WO1995015006A1 - Appareil de lavage, appareil de production de semi-conducteurs et chaine de production de semi-conducteurs - Google Patents

Appareil de lavage, appareil de production de semi-conducteurs et chaine de production de semi-conducteurs Download PDF

Info

Publication number
WO1995015006A1
WO1995015006A1 PCT/JP1994/001977 JP9401977W WO9515006A1 WO 1995015006 A1 WO1995015006 A1 WO 1995015006A1 JP 9401977 W JP9401977 W JP 9401977W WO 9515006 A1 WO9515006 A1 WO 9515006A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
substrate
hydrogen
semiconductor manufacturing
cleaning
Prior art date
Application number
PCT/JP1994/001977
Other languages
English (en)
French (fr)
Inventor
Tadahiro Ohmi
Original Assignee
Tadahiro Ohmi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tadahiro Ohmi filed Critical Tadahiro Ohmi
Publication of WO1995015006A1 publication Critical patent/WO1995015006A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02054Cleaning before device manufacture, i.e. Begin-Of-Line process combining dry and wet cleaning steps

Definitions

  • the present invention relates to a cleaning apparatus, a semiconductor manufacturing apparatus, and a semiconductor manufacturing line used in the production of semiconductors.
  • the present invention relates to terminating the front and back surfaces of silicon wafers with hydrogen atoms to supply silicon wafers free from contamination.
  • the present invention relates to a possible cleaning device, a semiconductor manufacturing device, and a semiconductor manufacturing line. Background art
  • the cleaning process for removing impurities such as dust is one of the most important processes in the semiconductor production process.
  • the present invention makes it possible to suppress the adhesion of dust that causes a decrease in yield by terminating the back and front surfaces of the substrate with hydrogen, and also to enable the removal of the dust easily in the gas phase, thereby providing a cleaner substrate.
  • a semiconductor manufacturing apparatus, and a semiconductor manufacturing line capable of surely sending waste to the final process of a semiconductor production line and completely eliminating the influence of dust in each process. I do. Disclosure of the invention
  • the cleaning apparatus of the present invention is a cleaning apparatus for cleaning and drying the back surface of a substrate, comprising: a means for supplying a chemical solution to the back surface of the substrate to remove an oxide film generated; and a hydrogen active species on the substrate surface exposed by the means. And a means for spraying a gas containing: a dangling bond on the back surface of the substrate is terminated with hydrogen by the hydrogen active species.
  • the cleaning apparatus preferably includes at least means for supplying a chemical solution to the surface of the substrate to clean the surface, and means for blowing a gas containing a hydrogen active species onto the surface.
  • the semiconductor manufacturing apparatus is a semiconductor manufacturing apparatus having a substrate transport means, wherein a treatment tank connected to the transport means and exposing a back surface of the substrate and terminating dangling bonds with hydrogen is provided. And
  • the processing tank that exposes the back surface of the base and terminates the danglide with hydrogen is preferably the above-described cleaning apparatus of the present invention.
  • the semiconductor manufacturing line of the present invention has a plurality of semiconductor processing tanks. In a semiconductor manufacturing line provided with transport means between semiconductor processing tanks, at least one processing tank for exposing the back surface of the base and terminating dangling bonds with hydrogen is provided. Further, it is preferable that the treatment tank exposing the back surface of the base and terminating the dangling bond with hydrogen is the cleaning apparatus of the present invention.
  • the semiconductor manufacturing line of the present invention comprises: at least one processing tank; means for holding a substrate in the processing tank; and a water concentration of 10 Op Db or less on the surface of the substrate. It is preferable to provide a gas-phase dust removing device comprising a means for supplying gas and a means for generating a Bernoulli pressure difference on the surface of the base. Action
  • a cleaning solution (chemical solution, ultrapure water, etc.) is supplied to the back of the base to remove the oxide film formed on the back, and then a gas containing active hydrogen species is sprayed on the back of the base while the back of the base is being dried. Thereby, the back surface of the base can be simply and completely terminated with hydrogen.
  • Hydrogen active species are very active and have been considered to have a short life in the past.However, by adopting the structure of the present invention, hydrogen active species are generated by catalytic reaction immediately before introduction into the cleaning tank of the cleaning device.
  • the use of a high-purity inert gas and hydrogen gas, and the means for supplying the gas containing hydrogen active species is made of a material having a catalytic action, thereby substantially extending the service life.
  • the substrate surface can be terminated with hydrogen by washing the substrate surface with various chemicals and ultrapure water or the like, and then spraying a gas containing a hydrogen active species onto the substrate surface during drying.
  • FIG. 1 shows the cleaning apparatus used in this embodiment.
  • 101 is a cleaning tank
  • 102 is a plurality of chemical liquid nozzles connected to various chemical liquid supply devices (not shown)
  • 103 is a substrate
  • 104 is a rotary chuck (substrate holding member)
  • 105 is an exhaust / drain port
  • 106 and 107 are gases containing active hydrogen species on the front and back surfaces of the substrate, respectively.
  • a means for supplying gas (gas supply pipe), 108 is a nozzle for supplying a chemical solution and ultrapure water for removing the oxide film on the back surface of the wafer while moving, 109 is a rotary motor, 110 is a rotary motor Means for generating a hydrogen active species provided with a heating means 111; a valve 112 for controlling the supply of a gas containing a hydrogen active species, whereby the gas is supplied to the front surface or the back surface of the substrate or both.
  • 1 13 is a mixer of N 2 gas and H gas
  • 1 14 is a mixed gas pipe
  • 1 15 and 1 16 are N 2 gas pipe and H 2 gas pipe, respectively. It is connected to an N 2 gas supply device and H 2 gas supply device (not shown) via a flow controller.
  • the cleaning tank can be one that introduces various chemicals or ultrapure water into the inside and cleans the base by immersing the base.
  • the base is mounted on a rotary chuck and the base is rotated while the chemical or ultrapure water is applied.
  • the method shown in FIG. 1 in which washing is performed by spraying water is preferable.
  • a gas containing a hydrogen active species is finally blown onto the substrate and dried, so that dangling bonds generated by the cleaning can be effectively terminated with hydrogen.
  • the members constituting the cleaning tank are made of a material having resistance to various chemicals used for cleaning.
  • the drying of the substrate is preferably performed while rotating the substrate.
  • the means 10 for generating the hydrogen active species for example, a material in which a part or the whole of the inner surface of a pipe is made of a material serving as a catalyst for a hydrogen radicalization reaction can be used.
  • a mixed gas of an inert gas and a hydrogen gas By flowing a mixed gas of an inert gas and a hydrogen gas through such a pipe, the hydrogen gas in the mixed gas can be converted into active species such as radicals.
  • the heating temperature is preferably from 300 to 450 ° C, more preferably from 300 to 400 ° C.
  • the amount of active hydrogen species generated is small.When the temperature exceeds 450 ° C, the amount of active hydrogen species increases, but a passive film is formed on the inner surface of the pipe. Otherwise, impurities may be released from the surface and mixed into the mixed gas.
  • a material containing Ni is preferable, and for example, a Ni-based alloy is preferable. Also, among Ni-based alloys, Mo-based alloys and Ni-W-based alloys are preferred. More specifically, for example, Hastelloy (registered trademark) can be mentioned.
  • a passivation film formed by heat treatment in an oxidizing atmosphere having an impurity concentration of 1 Op pb or less is formed on the surface of the stainless steel.
  • a passivation film formed by performing a reduction treatment in a hydrogen atmosphere after the formation of the passivation film is more preferable. Since the surface of such a passivation film contains chromium oxide as a main component, the incorporation of impurities into the mixed gas can be suppressed.
  • the passivation film is mainly composed of chromium oxide, but contains nickel oxide, and the nickel oxide acts as a catalyst and contacts the surface of the passivation film. It is considered that the activated hydrogen gas is activated to generate active hydrogen species.
  • the means 10 for generating hydrogen active species may be, for example, a fiber-like, mesh-like, sponge-like, or tubular catalyst provided in a vessel in addition to the above-mentioned pipe-like one.
  • such a shape is advantageous in that the contact area with the hydrogen gas is increased and the activation efficiency is increased.
  • the impurities in the inert gas and the hydrogen gas used in the present invention are preferably at most 10 ppb, more preferably at most 1 PPb.
  • the mixing ratio of the hydrogen gas in the mixed gas is preferably 0.1% or more, more preferably 10% or more. Within this range, the generation amount of hydrogen active species is further improved.
  • He gas and N are used as the inert gas.
  • Gas, Ar gas and the like are preferably used. In particular, N 2 gas and Ar gas are preferable.
  • the means 6 and 7 for supplying a gas containing a hydrogen active species according to the present invention are used to guide an active gas containing a hydrogen active species generated by a means for generating a hydrogen active species to a cleaning tank. Generally used.
  • the inner surface be made of a material containing, for example, Ni.
  • the means for supplying the gas containing hydrogen active species preferably has at least one or more independent nozzles directly above the surface of the substrate and directly below the rear surface of the substrate. It has a large number of independent nozzles, and by irradiating gas from multiple directions, it is possible to terminate hydrogen on the front and back surfaces of the substrate.
  • the means for supplying the gas to the back surface of the substrate is such that a chemical solution or the like is sprayed during the back surface cleaning. It is preferable to use a movable structure that can retreat or a structure that can cover the nozzle so that it does not enter the inside of the nozzle.
