WO1995005040A1 - Universelles mobil-telekommunikationssystem - Google Patents

Universelles mobil-telekommunikationssystem Download PDF

Info

Publication number
WO1995005040A1
WO1995005040A1 PCT/DE1994/000910 DE9400910W WO9505040A1 WO 1995005040 A1 WO1995005040 A1 WO 1995005040A1 DE 9400910 W DE9400910 W DE 9400910W WO 9505040 A1 WO9505040 A1 WO 9505040A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
miz
tks
specific
cordless
Prior art date
Application number
PCT/DE1994/000910
Other languages
English (en)
French (fr)
Inventor
Klaus-Dieter Pillekamp
Manfred Tasto
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP94922844A priority Critical patent/EP0712551B1/de
Priority to US08/592,427 priority patent/US6535731B1/en
Priority to DE59404440T priority patent/DE59404440D1/de
Priority to AU72629/94A priority patent/AU676932B2/en
Priority to JP50615495A priority patent/JP3382945B2/ja
Publication of WO1995005040A1 publication Critical patent/WO1995005040A1/de
Priority to FI960518A priority patent/FI960518A0/fi

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/14WLL [Wireless Local Loop]; RLL [Radio Local Loop]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow

Definitions

  • the invention relates to a universal mobile telecommunications system according to the preamble of patent claim 1.
  • Modern mobile communication e.g. B.
  • Mobile telecommunications for the transmission of voice, data, text, graphics, still and moving images is analogous to stationary communication (eg ISDN communication system; integrated services digital network) in a private and public area.
  • stationary communication eg ISDN communication system; integrated services digital network
  • cellular telecommunications first and second generation
  • Cordless telecommunication has so far been based essentially on cordless telecommunication systems for home and office applications, while cellular telecommunication is mainly determined by the use of mobile telecommunication systems.
  • TDMA method Time p_ivision Multiple Access
  • CDMA transmission method £ or division multiple access
  • ATM method asynchronous transfer mode
  • the TDMA and the CDMA transmission method ultimately form the basis for the various system standards in mobile telecommunications.
  • the cordless telecommunication systems currently introduced on the market are constructed, among others, according to the digital pan-European DECT standard (p_igital European £ ordless Jelecommunication) and the digital CT2 standard (£ ordless Telephone 2.), while the Mobile telecommunications systems based on the worldwide GSM standard (G_roupe ⁇ peciale Mobile; global .System for Mobile Communications) are constructed.
  • UMTS universal mobile ⁇ elecommunication J system
  • UPT Universal P_ersonal JEelecommunica- tion
  • the universal mobile telecommunications system (UMTS) requires both flexible air interfaces and an intelligent network infrastructure. Such a system structure ensures that, on the one hand, mobile subscribers can communicate with one another at different speeds and traffic densities and, on the other hand, a large number of telecommunications and messaging services (information services) can be offered with high quality and capacity .
  • FIG. 2 starting from the Telcom Report 15; 1992; Issue 2, pages 60 to 63 shows a scenario "Universal Mobile Communication - Advanced Mobility” with the various applications in relation to the cell radius.
  • the structure of the universal mobile telecommunication system (UMTS) is then divided into different communication cells for the application areas (office, home, city and country). These cells can be linked in two (country, city) or three-dimensional (building). According to the illustration in Figure 2 are the different types of mobile telecommunications
  • TK TK, MF-TK, S-TK depending on the cell radius shown separately or in a mixed form.
  • the cordless telecommunications SL-TK takes place in its pure, separate form for office and home applications in the picocell area.
  • this picocell area with a picocell radius PIZR of up to 200 m (transmission range) - there is at least one picocell PIZ with a cordless telecommunication system SL-TKS.
  • the cordless telecommunication system SL-TKS consists of a picocell-specific base station PIZ-BS (Cordless base station) and at least one picocell-specific mobile station PIZ-MS (cordless mobile station) assigned to the base station PIZ-BS.
  • the mobile telecommunication MF-TK takes place in its pure, separate form for urban or rural applications in stationary goods (e.g. buildings) and / or in dynamic, movable goods (e.g. car, train) etc.) take place in the macro cell area.
  • this macro cell area with a macro cell radius MAZR of z. B. up to 20 km (transmission range) - which comprises the picocell area with the picocell PIZ and a micro cell area with at least one micro cell MIZ, there is at least one macro cell MAZ with a mobile telecommunications system MF-TKS.
  • This mobile telecommunication system MF-TKS consists of an acro-cell-specific base station MAZ-BS (cell phone base station), which can be stationary or mobile (e.g. car, train), and at least one of the base stations MAZ- The macro-individual mobile station MAZ-MS (mobile radio mobile station) assigned to BS.
  • MAZ-BS cell phone base station
  • MAZ-MS mobile radio mobile station
  • the satellite telecommunications SF-TK takes place in a hypercell area.
  • this hypercell area - with a hypercell radius HYZR of several hundred kilometers (transmission range) - there is at least one hypercell HYZ with a satellite telecommunication system SF-TKS.
  • This satellite telecommunications system SF-TKS consists of a z. B. satellites of a hypercell-specific base station HYZ-BS positioned on the geostationary earth orbit, which can be constructed stationarily as an earth station ES or mobile as a mobile earth station MES (e.g. in an airplane, ship, truck, etc.) and at least one hybrid cell-specific mobile station HYZ-MS assigned to the base station HYZ-BS.
  • MES mobile earth station
  • NIS Integrated Services digital Metwork
  • B-ISDN B_reitband-Tj ⁇ tegrated
  • UMTS universal mobile telecommunications system
  • This network infrastructure NIS is, for example, a narrowband or broadband ISDN communication system.
  • This network infrastructure NIS is with the picocell-individual base stations PIZ-BS of the cordless telecommunications system SL-TKS, the macro-cell-specific base stations MAZ-BS of the mobile telecommunications system MF-TKS and / or via the stationary earth station ES with the satellite liten SAT of the satellite telecommunications system SF-TKS bidirectionally connected.
  • Introductory concepts e.g. necessary technical compatibility or cooperation with existing systems and networks with regard to area coverage, scope of use, possible communication and information services etc.
  • a long-term concept with harmonious integration or complex "interworking" in a multi-system or multi-operator scenario e.g. between line and air connections or between UPT and UMTS
  • Use of synergy effects in development and production e.g. between line and air connections or between UPT and UMTS
  • Use of synergy effects in development and production a possible delay and influence on the universal mobile telecommunication system (UMTS) through constant improvements in the systems of the second generation (Advanced GSM, Advanced DECT);
  • Technical, legal, political, social uncertainties e.g. collaboration between distributed databases, future frequency allocation, possible impairment of health through radio).
  • DECT DECT
  • GSM Global System for Mobile communications
  • Advanced DECT Advanced GSM
  • communication and message / information services e.g. voice dialogue, information transmission in the form of data, text and images as well as emergency information
  • the object on which the invention is based is to specify a universal mobile telecommunication system in which, in the course of the further development of mobile telecommunication in accordance with the spiral of activity according to FIG. 1, a pico-cell-specific cordless telecommunication system is extended to communication cells with different cell radii (universal) can be.
  • the main advantage of the universal mobile telecommunication system according to the invention is that a communication cell with a different cell radius further cordless telecommunication system in the expanded cordless range manages with a lower transmission power for cordless mobile stations and thereby reduces the load on a user of the cordless mobile station by electromagnetic waves during cordless transmission.
  • a further essential advantage of the universal mobile telecommunication system according to the invention is that the expanded cordless telecommunication system, in particular in the picocell and microcell area, gives the possibility of telephony with higher quality up to telephony. This is due to the fact that the smaller the cell radius of a communication cell, the larger is the capacity available per unit area and thus the usable bit rate for the respective application.
  • the universal mobile telecommunications system according to the invention thus already offers, in the course of the spiral of action for universal mobile telecommunications with advanced mobility, a simple possibility of connecting cellular and cordless mobile telecommunications systems to one another.
  • This connection between the two mobile telecommunication systems and the parallel development of a broadband ISDN communication system enables a universal mobile telecommunication system to be set up in which a telecommunication subscriber can reach his communication partner anywhere (Advanced -Mobility).
  • FIG. 3 shows a cordless telecommunication system extended to the microcell area
  • FIGS. 4 and 5 show a cordless telecommunication system extended to the macro cell area
  • FIG. 6 shows a cordless telecommunication system extended to the hypercell area
  • FIGS. 7 and 8 a universal mobile telecommunication system.
  • FIG. 3 shows a cordless telecommunication system MIZSL-TKS expanded to a micro cell MIZ of the micro cell area according to FIG.
  • the micro cell MIZ is a communication room, in the communication center of which - in the case of the micro cell MIZ - a micro cell-specific transmission / reception arrangement MIZ-SEA is arranged.
  • the entire MIZSL-TK cordless telecommunication is handled via this MIZ-SEA transmission / reception arrangement.
  • the transmitting / receiving arrangement MIZ-SEA is z. B. designed as a micro cell base station MIZ-BS.
  • the transmitting / receiving arrangement MIZ-SEA is provided with at least one picocell PIZ for pico-cell-specific cordless telecommunication SL-TK according to FIG. 2 via a micro-cell-specific cordless connection MIZ- Assigned to SLV.
  • the number of picocells PIZ, which are assigned to the transmitting / receiving arrangement MIZ-SEA via the corresponding number of cordless connections MIZ-SLV, depends in particular on how large the communication subscriber density (traffic density) in the micro cell MIZ is .
  • the number of picocells PIZ is rather small, while in heavily populated In regions (microcells) the number of picocells PIZ with the associated microcell-specific cordless connections MIZ-SLV is large.
  • the number of picocells PIZ is not only dependent on the density of communication participants, but is also based on the transmission capacity available in the MIZ-SEA transceiver arrangement. This transmission capacity is essentially determined by the number of transmission channels. For example, a maximum of twelve transmission channels (half-duplex transmission channels) are currently available for pico or micro cell-specific cordless telecommunication systems PIZSL-TKS, PIZSL-TKS constructed according to the DECT standard.
  • m 4 picocells PIZ (PIZ1 ... PIZ4) via four microcell-specific cordless connections MIZ-SLV (MIZ-SLV1 ... MIZ-SLV4) assigned to the transmit / receive arrangement MIZ-SEA.
  • the maximum distance at which these picocells PIZ1 ... PIZ4 can be removed from the transmitting / receiving arrangement MIZ-SEA is determined by the microcell radius MIZR, which is assigned to the microcell MIZ by definition.
  • This micro cell radius MIZR is, for example, 2000 m. So are in Figure 3 Picocell PIZ1 via the micro cell-specific cordless connection MIZ-SLVl with a micro cell radius MIZRI of z. B.
  • PIZ4 are structured the same apart from the fact that they can be located at different distances from the transmitting / receiving arrangement MIZ-SEA, otherwise with regard to the picocell-specific cordless telecommunications PIZSL-TK.
  • a relay station RS at the communication center of the picocell PIZ • for pi ⁇ kozellenindividuelle.
  • the relay station RS has several antennas for the microcell-specific cordless telecommunications MIZSL-TK and the picocell-specific cordless telecommunications PIZSL-TK, a first antenna ANT1 for the microcell-specific cordless telecommunications MIZSL-TK and for example two second antennas ANT2, ANT3 for the piko ⁇ cell-specific cordless telecommunications PIZSL-TK. While the first antenna ANT1 is preferably designed as a directional antenna for the larger transmission range in the microcell-specific cordless telecommunications MIZSL-TK, the two second antennas ANT2, ANT3 for the picocell-specific cordless telecommunications PIZSL-TK are preferably designed as diversity antennas.
  • the relay station RS is designed in accordance with the technical teaching disclosed in European patent application 92118259.8.
  • the connection is established for each mobile station PIZ-MS via a pico cell-individual cordless connection PIZ-SLV.
  • the same conditions and prerequisites apply as for the micro-cell-specific cordless telecommunications MIZSL-TK with the number m of picocells PIZ in connection with the transmit / receive arrangement MIZ-SEA which handles the micro cell individual cordless telecommunication MIZSL-TK.
  • the relay station RS must be used for the training as a micro cell-specific mobile station MIZ-MS in the micro cell-specific cordless telecommunications MIZSL- TK must be designed accordingly (e.g. with regard to transmission power, transmission antenna, etc.) in order to be able to transmit messages and information with a microcell radius MIZR of up to 2000 m.
  • FIGS. 4 to 8 starting from the micro-cell-specific cordless telecommunication system MIZSL-TKS shown in FIG. 3, show at least one macro cell MAZ of the macro cell area according to FIG. 2 (FIGS. 4 and 5), at least one hyper cell HYZ of the hyper cell area according to Figure 2 ( Figure 6) ⁇ »extended cordless telecommunications system and two universally expandable cordless telecommunications systems ( Figures 7 and 8).
  • FIG. 4 shows a macro cell-specific cordless telecommunication system MAZSL-TKS, in which within a macro cell MAZ of the macro cell area according to FIG. 2 with micro cells MIZl ... MIZi a number i of the micro cell-specific cordless telecommunication system MIZSL-TKS Figure 3 is arranged to implement a "roaming and / or hand over" function.
  • MIZSL-TKS1 corresponds to the number i of the micro-cell-specific cordless telecommunications systems
  • MIZSL-TKSi there are a number i of micro-cell-specific transmission / reception arrangements MIZ-SEAl ... MIZ-SEAi in the macro cell MAZ.
  • B. are designed as microindividual base stations MIZ-BS1 ...
  • MIZBSi and, in accordance with the microcell-individual cordless telecommunications system MIZSL-TKS according to FIG. 3, handle the microcell-individual cordless telecommunications MIZSL-TK with the respective picocell PIZ.
  • FIG. 5 as a modification to the macro cell-specific cordless telecommunication system MAZSL-TKS according to FIG. 4, instead of the micro cell-specific cordless telecommunication systems MIZSL-TKS1 ... MIZSL-TKSi with the micro cell-individual transmission / reception arrangements MIZ-SEA1 ... MIZ-SEAi is responsible for at least one macro cell-specific transmit / receive arrangement MAZ-SEA for the extended cordless telecommunication.
  • This expanded cordless telecommunication can be made up of the microcell-specific cordless telecommunications MIZSL-TK according to FIG. 3 or 4 and a macrocell-specific mobile telecommunications MAZMF-TK (mixed cell-specific telecommunications according to FIG.
  • the relay RS according to FIG. 3 for the macro-cell-specific cordless telecommunication MAZSL-TK must be designed accordingly (for example with regard to the transmission power, transmission antenna, etc.) in order for the macro-cell-specific cordless telecommunication MAZSL-TK to serve as a macro cell-specific mobile station MAZ-MS.
  • the macro cell-specific transmit / receive arrangement MAZ-SEA assumes the function of a macro cell-specific base station MAZ-BS and is preferably designed as a mobile radio base station. While the micro cell-individual cordless telecommunications MIZSL-TK in the mixed cell-specific telecommunications analog to that in the micro cell-specific cordless telecommunications 3 and 4, the transceiver arrangement MAZ-SEA is used in the macro-cell-specific mobile telecommunications MAZMF-TK (mixed and unit-cell-specific telecommunications) as stationary macro-cell-specific base station SMAZ-BS, which via ma ⁇ Krozindividual mobile radio connections MAZ-MFV is directly connected to macro cell-individual mobile stations MAZ-MS or indirectly via mobile macro cell-individual base stations MMAZ-BS to the mobile stations MAZ-MS.
  • MAZMF-TK mixed and unit-cell-specific telecommunications
  • a plurality of macro cells MAZ each with a macro-individual transmit / receive arrangement MAZ-SEA can be used to implement the "roaming and / or hand over" Function may be provided.
  • FIG. 6 shows a hypercell-specific cordless telecommunication system HYZSL-TKS, in which a hypercell-specific transmit / receive arrangement HYZ-SA for the extended cordless telecommunication is arranged in a hypercell HYZ of the hypercell area according to FIG.
  • This extended cordless telecommunication can be made up of the micro-cell-specific cordless telecommunication MIZSL-TK according to FIG. 3 or 4 and a hyper-cell-specific satellite radio telecommunication HYZSF-TK (mix cell-specific telecommunication according to FIG. 6) or a hyper-cell-specific cordless telecommunication HYZSL -TK and the hypercell-specific satellite radio telecommunications HYZSF-TK
  • unit cell-specific telecommunications (unit cell-specific telecommunications) exist.
  • the relay station RS for the transmission range must be used for the hyper-cell-specific cordless telecommunications HYZSL-TK.
  • HYZSL-TK ten in the hyper cell area with the hyper cell radius HYZR of several 100 km (e.g. with regard to the transmission power, transmission antenna etc.) to be designed to serve as hyper cell-specific HYZSL-TK HYZ-MS mobile radio station-specific mobile station can.
  • the hyper-cell-specific transmit / receive arrangement HYZ-SEA assumes the function of a hyper-cell-individual base station HYZ-BS for mixed and unit-cell-specific telecommunications and is preferably designed as an earth station ES. While the microcell-individual cordless telecommunication MIZSL-TK in human cell-specific telecommunications works analogously to that in the microcell-individual cordless telecommunication system according to FIGS.
  • the transmit / receive arrangement HYZ-SEA is used in the hypercell-individual Satellite radio telecommunications HYZSF-TK (mixed and unit-cell-specific telecommunications) as stationary hypercell-specific base station SHYZ-BS, which uses hybrid-individual satellite radio connections HYZ-SFV and a satellite SAT arranged on the geostationary earth orbit indirectly via mobile hypercell-specific base stations MHYZ-BS hyper cell-specific mobile stations HYZ-MS is connected.
  • FIG. 7 shows a universal mobile telecommunication system UM-TKS, in which the micro-cell-specific cordless telecommunication system MIZSL-TKS according to FIG. 3 via a first network infrastructure NIS1 with the mobile telecommunication system MF-TKS and / or with the satellite radio tele ⁇ communication system SF-TKS according to Figure 2 is connected. An intercellular communication connection can thus be established via the network infrastructure NIS1.
  • the network infrastructure NIS1 offers the possibility of establishing communication connections to line-bound switching systems (EWSD, private branch exchanges) via an air / line interface.
  • EWSD line-bound switching systems
  • the universal mobile telecommunication system UM-TKS can always establish an intercellular communication connection via the network infrastructure NIS1.
  • FIG. 8 shows a modification of the universal mobile telecommunication system UM-TKS according to FIG. 7, which consists in the fact that a second network infrastructure structure NIS2 is provided for the intercellular communication connection.
  • This network infrastructure NIS2 differs from the first network infrastructure structure NIS1 according to FIG. 7 in that the micro-cell-specific transmission / reception arrangement MIZ-SEA is integrated in the network infrastructure structure.
  • the network infrastructure NIS2 also offers the possibility of establishing communication connections to line-connected switching systems (EWSD, private branch exchanges) via an air / line interface.
  • EWSD line-connected switching systems
  • the network infrastructure NIS1 can always be used an intercellular communication connection is established.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Exchange Systems With Centralized Control (AREA)
  • Optical Communication System (AREA)
  • Radio Relay Systems (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
  • Details Of Aerials (AREA)

Abstract

Für die Erweiterung eines Schnurlos-Telekommunikationssystems, insbesondere eines DECT-Schnurlos-Telekommunikationssystems, in bezug auf große Übertragungsreichweiten bei der Schnurlos-Telekommunikation ist in einem Schnurlos-Telekommunikationssystem (PIZSL-TKS) eine Relaisstation (RS) vorgesehen, der mindestens eine Schnurlos-Mobilstation (PIZ-MS) zugeordnet ist. Die Relaisstation (RS) ersetzt bei der Schnurlos-Telekommunikation eine Schnurlos-Basisstation (PIZ-BS) und ist bei der erweiterten Schnurlos-Telekommunikation als Schnurlos-Mobilstation (MIZ-MS, MAZ-MS, HYZ-MS) ausgebildet.

Description

Universelles Mobil-Telekommunikationssystem
Die Erfindung betrifft ein universelles Mobil-Telekommunika- tionεsystem gemäß dem Oberbegriff des Patentanspruches 1.
Die moderne Mobilkommunikation, z. B. Mobil-Telekommunika- tion zur Übertragung von Sprache, Daten, Text, Grafik, Fest- und Bewegtbild, wird analog zu der stationären Kommunikation (z. B. ISDN-Kommunikationssystem; £ntegrated Services digi¬ tal Network) in einen privaten und öffentlichen Bereich un¬ terteilt. Darüber hinaus unterscheidet man bei der Mobil-Te- lekommunikation (erste und zweite Generation) zwischen einer Zellular- und Schnurlos-Telekommunikation. Die Schnurlos-Te¬ lekommunikation Stützt sich dabei bisher im wesentlichen auf Schnurlos-Telekommunikationssysteme für Heim- und Büroanwen¬ dungen, während die Zellular-Telekommunikation vorwiegend durch den Einsatz von Mobilfunk-Telekommunikationssystemen bestimmt wird.
Für die vorstehend genannten Mobilkommunikationssysteme, insbesondere solche der zweiten Generation, wird überwiegend ein TDMA-Verfahren (Time p_ivision Multiple A.ccess) für den Zugriff und das Multiplexen der zu übertragenden Signale verwendet. Für zukünftige Mobil-Telekommunikationssysteme (z. B. dritte Generation) wird aber auch das CDMA-Übertra¬ gungsverfahren (£ode ßivision Multiple Access) nicht zuletzt wegen des zu erwartenden Einsatzes von zellenorientierten Übermittlungsverfahren (ATM-Verfahren; Asynchronus Transfer Mode) an Bedeutung gewinnen. Dies liegt daran, daß für ein immer größeres Angebot von Kommunikations- und Informations¬ diensten bei gleichzeitig steigenden Anforderungen an die Qualität und Menge der zu übertragenden Bitraten neben den Zugriffs- und Multiplexverfahren die optimierte Signalcodie¬ rung, Kanalcodierung für eine flexible Luftschnittstelle ei¬ ne immer größere Rolle spielen wird.
Das TDMA- als auch das CDMA-Übertragungsverfahren bilden da¬ bei letztlich die Grundlage für die verschiedenen System- Standards bei der mobilen Telekommunikation. Hinsichtlich des TDMA-Verfahrens sind die gegenwärtig auf dem Markt ein- geführten Schnurlos-Telekommunikationssysteme unter anderem nach dem digitalen paneuropäischen DECT-Standard (p_igital European £ordless Jelecommunication) und dem digitalen CT2- Standard (£ordless Telephone 2.) aufgebaut, während die Mo¬ bilfunk-Telekommunikationssysteme nach dem weltweiten GSM- Standard (G_roupe ≤peciale Mobile; global .System for Mobile Communications) aufgebaut sind.
Die Weiterentwicklung der Mobilkommunikation in einer Wir¬ kungsspirale nach Figur 1 (Telcom Report 15; 1992; Heft 2, Seiten 57 bis 59) wird zu der bereits angesprochenen dritten Generation von Mobil-Telekommunikationssystemen führen, bei denen die bisherige Trennung zwischen Zellular- und Schnur¬ los-Telekommunikation aufgehoben ist. Diese dritte Genera¬ tion der Mobil-Telekommunikation zeichnet sich durch eine universelle (zeitlich und örtlich) Mobilität aus, bei der jeder Kommunikationsteilnehmer überall und jederzeit er¬ reichbar sein wird. Bei dieser universellen Mobilität unter¬ scheidet man zwischen einer gerätebezogenen Mobilität über Luftanschlüsse und einer personenbezogenen Mobilität über Luft- und Kabelanschlüsse. Die Einbeziehung beider Aspekte in eine universelle Mobilkommunikation führt zu einer "Advanced Mobility" mit einem universellen mobilen Telekom- munikationssystem (UMTS = universal Mobile ^elecommunication JSystem) in Verbindung mit einer universellen persönlichen Telekommunikation (UPT = Universal P_ersonal JEelecommunica- tion) . Das universelle mobile Telekommunikationssystem (UMTS) benötigt dabei sowohl flexible Luftschnittstellen als auch eine intelligente Netzinfrastruktur. Durch eine solche Systemstruktur ist es gewährleistet, daß zum einen mobile Teilnehmer mit unterschiedlichen Geschwindigkeiten und Ver¬ kehrsdichten miteinander kommunizieren können und zum ande¬ ren eine Vielzahl von Telekommunikations- und Nachrichten¬ diensten (Informationsdiensten) mit hoher Qualität und Kapa- zität angeboten werden kann.
In Figur 2 ist ausgehend von der Druckschrift Telcom Report 15; 1992; Heft 2, Seiten 60 bis 63 ein Szenario "Universelle Mobilkommunikation - Advanced Mobility" mit den verschiede- nen Anwendungsfällen in bezug auf den Zellenradius darge¬ stellt. Der Aufbau des universellen mobilen Telekommunika¬ tionssystems (UMTS) unterteilt sich danach für die Anwen¬ dungsbereiche (Büro, Heim, Stadt und Land) in unterschiedli¬ che Kommunikationszellen. Diese Zellen können dabei zwei- (Land, Stadt) oder dreidimensional (Gebäude) miteinander verknüpft sein. Nach der Darstellung in Figur 2 sind die verschiedenen Arten der mobilen Telekommunikation
(Schnurlos-, Mobilfunk- und Satelliten-Telekommunikation SL-
TK, MF-TK, S-TK) in Abhängigkeit des Zellenradius separat oder in einer Mischform dargestellt.
Die Schnurlos-Telekommunikation SL-TK findet in ihrer rei¬ nen, separaten Form für Büro- und Heimanwendungen im Piko- zellenbereich statt. In diesem Pikozellenbereich - mit einem Pikozellenradius PIZR von bis zu 200 m (Übertragungsreichweite) - ist mindestens eine Pikozelle PIZ mit einem Schnurlos-Telekommunikationssystem SL-TKS vorhan¬ den. Das Schnurlos-Telekommunikationssystem SL-TKS besteht dabei aus einer pikozellenindividuellen Basistation PIZ-BS (Schnurlos-Basisstation) und mindestens einer der Basissta¬ tion PIZ-BS zugeordneten pikozellenindividuellen Mobilsta¬ tion PIZ-MS (Schnurlos-Mobilstation) .
Die Mobilfunk-Telekommunikation MF-TK findet in ihrer rei¬ nen, separaten Form für Stadt- bzw. Landanwendungen in sta¬ tionären Gütern (z. B. Gebäuden) und/oder in dynamischen, beweglichen Gütern (z. B. Auto, Zug etc.) im Makrozellenbe¬ reich statt. In diesem Makrozellenbereich - mit einem Makro- zellenradius MAZR von z. B. bis zu 20 km (Übertragungsreichweite) -, der den Pikozellenbereich mit der Pikozelle PIZ und einen Mikrozellenbereich mit minde¬ stens einer Mikrozelle MIZ umfaßt, ist mindestens eine Ma¬ krozelle MAZ mit einem Mobilfunk-Telekommunikationssystem MF-TKS vorhanden. Dieses Mobilfunk-Telekommunikationssystem MF-TKS besteht dabei aus einer akrozellenindiviuellen Ba¬ sisstation MAZ-BS (Mobilfunk-Basisstation) , die stationär oder mobil (z. B. Auto, Zug) aufgebaut sein kann, und minde¬ stens einer der Basisstation MAZ-BS zugeordneten makrozel- lenindividuellen Mobilstation MAZ-MS (Mobilfunk-Mobilsta¬ tion) .
Als Ergänzung zur Schnurlos- und Mobilfunk-Telekommunikation SL-TK, MF-TK findet die Satelliten-Telekommunikation SF-TK in einem Hyperzellenbereich statt. In diesen Hyperzellenbe- reich - mit einem Hyperzellenradius HYZR von mehreren hun¬ dert Kilometern (Übertragungsreichweite) - ist mindestens eine Hyperzelle HYZ mit einem Satelliten-Telekommunikations¬ system SF-TKS vorhanden. Dieses Satelliten-Telekommunika- tionssystem SF-TKS beteht dabei aus einem z. B. auf der geostationären Erdumlaufbahn positionierten Satelliten SAT einer hyperzellenindividuellen Basisstation HYZ-BS, die sta¬ tionär als Erdstation ES oder mobil als Mobil-Erdstation MES (z. B. im Flugzeug, Schiff, Lkw etc) aufgebaut sein kann, und mindestens einer der Basistation HYZ-BS zugeordneten hy- perzellenindividuellen Mobilstation HYZ-MS.
Bei der Mischform aus den drei vorstehend genannten Arten der mobilen Telekommunikation wird beispielsweise für die Realisierung des "Advanced Mobility"-Konzeptes innerhalb des universellen mobilen TelekommunikationsSystems (UMTS) eine Netzinfraεtruktur NIS (ISDN = Integrated Services digital Metwork, B-ISDN = B_reitband-Tjιtegrated Services digital Net- work) verwendet.
Bei dieser Netzinfrastruktur NIS handelt es sich beispiels¬ weise um ein Schmalband- oder Breitband-ISDN-Kommunikations¬ system. In der Druckschrift Telcom Report 8; 1985; Sonder- heft mit dem Titel "Diensteintegrierendes Digitalnetz ISDN"
- Ganzes Dokument - ist ein Schmalband-ISDN-Kommunikations- system und in den Druckschriften Telcom Report 14; 1991;
Sonderheft mit dem Titel "Telcom191" - Seiten 12 bis 19
("Vision ONE - Optimierte Netz-Evolution") - sowie Telcom Report 14; 1991; - Seiten 36 bis 39 ("Grundsteine für schnelleren B-ISDN-Aufbau") , Seiten 40 bis 43 ("Breitband- ISDN ante portas"), Seiten 258 bis 261 ("Schrittmacher für bitratenvariable Breitbandkommunikation") - ein Breitband- ISDN-Kommunikationssystem beschrieben.
Diese Netzinfrastruktur NIS ist mit den pikozellenindivi- duellen Basisstationen PIZ-BS des Schnurlos-Telekommunika¬ tionssystems SL-TKS, den makrozellenindividuellen Basissta- tionen MAZ-BS des Mobilfunk-Telekommunikationssystems MF-TKS und/oder über die stationäre Erdfunkstelle ES mit dem Satel¬ liten SAT des Satelliten-Telekommunikationssystems SF-TKS bidirektional verbunden. Um ein solches in der Figur 2 dargestelltes und vorstehend beschriebenes universelles mobiles Telekommunikationssystem UMTS installieren zu können, müssen jedoch noch eine Reihe von Problemen gelöst werden.
Diese Reihe von Problemen betrifft
Einführungskonzepte (z. B. notwendige technische Kompa¬ tibilität bzw. Zusammenarbeit mit vorhandenen Systemen und Netzen im Hinblick auf eine Flächendeckung, Nut- zungsumfang, mögliche Kommunikations- und Informations¬ dienste etc. ) ; ein langfristiges Konzept mit harmonischer Integration oder komplexen "Interworking" in einem Multi-System¬ oder Multi-Betreiber-Szenario; - mögliche Substitutionen (z. B. zwischen Leitungs- und Luftanschlüssen oder zwischen UPT und UMTS) ; Nutzen von Synergie-Effekten in Entwicklung und Ferti¬ gung; eine mögliche Verzögerung und Beeinflussung des univer- seilen mobilen Telekommunikationssystemε (UMTS) durch ständige Verbesserungen bei den Systemen der zweiten Ge¬ neration (Advanced GSM, Advanced DECT) ; technische, rechtliche, politische, gesellschaftliche Unsicherheiten (z. B. Zusammenarbeit verteilter Daten- banken, künftige FrequenzZuordnung, mögliche Beeinträch¬ tigung der Gesundheit durch Funk) .
Bei dieser Vielzahl von Problemen scheint eine evolutionäre Weiterentwicklung des universellen mobilen Telekommunika- tionssystems (UMTS) wahrscheinlich zu sein. Im Zuge dieser evolutionären Weiterentwicklung werden die zellulare in¬ teraktive Telekommunikation (Mobilfunk) und die schnurlose interaktive Telekommunikation (Schnurlos-Technologie) schrittweise bis hin zu einer universellen Mobilkommunika- tion (UMTS) mit "Advanced Mobility" vorangetrieben.
Wenn im folgenden von einem universellen Mobil-Telekommuni- kationssystem gemäß der Darstellung in Figur 2 die Rede ist, so ist damit u. a. ein Telekommunikationssystem gemeint, das auf verschiedene Zugriffs-, Multiplex-, Codier- und Mo¬ dulationsverfahren (TDMA- und CDMA-Verfahren) basiert, sich auf den Einsatz des zellenorientierten Übermitt- lungsverfahrens (ATM = Asynchronus Transfer Mode) in der Netzinfrastruktur NIS stützt, für verschiedene Telekommunikations-Standards (DECT, GSM, Advanced DECT, Advanced GSM) anwendbar ist und für verschiedene Kommunikations- und Nachrichten- /Informationsdienste (z. B. Sprachdialog, Informations¬ übertragung in Form von Daten, Text und Bild sowie Not¬ ruf-, Ortungs- und Navigationsdienste) brauchbar ist.
Die der Erfindung zugrundeliegende Aufgabe besteht darin, ein universelles Mobil-Telekommunikationssystem anzugeben, bei dem im Zuge der Weiterentwicklung der mobilen Telekommu¬ nikation gemäß der Wirkungsspirale nach Figur 1 ein pikozel- lenindividuelles Schnurlos-Telekommunikationssystem auf Kom¬ munikationszellen mit unterschiedlichen Zellenradien (universell) erweitert werden kann.
Diese Aufgabe wird ausgehend von dem in dem Oberbegriff des Patentanspruches 1 definierten universellen mobilen Telekom¬ munikationssystem durch die in dem kennzeichnenden Teil des Patentanspruches 1 angegebenen Merkmale gelöst.
Der wesentliche Vorteil des erfindungsgemäßen universellen Mobil-Telekommunikationssystems liegt darin, daß ein auf Kommunikationszellen mit unterschiedlichem Zellenradius er- weitertes Schnurlos-Telekommunikationssystem in dem erwei¬ terten Schnurlosbereich mit einer geringeren Sendeleistung für Schnurlos-Mobilstationen auskommt und dadurch die Bela¬ stung eines Benutzers der Schnurlos-Mobilstation durch elek- tromagnetische Wellen bei der Schnurlosübertragung herabge¬ setzt wird. Ein weiterer wesentlicher Vorteil des erfin¬ dungsgemäßen universellen Mobil-Telekommunikationssystems besteht darin, daß durch das erweiterte Schnurlos-Telekommu¬ nikationssystem, insbesondere im Pikozellen- und Mikrozel- lenbereich, die Möglichkeit für Fernsprechen mit höherer Qualität bis hin zum Bildfernsprechen gegeben ist. Dies liegt daran, daß je geringer der Zellenradius einer Kommuni¬ kationszelle ist, desto größer ist im allgemeinen die je Flächeneinheit verfügbare Kapazität und damit die nutzbare Bitrate für die jeweilige Anwendung. Das erfindungsgemäße universelle Mobil-Telekommunikationssystem bietet somit im Zuge der Wirkungsspirale für eine universelle Mobil-Telekom¬ munikation mit einer Advanced-Mobility bereits eine einfache Möglichkeit an, zellulare und schnurlose Mobil-Telekommuni- kationsSysteme miteinander zu verbinden. Durch diese Verbin¬ dung zwischen den beiden Mobil-Teleko munikationssystemen und der dazu parallelen Entwicklung eines Breitband-ISDN- Kommunikationssystems kann somit ein universelles Mobil-Te¬ lekommunikationssystem aufgebaut werden, bei dem ein Tele- kommunikationsteilnehmer seinen Kommunikationspartner über¬ all erreichen kann (Advanced-Mobility) .
Vorteilhafte Weiterbildungen der Erfindung sind in den Un¬ teransprüchen angegeben.
Ein Ausführungsbeispiel der Erfindung wird anhand der Figu¬ ren 3 bis 8 erläutert. Es zeigten: Figur 3 ein auf den Mikrozellenbereich erweitertes Schnur¬ los-Telekommunikationssystem,
Figur 4 und 5 ein auf den Makrozellenbereich erweitertes Schnurlos-Telekommunikationssystem,
Figur 6 ein auf den Hyperzellenbereich erweitertes Schnur¬ los-Telekommunikationssystem,
Figur 7 und 8 ein universelles Mobil-Telekommunikationssy- stem.
Figur 3 zeigt ein auf eine Mikrozelle MIZ des Mikrozellenbe- reiches nach Figur 2 erweitertes Schnurlos-Telekommunika- tionssystem MIZSL-TKS. Die Mikrozelle MIZ ist dabei ein Kom¬ munikationsraum, in dessen Kommunikationszentrum - im Fall der Mikrozelle MIZ - eine mikrozellenindividuelle Sende- /Empfangsanordnung MIZ-SEA angeordnet ist. Über diese Sende- /E pfangsanordnung MIZ-SEA wird die gesamte mikrozellenindi- viduelle Schnurlos-Telekommunikation MIZSL-TK abgewickelt. Die Sende-/Empfangsanordnung MIZ-SEA ist dabei z. B. als mi¬ krozellenindividuelle Basisstation MIZ-BS ausgebildet. Für diese erweitere mikrozellenindividuelle Schnurlos-Telekommu¬ nikation MIZSL-TK ist der Sende-/Empfangsanordnung MIZ-SEA mindestens eine Pikozelle PIZ für eine pikozellenindividuel- le Schnurlos-Telekommunikation SL-TK nach Figur 2 über je¬ weils eine mikrozellenindividuelle Schnurlos-Verbindung MIZ- SLV zugeordnet. Die Anzahl der Pikozellen PIZ, die der Sende-/Empfangsanordnung MIZ-SEA über die entsprechende An- zahl der Schnurlos-Verbindungen MIZ-SLV zugeordnet sind, richtet sich insbesondere danach, wie groß die Kommunika¬ tionsteilnehmerdichte (Verkehrsdichte) in der Mikrozelle MIZ ist. Bei dünn besiedelten Regionen (Mikrozellen) ist die An¬ zahl der Pikozellen PIZ eher klein, während bei stark besie- delten Regionen (Mikrozellen) die Anzahl der Pikozellen PIZ mit den dazugehörigen mikrozellenindividuellen Schnurlosver¬ bindungen MIZ-SLV groß ist. Die Anzahl der Pikozellen PIZ ist aber nicht nur von der Kommunikationsteilnehmerdichte abhängig, sondern orientiert sich auch an die in der Sende- /Empfangsanordnung MIZ-SEA verfügbare Übertragungskapazität. Diese Übertragungskapazität wird dabei im wesentlichen durch die Anzahl der Übertragungskanäle bestimmt. So stehen bei¬ spielsweise für nach dem DECT-Standard aufgebaute piko- bzw. mikrozellenindividuellen Schnurlos-TelekommunikationsSysteme PIZSL-TKS, PIZSL-TKS gegenwärtig maximal zwölf Übertragungs¬ kanäle (Halb-Duplex-Übertragungskanäle) zur Verfügung. Für ein auf den DECT-Standard basierendes mikrozellenindividuel- les Schnurlos-Telekommunikationssystem MIZLS-TKS bedeutet dies, daß selbst bei einer großen Kommunikationsteilnehmer¬ dichte in der Mikrozelle MIZ theoretisch nur m mit m = 12 Pikozellen PIZ enthalten sein können. Die Anzahl m ist des¬ halb theoretisch, weil innerhalb jeder Pikozelle PIZ wieder¬ um die pikozellenindividuelle Schnurlos-Telekommunikation PIZSL-TK stattfindet. Findet diese pikozellenindividuelle Schnurlos-Telekommunikation PIZSL-TK ebenfalls nach dem DECT-Standard statt, so wird sich die Anzahl m mit m = 12 (wie in der Beschreibung des Ausführungsbeispiels später er¬ läutert wird) entsprechend verringern. In dem in der Figur 3 dargestellten mikrozellenindividuellen Schnurlos-Telekommu¬ nikationssystem MIZSL-TKS sind beispielsweise m = 4 Pikozel¬ len PIZ (PIZ1...PIZ4) über vier mikrozellenindividuelle Schnurlosverbindungen MIZ-SLV (MIZ-SLV1...MIZ-SLV4) der Sende-/Empfangsanordnung MIZ-SEA zugeordnet. Der maximale Abstand, mit dem diese Pikozellen PIZ1...PIZ4 von der Sende- /Empfangsanordnung MIZ-SEA entfernt sein können, bestimmt sich nach dem Mikrozellenradius MIZR, der der Mikrozelle MIZ per Definition zugeordnet wird. Dieser Mikrozellenradius MIZR liegt beispielsweise bei 2000 m. So sind in Figur 3 die Pikozelle PIZ1 über die mikrozellenindividuelle Schnurlos¬ verbindung MIZ-SLVl mit einem Mikrozellenradius MIZRl von z. B. 1200 m, die Pikozelle PIZ2 über die mikrozellenindivi¬ duelle Schnurlosverbindung MIZ-SLV2 mit einem Mikrozellenra- dius MIZR2 von z. B. ebenfalls 1200 m, die Pikozelle PIZ3 über die mikrozellenindividuelle Schnurlosverbindung MIZ- SLV3 mit einem Mikrozellenradius MIZR3 von z. B. 1800 m und die Pikozelle PIZ 4 über die mikrozellenindividuelle Schnur¬ losverbindung MIZ-SLV4 mit einem Mikrozellenradius MIZR4 von z. B. 1000 m der Sende-/Empfangsanordnung MIZ-SEA zugeord¬ net. Die Pikozellen PIZ1...PIZ4 sind bis auf die Tatsache, daß sie von der Sende-/Empfangsanordnung MIZ-SEA unter¬ schiedlich entfernt sein können, ansonsten in bezug auf die pikozellenindividuelle Schnurlos-Telekommunikation PIZSL-TK gleich strukturiert. In jeder Pikozelle PIZ ist für die pi¬ kozellenindividuelle Schnurlos-Telekommunikation PIZSL-TK im Kommunikationszentrum der Pikozelle PIZ eine Relaisstation RS angeordnet. Die Relaisstation RS weist für die mikrozel¬ lenindividuelle Schnurlos-Telekommunikation MIZSL-TK und die pikozellenindividuelle Schnurlos-Telekommunikation PIZSL-TK mehrere Antennen, eine erste Antenne ANT1 für die mikrozel¬ lenindividuelle Schnurlos-Telekommunikation MIZSL-TK und beispielsweise zwei zweite Antennen ANT2, ANT3 für die piko¬ zellenindividuelle Schnurlos-Telekommunikation PIZSL-TK, auf. Während die erste Antenne ANT1 für die größere Übertra¬ gungsreichweite bei der mikrozellenindividuellen Schnurlos- Telekommunikation MIZSL-TK vorzugsweise als Richtantenne ausgebildet ist, sind die beiden zweiten Antennen ANT2, ANT3 für die pikozellenindividuelle Schnurlos-Telekommunikation PIZSL-TK vorzugsweise als Diversity-Antennen ausgebildet. Bezüglich der beiden Diversity-Antennen ANT2, ANT3 ist die Relaisstation RS entsprechend der in der europäischen Pa¬ tentanmeldung 92118259.8 offenbarten technischen Lehre aus¬ gebildet. Über diese Diversity-Antennen ANT2, ANT3 ist die Relaisstation RS mit mindestens einer pikozellenindividuel- len Mobilstation PIZ-MS verbunden. Die Verbindung wird dabei für jede Mobilstation PIZ-MS über eine pikozellenindividuel¬ le Schnurlosverbindung PIZ-SLV hergestellt. In dem in der Figur 3 dargestellten erweiterten Schnurlos-Telekommunika- tionssystem MIZSL-TKS sind in jeder Pikozelle PIZ jeweils n = 4 pikozellenindividuelle Mobilstationen PIZ-MS vorhanden. Für die Anzahl n der Mobilstationen PIZ-MS in Verbindung mit der die pikozellenindividuelle Schnurlos-Telekommunikation PIZSL-TK abwickelnden Relaisstation RS gelten dieselben Be¬ dingungen und Voraussetzungen wie bei der mikrozellenindivi¬ duellen Schnurlos-Telekommunikation MIZSL-TK mit der Anzahl m von Pikozellen PIZ in Verbindung mit der die mikrozellen¬ individuelle Schnurlos-Telekommunikation MIZSL-TK abwickeln- den Sende-/Empfangsanordnung MIZ-SEA. Ist demzufolge das pi¬ kozellenindividuelle Schnurlos-Telekommunikationssystem PIZSL-TKS wie das mikrozellenindividuelle Schnurlos-Telekom¬ munikationssystem MIZSL-TKS nach dem DECT-Standard aufge¬ baut, so gilt für die Relaisstation RS, daß diese bezogen auf die zur Verfügung stehende Übertragungskapazität (Anzahl der Übertragungskanäle) insgesamt maximal m + n = 12 piko¬ zellenindividuelle Schnurlos-Telekommunikationsverbindungen zu den umliegenden Mobilstationen PIZ-MS und mikrozellenin¬ dividuelle Schnurlos-Telekommunikationsverbindungen zur mi- krozellenindividuellen Sende-/Empfangsanordnung MIZ-SEA auf¬ bauen kann. Die für die Relaisstation RS geltende Bedingung m + n = 12 ergibt sich daraus, daß die Relaisstation RS für die mikrozellenindividuelle Schnurlos-Telekommunikation MIZSL-TK als mikrozellenindividuelle Mobilstation MIZ-MS und für die pikozellenindividuelle Schnurlos-Telekommunikation PIZSL-TK als pikozellenindividuelle Basisstation PIZ-BS aus¬ gebildet ist. Die Relaisstation RS muß dabei für die Ausbil¬ dung als mikrozellenindividuelle Mobilstation MIZ-MS bei der mikrozellenindividuellen Schnurlos-Telekommunikation MIZSL- TK entsprechend (z. B. bezüglich Sendeleistung, Sendeantenne etc.) ausgelegt sein, um Nachrichten, Informationen bei dem Mikrozellenradius MIZR von bis 2000 m übertragen zu können.
Die Figuren 4 bis 8 zeigen ausgehend von dem in der Figur 3 dargestellten mikrozellenindividuellen Schnurlos-Telekommu¬ nikationssystem MIZSL-TKS ein auf mindestens eine Makrozelle MAZ des Makrozellenbereiches nach Figur 2 (Figur 4 und 5) , auf mindestens eine Hyperzelle HYZ des Hyperzellenbereich.es nach Figur 2 (Figur 6) » erweitertes Schnurlos-Telekommunika¬ tionssystem sowie zwei universell erweiterbare Schnurlos-Te- lekommunikationssysteme (Figur 7 und 8) .
So ist in der Figur 4 ein makrozellenindividuelles Schnur- los-Telekommunikationssystem MAZSL-TKS dargestellt, bei dem innerhalb einer Makrozelle MAZ des Makrozellenbereiches nach Figur 2 mit Mikrozellen MIZl...MIZi eine Anzahl i des mikro¬ zellenindividuellen Schnurlos-Telekommunikationssystems MIZSL-TKS nach Figur 3 zur Realisierung einer "Roaming- und/oder Hand Over"-Funktion angeordnet ist. Entsprechend der Anzahl i der mikrozellenindividuellen Schnurlos-Telekom- munikationssysteme MIZSL-TKS1...MIZSL-TKSi gibt es in der Makrozelle MAZ eine Anzahl i von mikrozellenindividuellen Sende-/Empfangsanordnungen MIZ-SEAl...MIZ-SEAi, die wiederum z. B. als mikroindividuelle Basisstationen MIZ-BS1...MIZBSi ausgebildet sind und dabei entsprechend dem mikrozellenindi¬ viduellen Schnurlos-Telekommunikationssystem MIZSL-TKS nach Figur 3 die mikrozellenindividuelle Schnurlos-Telekommunika¬ tion MIZSL-TK mit der jeweiligen Pikozelle PIZ abwickeln. Einer ersten mikrozellenindividuellen Basisstation MIZ-BS1 sind dabei z. B. m = 4 Pikozellen PIZ mit jeweils einer Re¬ laisstation RS und n = 4 pikozellenindividuellen Mobilsta¬ tionen PIZ-MS zugeordnet, während einer i-ten mikrozellenin¬ dividuellen Basisstation MIZ-BSi z. B. m = 3 Pikozellen mit jeweils einer Relaisstation RS und n = 4 pikozellenindivi- duellen Mobilstationen PIZ-MS zugeordnet sind.
In Figur 5 ist in Abwandlung zu dem makrozellenindividuellen Schnurlos-Telekommunikationεsystem MAZSL-TKS nach Figur 4 statt der mikrozellenindividuellen Schnurlos-Telekommunika- tionssyεteme MIZSL-TKS1...MIZSL-TKSi mit den mikrozellenin¬ dividuellen Sende-/Empfangsanordnungen MIZ-SEA1...MIZ-SEAi mindetens eine makrozellenindividuelle Sende- /Empfangsanordnung MAZ-SEA für die erweiterte Schnurlos-Te¬ lekommunikation zuεtändig. Dieεe erweiterte Schnurlos-Tele¬ kommunikation kann dabei aus der mikrozellenindividuellen Schnurlos-Telekommunikation MIZSL-TK nach Figur 3 oder 4 und einer makrozellenindividuellen Mobilfunk-Telekommunikation MAZMF-TK (gemischtzellenindividuelle Telekommunikation nach Figur 5) oder aber aus einer makrozellenindividuellen Schnurlos-Telekommunikation MAZSL-TK und der makrozellenin¬ dividuellen Mobilfunk-Telekommunikation MAZMF-TK (einheitszellenindividuelle Telekommunikation) bestehen. Bei dieser einheitεzellenindividuellen Telekommunikation muß die Relaiεεtation RS nach Figur 3 für die makrozellenindividuel¬ le Schnurloε-Telekommunikation MAZSL-TK entsprechend (z. B. in bezug auf die Sendeleistung, Sendeantenne etc.) ausgelegt sein, um bei der makrozellenindividuellen Schnurlos-Telekom- munikation MAZSL-TK als makrozellenindividuelle Mobilstation MAZ-MS dienen zu können.
Die makrozellenindividuelle Sende-/Empfangsanordnung MAZ-SEA übernimmt dabei die Funktion einer makrozellenindividuellen Basisstation MAZ-BS und ist dabei vorzugsweiεe alε Mobil- funk-Basisεtation ausgebildet. Während die mikrozellenindi¬ viduelle Schnurlos-Telekommunikation MIZSL-TK bei der ge- mischtzellenindividuellen Telekommunikation analog zu der in dem mikrozellenindividuellen Schnurlos-Telekommunikationεεy- stem MIZSL-TKS nach Figur 3 und 4 abläuft, dient die Sende- /Empfangεanordnung MAZ-SEA bei der makrozellenindividuellen Mobilfunk-Telekommunikation MAZMF-TK (gemiεcht- und ein- heitεzellenindividuelle Telekommunikation) alε εtationäre makrozellenindividuelle Basisstation SMAZ-BS, die über ma¬ krozellenindividuelle Mobilfunkverbindungen MAZ-MFV unmit¬ telbar mit makrozellenindividuellen Mobilstationen MAZ-MS oder mittelbar über mobile makrozellenindividuelle Basissta¬ tionen MMAZ-BS mit den Mobilstationen MAZ-MS verbunden ist.
Analog zur Darstellung in der Figur 4 können bei dem makro¬ zellenindividuellen Schnurlos-Telekommunikationsεyεtem MAZSL-TKS nach Figur 5 wiederum mehrere Makrozellen MAZ mit jeweilε einer makrozellenindividuellen Sende- /Empfangεanordnung MAZ-SEA zur Realisierung der "Roaming- und/oder Hand Over"-Funktion vorgesehen sein.
In Figur 6 ist ein hyperzellenindividuelles Schnurlos-Tele- kommunikationssystem HYZSL-TKS dargestellt, bei dem in einer Hyperzelle HYZ des Hyperzellenbereiches nach Figur 2 eine hyperzelleninάividuelle Sende-/Empfangsanordnung HYZ-SA für die erweiterte Schnurlos-Telekommunikation angeordnet ist. Diese erweiterte Schnurlos-Telekommunikation kann dabei aus der mikrozellenindividuellen Schnurloε-Telekommunikation MIZSL-TK nach Figur 3 oder 4 und einer hyperzellenindivi¬ duellen Satellitenfunk-Telekommunikation HYZSF-TK (gemiεchtzellenindividuelle Telekommunikation nach Figur 6) oder aber auε einer hyperzellenindividuellen Schnurloε-Tele¬ kommunikation HYZSL-TK und der hyperzellenindividuellen Sa- tellitenfunk-Telekommunikation HYZSF-TK
(einheitεzellenindividuelle Telekommunikation) beεtehen. Bei dieεer einheitszellenindividuellen Telekommunikation muß für die hyperzellenindividuelle Schnurlos-Telekommunikation HYZSL-TK die Relaisstation RS für die Übertragungsreichwei- ten im Hyperzellenbereich mit dem Hyperzellenradius HYZR von mehreren 100 km entsprechend (z. B. bezüglich der Sendelei¬ stung, Sendeantenne etc.) ausgelegt sein, um bei der hyper¬ zellenindividuellen Schnurlos-Telekommunikation HYZSL-TK als hyperzellenindividuelle Mobilstation HYZ-MS dienen zu kön¬ nen.
Die hyperzellenindividuelle Sende-/Empfangsanordnung HYZ-SEA übernimmt dabei für die gemischt- und einheitszellenindivi- duelle Telekommunikation die Funktion einer hyperzellenindi¬ viduellen Basisstation HYZ-BS und ist dabei vorzugsweise alε Erdstation ES ausgebildet. Während die mikrozellenindivi¬ duelle Schnurlos-Telekommunikation MIZSL-TK bei der ge- miεchtzellenindividuellen Telekommunikation analog zu der in dem mikrozellenindividuellen Schnurloε-Telekommunikationssy- εtem MIZSL-TKS nach Figur 3 und 4 abläuft, dient die Sende- /Empfangεanordnung HYZ-SEA bei der hyperzellenindividuellen Satellitenfunk-Telekommunikation HYZSF-TK (gemischt- und einheitszellenindividuelle Telekommunikation) alε εtationäre hyperzellenindividuelle Basisstation SHYZ-BS, die über hy¬ perzellenindividuelle Satellitenfunkverbindungen HYZ-SFV und einen auf der geostationären Erdumlaufbahn angeordneten Sa¬ telliten SAT mittelbar über mobile hyperzellenindividuelle Basisεtationen MHYZ-BS mit hyperzellenindividuellen Mobil- Stationen HYZ-MS verbunden ist.
Analog zu der Darstellung in der Figur 4 können bei dem hy¬ perzellenindividuellen Schnurlos-Telekommunikationεεyεtem HYZSL-TKS nach Figur 6 wiederum mehrere Hyperzellen HYZ mit jeweils einer hyperzellenindividuellen Sende- /Empfangsanordnung HYZ-SEA zur Realisierung der "Roaming- und/oder Hand Over"-Funktion vorgesehen sein. Figur 7 zeigt ein universelles Mobil-Telekommunikationssy- stem UM-TKS, bei dem das mikrozellenindividuelle Schnurlos- Telekommunikationssystem MIZSL-TKS nach Figur 3 über eine erste Netzinfrastruktur NISl mit dem Mobilfunk-Telekommuni- kationsεystem MF-TKS und/oder mit dem Satellitenfunk-Tele¬ kommunikationssystem SF-TKS nach Figur 2 verbunden ist. Über die Netzinfrastruktur NISl kann somit eine interzellulare Kommunikationεverbindung aufgebaut werden. Darüber hinauε bietet die Netzinfrastruktur NISl die Möglichkeit, über eine Luft-/Leitungsschnittstelle KommunikationεVerbindungen zu leitungsgebundenen Vermittlungsanlagen (EWSD, Nebenεtellen- anlagen) aufzubauen. Außerdem beεteht die Möglichkeit, nicht nur das mikrozellenindividuelle Schnurlos-Telekommunika¬ tionssystem MIZSL-TKS nach Figur 3 an die Netzinfrastruktur NISl anzuschließen, sondern auch die übrigen erweiterten Schnurloε-Telekommunikationεεysteme nach Figur 4 bis 6. In all den genannten Ausführungεformen des universellen Mobil- Telekommunikationssystems UM-TKS kann über die Netzinfra¬ struktur NISl immer eine interzellulare Kommunikationsver- bindung aufgebaut werden.
Figur 8 zeigt eine Modifikation deε universellen Mobil-Tele- kommunikationεεyεtemε UM-TKS nach Figur 7, die darin be¬ steht, daß für die interzellulare KommunikationεVerbindung eine zweite Netzinfraεtruktur NIS2 vorgeεehen iεt. Dieεe Netzinfrastruktur NIS2 unterscheidet sich von der ersten Netzinfraεtruktur NISl nach Figur 7 dadurch, daß die mikro¬ zellenindividuelle Sende-/Empfangεanordnung MIZ-SEA in der Netzinfraεtruktur integriert iεt. Die Netzinfrastruktur NIS2 bietet darüber hinaus die Möglichkeit, über eine Luft- /Leitungεεchnittεtelle Kommunikationεverbindungen zu lei¬ tungsgebundenen Vermittlungsanlagen (EWSD, Nebenstellenanla¬ gen) aufzubauen. Außerdem besteht die Möglichkeit, nicht nur daε mikrozellenindividuelle Schnurloε-Telekommunikationεεy- stem MIZSL-TKS nach Figur 3 an die Netzinfrastruktur NISl anzuschließen, sondern auch die übrigen erweiterten Schnur¬ los-Telekommunikationssysteme nach Figur 4 bis 6. In all den genannten Ausführungεformen des universellen Mobil-Telekom- munikationssystemε UM-TKS kann über die Netzinfrastruktur NISl immer eine interzellulare Kommunikationsverbindung auf¬ gebaut werden.

Claims

Patentanεprüche
1. Universelles Mobil-Telekommunikationsεyεtem, mit einem Pikozellenbereich mit mindeεtenε einer Pikozelle (PIZ) und mit mindeεtens einem der Pikozelle (PIZ) zugeordneten Schnurlos-Telekommunikationssystem (PIZSL-TKS) , bestehend aus einer pikozellenindividuellen Baεiεεtation (PIZ-BS) und mindeεtenε einer der Baεiεεtation (PIZ-BS) zugeordneten pi¬ kozellenindividuellen Mobilεtation (PIZ-MS), dadurch gekenn- zeichnet, daß die pikozellenindividuelle Mobilstation (PIZ-MS) einer Re- laiεεtation (RS) deε Schnurloε-Telekommunikationssystems (PIZSL-TKS) zugeordnet ist, die innerhalb mindestenε einer übergeordneten Zelle (MIZ, MAZ, HYZ) eines übergeordneten Zellenbereiches jeweils einer Sende-/Empfangsanordnung (MIZ- SEA, MIZ-SEA1...MIZSEAi, MAZ-SEA, HYZ-SEA, NIS2) zugeordnet und für die pikozellenbezogene Telekommunikation die piko¬ zellenindividuelle Basisstation (PIZ-BS) ersetzt sowie für die übergeordnete zellenindividuelle Telekommunikation als übergeordnete zellenindividuelle Mobilstation (MIZ-MS, MAZ- MS, HYZ-MS) ausgebildet ist.
2. Univerεelles Mobil-Telekommunikationsεystem nach Anspruch
1, dadurch gekennzeichnet, daß die Relaisεtation (RS) minde- stens eine erεte Sende-/Empfangεantenne (ANT1) für die über¬ geordnete zellenindividuelle Telekommunikation und minde¬ εtenε eine zweite Sende-/Empfangsantenne (ANT2, ANT3) für die pikozellenbezogene Telekommunikation aufweist.
3. Universelles Mobil-Telekommunikationsεyεtem nach Anspruch
2, dadurch gekennzeichnet, daß die erste Sende- /Empfangsantenne (ANTl) als Richtantenne ausgebildet ist.
4. Universelles Mobil-Telekommunikationεεystem nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß zwei zweite Sende- /Empfangεantennen (ANT2, ANT3) vorgesehen sind, die als Di¬ versity-Antennen ausgebildet sind.
5. Universelles Mobil-Telekommunikationssyεtem nach einem der Anεprüche 1 biε 4, dadurch gekennzeichnet, daß eine er¬ ste Sende-/Empfangεanordnung (MIZ-SEA, MIZ-SEA1...MIZ-SEAi) als mikrozellenindividuelle Basisstation (MIZ-BS) ausgebil- det ist.
6. Universelleε Mobil-Telekommunikationssystem nach einem der Ansprüche 1 biε 4, dadurch gekennzeichnet, daß eine zweite Sende-/Empfangεanordnung (MAZ-SEA) alε Mobilfunk-Ba- εiεstation ausgebildet ist.
7. Universelles Mobil-Telekommunikationssyεtem nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der er¬ sten und zweiten Sende-/Empfangseinrichtung (MIZ-SEA, MIZ- SEAl...MIZ-SEAi, MAZ-SEA) eine erste Vermittlungεanlage (NISl) nachgeεchaltet iεt.
8. Univerεelleε Mobil-Telekommunikationssyεtem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß eine dritte Sende-/Empfangseinrichtung (NIS2) als eine zweite Vermittlungsanlage (NIS2) mit einer Luft- /Leitungεschnittstelle auεgebildet iεt.
9. Universelles Mobil-Telekommunikationssystem nach Anεpruch 7 oder 8, dadurch gekennzeichnet, daß die Vermittlungεanlage
(NISl, NIS2) als Nebenstellenanlage ausgebildet ist.
10. Univerεelleε Mobil-Telekommunikationεsystem nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß eine vierte Sende-/Empfangseinrichtung (HYZ-SEA) als Satelliten- funk-Telekommunikationsεyste (SF-TKS) mit einem auf der geostationären Erdumlaufbahn angeordneten Satelliten (SAT) und einer Erdfunkstation (HYZ-BS, MES, ES) ausgebildet ist.
11. Universelles Mobil-Telekommunikationεεyεtem nach einem der Anεprüche 1 bis 10, dadurch gekennzeichnet, daß daε Schnurlos-Telekommunikationssystem (PIZSL-TKS) und das er¬ weiterte Schnurlos-Telekommunikationssyεtem (MIZSL-TKS, MAZSL-TKS, HYZSL-TKS) als DECT-System aufgebaut sind.
12. Universelles Mobil-Telekommunikationsεyεtem nach einem der Anεprüche 1 bis 11, dadurch gekennzeichnet, daß das Schnurlos-Telekommunikationssystem (PIZSL-TKS) und daε er- weiterte Schnurlos-TelekommunikationsSystem (MIZSL-TKS, MAZSL-TKS, HYZSL-TKS) zur Bildübertragung als Bildtelefonie- Syεte aufgebaut sind.
PCT/DE1994/000910 1993-08-06 1994-08-05 Universelles mobil-telekommunikationssystem WO1995005040A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP94922844A EP0712551B1 (de) 1993-08-06 1994-08-05 Universelles mobil-telekommunikationssystem
US08/592,427 US6535731B1 (en) 1993-08-06 1994-08-05 Universal mobile telecommunications system
DE59404440T DE59404440D1 (de) 1993-08-06 1994-08-05 Universelles mobil-telekommunikationssystem
AU72629/94A AU676932B2 (en) 1993-08-06 1994-08-05 Universal mobile telecommunications system
JP50615495A JP3382945B2 (ja) 1993-08-06 1994-08-05 汎用移動通信システム
FI960518A FI960518A0 (fi) 1993-08-06 1996-02-05 Yleinen matkateleviestinjärjestelmä

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4326523.5 1993-08-06
DE4326523A DE4326523A1 (de) 1993-08-06 1993-08-06 Universelles Mobil-Telekommunikationssystem

Publications (1)

Publication Number Publication Date
WO1995005040A1 true WO1995005040A1 (de) 1995-02-16

Family

ID=6494650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/000910 WO1995005040A1 (de) 1993-08-06 1994-08-05 Universelles mobil-telekommunikationssystem

Country Status (11)

Country Link
US (1) US6535731B1 (de)
EP (1) EP0712551B1 (de)
JP (1) JP3382945B2 (de)
CN (1) CN1084984C (de)
AT (1) ATE159632T1 (de)
AU (1) AU676932B2 (de)
CA (1) CA2168734A1 (de)
DE (2) DE4326523A1 (de)
ES (1) ES2108476T3 (de)
FI (1) FI960518A0 (de)
WO (1) WO1995005040A1 (de)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19520024A1 (de) * 1995-05-31 1996-12-05 Siemens Ag Universelles Mobil-Telekommunikationssystem
DE19535329A1 (de) * 1995-09-22 1997-03-27 Bernhard Prof Dr Ing Walke Verfahren und ein zellulares Mobilfunksystem zum drahtlosen, breitbandigen Anschluß mobiler Stationen mit ATM-Schnittstelle an ein ATM-Netz
DE19543280A1 (de) * 1995-11-20 1997-05-22 Bernhard Prof Dr Ing Walke Verfahren und ein zellulares Mobilfunksystem zum drahtlosen, breitbandingen Anschluß mobiler Stationen mit ATM-Schnittstelle an ein ATM-Netz-Übertragungssicherung
EP0781063A2 (de) 1995-12-21 1997-06-25 Siemens Aktiengesellschaft Verfahren und Anordnung zum Erzeugen von Zufallszahlen in Telekommunikationsgeräten eines drahtlosen Telekommunikationssystems
DE19609634A1 (de) * 1996-03-12 1997-09-18 Siemens Ag Schaltregler
DE19610086A1 (de) * 1996-03-14 1997-09-18 Siemens Ag Verfahren und Anordnung zum Abwickeln von Protokollen zwischen Telekommunikationsgeräten drahtloser Telekommunikationssysteme
DE19640450C1 (de) * 1996-09-30 1997-10-30 Siemens Ag Basisstation mit schneller Kanalwechselfunktion eines zellularen TDMA/FDMA-Funksystems, insbesondere eines zellularen DECT-Systems
DE19610063A1 (de) * 1996-03-14 1997-11-13 Siemens Ag Verfahren und Anordnung zum Erzeugen von Tönen in einem drahtlosen Telekommunikationssystem
DE19632261A1 (de) * 1996-08-09 1998-02-19 Siemens Ag Verfahren zum Aufbauen von Telekommunikationsverbindungen zwischen Telekommunikationsgeräten in drahtlosen Telekommunikationssystemen, insbesondere zwischen DECT-Geräten eines DECT-Systems
DE19633925A1 (de) * 1996-08-22 1998-03-05 Siemens Ag Mobilfunksystem mit Basis-Sende-Empfangsstation und integrierter Fernsprecheinrichtung
DE19638173A1 (de) * 1996-09-11 1998-03-19 Siemens Ag Verfahren zum Steuern des Absetzens von Notrufen in Schnurlos-Telekommunikationssystemen, insbesondere DECT/GAP-Systemen
DE19638111A1 (de) * 1996-09-11 1998-03-19 Siemens Ag Verfahren zum Steuern des Absetzens von Notrufen in Schnurlos-Telekommunikationssystemen, insbesondere DECT/GAP-Systemen
DE19643658C1 (de) * 1996-10-22 1998-03-26 Siemens Ag Verfahren zum Steuern des Anmeldens von Schnurlos-Mobilteilen bei Schnurlos-Basisstationen universeller Mobil-Telekommunikationssysteme, insbesondere von DECT-Mobilteilen bei DECT-Basisstationen CAP-spezifischer Telekommunikationssysteme
DE19638112A1 (de) * 1996-09-11 1998-04-23 Siemens Ag Verfahren zum Steuern von Notrufverbindungen in Schnurlos-Telekommunikationssystemen, insbesondere DECT/GAP-Systemen
DE19643645A1 (de) * 1996-10-22 1998-04-30 Siemens Ag Verfahren zum Übertragen von rufunabhängigen Diensten an Schnurlos-Mobilteile universeller Mobil-Telekommunikationssysteme, insbesondere an DECT-Mobilteile CAP-spezifischer Telekommunikationssysteme
DE19638170A1 (de) * 1996-09-11 1998-05-14 Siemens Ag Verfahren zum Absetzen von Notrufen in Schnurlos-Telekommunikationssystemen, insbesondere DECT/GAP-Systemen
US6173347B1 (en) 1996-03-13 2001-01-09 Siemens Aktiengesellschaft Process and arrangement for transmitting system-specific data in a synchronous microprocessor system
DE19738340C2 (de) * 1997-09-02 2001-03-15 Siemens Ag Roaming von Mobilteilen in zumindest teilweise asynchronen drahtlosen Telekommunikationsnetzen, insbesondere DECT-Netzen
US6252860B1 (en) 1996-03-04 2001-06-26 Siemens Aktiengesellschaft Method and system for improving the degree utilization of telecommunications channels in locally concentrated, asynchronous wireless telecommunications systems
DE19740558C2 (de) * 1997-09-15 2003-01-09 Siemens Ag Verfahren zum Übertragen von "MWI-Dienst"-spezifischen Nachrichten in Telekommunikationsnetzen, insbesondere in hybriden DECT/ISDN-spezifischen Telekommunikationsnetzen
DE19740560B4 (de) * 1997-09-15 2004-02-19 Siemens Ag Verfahren zum Steuern der Zugriffsberechtigungen von Telekommunikationsgeräten bei Gegenstationen in Telekommunikationssystemen mit drahtloser Telekommunikation zwischen den Telekommunikationsgeräten und den Gegenstationen

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19502641C2 (de) * 1995-01-20 1999-01-14 Deutsche Telephonwerk Kabel Anordnung zur Netzabschlußtechnik für öffentliche, stationäre Telekommunikationsnetze
DE29622893U1 (de) * 1996-01-03 1997-09-04 Hoseit Winrich P A Über ein digitales Funknetz betriebene Kommunikationsgeräte sowie das Funknetz für diese Geräte
SE9604492L (sv) * 1996-12-05 1998-06-06 Ericsson Telefon Ab L M Anordning och förfarande vid telekommunikationssystem
DE19748899B4 (de) * 1997-11-05 2006-10-26 Rohde & Schwarz Gmbh & Co. Kg System zum Betreiben von Mobiltelefonen in Verkehrsflugzeugen
DE19753228A1 (de) * 1997-12-01 1999-06-02 Cit Alcatel Verfahren zum Aufbau einer Telekommunikationsverbindung zu Personen in abgeschlossenen Einrichtungen, wie etwa Personenbeförderungsmittel, sowie Telekommunikationssystem und -netzwerk
US6374078B1 (en) * 1998-04-17 2002-04-16 Direct Wireless Corporation Wireless communication system with multiple external communication links
DE19843476C2 (de) * 1998-09-22 2001-12-20 Siemens Ag Verfahren zur Funkversorgung eines Mobil-Terminals eines Mobilfunknetzes
JP3652946B2 (ja) * 1999-12-28 2005-05-25 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおける通信方法及び移動局
US6929638B2 (en) * 2000-04-19 2005-08-16 Alcon Refractivehorizons, Inc. Eye registration and astigmatism alignment control systems and method
US20060246909A1 (en) * 2000-05-31 2006-11-02 Jerry Petermann Monocell wireless communications system
US7085560B2 (en) * 2000-05-31 2006-08-01 Wahoo Communications Corporation Wireless communications device with artificial intelligence-based distributive call routing
US7551921B2 (en) * 2000-05-31 2009-06-23 Wahoo Communications Corporation Wireless communications system with parallel computing artificial intelligence-based distributive call routing
US20020073042A1 (en) * 2000-12-07 2002-06-13 Maritzen L. Michael Method and apparatus for secure wireless interoperability and communication between access devices
ITTO20010207A1 (it) * 2001-03-08 2002-09-08 Itec Srl Rete di telecomunicazioni per utenti mobili migliorata e relativi apparati.
US20030050098A1 (en) * 2001-09-10 2003-03-13 D'agati Laurence Apparatus, system and method for an improved mobile station and base station
DE60325921D1 (de) * 2002-08-22 2009-03-12 Imec Inter Uni Micro Electr Verfahren zur MIMO-Übertragung für mehrere Benutzer und entsprechende Vorrichtungen
JP4217544B2 (ja) * 2003-06-05 2009-02-04 株式会社エヌ・ティ・ティ・ドコモ 移動体通信システム、制御装置及び通信方法
EP1985022B1 (de) * 2006-02-08 2011-06-08 Thomson Licensing Dekodierung von raptor kodes
US8126452B2 (en) * 2007-11-29 2012-02-28 Intel Mobile Communications GmbH Systems and methods for self-calibrating transceivers
US8391875B1 (en) * 2008-02-22 2013-03-05 Sprint Spectrum L.P. Method and system for extending MIMO wireless service
US7965721B1 (en) 2008-03-21 2011-06-21 Nextel Communications Inc. System and method of transferring communications between networks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4549293A (en) * 1983-12-29 1985-10-22 The United States Of America As Represented By The Secretary Of The Army Time division multiple access communications system
GB2234649A (en) * 1989-04-27 1991-02-06 Stc Plc Personal communications systems

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE295460C (de)
US4259549A (en) * 1976-10-21 1981-03-31 Wescom Switching, Inc. Dialed number to function translator for telecommunications switching system control complex
GB8419003D0 (en) * 1984-07-25 1984-08-30 Racal Res Ltd Portable telephones
US4759051A (en) * 1987-03-16 1988-07-19 A. A. Hopeman, III Communications system
US4797947A (en) * 1987-05-01 1989-01-10 Motorola, Inc. Microcellular communications system using macrodiversity
US5058201A (en) * 1988-06-07 1991-10-15 Oki Electric Industry Co., Ltd. Mobile telecommunications system using distributed miniature zones
NO175659C (no) * 1988-07-06 1994-11-09 Sumitomo Electric Industries Kommunikasjonssystem med multippelmottagning og mottagerapparat for diversitetssignaler
IL91529A0 (en) * 1988-10-28 1990-04-29 Motorola Inc Satellite cellular telephone and data communication system
FR2657204A2 (fr) 1989-08-29 1991-07-19 Matra Communication Reseau de communication radio-telephonique.
PE6291A1 (es) 1989-09-14 1991-03-13 Pcn One Ltd Sistema movil de comunicacion por radio
GB8920829D0 (en) * 1989-09-14 1990-01-04 Marconi Co Ltd Telecommunication arrangements
US5117503A (en) * 1989-10-02 1992-05-26 Motorola, Inc. Directional antenna arrangement method for simulcast broadcasting
US5287541A (en) * 1989-11-03 1994-02-15 Motorola, Inc. Global satellite communication system with geographic protocol conversion
US5327572A (en) * 1990-03-06 1994-07-05 Motorola, Inc. Networked satellite and terrestrial cellular radiotelephone systems
JPH04245818A (ja) * 1991-01-31 1992-09-02 Pioneer Electron Corp 情報伝送システム
JPH0530000A (ja) * 1991-07-18 1993-02-05 Fujitsu Ltd 移動体通信方式
DE9214886U1 (de) * 1992-11-02 1994-03-03 Siemens Ag Anordnung zur Steuerung einer Sende-/Empfangseinrichtung, insbesondere von Basisstationen und Mobilteilen eines Schnurlostelefonsystems
US5557320A (en) * 1995-01-31 1996-09-17 Krebs; Mark Video mail delivery system
US5625877A (en) * 1995-03-15 1997-04-29 International Business Machines Corporation Wireless variable bandwidth air-link system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4549293A (en) * 1983-12-29 1985-10-22 The United States Of America As Represented By The Secretary Of The Army Time division multiple access communications system
GB2234649A (en) * 1989-04-27 1991-02-06 Stc Plc Personal communications systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A.CHARBONNIER: "Perspectives for mobile communications", COMMUNICATION & TRANSMISSION, vol. 15, 1993, PARIS,FR;, pages 109 - 121, XP000396196 *
STANLEY CHIA: "The Universal Mobile Telecommunication System", IEEE COMMUNICATIONS MAGAZINE, vol. 30, no. 12, December 1992 (1992-12-01), NEW-YORK,US;, pages 54 - 62, XP000330090 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19520024A1 (de) * 1995-05-31 1996-12-05 Siemens Ag Universelles Mobil-Telekommunikationssystem
DE19535329A1 (de) * 1995-09-22 1997-03-27 Bernhard Prof Dr Ing Walke Verfahren und ein zellulares Mobilfunksystem zum drahtlosen, breitbandigen Anschluß mobiler Stationen mit ATM-Schnittstelle an ein ATM-Netz
DE19535329C2 (de) * 1995-09-22 2002-02-28 Bernhard Walke Verfahren zum Übertragen von ATM-Zellen im Zeitmultiplex in einem Mobilfunksystem
DE19543280A1 (de) * 1995-11-20 1997-05-22 Bernhard Prof Dr Ing Walke Verfahren und ein zellulares Mobilfunksystem zum drahtlosen, breitbandingen Anschluß mobiler Stationen mit ATM-Schnittstelle an ein ATM-Netz-Übertragungssicherung
DE19543280C2 (de) * 1995-11-20 2001-05-03 Bernhard Walke Kommunikationssystem zum Übertragen von ATM-Zellen mit Hilfe von Datenblöcken über ein drahtloses Medium
EP0781063A2 (de) 1995-12-21 1997-06-25 Siemens Aktiengesellschaft Verfahren und Anordnung zum Erzeugen von Zufallszahlen in Telekommunikationsgeräten eines drahtlosen Telekommunikationssystems
US6252860B1 (en) 1996-03-04 2001-06-26 Siemens Aktiengesellschaft Method and system for improving the degree utilization of telecommunications channels in locally concentrated, asynchronous wireless telecommunications systems
DE19609634A1 (de) * 1996-03-12 1997-09-18 Siemens Ag Schaltregler
US6173347B1 (en) 1996-03-13 2001-01-09 Siemens Aktiengesellschaft Process and arrangement for transmitting system-specific data in a synchronous microprocessor system
DE19610063A1 (de) * 1996-03-14 1997-11-13 Siemens Ag Verfahren und Anordnung zum Erzeugen von Tönen in einem drahtlosen Telekommunikationssystem
US6618595B1 (en) 1996-03-14 2003-09-09 Siemens Aktiengesellschaft Process and arrangement for executing protocols between telecommunications devices in wireless telecommunications systems
DE19610086A1 (de) * 1996-03-14 1997-09-18 Siemens Ag Verfahren und Anordnung zum Abwickeln von Protokollen zwischen Telekommunikationsgeräten drahtloser Telekommunikationssysteme
DE19610086C2 (de) * 1996-03-14 2000-02-17 Siemens Ag Verfahren und Anordnung zum Abwickeln von Protokollen zwischen Telekommunikationsgeräten drahtloser Telekommunikationssysteme
DE19610063C2 (de) * 1996-03-14 2000-07-13 Siemens Ag Verfahren und Anordnung zum Erzeugen von Tönen in einem drahtlosen Telekommunikationssystem
DE19632261A1 (de) * 1996-08-09 1998-02-19 Siemens Ag Verfahren zum Aufbauen von Telekommunikationsverbindungen zwischen Telekommunikationsgeräten in drahtlosen Telekommunikationssystemen, insbesondere zwischen DECT-Geräten eines DECT-Systems
US6400949B1 (en) 1996-08-09 2002-06-04 Siemens Aktiengesellschaft Process for establishing telecommunication connections between telecommunication apparatuses in wireless telecommunication systems, in particular between DECT-apparatuses of a DECT-system
DE19632261C2 (de) * 1996-08-09 1998-07-09 Siemens Ag Verfahren zum Aufbauen von Telekommunikationsverbindungen zwischen Telekommunikationsgeräten in drahtlosen Telekommunikationssystemen, insbesondere zwischen DECT-Geräten eines DECT-Systems
DE19633925A1 (de) * 1996-08-22 1998-03-05 Siemens Ag Mobilfunksystem mit Basis-Sende-Empfangsstation und integrierter Fernsprecheinrichtung
DE19633925C2 (de) * 1996-08-22 2000-11-23 Siemens Ag Mobilfunksystem und Basis-Sende-Empfangsstation mit integrierter Fernsprecheinrichtung
DE19638111A1 (de) * 1996-09-11 1998-03-19 Siemens Ag Verfahren zum Steuern des Absetzens von Notrufen in Schnurlos-Telekommunikationssystemen, insbesondere DECT/GAP-Systemen
DE19638112C2 (de) * 1996-09-11 1998-09-10 Siemens Ag Verfahren zum Steuern von Notrufverbindungen in Schnurlos-Telekommunikationssystemen, insbesondere DECT/GAP-Systemen
DE19638170A1 (de) * 1996-09-11 1998-05-14 Siemens Ag Verfahren zum Absetzen von Notrufen in Schnurlos-Telekommunikationssystemen, insbesondere DECT/GAP-Systemen
DE19638111C2 (de) * 1996-09-11 1998-11-26 Siemens Ag Verfahren zum Steuern des Absetzens von Notrufen in Schnurlos-Telekommunikationssystemen, insbesondere DECT/GAP-Systemen
DE19638173C2 (de) * 1996-09-11 2002-10-17 Siemens Ag Verfahren zum Steuern des Absetzens von Notrufen in Schnurlos-Telekommunikationssystemen, insbesondere DECT/GAP-Systemen
DE19638112A1 (de) * 1996-09-11 1998-04-23 Siemens Ag Verfahren zum Steuern von Notrufverbindungen in Schnurlos-Telekommunikationssystemen, insbesondere DECT/GAP-Systemen
DE19638170C2 (de) * 1996-09-11 1998-09-03 Siemens Ag Verfahren zum Absetzen von Notrufen in Schnurlos-Telekommunikationssystemen, insbesondere DECT/GAP-Systemen
US6400938B1 (en) 1996-09-11 2002-06-04 Siemens Aktiengesellschaft Process for controlling the initiation of emergency calls in cordless telecommunication systems, in particular DECT/GAP systems
DE19638173A1 (de) * 1996-09-11 1998-03-19 Siemens Ag Verfahren zum Steuern des Absetzens von Notrufen in Schnurlos-Telekommunikationssystemen, insbesondere DECT/GAP-Systemen
US6388996B1 (en) 1996-09-30 2002-05-14 Rolf Biedermann Base station with rapid handover function of a cellular TDMA/FDMA mobile radio system, particularly of a cellular DECT system
DE19640450C1 (de) * 1996-09-30 1997-10-30 Siemens Ag Basisstation mit schneller Kanalwechselfunktion eines zellularen TDMA/FDMA-Funksystems, insbesondere eines zellularen DECT-Systems
DE19643645A1 (de) * 1996-10-22 1998-04-30 Siemens Ag Verfahren zum Übertragen von rufunabhängigen Diensten an Schnurlos-Mobilteile universeller Mobil-Telekommunikationssysteme, insbesondere an DECT-Mobilteile CAP-spezifischer Telekommunikationssysteme
US6539224B2 (en) 1996-10-22 2003-03-25 Siemens Aktiengesellschaft Method for controlling the logon of cordless mobile parts at cordless base stations of universal mobile telecommunication systems, particularly of dect mobile parts at dect base stations of cap-specific telecommunication systems
DE19643645C2 (de) * 1996-10-22 1998-12-10 Siemens Ag Verfahren zum Übertragen von "Message Waiting Indication"-Diensten an Schnurlos-Mobilteile universeller Mobil-Telekommunikationssysteme, insbesondere an DECT-Mobilteile CAP-spezifischer Telekommunikationssysteme
DE19643658C1 (de) * 1996-10-22 1998-03-26 Siemens Ag Verfahren zum Steuern des Anmeldens von Schnurlos-Mobilteilen bei Schnurlos-Basisstationen universeller Mobil-Telekommunikationssysteme, insbesondere von DECT-Mobilteilen bei DECT-Basisstationen CAP-spezifischer Telekommunikationssysteme
DE19738340C2 (de) * 1997-09-02 2001-03-15 Siemens Ag Roaming von Mobilteilen in zumindest teilweise asynchronen drahtlosen Telekommunikationsnetzen, insbesondere DECT-Netzen
DE19740560B4 (de) * 1997-09-15 2004-02-19 Siemens Ag Verfahren zum Steuern der Zugriffsberechtigungen von Telekommunikationsgeräten bei Gegenstationen in Telekommunikationssystemen mit drahtloser Telekommunikation zwischen den Telekommunikationsgeräten und den Gegenstationen
DE19740558C2 (de) * 1997-09-15 2003-01-09 Siemens Ag Verfahren zum Übertragen von "MWI-Dienst"-spezifischen Nachrichten in Telekommunikationsnetzen, insbesondere in hybriden DECT/ISDN-spezifischen Telekommunikationsnetzen
US6643505B1 (en) 1997-09-15 2003-11-04 Siemens Aktiengesellschaft Method for operating a telecommunications network with a personalized database

Also Published As

Publication number Publication date
DE4326523A1 (de) 1995-02-09
CN1084984C (zh) 2002-05-15
ATE159632T1 (de) 1997-11-15
JPH08508383A (ja) 1996-09-03
EP0712551A1 (de) 1996-05-22
JP3382945B2 (ja) 2003-03-04
CN1128593A (zh) 1996-08-07
FI960518A (fi) 1996-02-05
CA2168734A1 (en) 1995-02-16
EP0712551B1 (de) 1997-10-22
DE59404440D1 (de) 1997-11-27
US6535731B1 (en) 2003-03-18
AU676932B2 (en) 1997-03-27
FI960518A0 (fi) 1996-02-05
AU7262994A (en) 1995-02-28
ES2108476T3 (es) 1997-12-16

Similar Documents

Publication Publication Date Title
EP0712551B1 (de) Universelles mobil-telekommunikationssystem
DE3116656C2 (de)
DE69730548T2 (de) Wegleiter und Formierer für Kommunikationssatellit
EP0524200B1 (de) Schaltungsanordnung für aus vermittlungsstellen bestehende fernmeldewählnetze, vorzugsweise fernsprechwählnetze
DE19820736C1 (de) Verfahren und Basisstationssystem zur Kanalzuteilung in einem Funk-Kommunikationssystem
DE69817561T2 (de) Verfahren und einrichtungen zur steuerungskanalübertragung in zellularen funktelefonsystemen
EP0829176B1 (de) Mobilfunkgerät mit unterbrechungsfreiem weiterreichen zwischen unsynchronisierten basisstationen
EP0624995A1 (de) Schnittstellenanordnung für den Anschluss von Basisstationen an eine Nebenstellenanlage
DE10034686A1 (de) Anordnung zur Informationsübermittlung zwischen zwei Kommunikationseinrichtungen
EP0929985B1 (de) Basisstation mit schneller kanalwechselfunktion eines zellularen tdma/fdma-funksystems, insbesondere eines zellularen dect-systems
DE69634329T2 (de) Einrichtung zum weiterreichen in einem mobilen telekommunikationsnetzwerk
EP0674453B1 (de) Verfahren und Schaltungsanordnung für den Zugriff schnurloser Endgeräte auf ein Telekommunikationssystem
EP0762790A2 (de) Mehrzellenfunksystem mit PBX-Peripheriebaugruppen
EP0885494A1 (de) Verfahren und anordnung zum verbessern des ausnutzungsgrades von telekommunikationskanälen in örtlich konzentrierten, asynchronen, drahtlosen telekommunikationssystemen
EP0729284A2 (de) Mobilfunksystem mit einer in einer Feststation enthaltenen Mithöreinrichtung
DE3443974C2 (de)
EP1064798B1 (de) Verfahren und funkkommunikationssystem zur verbindungssteuerung bei anrufen von und zu funkteilnehmern
WO1996038988A1 (de) Universelles mobil-telekommunikationssystem
DE19633925C2 (de) Mobilfunksystem und Basis-Sende-Empfangsstation mit integrierter Fernsprecheinrichtung
DE19715225C2 (de) Verfahren zum Mithören von Nachrichten in einem drahtlosen Telekommunikationssystem
DE19735384A1 (de) Verfahren, System und Vorrichtungen zur Funkanbindung mehrerer Endgeräte über eine Basisstation an eine Schnittstelle eines Telefon- oder Datennetzes
DE19950918C2 (de) Telekommunikationssystem
DE69534547T2 (de) Einrichtung für Telekommunikationssystem
DE3427489C1 (de) Funknetz mit einer Vielzahl von mobilen Stationen
EP1068751B1 (de) Verfahren und mobilteil zum aufbauen von telekommunikationsverbindungen in telekommunikationssystemen mit drahtloser telekommunikation, insbesondere in dect/gap-systemen und telekommunikatiossystem mit drahtloser telekommunikation, insbesondere dect/gap-system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 94193008.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN FI JP NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994922844

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2168734

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 960518

Country of ref document: FI

Ref document number: 08592427

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994922844

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994922844

Country of ref document: EP