WO1995018080A1 - Ito sintered body, ito transparent conductive film and method of forming the film - Google Patents

Ito sintered body, ito transparent conductive film and method of forming the film Download PDF

Info

Publication number
WO1995018080A1
WO1995018080A1 PCT/JP1994/002214 JP9402214W WO9518080A1 WO 1995018080 A1 WO1995018080 A1 WO 1995018080A1 JP 9402214 W JP9402214 W JP 9402214W WO 9518080 A1 WO9518080 A1 WO 9518080A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
sintered body
transparent conductive
ito
composition
Prior art date
Application number
PCT/JP1994/002214
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiko Shirakawa
Hirozumi Izawa
Takao Noda
Original Assignee
Showa Denko Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Kabushiki Kaisha filed Critical Showa Denko Kabushiki Kaisha
Priority to KR1019950703610A priority Critical patent/KR100203671B1/en
Publication of WO1995018080A1 publication Critical patent/WO1995018080A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products

Definitions

  • ITO sintered body ITO transparent conductive film and method of forming the film
  • the present invention relates to an ITO sintered body useful as a sputtering target material used for forming a transparent conductive film, an ITO transparent conductive film obtained from the sintered body, and a method for forming such a transparent conductive film. .
  • the ITO sintered body of the present invention has a high sintered body density, and a transparent conductive film having a small specific resistance can be obtained from the sintered body.
  • This transparent conductive film is particularly suitable for use as a transparent electrode in liquid crystal displays, electroluminescence, and electrochromic displays. Background technology
  • a film formed by forming a metal such as gold or platinum or an oxide such as tin oxide or indium oxide on a substrate is known.
  • the one used for liquid crystal displays and the like is the mainstream of ITO (Indium—TinOxide), in which tin oxide is added to indium oxide.
  • ITO Indium—TinOxide
  • the method for forming the transparent conductive film include physical vapor deposition methods such as vacuum deposition, ion plating, and sputtering, chemical vapor deposition methods for forming a film by a chemical reaction such as thermal decomposition, and coating methods using sprayers and tips.
  • the physical vapor deposition method in particular, the sputtering method, is the mainstream because the denseness of the film is good and a low resistance film can be easily obtained.
  • an ITO sintered body obtained by adding tin oxide to indium oxide is often used as a sputtering target.
  • the ITO sintered body is usually formed by molding powder obtained by adding tin oxide to indium oxide or calcined powder by cold breathing, embedding, etc.
  • ITO powder has poor sinterability, and this method has a high density of 4.9 g / cm3 (relative density of 70 g when the theoretical density is 7.0 gcm3). %) Of the sintered body was obtained.
  • examples of the technology for lowering the resistance of an ITO transparent conductive film by a semiconductor conversion mechanism based on valence control include the following.
  • JP-A-59-163707 ruthenium oxide, lead oxide, and copper oxide are added to ITO, and in JP-A-59-71205, acid is added to ITO, and
  • JP-A-63-78404 indium oxide and aluminum fluoride for ITO, JP-A-63-178414, and TEO oxide for ITO and JP-A-64-10507, respectively.
  • TEO oxide for ITO and JP-A-64-10507, respectively.
  • selenium oxide or tin fluoride is used as the ITO.
  • I and Br are respectively added to I T0 to reduce the resistance of the transparent conductive film.
  • US Pat. No. 4,399,194 discloses an example of lowering the resistance of a transparent conductive film by making a semiconductor based on reduction.
  • zirconium oxide is added to indium oxide at 40 to 60 wt% to obtain characteristics of a specific resistance of 4.4 ⁇ 10-4 ⁇ cm and a light transmittance of 80%.
  • the amount of IT0 that can be used for one target of the same size is reduced, the target life is short, and the frequency of target replacement is high.
  • the operating rate of the sputtering apparatus is reduced.
  • the sintering density is lower, the blackening phenomenon of the target surface which occurs during sputtering is more remarkable, and the speed at which the film is formed becomes slower with time, and the specific resistance of the transparent conductive film becomes higher. Therefore, in order to remove the blackened material on the surface, the amount of use of the actual gate is reduced, and the operating rate of the sputtering apparatus is further reduced. Therefore, while increasing the usable amount of ITO per target sheet, the density of the ITO sintered body target is improved in order to improve the operation rate and stable operation of the sputtering equipment. A density exceeding 70% is required.
  • Japanese Patent Application Laid-Open No. 61-136954 Japanese Patent Publication No. 21109/111
  • a sintered body having a maximum relative density of 90% is obtained by adding an oxide of Si and / or Ge as a sintering aid.
  • the inventors of the present invention have performed additional tests and found that the one with the best film characteristics is a composition obtained by adding 0.5 wt% of GeOs to ITO, and the specific resistance of the film is 2.0 ⁇ 10-4 Qcm.
  • the sintered body density was only 79%. When 15 wt% of GeO 2 was added, the sintered body density became 90%, and the specific resistance of the film deteriorated to 2 : 9 ⁇ 10-4 ⁇ cm.
  • Japanese Patent Application Laid-Open No. 59-198602 describes a transparent conductive film in which A1, W, Th, and Mo elements are added to ITO.
  • the film resistance is also 1.2 ⁇ 10 ⁇ 2 to 1.2 ⁇ 10 ⁇ 2. . 42 X 1 0_ 2 Qcm and higher, when the present inventor has additional test, the sintered density is low than 70% relative density to the theoretical density.
  • an object of the present invention is to provide a high-density ITO sintered body having a relative density of 90% or more and capable of obtaining a transparent conductive film having a low specific resistance. Is to do.
  • An object of the present invention is to provide an ITO transparent conductive film that can be manufactured with a high yield with a thin and shortened etching time.
  • S i O 2 -B is O 3 shown in FIG. 1 corresponds to a region surrounded by points A, B, C, D and E indicating the following composition in the two-component diagram. providing 2 and B ⁇ 2 0 3 I tO sintered body containing composition.
  • the present invention provides, in another one aspect, provides an I TO transparent conductive film that have a the S i 0 2 and B 12 0 3 composition.
  • the invention in still another aspect, from the I TO sintered body was used as a data Ge' bets, inert gas alone or an inert gas into the vacuum chamber and 02 gas and H ⁇ gas having the above composition Introduce a mixture of at least one selected gas so that the total pressure becomes 1 X 10-3 t0 rr ⁇ 5 Xl 0-2 torr, and sputtering And a method for forming an ITO transparent conductive film.
  • tin exists as a mixture or solid solution of indium oxide with respect to indium oxide.
  • Bi and Si are also used.
  • Each is mixed as an oxide, but seems to exist as a composite oxide, as a solid solution, or in a mixed state thereof. Since the state is difficult to identify accurately, in the present invention, the composition is indicated as each oxide for convenience.
  • Sintered body and transparent conductive film of the present invention S i 0 2 shown in Figure 1 - B i 2 0 3 two-component point indicating the composition of A, B, C, realm surrounded by D and E transparent conductive film c satisfying this requirement is characterized by having a S i 0 2 and B i 2 0 3 composition corresponding to have the following specific resistance value of about 2. 0X10- 4 ⁇ cm to.
  • the sintered body and the transparent conductive film are regions surrounded by points F, G, H, and I in the binary system of S i 0 2 -B i ⁇ 0 3 shown in FIG. 1, and more preferably the following compositions having S i 0 2 and B 12 0 3 composition corresponding respectively J, K, in a region surrounded by L and ⁇ point indicating the.
  • the transparent conductive film Has a specific resistance of 1.5 ⁇ 10 ⁇ 4 ⁇ cm or less and 1.0 ⁇ 10 ⁇ cm or less, respectively.
  • the ITO sintered body and the transparent conductive film of the present invention contain 0.05 to 25 wt% of tin oxide. It is not preferable that the amount of tin oxide is less than 0.05 wt% or more than 25 wt%, since the specific resistance of the transparent conductive film formed thereby becomes large. That is, the sintered body and transparent conductive film of the present invention include the acid tin amount in the range described above, it is preferable to further include a B 12 0 3 and S i 0 2 in the composition range described above.
  • an oxide of In is generally used as a starting material of indium oxide, but In metal, hydroxide, fluoride, sulfate, nitrate, and the like may be used.
  • a raw material other than an oxide it is calcined or fired in an oxidizing atmosphere to obtain an oxide-based sintered body.
  • the starting material of tin oxide is generally an oxide, but Sn metal, hydroxide, fluoride, sulfide, sulfate, nitrate and the like may be used.
  • S n is finally made of an oxide like I n.
  • the starting material of bismuth oxide is generally an oxide, but Bi metal, hydroxide, iodide, sulfide, sulfate, nitrate and the like may be used.
  • a raw material other than the oxide of B i is used, sintering starts at the time of sintering. Simple substances, chlorides, nitrides, carbides, sulfides, etc. may be used, as well as S i, as well as B i, as long as it is an oxide at the time of sintering 95 (TC.