  • the silicon wafer to be cleaned is rotated, for example, ozone-added ultrapure water (ozone: 2 to 10 ppm) ⁇ ultrapure water rinse ⁇ hydrofluoric acid + hydrogen peroxide + ultrapure water (eg, volume Ratio: 0.03: 1: 2) ⁇ ultrapure water rinse-ammonium hydroxide + hydrogen peroxide + ultrapure water (for example, volume ratio of 0.05: 1: 5) ⁇ ultrapure water rinse ⁇ fluor hydrogen acid tens ultrapure water ⁇ ultrapure water rinsing ⁇ spin drying (e.g. N 2 H 2 gas concentration in the gas: 1 0 to 1 0 0%) carried out in such process.
  • a nitrogen gas to which a hydrogen active species has been added is introduced into the cleaning chamber.
  • the natural oxide film In order to remove the natural oxide film formed on the silicon wafer before the cleaning process and the natural oxide film generated during the cleaning process, the natural oxide film must be removed with hydrofluoric acid at least immediately before the drying process. U, want to do.
  • the chamber for performing these cleanings is preferably a sealed one, and is preferably sealed at least with some inert gas.
  • Addition of active hydrogen species Since all processes are performed in a single sealed cleaning tank that can introduce nitrogen gas, a natural oxide film can be formed on the silicon surface exposed by hydrofluoric acid. In addition, it is possible to completely terminate the silicon wafer surface with hydrogen active species during the drying process.
  • the concentration of the hydrogen active species can be adjusted by providing a mass flow controller at the introduction portion of each gas to the hydrogen active species generator. By controlling the concentration, it becomes possible to supply the necessary amount of active hydrogen species when necessary and to terminate the hydrogen.
  • FIG. 2 a gas-phase dust removing apparatus for removing dust adhering to the substrate surface in a vapor phase in a processing tank such as a film forming tank or an etching tank and a transfer system will be described.
  • reference numeral 201 denotes a vacuum processing tank.
  • the degree of vacuum in the vacuum processing tank 201 is 10—10 by a turbo molecular pump 202 and a roughing pump 203.
  • 205 is an evacuation passage via an on-off valve 204 It is connected to the vacuum processing tank 201.
  • the vacuum processing chamber 2 0 for example made of a vacuum molten SUS 3 1 6 L, its inner surface 2 0 6 mirror polished, and C r 2 0 3 film is passivated is formed, released The surface has very little adsorption of gas and moisture.
  • Reference numeral 207 denotes a base, for example, silicon wafer.
  • the present invention is not limited to silicon wafers, but may be another semiconductor substrate (for example, a compound semiconductor substrate), a magnetic substrate, or a superconductor substrate.
  • Reference numeral 208 denotes a support (holding means for holding the substrate) for holding the substrate 207, and has, for example, a substrate holding mechanism using a vacuum or electrostatic attraction method.
  • Reference numeral 209 denotes dust adhering to the substrate 207
  • reference numeral 210 denotes a flow of, for example, N 2 gas blown from the gas outlet 211 onto the substrate 207.
  • Reference numeral 211 denotes an N 0 gas outlet provided on the substrate, which is connected to the gas supply passage 2 1 2, and a high-speed N 2 gas is supplied onto the substrate 1 07 by the gas supply control valve 2 1 3. It is for flowing constantly.
  • 214 is a high-pressure gas supply source, for example, a high-pressure N n cylinder.
  • the high-pressure N 2 cylinder 2 14 is connected to the steady-state flow path 2 16 and the high-pressure gas control unit 2 17 through the high-pressure gas supply path 2 15.
  • the steady flow passage 2 16 is provided with, for example, an electric heating mechanism or another heating mechanism 2 18 so that the N 2 gas can be heated to about 80 ° C. 217 has a mechanism to control the intermittent and agile flow of high-pressure gas.
  • the intermittent high-speed opening and closing of the high-speed on-off valve 29.2.20 causes intermittent and rapid pressure fluctuation from the high-pressure section 2 21 through the gas supply passage 2 12 and the gas outlet 2 1 1. Can affect the steady gas flow over the substrate surface.
  • the frequency of pressure fluctuations is, for example, 10 times Z times.However, drive the high-speed on-off valves 219, 220 at a higher speed, or install multiple high-pressure gas control units 217 in parallel. As a result, the frequency of intermittent pressure fluctuations can be further increased.
  • the moisture concentration in the vacuum processing tank 201 can be kept at least at 10 ppm or less, and the absorbed moisture amount at this time is approximately Each is 1 ⁇ 10 15 molecules cm 2 . This translates into a bilayer on average. Hit.
  • Reference numeral 22 denotes an exhaust passage for N 2 gas and dust, which is connected to the vacuum processing tank 201 via an on-off valve 22 3, and dust separated from the substrate is subjected to the flow of N 2 gas.
  • the gas is discharged to an exhaust gas treatment device such as a scrubber outside the system via the on-off valve 224.
  • the exhaust passage 222 is connected to a roughing pump 203 via an on-off valve 222 and a rough exhaust passage 222 to keep the inside of the vacuum processing tank at a reduced pressure (for example, 1 OOT orr). while N 9 can it to discharge the gas and dust associated with it.
  • Reference numeral 227 denotes, for example, an Xe lamp for raising the temperature of the substrate 207.
  • Reference numeral 2 28 denotes a light inlet connected to the vacuum processing tank 201, for example, provided with a window material 229 made of optically polished synthetic quartz or the like, so that light from the Xe lamp 227 is provided.
  • the surface of the substrate 207 can be uniformly irradiated. Further, by controlling the output of the Xe lamp 227, the temperature of the base body 207 can be raised and maintained at a constant temperature (for example, 100 ° C.).
  • Reference numeral 230 denotes a transfer chamber provided with a mechanism for freely transferring a substrate between the vacuum processing tank 201 and another processing tank (not shown).
  • the substrate transfer chamber 230 is connected to a vacuum processing tank 201 via an on-off valve 231.
  • the moisture concentration in the substrate transfer chamber 230 is controlled to 10 ppm or less, as in the vacuum processing tank 201.
  • the present inventor has found that when dust is adsorbed on the substrate surface in the gas phase, the forces acting between the dust and the substrate are a liquid crosslinking force and a Van der Waals force. In particular, when water is present on the substrate surface, the liquid crosslinking force is dominant.
  • the liquid cross-linking force between the dust adhering to the substrate surface and the substrate is eliminated, and the dust is deposited on the substrate only by van der Waalska, which is at most as small as the square of the distance between the lattices of the substrate.
  • van der Waalska which is at most as small as the square of the distance between the lattices of the substrate.
  • the inventor has found that this is achieved when the amount of adsorbed moisture on the surface of the substrate is substantially less than 2 molecular layers. It is not clear how these bilayers are present, but the definition of two or less molecular layers means not only when the entire substrate surface is two or less molecular layers, but also when there is no water molecular force. It can be said that this also includes the case in the department.
  • the moisture concentration of the gas supplied to the substrate surface must be less than 100 ppb. It is preferable to minimize the release of moisture from the members constituting the treatment layer or the surface of the gas supply system piping, etc., so that such members are made of a passivation film mainly composed of chromium oxide. Use the one formed on the surface of the contact part of
  • a means for generating a Bernoulli pressure difference on the surface of the base is provided.
  • the present inventor has found that when the influence of the liquid crosslinking force is eliminated, dust can float and be removed from the substrate surface if a Bernoulli pressure difference is applied to the substrate surface.
  • N 2 gas is blown at a flow rate of 2501 / min from the gas outlet (eg, N 9 gas) 2 11 in FIG. 2, the average flow rate of N 2 gas at the substrate surface Is about 3 O m / sec. This N. It is thought that a stagnant layer occurs in the region of several m / s to several 10 m from the surface of the substrate due to the high-speed flow of .
  • the pressure difference occurring at the interface of the high-speed flow and stop flow layer of the flow rate of about 3 O m / sec was found to be approximately 0. 5 k gZ cm 2 approximately.
  • This pressure difference gives relatively large debris, for example of the order of 5 and 1 m, a kinetic energy perpendicular to the substrate. Based on mechanical considerations, this vertical kinetic energy can be sufficient to separate dust of 1 zm or more from the substrate surface.
  • the gas flow rate may be appropriately determined according to the particle size of the dust, but is preferably 1 O mZ sec or more, and more preferably 3 O mZ sec or more. In the case of such a high-speed flow, the removal efficiency is improved. Note that the upper limit is preferably 5 O mZ sec.
  • shock waves Available from Atsuta substrate surface in the stop flow layer with high velocity flow only N 2 into the following areas several im L, even According to Bernoulli's theorem Pressure difference can be generated. Due to this pressure difference, dust on the surface of the substrate gives kinetic energy in a direction perpendicular to the surface of the substrate.
  • dust can be removed from the surface of the substrate by the above operation.
  • a Xe lamp for example, a gas (for example, N 2 gas) heated to TC) such as 8 (TC) also removes moisture adsorbed on the substrate surface. This further promotes the effect of reducing the liquid crosslinking force.
  • the attached dust On the surface of the substrate, where the force acting on the substrate and the dust is expressed only by van der Waals forces, the attached dust always moves freely on the substrate surface by Brownian motion.
  • the energy of the Brownian motion is determined by the temperature. For example, if the temperature of the dust is increased, the dust moves on the substrate surface by the kinetic energy proportional to the temperature. For example, raising the temperature with a Xe lamp or the like can activate the dust browning motion. Dust moving around the surface of the substrate jumps up due to irregularities of several angstrom on the surface of the substrate, and at this moment, the van der Lusker working between the substrate and the dust is minimized, and the dust is most detached from the substrate. It is easy to do.
  • Brownian motion is an irregular motion of dust, so there is also motion in the direction perpendicular to the substrate. Therefore, even in this operation, van der Waalska working between the substrate and the dust can be minimized.
  • the inventor of the present invention has found that a dust removal effect appears at a substrate temperature of 80 ° C or higher.However, as described above, it is more effective to activate the browning motion if the temperature is as high as possible. For obvious reasons. However, in the actual process, it is very difficult to determine the type of dust adhering to the substrate surface, and naturally includes organic substances and the like. Therefore, heating at a temperature lower than the temperature at which organic substances are dissolved (for example, 200 ° C or lower) is ideal. You. Furthermore, considering that the entire process is performed at a low temperature (around 400 ° C), heating above 300 ° C may have an effect on the heat treatment even if no organic matter is observed. Not preferred. For the above reasons, the heating of the substrate and the dust is preferably carried out at a temperature of from 80 ° C. to 300 ° C., more preferably from 80 ° C. to 200 ° C.
  • a reactive gas for example, C 1 2 gas or which the gas obtained by mixing an inert gas such as A r on the substrate surface constantly flowing, metallic dust on the substrate, for example if a a 1, a 1 C 1 3 is formed by the reaction of C 1 2 gas and a 1, considering that this is a volatile Then, it can be easily removed by synergy with intermittent and agile pressure fluctuation.
  • a reactive gas such as o 3 can be applied to organic dust, and for example, HF gas can be considered to SiO 2 dust.
  • the ionized gas neutralizes the static electricity of the substrate, cancels the electrostatic force acting between the dust in the gas phase and the substrate, and attaches or removes the dust in the gas phase to the substrate. Prevents redeposition.
  • a deuterium lamp or a soft X-ray light source can be used.
  • FIG. 1 is a conceptual diagram showing an example of the cleaning device of the present invention.
  • FIG. 2 is a conceptual diagram showing an example of a gas-phase dust removing device.
  • FIG. 3 is a conceptual diagram illustrating a semiconductor manufacturing apparatus according to the second embodiment.
  • FIG. 4 is a conceptual diagram showing another example of the semiconductor manufacturing apparatus.
  • FIG. 5 is a conceptual diagram showing another example of the semiconductor manufacturing apparatus.
  • FIG. 6 is a conceptual diagram illustrating a semiconductor manufacturing line according to the third embodiment.
  • 106, 107 means for supplying gas containing hydrogen active species (gas supply pipe),
  • the silicon wafer was subjected to hydrogen termination on the front and back surfaces, and then an oxide film was formed.
  • a 10 m diameter Ni wire was rolled and bundled and inserted into a cylindrical stainless steel (SUS 316) container whose inner surface was electropolished. The mixture was heated to 350 ° C over 13 days.
  • stainless steel tubes (SUS 316) whose inner surfaces were electropolished were used for the gas supply tubes 6 and 7. The mixing ratio of the mixed gas, N 2 90%, and the H 2 10%.
  • N 2 gas containing a hydrogen active species is introduced from nozzle 6, and while rotating the nozzle at 150 to 3000 rpm, 1 ) Caro ultrapure water with ozone (2-1 Oppm), 2) Hydrofluoric acid + hydrogen peroxide + ultrapure water (0.03: 1: 2), 3) ammonium hydroxide + hydrogen peroxide + Ultrapure water (0.05: 1: 5), hydrofluoric acid + hydrogen peroxide + ultrapure water (0.03: 1: 2)), and ultrapure water were sequentially dropped and washed. Subsequently, while blowing a gas containing a hydrogen active species from the mixed gas supply pipes 6 and 7 onto the front and back of the wafer, the wafer was rotated at 1500 rpm and dried.
  • the wafer cleaned as described above was transferred to a plasma oxidation apparatus by a transfer means in a transfer chamber, and a 1-Om oxide film was formed.
  • a non-backside treated nano was similarly transported to a plasma oxidation apparatus to form an oxide film.
  • FIG. 3 shows a semiconductor device characterized in that at least a part thereof includes means for automatically transporting a silicon wafer in which the substrate surface on the back surface of the silicon wafer is exposed and the exposed silicon surface is terminated by hydrogen atoms.
  • 1 shows an embodiment of a production line.
  • reference numeral 301 denotes a cleaning device of the present invention, and 302 and 303 denote cleaning devices.
  • This is a vacuum chamber for storing husets.
  • 304 is a transfer mechanism having means for transferring the silicon wafer to each processing tank.
  • Numeral 305 denotes a vacuum tank for transferring silicon wafers to each processing tank.
  • 306, 307, 308, 309, 310 are used for dry etching, plasma film formation, thermal decomposition film formation, sputter film formation, etc. for processing silicon wafers, for example. It is a vacuum chamber.
  • the cleaning device 301 terminates the back surface of the wafer with hydrogen atoms, and the back surface of the wafer hardly adsorbs moisture. This also contributes to preventing dust from adhering.
  • anisotropic dry etching can be realized as a result of preventing dust on the back surface.
  • the dust may rise in the dry etching tank and adhere to the wafer surface.
  • the dust becomes a fine mask and may cause an etching residue, which causes a low yield in manufacturing large-scale integrated circuits of silicon.
  • no etching residue was observed, and this problem could also be solved.
  • the tanks are stored between the tanks for storing the oxygen cassettes 302 and 303 and the vacuum tanks for transporting the silicon wafers to the processing tanks 300, respectively. It is important to connect the cleaning device to the cluster-type semiconductor manufacturing device, terminate the silicon wafer and the back surface with hydrogen, and prevent dust from adhering to the wafer and the back surface.
  • the cleaning apparatuses of the present invention may be installed at other positions, and the cleaning apparatus of the present invention may be at least partially integrated with a cluster-type semiconductor manufacturing apparatus and at least partially integrated.
  • the present apparatus may be incorporated anywhere in a line of single-wafer type semiconductor manufacturing apparatuses.
  • reference numeral 601 denotes a nitrogen atmosphere tunnel for automatically transporting a silicon wafer to each semiconductor manufacturing apparatus for each wafer (hereinafter referred to as a nitrogen tunnel).
  • 602 is a silicon wafer to be transported.
  • 603 is a reactive ion etching device
  • 604 is a plasma film forming device.
  • Reference numeral 605 denotes a cluster-type semiconductor manufacturing apparatus having a plurality of processing tanks and means for transferring silicon wafers to the processing tanks.
  • 606 is a stepper, for example, and 607 is an ion implantation device.
  • 608 is the cleaning device shown in FIG.
  • 609, 610, 61 1, and 612 are the dust removing devices shown in FIG.
  • Numeral 613 is a vacuum tank having means for transferring silicon wafers to each processing tank.
  • Reference numerals 615, 616, and 617 denote vacuum chambers such as a dry etching tank, a thermal decomposition film forming tank, and a sputter film forming tank for processing a silicon wafer.
  • Each tank and nitrogen tunnel are made of, for example, vacuum-melted S US 316, the inner surface of which is mirror polished and made of Cr. 0 3 film in the released gas and moisture are passivated adsorption that has become extremely small surface.
  • the water concentration of the high-pressure gas used in this treatment tank is 10 to 100 ppb. Thus, it goes without saying that the water concentration in each of the vacuum chambers and the nitrogen tunnel is kept at most 10 ppm or less.
  • the great effect of this embodiment is that, for example, the silicon wafer is isolated from atmospheric components and manufacturing workers by a nitrogen tunnel, and the dust attached in the treatment tank is removed by the dust removing device of the present invention.
  • Dust that is dusting for example, dust that adheres to workers wearing dust-proof clothing in a clean room and adheres to the air during the work due to the blowing of air from the cuffs and collars of the dust-proof clothing
  • the dust attached to the wafer in the processing tank is removed by the dust removing device of the present invention, and the wafer is transferred to the next processing tank. For the first time, a large clean room space is no longer required.
  • the metal formed by the reaction processing tank sputters the metal wall of the processing tank in the case of heavy metal contamination.
  • Incorporating the dust removal device of the present invention into a consistent line and removing attached dust prevents the gate destruction of the MOS transistor formed on silicon and the increase in leakage current at the transistor junction.
  • the contaminated dust is alkaline ions, it is effective in preventing deterioration of the transistor characteristics such as a change in the threshold value of the transistor.
  • the wafer since the wafer is transported in a nitrogen tunnel, it does not come into contact with atmospheric oxygen gas.
  • the aluminum surface is not oxidized, so that boron trichloride gas oxidizes the aluminum surface.
  • a semiconductor manufacturing line that can minimize the effects of dust generated in the processing tank and transport was achieved.
  • a cleaning device and a dust removing device may be installed in the semiconductor manufacturing line. It can be installed at any position.
  • hydrogen-terminated silicon has high resistance to particulate contamination.
  • the adhesion of fine particles is less likely to occur, and cross contamination due to back surface contamination of the silicon wafer in the semiconductor manufacturing process and re-adhesion to the back face of the silicon wafer from the transport device can be prevented.
  • the yield in the semiconductor production process is improved due to the reduction of contamination by fine particles, and the cost of products can be reduced.
  • dust attached to the surface of the substrate can be removed from the surface of the substrate in the gas phase, regardless of the dust made of any material.
  • the present invention Provides for the first time a means of removing dust in the gas phase by means of dry processing, which has been difficult, and this dry process makes it possible for the first time to automate and inline the dust removal process of semiconductor and other manufacturing equipment and semiconductor and other manufacturing lines. And the production yield can be dramatically increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

明細書 洗浄装置、 半導体製造装置及び半導体製造ライン 技術分野
本発明は、 半導体の生産に用いられる洗浄装置、 半導体製造装置及び半導体製 造ラインに係わり、 特にシリコンウェハ表面及び裏面を水素原子で終端化し、 汚 染がなく且つ汚染しないシリコンゥヱハを供給することが可能な洗浄装置、 半導 体製造装置及び半導体製造ラインに関する。 背景技術
半導体製造工程において、 例えば、 基体処理槽内及び基体搬送中に付着するゴ ミは、 歩留まり低下の最大の原因となっている。 従って、 ゴミ等の不純物を取り 除く洗浄工程は、 半導体の生産工程の中で最も重要な工程の一つである。
例えば、 プラズマ絶縁膜の成膜処理において、 ゴミがシリコンゥヱハ表面に付 着すると、 ゴミの上にも膜が堆積され局所的な成膜の凹凸が発生し、 また取り込 まれたゴミが重金属の場合、 シリコン上に形成された MO S トランジスタのゲ一 卜絶縁膜の破壊や、 トランジスタ接合部のリーク電流の増加力起こり、 アルカリ 性イオンの場合は、 トランジスタの閾値変化等のトランジスタの性能に悪影響を 及ぼす。
また、 スパッタリングによる金属膜の成膜処理では、 基体表面上に付着したゴ ミは金属膜中に取り込まれ金属配線の平坦な成膜性を劣化する。 またコンタク ト ホール部及びスルホール部の穴の中にゴミが存在したまま金属成膜を行うと、 配 線形成後、 コンタクトホール及びスルーホール部の抵抗増加、 コンタクトホール 及びスルーホール部配線のマイグレーション耐性の劣化の問題が生じる。
あるいは、 アルミニウム金属配線のドライエッチングにおいて、 エッチング中 にェッチング困難な材料から成るゴミがアルミニゥム表面に付着すると、 ゴミの 下部はェッチングされずゴミの周りがェッチングされェッチング残り (エツチン グ残渣) 力生じる。 通常追加エッチング (いわゆるオーバエッチング) を行いェ ッチング残りを除去するが、 過剰なオーバェッチングは、 レジストマスクや下地 酸化膜の膜厚減りをもたらすことになる。 又オーバェッチング時の中性ラジカル 種により、 アルミニウム配線の横方向のエッチングが進み、 配線の細りが生じ る。 さらに段差部にわたるアルミニウム配線部では、 平坦部のアルミニウム部よ りエッチング残渣除去の為の追加のエッチング、 いわゆるオーバ.エッチングが 少なくなる為、 段差部にゴミが付着するとエツチング残渣が金属配線間にわた り、 金属配線の短絡を起こす問題が発生する。
このようなゴミを除去するため、 従来、 基体上面からノズルまたはシャワーを 用いて基体表面へ薬液を供給、 洗浄するゥエツト方式や、 イオン照射、 ガス噴射 等により除去するドライ方式が採用されている。 しかし、 基体表面の材料によつ ては、 エッチングが起こるためゥヱット方式が採用できない場合があり、 また現 状のドライ方式では、 イオン衝撃による格子欠陥等の発生、 除去能力の不足等の 問題がある。
また、 基体表面のゴミを除去しても、 製造の歩留まりは必ずしも向上しないと いう問題がある。 これは、 基体裏面のゴミ起因する問題である。 基体裏面は、 搬 送系や処理槽等で、 金属類、 樹脂類、 セラミックス類等の材料と接触する機会が 多いため、 これら材料に汚染されやすく、 表面をいくら高清浄に洗浄しても、 基 体裏面に付着しているゴミカ、 基体表面を汚染する、 いわゆる相互汚染 (クロス コンタミネ一シヨン) が生じる。 これらの現象は、 半導体デバイスの高性能化' 高集積化を検討するにあたり、 本発明者がはじめて実際上見いだしたものであ り、 裏面のゴミは半導体デバイス特性及び製造歩留まりに影響し、 製造プロセス にお L、て大きな問題となることが分かつた。
さらに、 基体裏面にゴミが付着していると、 半導体製造装置及び半導体製造ラ インでは、 基体と支持台間に微小な隙間が生じ、 この隙間により基体と支持台間 の熱伝導率は悪化し、 支持台から基体への加熱効率または冷却効率が悪化する。 また基体裏面が汚染されていると、 搬送中に基体が落下したり、 基体の位置検出 ができない等の問題が生じることがある。 基***置の誤検出は、 基体の検出器と 基体裏面間の微小な隙間による誤検出や、 基体が電気的にフローティング状態に なるため、 基体が静電気を帯び基***置検出器が誤動作するためである。 さら に、 レジストにレチクル上のパターンを転写する工程において、 ステッパーの焦 点探度は浅いために、 基体裏面が汚染されていると、 基体と支持台間の隙間によ り、 ステツバの焦点深度からずれてしまい、 レジストのパターニングの解像度が 悪化するという問題がある。
本発明は、 基体の裏面及び表面を水素終端して歩留まり低下の原因となるゴミ の付着を抑制しつつ、 また付着した場合でも気相で容易に除去することを可能と し、 より清浄な基体を半導体生産ラインの最終工程まで確実に送り、 各工程にお いてゴミの影響を完全に排除することが可能な低コス卜な洗浄装置、 半導体製造 装置及び半導体製造ラインを提供することを目的とする。 発明の開示
本発明の洗浄装置は、 基体の裏面の洗浄と乾燥を行う洗浄装置において、 該基 体裏面に薬液を供給し生成した酸化膜を除去する手段と、 該手段により露出した 基体面に水素活性種を含む気体を吹き付ける手段とを少なくとも有し、 前記基体 裏面のダングリングボンドを前記水素活性種により水素終端することを特徴とす る。 該洗浄装置は、 前記基体表面に薬液を供給し洗浄する手段と、 該表面に水素 活性種を含む気体を吹き付ける手段とを少なくとも有することが好ましい。 本発明の半導体製造装置は、 基体の搬送手段を有する半導体製造装置であつ て、 該搬送手段と接続され、 前記基体の裏面を露出しダングリングボンドを水素 終端する処理槽を設けたことを特徴とする。 前記基体の裏面を露出し、 ダングリ ドを水素終端する処理槽は、 上記本発明の洗浄装置であることが好まし 本発明の半導体製造ラインは、 複数の半導体処理槽を有し、 該複数の半導体処 理槽間に搬送手段を設けた半導体製造ラインにおいて、 少なくとも 1つ前記基体 の裏面を露出し、 ダングリングボンドを水素終端する処理槽を設けたことを特徴 とする。 また、 前記基体の裏面を露出し、 ダングリングボンドを水素終端する処 理槽は、 上記本発明の洗浄装置であることが好ましい。
また、 本発明の半導体製造ラインは、 少なくとも 1つの処理槽と、 前記処理槽 内において基体を保持する手段と、 前記基体表面に水分濃度 1 0 O p D b以下の ガスを供給する手段と、 前記基体表面にベルヌーィの圧力差を発生させるための 手段とから構成される気相ゴミ除去装置を備えることが好ましい。 作用
以下に本発明の作用を実施態様例と共に説明する。
基体裏面に洗浄液 (薬液、 超純水等) を供給し、 裏面に生成した酸化膜を除去 した後、 基体裏面の乾燥中に、 活性な水素活性種を含む気体を基体裏面に吹き付 けることにより、 簡便且つ完全に基体裏面を水素終端させることができる。 水素 活性種は非常に活性であり、 従来その寿命は短いと思われてきたが、 本発明の構 成にすることにより、 即ち水素活性種を洗浄装置の洗浄槽導入直前で触媒反応に より発生させること、 高純度な不活性ガス及び水素ガスを用いること、 及び水素 活性種を含む気体を供給する手段を触媒作用のある材料で作製すること等によ り、 実質上の寿命を延ばし、 高濃度の水素活性種を基体表面に供給できる結果、 上記のように基体裏面の水素終端を完全に行う—ことができる。
同様に、 基体表面を種々の薬液及び超純水等で洗浄後、 乾燥中に、 水素活性種 を含む気体を基体表面に吹き付けることにより、 基体表面を水素終端させること ができる。
基体を水素終端することでゴミの付着を抑制できる理由の詳細は、 現在のとこ ろ明かではないが、 従来は、 基体表面及び裏面上には水分が多量に吸着するた め、 水分を介してゴミが基体表面に付着し易く、 またゴミが基体上に付着する と、 ゴミと基体の間には、 水分の表面張力による液架橋力が生じ、 またこの液架 橋力はファンデ一ルワース力より約 1 0倍大きいため、 付着したゴミは容易には 基体から離脱できなかったが、 本発明の水素終端により、 基体表面及び裏面上に は水分が吸着されにく くなり、 結果的にゴミが付着を抑制するものと考えられ る。
次に、 本発明の洗浄装置の一例として基体表面及び裏面を洗浄 ·乾燥可能な洗 浄装置を図 1を参照して説明する。
図 1に本実施例で用いた洗浄装置を示す。 図 1において、 1 0 1は洗浄槽であ り、 1 0 2は種々の薬液供給装置 (不図示) と接続された複数の薬液ノズル、 1 0 3は基体、 1 0 4は回転チヤック (基体保持部材) 、 1 0 5は排気 ·排液 口、 1 0 6, 1 0 7はそれぞれ水素活性種を含む気体を基体の表面及び裏面に供 給する手段 (ガス供給管) 、 1 0 8は移動しながらウェハ裏面の酸化膜を除去す るため薬液、 超純水を供給するためのノズル、 1 0 9は回転モータ、 1 1 0は、 加熱手段 1 1 1を設けた水素活性種を発生させる手段、 1 1 2は、 水素活性種を 含む気体の供給を制御するバルブであり、 これにより該気体は基体の表面または 裏面またはその両方に送られる、 1 1 3は N2ガスと Hりガスの混合器、 1 1 4は 混合ガス配管、 1 1 5, 1 1 6はそれぞれ N2ガス配管、 H2ガス配管であり、 マ スフローコントローラと介して N2ガス供給装置、 H2ガス供給装置 (不図示) と 接続されている。
洗浄槽としては、 内部に種々の薬液や超純水を導入して基体を浸漬して洗浄を 行うものを用いることができるカ、 基体を回転チャックに取り付け基体を回転さ せながら薬液、 超純水を噴射して洗浄を行う図 1の方式のものが好ましい。 薬液、 超純水による洗浄後、 最後に水素活性種を含む気体を基体に吹き付け て、 乾燥させることにより、 洗浄により生成したダングリングボンドを水素で効 果的に終端することができる。 なお、 洗浄槽を構成する部材は、 洗浄に用いられ る種々の薬液に対し耐性をもつ材料で構成されることは言うまでもない。 なお、 基体の乾燥も基体を回転させながら行うのが好ましい。
水素活性種を発生させる手段 1 0としては、 例えば配管の内表面の一部あるい は全面を、 水素ラジカル化反応の触媒となる材料で構成したものを用いることが できる。 このような配管内に不活性ガスと水素ガスの混合ガスを流すことによ り、 混合ガス中の水素ガスをラジカル等の活性種にすることができる。 活性化の 効率を高めるためには、 触媒 (配管) を加熱するのが好ましい。 加熱温度は 3 0 0〜4 5 0 °Cが好ましく、 3 0 0〜4 0 0 °Cがより好ましい。 3 0 0 °C未満 では、 水素活性種の生成量が少なく、 また 4 5 0 °Cを越えた場合には、 水素活性 種の生成量は増加するものの配管内面に不動態膜力形成されていない場合にはそ の表面から不純物が放出され、 混合ガス中に混入する恐れがあるからである。 本発明において、 水素活性種の生成に用いられる触媒としては、 N iを含む材 料が好ましく、 例えば N i基合金が好ましい。 また、 N i基合金の中でも N i 一 M o系合金、 N i - W系合金が好ましい。 より具体的には、 例えばハステロィ (登録商標) が挙げられる。
以上の配管の一例として、 例えば表面粗度が 1 m以下に電解研磨されたステ ンレス鋼が用いられる。 この場合、 ステンレス鋼の表面には、 不純物濃度が 1 O p p b以下の酸化性雰囲気で熱処理して形成される不動態膜が形成されたも のがより好ましい。 さらに不動態膜形成後水素雰囲気中で還元処理を行うことに より形成された不動態膜が更に好ましい。 かかる不動態膜の表面はクロム酸化物 を主成分としているため混合ガス中への不純物の混入を抑えることができる。 な お、 力、かる不動態膜はクロム酸化物を主成分としているが、 ニッケル酸化物を含 んでおり、 このニッケル酸化物が中のニッケルが触媒の作用をなし、 不動態膜表 面に接触した水素ガスを活性化し水素活性種を生成するものと考えられる。 本発明において水素活性種を発生させる手段 1 0は、 以上の配管形状のものの 他に、 例えば繊維状、 網状、 スポンジ状、 管状の触媒を容器内に設けたものを用 いても良いことは言うまでもなく、 このような形状は水素ガスとの接触面積を大 きくし活性化効率を高める点では有利である。
本発明において用いられる不活性ガス及び水素ガス中の不純物は、 1 0 p p b 以下が好ましく、 1 P P b以下がより好ましい。 また、 混合ガス中の水素ガスの 混合比は 0. 1 %以上力好ましく、 1 0 %以上がより好ましい。 この範囲で水素 活性種生成量は一層向上する。 また、 不活性ガスとしては、 H eガス、 N。ガ ス、 A rガス等が好適に用いられる。 特に、 N2ガス、 A rガスが好ましい。 本発明の水素活性種を含むガスを供給する手段 6, 7は、 水素活性種を発生さ せる手段で生成した水素活性種を含む活性ガスを洗浄槽に導くためのもので、 例 えば配管が一般に用いられる。 前述したように、 生成した水素活性種の濃度を低 下させないためには、 内表面を例えば N i等を含む材料で構成するのが好まし い。
水素活性種を含む気体を供給する手段は、 基体表面直上及び裏面直下に独立し たノズルを少なくとも 1つ以上有すること力望ましい。 独立したノズルを多数有 し、 多方向から気体を照射することにより基体表面裏面とも水素終端化すること ができる。 尚、 基体裏面へ該気体を供給する手段は、 裏面洗浄中は薬液等がノズ ル内へ侵入しないように、 退避できる移動構造とするか、 ノズルに蓋をできる構 造とするのが好ましい。
次に、 シリコンウェハを用いた洗浄工程の一例を説明するが、 他の薬液、 ガ ス、 被洗浄物にっ 、ても同様な方法で行えば良 、。
洗浄工程は被洗浄物であるシリコンゥ ハを回転させ、 例えばオゾン添加超純 水 (オゾン: 2〜 1 0 p p m) →超純水リンス→フッ化水素酸 +過酸化水素 +超 純水 (例えば体積比で 0. 0 3 : 1 : 2 ) →超純水リンス—水酸化アンモニゥム +過酸化水素 +超純水 (例えば体積比で 0. 0 5 : 1 : 5 ) →超純水リンス→フ ッ化水素酸十超純水→超純水リンス→回転乾燥 (例えば N2ガス中の H2ガス濃 度: 1 0〜1 0 0 %) といった工程で行われる。 ここで、 各洗浄工程中には水素 活性種を添加した窒素ガスを洗浄チャンバ一内に導人している。
なお、 洗浄工程開始以前にシリコンゥュハ上に生成している自然酸化膜及び洗 浄工程中に生成する自然酸化膜を除去するために、 少なくとも乾燥工程直前にフ ッ化水素酸による自然酸化膜除去を行うのが望ま U、。
また、 これらの洗浄を行うチャンバ一は密閉されているもの力好ましく、 少な くとも何らかの不活性ガスでシールされているものが好ましい。 水素活性種添加 窒素ガスを導入できる密閉された単一の洗浄槽内ですベての工程を行うため、 フ ッ化水素酸によつて露出されたシリコン表面上に自然酸化膜が生成することがな く、 また、 乾燥工程中に水素活性種によりシリコンウェハ表面を完全に水素終端 化することが可能である。
また、 水素活性種の濃度は水素活性種発生装置への各々の気体の導入部にマス フローコントローラーを設け調節できるものがより好ましい。 濃度を制御するこ とにより、 水素活性種の必要な場合に必要なだけの量を供給し水素終端化するこ とが可能となる。
次に、 成膜槽、 エッチング槽等の処理槽ゃ搬送系で基体表面に付着したゴミを 気相で除去する気相ゴミ除去装置につ t、て図 2を参照して説明する。
図において 2 0 1は真空処理槽であり、 例えばターボ分子ポンプ 2 0 2及び粗 引きポンプ 2 0 3によって、 真空処理槽 2 0 1内の真空度は 1 0— 1 0
12, "
'T o r rに保つことができる。 2 0 5は真空排気通路で開閉弁 2 0 4を介して 真空処理槽 2 0 1と接続されている。
真空処理槽 2 0 1は、 例えば真空融解した S U S 3 1 6 Lでできており、 その 内面 2 0 6は鏡面研磨し、 かつ不動態化処理されて C r 203膜が形成され、 放出 ガス及び水分の吸着が極めて少ない表面になっている。
2 0 7は基体であり、 例えばシリコンゥヱハである。 もちろんシリコンゥヱハ に限らず、 他の半導体基板 (例えば化合物半導体基板) 、 磁性体基板、 超伝導体 基板などであってもよい。 2 0 8は、 基体 2 0 7を保持するための支持台 (基体 を保持する手段) であり、 例えば真空もしくは静電吸着方式による基体保持機構 を有している。
2 0 9は基体 2 0 7上に付着しているゴミを示しており、 2 1 0はガス吹き出 し口 2 1 1から基体 2 0 7上に吹き付けられた例えば N2ガスの流れを示してい る。
2 1 1は基体上に設置された N0ガスの吹き出し口で、 ガス供給通路 2 1 2と 接続されており、 ガス供給制御弁 2 1 3によって高速な N2ガスを 基体 1 0 7上 に定常的に流す為のものである。 ここで 2 1 4は高圧ガス供給源で、 例えば高圧 Nnボンベである。 高圧 N2ボンべ 2 1 4は高圧ガス供給通路 2 1 5を通して定常 流通路 2 1 6および高圧ガス制御部 2 1 7と接続されている。 この定常流通路 2 1 6には例えば通電加熱機構またはその他の加熱機構 2 1 8が備えられてお り、 N2ガスを約 8 0 °Cに加熱することができる。 2 1 7 は高圧ガスの間欠的で 俊敏な流れの制御を行う機構を備えている。
図 2では、 高速開閉弁 2 1 9 . 2 2 0の間欠的な高速開閉によって、 高圧部 2 2 1からガス供給通路 2 1 2およびガス吹き出し口 2 1 1を通して間欠的で俊 敏な圧力変動を基体表面上の定常的なガスの流れに作用させることができる。 圧 力変動の発生頻度は、 例えば 1 0回 Z分であるが、 高速開閉弁 2 1 9、 2 2 0を さらに高速に駆動するか、 または高圧ガス制御部 2 1 7を並列に多段設けること によって、 間欠的な圧力変動の発生頻度をさらに増やすことができる。
N。ガスの水分濃度は 1 0〜 1 0 0 p p bに制御されている ため、 真空処理槽 2 0 1内の水分濃度は少なくとも 1 0 p p m以下に保つことができ、 この時の吸 着水分量は略々 1 X 1 0 15分子 c m2である。 これは、 平均値で 2分子層に相 当する。
2 2 2は N2ガスおよびゴミの排気通路であり、 開閉弁 2 2 3を介して真空処 理槽 2 0 1と接続されており、 基体上から離脱したゴミは N2ガスの流れにとも なうようにして、 開閉弁 2 2 4を介して系外の例えばスクラバーのような排ガス 処理装置に排出される。 また、 排気通路 2 2 2は開閉弁 2 2 5および粗排気通路 2 2 6を介して粗引きポンプ 2 0 3に接続されており、 真空処理槽内を減圧 (例 えば 1 O O T o r r ) に保ちながら N9ガスおよびそれにともなうゴミを排出す ることができる。
2 2 7は、 基体 2 0 7を昇温するための、 例えば X eランプである。 2 2 8は 真空処理槽 2 0 1に接続された光導入口で、 例えば光学研磨された合成石英等の 窓材 2 2 9が備えられていることにより、 X eランプ 2 2 7の光が基体 2 0 7の 表面に均一に照射することができる。 さらに、 X eランプ 2 2 7の出力を制御す ることによって基体 2 0 7を昇温し、 かつ一定の温度 (例えば 1 0 0 °C) に保つ ことができる。
2 3 0は、 基体を真空処理槽 2 0 1と他の処理槽 (不図示) 間で自在に搬出入 するための機構を備えた搬送室である。 基体搬送室 2 3 0は開閉弁 2 3 1を介し て真空処理槽 2 0 1に接続されいる。 基体搬送室 2 3 0の水分濃度は真空処理槽 2 0 1と同様に 1 0 p p m以下に制御されている。
気相中においてゴミが基体表面上に吸着した場合、 ゴミと基体間に働く力は、 液架橋力とファンデルワールス力であることを本発明者は知見した。 特に、 水分 が基体表面に存在している場合においては液架橋力が支配的である。
本発明においては、 基体表面に付着しているゴミと基体間の液架橋力を排除 し、 高々基体の格子間の距離のマイナス 2乗に比例する程度の小さなファンデル ワールスカのみで基体にゴミが付着している状態を実現している。 これは、 基体 表面上の吸着水分量が、 略々 2分子層以下であるときに実現されることを本発明 者は見いだした。 この 2分子層がどのような状態で存在しているかは明確ではな いが、 2分子層以下というのは、 基体表面全体が 2分子層以下の場合のみなら ず、 水分子力存在しない部分カ 部にある場合も含まれるといえる。
このような状態を実現するためには、 基体表面に供給されるガスの水分濃度 が、 1 0 0 p p b以下であるということが必要である。 なお、 処理層を構成する 部材あるいはガス供給系の配管等の表面からの水分の放出は極力小さくすること が好ましく、 そのため、 かかる部材は、 酸化クロムを主成分とする不動態膜がガ スとの接触部表面に形成されたものを用 、ればよ t、。
なお、 本発明では、 基体表面にベルヌ一ィの圧力差を発生させる手段を設けて いる。 前述したように、 液架橋力の影響を排除した状態では、 ベルヌーィの圧力 差を基体表面に与えてやればゴミは浮上し、 基体表面から除去できることを本発 明者は見い出したのである。 例えば、 図 2におけるガス (例えば N9ガス) の吹 き出し口 2 1 1より 2 5 0 1 /m i nの流量で基体表面に N2ガスを吹き付ける と、 基体表面での N2ガスの平均流速は約 3 O m/ s e cとなる。 この N。の高速 流によって、 基体表面より数/ mから数 1 0 mの領域では停流層が生じ、 高速 流と停流層の界面にはベルヌィの定理によってべルヌーィの圧力差が生じると考 えられる。 例えば、 この流速約 3 O m/ s e cの高速流と停流層の界面に生じる 圧力差は約 0 . 5 k gZ c m2程度となることが分かった。 この圧力差は、 例え ば 5 及び 1 m程度の比較的大きなゴミに対し基体と垂直方向の運動エネ ルギーを与える。 この垂直方向の運動エネルギーは、 力学的な考察より、 1 z m 以上のゴミを基体表面より離脱するために充分なエネルギーとなりうる。 ガスの 流速は、 ゴミの粒径に応じて適宜決めればよいが、 1 O mZ s e c以上が好まし く、 3 O mZ s e c以上がより好ましい。 かかる高速流の場合除去効率が向上す る。 なお、 上限としては、 5 O mZ s e cが好ましい。
なお、 例えば 0 . 3 z m程度の比較的小さなゴミは完全に停流層内部に存在す るため、 N2の高速流によって生じる圧力差のみではゴミは基体表面より離脱で きないことがある。 この 0 . 3〃m程度のゴミを基体表面より離脱させるために は間欠的な圧力変動 (例えば衝撃波) を基体表面あるいは基体表面上を流れる高 速のガス流に与えることが効果的であることが本発明者の実験事実より明かとな つた。 この間欠的な圧力変動 (例えば衝撃波) は基体表面より数/ z mから数 1 0 mに生じている停流層を乱す効果を持つと考えられる。 これは、 間欠な圧力変 動 (例えば衝撃波) によって停留層内に一瞬乱流が生じ、 N2の高速流のみでは 停流層であつた基体表面から数 i m以下の領域にお L、てもベルヌ一ィの定理によ る圧力差を発生できるのである。 この圧力差によって基体表面のゴミは基体表面 に対して垂直方向の運動エネルギーが与えられ、 基体表面から数 z mから数 1 0
〃m程度舞い上がることができると考えられる。 なお、 舞い上がったゴミは基体 表面を流れる例えば N9の高速流によって真空チャンバの外部へ瞬時に運び去ら れる 。 この N2の高速流は高速なもの (例えば上述した 1 O mZ s e c以上) を 用いているためこの中に存在する基体表面から離脱したゴミは基体に再付着する 機会をまったく与えられない。
以上のような作用によつて本発明によつて基体表面からゴミが除去できる。 基体あるいは基体上に付着したゴミを、 例えば X eランプゃ例えば 8 (TCに加 熱したガス (例えば N2ガス) を用いて昇温することも基体表面に吸着している 水分をさらに排除し、 液架橋力を小さくする効果をより一層助長するものであ る。
基体と、 ゴミに働く力がファンデルワールス力のみで表せられる基体表面にお いて、 付着しているゴミは常にブラウン運動によって基体表面を自由に移動して いる。 ブラウン運動のエネルギーは温度によって決定され、 例えばゴミの温度を 高くすると、 温度に比例した運動エネルギーによってゴミは基体表面を移動する ことになる。 例えば X eランプ等で昇温すればゴミのブラゥン運動を活性化する ことができる。 基体表面を動き回つているゴミは、 基体表面の数オングストロー ム程度の凹凸によって跳ね上がり、 この瞬間、 基体とゴミとの間に働くファンデ ルヮ一ルスカは最小になり、 ゴミが基体から最も離脱し易い状態となる。
またブラウン運動はゴミの不規則な運動であるため、 基体に対して垂直な方向 への運動も存在する。 従ってこの作用においても基体とゴミの間に働くファンデ アワールスカは最小となりうる。
ゴミを昇温させる際、 その温度には細心の注意を払わなければならない。 本発 明者は基体温度が 8 0 °C以上でゴミの除去効果が現れることを知見しているが、 ブラゥン運動を活性化させる上で温度は極力高い方が効果的であることは前述の 理由より明らかである。 しかし、 実際のプロセスでは基体表面に付着するゴミの 種類を断定することは非常に困難であり、 その中には当然有機物等も含まれる。 従って有機物を溶解させる温度以下 (例えば 2 0 0 °C以下) での加熱が理想であ る。 さらに、 プロセス全体を低温 (4 0 0 °C前後) でおこなうことを考慮する と、 たとえ有機物の付着が認められなくとも、 3 0 0 °C以上の加熱は熱処理効果 を及ぼす可能性があるため好ましくない。 以上の理由から基体及びゴミの加熱に は 8 0 °Cから 3 0 0 °C力好ましく、 8 0 °Cから 2 0 0 °Cがより好ましい。
今まで、 不活性な N2ガスによるゴミの除去について言及してきたが、 反応性 ガス、 例えば C 1 2ガスもしくはこれを A rのような不活性ガスに混入させたガ スを基体表面上に定常的に流し、 基体上の金属性のゴミが、 例えば A 1であった 場合、 C 1 2ガスと A 1との反応によって A 1 C 1 3が形成され、 これが揮発性で あることを考慮すると、 間欠的で俊敏な圧力変動との相乗作用によって、 容易に 除去可能である。
その他、 例えば有機物のゴミに対しては、 例えば o3のような反応性ガスが適 用可能であり、 例えば S i 02のゴミに対しては、 例えば H Fガスが考えられ る。
これらは、 一例に過ぎないが、 反応性ガスを選択し、 ガス系切り換え機構を設 けることによって、 本発明の気相ゴミ除去作用とともに化学反応を積極的に利用 したさらに効果的なゴミ除去が可能である。
また、 電離したガスを真空槽に導入することにより、 基体の静電気を中和し、 気相中のゴミと基体の間に働く、 静電気力を打ち消し、 気相中のゴミが、 基体に 付着または再付着することを防止する。 ガスの電離には、 例えば重水素ランプ、 軟 X線光源を用いることができる。
さらに、 例えば超音波のような機械的な振動を与えることによっても効率よく 基体表面のゴミを除去することが可能である。
また、 基体に液化 N2を供給しながら間欠且つ俊敏な圧力変動を与えると、 基 体上からゴミをより効率的に除去することができる。 これは、 例えば液化 N2の ように室温で容易に気化する液体は、 一種の爆発のような作用を伴って気化す る。 この際、 波長が数^ m程度の衝撃波を伴い、 この衝撃波が基体に付着してい るゴミに対し運動エネルギーを与えていると考えられる。 この運動エネルギーに よってゴミは非常に離脱し易い状態となり、 さらに、 間欠且つ俊敏な圧力変動を 加えることによって完全に基体上から離脱すると考えられる。 このように基体表 面から離脱したゴミは、 気化した液体が作り出す定常的なガス流によって外部に 搬送されると考えられる。 このような室温で容易に気化する液体は、 液化 N2の 他に、 例えば液ィヒ A rやイソプロピルアルコールのような液体が好適に用いられ る。 図面の簡単な説明
図 1は、 本発明の洗浄装置の一例を示す概念図である。
図 2は、 気相ゴミ除去装置の一例を示す概念図である。
図 3は、 実施例 2の半導体製造装置を示す概念図である。 一 図 4は、 半導体製造装置の他の例を示す概念図である。
図 5は、 半導体製造装置の他の例を示す概念図である。
図 6は、 実施例 3の半導体製造ラインを示す概念図である。
(符号の説明)
1 0 1 洗浄槽、
1 0 2 薬液ノズル、
1 0 3 基体 (S iゥヱハ) 、
1 0 4 ウェハチヤック、
1 0 5 排気'排液口、
1 0 6, 1 0 7 水素活性種を含む気体を供給する手段 (ガス供給管) 、
1 0 8 裏面洗浄用ノズル、
1 0 9 回転モータ、
1 1 0 水素活性種を発生させる手段、
1 1 1 加熱手段、
1 1 2 切り替えバルブ、
1 1 3 N 2ガスと Hりガスの混合器、
1 1 4 混合ガス配管、
1 1 5 N 2ガス配管、
1 1 6 H 9ガス配管。
2 0 1 真空処理槽、 202 分子ポンプ、
203 粗引きポンプ、
204 開閉弁、
205 真空排気通路、
207 シリコンゥヱハ (基体) 、
208 支持台 (基体を保持する手段) 、
209 ゴミ、
2 10 N 2ガスの流れ、
2 1 1 N 9ガスの吹き出し口、
21 2 ガス供給通路、
2 1 3 ガス供給制御弁、
2 1 4 高圧ガス供給源、
21 5 高圧ガス供給通路、
2 1 6 定常流通路、
21 7 高圧ガス制御部、
2 18 加熱機構、
2 1 9, 220 高速開閉弁、
22 1 高圧部、
222 排気通路、
223, 224, 225 開閉弁、
226 粗排気通路、
227 X eランプ、
228 光導入口、
229 窓材、
230 搬送室
23 1 開閉弁。 発明を実施するための最良の形態
以下に実施例を挙げて本発明をより詳細に説明するが、 本発明は以下の実施例 に限定されることはない。
(実施例 1 )
図 1に示した洗浄装置が、 搬送室を介してプラズマ酸化処理装置と接続された 半導体製造装置を用い、 シリコンウェハの表面及び裏面を水素終端した後、 酸化 膜を形成した。
尚、 本実施例において、 水素活性種を発生させる手段 10としては、 内面を電 解研磨した円筒のステンレス (SUS 316) 容器の内部に 10 m径の N iヮ ィヤーを丸めて束ねて挿入したものを用い、 ヒ一夕 13で 350°Cに加熱した。 また、 ガス供給管 6, 7には内面を電解研磨したステンレス管 (SUS 316) を用いた。 また、 混合ガスの混合比は、 N290%、 H210%とした。
まず、 洗浄装置を用いた洗浄方法について述べる。
ノズル 6から水素活性種を含む N2ガスを導入しておき、 1 5 0 0〜 3000 r pmでゥヱハを回転させながら、 薬液ノズル 2及び 8の個々のノズル を介してゥヱハ表面及び裏面に 1) オゾン添カロ超純水 (2〜1 Oppm) 、 2) フッ化水素酸 +過酸化水素 +超純水 (0. 03 : 1 : 2) 、 3) 水酸化アンモニ ゥム +過酸化水素 +超純水 (0. 05 : 1 : 5) 、 フッ化水素酸 +過酸化水素 + 超純水 (0. 03 : 1 : 2) ) 、 超純水を順次滴下して洗浄を行った。 続いて、 混合ガス供給管 6, 7から水素活性種を含む気体をウェハの表裏に吹き付けなが ら、 ゥヱハを 1500 r pmで回転させて乾燥した。
以上のようにして洗浄したゥ ハを搬送室の搬送手段によりブラズマ酸化処理 装置に搬送し、 1 Onmの酸化膜を形成した。 比較のため、 裏面処理しないゥェ ノ、についても同様にブラズマ酸化処理装置に搬送し、 酸化膜を形成した。
以上の酸化膜の絶縁耐圧を測定したところ、 裏面処理を施さない場合に比べ て、 本実施例のゥヱハは、 安定して高い絶縁耐圧が得られることが分かった。 (実施例 2)
図 3に、 シリコンゥヱハの裏面の基体表面が露出され、 且つ前記露出されたシ リコンの表面が水素原子により終端されたシリコンゥ ハを自動搬送する手段を 少なくとも一部に含んだことを特徴とする半導体製造ラインの実施例を示す。 図 3において、 301は、 本発明の洗浄装置であり、 302, 303は、 ゥェ ハカセッ トを収納するための真空槽である。 3 0 4は、 シリコンウェハを各処理 槽にウェハを搬送する手段を有した搬送機構である。 3 0 5は各処理槽にシリコ ンゥヱハを搬送するための真空槽である。 3 0 6 , 3 0 7 , 3 0 8 , 3 0 9, 3 1 0は、 例えばシリコンゥヱハを処理するためのドライエッチング処理、 プラ ズマ成膜処理、 熱分解成膜処理、 スパッタ成膜処理等の真空槽である。
前述したように、 搬送中にウェハ裏面にゴミが付着する。 ゴミを付着したま ま、 このウェハが次工程の処理槽に搬送され処理されると、 例えば、 ドライエツ チング処理槽に送られると、 ゥヱハと支持台の間に隙間が生じ、 ゥヱハと支持台 の熱伝導効率が悪くなる。 この結果プラズマから供給される熱により、 ウェハの 温度が上昇する。 例えば、 シリコンを含有したアルミニゥム金属配線のェッチン グにおいては、 このウェハの温度上昇により、 アルミニウム配線が等方性的にェ ツチングされるという問題が生じる。
本実施例においては、 この問題を解決するために、 ドライエッチング処理槽に 搬送する前に、 洗浄装置 3 0 1で、 ウェハ裏面を水素原子により終端し、 ウェハ 裏面には、 水分が吸着しにくくなり、 又このことがゴミの付着を防止することに 寄与することになる。 この様に本発明により、 裏面にゴミを防止した結果異方性 のドライエツチングをが実現することができた。
また、 裏面にゴミが付着していると、 ドライエッチング処理槽で舞い上がりゥ ェハ表面に付着することもある。 この場合ゴミは、 微小なマスクとなりエツチン グ残渣を生じさせることがあり、 シリコンの大集積回路の製造の低歩留りの原因 となる。 しかしながら、 本実施例では、 エッチング残渣は観測されず、 この問題 も同様に解決できた。 一
本実施例においては、 3 0 2, 3 0 3のゥヱハカセッ トを収納する槽と、 3 0 5の各処理槽にシリコンゥヱハを搬送するための真空槽との間に設置した が、 本発明においては、 洗浄装置をクラスタ一方式の半導体製造装置に接続し、 シリコンウエノ、裏面を水素終端させ、 前記ウエノ、裏面にゴミを付着させないこと が重要であり、 例えば図 4、 5に示す様に、 少なくとも一つ以上の本発明の洗浄 装置を他の位置に設置しても構わない、 また本発明の洗浄装置を、 少なくとも一 部に組み込んだクラスター方式の半導体製造装置と少なくとも一部に組み込んだ 枚葉式方式の半導体製造装置からなるラインのどこに本装置を組み込みこんでも 良い。
(実施例 3)
本実施例に於いて、 本発明の洗浄装置及びゴミ除去装置、 もしくはこれらの装 置を組み込んだ枚葉処理方式やクラスター方式の半導体製造装置を少なくとも一 部に有することを特徴とする半導体製造ラインにどの様に組み込むかを、 本実施 例を用いて説明する。
図 6において、 601は、 シリコンウェハを枚葉毎に各半導体製造装置に自動 搬送する窒素雰囲気のトンネルである (以後窒素トンネルと言う) 。 602は、 搬送されるシリコンゥヱハである。 例えば 603は、 反応性イオンエッチング装 置であり、 604は、 プラズマ成膜装置である。 605は、 複数の処理槽と前記 処理槽にシリコンゥヱハを搬送する手段を有したクラスター方式の半導体製造装 置である。 606は例えばステツパであり、 607はイオン打ち込み装置であ る。 608は、 図 1に示した洗浄装置である。 また、 609, 610, 61 1, 612は図 2に示したゴミ除去装置である。 613は、 シリコンゥヱハを各処理 槽に搬送する為の手段を有した真空槽である。 615, 616, 617は、 例えば シリコンウェハを処理する為のドライ ·エッチング処理槽、 熱分解成膜処理槽、 スパッタ成膜処理槽等の真空槽である。 各槽及び窒素トンネルは、 例えば真空融 解した S US 316でできており、 その内面は、 鏡面研磨し、 かつ C r。03膜で 不動態化処理されており放出ガス及び水分の吸着が極めて少ない表面に成ってい る。 さらに本処理槽に用いる高圧ガスの水分濃度は、 10〜100 ppbであ る。 これにより本各真空槽の及び窒素トンネルの水分濃度は、 高々 10 p pm以 下に保たれていることは、 言うまでもない。
本実施例の大きな効果は、 例えばシリコンゥェハを大気成分や製造作業者から 窒素トンネルにより隔離し、 また処理槽で付着したゴミを本発明のゴミ除去装置 で除去することにより、 例えば製造作業者から発塵するゴミ (例えばクリーン ルームで、 防塵服を着用した作業者に付着しているゴミが、 作業中に防塵服の袖 口や襟口から空気の噴出に伴い、 ゥヱハに付着する) や、 反応処理槽でウェハに 付着したゴミを本発明のゴミ除去装置で除去して次工程の処理槽にウェハを搬送 する一貫した半導体製造ラインを提供することにより得られ、 従来の大きなク リーンルームのスペースを初めて不要とした。 また、 半導体製造工程の各々にお いて、 例えば汚染のゴミ力重金属の場合 (例えば、 ドライエツチングの場合、 反 応処理槽で形成されたイオンが処理槽の金属壁をスパッタすることによる金属汚 染) 、 本発明のゴミ除去装置を一貫したラインに組み込み、 付着したゴミを除去 することにより、 シリコン上に形成された MO S トランジスタのゲート破壊の防 止及びトランジスタ接合部のリーク電流増加の防止等の効果が得られ、 また汚染 のゴミがアル力リ性イオンの場合には、 トランジスタの閾値の変化等のトランジ ス夕特性悪化の防止等に効果がある。 また、 ウェハは窒素トンネル中を搬送され るため、 大気の酸素ガスと接することがなく、 例えば配線アルミニウムのドライ エッチングにおいては、 アルミニウム表面が酸化されないため、 三塩化ほう素ガ スによるアルミニゥム表面の酸化膜除去やアルゴンイオン照射によるスノ、。ッ夕除 去等の工程を省くこと力初めて可能となり、 塩素ガスによるシンプルなアルミ二 ゥムのドライエッチングェ程と酸化膜の影響によるアルミェッチング速度の変動 の抑制を初めて可能とした。
これにより、 処理槽及び搬送で生じるゴミの影響を最小限にできる半導体製造 ラインが達成できた。 本発明に於いて、 処理中に付着したゴミを次工程処理槽 に、 持ち込まないこと力重要であり、 その目的を満足するものであれば、 洗浄装 置、 ゴミ除去装置を前記半導体製造ラィンのどの位置に設置しても良 t、。 産業上の利用可能性
請求項 1の発明によれば、 水素終端化したシリコンは、 微粒子汚染に対して耐 性が強い。 つまり、 微粒子の付着が起こりにくくなり、 半導体製造工程における シリコンゥヱハの裏面汚染からのクロスコンタミネ一シヨン、 及び搬送装置から のゥヱハ裏面への再付着を防止できる。
その結果、 微粒子による汚染の減少により、 半導体生産工程において歩留まり が向上し、 製品のコストダウンを可能にする。
請求項 1 6の発明により、 いかなる材料から成るゴミに於いても、 基体表面上 に付着したゴミを、 基体表面上から気相で除去できる。 本発明は、 従来実用面で 困難であったドライ処理による気相中でのゴミ除去の手段を初めて提供し、 この ドライ化により、 半導体等の製造装置および半導体等の製造ラインのゴミ除去ェ 程の自動化、 インライン化が初めて可能になり、 製造歩留まりを飛躍的に高める ことができる。

Claims

請求の範囲
1 . 基体の裏面の洗浄と乾燥を行う洗浄装置において、 基体裏面に薬液を供給 し裏面に生成した酸化膜を除去する手段と、 該手段により露出した基体面に水素 活性種を含む気体を吹き付ける手段とを少なくとも有し、 前記基体裏面上のダン グリングボンドを前記水素活性種により水素終端することを特徴とする洗浄装
2. 前記基体の表面に薬液を供給し洗浄する手段と、 該表面に水素活性種を含 む気体を吹き付ける手段とを少なくとも有し、—前記基体表面のダングリングボン ドを前記水素活性種により水素終端することを特徴とする請求項 1に記載の洗浄
3. 前記水素活性種を含む気体を吹き付ける手段は、 水素ガスまたは水素ガス を含むガスを活性化し水素活性種を発生させる手段と、 前記基体の裏面または/ 及び表面に該水素活性種を含む気体を供給する手段とから構成されることを特徴 とする請求項 1または 2に記載の洗浄装置。 -
4. 前記水素ガスを含むガスは、 不活性ガスを含むことを特徴とする請求項 3 に記載の洗浄装置。
5. 前記不活性ガスは、 窒素ガスまたは Z及びアルゴンガスであることを特徴 とする請求項 4に記載の洗浄装置。
6 . 前記水素活性種を発生させる手段は、 前記水素ガスまたは水素を含むガス との接触部の少なくとも一部を水素ラジカル化反応の触媒となる材料で構成した ことを特徴とする請求項 3〜5のいずれか 1項に記載の洗浄装置。
7 . 前記触媒となる材料は、 N iを含むことを特徴とする請求項 6に記載の洗
8. 前記触媒となる材料を 3 0 0〜4 5 0 °Cに加熱する手段を有することを特 徵とする請求項 6または 7に記載の洗浄装置。
9. 前記水素活性種を含む気体を供給する手段にお 、て、 該水素活性種を含む 気体との接触部の少なくとも一部は、 水素ラジカル化反応の触媒となる材料で構 成したことを特徴とする請求項 3〜 8の L、ずれか 1項に記載の洗浄装置。
1 0. 前記基体の裏面に水素活性種を含む気体吹き付ける手段は、 少なくとも 前記基体裏面の中心直下近傍にガス噴射ノズルを備えたことを特徴とする請求項 1〜 9のいずれか 1項に記載の洗浄装置。
1 1 . 前記基体を回転させる手段を設けたことを特徴とする請求項 1〜1 0の I、ずれか 1項に記載の洗浄装置。
1 2 . 基体の搬送手段を有する半導体製造装置であって、 該搬送手段と接続さ れ、 前記基体の裏面を露出しダングリングボンドを水素終端する処理槽を設けた ことを特徴とする半導体製造装置。
1 3 . 前記基体の裏面を露出し、 ダングリングボンドを水素終端する処理槽 は、 請求項 1〜1 1のいずれか 1項に記載の洗浄装置であることを特徴とする請 求項 1 2に記載の半導体製造装置。
1 4. 複数の半導体処理槽からなり、 該複数の半導体処理槽に基体の搬送手段 を設けた半導体製造ラインにおいて、 前記基体の裏面を露出し、 ダングリングボ ンドを水素終端をする処理槽を少なくとも 1つ設けたことを特徴とする半導体製 造ライン。
1 5 . 前記基体の裏面を露出し、 ダングリングボンドを水素終端する処理槽 は、 請求項 1〜1 1のいずれか 1項に記載の洗浄装置であることを特徴とする請 求項 1 4に記載の半導体製造ライン。
1 6 . 少なくとも 1つの処理槽と、 該処理槽内において基体を保持する手段 と、 前記基体表面に水分濃度 1 0 0 p p b以下のガスを供給する手段と、 前記基 体表面にベルヌーィの圧力差を発生させるための手段とから構成される気相ゴミ 除去装置を備えたことを特徴とする請求項 1 4または 1 5に記載の半導体製造ラ イン。
1 7 . 前記気相ゴミ除去装置は、 間欠的な圧力変動を少なくとも前記基体表面 に発生させるための手段を設けたことを特徴とする請求項 1 6に記載の半導体製 造ライン。
1 8. 前記間欠的な圧力変動を少なくとも前記基体表面に発生させる手段とし て、 衝撃波もしくは圧力波を発生させる機構を備えたことを特徴とする請求項 1 -7に記載の半導体製造ライン。
1 9 . 前記気相ゴミ除去装置は、 前記基体を 8 0 °C以上 3 0 0 °C以下の温度と する手段を備えたことを特徴とする請求項 1 6〜1 8のいずれか 1項に記載の半 導体製造ライン。
2 0 . 前記気相ゴミ除去装置は、 前記基体を 8 0 °C以上 2 0 0 °C以下の温度と する手段を備えたことを特徴とする請求項 1 9に記載の半導体製造ライン。
2 1 . 前記気相ゴミ除去装置にお L、て、 前記基体表面の吸着水分量が平均値で 2分子層以下となるよう構成したことを特徴とする請求項 1 6〜2 0のいずれか 1項に記載の半導体製造ライン。
2 2 . 前記気相ゴミ除去装置は、 前記処理槽内に正負の電荷を供給し、 前記処 理槽内に存在する静電気を除去するための手段を有したことを特徴とする請求項 1 6〜2 1のいずれか 1項に記載の半導体製造ライン。
2 3 . 前記気相ゴミ除去装置は、 前記基体を回転させる手段を有したことを特 徴とする請求項 1 6〜2 2のいずれか 1項に記載の半導体製造ライン。
2 4 . 前記気相ゴミ除去装置は、 前記基体に超音波もしくは機械的振動または その両方を供給する手段を有したことを特徴とする請求項 1 6〜2 3のいずれか 1項に記載の半導体製造ライン。
2 5 . 前記気相ゴミ除去装置は、 前記ガスに水素活性種を混入させる手段を有 したことを特徴とする請求項 1 6〜2 4のいずれか 1項に記載の半導体製造ライ ン。
2 6 . 前記気相ゴミ除去装置は、 前記基体表面に液体窒素、 液体アルゴン、 ィ ソプロピルアルコール等の常温で容易に気化する液体を供給する手段を有したこ とを特徴とする請求項 1 6〜2 5のいずれか 1項に記載の半導体製造ライン。
2 7 . 前記気相ゴミ除去装置において、 前記ガスが反応性ガスもしくは少なく とも反応ガスを一部に含んだガスであることを特徴とする請求項 1 6〜2 6のい ずれか 1項に記載の半導体製造ライン。
PCT/JP1994/001977 1993-11-22 1994-11-22 Appareil de lavage, appareil de production de semi-conducteurs et chaine de production de semi-conducteurs WO1995015006A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29228193A JPH07142438A (ja) 1993-11-22 1993-11-22 洗浄装置、半導体製造装置及び半導体製造ライン
JP5/292281 1993-11-22

Publications (1)

Publication Number Publication Date
WO1995015006A1 true WO1995015006A1 (fr) 1995-06-01

Family

ID=17779726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001977 WO1995015006A1 (fr) 1993-11-22 1994-11-22 Appareil de lavage, appareil de production de semi-conducteurs et chaine de production de semi-conducteurs

Country Status (2)

Country Link
JP (1) JPH07142438A (ja)
WO (1) WO1995015006A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969509A (ja) * 1995-09-01 1997-03-11 Matsushita Electron Corp 半導体ウェーハの洗浄・エッチング・乾燥装置及びその使用方法
US6348157B1 (en) 1997-06-13 2002-02-19 Tadahiro Ohmi Cleaning method
JP4135780B2 (ja) * 1997-08-29 2008-08-20 ユーシーティー株式会社 薬液定量注入装置および方法
JP3419439B2 (ja) * 1998-07-31 2003-06-23 三菱住友シリコン株式会社 半導体基板を洗浄する方法
TW380284B (en) * 1998-09-09 2000-01-21 Promos Technologies Inc Method for improving etching uniformity during a wet etching process
KR100677965B1 (ko) * 1999-11-01 2007-02-01 동경 엘렉트론 주식회사 기판처리방법 및 기판처리장치
KR100563102B1 (ko) 2002-09-12 2006-03-27 에이에스엠엘 네델란즈 비.브이. 표면들로부터 입자들을 제거함으로써 세정하는 방법,세정장치 및 리소그래피투영장치
SG124265A1 (en) 2002-12-02 2006-08-30 Tadahiro Ohmi Semiconductor device and method of manufacturing the same
JP4532957B2 (ja) * 2004-03-29 2010-08-25 財団法人国際科学振興財団 雰囲気制御された接合装置、接合方法および電子装置
WO2007032057A1 (ja) * 2005-09-13 2007-03-22 Tadahiro Ohmi 半導体装置の製造方法及び半導体製造装置
JP5335843B2 (ja) * 2011-03-22 2013-11-06 公益財団法人国際科学振興財団 電子装置用基板の製造法
KR101317903B1 (ko) * 2012-03-28 2013-10-16 엘지디스플레이 주식회사 스퍼터 장치와 이를 이용한 어레이 기판의 제조 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276825A (ja) * 1986-05-09 1987-12-01 Oki Electric Ind Co Ltd 半導体装置の製造方法
JPS6343428U (ja) * 1986-09-05 1988-03-23
JPH0325404U (ja) * 1989-07-19 1991-03-15
JPH03169012A (ja) * 1989-11-28 1991-07-22 Nec Kyushu Ltd 半導体基板異物除去装置
JPH03295236A (ja) * 1990-04-13 1991-12-26 Hitachi Ltd 基板の洗浄方法及び装置
JPH0496226A (ja) * 1990-08-03 1992-03-27 Fujitsu Ltd 半導体装置の製造方法
JPH04116928A (ja) * 1990-09-07 1992-04-17 Sharp Corp 半導体ウェハの洗浄方法
JPH04287922A (ja) * 1991-01-22 1992-10-13 Dainippon Screen Mfg Co Ltd 回転式表面処理方法及びその方法を実施するための回転式表面処理装置
JPH05144804A (ja) * 1991-11-22 1993-06-11 Tadahiro Omi 半導体装置の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276825A (ja) * 1986-05-09 1987-12-01 Oki Electric Ind Co Ltd 半導体装置の製造方法
JPS6343428U (ja) * 1986-09-05 1988-03-23
JPH0325404U (ja) * 1989-07-19 1991-03-15
JPH03169012A (ja) * 1989-11-28 1991-07-22 Nec Kyushu Ltd 半導体基板異物除去装置
JPH03295236A (ja) * 1990-04-13 1991-12-26 Hitachi Ltd 基板の洗浄方法及び装置
JPH0496226A (ja) * 1990-08-03 1992-03-27 Fujitsu Ltd 半導体装置の製造方法
JPH04116928A (ja) * 1990-09-07 1992-04-17 Sharp Corp 半導体ウェハの洗浄方法
JPH04287922A (ja) * 1991-01-22 1992-10-13 Dainippon Screen Mfg Co Ltd 回転式表面処理方法及びその方法を実施するための回転式表面処理装置
JPH05144804A (ja) * 1991-11-22 1993-06-11 Tadahiro Omi 半導体装置の製造方法

Also Published As

Publication number Publication date
JPH07142438A (ja) 1995-06-02

Similar Documents

Publication Publication Date Title
JP5776397B2 (ja) 洗浄方法、処理装置及び記憶媒体
JP3086719B2 (ja) 表面処理方法
KR100881964B1 (ko) 기판처리장치
JP3533583B2 (ja) 水素プラズマダウンフロー装置の洗浄方法
US5556714A (en) Method of treating samples
JP4001662B2 (ja) シリコンの洗浄方法および多結晶シリコンの作製方法
US20110146909A1 (en) Methods for wet cleaning quartz surfaces of components for plasma processing chambers
WO1995015006A1 (fr) Appareil de lavage, appareil de production de semi-conducteurs et chaine de production de semi-conducteurs
US5792275A (en) Film removal by chemical transformation and aerosol clean
TWI523703B (zh) 由電漿腔室中所使用之上電極清除表面金屬污染物的方法
JP2724165B2 (ja) 有機化合物膜の除去方法及び除去装置
JP3327492B2 (ja) 基体表面からの気相ゴミ除去装置及び除去方法並びにプロセス装置及びプロセスライン
JP3445765B2 (ja) 半導体素子形成用基板表面処理方法
JP3125121B2 (ja) 枚葉式ホットウォール処理装置のクリーニング方法
JP2865056B2 (ja) 基板上の粒子除去装置および粒子除去方法
JPH0547735A (ja) 洗浄装置
JPS63266835A (ja) 気相反応装置
JP2737613B2 (ja) 微細パターンの形成方法
JPH0547734A (ja) 洗浄装置
JP2001077072A (ja) 基板の洗浄方法
JPH0621031A (ja) 洗浄方法及びその洗浄装置
JPH06120175A (ja) ウェハ異物除去方法
JPH0766171A (ja) 半導体装置の製造装置
JPS63266834A (ja) 気相反応装置
JPH1064865A (ja) 半導体装置の製造方法および装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase