泡の発生が少ないこ とが挙げられる。 先に述べたように、 水系洗浄剤の多くは界面活性剤を含有する が、 この界面活性剤が原因となって水系洗浄剤では泡の発生が避けられない。 泡 力多量に発生すると、洗浄液を強制流動させた際に泡が洗浄槽からあふれだし、 洗浄装置内の各部に設置されている電動機、電磁弁、 センサ類等の電装品に接触 して、 絶縁が保たれなくなるという危険な状態を招くことになる。 さらに、洗浄 槽内で強力に撹拌されている洗浄液中にも泡が混入するが、 これが管路系に入つ て送液ポンプに送られると、 ポンプ能力の低下や故障の原因となる。 あるいは、 送液ポンプに送られた気泡が断熱的に圧縮されることにより、 洗浄液の液温が異 常に上昇するという不具合を招くこともある。 界面活性剤を使用しない溶剤系洗 浄剤では泡の発生はほとんどなく、泡に起因する問題力生じないことを考えると、 本発明の洗浄装置には溶剤系洗浄剤の使用が好ましいといえる。  Still another reason why the use of a solvent-based cleaning agent is preferable is that generation of bubbles is small. As mentioned earlier, many water-based detergents contain surfactants, but these surfactants cause foaming inevitable in aqueous detergents. When a large amount of bubbling force is generated, the bubbles overflow from the cleaning tank when the cleaning liquid is forced to flow, and come into contact with electrical components such as electric motors, solenoid valves, and sensors installed in each part of the cleaning device, and become insulated. Is in danger of not being maintained. In addition, bubbles are mixed in the washing liquid that is strongly stirred in the washing tank, but if this enters the pipeline system and is sent to the liquid sending pump, it will cause a drop in pump capacity and cause a failure. Alternatively, there may be a problem that the temperature of the cleaning liquid is abnormally increased due to adiabatic compression of bubbles sent to the liquid pump. Considering that a solvent-based detergent that does not use a surfactant hardly generates bubbles and does not cause any problem caused by the bubbles, it can be said that the use of a solvent-based detergent in the cleaning apparatus of the present invention is preferable.
次に、上述した洗浄装置 1による被洗浄物の洗浄方法について述べる。  Next, a method of cleaning an object to be cleaned by the above-described cleaning apparatus 1 will be described.
図 2に示すように、 バスケット 2 6に収容された披洗浄物 2 7は、浸漬洗浄槽 3に浸漬されて、 その表面に付着する油系、 水系等の各種の汚れが除去される。 この際に、 まず図 2 ( a ) に示すように、第 1の噴射時期制御用電磁弁 1 6 aを 開くと共に、 第 2の噴射時期制御用電磁弁 1 6 bを閉じることにより、 洗浄液 2 を強制流動させる流体を外側 2本の流体噴射ノズル 4 a、 4 dによる第 1のノズ ル群から噴射する。 噴射する流体は、上述したように洗浄液、 圧縮気体、 これら の混合流体のいずれでもよい。  As shown in FIG. 2, the cleaning object 27 stored in the basket 26 is immersed in the immersion cleaning tank 3 to remove various types of dirt such as oil and water adhered to the surface. At this time, first, as shown in FIG. 2 (a), the first injection timing control solenoid valve 16a is opened and the second injection timing control solenoid valve 16b is closed, whereby the cleaning liquid 2 is opened. Is ejected from the first nozzle group by the two outer fluid ejection nozzles 4a and 4d. The fluid to be ejected may be any of the cleaning liquid, the compressed gas, and the mixed fluid thereof as described above.
外側 2本の流体噴射ノズル 4 a、 4 dによる第 1のノズル群から流体を噴射す ると、 図中矢印で示すように、浸漬洗浄槽 3の左側半分では時計回りの、 右側半 分では反時計回りの強制流動が生じ、 また浸漬洗浄槽 3の両端部では洗浄液 2が 下から上に流れ、 中央部付近では洗浄液 2が上から下に向って流れる。 このよう に、 被洗浄物 2 7が存在する浸漬洗浄槽 3の中央部付近では、 洗浄液 2が被洗浄 物 2 7に向けて上から下に強制流動される。 この洗浄液 2の強制流動によって、 主に被洗浄物 2 7の上面側に対して機械的な洗浄力が付与される。 Injects fluid from the first group of nozzles with two fluid ejection nozzles 4a and 4d on the outside Then, as shown by the arrow in the figure, forced flow occurs clockwise in the left half of the immersion cleaning tank 3 and counterclockwise in the right half of the immersion cleaning tank 3, and the cleaning liquid 2 flows from below at both ends of the immersion cleaning tank 3. The cleaning solution 2 flows upward, and near the center, flows downward from above. As described above, near the center of the immersion cleaning tank 3 in which the object to be cleaned 27 is present, the cleaning liquid 2 is forced to flow toward the object to be cleaned 27 from top to bottom. Due to the forced flow of the cleaning liquid 2, mechanical cleaning power is mainly applied to the upper surface side of the object 27 to be cleaned.
次に、 図 2 (b ) に示すように、 第 2の噴射時期制御用電磁弁 1 6 bを開くと 共に、 第 1の噴射時期制御用電磁弁 1 6 aを閉じることにより、 洗浄液 2を強制 流動させる流体を内側 2本の流体噴射ノズル 4 b、 4 cによる第 2のノズル群か ら噴射する。 内側 2本の流体噴射ノズル 4 b、 4 cによる第 2のノズル群から流 体を噴射すると、 図中矢印で示すように、 強制流動の方向が反転し、 浸漬洗浄槽 3の左側半分では反時計回りの、 右側半分では時計回りの強制流動が生じ、 また 浸漬洗浄槽 3の中央部付近では洗浄液 2か" から上に流れ、両端部では洗浄液 2 が上から下に向って流れる。 このように、被洗浄物 2 7が存在する浸漬洗浄槽 3 の中央部付近では、洗浄液 2が被洗浄物 2 7に向けて下から上に強制流動される。 この洗浄液 2の強制流動によって、主に被洗浄物 2 7の下面側に対して機械的な 洗浄力が付与される。  Next, as shown in FIG. 2 (b), the cleaning liquid 2 is released by opening the second solenoid valve 16b for controlling the injection timing and closing the first solenoid valve 16a for controlling the injection timing. The fluid to be forced to flow is jetted from the second nozzle group by the two inner fluid jet nozzles 4b and 4c. When the fluid is jetted from the second nozzle group by the two fluid jet nozzles 4b and 4c inside, the direction of the forced flow is reversed as shown by the arrow in the figure, and the flow is reversed in the left half of the immersion washing tank 3. In the clockwise, right-hand half, a clockwise forced flow occurs, and near the center of the immersion washing tank 3, the washing liquid 2 flows upward, and at both ends, the washing liquid 2 flows downward from above. In the vicinity of the center of the immersion cleaning tank 3 where the object 27 is present, the cleaning liquid 2 is forced to flow upward from the bottom toward the object 27. The forced flow of the cleaning liquid 2 mainly causes Mechanical detergency is applied to the lower surface of the object 27 to be cleaned.
このように、 外側の流体噴射ノズル 4 a、 4 dによる第 1のノズル群からの流 体噴射と、 内側の流体噴射ノズル 4 b、 4 cによる第 2のノズル群からの流体噴 射とを に切替え、被洗浄物 2 7に向けて洗浄液 2を強制流動させる方向を反 転させることによって、被洗浄物 2 7は上下 180度逆方向の洗浄液 2の流れにそ れぞれ直接晒されることになる。 従って、 1方向の強制流動に比べて、 被洗浄物 2 7の全面に対して均一に機械的な洗浄力を付与することができ、 洗浄むら等の ない良好な洗浄を実施すること力《可能となる。 また、 流体噴射時期を交互に切替 えることにって、 対向する 2方向同時噴射や洗浄液の旋回流のように、 特定の場 所に洗浄液の滞留点を生じることがなく、 浸漬洗浄槽 3内における被洗浄物 2 7 の位置による洗浄むら等を防止することができる。 外側の流体噴射ノズル 4 a、 4 dによる第 1のノズル群からの流体噴射時期と、 内側の流体噴射ノズル 4 b、 4 cによる第 2のノズル群からの流体噴射時期との切替えは、 1回の浸漬当り少 なくとも 1回行えば上記効果を得ることができる力 洗浄効果を高める上で複数 回切替えることが好ましい。 Thus, the fluid ejection from the first nozzle group by the outer fluid ejection nozzles 4a and 4d and the fluid ejection from the second nozzle group by the inner fluid ejection nozzles 4b and 4c And the direction of forced flow of the cleaning liquid 2 toward the object to be cleaned 27 is reversed. become. Therefore, compared to the forced flow in one direction, it is possible to uniformly apply a mechanical cleaning power to the entire surface of the object to be cleaned 27, and it is possible to perform good cleaning without unevenness of cleaning. Becomes In addition, by alternately switching the fluid injection timing, unlike the simultaneous two-way injection and the swirling flow of the cleaning liquid, the cleaning liquid does not have a stagnation point at a specific location, and the immersion cleaning tank 3 In this case, it is possible to prevent uneven cleaning due to the position of the object 27 to be cleaned. Switching between the fluid ejection timing from the first nozzle group by the outer fluid ejection nozzles 4a and 4d and the fluid ejection timing from the second nozzle group by the inner fluid ejection nozzles 4b and 4c is as follows. Low per immersion It is preferable to switch a plurality of times in order to enhance the cleaning effect that can achieve the above-mentioned effect if performed at least once.
また、 複数の大型基板等を平行に配置して洗浄するような場合においても、 洗 浄液 2の強制流動方向と基板の隙間が平行となるように浸漬すれば、基板間の隙 間を通路とする洗浄液 2の流れが生じ、 かつ流体噴射時期の切替えにより流れの 方向が反転するため、良好な汚れの除去効果を得ることができる。 さらに、上記 実施例の洗浄装置 1では、流体噴射ノズル 4を浸漬洗浄槽 3の底部に配置してい るため、被洗浄物 2 7の出入れに悪 響を与えることがなく、 浸漬洗浄槽 3の小 形化やスペース効率の向上を達成することができる。  Also, in the case where a plurality of large substrates or the like are arranged in parallel to perform cleaning, if the substrate is immersed in such a way that the forced flow direction of the cleaning liquid 2 and the gap between the substrates are parallel, a passage between the substrates is formed. Since the flow of the cleaning liquid 2 is generated, and the direction of the flow is reversed by switching the fluid ejection timing, a good dirt removal effect can be obtained. Further, in the cleaning apparatus 1 of the above embodiment, since the fluid injection nozzle 4 is disposed at the bottom of the immersion cleaning tank 3, it does not affect the entry and exit of the object to be cleaned 27, and the immersion cleaning tank 3 is not affected. It is possible to achieve a reduction in size and an improvement in space efficiency.
被洗浄物 2 7は特に限定されるものではなく、金属、 セラミックス、 プラスチ ック等の工業用途の洗浄に適用さ さらに具体的には金属部品、 表面処理部 電子部品、半導体部品、 電気部品、精密機械部品、光学部品、 ガラス部品、 セラ ミックス部品等である。 特にバスケット 2 6等に多量に収容して洗浄する場合に 効果的である。 ただし、 バスケット 2 6等を^せずに、 被洗浄物 2 7を洗浄す ることも可能である。  The object to be cleaned 27 is not particularly limited, and is applicable to cleaning of industrial uses such as metals, ceramics, and plastics. More specifically, metal parts, surface treatment parts, electronic parts, semiconductor parts, electric parts, Precision machine parts, optical parts, glass parts, ceramic parts, etc. This is particularly effective when washing a large amount in a basket 26 or the like. However, it is also possible to wash the object 27 without cleaning the basket 26 or the like.
次に、上記洗浄工程の具体例およびその評価結果について述べる。  Next, specific examples of the above-described cleaning step and evaluation results thereof will be described.
洗浄液 2としてテクノケア FEE- 90 (商品名、 (株) 東芝製) を用いると共に、 プレス加工油が汚れとして付着した 900個のプレス部品を被洗浄物 2 7としてバ スケット 2 6に収容し、 浸漬洗浄槽 3内に 30秒間浸漬して洗浄を行った。  Technocare FEE-90 (trade name, manufactured by Toshiba Corporation) was used as the cleaning liquid 2, and 900 pressed parts with press working oil adhering as dirt were stored in a basket 26 as a cleaning object 27 and immersed. Washing was performed by immersing in washing tank 3 for 30 seconds.
この際、 洗浄液と圧縮空気との混合流体を流体噴射ノズル 4から噴射すると共 に、 この流体噴射を外側の流体噴射ノズル 4 a、 4 dによる第 1のノズル群と内 側の流体噴射ノズル 4 b、 4 cによる第 2のノズル群との間で 30秒毎に交互に切 替えて洗浄を行った。 具体的な条件は、 ポンプ噴出圧力 5. 8kg/cm2、 噴出量 26リ ットル Z分、 エアー圧力 4. 61¾/αη とした。 At this time, the fluid mixture of the cleaning liquid and the compressed air is ejected from the fluid ejection nozzles 4, and this fluid ejection is performed by the first nozzle group by the outer fluid ejection nozzles 4a and 4d and the inner fluid ejection nozzles 4 Cleaning was performed by alternately switching between the second nozzle group by b and 4c every 30 seconds. Specific conditions were as follows: pump ejection pressure 5.8 kg / cm 2 , ejection volume 26 liters Z, air pressure 4.61¾ / αη.
また、本発明との比較例としては、 洗浄液を下から上にのみ流動させる以外は、 上記実施例と同一条件で洗浄を行った。 なお、 これら各洗浄例においては、 いず れもプレス部品の突起部を上側にしてバスケット内に配置した。  Further, as a comparative example with the present invention, cleaning was performed under the same conditions as in the above example, except that the cleaning liquid was allowed to flow only from below to above. In each of these cleaning examples, the pressed parts were arranged in the basket with the protrusions of the pressed parts facing upward.
これら実施例および比較例により洗浄したプレス部品の外観を目視で観察した ところ、比較例による洗浄では噴射流体に直接哂されていな Lヽ上面部に汚れ残り が発生していたが、 例による洗浄では上面部まで清浄に洗浄することができ た。 Visual inspection of the appearance of the pressed parts cleaned in these examples and comparative examples revealed that the cleaning in the comparative examples left dirt on the upper surface of L ヽ that was not directly exposed to the jet fluid. However, with the cleaning according to the example, it was possible to clean the upper surface part cleanly.
次に、 前述した気体導入装置 1 4としてのェジヱクタと、洗浄液再生手段 2 2 について詳述する。  Next, the ejector as the above-described gas introduction device 14 and the cleaning liquid regenerating means 22 will be described in detail.
ェジェクタは、 図 3に示すように、流体が流れる配管 2 8の一部を絞り、 この 部分に開口部 2 9を設けたもので、 絞り部分 2 8 aで流速が増加するとべルヌー イの原理により圧力が低下することを利用して、 開口部 2 9に繋がる部分の減圧 •吸引を行う装置である。上述した実施例の洗浄装置 1では、 配管 2 8に洗浄液 を通し、 かつ開口部 2 9から圧縮空気等を導入する。  As shown in Fig. 3, the ejector restricts a part of the pipe 28 through which the fluid flows, and an opening 29 is provided in this part.When the flow velocity increases at the restricting part 28a, the Bernoulli principle This is a device that depressurizes and aspirates the part connected to the opening 29 by utilizing the fact that the pressure is reduced by the pressure. In the cleaning apparatus 1 of the above-described embodiment, the cleaning liquid is passed through the pipe 28 and compressed air or the like is introduced from the opening 29.
上述したようなェジェクタを気体導入装置 1 4として用いることにより、導入 する空気の圧力を低圧化することができる。 例えば、 "^の工場において得られ る空気圧はせいぜい 5kg/cm2程度であるのに対し、送液ポンプ (加圧ポンプ) 1 2から吐出される液の圧力は 6〜7kg/cm2程度となるため、単純に T字継ぎ手等 を用いて圧縮空気を導入することはできない。一方、圧縮^を導入するために、 液の吐出圧を下げれば、 当然洗浄効果が低下することになる。 これに対して、 ェ ジェクタを用いることにより、 液側の圧力より l〜2kg/cm2程度低い圧力の空気 等を洗浄液中に導入することができるため、 洗浄液噴射による洗浄効果を低下さ せることなく、 一般的な工場の空気圧で十分に洗浄液中に^等を導入すること カ坷能となる。 By using the above-described ejector as the gas introduction device 14, the pressure of the introduced air can be reduced. For example, the air pressure obtained in the factory of “^ is at most about 5 kg / cm 2 , while the pressure of the liquid discharged from the liquid sending pump (pressurizing pump) 12 is about 6 to 7 kg / cm 2. Therefore, compressed air cannot be simply introduced using a T-joint, etc. On the other hand, if the discharge pressure of the liquid is reduced to introduce compressed air, the cleaning effect will naturally decrease. In contrast, by using an ejector, air at a pressure about 1 to 2 kg / cm2 lower than the pressure on the liquid side can be introduced into the cleaning liquid, so that the cleaning effect by the cleaning liquid injection is not reduced. Introducing ^ etc. into the cleaning solution with the air pressure of general factories is sufficient.
洗浄液循環流の圧力は、浸漬洗浄槽 3内における洗浄液 2の強制流動の状態等 — を考慮して 3〜8kg/cm2驗とすることが好ましいため、 これより l〜2kg/cm2 ^^低い空気圧の圧縮空気を用意すればよいことになる。 なお、 単に T字継ぎ手 で圧縮空気を洗浄液循環流中に導入するためには、 その圧力より 0. 2〜2kg/cm2 ¾J ^高い空気圧の圧縮空気が必要となるが、 本発明でこのような構成を必ずしも 除外するものではない。 The pressure of the cleaning liquid recycle stream, dipping condition of the forced flow of the cleaning liquid 2 in the cleaning tank 3 - because it is preferable that the 3~8kg / cm 2驗in mind, than this l~2kg / cm 2 ^^ What is necessary is to prepare compressed air of low air pressure. In order to simply introduce compressed air into the circulating flow of washing liquid with a T-shaped joint, compressed air having an air pressure of 0.2 to 2 kg / cm 2 ¾J ^ higher than the pressure is required. It does not necessarily exclude a simple configuration.
また、 洗浄液再生手段 2 2としては、 例えば図 4に示すように、 減圧式蒸留釜 3 0等の蒸留装置を有するものが好ましく用いられる。 図 4に示す洗浄液再生手 段 2 2は、 洗浄液供給配管 3 1、 減圧式蒸留釜 3 0、 凝縮用冷却器 3 2、 再生洗 浄液貯槽 3 3、 再生洗浄液循環用ポンプ 3 4等から主として構成されている。 減圧式蒸留釜 3 0の下部には、 洗浄液注入口 3 0 aが設けられており、 この洗 浄液注入口 3 0 aは液位調整器 3 5に接続されている。 液位調整器 3 5は、 減圧 式蒸留釜 3 0の上部に接続された蒸気用配管 3 6と供給洗浄液との間で熱交換を 行う熱交換器 3 7、 例えばェコノマイザを介して、 洗浄液供給配管 3 1に接続さ れている。 この洗浄液供給配管 3 1は、例えば洗浄液排出配管 2 1に直接接続さ れているが、 その途中に洗浄液貯槽等を設置してもよい。 ffi式蒸留釜 3 0と凝 縮用冷却器 3 2例えばコンデンサとは、蒸気用配管 3 6により接続されており、 凝縮用冷却器 3 2の下部には再生洗浄液貯槽 3 3が接続されている。 Further, as the cleaning liquid regenerating means 22, for example, as shown in FIG. 4, a means having a distillation apparatus such as a reduced pressure distillation tank 30 is preferably used. The cleaning liquid regeneration means 22 shown in Fig. 4 mainly consists of the cleaning liquid supply pipe 31, the reduced pressure distillation tank 30, the condensing cooler 32, the regenerated cleaning liquid storage tank 33, the regenerated cleaning liquid circulation pump 34, etc. It is configured. A cleaning liquid inlet 30 a is provided at the lower part of the vacuum distillation still 30, and the cleaning liquid inlet 30 a is connected to the liquid level regulator 35. The liquid level adjuster 35 supplies the cleaning liquid via a heat exchanger 37 that exchanges heat between the steam pipe 36 connected to the upper part of the decompression still 30 and the supplied cleaning liquid, for example, via an economizer. Connected to piping 31. The cleaning liquid supply pipe 31 is directly connected to, for example, the cleaning liquid discharge pipe 21. However, a cleaning liquid storage tank or the like may be provided on the way. The ffi-type distillation still 30 and the condensing cooler 3 2 are connected, for example, to a condenser by a steam pipe 36, and a regenerating washing liquid storage tank 33 is connected to the lower part of the condensing cooler 32. .
再生洗净 ¾Sf槽 3 3には、 減圧ポンプ 3 8カ接続されており、 この減圧ポンプ 3 8により液位調整器 3 5から減圧式蒸留釜 3 0までが所定の減圧状態とされる。  A pressure reducing pump 38 is connected to the regeneration washing Sf tank 33, and the pressure from the liquid level regulator 35 to the pressure reducing still 30 is reduced to a predetermined pressure by the pressure reducing pump 38.
式蒸留釜 3 0内の液面が低下すると、 液位調整器 3 5から洗浄液が減圧式蒸 留釜 3 0内に導入される。 この洗浄液の導入は、 電磁弁 3 9を介して行われる。 減圧式蒸留釜 3 0の周囲には、加熱装置 4 0例えばヒータが設置されており、 こ の加熱装置 4 0によつて 式蒸留釜 3 0内に導入された洗浄液が ff下で加熱 され、 回収しょうとする が蒸気化される。  When the liquid level in the distillation still 30 drops, the washing liquid is introduced from the liquid level adjuster 35 into the vacuum distillation still 30. The introduction of the cleaning liquid is performed via a solenoid valve 39. A heating device 40, for example, a heater, is installed around the decompression distillation still 30. The cleaning liquid introduced into the distillation still 30 is heated by the heating device 40 under ff. Attempts to recover are vaporized.
大気圧状態より低温での加熱によって発生した蒸気は、 蒸気用配管 3 6を介し て、 凝縮用冷却器 3 2に送られる。 凝縮用冷却器 3 2内には、 図示を省略した冷 却水供給装置から冷却水が供給され、 供給された蒸気は凝縮される。 凝縮液は再 生洗浄液 4 1として再生洗浄液貯槽 3 3に収容される。再生洗浄液貯槽 3 3に収 容された再生洗浄液 4 1は、再生洗浄液循環用ポンプ 3 4により浸漬洗浄槽 3に 供給され、 洗浄液 2として再利用される。  The steam generated by heating at a temperature lower than the atmospheric pressure is sent to the condenser 32 through the steam pipe 36. Cooling water is supplied into the condensing cooler 32 from a cooling water supply device (not shown), and the supplied steam is condensed. The condensate is stored in the regenerating cleaning liquid storage tank 33 as the regenerating cleaning liquid 41. The regenerated cleaning solution 41 stored in the regenerated cleaning solution storage tank 33 is supplied to the immersion cleaning tank 3 by the regenerated cleaning solution circulation pump 34 and reused as the cleaning solution 2.
このようにして、 洗浄液 2を常時処理して循環させることにより、 洗浄液 2の 清浄度は保たれる。 また、減圧蒸留処理によれば、 高負荷の洗浄液を希釈等する ことなく、 直接処理、再生することができると共に、 加熱処理温度を低く設定で きることから、 熱効率の向上を図ること力河能となる。 また、 引火性を有する溶 剤を処理する場合においても、 危険性が減少する。 減圧蒸留は、 処理効率や熱効 率を高めるのみならず、 洗浄液中に含まれる様々な物質の蒸発や熱分解を抑制し、 配管系等へのスケールの付着を防止する。 なお、 減圧蒸留処理にあたって、 シリ コ一ン系消泡剤等を使用することは有効である。 この実施例の洗浄装置 1においては、 洗浄液 2は常に強制流動しており、被洗 浄物 2 7から分離した汚れ分も洗浄液 2と共に循環するため、 上記したような洗 浄液再生手段 2 2により洗浄液 2の清浄度を保ち、 汚れ分の再付着を防止するこ とが好ましい。 In this way, by always treating and circulating the cleaning liquid 2, the cleanliness of the cleaning liquid 2 is maintained. In addition, vacuum distillation enables direct treatment and regeneration without diluting a high-load washing solution, and also allows lower heat treatment temperatures to improve thermal efficiency. Becomes Danger is also reduced when treating flammable solvents. Vacuum distillation not only increases processing efficiency and thermal efficiency, but also suppresses evaporation and thermal decomposition of various substances contained in the cleaning solution, and prevents scale from adhering to piping systems. In addition, it is effective to use a silicon-based antifoaming agent in the vacuum distillation treatment. In the cleaning apparatus 1 of this embodiment, the cleaning liquid 2 is always forced to flow, and the dirt separated from the object to be cleaned 27 also circulates together with the cleaning liquid 2. It is preferable to maintain the cleanliness of the cleaning liquid 2 and prevent re-adhesion of dirt.
上述したように、 洗浄液再生手段 2 2は、 本来的には洗浄液 2を精製して再使 用するために設置されるものであるが、 本発明の洗浄装置のように高圧ポンプを 使用する場合には、 ポンプゃバルブの保護という点からも洗浄液の蒸留再生が有 効である。 すなわち、洗浄装置に持ち込まれる被洗浄物の中には油汚れ等の液体 汚れだけでなく、 切肖咖ェにより生じた切り粉、 研磨加工時に使用した砥粒の残 り等の固体汚れが付着しているものがある。 高圧を発生するポンプにとって、 こ のような固体汚れは大敵であり、 固体汚れの量が多いと短時間でポンプやバルブ が損耗してしまうしまうことがある。 このため、 通常は洗浄槽と高圧ポンプとを 繋ぐ管路系にフィルタを介挿して固体汚れを除去する。 この実施例の洗浄装置 1 においても、 洗浄液循環系 8にフィルタ 1 0を介揷している。 ただし、 フィルタ を通過するような微粒子も存在するため、 このような微粒子も確実に除去するこ とができる洗浄液の蒸留再生は、 本発明の洗浄装置に有効であるといえる。 実際に、 図 1に示した洗净装置 1において、洗浄液再生装置 2 2を運転しなが ら洗浄を実施した場合と、 洗浄液再生装置 2 2を運転せずに洗浄を実施した場合 とを比較したところ、下記の表 1に示すように、 蒸留再生を実施する洗浄液再生 装置 2 2は、 洗浄液 2中の固体汚れの除去に有効であることを確認した。  As described above, the cleaning liquid regenerating means 22 is originally provided for purifying and reusing the cleaning liquid 2, but when a high-pressure pump is used as in the cleaning apparatus of the present invention. In addition, the regeneration of the washing liquid is effective from the viewpoint of protecting the pump and the valve. In other words, not only liquid stains such as oil stains, but also solid stains such as chips generated by cutting and residues of abrasive grains used in the polishing process adhere to the cleaning object brought into the cleaning device. Something you are doing. For a pump that generates high pressure, such solid dirt is a great enemy. If the amount of solid dirt is large, the pump or valve may be worn out in a short time. For this reason, solid dirt is usually removed by inserting a filter into the pipeline connecting the washing tank and the high-pressure pump. Also in the cleaning apparatus 1 of this embodiment, the filter 10 is interposed in the cleaning liquid circulation system 8. However, since there are fine particles that pass through the filter, it can be said that the distillation and regeneration of the cleaning solution that can surely remove such fine particles is effective for the cleaning apparatus of the present invention. Actually, in the cleaning apparatus 1 shown in FIG. 1, a comparison was made between the case where the cleaning was performed while the cleaning liquid regenerating apparatus 22 was operated and the case where the cleaning was performed without operating the cleaning liquid regenerating apparatus 22. As a result, as shown in Table 1 below, it was confirmed that the cleaning solution regenerating device 22 for performing the distillation regeneration was effective in removing solid dirt from the cleaning solution 2.
Figure imgf000019_0001
なお、上記実施例の洗浄装置 1においては、流体噴射用の洗浄液循環系と洗浄 液の再生のための循環系とを別個に設置した例について説明したが、 洗浄液の再 生のための循環系に流体噴射ノズル 4等を接続することもできる。 また、 流体噴 射ノズル 4への送液は、 別途設置した洗浄液貯槽等から行うこともできる。
Figure imgf000019_0001
In the cleaning apparatus 1 of the above embodiment, the cleaning liquid circulation system for fluid ejection and the cleaning Although the example in which the circulation system for regenerating the liquid is installed separately has been described, the fluid injection nozzle 4 and the like can be connected to the circulation system for regenerating the cleaning liquid. Further, the liquid can be sent to the fluid ejection nozzle 4 from a separately installed washing liquid storage tank or the like.
次に、 本発明の第 1の洗浄方法を適用した洗浄装置の他の実施例について、 図 5を参照して説明する。  Next, another embodiment of the cleaning apparatus to which the first cleaning method of the present invention is applied will be described with reference to FIG.
円形の浸漬洗浄槽 4 2の底部付近には、洗浄液を強制流動させる流体を噴射す る 2つの円形状流体噴射ノズル 4 3 a、 4 3 bが同心円状に、 かつ浸漬洗浄槽 4 2の底面に沿って平行に配置されている。 2つの円形状流体噴射ノズル 4 3 a、 4 3 bは同一方向に、 すなわち上部に向けて開口された噴射口 5をそれぞれ有し ている。 これら以外の構成は、 図 1に示した洗浄装置 1と同一構成とされており、 2つの円形状流体噴射ノズル 4 3 a、 4 3 bはそれぞれ噴射時期制御装置 6に接 続されている。 すなわち、外側の円形伏流体噴射ノズル 4 3 aは、 第 1の噴射時 期制御用電磁弁 1 6 aに接続されており、 また内側の円形状流体噴射ノズル 4 3 bは、 第 2の噴射時期制御用電磁弁 1 6 bに接続されている。  In the vicinity of the bottom of the circular immersion cleaning tank 42, two circular fluid injection nozzles 43a and 43b for injecting a fluid for forcibly flowing the cleaning liquid are concentric, and the bottom of the immersion cleaning tank 42 Are arranged in parallel along. The two circular fluid injection nozzles 43a and 43b have injection ports 5 opened in the same direction, that is, upward. The other configuration is the same as that of the cleaning device 1 shown in FIG. 1, and the two circular fluid injection nozzles 43 a and 43 b are respectively connected to the injection timing control device 6. That is, the outer circular fluid injection nozzle 43a is connected to the first injection timing control solenoid valve 16a, and the inner circular fluid injection nozzle 43b is connected to the second injection nozzle. It is connected to the timing control solenoid valve 16b.
この実施例の洗浄装置においては、 まず第 1の噴射時期制御用電磁弁 1 6 aを 開くと共に、第 2の噴射時期制御用電磁弁 1 6 bを閉じることによって、 図 6 ( a ) に示すように、洗浄液 2を強制流動させる流体を外側の円形状流体噴射ノ ズル 4 3 aのみから噴射する。 外側の円形状流体噴射ノズル 4 3 aから流体を噴 射すると、 図中矢印で示すように、 円形の浸漬洗浄槽 4 2の外周部では洗浄液 2 が下から上に流れ、 中央部付近では洗浄液 2が上から下に向って流れる。 このよ うに、 図示を省略した被洗浄物が存在する浸漬洗浄槽 4 2の中央部付近では、 洗 浄液 2が被洗浄物に向けて上から下に強制流動される。 この洗浄液 2の強制流動 によって、 主に被洗浄物の上面側に対して機械的な洗浄力力付与される。  In the cleaning apparatus of this embodiment, first, the first injection timing control solenoid valve 16a is opened, and the second injection timing control solenoid valve 16b is closed, as shown in FIG. 6 (a). As described above, the fluid for forcibly flowing the cleaning liquid 2 is ejected only from the outer circular fluid ejection nozzle 43a. When the fluid is injected from the outer circular fluid injection nozzle 43a, the cleaning liquid 2 flows from the bottom to the top at the outer periphery of the circular immersion cleaning tank 42, as shown by the arrow in the figure, and the cleaning liquid near the center. 2 flows from top to bottom. As described above, in the vicinity of the center of the immersion cleaning tank 42 in which the cleaning object (not shown) exists, the cleaning liquid 2 is forcibly flowed from the top toward the cleaning object. Due to the forced flow of the cleaning liquid 2, a mechanical cleaning power is mainly applied to the upper surface side of the object to be cleaned.
次に、 第 2の噴射時期制御用電磁弁 1 6 bを開くと共に、 第 1の噴射時期制御 用電磁弁 1 6 aを閉じることにより、 図 6 (b ) に示すように、 洗浄液 2を強制 流動させる流体を内側の円形状流体噴射ノズル 4 3 bのみから噴射する。 内側の 円形状流体噴射ノズル 4 3 bから流体を噴射すると、 図中矢印で示すように、 円 形の浸漬洗浄槽 4 2の中央部付近では洗浄液 2が下から上に流れ、 外周部では洗 浄液 2力上から下に向って流れる。 このように、 図示を省略した披洗净物が存在 する浸漬洗浄槽 4 2の中央部付近では、 洗浄液 2が被洗浄物に向けて下から上に 強制流動される。 この洗浄液 2の強制流動によって、 主に被洗浄物の下面側に対 して機械的な洗浄力が付与される。 Next, by opening the second injection timing control solenoid valve 16b and closing the first injection timing control solenoid valve 16a, the cleaning liquid 2 is forcibly applied as shown in FIG. 6 (b). The fluid to be flown is ejected only from the inner circular fluid ejection nozzle 43b. When the fluid is ejected from the inner circular fluid jet nozzle 4 3b, as shown by the arrow in the figure, the cleaning liquid 2 flows from the bottom to the top near the center of the circular immersion cleaning tank 42, and is washed at the outer periphery. Purified liquid 2 Flows from top to bottom. As you can see, there are some products that are not shown. In the vicinity of the center of the immersion cleaning tank 42, the cleaning liquid 2 is forcibly flown from the bottom toward the object to be cleaned. Due to the forced flow of the cleaning liquid 2, a mechanical cleaning power is mainly applied to the lower surface side of the object to be cleaned.
このように、 外側の円形状流体噴射ノズル 4 3 aからの噴射と、 内側の円形状 流体噴射ノズル 4 3 bからの噴射とを交互に切替え、 洗浄液 2の強制流動の方向 を反転させることによって、前述した実施例と同様に、 円形の浸漬洗浄槽 4 2に おいても被洗浄物の全面に均一に洗浄することができる。 また、 洗浄液の流れに 滞留点を生じることもないため、 円形の浸漬洗浄槽 4 2内における被洗浄物の位 置により洗浄むら等が生じることもない。 さらに、 洗浄槽の小形化等についても 前述した実施例と同様である。  In this way, the injection from the outer circular fluid injection nozzle 43a and the injection from the inner circular fluid injection nozzle 43b are alternately switched, and the direction of the forced flow of the cleaning liquid 2 is reversed. In the same manner as in the above-described embodiment, even in the circular immersion cleaning tank 42, the entire surface of the object to be cleaned can be uniformly cleaned. Also, since there is no stagnation point in the flow of the cleaning liquid, there is no unevenness in cleaning due to the position of the object to be cleaned in the circular immersion cleaning tank 42. Further, the size of the cleaning tank is also the same as in the above-described embodiment.
次に、 本発明の第 1の洗浄方法を適用した洗浄装置のさらに他の 例につい て、 図 7を参照して説明する。  Next, still another example of the cleaning apparatus to which the first cleaning method of the present invention is applied will be described with reference to FIG.
浸漬洗浄槽 3内の 1つの側壁近傍には、洗浄液を強制流動させる流体を噴射す る 4本の流体噴射ノズル 4 a、 4 b、 4 c、 4 dが浸漬洗浄槽 3の側壁 3 bに沿 つて平行に立設されている。 各流体噴射ノズル 4は同一方向、 すなわち水平方向 に向けて開口された 10個の噴射口 5をそれぞれ有している。 これら以外の構成は、 図 1に示した洗浄装置 1と同一構成とされている。 4本の流体噴射ノズル 4 a、 4 b、 4 c、 4 dは、外側 2本の流体噴射ノズル 4 a、 4 dによる第 1のノズル 群と、 内側 2本の流体噴射ノズル 4 b、 4 cによる第 2のノズル群との 2つの群 に分けられており、 各群毎に噴射時期制御装置 6に接続されている。 すなわち、 外側の流体噴射ノズル 4 a、 4 dによる第 1のノズル群は、 第 1の噴射時期制御 用電磁弁 1 6 aに接続されており、 また内側の流体噴射ノズル 4 b、 4 cによる 第 2のノズル群は、 第 2の噴射時期制御用電磁弁 1 6 bに接続されている。  Four fluid injection nozzles 4a, 4b, 4c and 4d for injecting a fluid for forcibly flowing the cleaning liquid are provided on the side wall 3b of the immersion cleaning tank 3 near one side wall in the immersion cleaning tank 3. They are erected in parallel. Each fluid ejection nozzle 4 has ten ejection ports 5 opened in the same direction, that is, in the horizontal direction. Other configurations are the same as those of the cleaning apparatus 1 shown in FIG. The four fluid ejection nozzles 4a, 4b, 4c, and 4d are the first group of two fluid ejection nozzles 4a and 4d on the outside, and the two fluid ejection nozzles 4b and 4 on the inside. The nozzles are divided into two groups, namely a second nozzle group by c, and each group is connected to the injection timing control device 6. That is, the first group of nozzles by the outer fluid injection nozzles 4a and 4d is connected to the first injection timing control solenoid valve 16a, and the first group of fluid injection nozzles by the inner fluid injection nozzles 4b and 4c. The second nozzle group is connected to a second injection timing control solenoid valve 16b.
この実施例の洗浄装置においては、 まず第 1の噴射時期制御用電磁弁 1 6 aを 開くと共に、 第 2の噴射時期制御用電磁弁 1 6 bを閉じることにより、 図 8 ( a ) に示すように、洗浄液 2を強制流動させる流体を外側の流体噴射ノズル 4 a、 4 dによる第 1のノズル群から噴射する。 外側の流体噴射ノズル 4 a、 4 dによる 第 1のノズル群から流体を噴射すると、 図中矢印で示すように、 浸漬洗浄槽 3の 端部では洗浄液 2が流体噴射方向に流れ、 中央部付近では逆方向に流れる。 この ような被洗浄物に向う洗浄液 2の強制流動によつて、 主に被洗浄物の流体噴射ノ ズル 4とは反対側の面に対して機械的な洗浄力が付与される。 In the cleaning apparatus of this embodiment, first, the first injection timing control solenoid valve 16a is opened, and the second injection timing control solenoid valve 16b is closed, as shown in FIG. 8 (a). Thus, the fluid for forcibly flowing the cleaning liquid 2 is ejected from the first nozzle group by the outer fluid ejection nozzles 4a and 4d. When the fluid is ejected from the first nozzle group by the outer fluid ejection nozzles 4a and 4d, the cleaning liquid 2 flows in the fluid ejection direction at the end of the immersion washing tank 3, as shown by the arrow in the figure, and near the center. Then it flows in the opposite direction. this Due to the forced flow of the cleaning liquid 2 toward the object to be cleaned, a mechanical cleaning force is mainly applied to the surface of the object to be cleaned on the side opposite to the fluid injection nozzle 4.
次に、 第 2の噴射時期制御用電磁弁 1 6 bを開くと共に、 第 1の噴射時期制御 用電磁弁 1 6 aを閉じることにより、 図 8 (b) に示すように、洗净液 2を強制 流動させる流体を内側の流体噴射ノズル 4 b、 4 cによる第 2のノズル群から噴 射する。 内側の流体噴射ノズル 4 b、 4 cによる第 2のノズル群から流体を噴射 すると、 図中矢印で示すように、 浸漬洗浄槽 3の中央部付近では洗浄液 2が流体 噴射方向に流れ、 端部では洗浄液 2が逆方向に流れる。 このような被洗浄物に向 う洗浄液 2の強制流動によって、 主に被洗浄物の流体噴射ノズル 4と対向する面 に対して機械的な洗浄力が付与される。  Next, by opening the second injection timing control solenoid valve 16b and closing the first injection timing control solenoid valve 16a, as shown in FIG. Is ejected from the second nozzle group by the inner fluid ejection nozzles 4b and 4c. When the fluid is ejected from the second nozzle group by the inner fluid ejection nozzles 4b and 4c, the washing liquid 2 flows in the fluid ejection direction near the center of the immersion washing tank 3, as shown by the arrow in the figure, and ends. Then, the washing liquid 2 flows in the opposite direction. Due to such forced flow of the cleaning liquid 2 toward the object to be cleaned, mechanical cleaning power is mainly applied to the surface of the object to be cleaned facing the fluid ejection nozzle 4.
このように、 外側の流体噴射ノズル 4 a、 4 dによる第 1のノズル群からの噴 射と、 内側の流体噴射ノズル 4 b、 4 cによる第 2のノズル群からの噴射とを交 互に切替え、 洗浄液 2の強制流動の方向を反転させることによって、前述した実 施例と同様に、立設させた流体噴射ノズル 4を用いた場合においても被洗浄物の 全面を均一に洗浄することができる。 また、 洗浄液の流れに滞留点を生じること もないため、浸漬洗浄槽 3内における被洗浄物の位置により洗浄むら等が生じる こともない。  In this way, the ejection from the first nozzle group by the outer fluid ejection nozzles 4a and 4d and the ejection from the second nozzle group by the inner fluid ejection nozzles 4b and 4c alternate. By switching and reversing the direction of the forced flow of the cleaning liquid 2, the entire surface of the object to be cleaned can be uniformly cleaned even in the case of using the upstanding fluid jet nozzle 4 as in the above-described embodiment. it can. In addition, since there is no stagnation point in the flow of the cleaning liquid, there is no unevenness in cleaning depending on the position of the object to be cleaned in the immersion cleaning tank 3.
上記実施例の洗浄装置は、 浸漬洗浄槽 3の外形が流体噴射ノズル 4を底部に設 置したものよりは大きくなるものの、 流体噴射ノズル 4を例えば被洗浄物の形状 等に応じて容易に取り替えることができる等の利点を有している。  In the cleaning apparatus of the above embodiment, although the outer shape of the immersion cleaning tank 3 is larger than that in which the fluid jet nozzle 4 is provided at the bottom, the fluid jet nozzle 4 can be easily replaced according to, for example, the shape of the object to be cleaned. It has advantages such as being able to.
次に、 本発明の第 2の洗浄方法を適用した洗浄装置の実施例について、 図 9を 参照して説明する。  Next, an embodiment of a cleaning apparatus to which the second cleaning method of the present invention is applied will be described with reference to FIG.
円形の浸漬洗浄槽 4 2の側壁付近には、 洗浄液を強制流動させる流体を噴射す る 4本の流体噴射ノズル 4 a、 4 b、 4 c、 4 dが被洗浄物を囲むように、 等分 された位置に立設されている。 これら 4本の流体噴射ノズル 4 a、 4 b、 4 c、 4 dは、 それぞれ図示を省略した噴射時期制御用電磁弁に接続されており、 4本 の流体噴射ノズル 4 a、 4 b、 4 c、 4 dからの流体噴射時期は別々に制御でき るように構成されている。 すなわち、 この実施例の洗浄装置は、 上記したような 噴射時期制御用電磁弁等を有する図示を省略した噴射時期制御手段を有している なお、 これら以外の構成は図 1に示した洗浄装置 1と同様とされている。 In the vicinity of the side wall of the circular immersion cleaning tank 42, four fluid injection nozzles 4a, 4b, 4c, 4d for injecting a fluid for forcibly flowing the cleaning liquid are arranged so as to surround the object to be cleaned. It is erected at a separate location. These four fluid injection nozzles 4a, 4b, 4c, 4d are connected to injection timing control solenoid valves (not shown), respectively, and the four fluid injection nozzles 4a, 4b, 4d The fluid injection timings from c and 4d can be controlled separately. That is, the cleaning device of this embodiment has an injection timing control unit (not shown) having the above-described injection timing control solenoid valve and the like. The other configuration is the same as that of the cleaning apparatus 1 shown in FIG.
この実施例の洗浄装置においては、 まず第 1の噴射時期制御用電磁弁のみを開 き、 図 1 0 ( a ) に示すように、 洗浄液 2を被洗浄物に向けて強制流動させる流 体を第 1の流体噴射ノズル 4 aのみから被洗浄物に向けて噴射する。 次いで、 図 1 0 (b) に示すように、洗浄液 2を披洗浄物に向けて強制流動させる流体を第 2の流体噴射ノズル 4 aのみから被洗浄物に向けて噴射する。 このように、 流体 噴射ノズル 4 a、 4 b、 4 c、 4 dから順に流体を噴射させることによって、 被 洗浄物に向う洗浄液 2の強制流動を維持した上で、洗浄液 2の強制流動方向を約 90度づっ変化させることができる。  In the cleaning apparatus of this embodiment, first, only the first injection timing control solenoid valve is opened, and as shown in FIG. 10 (a), a fluid for forcibly flowing the cleaning liquid 2 toward the object to be cleaned is provided. The first fluid ejection nozzle 4a only ejects the object to be cleaned. Next, as shown in FIG. 10 (b), a fluid for forcibly flowing the cleaning liquid 2 toward the object to be cleaned is jetted from only the second fluid jet nozzle 4a toward the object to be cleaned. In this manner, by injecting the fluid in order from the fluid injection nozzles 4a, 4b, 4c, and 4d, the forced flow of the cleaning liquid 2 toward the object to be cleaned is maintained, and the forced flow direction of the cleaning liquid 2 is changed. Can be changed by about 90 degrees.
このように、 被洗浄物を囲む複数の流体噴射ノズル 4からの流体噴射を順に切 替えることによつても、前述した各実施例と同様に、被洗浄物の全面を均一に洗 浄することができる。 また、 洗浄液 2の流れに滞留点を生じることもないため、 円形の浸漬洗浄槽 4 2内における被洗浄物の位置により洗浄むら等が生じること もない。  As described above, by sequentially switching the fluid ejection from the plurality of fluid ejection nozzles 4 surrounding the object to be cleaned, the entire surface of the object to be cleaned can be uniformly cleaned as in the above-described embodiments. Can be. In addition, since there is no stagnation point in the flow of the cleaning liquid 2, no uneven cleaning occurs due to the position of the object to be cleaned in the circular immersion cleaning tank 42.
次に、 本発明の第 3の洗浄方法を適用した洗浄装置の実施例について、 図 1 1 を参照して説明する。  Next, an embodiment of a cleaning apparatus to which the third cleaning method of the present invention is applied will be described with reference to FIG.
図 1 1は、 この実施例の洗浄装置の洗浄槽部分を示す図であり、 洗浄槽 3の底 部付近には洗浄液 2を強制流動させる流体を噴射する 2本の流体噴射ノズル 4 4 a、 4 4 bが平行配置されている。 これら 2本の流体噴射ノズル 4 4 a、 4 4 b は L字形状を有しており、 洗浄槽 3の外側に設置されたノズル移動装置 4 5にそ れぞれ保持されている。 そして、 2本の流体噴射ノズル 4 4 a、 4 4 bは上記ノ ズル移動装置 4 5によって、 洗浄槽 3内を底面に沿って略水平方向に対向移動す るよう構成されている。  FIG. 11 is a diagram showing a cleaning tank portion of the cleaning apparatus of this embodiment. Near the bottom of the cleaning tank 3, two fluid injection nozzles 44 a for injecting a fluid for forcibly flowing the cleaning liquid 2 are shown. 4 4 b are arranged in parallel. These two fluid ejection nozzles 44 a and 44 b have an L-shape, and are respectively held by nozzle moving devices 45 installed outside the cleaning tank 3. The two fluid injection nozzles 44a and 44b are configured to move in the cleaning tank 3 in a substantially horizontal direction along the bottom surface by the nozzle moving device 45.
上記 2本の流体噴射ノズル 4 4 a、 4 4 bは、 図 1に示した洗浄装置 1と同様 に、 送液ポンプ 1 2や気体導入装置 1 4が介挿され洗浄液循環系 8に接続されて いる。 ただし、 この実施例の洗浄装置では、 気体導入装置 1 4に接続された 1本 の洗浄液循環用配管 1 5に 2本の流体噴射ノズル 4 4 a , 4 4 bが接続されてい る。 この洗浄液循環用配管 1 5は、 流体噴射ノズル 4 4 a、 4 4 bの移動を妨げ ないように、 フレキシブル配管によって構成されている。 これら以外は、 図 1に 示した洗浄装置 1と同一構成とされている。 The two fluid injection nozzles 44a and 44b are connected to the cleaning liquid circulation system 8 with a liquid feed pump 12 and a gas introduction device 14 interposed in the same manner as the cleaning device 1 shown in FIG. ing. However, in the cleaning device of this embodiment, two fluid injection nozzles 44 a and 44 b are connected to one cleaning liquid circulation pipe 15 connected to the gas introduction device 14. The cleaning liquid circulation pipe 15 is formed of a flexible pipe so as not to hinder the movement of the fluid injection nozzles 44a and 44b. Other than these, see Figure 1. It has the same configuration as the cleaning device 1 shown.
この実施例の洗浄装置においては、 まず図 1 2 ( a ) に示すように、 2本の流 体噴射ノズル 4 4 a、 4 4 bがそれぞれ最も外側に位置した状態で流体を噴射す ると、 図中矢印 Aで示すように、浸漬洗净槽 3の両端部では洗浄液 2が下から上 に流れ、 中央部付近では洗浄液 2が上から下に向って流れる。 このような中央部 付近での被洗浄物に向う洗浄液 2の強制流動によって、主に被洗浄物の上面側に 対して «的な洗浄力力付与される。  In the cleaning apparatus of this embodiment, first, as shown in FIG. 12 (a), when the fluid is jetted in a state where the two fluid jet nozzles 44a and 44b are respectively located at the outermost positions. As shown by the arrow A in the figure, the cleaning liquid 2 flows from bottom to top at both ends of the immersion cleaning tank 3, and the cleaning liquid 2 flows from top to bottom near the center. Due to the forced flow of the cleaning liquid 2 toward the object to be cleaned in the vicinity of the central portion, a unique cleaning power is mainly applied to the upper surface side of the object to be cleaned.
次いで、 2本の流体噴射ノズル 4 4 a、 4 4 bを図中矢印 Bで示すように、 そ れぞれ槽中央方向に向けて移動させる。 図 1 2 (b) に示すように、 2本の流体 噴射ノズル 4 4 a、 4 4 bがそれぞれ最も内側に寄った位置まで移動すると、 図 中矢印 Cで示すように、 浸漬洗浄槽 3の中央部付近では洗浄液 2が下から上に流 れ、両端部では洗浄液 2が上から下に向って流れる。  Next, the two fluid injection nozzles 44a and 44b are respectively moved toward the center of the tank as indicated by arrow B in the figure. As shown in Fig. 12 (b), when the two fluid injection nozzles 44a and 44b move to the innermost positions, respectively, as shown by arrow C in the figure, Near the center, the cleaning liquid 2 flows from bottom to top, and at both ends, the cleaning liquid 2 flows from top to bottom.
上述したような 2本の流体噴射ノズル 4 4 a、 4 4 bの移動を連続的に行うこ とにより、 洗浄液 2の流動方向は初期状態 (図 1 2 ( a) に示す) から 180度反 転した状態 (図 1 2 (b) に示す) まで連続的に変化する。 従って、被洗浄物は 表裏両面、 さらにはその中間方向からの洗浄液 2の流れに直接晒されるため、被 洗浄物の全面を均一に洗浄することができる。 また、流体噴射ノズル 4 4 a、 4 4 bからの噴射は平行噴射であるため、 流体噴射ノズル 4 4 a、 4 4 bの移動中 においても洗浄液 2の流れに滞留点を生じることがなく、 よつて浸漬洗浄槽 3内 における被洗浄物の位置により洗浄むら等が生じることもない。  By continuously moving the two fluid ejection nozzles 44a and 44b as described above, the flow direction of the cleaning liquid 2 is 180 degrees opposite from the initial state (shown in Fig. 12 (a)). It changes continuously to the inverted state (shown in Fig. 12 (b)). Therefore, the object to be cleaned is directly exposed to the flow of the cleaning liquid 2 from both the front and back surfaces, and also from the intermediate direction, so that the entire surface of the object to be cleaned can be uniformly cleaned. In addition, since the injection from the fluid injection nozzles 44a and 44b is a parallel injection, there is no stagnation point in the flow of the cleaning liquid 2 even during the movement of the fluid injection nozzles 44a and 44b. Therefore, there is no unevenness in cleaning depending on the position of the object to be cleaned in the immersion cleaning tank 3.
なお、上記実施例においては、 2本の流体噴射ノズル 4 4 a、 4 4 bを対向移 動させる例について説明したが、 例えば 1本もしくは複数本の流体噴射ノズルを 浸漬洗浄槽 3内の全域にわたって移動させるような構成とすることもできる。 こ のように、 流体噴射ノズルを移動させることによって、 洗浄液 2の流動方向が変 化、 好ましくは 180度反転させることができれば、 上記実施例と同様な効果が得 られる。  In the above embodiment, an example in which the two fluid ejection nozzles 44a and 44b are moved in opposition has been described.For example, one or a plurality of fluid ejection nozzles may be moved all over the immersion cleaning tank 3. It can also be configured to be moved over As described above, if the direction of flow of the cleaning liquid 2 can be changed by moving the fluid ejection nozzle, and preferably by 180 degrees, the same effect as in the above embodiment can be obtained.
また、流体噴射ノズル 4 4の配置位置は、 浸漬洗浄槽 3の底部付近に限らず、 浸漬洗浄槽 3の側壁近傍としてもよい。 このように、 流体噴射ノズルを浸漬洗浄 槽の側壁近傍に配置することによって、 円形の浸漬洗浄槽等にもノズル移動式の 洗浄装置を適用することができる。 この場合、流体噴射ノズルは 180度以上移動 させることが好ましい。 Further, the disposition position of the fluid injection nozzles 4 is not limited to the vicinity of the bottom of the immersion cleaning tank 3 but may be the vicinity of the side wall of the immersion cleaning tank 3. In this way, by disposing the fluid injection nozzle near the side wall of the immersion cleaning tank, the nozzle movable type A cleaning device can be applied. In this case, it is preferable to move the fluid ejection nozzle by 180 degrees or more.
次に、洗浄液を強制流動させる流体として、洗浄液と圧縮気体との混合流体を 用いた具体例およびその評価結果について述べる。 洗浄装置は、 図 1 3に概略構 成を示す装置を用いた。 図 1 3に示す洗浄装置は、 図 1に示した洗浄装置と同様 に、 浸漬洗浄槽 3の底部付近に洗浄液 2を強制流動させる流体を噴射する 4本の 流体噴射ノズル 4が配置されている。  Next, a specific example in which a mixed fluid of a cleaning liquid and a compressed gas is used as a fluid for forcibly flowing the cleaning liquid and an evaluation result thereof will be described. As the cleaning device, a device whose schematic configuration is shown in FIG. 13 was used. The cleaning device shown in FIG. 13 has four fluid injection nozzles 4 for injecting a fluid for forcibly flowing the cleaning solution 2 near the bottom of the immersion cleaning tank 3, similarly to the cleaning device shown in FIG. .
浸漬洗浄槽 3の底部には、 洗浄液導出口 7が設けられており、 この洗浄液導出 口 7は洗浄液循環系 8に接続されている。 洗浄液循環系 8には、 第 1の洗浄液弁 9、 Y型ストレーナ 1 0、 フィルタ 1 1および洗浄液を循環させる送液ポンプ 1 2として加圧ポンプが順に介挿されている。 送液ポンプ 1 2の吐出側には、 洗浄 液仕切り弁 1 3としての電磁弁を介して、気体導入装置 1 4例えば前述したェジ ェクタ力接続されている。 そして、 気体導入装置 1 4と 4本の流体噴射ノズル 4 とは、洗浄液循環用配管 1 5により接続されている。 気体導入装置 1 4としての ェジヱクタは、 逆流防止用チヱック弁 1 7、 圧縮空気仕切り弁 1 8および Mffi弁 1 9を介して、 圧縮空気供給源 2 0に接続されている。 また、 洗浄液再生手段 2 2や洗浄液加熱装置 2 3に関しても同様である。  A cleaning liquid outlet 7 is provided at the bottom of the immersion cleaning tank 3, and the cleaning liquid outlet 7 is connected to a cleaning liquid circulation system 8. In the cleaning liquid circulation system 8, a first cleaning liquid valve 9, a Y-strainer 10, a filter 11, and a pressurizing pump are sequentially inserted as a liquid sending pump 12 for circulating the cleaning liquid. A gas introducing device 14, for example, the above-described ejector force is connected to the discharge side of the liquid sending pump 12 via an electromagnetic valve serving as a cleaning liquid gate valve 13. The gas introduction device 14 and the four fluid injection nozzles 4 are connected by a cleaning liquid circulation pipe 15. The injector serving as the gas introduction device 14 is connected to a compressed air supply source 20 via a check valve 17 for backflow prevention, a compressed air gate valve 18 and a Mffi valve 19. The same applies to the cleaning liquid regenerating means 22 and the cleaning liquid heating device 23.
上述した洗浄装置においては、 洗浄液 り弁 1 3および圧縮空気仕切り弁 1 8を共に開くことによって、 洗浄液と圧縮空気等との混合流体を流体噴射ノズル 4から噴射させつつ、 図示を省略した被洗浄物の洗浄を行うことができる。 この ように、洗浄液と圧縮空気等との混合流体を噴射すると、流体は気体と液体の二 相流として分断されているので、 この流体が洗浄液 2中に噴射されるときに、 圧 縮空気は微細な気泡となる。 従って、 微細な気泡による機械力により被洗浄物の 均一洗浄性を高めることができる。  In the above-described cleaning apparatus, the cleaning liquid valve 13 and the compressed air gate valve 18 are both opened, so that the mixed fluid of the cleaning liquid and the compressed air or the like is jetted from the fluid jet nozzle 4 while the cleaning target (not shown) is cleaned. The object can be washed. When the mixed fluid of the cleaning liquid and the compressed air or the like is jetted in this manner, the fluid is divided as a two-phase flow of gas and liquid, so that when this fluid is jetted into the cleaning liquid 2, the compressed air becomes It becomes fine bubbles. Therefore, uniform cleaning of the object to be cleaned can be enhanced by the mechanical force of the fine bubbles.
そして、 洗浄液と圧縮^等との混合流体を洗浄液 2中に噴射することによつ て、 圧縮空気を洗浄液 2がミスト化し得ない程の微細な気泡とすることができた。 これに対して、圧縮空気のみを噴射した場合には、 圧縮空気の圧力が例えば 0. 5 kg /cm2以上となるとミストが発生した。 圧縮空気のみの場合に、 ミストの発生 を防止するためには、洗浄効果がほとんど得られな L、空気圧にしなければならな かった。 一方、 洗浄液と圧縮空気等との混合流体を洗浄液 2中に噴射することに よって、 例えば圧縮空気の圧力を例えば 5kg/c 以上としても、 ミストの発生を 防止することができた。 Then, by injecting a mixed fluid of the cleaning liquid and the compressed liquid into the cleaning liquid 2, the compressed air could be formed into fine bubbles such that the cleaning liquid 2 could not be turned into mist. On the other hand, when only the compressed air was injected, mist was generated when the pressure of the compressed air became, for example, 0.5 kg / cm 2 or more. If only compressed air is used, in order to prevent the generation of mist, the air pressure must be set to L or pneumatic pressure, where the cleaning effect is hardly obtained. won. On the other hand, by injecting a mixed fluid of the cleaning liquid and the compressed air into the cleaning liquid 2, even if the pressure of the compressed air was set to, for example, 5 kg / c or more, generation of mist could be prevented.
ミストに関する実験として、 まず洗浄液 2としてテクノケア FRE - 90 (商品名、 (株) 東芝製) を用い、 0. 2kg/cm2 の圧縮空気のみを流体噴射ノズル 4から噴射 させた場合の洗浄液 2表面の状態を観察した。 その結果、 ミストが多量に発生し ていた。 次に、 同一の洗浄液 2を用いて、 吐出圧 5kg/cm2 の加圧ポンプにより洗 浄液のみを流体噴射ノズル 4から噴射させた場合の洗浄液 2表面の状態を し たところ、 ミストは発生しなかった。 次いで、 同一の洗浄液 2を用いて、 吐出圧 5kg/cm2 の加圧ポンプにより洗浄液を循環させると共に、 ェジェクタにより 4. 2 kg/cm^ の圧縮空気を循環流中に導入し、 これらの混合流体を流体噴射ノズル 4 から噴射させた場合の洗浄液 2表面の状態を した。 その結果、 洗浄液のみを 噴射させた場合と同様に、 ミストは発生しなかった。 As an experiment on mist, the surface of cleaning liquid 2 when only 0.2 kg / cm 2 of compressed air was injected from fluid injection nozzle 4 using Technocare FRE-90 (trade name, manufactured by Toshiba Corporation) as cleaning liquid 2 Was observed. As a result, a large amount of mist was generated. Next, using the same cleaning liquid 2, the surface of the cleaning liquid 2 when only the cleaning liquid was jetted from the fluid jet nozzle 4 by a pressurizing pump with a discharge pressure of 5 kg / cm 2 mist was generated. Did not. Next, using the same cleaning liquid 2, the cleaning liquid was circulated by a pressurizing pump with a discharge pressure of 5 kg / cm 2 , and 4.2 kg / cm ^ compressed air was introduced into the circulating flow by an ejector. The state of the surface of the cleaning liquid 2 when the fluid was ejected from the fluid ejection nozzle 4 was shown. As a result, no mist was generated as in the case where only the cleaning liquid was sprayed.
上述したように、 圧縮空気等の気体を洗浄液との混合流体として噴射すること により、 ミストの発生を防止した上で、 ^な洗浄効果を得ることができる。 例 えば、 '^系洗浄剤は引火点を有するものが多く、 ミストが発生すると防災とい う観点から極めて好ましくない状況が生じる。 これに対して、 ミストの発生を防 止することによって、 引火点を有する溶剤系洗浄剤等を安全に使用することが可 能となる。 また、 洗浄工程に続いて乾燥工程を行う場合等において、乾燥性能に 悪 響を及ぼすこともない。  As described above, by jetting a gas such as compressed air as a mixed fluid with the cleaning liquid, it is possible to prevent the generation of mist and obtain a good cleaning effect. For example, many of the ^^ cleaning agents have a flash point, and when mist is generated, an extremely unfavorable situation arises from the viewpoint of disaster prevention. On the other hand, by preventing the generation of mist, it becomes possible to safely use a solvent-based cleaning agent having a flash point. In addition, when the drying step is performed after the cleaning step, the drying performance is not affected.
次に、本発明の第 4の洗浄方法を適用した洗浄装置の実施例について、 図 1 4 を参照して説明する。  Next, an embodiment of a cleaning apparatus to which the fourth cleaning method of the present invention is applied will be described with reference to FIG.
図 1 4は、 この実施例の洗浄装置の洗浄槽部分を示す図であり、 浸漬洗浄槽 3 内の底部付近には超音波発振子 4 6が設置されている。 この超音波発振子 4 6か らは、上方に向けて超音波が発振される。 また、 浸漬洗浄槽 3内の底部外側には、 洗浄液を強制流動させる流体を噴射する 2つの流体噴射ノズル 4力配置されてい る。 これら流体噴射ノズル 4からは上方に向けて流体が噴射されるが、 実質的な 洗浄領域、 すなわちバスケット 2 6等の収容位置付近では洗浄液 2カ让から下に 向って流れる。 言い換えると、 浸漬洗浄槽 3内の実質的な洗浄領域では、 超音波 発振子 4 6からの超音波発振方向と略反対方向、 すなわち洗浄液 2が被洗浄物に 向けて上から下に強制流動される。 流体噴射ノズル 4に付属する設備等は、前述 した各実施例と同様である。 FIG. 14 is a diagram showing a cleaning tank portion of the cleaning apparatus of this embodiment. An ultrasonic oscillator 46 is provided near the bottom of the immersion cleaning tank 3. Ultrasonic waves are oscillated upward from the ultrasonic oscillator 46. In addition, two fluid ejection nozzles 4 for ejecting a fluid for forcibly flowing the washing liquid are arranged outside the bottom of the immersion washing tank 3. Fluid is ejected upward from these fluid ejection nozzles 4, but flows downward from two washing liquids in a substantial washing area, that is, in the vicinity of the storage position of the basket 26 or the like. In other words, in the substantial cleaning area in the immersion cleaning tank 3, the ultrasonic wave The cleaning liquid 2 is forced to flow from above to below in a direction substantially opposite to the direction of ultrasonic oscillation from the oscillator 46, that is, toward the object to be cleaned. The equipment and the like attached to the fluid ejection nozzle 4 are the same as those in the above-described embodiments.
超音波発振子 4 6カヽらの超音波発振と流体噴射ノズル 4からの流体噴射とは、 これらの動作を切替える手段としての図示を省略した制御系によって、 交互に切 替えられるように構成されている。 すなわち、 流体噴射ノズル 4からの流体噴射 を停止した状態で、超音波発振子 4 6からの超音波発振を所定時間行った後、 超 音波発振を停止して流体噴射ノズル 4からの流体噴射を所定時間行うよう構成さ れている。 。  The ultrasonic oscillation of the ultrasonic oscillator 46 and the fluid ejection from the fluid ejection nozzle 4 are configured to be alternately switched by a control system (not shown) as means for switching these operations. I have. That is, in the state where the fluid ejection from the fluid ejection nozzle 4 is stopped, the ultrasonic oscillation from the ultrasonic oscillator 46 is performed for a predetermined time, and then the ultrasound oscillation is stopped and the fluid ejection from the fluid ejection nozzle 4 is performed. It is configured to perform for a predetermined time. .
このように、 超音波発振子 4 6からの超音波発振方向と略反対方向に洗浄液 2 を強制流動させると共に、 これら超音波発振子 4 6からの超音波発振と洗浄液 2 の強制流動とを交互に切替えて行うことによって、 浸漬洗浄槽 3内に浸漬された 被洗浄物は、順に表裏両面から機械的な洗浄力を受けることになる。 従って、被 洗浄物の全面が均一に洗浄されると共に、 洗浄槽内の被洗浄物の位置によらずに 均一に洗浄される。  As described above, the cleaning liquid 2 is forcibly flown in a direction substantially opposite to the ultrasonic oscillation direction from the ultrasonic oscillator 46, and the ultrasonic oscillation from these ultrasonic oscillators 46 and the forced flow of the cleaning liquid 2 are alternately performed. The object to be cleaned immersed in the immersion cleaning tank 3 receives mechanical cleaning power from both the front and back surfaces in this order. Therefore, the entire surface of the object to be cleaned is uniformly cleaned, and is uniformly cleaned regardless of the position of the object to be cleaned in the cleaning tank.
また、 超音波によるキヤビテイシヨンにより、 非溶解性の汚れが機械的に剥が されると共に、 洗浄液 2の強制流動により溶解性の汚れの除去が促進されるため、 非溶解性の汚れと溶解性の汚れとが混在付着する被洗浄物を効率よく洗浄するこ とができる。 このように、超音波発振子 4 6と洗浄液 2を強制流動させる流体噴 射ノズル 4とを併用することによって、非溶解性の汚れと溶解性の汚れとが混在 付着する被洗浄物に対して有効な洗浄装置を構成することができる。 産業上の利用可能性  In addition, non-soluble stains are mechanically peeled off by ultrasonic cavitation, and removal of soluble stains is accelerated by the forced flow of the cleaning solution 2. It is possible to efficiently clean an object to be cleaned to which both and adhere to. In this way, by using the ultrasonic oscillator 46 and the fluid jet nozzle 4 for forcibly flowing the cleaning liquid 2, non-soluble dirt and soluble dirt are mixed and the cleaning target is adhered to. An effective cleaning device can be configured. Industrial applicability
以上説明したように、本発明の洗浄方法および洗浄装置によれば、被洗浄物 の部位や洗浄槽内での位置によって、 洗浄むら等が生じることを抑制することが できるため、被洗浄物特に多量の洗浄物の全面をそれぞれ均一に洗浄することが 可能となる。 このような洗浄方法および洗浄装置は、 各種工業用途等の洗浄に対 して有用である。 また、 第 4の洗浄方法および第 4の洗浄装置によれば、 上記効 果に加えて、非溶解性の汚れと溶解性の汚れとが混在付着する被洗浄物を効率よ く洗浄することができる。 さらに、洗浄液を強制流動させる流体として、 洗浄液 と気体との混合流体を用いることによって、 上記効果に加えて、 ミストの発生を 防止した上で洗浄効果を高めることができるため、安全性や洗浄 ·乾燥性等の向 上を図ること力《可能となる。 As described above, according to the cleaning method and the cleaning apparatus of the present invention, it is possible to suppress the occurrence of uneven cleaning depending on the part of the object to be cleaned and the position in the cleaning tank. It is possible to uniformly clean the entire surface of a large amount of the cleaning object. Such a cleaning method and a cleaning apparatus are useful for cleaning for various industrial uses and the like. Further, according to the fourth cleaning method and the fourth cleaning apparatus, in addition to the above-described effects, the object to be cleaned to which non-soluble dirt and soluble dirt are mixedly adhered can be efficiently removed. It can be washed well. Furthermore, by using a mixed fluid of a cleaning liquid and a gas as the fluid for forcibly flowing the cleaning liquid, in addition to the above effects, the cleaning effect can be enhanced while preventing the generation of mist. The ability to improve the drying properties is possible.

Claims

請 求 の 範 囲 The scope of the claims
1. 洗浄液が収容された洗浄槽内に被洗浄物を浸漬して洗浄する方法において、 前記洗浄液を前記被洗浄物に向けて強制流動させる流体を噴射する複数の流体 噴射ノズルを、 前記洗浄槽の 1つの槽壁に沿って平行に、 かつ略同一方向に向け て配置し、前記複数の流体噴射ノズルを 2分して、 これら 2分された複数の流体 噴射ノズルからの流体噴射時期を交互に切替えることにより、前記洗浄液の強制 流動方向を略反転させつつ、前記洗浄を行うことを特徵とする洗浄方法。 1. A method for immersing an object to be cleaned in a cleaning tank containing a cleaning liquid for cleaning, the method comprising: a plurality of fluid injection nozzles for injecting a fluid for forcibly flowing the cleaning liquid toward the object to be cleaned; The two or more fluid ejection nozzles are arranged in parallel and substantially in the same direction along one of the tank walls, and the fluid ejection timings from the two divided fluid ejection nozzles are alternated. A cleaning method characterized in that the cleaning is performed while the forced flow direction of the cleaning liquid is substantially reversed by switching to (i).
2. 洗浄液が収容された洗浄槽内に被洗浄物を浸漬して洗浄する方法において、 前記洗浄液を前記被洗浄物に向けて強制流動させる流体を噴射する複数の流体 噴射ノズルを、前記被洗浄物を囲うように前記洗浄槽内に配置し、 前記複数の流 体噴射ノズルから前記被洗浄物に向けて前記流体を噴射時期を順に切替えつつ噴 射させることにより、前記洗浄液の強制流動方向を順に変化させつつ、前記洗浄 を行うことを特徵とする洗浄方法。  2. A method for immersing an object to be cleaned in a cleaning tank containing a cleaning liquid for cleaning, wherein the plurality of fluid jet nozzles for jetting a fluid for forcibly flowing the cleaning liquid toward the object to be cleaned are provided. By disposing the cleaning fluid in the cleaning tank so as to surround the object and spraying the fluid from the plurality of fluid injection nozzles toward the object to be cleaned while sequentially switching the injection timing, the forced flow direction of the cleaning liquid is changed. A cleaning method characterized by performing the cleaning while changing the cleaning order.
3. 洗浄液が収容された洗浄槽内に被洗浄物を浸潰して洗浄する方法において、 前記洗浄液を前記被洗浄物に向けて強制流動させる流体を噴射する少なくとも 3. A method of immersing an object to be cleaned in a cleaning tank containing a cleaning liquid for cleaning, wherein at least jetting a fluid for forcibly flowing the cleaning liquid toward the object to be cleaned.
1つの流体噴射ノズルを前記洗浄槽内に配置し、前記流体噴射ノズルを移動させ - ることにより、 前記洗浄液の強制流動方向を変化させつつ、前記洗浄を行うこと を特徴とする洗浄方法。 A cleaning method, comprising: arranging one fluid injection nozzle in the cleaning tank and moving the fluid injection nozzle to perform the cleaning while changing the forced flow direction of the cleaning liquid.
4. 請求項 3記載の洗浄方法において、  4. In the cleaning method according to claim 3,
前記流体噴射ノズルを略水平方向に移動させることにより、前記洗浄液の強制 流動方向を略反転させることを特徴とする洗浄方法。  A cleaning method, wherein the forced jet direction of the cleaning liquid is substantially reversed by moving the fluid ejection nozzle in a substantially horizontal direction.
5. 洗浄液が収容され、 かつ超音波発振子が配置された洗浄槽内に被洗浄物を 浸漬して洗浄する方法において、  5. In a method of immersing an object to be cleaned in a cleaning tank in which a cleaning liquid is contained and an ultrasonic oscillator is arranged,
前記洗浄液を前記超音波発振子からの超音波発振方向と略反対方向に強制流動 させる流体を噴射する流体噴射ノズルを前記洗浄槽内に配置し、前記超音波発振 子からの超音波発振と前記流体噴射ノズルからの流体噴射とを交互に切替えつつ、 前記洗浄を行うことを特徴とする洗浄方法。  A fluid jet nozzle for jetting a fluid for forcibly flowing the cleaning liquid in a direction substantially opposite to the ultrasonic oscillation direction from the ultrasonic oscillator is disposed in the cleaning tank, and the ultrasonic oscillation from the ultrasonic oscillator and the A cleaning method, wherein the cleaning is performed while alternately switching between fluid ejection from a fluid ejection nozzle.
6. 請求項 1ないし請求項 5のいずれか一項記載の洗浄方法において、 前記流体噴射ノズルから前記洗浄液の単独流体または前記洗浄液と気体との混 合流体を噴射させることを特徵とする洗浄方法。 6. In the cleaning method according to any one of claims 1 to 5, A cleaning method characterized by injecting a single fluid of the cleaning liquid or a mixed fluid of the cleaning liquid and a gas from the fluid injection nozzle.
7. 請求項 1ないし請求項 5のいずれか一項記載の洗浄方法において、 前記洗浄液として溶剤系洗浄剤を用いることを特徴とする洗浄方法。  7. The cleaning method according to claim 1, wherein a solvent-based cleaning agent is used as the cleaning liquid.
8. 請求項 7記載の洗浄方法において、  8. The cleaning method according to claim 7,
前記溶剤系洗浄剤は、 シリコーン系溶剤、炭化水素系溶剤、 ペルフルォロカー ボン系溶剤、 テルペン系溶剤、 アルキルアミンォキサイド系溶剤、 およびポリグ リコール系溶剤から選ばれる少なくとも 1種を主成分とする洗浄剤であることを 特徴とする洗浄方法。  The solvent-based cleaning agent contains at least one selected from a silicone-based solvent, a hydrocarbon-based solvent, a perfluorocarbon-based solvent, a terpene-based solvent, an alkylamine-oxide-based solvent, and a polyglycol-based solvent. A cleaning method characterized by being an agent.
9. 洗浄液が収容され、前記洗浄液中に被洗浄物が浸漬される洗浄槽と、 前記洗浄槽内に、該洗浄槽の 1つの槽壁に沿って平行に、 かつ略同一方向に向 けて配置さ† 前記洗浄液を前記被洗浄物に向けて強制流動させる流体を噴射す る、 第 1の群と第 2の群に分けられた複数の流体噴射ノズルと、  9. A cleaning tank in which a cleaning liquid is contained and an object to be cleaned is immersed in the cleaning liquid; and in the cleaning tank, parallel to and substantially in the same direction along one tank wall of the cleaning tank. A plurality of fluid injection nozzles, divided into a first group and a second group, for injecting a fluid for forcibly flowing the cleaning liquid toward the object to be cleaned;
前記第 1の群の流体噴射ノズルからの流体噴射時期と前記第 2の群の流体噴射 ノズルからの流体噴射時期とを交互に切替え、前記洗浄液の強制流動方向を略反 転させる噴射時期制御手段と  Injection timing control means for alternately switching the fluid injection timing from the first group of fluid injection nozzles and the fluid injection timing from the second group of fluid injection nozzles to substantially reverse the forced flow direction of the cleaning liquid. When
を具備することを特徵とする洗浄装置。  A cleaning device comprising:
10. 洗浄液が収容され、前記洗浄液中に被洗浄物が浸漬される洗浄槽と、 前記被洗浄物を囲うように前記洗浄槽内に配置され、前記洗浄液を前記被洗浄 物に向けて強制流動させる流体を前記被洗浄物に向けて噴射する複数の流体噴射 ノズルと、  10. A cleaning tank in which the cleaning liquid is contained and the object to be cleaned is immersed in the cleaning liquid; and the cleaning liquid is disposed in the cleaning tank so as to surround the object to be cleaned, and the cleaning liquid is forced to flow toward the object to be cleaned. A plurality of fluid ejection nozzles for ejecting a fluid to be washed toward the object to be cleaned,
前記複数の流体噴射ノズルからの流体噴射時期を順に切替え、 前記洗浄液の強 制流動方向を順に変化させる噴射時期制御手段と  Injection timing control means for sequentially switching fluid injection timings from the plurality of fluid injection nozzles and sequentially changing a forced flow direction of the cleaning liquid;
を具備することを特徴とする洗浄装置。  A cleaning device comprising:
11. 洗浄液が収容され、前記洗浄液中に被洗浄物が浸漬される洗浄槽と、 前記洗浄槽内に移動可能に配置され、前記洗浄液を前記被洗浄物に向けて強制 流動させる流体を噴射する少なくとも 1つの流体噴射ノズルと、  11. A cleaning tank in which the cleaning liquid is contained and the object to be cleaned is immersed in the cleaning liquid; and a fluid that is movably disposed in the cleaning tank and that forcibly flows the cleaning liquid toward the object to be cleaned. At least one fluid ejection nozzle;
前記流体噴射ノズルを移動させ、前記洗浄液の強制流動方向を変化させるノズ ル移動手段と を具備することを特徴とする洗浄装置。 Nozzle moving means for moving the fluid ejection nozzle to change a forced flow direction of the cleaning liquid; A cleaning device comprising:
12. 請求項 1 1記載の洗浄装置において、  12. In the cleaning device according to claim 11,
前記ノズル移動手段により前記流体噴射ノズルを略水平方向に移動させ、前記 洗浄液の強制流動方向を略反転させることを特徵とする洗浄装置。  A cleaning apparatus, characterized in that the fluid moving nozzle is moved in a substantially horizontal direction by the nozzle moving means, and a forced flow direction of the cleaning liquid is substantially reversed.
13. 洗浄液が収容され、前記洗浄液中に被洗浄物が浸漬される洗浄槽と、 前記洗浄槽内に配置された超音波発振子と、  13. A cleaning tank in which a cleaning liquid is stored and an object to be cleaned is immersed in the cleaning liquid, and an ultrasonic oscillator arranged in the cleaning tank,
前記洗浄槽内に配置さ 前記超音波発振子からの超音波発振方向と略反対方 向に前記洗浄液を強制流動させる流体を噴射する流体噴射ノズルと、  A fluid ejection nozzle that is arranged in the washing tank and ejects a fluid for forcibly flowing the washing liquid in a direction substantially opposite to an ultrasonic oscillation direction from the ultrasound oscillator;
前記超音波発振子からの超音波発振と前記流体噴射ノズルからの流体噴射とを 交互に切替える手段と  Means for alternately switching between ultrasonic oscillation from the ultrasonic oscillator and fluid ejection from the fluid ejection nozzle;
を具備することを特徵とする洗浄装置。  A cleaning device comprising:
14. 請求項 9ないし請求項 1 3のいずれか一項記載の洗净装置において、 前記流体として前記洗浄液を前記流体噴射ノズルから噴射させる送液ポンプを 具備することを特徴とする洗浄装置。  14. The washing apparatus according to any one of claims 9 to 13, further comprising a liquid sending pump that ejects the washing liquid as the fluid from the fluid ejection nozzle.
15. 請求項 9ないし請求項 1 3のいずれか一項記載の洗浄装置において、 前記洗浄液を前記流体噴射ノズルから噴射させる送液ポンプと、 前記送液ポン プと前記流体噴射ノズルとの間に配置され、 前記洗浄液中に圧縮気体を混合導入 する気体導入手段とを具備し、 前記流体として前記洗浄液と気体との混合流体を 前記流体噴射ノズルから噴射させることを特徴とする洗浄装置。  15. The cleaning apparatus according to any one of claims 9 to 13, wherein a liquid feed pump configured to inject the cleaning liquid from the fluid ejection nozzle, and between the liquid supply pump and the fluid ejection nozzle. And a gas introducing means for mixing and introducing a compressed gas into the cleaning liquid, wherein the mixed liquid of the cleaning liquid and the gas is ejected from the fluid ejection nozzle as the fluid.
16. 請求項 1 5記載の洗浄装置において、  16. In the cleaning device according to claim 15,
前記気体導入手段は、 ェジヱク夕であることを特徴とする洗浄装置。  The cleaning device according to claim 1, wherein the gas introduction unit is a jewel.
17. 請求項 9ないし請求項 1 3のいずれか一項記載の洗浄装置において、 前記洗浄液の蒸留再生を行う蒸留装置を有する洗浄液再生手段を具備すること を特徴とする洗浄装置。  17. The cleaning apparatus according to any one of claims 9 to 13, further comprising a cleaning liquid regenerating means having a distillation apparatus for performing distillation and regeneration of the cleaning liquid.
18. 請求項 9ないし請求項 1 3のいずれか一項記載の洗浄装置において、 前記洗浄液は溶剤系洗浄剤であることを特徵とする洗浄装置。  18. The cleaning apparatus according to any one of claims 9 to 13, wherein the cleaning liquid is a solvent-based cleaning agent.
19. 請求項 1 8記載の洗浄装置において、  19. The cleaning device according to claim 18, wherein
前記溶剤系洗浄剤は、 シリコーン系溶剤、 炭化水素系溶剤、 ペルフルォロカー ボン系溶剤、 テルペン系溶剤、 アルキルアミンォキサイド系溶剤、 およびポリグ リコール系^ mから選ばれる少なくとも 1種を主成分とする洗浄剤であることを 特徴とする洗浄装置。 The solvent-based cleaning agent includes a silicone-based solvent, a hydrocarbon-based solvent, a perfluorocarbon-based solvent, a terpene-based solvent, an alkylamine oxide-based solvent, and a polyg- ene solvent. A cleaning device characterized by being a cleaning agent containing at least one member selected from the group consisting of a recall type and a main component.
PCT/JP1995/000730 1994-04-14 1995-04-14 Washing method and washing device WO1995028235A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960705744A KR970702105A (en) 1994-04-14 1996-10-14 Washing Method and Washing Device (WASHING METHOD AND WASHING DEVICE)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10072794 1994-04-14
JP6/100727 1994-04-14

Publications (1)

Publication Number Publication Date
WO1995028235A1 true WO1995028235A1 (en) 1995-10-26

Family

ID=14281655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000730 WO1995028235A1 (en) 1994-04-14 1995-04-14 Washing method and washing device

Country Status (4)

Country Link
KR (1) KR970702105A (en)
CN (1) CN1150397A (en)
TW (1) TW270904B (en)
WO (1) WO1995028235A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7252100B1 (en) * 2003-03-28 2007-08-07 Emc Corporation Systems and methods for processing a set of circuit boards
WO2014191690A1 (en) * 2013-05-31 2014-12-04 Michel Bourdat Specific device for cleaning electronic components and/or circuits
US10994311B2 (en) 2013-05-31 2021-05-04 Michel Bourdat Specific device for cleaning electronic components and/or circuits
US20220184670A1 (en) * 2020-12-16 2022-06-16 The Boeing Company Flexible cavitation apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001246331A (en) 2000-03-08 2001-09-11 Sharp Corp Cleaning device
JP5072062B2 (en) * 2006-03-13 2012-11-14 栗田工業株式会社 Method, apparatus and apparatus for producing hydrogen gas-dissolved cleaning water
CN101196563B (en) * 2006-12-05 2012-06-20 中芯国际集成电路制造(上海)有限公司 Ultrasonic detector and method for detecting liquid level using the same
KR101100372B1 (en) * 2009-04-22 2011-12-30 주식회사 케이피엠테크 One Tank Rinse System Apparatus
CN104014501B (en) * 2014-06-11 2016-05-18 山东鸿民轧辊模具有限公司 Roll vacuum heat cleaning equipment
JP6684397B2 (en) * 2015-04-02 2020-04-22 エムテックスマート株式会社 Fluid ejection method and fluid film formation method
JP2017140605A (en) * 2016-02-12 2017-08-17 光洋機械産業株式会社 Washing method and washing apparatus used for the same method
CN108015277A (en) * 2017-11-24 2018-05-11 北京遥感设备研究所 A kind of 3D printing cold plate runner automatic flushing device
AR115687A1 (en) * 2018-07-05 2021-02-17 Framatome Sa METHOD OF MANUFACTURING A NUCLEAR FUEL ELEMENT, INSTALLATION FOR THE MANUFACTURE OF NUCLEAR FUEL ELEMENTS AND METHOD OF EXPANDING AN INSTALLATION OF THIS TYPE
CN113663978B (en) * 2021-08-16 2022-05-24 湖南省计量检测研究院 Vacuum ultrasonic bottle washing machine
CN113866097A (en) * 2021-09-09 2021-12-31 中国科学院大气物理研究所 Automatic cleaning system for optical instrument mirror surface and using method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916195Y1 (en) * 1970-03-18 1974-04-23
JPS55120180U (en) * 1979-02-16 1980-08-26
JPS61125386U (en) * 1985-01-24 1986-08-06
WO1991013697A1 (en) * 1990-03-16 1991-09-19 Kabushiki Kaisha Toshiba Method and apparatus for cleaning
JPH0513587U (en) * 1991-08-07 1993-02-23 株式会社北村製作所 Ultrasonic cleaning equipment
JPH06210252A (en) * 1993-01-21 1994-08-02 Uchinami Techno Clean:Kk Underwater washing method and apparatus therefor
JPH06326072A (en) * 1993-05-17 1994-11-25 Sony Corp Cleaning apparatus
JPH0760208A (en) * 1993-08-31 1995-03-07 Trinity Ind Corp Washing apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916195Y1 (en) * 1970-03-18 1974-04-23
JPS55120180U (en) * 1979-02-16 1980-08-26
JPS61125386U (en) * 1985-01-24 1986-08-06
WO1991013697A1 (en) * 1990-03-16 1991-09-19 Kabushiki Kaisha Toshiba Method and apparatus for cleaning
JPH0513587U (en) * 1991-08-07 1993-02-23 株式会社北村製作所 Ultrasonic cleaning equipment
JPH06210252A (en) * 1993-01-21 1994-08-02 Uchinami Techno Clean:Kk Underwater washing method and apparatus therefor
JPH06326072A (en) * 1993-05-17 1994-11-25 Sony Corp Cleaning apparatus
JPH0760208A (en) * 1993-08-31 1995-03-07 Trinity Ind Corp Washing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7252100B1 (en) * 2003-03-28 2007-08-07 Emc Corporation Systems and methods for processing a set of circuit boards
WO2014191690A1 (en) * 2013-05-31 2014-12-04 Michel Bourdat Specific device for cleaning electronic components and/or circuits
US10099262B2 (en) 2013-05-31 2018-10-16 Michel Bourdat Specific device for cleaning electronic components and/or circuits
US10994311B2 (en) 2013-05-31 2021-05-04 Michel Bourdat Specific device for cleaning electronic components and/or circuits
US20220184670A1 (en) * 2020-12-16 2022-06-16 The Boeing Company Flexible cavitation apparatus

Also Published As

Publication number Publication date
TW270904B (en) 1996-02-21
CN1150397A (en) 1997-05-21
KR970702105A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
WO1995028235A1 (en) Washing method and washing device
KR100458211B1 (en) Cleaning apparatus
KR100935975B1 (en) Substrate treating apparatus
JP4007751B2 (en) Cleaning method and cleaning device
JPH06264274A (en) Method and apparatus for cleaning metal workpiece
KR100563843B1 (en) Processing apparatus and processing method
KR20110137745A (en) Cleaning method and cleaning apparatus
JP3380021B2 (en) Cleaning method
JPH07328567A (en) Washing method and apparatus
TWI295199B (en)
JP3200876B2 (en) Circuit board cleaning method and cleaning apparatus
KR102346493B1 (en) Substrate processing method and substrate processing apparatus
JPH01135024A (en) Washing
JPH08290128A (en) Cleaning method using supercritical and subcritical fluid
JP4621051B2 (en) Substrate cleaning device
JP3108937B2 (en) Work cleaning method and cleaning device
WO2007072571A1 (en) Substrate drier, substrate cleaner, substrate drying method, and substrate cleaning method
KR100342720B1 (en) Cleaning means using high density liquefied gas
JPH10154678A (en) Cleaning of semiconductor wafer
JPH03109981A (en) Method and device for underwater automatic washing
JP3329646B2 (en) Cleaning device and cleaning method
JPH09323070A (en) Degreasing and cleaning method
US11728185B2 (en) Steam-assisted single substrate cleaning process and apparatus
JP2017136533A (en) Cleaning apparatus and cleaning method
JPH05161880A (en) Method for washing using mainly water and apparatus thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95193443.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)