  • the raw material compounds of these four elements may be mixed at the same time, or compounds of two or more elements may be mixed and calcined in advance, and the calcined powder may be mixed with a compound of another element. Mortar mixing, ball mill mixing, etc. are used for mixing the raw materials.
  • the raw material powder is preferably set to 2 zm or less. If mixed powder is calcined is carried out at 400 ⁇ 150 O e C.
  • the resulting powder contains polyvinyl alcohol (PVA), polyvinyl butyral
  • a binder such as (PVB)
  • granulate to 1 to 50 m with a spray drier, etc., and mold at a pressure of about 500 to 8000 kgZcm2.
  • it may be formed into a slurry together with a binder such as PVA and then subjected to injection molding.
  • the molded body may be dried and degreased in some cases.
  • Sintering of the obtained compact is performed at 1200 to 1600 ° C.
  • the sintering can be performed sufficiently in the atmosphere, but it is possible to perform sintering by hot pressing, HIP, or atmosphere adjustment.
  • a sputtering method and an electron beam evaporation method are employed, but in addition, an ion plating method, a chemical vapor deposition method, and a coating method are also used.
  • a method suitable for a raw material for forming each film is selected.
  • a sintered body of indium and an oxide of an additive element or an alloy thereof is used as a vapor deposition material (target).
  • the sintered body and the substrate on which the film is to be formed are set as an overnight get, and a vacuum is drawn to 1 X 10-5 torr or less. after, if the sintered body or only an inert gas, or mixed gas comprising an inert gas and 0 2 gas or H 2 gas, a mixed gas comprising an inert gas and 02 gas and H 2 gas Introduce and form a film.
  • argon and neon are preferable in view of the function as an inert gas and economical efficiency, and argon is particularly preferable.
  • nitrogen is not preferred because it generates a small amount of nitrogen compounds in the sputtering or vapor deposition process.
  • a vacuum chamber Within, a mixed gas consisting of an inert gas or inert gas and 02 gas and / or ⁇ 2 gas introduced, the total pressure of 1 X 1 0- 3 t 0 rr ⁇ 5 X 1 02 torr To be introduced.
  • the transmittance increases when the O 2 partial pressure in the sputtering gas increases, and the resistance decreases.
  • the force decreases excessively, the resistance increases.
  • 0 2 than the same function as 02 gas oxygen mixed sputtering gas in also oxides but the inert gas as a sputtering gas, such as A r without adding gas, film properties such as resistance much Does not worsen.
  • force Sina force, et al., It is advantageous better certain ratio or more of 0 2 gas is present, therefore, Oite the conductive film forming method of the present invention, the 02 gas at a rate of 2 Ppm ⁇ 2 0% It is preferable to include it in the sputter ring mixed gas.
  • the resistance can be reduced without introducing H 2
  • the resistance can be reduced without impairing the light transmittance of the film when H 2 is introduced.
  • H 2 partial pressure exceeds 1 X 1 0- 3 torr
  • the light transmittance decreases. Therefore, in the conductive film forming method of the present invention, it is preferable that the H 2 gas is contained in the sputtering mixed gas at a ratio of 2 ppm to 20%.
  • Total pressure of the sputtering gas is 1 X 1 0 - without generating stable plasma at 3 t 0 rr less than a low pressure, and in a high pressure exceeding 5 X 1 0 - ⁇ torr deteriorate the resistance of the film.
  • the film is formed at a substrate temperature of 150 to 500 ° C. and a target input power of 0.5 to 4 W / cm 2.
  • the input power refers to the power per 1 cm 2 of the gate per night, and is used to turn the sputtering gas into plasma and accelerate the ions constituting the plasma. If the substrate temperature is lower than 150, the resistance value is inferior, and if the substrate temperature exceeds 50 (TC, the substrate will be deformed, making it unusable. If the input power is lower than 0.5 WZc, the deposition rate will be low, and the production efficiency will be low. On the other hand, if it exceeds 4 WZ cm ⁇ , the resistance value becomes poor.
  • the film formation speed is determined by the total pressure of the sputtering gas, the distance between the substrates, and the like, in addition to the input power. In consideration of the above, it is preferable to select a sputtering condition in which the light transmittance of the film is 90% or more, the highest possible value and the lowest resistance value are obtained.
  • a film can be formed by a vacuum deposition method or an ion plating method as a physical vapor deposition (PVD) method other than the sputtering method. In this case, the same sintered body as in the sputtering method can be used as a raw material.
  • the sputtering method can be formed by an electron beam evaporation method.
  • an inert gas such as A r does not introduce 0 2 gas Sunomi or to introduce the gas 0 2 gas and ⁇ gas
  • to the substrate heating is the same as sputtering, vapor deposition
  • the speed is determined by the electron beam voltage, current, and beam diameter.
  • the first ultimate vacuum is less 10- 5 torr, subsequent 0 2 gas partial pressure 0. 1 X 10-4 ⁇ 5 X 10-4 torr, H 2 gas partial pressure 0. 1 X 10- 5 ⁇ 5 X 10-5 t 0 rr, substrate temperature 200 ⁇ 400.
  • C a deposition rate of 0.5 ⁇ 10 angstroms sec is an appropriate condition.
  • a transparent conductive film can be formed by a chemical vapor deposition (CVD) method.
  • CVD chemical vapor deposition
  • trimethoxyindium, tetraisopropoxytin, tetraethoxysilane, triisopropoxybismuth, or the like can be used as a raw material.
  • a transparent conductive film can be formed by a coating method. That is,
  • coating and film formation can also be performed by a sol-gel method or a thermal decomposition method of an aqueous solution.
  • a substrate on which a film is to be formed a glass or plastic sheet or film, or a substrate on which a protective film or a functional film is applied is used.
  • the specific S i 0 2 to ITO - by combining the B ia 0 3 composition, density of the sintered body relative density of more than 90% is obtained, further By performing sputtering using this sintered body as a target, an ITO conductive film having a very low specific resistance value and a large visible light transmittance can be industrially advantageously obtained.
  • the specific S i 0 2 ⁇ 1 2 Os composition is critical, for example, when Bi 2 0 3 is not added (Comparative Examples 10 to 13: relative density of sintered body 72 to 8) . 8, electrostatic Shirubemaku resistivity 2. 0 ⁇ 2 3 X 1 0 - 4 ⁇ cm) as compared with the case where B i 2 0 3 is contained a predetermined amount (example 2 1-2 4 sintered body Relative densities of 95 to 93 and conductive film resistivity of 1.2 to 1.3) are high in sintered body density and considerably low.
  • a sintered body, a transparent conductive film, and a method for forming the film of the present invention will be specifically described with reference to Examples and Comparative Examples.
  • Tables 1 to 3 show the mixing amount of bismuth oxide and silicon oxide in% by weight, with the balance being ITO. Mixing was performed with a ball mill. For each of these mixed powders, 0.05 1%? The solution was added to make a slurry having a solid content of 20%, and this slurry was spray-dried with a spray dryer to obtain granules having an average particle size of 20 / m.
  • the granules were uniaxially pressed at 1 to nZcm 2 to obtain a disc-shaped compact having a diameter of 90 mm ⁇ and a thickness of 3.5 mm.
  • Tables 1 to 3 show the composition (chemical analysis) and relative density of the sintered body.
  • Example 5 1 0.02 1.02 0.011, 93 90 1.30
  • Example 14 0.075 1.5 0.075 0.82 93 90 0.58 Difficult example • 0.1 1.5 0.11 0.81 93 90 0.68
  • Example 16 0.5 1.5 0.49 0.81 .94 90 0.72 Difficult 17 1 1.5 0.99 0.84 95 90 0.82 Difficult 18 2 1.5 2.02 0.79 97 90 0.96
  • Example 19 1.5 3.97 0.83 96 90 1.22 Plow example 20 6 1.5 6.00 0.82 94 90 1.45
  • Example 3 0 1.5 0 0.82 72 90 5.13 ⁇ Example 4 0 3 0 1.66 76
  • Samples were prepared by using the same raw material powders as in Example 1 and changing the amount of tin oxide.
  • the amounts of indium oxide and tin oxide mixed were as shown in Table 4, calcined under the same conditions as in Example 1, and bound with ITO powder.
  • Each of the ITO powders was further mixed at a ratio of 0.1 lwt% of gay oxide and 1.5 wt% of bismuth oxide.
  • Other conditions were the same as in Example 1 to obtain a sintered body, and a transparent conductive film was produced.
  • Table 4 shows the composition, density and film characteristics of the sintered body.
  • Example 5 The same conditions as in Example 1 were used, except that the target obtained in Example 14 was used as a sputtering gas, and a mixed gas composed of 02 gas, H 2 gas, and the balance of Ar gas was used as shown in Tables 5 and 6. Produced a transparent conductive film. Table 5'6 shows the film characteristics. [Table 5]
  • Example 67 20ppm 20ppm 5 xio- * L0XI0 1.0X10 '90 0.67
  • Example 68 uppni ouppm 5 XIO" 1 90 0.62
  • Example 69 20ppm 0.2% 5 XIO "* l.oxio- 7 1.0X10" ⁇ 90 0.91
  • Example 70 20 ppm 2% 5X10 "1.0X10-, l.OXlO” 5 90 1.3
  • Example 71 20ppm 20% 5 XIO "* LOXIO” 7 1.0X10 "90 1.5 e.g. 28 20ppm 50% 5 10- * l.OXlO" 7 2.5 X10 " 4 90 2.3
  • Example 86 20% 0 5 X10- * l.oxio -4 0 90 1.6 Optional 20% 2ppm 5 X10- * l.oxio -4 l.oxio- '90 1.1
  • Example 88 20% 20ppm 5 ⁇ 10- » l.oxio -4 1.0X10 -7 90 0.91 Difficult 89 89% 60ppm 5 X10- * 1.0X10 -4 3.OX 10 17 90 0.87
  • Departure 90 20% 0.2% 5 X10- '1.0 10 " 4 1.0X10 "90 1.2 Hanarerei 91 2096 296 5 ⁇ 10-» l.oxio- 4 l.
  • the transparent conductive film of the present invention is particularly suitable for use in a transparent electrode of a liquid crystal disc display, electroluminescence, and electoric display.

Abstract

An ITO sintered body containing an SiO2 and BiO3 composition corresponding to a region, which is enclosed with the lines connecting points A, B, C, D and E, in a two-component material SiO2-BiO3 shown in the figure, and an ITO transparent conductive film containing an additive having the same composition. This transparent conducting film is formed advantageously by carrying out a sputtering operation in an inert gas alone or a mixed gas of an inert gas and O2 and/or H2, using the sintered body as a target. The relative density of this sintered body is as high as above 90 %, and a transparent conductive film made of the sintered body has a specific resistance value of below 2x10-4 Φcm and a high light transmittance.

Description

明 細 書  Specification
I TO焼結体ならびに I TO透明電導膜およびその膜の形成方法 ITO sintered body, ITO transparent conductive film and method of forming the film
技 術 分 野 Technical field
本発明は、 透明電導膜の形成に使用するスパッタリングターゲッ ト材など として有用な I TO焼結体、 ならびに該焼結体から得られる I TO透明電導 膜およびそのような透明電導膜の形成方法に関する。  The present invention relates to an ITO sintered body useful as a sputtering target material used for forming a transparent conductive film, an ITO transparent conductive film obtained from the sintered body, and a method for forming such a transparent conductive film. .
本発明の I TO焼結体は、 高い焼結体密度を有し、 この焼結体から比抵抗 が小さい透明電導膜を得ることができる。 この透明電導膜は、 特に液晶ディ スプレー、 エレク トロルミネッセンス、 エレク トロクロミックディスプレー の透明電極に用いるのに好適である。 背 景 技 術  The ITO sintered body of the present invention has a high sintered body density, and a transparent conductive film having a small specific resistance can be obtained from the sintered body. This transparent conductive film is particularly suitable for use as a transparent electrode in liquid crystal displays, electroluminescence, and electrochromic displays. Background technology
透明電導膜としては金、 白金等の金属あるいは酸化錫、 酸化インジウム等 の酸化物を基板上に成膜したものが知られている。 この中で液晶表示等に用 いられるのは酸化ィンジゥムに酸化錫を添加した I TO (I n d i um— T i n Ox i d e) 力主流である。 それは I TOが高透明性、 低抵抗性であ る他、 エッチング性、 化学的安定性、 基板への付着性等が良好なためである。 透明電導膜の成膜方法としては、 真空蒸着、 イオンプレーティング、 スパ ッタリング等の物理蒸着法、 熱分解等の化学反応で成膜する化学蒸着法、 ス ブレー、 ティ ップ等による塗布法等がある。 この中で膜の緻密性が良く、 低 抵抗膜が容易に得られることから物理蒸着法、 その中でもスパッタリング法 が主流となっている。  As a transparent conductive film, a film formed by forming a metal such as gold or platinum or an oxide such as tin oxide or indium oxide on a substrate is known. Among them, the one used for liquid crystal displays and the like is the mainstream of ITO (Indium—TinOxide), in which tin oxide is added to indium oxide. This is because ITO has high transparency and low resistance, and also has good etching properties, chemical stability, and adhesion to substrates. Examples of the method for forming the transparent conductive film include physical vapor deposition methods such as vacuum deposition, ion plating, and sputtering, chemical vapor deposition methods for forming a film by a chemical reaction such as thermal decomposition, and coating methods using sprayers and tips. There is. Among them, the physical vapor deposition method, in particular, the sputtering method, is the mainstream because the denseness of the film is good and a low resistance film can be easily obtained.
スパッタリング法で I TO膜を形成する際、 スパッタリング夕一ゲッ 卜と して酸化インジウムに酸化錫を添加した I TO焼結体が用いられる場合が多 い。 I TO焼結体は、 通常、 酸化インジウムに酸化錫を加えた粉、 あるいはそ れを仮焼した粉を、 コールドブレス、 铸込み等で成形し、 その成形体を大気 中で 120 (TC以上で焼成するなどの方法によって製造される。 しかし、 I TO粉末は焼結性が悪く、 この方法では密度が高々 4. 9 g/cm3 (理論 密度を 7. 0 g cm3 としたとき相対密度 70%) 程度の焼結体しか得ら れていない。 When forming an ITO film by a sputtering method, an ITO sintered body obtained by adding tin oxide to indium oxide is often used as a sputtering target. The ITO sintered body is usually formed by molding powder obtained by adding tin oxide to indium oxide or calcined powder by cold breathing, embedding, etc. However, ITO powder has poor sinterability, and this method has a high density of 4.9 g / cm3 (relative density of 70 g when the theoretical density is 7.0 gcm3). %) Of the sintered body was obtained.
また、 原子価制御に基づく半導体化機構による I TO透明電導膜の低抵抗 化技術としては、 次のような例がある。  Also, examples of the technology for lowering the resistance of an ITO transparent conductive film by a semiconductor conversion mechanism based on valence control include the following.
特開昭 59— 163707では I T 0に酸化ルテニウム、 酸化鉛、 酸化銅 を添加し、 特開昭 59— 71205では I TOに酸ィヒりんを、 特開昭 61一 In JP-A-59-163707, ruthenium oxide, lead oxide, and copper oxide are added to ITO, and in JP-A-59-71205, acid is added to ITO, and
294703、 特開昭 63-78404では酸化インジウム、 I TOにそれ ぞれフッ化アルミニウムを、 特開昭 63— 178414では I TOに酸化テ ルルを、 特開昭 64— 10507では I TOに酸化ゲイ素を、 特開平 1— 2 83369では I TOに酸化セレンまたはフッ化スズを、 特開平 3— 199294703, JP-A-63-78404, indium oxide and aluminum fluoride for ITO, JP-A-63-178414, and TEO oxide for ITO and JP-A-64-10507, respectively. In Japanese Patent Application Laid-Open No. 1-283369, selenium oxide or tin fluoride is used as the ITO.
373では I T 0に I、 B rをそれぞれ添加し透明電導膜の低抵抗化等を図 つている。 In 373, I and Br are respectively added to I T0 to reduce the resistance of the transparent conductive film.
一方、 還元に基づく半導体化により透明電導膜の低抵抗化を図る例として は、 米国特許第 4, 399, 194がある。 この例では酸化インジウムに酸 化ジルコニウムを 40~60 w t %添加し、 比抵抗 4. 4X10-4Ω cm、 光透過率 80%の特性を得ている。  On the other hand, US Pat. No. 4,399,194 discloses an example of lowering the resistance of a transparent conductive film by making a semiconductor based on reduction. In this example, zirconium oxide is added to indium oxide at 40 to 60 wt% to obtain characteristics of a specific resistance of 4.4 × 10-4 Ωcm and a light transmittance of 80%.
低密度の焼結体をスパッタリングタ一ゲッ トとして用いた場合、 1枚の同 —寸法のターゲッ トで使用できる I T 0の量は少なくなり、 ターゲッ ト寿命 が短く、 ターゲッ 卜の交換頻度が多く、 スパッタリング装置の稼働率が低く なる。 また、 焼結密度が低い程、 スパッタリング時に起こるターゲッ ト表面 の黒化現象が顕著で、膜を形成する速度が経時的に遅くなるとともに透明電 導膜の比抵抗が高くなる。 そのため、 表面の黒化物を取り除くため、 実質的 な夕一ゲッ トの使用量も少なくなるとともにスパッタリング装置の稼働率は 更に低下する。 従って、 ターゲッ トー枚当たりの I TO使用可能量を増大するとともに、 スパッタリング装置の稼働率向上、 安定操業のために、 I TO焼結体ターゲ ッ 卜の密度を向上し、 具体的には少なくとも相対密度 70%を越えるものが 求められている。 When a low-density sintered body is used as a sputtering target, the amount of IT0 that can be used for one target of the same size is reduced, the target life is short, and the frequency of target replacement is high. As a result, the operating rate of the sputtering apparatus is reduced. Also, as the sintering density is lower, the blackening phenomenon of the target surface which occurs during sputtering is more remarkable, and the speed at which the film is formed becomes slower with time, and the specific resistance of the transparent conductive film becomes higher. Therefore, in order to remove the blackened material on the surface, the amount of use of the actual gate is reduced, and the operating rate of the sputtering apparatus is further reduced. Therefore, while increasing the usable amount of ITO per target sheet, the density of the ITO sintered body target is improved in order to improve the operation rate and stable operation of the sputtering equipment. A density exceeding 70% is required.
この要求に対し、 従来の成形焼成工程において、 ホッ トプレス、 H I Pを 用いたり、 焼成雰囲気をコントロールする方法で高密度化を図り、 最高で相 対密度 98%のものも得ている (特開平 3— 207858) 力《、 設備および 生産コストともに高くなるという問題がある。  In response to this demand, in the conventional molding and firing process, hot pressing and HIP have been used, and densification has been achieved by controlling the firing atmosphere. — 207858) There is a problem that both the equipment and production costs are high.
また、 原料 I TO粉の粒度をコントロールして焼結体の高密度化を図る技 術が提案されている (特開昭 62— 12009、 特開平 3— 218924等) が、 原料の調製が非常に難しく、 そのコストも高く、 実用的であるとは言え ない。  In addition, techniques for controlling the particle size of the raw material ITO powder to increase the density of the sintered body have been proposed (JP-A-62-12009, JP-A-3-218924, etc.), but the preparation of the raw material is extremely difficult. Difficult, expensive, and impractical.
上記のようなコスト高を解消するための焼結体の緻密化の方法として、 焼 結助剤を添加する方法がある。  As a method of densifying the sintered body to eliminate the above-mentioned high cost, there is a method of adding a sintering aid.
特開昭 61 -136954 (特公平 1一 21109) では焼結助剤として S iおよび または Geの酸化物を添加して最大の相対密度 90%の焼結体 を得ている。 しかしながら、 本発明者が追試したところ膜特性の最も良いも のは、 組成が I TOに GeOs を 0. 5wt%添加したもので、 膜の比抵抗 は 2. 0X 10-4Q cmであるが、 焼結体密度は 79%に留まった。 GeO 2 を 15wt%加えると、 焼結体密度は 90%となる力 膜の比抵抗は 2: 9 X 10- 4Ω c mと悪化した。 In Japanese Patent Application Laid-Open No. 61-136954 (Japanese Patent Publication No. 21109/111), a sintered body having a maximum relative density of 90% is obtained by adding an oxide of Si and / or Ge as a sintering aid. However, the inventors of the present invention have performed additional tests and found that the one with the best film characteristics is a composition obtained by adding 0.5 wt% of GeOs to ITO, and the specific resistance of the film is 2.0 × 10-4 Qcm. The sintered body density was only 79%. When 15 wt% of GeO 2 was added, the sintered body density became 90%, and the specific resistance of the film deteriorated to 2 : 9 × 10-4 Ωcm.
また、 特開昭 59— 198602には、 I TOに対し A 1, W, T h, M o元素を添加した透明電導膜が記載されている力 膜抵抗も 1. 2 X 10-2 〜2. 42 X 1 0_2Qcmと高く、 本発明者が追試したところ、 焼結体密度 も理論密度に対する相対密度が 70%未満と低い。 Japanese Patent Application Laid-Open No. 59-198602 describes a transparent conductive film in which A1, W, Th, and Mo elements are added to ITO. The film resistance is also 1.2 × 10−2 to 1.2 × 10−2. . 42 X 1 0_ 2 Qcm and higher, when the present inventor has additional test, the sintered density is low than 70% relative density to the theoretical density.
また、 ここ数年、 ワープロ、 テレビ用などに液晶表示が多用され、 その液 晶画面の大型化が進んできた結果、 従来の透明電導膜の比抵抗値を悪くする ことなく、 光透過率を向上させる必要が生じてきた。 この際に、 比抵抗値を 低く維持することは、電極の膜厚を薄くすること力でき、 そのため良好なェ ツチング性も可能となる。 透明電導膜の膜厚が 2000オングストロームを 越えるとエッチング時間が長くなり、 パターンの断線、 膜表面状態の悪化に よる抵抗不均一化などを起こし歩留まりの低下をきたす。 発明の開示 In recent years, liquid crystal displays have been widely used for word processors and televisions, and as the size of the liquid crystal screen has increased, the light transmittance of the conventional transparent conductive film has been reduced without deteriorating its specific resistance. There is a need to improve. At this time, the specific resistance value Keeping it low can reduce the film thickness of the electrode, and therefore also enables good etching properties. If the thickness of the transparent conductive film exceeds 2,000 angstroms, the etching time will be prolonged, causing disconnection of the pattern and uneven resistance due to the deterioration of the film surface condition, resulting in lower yield. Disclosure of the invention
上記のような状況に鑑み、 本発明の目的は、 相対密度 90%以上の高密度 I TO焼結体であって、 比抵抗の低い透明電導膜を得ることができる I TO 焼結体を提供することにある。  In view of the above situation, an object of the present invention is to provide a high-density ITO sintered body having a relative density of 90% or more and capable of obtaining a transparent conductive film having a low specific resistance. Is to do.
さらに、 他の目的は、 従来から使用されている透明電導膜の比抵抗値 2 X 10-4Ω cmを凌ぐ低い比抵抗値を有し、 且つ 90%を超える高い光透過率 を有し、 薄く、 短縮されたエッチング時間をもって、 高い歩留まりで製造す ることができる I TO透明電導膜を提供することにある。 Furthermore, another object has a low specific resistance value surpassing the specific resistance value 2 X 10- 4 Ω cm transparent conductive film which has been conventionally used, and has a high light transmission greater than 90%, An object of the present invention is to provide an ITO transparent conductive film that can be manufactured with a high yield with a thin and shortened etching time.
本発明は、 その一面において、 図 1に示される S i O2 -B is 03 二成 分系図における下記組成を示す点 A, B, C, Dおよび Eで囲まれる領域に 相当する S i 02 および B Ϊ 2 03 組成を含有する I TO焼結体を提供する。 In one aspect of the present invention, S i O 2 -B is O 3 shown in FIG. 1 corresponds to a region surrounded by points A, B, C, D and E indicating the following composition in the two-component diagram. providing 2 and B Ϊ 2 0 3 I tO sintered body containing composition.
S i Ο-' B i p 0::;  S i Ο- 'B i p 0 ::;
A 0 001 9. 0  A 0 001 9.0
B 9, 0 9. 0  B 9, 0 9.0
C 2, 0 6. 0  C 2, 0 6.0
D 2, 0 0. 00  D 2, 0 0.00
E 0. 001 0. 00  E 0.001 0.00
本発明は、 他の一面において、 上記 S i 02 および B 12 03 組成を有す る I TO透明電導膜を提供する。 The present invention provides, in another one aspect, provides an I TO transparent conductive film that have a the S i 0 2 and B 12 0 3 composition.
本発明は、 さらに他の一面において、 上記の組成を持つ I TO焼結体をタ ーゲッ トとし、 真空槽内に不活性ガス単独または不活性ガスと 02 ガスおよ び H ガスの中から選ばれた少くとも一種とからなる混合ガスを、 全圧 1 X 10-3 t 0 r r〜5 Xl 0-2 t o r rとなるように導入し、 スパッタリング を行うことを特徴とする I TO透明電導膜の形成方法を提供する。 図面の簡単な説明 The invention, in still another aspect, from the I TO sintered body was used as a data Ge' bets, inert gas alone or an inert gas into the vacuum chamber and 02 gas and H gas having the above composition Introduce a mixture of at least one selected gas so that the total pressure becomes 1 X 10-3 t0 rr ~ 5 Xl 0-2 torr, and sputtering And a method for forming an ITO transparent conductive film. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 S i 02 — B i 2 03 二成分系図で、 請求の範囲に規定される I TO焼結体および I TO透明電導膜の S i 02 および B 12 03 組成を示し ている。 発明を実施するための最良の形態 1, S i 02 - in B i 2 0 3 bicomponent genealogy, showing the S i 0 2 and B 12 0 3 composition I TO sintered and I TO transparent conductive film as defined in the claims I have. BEST MODE FOR CARRYING OUT THE INVENTION
I TO焼結体および I TO透明電導膜においては、 酸化インジウムに対し 錫が酸化物の混合物または固溶体として存在しているが、 本発明の焼結体お よび電導膜においても B iおよび S iのそれぞれが酸化物として混合されて いるが、 複合酸化物としてか、 固溶体としてか、 またはそれらの混合状態で 存在していると思われる。 その状態は正確に同定し難いので、 本発明では、 便宜上それぞれの酸化物として組成表示した。  In the ITO sintered body and the ITO transparent conductive film, tin exists as a mixture or solid solution of indium oxide with respect to indium oxide. However, in the sintered body and the conductive film of the present invention, Bi and Si are also used. Each is mixed as an oxide, but seems to exist as a composite oxide, as a solid solution, or in a mixed state thereof. Since the state is difficult to identify accurately, in the present invention, the composition is indicated as each oxide for convenience.
本発明の焼結体および透明電導膜は、 図 1に示される S i 02 - B i 2 0 3 二成分系における前記組成を示す点 A、 B、 C、 Dおよび Eで囲まれる領 域に相当する S i 02 および B i 2 03 組成を有することを特徴としている c この要件を満足する透明電導膜は比抵抗値約 2. 0X10- 4Ω cm以下を有 する。 焼結体および透明電導膜は、 図 1に示される S i 02 -B i≥ 03 二 成分系における下記組成を示す点 F、 G、 Hおよび Iで囲まれる領域、 より 好ましくは下記組成を示す点 J、 K、 Lおよび Μで囲まれる領域にそれぞれ 相当する S i 02 および B 12 03組成を有する。 Sintered body and transparent conductive film of the present invention, S i 0 2 shown in Figure 1 - B i 2 0 3 two-component point indicating the composition of A, B, C, realm surrounded by D and E transparent conductive film c satisfying this requirement is characterized by having a S i 0 2 and B i 2 0 3 composition corresponding to have the following specific resistance value of about 2. 0X10- 4 Ω cm to. The sintered body and the transparent conductive film are regions surrounded by points F, G, H, and I in the binary system of S i 0 2 -B i ≥ 0 3 shown in FIG. 1, and more preferably the following compositions having S i 0 2 and B 12 0 3 composition corresponding respectively J, K, in a region surrounded by L and Μ point indicating the.
点 S i 0';' Cw t ) B \-> 0:¾ Cw t %) Point S i 0 ';' Cw t) B \-> 0: ¾ Cw t%)
F 0. 001 6. 0 F 0.001 6.0
G 4. 0 6. 0  G 4.0 6.0
H 4. 0 0. 02  H 4.0 0.02
I 0. 001 0. 02  I 0.001 0.02
J 0. 1 6. 0 K 1. 0 6. 0J 0.1.6.0 K 1. 0 6.0
L 2. 0 0. 8 L 2.0 0.8
M 0. 01 0. 8  M 0.01 0.8
S i ≥ および B i2 Os 組成が点 F、 G、 Hおよび Iで囲まれる領域およ び点 J、 K、 Lおよび Μで表される領域に相当するものであるとき、 透明電 導膜の比抵抗はそれぞれ 1. 5 X 10-4Ω cm以下および 1. 0X 10- c m以 " となる。 When the S i ≥ and B i 2 Os compositions correspond to the region surrounded by points F, G, H and I and the regions represented by points J, K, L and Μ, the transparent conductive film Has a specific resistance of 1.5 × 10−4 Ωcm or less and 1.0 × 10−cm or less, respectively.
本発明の I TO焼結体および透明電導膜は酸化錫を 0, 05〜25 w t % 含むことが好ましい。 酸化錫の量が 0. 05w t %未満でも、 25w t %を 越えても、 それによつて造られる透明電導膜の比抵抗は大きくなるので好ま しくない。 すなわち、本発明の焼結体および透明電導膜は、 上記の範囲の酸 化錫量を含み、 さらに B 12 03 および S i 02 を前述の組成範囲内で含む ことが好ましい。 It is preferable that the ITO sintered body and the transparent conductive film of the present invention contain 0.05 to 25 wt% of tin oxide. It is not preferable that the amount of tin oxide is less than 0.05 wt% or more than 25 wt%, since the specific resistance of the transparent conductive film formed thereby becomes large. That is, the sintered body and transparent conductive film of the present invention include the acid tin amount in the range described above, it is preferable to further include a B 12 0 3 and S i 0 2 in the composition range described above.
焼結体の製造に関して、 酸化インジウムの出発原料としては I nの酸化物 が一般的であるが、 I n金属、 水酸化物、 ふつ化物、 硫酸塩、 硝酸塩などを 用いてもよい。 ただし、 酸化物以外の原料を用いる場合は酸化性の雰囲気で 仮焼または焼成することにより酸化物系焼結体とする。 酸化錫の出発原料も 酸化物が一般的であるが、 S n金属、 水酸化物、 ふつ化物、 硫化物、 硫酸塩、 硝酸塩などを用いてもよい。 S nも I nと同様に最終的には酸化物とする。 酸化ビスマスの出発原料も酸化物が一般的であるが、 B i金属、 水酸化物、 よう化物、 硫化物、 硫酸塩、 硝酸塩などを用いてもよい。 B iの酸化物以外 の原料を用いる場合は、 焼成時に焼結の始まる 95 (TCまでに酸化物となつ ていればよい。 酸化ゲルマニウムの出発原料も酸化物が一般的であるが、 S i単体、 塩化物、 窒化物、 炭化物、 硫化物などを用いてもよい。 S i も B i と同様に焼成時の 95 (TCまでに酸化物となっていればよい。  Regarding the production of a sintered body, an oxide of In is generally used as a starting material of indium oxide, but In metal, hydroxide, fluoride, sulfate, nitrate, and the like may be used. However, when a raw material other than an oxide is used, it is calcined or fired in an oxidizing atmosphere to obtain an oxide-based sintered body. The starting material of tin oxide is generally an oxide, but Sn metal, hydroxide, fluoride, sulfide, sulfate, nitrate and the like may be used. S n is finally made of an oxide like I n. The starting material of bismuth oxide is generally an oxide, but Bi metal, hydroxide, iodide, sulfide, sulfate, nitrate and the like may be used. When a raw material other than the oxide of B i is used, sintering starts at the time of sintering. Simple substances, chlorides, nitrides, carbides, sulfides, etc. may be used, as well as S i, as well as B i, as long as it is an oxide at the time of sintering 95 (TC.
これら 4元素の原料化合物は、 同時に混合してもよく、 またあらかじめ 2 元素以上の化合物を混合して仮焼し、 仮焼した粉と他の元素の化合物とを混 合してもよい。 原料の混合には乳鉢混合、 ボールミル混合等が用いられる。 原料粉末は 2 zm以下にするのが好ましい。 混合した粉を仮焼する場合は 400〜150 OeCで行われる。 The raw material compounds of these four elements may be mixed at the same time, or compounds of two or more elements may be mixed and calcined in advance, and the calcined powder may be mixed with a compound of another element. Mortar mixing, ball mill mixing, etc. are used for mixing the raw materials. The raw material powder is preferably set to 2 zm or less. If mixed powder is calcined is carried out at 400~150 O e C.
得られた粉にはポリビニルアルコール (PVA) 、 ポリビニルプチラール The resulting powder contains polyvinyl alcohol (PVA), polyvinyl butyral
(P VB) などのバインダーを加え、 スプレードライヤーなどで 1〜50 mに造粒し、 500〜8000 k gZcm2 程度の圧力にて成形する。 また は P V Aなどのバインダ一とともにスラリーとし、 铸込み成形してもよい。 成形体は乾燥、 脱脂をする場合もある。 Add a binder such as (PVB), granulate to 1 to 50 m with a spray drier, etc., and mold at a pressure of about 500 to 8000 kgZcm2. Alternatively, it may be formed into a slurry together with a binder such as PVA and then subjected to injection molding. The molded body may be dried and degreased in some cases.
得られた成形体の焼結は 1200〜1600°Cで行われる。 焼結を大気中 で行うことによって十分緻密化できるが、 もちろんホッ トプレス、 H I P、 雰囲気調整による焼成を行っても良い。  Sintering of the obtained compact is performed at 1200 to 1600 ° C. The sintering can be performed sufficiently in the atmosphere, but it is possible to perform sintering by hot pressing, HIP, or atmosphere adjustment.
一般に、 透明電導膜を形成する方法としては、 スパッタリング法、 電子ピ —ム蒸着法が採られるが、 他にイオンプレーティ ング法、 化学蒸着法、 塗布 法も用いられる。 各膜を形成する原料に適した方法が選ばれる。 スパッタリ ング法および電子ビーム蒸着法では、 蒸着材 (ターゲッ ト) としてインジゥ ムと添加元素の酸化物の焼結体またはこれらの合金が用いられる。  Generally, as a method of forming a transparent conductive film, a sputtering method and an electron beam evaporation method are employed, but in addition, an ion plating method, a chemical vapor deposition method, and a coating method are also used. A method suitable for a raw material for forming each film is selected. In the sputtering method and the electron beam evaporation method, a sintered body of indium and an oxide of an additive element or an alloy thereof is used as a vapor deposition material (target).
本発明の I TO焼結体を用い、 スパッタリングで膜を形成する場合には、 夕一ゲットとして焼結体と被成膜基板とをセッ 卜し、 1 X 10-5 t o r r以 下に真空引きした後、焼結体の場合は不活性ガスのみか、 不活性ガスと 02 ガスまたは H2ガスとからなる混合ガスか、 不活性ガスと 02 ガスと H2 ガ スとからなる混合ガスを導入し膜を形成する。 When a film is formed by sputtering using the ITO sintered body of the present invention, the sintered body and the substrate on which the film is to be formed are set as an overnight get, and a vacuum is drawn to 1 X 10-5 torr or less. after, if the sintered body or only an inert gas, or mixed gas comprising an inert gas and 0 2 gas or H 2 gas, a mixed gas comprising an inert gas and 02 gas and H 2 gas Introduce and form a film.
不活性ガスはアルゴン (A r) 、 ヘリウム (H e) 、 ネオン (N e) 、 ク リプトン (Kr) 、 キセノン (Xe) 、 ラドン (Rn) および窒素 (N2) の中から選ばれる。 これらの中でも、 不活性ガスとしての機能および経済性 からみてアルゴンおよびネオンが好ましく、 特にアルゴンが最良である。 こ れらのうち窒素はスパッタリングまたは蒸着工程で若干量の窒素化合物を生 成するので好ましくない。 Inert gas argon (A r), helium (H e), neon (N e), krypton (Kr), selected from the xenon (Xe), radon (Rn) and nitrogen (N 2). Among these, argon and neon are preferable in view of the function as an inert gas and economical efficiency, and argon is particularly preferable. Of these, nitrogen is not preferred because it generates a small amount of nitrogen compounds in the sputtering or vapor deposition process.
本発明の焼結体をタ一ゲッ トとして用いスパッタリングする場合、 真空槽 内に、 導入する不活性ガスまたは不活性ガスと 02 ガスおよび /または Η2 ガスとからなる混合ガスは、 その全圧が 1 X 1 0- 3 t 0 r r〜5 X 1 0 - 2 t o r rとなるように導入する。 When sputtering using the sintered body of the present invention as a target, a vacuum chamber Within, a mixed gas consisting of an inert gas or inert gas and 02 gas and / or Η2 gas introduced, the total pressure of 1 X 1 0- 3 t 0 rr~5 X 1 02 torr To be introduced.
この際、 スパッタリングガス中の 02 分圧が高くなると透過率が高くなり、 抵抗値は低下してくる力 高くなりすぎると抵抗値は、 逆に増加する。 02 ガスを加えず A rのような不活性ガスのみをスパッタリングガスとしても酸 化物中の酸素が混合スパッタリングガス中の 02 ガスと同様の働きをするの で、 抵抗値等の膜特性はあまり悪化しない。 し力、しな力 ら、 或る割合以上の 02 ガスが存在するほうが有利であり、 従って、 本発明の電導膜形成方法に おいては、 02 ガスを 2 p p m〜2 0 %の割合でスパッ夕リング混合ガス中 に含有せしめることが好ましい。 At this time, the transmittance increases when the O 2 partial pressure in the sputtering gas increases, and the resistance decreases. When the force decreases excessively, the resistance increases. 0 2 than the same function as 02 gas oxygen mixed sputtering gas in also oxides but the inert gas as a sputtering gas, such as A r without adding gas, film properties such as resistance much Does not worsen. And force, Sina force, et al., It is advantageous better certain ratio or more of 0 2 gas is present, therefore, Oite the conductive film forming method of the present invention, the 02 gas at a rate of 2 Ppm~2 0% It is preferable to include it in the sputter ring mixed gas.
H2 を導入しなくても低抵抗化することができるが、 H2 を導入すると、 膜の光透過率を損なうこと無く、 低抵抗化できる。 H2 分圧が 1 X 1 0- 3 t o r rを越えると、 光透過率が低下する。 従って、 本発明の電導膜形成方法 においては、 H2 ガスを 2 p p m〜 2 0 %の割合でスパッタリング混合ガス 中に含有せしめることが好ましい。 Although the resistance can be reduced without introducing H 2 , the resistance can be reduced without impairing the light transmittance of the film when H 2 is introduced. When H 2 partial pressure exceeds 1 X 1 0- 3 torr, the light transmittance decreases. Therefore, in the conductive film forming method of the present invention, it is preferable that the H 2 gas is contained in the sputtering mixed gas at a ratio of 2 ppm to 20%.
スパッタリングガスの全圧が 1 X 1 0 - 3 t 0 r r未満の低い圧力では安定 したプラズマが発生せず、 また、 5 X 1 0 -≥t o r rを越える高圧では膜の 抵抗値を悪化する。 Total pressure of the sputtering gas is 1 X 1 0 - without generating stable plasma at 3 t 0 rr less than a low pressure, and in a high pressure exceeding 5 X 1 0 -≥torr deteriorate the resistance of the film.
また、 基板温度は 1 5 0〜5 0 0 °C、 ターゲッ トの投入電力は 0. 5〜4 W/ c m2 で成膜することが好ましい。 ここで投入電力は夕一ゲッ 卜 1 c m 2 当たりの電力をいい、 スパッタリングガスのプラズマ化とプラズマを構成 するイオンを加速するのに用いられる。 基板温度が 1 5 0 未満では抵抗値 が劣り、 5 0 (TCを越えると基板が変形するために使用に耐えなくなる。 投 入電力が 0. 5 WZ c 未満では蒸着速度が遅くなり、 生産効率が悪くな り、 逆に、 4 WZ c m≥ を越えると抵抗値が劣る。 Preferably, the film is formed at a substrate temperature of 150 to 500 ° C. and a target input power of 0.5 to 4 W / cm 2. Here, the input power refers to the power per 1 cm 2 of the gate per night, and is used to turn the sputtering gas into plasma and accelerate the ions constituting the plasma. If the substrate temperature is lower than 150, the resistance value is inferior, and if the substrate temperature exceeds 50 (TC, the substrate will be deformed, making it unusable. If the input power is lower than 0.5 WZc, the deposition rate will be low, and the production efficiency will be low. On the other hand, if it exceeds 4 WZ cm≥, the resistance value becomes poor.
膜形成速度は投入電力のほかスパッタリングガスの全圧、 基板間距離等に よって決まるが、 同一の膜形成速度でも膜の特性に優劣がでる。 以上のことを考慮しつつ、 膜の光透過率が 90%以上で、 できるだけ高く、 かつもっとも低い抵抗値をとるスパッ夕リング条件を選ぶことが好ましい。 また、 スパッタリング法以外の物理的気相蒸着 (PVD) 法として真空蒸 着法およびイオンブレーティング法により成膜することもできる。 この場合、 上記スパッタリング法におけると同様な焼結体を原料として用いることがでThe film formation speed is determined by the total pressure of the sputtering gas, the distance between the substrates, and the like, in addition to the input power. In consideration of the above, it is preferable to select a sputtering condition in which the light transmittance of the film is 90% or more, the highest possible value and the lowest resistance value are obtained. In addition, a film can be formed by a vacuum deposition method or an ion plating method as a physical vapor deposition (PVD) method other than the sputtering method. In this case, the same sintered body as in the sputtering method can be used as a raw material.
Sる。 S
また、 スパッタリング法に比べると劣るが電子ビーム蒸着法で成膜するこ ともできる。 この場合には、 A rのような不活性ガスは導入しないが 02 ガ スのみか、 02 ガスと Η≤ ガスの導入ガスを導入し、 基板加熱することは、 スパッタリングと同様で、 蒸着速度は電子ビームの電圧、 電流、 ビーム径で 決まる。 水素分圧、 基板温度、 蒸着速度を適当に選び、 透過率 90%以上で 抵抗値の最も低い膜が得られる。 最初の到達真空度は 10- 5t o r r以下と し、 その後の 02 ガス分圧を 0. 1 X 10-4〜5 X 10-4 t o r r、 H2 ガ ス分圧 0. 1 X 10- 5〜5 X 10- 5 t 0 r r、 基板温度 200〜400。C、 蒸着速度 0. 5X10オングストロ一ム s e cが適当な条件である。 Although it is inferior to the sputtering method, it can be formed by an electron beam evaporation method. In this case, although an inert gas such as A r does not introduce 0 2 gas Sunomi or to introduce the gas 0 2 gas and Η≤ gas, to the substrate heating is the same as sputtering, vapor deposition The speed is determined by the electron beam voltage, current, and beam diameter. By appropriately selecting the hydrogen partial pressure, substrate temperature, and deposition rate, a film with the lowest resistance value with a transmittance of 90% or more can be obtained. The first ultimate vacuum is less 10- 5 torr, subsequent 0 2 gas partial pressure 0. 1 X 10-4~5 X 10-4 torr, H 2 gas partial pressure 0. 1 X 10- 5 ~ 5 X 10-5 t 0 rr, substrate temperature 200 ~ 400. C, a deposition rate of 0.5 × 10 angstroms sec is an appropriate condition.
さらに、 化学蒸着 (CVD) 法により透明電導膜を形成することができる。 CVD法において、 原料としては、 トリメ トキシインジウム、 テトライソプ 口ポキシ錫、 テトラエトキシシラン、 トリイソプロポキシビスマスなどを用 いることができる。  Further, a transparent conductive film can be formed by a chemical vapor deposition (CVD) method. In the CVD method, trimethoxyindium, tetraisopropoxytin, tetraethoxysilane, triisopropoxybismuth, or the like can be used as a raw material.
スパッタリング法と比較すると劣るが塗布法によって透明電導膜を形成す ることができる。 すなわち、  Although inferior to the sputtering method, a transparent conductive film can be formed by a coating method. That is,
硝酸インジウム、 塩化錫、 TEOS (テトラエトキシシラン) 、硝酸ビス マスのァセチルアセトン (2, 4一ペンタンジオン) 溶液のアセトン希釈液 などをスピンコート、 ディ ッブコ一ト、 印刷法により塗布し熱分解すること により I TO膜を得ることができる。 この際、 塗布液にチキソ剤、 增粘剤な どを添加することもある。  Applying indium nitrate, tin chloride, TEOS (tetraethoxysilane), acetone diluted solution of bismuth nitrate in acetylacetone (2,4-pentanedione), etc. by spin coating, dip coating, printing method and thermal decomposition By doing so, an ITO film can be obtained. At this time, a thixotropic agent, a thickener, etc. may be added to the coating solution.
その他、 原料を適切に選べばゾルゲル法、 水溶液の熱分解法などによって も塗布 ·成膜することができる。 被成膜基板としては、 ガラス、 ブラスチックのシートやフィルムなどある いは、 それらに保護膜や機能性膜を施したものなどが用いられる。 In addition, if the raw materials are appropriately selected, coating and film formation can also be performed by a sol-gel method or a thermal decomposition method of an aqueous solution. As the substrate on which a film is to be formed, a glass or plastic sheet or film, or a substrate on which a protective film or a functional film is applied is used.
酸化インジウムに酸化錫のみを添加した I T 0は焼結時蒸気圧が高いため、 蒸発と凝縮とによる焼結機構をとり、 収縮が起こり難く、 焼結体の緻密化は 進まない。 し力、しな力ら、 驚くべきことに、 B i 2 03 を焼結助剤として加 えると約 8 3 0でで液相を形成し、 その液相は I T Oの蒸発 (昇華) を阻止 するため、 蒸発と凝縮とによる焼結は抑えられ、 以下に述べる液相による焼 結機構によって焼結が進む。 すなわち、 液相焼結は、 液相の存在により、 物 質移動が起こり、 収縮を伴い、 焼結体の高密度化が起こる。 IT0 in which only tin oxide is added to indium oxide has a high vapor pressure at the time of sintering, so that it has a sintering mechanism by evaporation and condensation, hardly shrinks, and does not progress the densification of the sintered body. And force, Sina force al, surprisingly, B i 2 0 3 to form a pressurized obtain the approximately 8 3 0 in bleeding phase as a sintering aid, and the liquid phase is evaporated in an ITO (sublimation) To prevent this, sintering due to evaporation and condensation is suppressed, and sintering proceeds by the liquid phase sintering mechanism described below. That is, in liquid phase sintering, due to the presence of the liquid phase, mass transfer occurs, accompanied by shrinkage, and a high density of the sintered body occurs.
但し、 S i 02 を添加せずに B i 2 03 のみを単独で添加した場合は高密 度化効果が十分でなく、 B i 2 03 を 1 6 w t %添加しても相対密度は 7 9 %にとどまった。 本発明の前記 S i 02 - B i 2 03 組成においては、 この 液相焼結が加速され、 さらに高密度化するため、 良好な透明電導膜が形成さ れると考えられる。 However, S i 0 if the 2 without the addition of only B i 2 0 3 was added alone dense cathodic effect is not sufficient, relative density be added B i 2 03 to 1 6 wt% 7 Only 9%. Wherein S i 0 2 of the present invention - in B i 2 0 3 composition, the liquid phase sintering is accelerated, for higher density, is considered a good transparent conductive film is formed.
後記実施例に実証されるように、 I T Oに前記特定の S i 02 - B i a 0 3 組成を組合せることによって、 相対密度が 9 0 %を超える高密度の焼結体 が得られ、 さらに、 この焼結体をターゲッ トとして用いスパッタリングを行 うことによって比抵抗値が非常に低く且つ可視光透過率の大きい I T 0電導 膜を工業的有利に得ることができる。 As demonstrated in the examples below, the specific S i 0 2 to ITO - by combining the B ia 0 3 composition, density of the sintered body relative density of more than 90% is obtained, further By performing sputtering using this sintered body as a target, an ITO conductive film having a very low specific resistance value and a large visible light transmittance can be industrially advantageously obtained.
前記の特定の S i 02 一 Β 1 2 Os 組成は臨界的であって、 例えば、 B i 2 03 を加えない場合 (比較例 1 0〜1 3 :焼結体相対密度 7 2〜8 8、 電 導膜比抵抗 2. 0〜2. 3 X 1 0 - 4 Ω c m) と比較して、 B i 2 03 が所定 量含まれる場合 (実施例 2 1〜2 4 :焼結体相対密度 9 5〜9 3、 電導膜比 抵抗 1 . 2〜1 . 3 ) は、 焼結体密度が高く、 電導膜比抵抗はかなり低い。 以下、 実施例および比較例について、 本発明の焼結体ならびに透明電導膜 およびその膜の形成方法を具体的に説明する。 The specific S i 0 2 Β 1 2 Os composition is critical, for example, when Bi 2 0 3 is not added (Comparative Examples 10 to 13: relative density of sintered body 72 to 8) . 8, electrostatic Shirubemaku resistivity 2. 0~2 3 X 1 0 - 4 Ω cm) as compared with the case where B i 2 0 3 is contained a predetermined amount (example 2 1-2 4 sintered body Relative densities of 95 to 93 and conductive film resistivity of 1.2 to 1.3) are high in sintered body density and considerably low. Hereinafter, a sintered body, a transparent conductive film, and a method for forming the film of the present invention will be specifically described with reference to Examples and Comparative Examples.
実施例 1〜 4 7、 比較例 1〜 2 3 Examples 1-47, Comparative Examples 1-23
酸化インジウム (同和ケミカル製酸化インジウム N、 純度 9 9. 9 9 %、 平均粒度 d50=0. 93 βπ) 900 gと酸化錫 (新日本金属製、 純度 99. 9%、 粒度 d50=0. 72 ΤΆ l OOgを容量 4. 8リッ トルのボールミ ルにて 24時間混合した後、 大気中で 145 OeCで 15時間仮焼し、 I TO 粉末を得た。 この I TO粉末に対して酸化ビスマス (三津和化学薬品製、 純 度 99. 9%、 粒度 d50=0. 78)t m) と、 酸化ゲイ素 (和光純薬製、 純 度 99. 9999%、粒度 d50= l. 1 ^m) を表 1に示すような割合で混 合した。 表 1〜 3には酸化ビスマスと酸化珪素の混合量を重量%で示してお り、 残部が I TOである。 混合はボールミルで行った。 これらそれぞれの混 合粉末に、 0. 05 1%の?¥ 溶液を加ぇて固形分濃度20\\^%のス ラリーとし、 このスラリーをスプレードライヤーにて噴霧乾燥して平均粒径 20 /mの顆粒とした。 Indium oxide (Indium oxide N manufactured by Dowa Chemical, purity 99.9%, The average particle size d 50 = 0. 93 βπ) 900 g and tin oxide (Nippon metal, purity 99.9%, particle size d50 = 0. 72 ΤΆ l OOg capacity 4.24 hours ball mill for 8 l After mixing, the mixture was calcined in the air at 145 O e C for 15 hours to obtain an ITO powder against bismuth oxide (Mitsuwa Chemicals, 99.9% purity, particle size d 50 = 0.78) tm) and manganese oxide (manufactured by Wako Pure Chemical Industries, purity 99.9999%, particle size d50 = l. 1 ^ m) were mixed at the ratio shown in Table 1. Tables 1 to 3 show the mixing amount of bismuth oxide and silicon oxide in% by weight, with the balance being ITO. Mixing was performed with a ball mill. For each of these mixed powders, 0.05 1%? The solution was added to make a slurry having a solid content of 20%, and this slurry was spray-dried with a spray dryer to obtain granules having an average particle size of 20 / m.
この顆粒を 1 t o nZcm2 で一軸加圧成形し、 直径 90mm ø、 厚さ 3. 5 mmの円盤状成形体を得た。 The granules were uniaxially pressed at 1 to nZcm 2 to obtain a disc-shaped compact having a diameter of 90 mm ø and a thickness of 3.5 mm.
この成形体を大気中にて 1450 で10時間焼成した。 焼結体の組成 ( 化学分析) および相対密度を表 1〜 3に示す。  This molded body was fired in the atmosphere at 1450 for 10 hours. Tables 1 to 3 show the composition (chemical analysis) and relative density of the sintered body.
これら焼結体をそれぞれターゲットとして、 DCマグネトロンスパッタリ ング装置にセッ 卜し、 1 X 10- et 0 r rまで真空に引いた後、 分圧真空計 でモニタ一しながら、 H2 ガスを 3 X 10-7 t 0 r r、 02 ガスを 3 X 10 -e t o r r導入し、 その後、 A rガスを全圧 5 X 10~3 t o r rになるまで 導入した。 スライドグラス (寸法 76 X26 X l mm) 基板を 300°Cに加 熱し、 投入電力 100W、 基板間距離 65 mmの条件で透明電導膜を作成し 十 /- 実施例のいずれのターゲッ トもスパッタリングを繰り返してもタ一ゲッ ト の黒化は薄く、 スパッタ速度も 10オングストロ一ム Zs e cでほとんど変 化しなかった。 得られた透明電導膜の組成はタ一ゲッ トの組成とほぼ同一で あることを EPMAで確かめた。 得られた透明電導膜の厚さ、 可視光の平均 透過率および比抵抗値を表 1〜 3に示す。 【表 1】 These sintered body as the target, respectively, set to Bok to DC magnetron sputtering-ring device, 1 after evacuated to X 10- et 0 rr, while monitoring one to minute pressure vacuum gauge, H 2 gas 3 X 10-7 t 0 rr, 0 2 gas was 3 X 10 -etorr introduction and then introduced until the a r gas total pressure 5 X 10 ~ 3 torr. Slide glass (dimensions: 76 x 26 x lmm) Heat the substrate to 300 ° C, make a transparent conductive film under the conditions of input power of 100 W and distance between substrates of 65 mm, and perform sputtering on all targets in the Examples. Even after repetition, the blackening of the target was thin, and the sputtering rate was hardly changed at 10 Å Zsec. EPMA confirmed that the composition of the obtained transparent conductive film was almost the same as the composition of the target. Tables 1 to 3 show the thickness, average transmittance of visible light, and specific resistance of the obtained transparent conductive film. 【table 1】
¾ ^比 (wt¾) 灘体繊(Wt¾) 焼結体 膜 .特 性 例 Na 相対密度 可赚平均 比 抵 抗 lU2 BlxUt lUt ¾ ^ ratio (wt¾) Nada body fiber (Wt¾) Sintered film. Characteristics Examples Na Relative density Available average specific resistance lU2 BlxUt lUt
(%) 透通率 (¾) (Χ 10_* Ω· cm) 例 1 0.001 0.02 0.001 0.011 90 90 1.40 例 2 0.05 0.02 0.051 0.013 91 90 1.24 例 3 0. 1 0.02 0.09 0.010 91 90 1. 15 鋤例 4 0.5 0.02 0.50 0.009 92 • 90 1. 19 (%) Permeability (¾) (Χ 10 _ * Ωcm) Example 1 0.001 0.02 0.001 0.011 90 90 1.40 Example 2 0.05 0.02 0.051 0.013 91 90 1.24 Example 3 0.1.0.02 0.09 0.010 91 90 1.15 Example 4 0.5 0.02 0.50 0.009 92 • 90 1.19
例 5 1 0.02 1.02 0.011 , 93 90 1.30  Example 5 1 0.02 1.02 0.011, 93 90 1.30
2 0.02 2.01 0.014 9ΰ 90 1.45 難 US例 7. 4 0.02 4.00 0.012 84 90 1. 69  2 0.02 2.01 0.014 9ΰ 90 1.45 Difficult US example 7.4 0.02 4.00 0.012 84 90 1.69
6 0.02 6.02 0.012 93 90 1.84 6 0.02 6.02 0.012 93 90 1.84
^JE例 9 8 0.02 8.02 0.011 91 90 15 実施例 10 0.001 1.5 0.001 0.84 91 90 1.41^ JE Example 9 8 0.02 8.02 0.011 91 90 15 Example 10 0.001 1.5 0.001 0.84 91 90 1.41
^iffi ii 0.01 1.5 0.009 0.81 92 90 0.91 実施例 12 0.025 1.5 ' 0.023 0.78 92 90 0.82 , ^ iffi ii 0.01 1.5 0.009 0.81 92 90 0.91 Example 12 0.025 1.5 '0.023 0.78 92 90 0.82,
例 0.05 1.5 0.052 0.78 92 90 0.70 錢例 14 0.075 1.5 0.075 0.82 93 90 0.58 難例 • 0.1 1.5 0. 11 0.81 93 90 0.68  Example 0.05 1.5 0.052 0.78 92 90 0.70 Example 14 0.075 1.5 0.075 0.82 93 90 0.58 Difficult example • 0.1 1.5 0.11 0.81 93 90 0.68
例 16 0.5 1.5 0.49 0.81 .94 90 0.72 難例 17 1 1.5 0.99 0.84 95 90 0.82 難例 18 2 1.5 2.02 0.79 97 90 0.96  Example 16 0.5 1.5 0.49 0.81 .94 90 0.72 Difficult 17 1 1.5 0.99 0.84 95 90 0.82 Difficult 18 2 1.5 2.02 0.79 97 90 0.96
例 19 4 1.5 3.97 0.83 96 90 1.22 鋤例 20 6 1.5 6.00 0.82 94 90 1.45  Example 19 4 1.5 3.97 0.83 96 90 1.22 Plow example 20 6 1.5 6.00 0.82 94 90 1.45
例 21 8 1.5 8.01 0.83 92 90 1.88 【表 2】 Example 21 8 1.5 8.01 0.83 92 90 1.88 [Table 2]
Figure imgf000015_0001
【表 3】
Figure imgf000015_0001
[Table 3]
混合比 (wt?(>) 麟体誠 ( t%) 焼結体 膜 特 性 比較例 Not 相対密度 可觥平均 比 抵 抗 Mixing ratio (wt? (>) Makoto Lintai (t%) Sintered film Characteristics Comparative example Not Relative density Visible average ratio Resistance
SiOz BitOs SiOi BiiOt  SiOz BitOs SiOi BiiOt
(½) 透過率 0) (Χ10"* Ω· cm) 比較例 1 0 0 0 0 69 . 90 01 比較例 2 0 0. 02 0 0.011 70  (½) Transmittance 0) (Χ10 "* Ωcm) Comparative Example 1 0 0 0 0 69.90 01 Comparative Example 2 0 0.02 0 0.011 70
赚例 3 0 1.5 0 0.82 72 90 5. 13 赚例 4 0 3 0 1.66 76 赚 Example 3 0 1.5 0 0.82 72 90 5.13 赚 Example 4 0 3 0 1.66 76
膽例 5 0 6 0 a 31 79 90 6.42 比較例 6 0 11 0 6. 10 79 - 0 16.5 比較例 7 0 13 0 7.26 79 90 24. 1 比較例 8 0 16 0 8.98 79 90 40.8 mm^ 0. 1 0 0.09 0 71 90 1.97 比較例 10 1 0 1.01 0 72 90 2.01 比較例 11 2 0 2.00 0 76 90 2.23 比較例 4 0 3.95 0 83 90 2.40 比較例 13 6 0 . 5.98 0 87 90 2.71 比較例 14 8 0 . 8.02 0 90 90 2.88 比較例 10 0 10.11 0 91 90 3.04 比較例 16 10 1.5 9.99 0.83 91 90 2.05 比較例 Π 10 6 9.97 8.84 93 90 2.33 比較例 18 10 11 10.08 a 95 93 90 2.61 比較例 19 16 18 16.01 10.08 94 90 2.09 比較例 20 8 13 8.10 7.29 92 90 2.07 比較例 21 0. 1 18 0.10 10.11 91 90 2.01 比較例 22 2 18 1.98 10.06 96 90 1.96 比較例 23' 4 18 3.97 10.14 95 90 2.03 実施例 48〜50、比較例 24, 25 5 0 6 0 a 31 79 90 6.42 Comparative example 6 0 11 0 6.10 79-0 16.5 Comparative example 7 0 13 0 7.26 79 90 24.1 Comparative example 8 0 16 0 8.98 79 90 40.8 mm ^ 0. 1 0 0.09 0 71 90 1.97 Comparative Example 10 1 0 1.01 0 72 90 2.01 Comparative Example 11 2 0 2.00 0 76 90 2.23 Comparative Example 4 0 3.95 0 83 90 2.40 Comparative Example 13 6 0. 5.98 0 87 90 2.71 Comparative Example 14 8 0. 8.02 0 90 90 2.88 Comparative example 10 0 10.11 0 91 90 3.04 Comparative example 16 10 1.5 9.99 0.83 91 90 2.05 Comparative example Π 10 6 9.97 8.84 93 90 2.33 Comparative example 18 10 11 10.08 a 95 93 90 2.61 Comparative example 19 16 18 16.01 10.08 94 90 2.09 Comparative Example 20 8 13 8.10 7.29 92 90 2.07 Comparative Example 21 0.18 0.10 10.11 91 90 2.01 Comparative Example 22 2 18 1.98 10.06 96 90 1.96 Comparative Example 23 '4 18 3.97 10.14 95 90 2.03 Examples 48 to 50, Comparative Examples 24 and 25
実施例 1と同じ原料粉をそれぞれ用い酸化錫量を変えて試料を作成した。 酸化インジウムおよび酸化錫の混合量は表 4の割合で行い、 実施例 1と同 —条件で仮焼し、 I TO粉末とじた。 それぞれの I TO粉末に酸化ゲイ素 0. lwt%、 酸化ビスマス 1. 5wt%の割合で更に混合した。 その他の条件 は実施例 1と同一にして焼結体を得て、 透明電導膜を作製した。  Samples were prepared by using the same raw material powders as in Example 1 and changing the amount of tin oxide. The amounts of indium oxide and tin oxide mixed were as shown in Table 4, calcined under the same conditions as in Example 1, and bound with ITO powder. Each of the ITO powders was further mixed at a ratio of 0.1 lwt% of gay oxide and 1.5 wt% of bismuth oxide. Other conditions were the same as in Example 1 to obtain a sintered body, and a transparent conductive film was produced.
焼結体組成、 密度および膜特性値を表 4に示す。  Table 4 shows the composition, density and film characteristics of the sintered body.
【表 4】 [Table 4]
Figure imgf000017_0001
Figure imgf000017_0001
実施例 51〜94、比較例 26〜39 Examples 51 to 94, Comparative Examples 26 to 39
実施例 14で得られたターゲッ トを用い、 表 5, 6に示す量の 02 ガスと H2 ガスと残部が A rガスとからなる混合ガスをスパッタリングガスとした 以外は実施例 1と同一条件で透明電導膜を作製した。 膜特性値を表 5' 6に 示す。 【表 5】 The same conditions as in Example 1 were used, except that the target obtained in Example 14 was used as a sputtering gas, and a mixed gas composed of 02 gas, H 2 gas, and the balance of Ar gas was used as shown in Tables 5 and 6. Produced a transparent conductive film. Table 5'6 shows the film characteristics. [Table 5]
^E 麵 ガス濃度 導入 ガ ス分圧 膜 特 性 全 圧 ^ E ガ ス Gas concentration Introduction gas partial pressure Membrane characteristics Total pressure
赠確 a (Torr) 可概平均 比 抵 抗 lit lit 透過率 O (Χ10_4Ω· cm) 例 51 V π u 5X10-, π υ n 90 1.5 鶴例 52 n Vnnm 5X10"* η υ 1 ft ΙΠ"1 90 1.4 Accuracy a (Torr) Rough average specific resistance lit lit Transmittance O (Χ10 _4 Ωcm) Example 51 V π u 5X10-, π υ n 90 1.5 Tsuru 52 n Vnnm 5X10 "* η υ 1 ft ΙΠ " 1 90 1.4
例 53 n  Example 53 n
V uppm 5X10- Λ  V uppm 5X10- Λ
U 90 1.4 難例 54 0 60ppm 5 10-* ϋ 3.0X110~7 90 1.3 麯例 55 0 0.296 5X10-* 0 1.0X101 90 1.3 難例 56 0 Z9o 5 10-* 0 1.0X10 ft 90 1.4 難例 57 0 5X10- 0 1.0X10 * 90 1.8 比较例 26 0 50% 5 X10-* 0 90 2.4U 90 1.4 Difficult 54 0 60 ppm 5 10- * ϋ 3.0X110 ~ 7 90 1.3 55 55 0 0.296 5X10- * 0 1.0X10 1 90 1.3 Difficult 56 0 Z9o 5 10- * 0 1.0X10 ft 90 1.4 Difficult 57 0 5X10- 0 1.0X10 * 90 1.8 Ratio 较 Example 26 0 50% 5 X10- * 0 90 2.4
«例 58 2ppm U 5 X10-* n u 90 1.5 難例 59 2ppm 2ppm 5X10-* I. υχιυ l.U IU 90 1.1«Example 58 2ppm U 5 X10- * n u 90 1.5 Difficult 59 2ppm 2ppm 5X10- * I. υχιυ l.U IU 90 1.1
¾例 60 2ppm uppni 5 X10-* l.UXIU Ι.ϋΧΙϋ 90 0.93 雄例 61 2ppm 5X10-* 1.0X10 · 8.0X10 ' 90 0.88 実施例 62 2卿 0· 2% 5 X10-* 1 1. Λ0X11 Λ0 1.0x10 ■ 90 0.95 難例 63 2ppm 2% 5X10- 1.0X10 · 1.0X10 ° 90 1.1 例 64 2ppm 2096 5 X10-* L0X10 · 1.0X10 ' 90 1.6 比較例 27 2ppm 5 X10-* c 1 n— ¾Example 60 2ppm uppni 5 X10- * l.UXIU Ι.ϋΧΙϋ 90 0.93 Male 61 2ppm 5X10- * 1.0X108.0X10 '90 0.88 Example 62 2 Lord 0 2% 5 X10- * 1 1.Λ0X11 Λ0 1.0x10 ■ 90 0.95 Difficult 63 2ppm 2% 5X10- 1.0X10 1.0X10 ° 90 1.1 Example 64 2ppm 2096 5 X10- * L0X10 1.0X10 '90 1.6 Comparative 27 2ppm 5 X10- * c 1 n-
LOXIO .5X10 90 2.3 実施例 65 20ppm U 5 10-* LUXIU 0 90 1.4 難例 66 20ppm 2ppm 5 X10-* 1  LOXIO .5X10 90 2.3 Example 65 20ppm U 5 10- * LUXIU 0 90 1.4 Difficult 66 66ppm 2ppm 5 X10- * 1
Ι.ΟΧΙϋ 1.0X10 90 0.81 Ι.ΟΧΙϋ 1.0X10 90 0.81
«例 67 20ppm 20ppm 5 xio-* L0XI0 1.0X10 ' 90 0.67 実施例 68 uppni ouppm 5 XIO"1 90 0.62 難例 69 20ppm 0.2% 5 XIO"* l.oxio-7 1.0X10"· 90 0.91 実施例 70 20ppm 2% 5X10" 1.0X10-, l.OXlO"5 90 1.3 実施例 71 20ppm 20% 5 XIO"* LOXIO"7 1.0X10" 90 1.5 例 28 20ppm 50% 5 10-* l.OXlO"7 2.5 X10"4 90 2.3«Example 67 20ppm 20ppm 5 xio- * L0XI0 1.0X10 '90 0.67 Example 68 uppni ouppm 5 XIO" 1 90 0.62 Difficult example 69 20ppm 0.2% 5 XIO "* l.oxio- 7 1.0X10" · 90 0.91 Example 70 20 ppm 2% 5X10 "1.0X10-, l.OXlO" 5 90 1.3 Example 71 20ppm 20% 5 XIO "* LOXIO" 7 1.0X10 "90 1.5 e.g. 28 20ppm 50% 5 10- * l.OXlO" 7 2.5 X10 " 4 90 2.3
0.2% 0 5X10- 1.0X10"· 0 00 1.30.2% 0 5X10- 1.0X10 "
0.2% 2ppm 5X10-* LOXIO"1 1.0X10"· 90 0.76 難例 74 0.2% 20ppm 5X10- 1.0X10-· l.oxio-7 90 0.64 錯 0.2% 60ppm 5 XIO"* LOXIO"1 3.0X10"7 90 0.60 魏例 76 0.2% 0.2% 5X10"' 1.0X10"· 1.0X10"· so 0.89 mm例 π 0.2% 2% 5 XIO"* 1.0X10"· l.oxio-' 90 . 1.2 寒施例 78 0.2% 20% 5 XIO"' LOXIO"* l.oxio-4 90 1.5 比較例 29 0.2% 50% 5 XIO"* 1.0X10"· 2.5X10-4 90 2.2 【表 6】 0.2% 2ppm 5X10- * LOXIO " 1 1.0X10" 90 0.76 Difficult 74 74% 20ppm 5X10- 1.0X10- l.oxio- 7 90 0.64 Complex 0.2% 60ppm 5 XIO "* LOXIO" 1 3.0X10 " 7 90 0.60 Wei example 76 0.2% 0.2% 5X10 "'1.0X10" 1.0X10 "so 0.89 mm example π 0.2% 2% 5 XIO" * 1.0X10 "l.oxio-' 90. 1.2 Cold example 78 0.2% 20% 5 XIO "'LOXIO" * l.oxio- 4 90 1.5 Comparative Example 29 0.2% 50% 5 XIO "* 1.0X10" 2.5X10- 4 90 2.2 [Table 6]
麵 ガス濃度 導入ガス分圧 膜 特 性 全 圧 ガ ス Gas concentration Introduced gas partial pressure Membrane characteristics Total pressure
比較麵 (ppm,¾) (Torr) 可 平均 比 抵 抗 v.lorr Comparison 麵 (ppm, ¾) (Torr) Average ratio resistance v.lorr
02 Hi H, 透適率 0) 0 2 Hi H, permeability 0)
難例 79 2 % 0 5 X10-, 1.0X10"* 0 90 Difficult example 79 2% 0 5 X10-, 1.0X10 "* 0 90
錢例 80 296 2ppm 5 X10-* 1.0X10_S l.oxio-* 90 Zenin 80 80 296 2ppm 5 X10- * 1.0X10 _S l.oxio- * 90
難例 81 296 20ppm 5 10-* 1.0 10"' 1.0X10"7 90 リ. 錢例 82 60ppm 5 X10-* l.oxio"* 3. OX 10一7 90 Difficult example 81 296 20ppm 5 10- * 1.0 10 "'1.0X10" 7 90 li. Example 82 60ppm 5 X10- * l.oxio "* 3.OX10-1 7 90
難例 83 296 0.296 5 X10-' l.oxio-8 1.0X10"* 90 υ· 00 難例 84 2 % 296 5 X10-* 1.0X10" l.oxio-5 90 1 1 Difficulty 83 296 0.296 5 X10- 'l.oxio -8 1.0X10 "* 90 0000 Difficulty 84 2% 296 5 X10- * 1.0X10" l.oxio -5 90 1 1
1· 難例 85 296 20% 5 X10-* 1.0X10"8 1.0X10"4 so 1 1Difficulty 85 296 20% 5 X10- * 1.0X10 " 8 1.0X10" 4 so 1
X* D 比較例 30 296 50% 5 X10-* l.oxio-5 2.5 10"4 90 ο 1 X * D Comparative Example 30 296 50% 5 X10- * l.oxio -5 2.5 10 " 4 90 ο 1
1 例 86 20% 0 5 X10-* l.oxio-4 0 90 1.6 雞隨 20% 2ppm 5 X10-* l.oxio-4 l.oxio-' 90 1. 1 例 88 20% 20ppm 5 Χ10-» l.oxio-4 1.0X10-7 90 0.91 難例 89 20% 60ppm 5 X10-* 1.0X10-4 3. OX 10一7 90 0.87 離例 90 20% 0.2% 5 X10-' 1.0 10"4 1.0X10" 90 1.2 離例 91 2096 296 5 Χ10-» l.oxio-4 l. OXlO"8 90 1.6 難例 92 20% 2096 5 X10-* l.oxio-4 1.0X10"4 90 2.0 Ό 比較例 31 20% 50% 5 X10"» l.oxio-4 2.5X10-4 90 2.7 赠例 32 50% 0 5 X10-' 2.5X10-4 0 90 3.4 比較例 33 50½ 2ppm 5 X10-, 2.5X10-4 l.oxio-* 90 3. 1 比較例 34 50% 20ppm 5 X10-' 2.5X10"4 l.oxio-7 90 2.7 赚例 35 50% 60ppm 5 Χ10"* 2.5X10-* 3.0XUT7 go 2.9 赚例 36 50% 0.296 5 X10-* 2.5X10-* l.oxio-* 90 3.5 赚例 37 50% 20% 5 X10-* 2.5X10"* l.oxio-4 90 6.3 比較例 38 0. 1% 0. 1% 1 X10-* l.oxio-* l.oxio-* 厳できない。 1 Example 86 20% 0 5 X10- * l.oxio -4 0 90 1.6 Optional 20% 2ppm 5 X10- * l.oxio -4 l.oxio- '90 1.1 Example 88 20% 20ppm 5 Χ10- » l.oxio -4 1.0X10 -7 90 0.91 Difficult 89 89% 60ppm 5 X10- * 1.0X10 -4 3.OX 10 17 90 0.87 Departure 90 20% 0.2% 5 X10- '1.0 10 " 4 1.0X10 "90 1.2 Hanarerei 91 2096 296 5 Χ10-» l.oxio- 4 l. OXlO "8 90 1.6 flame example 92 20% 2096 5 X10- * l.oxio- 4 1.0X10" 4 90 2.0 Ό Comparative example 31 20 % 50% 5 X10 "» l.oxio- 4 2.5X10- 4 90 2.7赠例32 50% 0 5 X10- '2.5X10- 4 0 90 3.4 Comparative example 33 50½ 2ppm 5 X10-, 2.5X10- 4 l. oxio- * 90 3.1 Comparative Example 34 50% 20ppm 5 X10- '2.5X10 " 4 l.oxio- 7 90 2.7 赚 Example 35 50% 60ppm 5 Χ10" * 2.5X10- * 3.0XUT 7 go 2.9 赚 Example 36 50% 0.296 5 X10- * 2.5X10- * l.oxio- * 90 3.5 赚 Example 37 50% 20% 5 X10- * 2.5X10 "* l.oxio- 4 90 6.3 Comparative Example 38 0.1% 0.1 % 1 X10- * l.oxio- * l.oxio- * Not strict.
例 93 lOppm 60ppm 1 X10-* ι.οχιο-· 6.0X10-' 90 1. 1 難例 94 2ppm 60ppm 5 X10-* l.oxio-7 3.0X10"· 90 1.8 比較例39 2ppm 60ppm 1 X10"1 2.0X10-7 6.0X10"· 90 3. 1 産業上の利用可能性 Example 93 lOppm 60ppm 1 X10- * ι.οχιο- 6.0X10- '90 1.1 Difficult 94 2ppm 60ppm 5 X10- * l.oxio- 7 3.0X10 "90 1.8 Comparative 39 2ppm 60ppm 1 X10" 1 2.0X10- 7 6.0X10 "90 3.1 Industrial applicability
本発明の特定の S i O2 一 B 12 03 組成によれば、 容易に安定して相対 密度が 90%以上の高密度 I TO焼結体が得られ、 この焼結体から低抵抗で 透明度が高い I TO透明電導膜を得ることができる。 その比抵抗値は約 2. 0 X 10-4 Ω cm以下、 好ましいものは 1. 5 X 10-4 Ω c m以下、 より好 ましいものは 1. 0 X 10-4Ω cm以下である。 According to a particular S i O2 one B 12 0 3 composition of the present invention, easily and stably relative density is obtained 90% or more of high density I TO sintered body, transparency with low resistance from the sintered body It is possible to obtain a transparent conductive film having a high ITO. Its specific resistance is about 2.0 × 10 −4 Ωcm or less, preferably 1.5 × 10 −4 Ωcm or less, and more preferably 1.0 × 10 −4 Ωcm or less.
焼結体からスパッタリングで透明電導膜を形成する際、 タ一ゲッ ト表面の 黒化現象もなく、 膜を形成する速度が経時的に遅くなることもなく膜の比抵 抗が悪化してくることもない。 また工業的には、 表面の黒化物を取り除く目 的で夕一ゲッ トをはずすために、 または、 ターゲット寿命が短く、 タ一ゲッ トの交換頻度が多いためにスパッタリング装置の稼働率が低くなるという問 題点も解決される。  When forming a transparent conductive film from a sintered body by sputtering, there is no blackening phenomenon on the target surface, and the film formation speed does not slow down over time, and the specific resistance of the film deteriorates. Not even. Also, industrially, the operating rate of the sputtering system is reduced because the target is removed for the purpose of removing black matter on the surface, or because the target life is short and the frequency of replacement of the target is high. Is also solved.
また、 透明電導膜をより薄く し、 エッチング時間を短縮するとともに歩留 まりを向上すること力 <できる。  In addition, it is possible to reduce the thickness of the transparent conductive film, shorten the etching time, and improve the yield.
従って、 本発明の透明電導膜は、 特に液晶ディスクプレー、 エレクトロル ミネッセンス、 エレクト口ミックディスプレーの透明電極に用いるのに好適 である。  Therefore, the transparent conductive film of the present invention is particularly suitable for use in a transparent electrode of a liquid crystal disc display, electroluminescence, and electoric display.

Claims

請求の範囲 The scope of the claims
1. I TO焼結体において、 図 1に示される S i O2 -B i 2 03 二成分 系における下記組成を示す点 A、 B、 C、 Dおよび Eで囲まれる領域に相当 する S i 02 および B 12 03 組成を含有する I TO焼結体。 1. I In TO sintered body, S i corresponding to the region surrounded by S i O2 -B i 2 0 3 two-component point shows the following composition in A, B, C, D and E shown in FIG. 1 02 and B 12 0 3 I tO sintered bodies containing composition.
八占" S i O (W t %) B Os (w t %) Yaotsu "S i O (W t%) B Os (w t%)
A 0. 001 9. 0 A 0.001 9.0
B 9. 0 9 0  B 9.0 0 9 0
C 12. 0 6 0  C 12.06 0
D 12. 0 0 00  D 12. 00 00
E 0. 001 0 00  E 0.001 0 00
2. S i O2 および B i s 03 組成が、 図 1に示される S i 02 - B i 2 03 二成分系における下記組成を示す点 F、 G、 Hおよび Iで囲まれる領域 に相当するものである請求の範囲第 1項に記載の I T 0焼結体。 2. S i O 2 and B IS 0 3 composition, S i 0 2 shown in Figure 1 - B i 2 0 3 two points showing the following composition in component F, G, in a region surrounded by the H and I 2. The IT0 sintered body according to claim 1, which is equivalent.
S i 0';' (w t %) B i Or-; (w t %)  S i 0 ';' (w t%) B i Or-; (w t%)
F 0. 001 6. 0  F 0.001 6.0
G 4. 0 6. 0  G 4.0 6.0
H 4. 0 0. 02  H 4.0 0.02
I 0. 001 0. 02  I 0.001 0.02
3. S i 02 および B 12 03 組成が、 図 1に示される S i 02 — B i 2 Os 二成分系における下記組成を示す点 J、 K、 Lおよび Μで囲まれる領域 に相当するものである請求の範囲第 1項に記載の I TO焼結体。 3. S i 0 2 and B 12 0 3 composition, S i 0 2 shown in Figure 1 - corresponds to a region surrounded by B i 2 Os two-component point shows the following composition in J, K, L and Μ 2. The ITO sintered body according to claim 1, wherein
S i 0;> (w t %) B i 9 0¾ C t %)  S i 0;> (w t%) B i 9 0¾ C t%)
0. 1 6. 0  0.16.0
K 1. 0 6. 0  K 1. 0 6.0
L 2. 0 0. 8  L 2.0 0.8
M 0. 01 0. 8  M 0.01 0.8
4. 酸化錫 0. 05〜 25重量%を含有する請求の範囲第 1項〜第 3項の いずれかに記載の I TO焼結体。 4. Claims 1 to 3 containing 0.05 to 25% by weight of tin oxide An ITO sintered body according to any of the above.
5. I TO透明電導膜において、 図 1に示される S i 02 — B i 2 03 二 成分系における下記組成を示す点 A、 B、 C、 Dおよび Eで囲まれる領域に 相当する S i 02 および B 12 03 組成を含有する I TO焼結体を有する I TO透明電導膜。 In 5. I TO transparent conductive film, S i 02 shown in Figure 1 - corresponds to a region surrounded by B i 2 0 3 two-component point shows the following composition in A, B, C, D and E S i An ITO transparent conductive film having an ITO sintered body containing O 2 and B 12 O 3 compositions.
S i (w t %) B i-' 0?. (w t %) S i (w t%) B i- '0 ?. (w t%)
A 0. 001 9. 0 A 0.001 9.0
B 9 0 9. 0  B 9 0 9.0
C 2 0 6. 0  C 2 0 6.0
D 2 0 0. 001  D 2 0 0.001
E 0 001 0. 001  E 0 001 0.001
6. 比抵抗値が約 2. 0X 10-4Ω cm以下である請求の範囲第 5項記載 の透明電導膜。 6. resistivity value of about 2. 0X 10- 4 Ω cm or less is claims fifth term transparent conductive film according.
7. S i 02 および B i 2 03 組成が、 図 1に示される S i 02 -B i 2 03 二成分系における下記組成を示す点 F、 G、 Hおよび Iで囲まれる領域 に相当するものである請求の範囲第 5項記載の I TO透明電導膜。 7. area S i 0 2 and B i 2 0 3 composition, surrounded by S i 0 2 -B i 2 0 3 two points showing the following composition in component F, G, H and I shown in FIG. 1 6. The ITO transparent conductive film according to claim 5, which corresponds to
S i 0 (w t %) B i? 0:¾ (w t %)  S i 0 (wt%) B i? 0: ¾ (wt%)
F 0. 001 6. 0  F 0.001 6.0
G 4. 0 6. 0  G 4.0 6.0
H 4. 0 0. 02  H 4.0 0.02
I 0. 001 0. 02  I 0.001 0.02
8. 比抵抗値が 1. 5 X 10-4Ω cm以下である請求の範囲第 7項記載の 8. resistivity value 1. 5 X of 10- 4 Omega cm or less is claims according paragraph 7
9. S i 02 および B i 2 03 組成が、 図 1に示される S i 02 - B i 2 03 二成分系における下記組成を示す点 J、 K、 Lおよび Μで囲まれる領域 に相当するものである請求の範囲第 5項記載の I Τ0透明電導膜。 Region surrounded by B i 2 0 3 two-component point shows the following composition in J, K, L and Μ - 9. S i 0 2 and B i 2 0 3 composition, S i 0 2 shown in Figure 1 6. The transparent conductive film according to claim 5, wherein the transparent conductive film corresponds to:
点 S i 0? (w t %) B i 0:¾ (w t %  Point S i 0? (W t%) B i 0: ¾ (w t%
J 0. 1 6. 0 K 0 6 0 J 0.1.6.0 K 0 6 0
L 2 0 0 8  L 2 0 0 8
M 0 0 0 8  M 0 0 0 8
10. 比抵抗値が 1. OX 10-4Ω cm以下である請求の範囲第 9項記載 の透明電導膜。 10. resistivity value 1. OX 10- 4 Ω cm or less transparent conductive film in the range 9 claim of claim is.
11. 酸化鍚 0. 05〜25重量%を含有する請求の範囲第 5項〜第 10 項のいずれかに記載の透明電導膜。  11. The transparent conductive film according to any one of claims 5 to 10, comprising 0.05 to 25% by weight of oxidized water.
12. I TO焼結体において、 図 1に示される S i 02 - B i 2 03 二成 分系における下記組成を示す点 A、 B、 C、 Dおよび Eで囲まれる領域に相 当する S i O2 および B i 2 03 組成を含有する I TO焼結体を夕一ゲッ ト とし、 真空槽内に不活性ガス単独または不活性ガスと 02 ガスおよび H2 の ガス中から選ばれた少くとも一種とからなる混合ガスを、 全圧 1 X 10-3 t 0 r r〜5 X 10- 2 t 0 r rとなるように導入し、 スパッタリングを行うこ とを特徴とする I T 0透明電導膜の形成方法。 In 12. I TO sintered, S i 0 2 shown in Figure 1 - B i 2 0 3 NiNaru partial system point shows the following composition in A, B, C, equivalent to a region surrounded by D and E S i O2 and B i 2 0 3 a I tO sintered body containing composition and evening one rodents bets, selected from inert gases alone or an inert gas and 0 2 gas and H2 in the gas in the vacuum chamber to At least one kind of mixed gas is introduced at a total pressure of 1 X 10-3 t0 rr to 5 X 10-2 t0 rr, and sputtering is performed. Method of forming a film.
ハ占" S i Q (w t %) B 0::; (w t %) Ha sang "S i Q (w t%) B 0 ::; (w t%)
A 0. 001 9. 0 A 0.001 9.0
B 9. 0 9. 0  B 9.0 0.90
C 12. 0 6. 0  C 12.0 6.0
D 12. 0 0. 001  D 12.0 0.001
E 0. 001 0. 001  E 0.001 0.001
13. I TO焼結体中の S i O2 および B i 2 03 組成が、 図 1に示され る S i 02 — B is Os二成分系における下記組成を示す点 F、 G、 Hおよ び Iで囲まれる領域に相当するものである請求の範囲第 1項に記載の I T0 透明電導膜の形成方法。 13. S i O2 and B i 2 0 3 composition in I TO sintered body, Ru is shown in FIG. 1 S i 0 2 - B is Os F point indicating the following composition in a two-component, G, H Contact 2. The method for forming an I T0 transparent conductive film according to claim 1, wherein the method corresponds to a region surrounded by I.
八" S i 0 (w t %) B i p Os (w t %)  8 "S i 0 (w t%) B i p Os (w t%)
F 0. 001 6. 0  F 0.001 6.0
G 4. 0 6. 0  G 4.0 6.0
H 4. 0 0. 02 I 0. 001 0. 02 H 4.0 0.02 I 0.001 0.02
14. I TO焼結体中の S i 02 および B i2 03 組成が、 図 1に示され る S i 02 — Β i 2 03 二成分系における下記組成を示す点 J、 K、 Lおよ び Mで囲まれる領域に相当するものである請求の範囲第 1項に記載の I TO 透明電導膜の形成方法。 14. I TO S i 0 2 and B i 2 0 3 composition in the sintered body, is Ru S i 0 2 that shown in Figure 1 - Β i 2 0 3 two-component point shows the following composition in J, K 2. The method for forming a transparent ITO conductive film according to claim 1, wherein the method corresponds to a region surrounded by L, M, and L.
占 S i 0';' (w t %) B i 0::; (w t %)  Divination S i 0 ';' (w t%) B i 0 ::; (w t%)
0. 1 6. 0  0.16.0
K 1. 0 6. 0  K 1. 0 6.0
L 2. 0 0. 8  L 2.0 0.8
M 0. 01 0. 8  M 0.01 0.8
PCT/JP1994/002214 1993-12-28 1994-12-26 Ito sintered body, ito transparent conductive film and method of forming the film WO1995018080A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950703610A KR100203671B1 (en) 1993-12-28 1994-12-26 Ito sintered body ito transparent conductive film and method of forming the film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5349165A JPH07196365A (en) 1993-12-28 1993-12-28 Sintered ito, ito clear conductive layer and formation thereof
JP5/349165 1993-12-28

Publications (1)

Publication Number Publication Date
WO1995018080A1 true WO1995018080A1 (en) 1995-07-06

Family

ID=18401914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/002214 WO1995018080A1 (en) 1993-12-28 1994-12-26 Ito sintered body, ito transparent conductive film and method of forming the film

Country Status (5)

Country Link
JP (1) JPH07196365A (en)
KR (1) KR100203671B1 (en)
CN (1) CN1119851A (en)
TW (1) TW438996B (en)
WO (1) WO1995018080A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570152B2 (en) * 2005-06-01 2010-10-27 国立大学法人電気通信大学 Transparent conductive molding and method for producing the same
CN102066025A (en) * 2008-08-28 2011-05-18 Jx日矿日石金属株式会社 Process for producing powder mixture comprising noble-metal powder and oxide powder and powder mixture comprising noble-metal powder and oxide powder
JP5855948B2 (en) * 2012-01-12 2016-02-09 ジオマテック株式会社 Transparent conductive film, substrate with transparent conductive film, IPS liquid crystal cell, capacitive touch panel, and method for manufacturing substrate with transparent conductive film
CN103243298A (en) * 2012-02-10 2013-08-14 海洋王照明科技股份有限公司 Halogen-doped ITO conductive film and preparation method thereof
CN104882191A (en) * 2014-02-27 2015-09-02 南昌欧菲光科技有限公司 Transparent conducting film and electronic equipment
CN104802284B (en) * 2015-03-31 2017-08-15 中国船舶重工集团公司第七二五研究所 A kind of method for preparing big specification ITO base substrates
CN107130217B (en) * 2017-06-01 2019-02-19 安徽拓吉泰新型陶瓷科技有限公司 A kind of inexpensive, high-density ITO targe material preparation method
CN109802016B (en) * 2019-01-11 2020-10-02 芜湖德豪润达光电科技有限公司 Transparent conducting layer preparation method, light-emitting diode and preparation method thereof
JP7214063B1 (en) * 2021-12-28 2023-01-27 三井金属鉱業株式会社 Oxide sintered body, manufacturing method thereof, and sputtering target material
WO2023127195A1 (en) * 2021-12-28 2023-07-06 三井金属鉱業株式会社 Oxide sintered body, method for producing same, and sputtering target material
TWI813161B (en) * 2022-01-28 2023-08-21 光洋應用材料科技股份有限公司 Indium-tin-oxide film, preparation method thereof and light absorption element comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065760A (en) * 1983-09-21 1985-04-15 東ソー株式会社 Manufacture of highly electroconductive tin oxide film material
JPS61136954A (en) * 1984-12-06 1986-06-24 三井金属鉱業株式会社 Indium oxide sintered body
JPH02225366A (en) * 1989-02-28 1990-09-07 Tosoh Corp Production of oxide sintered compact

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065760A (en) * 1983-09-21 1985-04-15 東ソー株式会社 Manufacture of highly electroconductive tin oxide film material
JPS61136954A (en) * 1984-12-06 1986-06-24 三井金属鉱業株式会社 Indium oxide sintered body
JPH02225366A (en) * 1989-02-28 1990-09-07 Tosoh Corp Production of oxide sintered compact

Also Published As

Publication number Publication date
JPH07196365A (en) 1995-08-01
CN1119851A (en) 1996-04-03
KR100203671B1 (en) 1999-06-15
TW438996B (en) 2001-06-07
KR960700977A (en) 1996-02-24

Similar Documents

Publication Publication Date Title
KR101763057B1 (en) Light-absorbing layer and layer system containing the layer, method for producing the layer system and a sputter target suited therefor
US5045235A (en) Transparent conductive film
US20100003495A1 (en) Transparent conductive film and method for manufacturing the transparent conductive film, and sputtering target used in the method
JP2014129230A (en) Oxide sintered body, target, transparent conductive film obtained by using the same, and transparent conductive substrate
WO2007142330A1 (en) Transparent conductive film, process for production of the film, and sputtering target for use in the production of the film
WO2000012445A1 (en) Target for transparent electroconductive film, transparent electroconductive material, transparent electroconductive glass and transparent electroconductive film
WO2001038599A1 (en) Sputtering target, transparent conductive oxide, and method for preparing sputtering target
JP3806521B2 (en) Transparent conductive film, sputtering target, and substrate with transparent conductive film
WO1995018080A1 (en) Ito sintered body, ito transparent conductive film and method of forming the film
JP2011006725A (en) Indium-oxide-based sputtering target and method for manufacturing the same
JP4018839B2 (en) SnO2-based sintered body, thin film forming material and conductive film
JP4539181B2 (en) Transparent conductive film, sintered compact target for manufacturing transparent conductive film, transparent conductive substrate, and display device using the same
JP2011074479A (en) Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
WO2007055231A1 (en) SnO2 SPUTTERING TARGET AND PROCESS FOR PRODUCING SAME
JP5018553B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP5224438B2 (en) Transparent conductive film and method for producing the same
EP1004687B1 (en) SUBSTRATE COATED WITH A TRANSPARENT CONDUCTIVE FILM and SPUTTERING TARGET FOR THE DEPOSITION OF SAID FILM
JPH0371510A (en) Transparent conductive film
JP2006298714A (en) Oxide sintered compact, sputtering target and transparent conductive film
JP4211558B2 (en) Sputtering target material, manufacturing method thereof, and manufacturing method of transparent conductive film using the same
WO2014021374A1 (en) Oxide sintered body and tablet obtained by processing same
JP2007284296A (en) Sintered compact, method of producing the same, transparent oxide film obtained by using the sintered compact and method of forming the same
JP3004518B2 (en) Sputtering target and method for manufacturing the same
WO2004048289A1 (en) Silicon oxide sintered product for sputtering target
JPH06166561A (en) Sintered ito material, transparent conductive ito film and its formation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 94191599.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR