WO1994025406A1 - Procede de fabrication de verres denses transparents obtenus a partir d'alcoxydes de silicium ou de metal par voie sol-gel, et verres obtenus selon ce procede - Google Patents

Procede de fabrication de verres denses transparents obtenus a partir d'alcoxydes de silicium ou de metal par voie sol-gel, et verres obtenus selon ce procede Download PDF

Info

Publication number
WO1994025406A1
WO1994025406A1 PCT/FR1994/000513 FR9400513W WO9425406A1 WO 1994025406 A1 WO1994025406 A1 WO 1994025406A1 FR 9400513 W FR9400513 W FR 9400513W WO 9425406 A1 WO9425406 A1 WO 9425406A1
Authority
WO
WIPO (PCT)
Prior art keywords
sol
metal
silicon
alkoxides
organic
Prior art date
Application number
PCT/FR1994/000513
Other languages
English (en)
Inventor
Frédéric Chaput
Thierry Gacoin
Jean-Pierre Boilot
Original Assignee
Essilor International (Compagnie Generale D'optique)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Essilor International (Compagnie Generale D'optique) filed Critical Essilor International (Compagnie Generale D'optique)
Publication of WO1994025406A1 publication Critical patent/WO1994025406A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • C03C1/008Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route for the production of films or coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/60Silica-free oxide glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/26Wet processes, e.g. sol-gel process using alkoxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/26Wet processes, e.g. sol-gel process using alkoxides
    • C03C2203/27Wet processes, e.g. sol-gel process using alkoxides the alkoxides containing other organic groups, e.g. alkyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/26Wet processes, e.g. sol-gel process using alkoxides
    • C03C2203/27Wet processes, e.g. sol-gel process using alkoxides the alkoxides containing other organic groups, e.g. alkyl groups
    • C03C2203/28Wet processes, e.g. sol-gel process using alkoxides the alkoxides containing other organic groups, e.g. alkyl groups functional groups, e.g. vinyl, glycidyl

Definitions

  • the present invention relates to a process for manufacturing transparent dense glasses obtained from silicon or metal alkoxides by the sol-gel route, as well as the glasses obtained directly by this process.
  • the sol-gel technique is already used for the production of dense transparent glasses based on metal oxides or silicon, in different forms such as monoblocks, thin layers or glass fibers.
  • sol-gel route of materials based on oxides such as ceramics or glasses generally makes it possible to obtain, under normal conditions of temperature and pressure, in liquid phase, colloidal solutions of high homogeneity, particularly suitable to the usual shaping techniques. After reaction and transition to the solid state (gel), then heat treatment, very high density materials are obtained.
  • dopants such as functional organic molecules, biological systems or aggregates such as semiconductor clusters are trapped in sol-gel systems. , in order to improve the mechanical and / or optical properties of the glasses obtained from these systems.
  • the sol-gel syntheses comprise two reaction stages.
  • Metallic or silicon alkoxides such as those of the M- (OR) x type are first hydrolyzed, where R is a carbon chain and M is a metal ion or silicon; mixed alkoxides of the type (RO) j -Al-0-Si- (OR ') 3 or alkoxides having inert organic groups such as CH3-Si- (OR') 3 where R and R 'are also carbon chains .
  • This reaction is carried out in an aqueous solution in the presence of an organic solvent for the alkoxides used. Its mechanism can be activated by acidic or basic catalysis and can be represented by the diagram next :
  • the condensation step leads to the formation of a colloidal solution of dense metal oxide or silicon particles in suspension.
  • the latter polymerize and form a solid three-dimensional network.
  • the gel thus obtained is transparent with a vitreous appearance.
  • This technique is characterized by rapid hydrolysis of the starting alkoxides and condensation leading to significant growth phenomena by aggregation of clusters.
  • the disadvantages of this method are that they produce porous xerogels with a high specific surface area, which are fragile and unstable, containing large amounts of solvents and alcoholic residues whose elimination required by drying in an oven and / or in an autoclave is difficult to control.
  • the final materials also have unsatisfactory mechanical and optical properties.
  • There are also known methods of manufacturing gels which are better suited to obtaining dense and transparent glasses. This involves proceeding by slow hydrolysis of the starting alkoxides by air humidity. They have been described in particular in French patent applications Nos. 91.112.77 and 83.069.34. Transparent gels are thus obtained with better mechanical properties compared to the previous method.
  • the gel obtained contains reactive organic residues, harmful to the aging of the gel and which result from incomplete hydrolysis.
  • the Applicant has discovered a process for the production of dense transparent glasses based on silicon or metal alkoxides by the sol-gel route, making it possible initially to obtain a syrupy sol leading, after rapid condensation, to a stable, high gel. density, low specific surface area and free of solvent and alcohols obtained during hydrolysis.
  • the syrupy soil has satisfactory rheological properties for shaping the final products and makes it possible to obtain, at relatively low temperatures, dense and transparent glasses whose mechanical and optical properties are excellent.
  • the present invention therefore relates to a method of manufacturing transparent dense glasses by the sol-gel route.
  • Another object of the invention relates to the glasses directly obtained by this process.
  • a / A complete hydrolysis of a solution containing one or more metal or silicon alkoxides is carried out in a solvent or a mixture of organic solvents of the alkoxide (s) with an acidic aqueous solution of pH less than or equal to 3; the reaction medium containing no metal complexing agent present in the alkoxide (s);
  • the glass can optionally be annealed in air or in an inert atmosphere at a temperature below 500 ° C.
  • the metal or silicon alkoxides used according to the present invention are preferably chosen from:
  • M denotes silicon or a metal chosen from zirconium IV, titanium IV, aluminum, hafriium IV; R denotes an alkyl having 1 to 7 carbon atoms and x is 3 or 4;
  • R 2 0 Si-O-Al - (OR 3 ) 2 (2) in which R 2 and R3 denote, independently of one another, an alkyl radical having 1 to 7 carbon atoms;
  • R 4 z - Si - (OR 5 ) 4 .
  • the radical R4 denotes a non-hydrolysable carbon chain such as a radical C j -C ⁇ alkyl, a C 2 -C 7 alkenyl radical such as vinyl or an aryl radical such as phenyl, which may contain one or more functional groups such as hydroxyl, amino, thiol, carboxylic acid or ester groups, halo, isocyanate
  • a radical C j -C ⁇ alkyl such as vinyl or an aryl radical such as phenyl
  • aryl radical such as phenyl
  • the alkoxides of formula (3) used according to the invention the following compounds may be mentioned, for example:
  • the organic solvents used according to the invention for the starting metal alkoxide solutions are preferably chosen from lower alcohols such as ethanol or lower ketones such as acetone.
  • the acidic aqueous solutions used for the hydrolysis step contain common inorganic or organic acids in amounts necessary to obtain a pH less than or equal to 3.
  • inorganic acid hydrochloric, nitric acid is used or sulfuric and as organic acid acetic acid.
  • Organic acids having complexing properties with respect to transition metals are only used for alkoxides of silicon of formula (1) or (3).
  • the pH of the acidic aqueous solution for hydrolysis is preferably negative.
  • the amount of water used for the hydrolysis step is preferably between 0.75 and 4 moles of water / mole of hydrolyzable function.
  • Stage (B) of elimination of the solvents and the residual alcohols and of concentration, is carried out in a preferential way by azeotropic distillation under primary vacuum.
  • primary vacuum distillation is understood to mean a vacuum, for example by a mechanical, molecular pump or a cryopump, under conditions which would lead to a static vacuum of between 10 ⁇ 2 and 10 ⁇ 4 mm Hg. elimination of the solvents at a temperature below room temperature, and it is then possible to limit the condensation reactions and to eliminate a large quantity of solvents and in particular the organic solvent, without gelling of the solution.
  • obtained at the end of this stage has a concentration of 3 to 10 moles / 1 in metal or silicon atoms, preferably between 4 and 10 moles / 1 and more particularly between 5 and 10 moles / 1 in metal or silicon atoms.
  • step (B) In order to better control the evolution of the soil (I) during the condensation, before the shaping step, it is possible to reduce the acidity of the soil (I) by partially or completely neutralizing the acid necessary for the hydrolysis by addition of buffer or base in aqueous or organic solution.
  • the solution is concentrated if necessary under the same conditions as step (B) to obtain an aqueous or organic sol (II) having a concentration of 3 to 10 moles / 1 in metallic or silicon atoms.
  • the acidity of the soil (I) can be reduced by the addition of basic functionalized alkoxides in order to accelerate the condensation, to improve the mechanical properties and to trap the dopants sensitive to the protons.
  • basic functionalized alkoxides there may be mentioned, for example:
  • the sol (I) can also be diluted in an organic solvent, preferably acetone, acetonitrile or pyridine.
  • an organic solvent preferably acetone, acetonitrile or pyridine.
  • the residual water present in the solution is removed by distillation under primary vacuum, so as to obtain an organic sol (lu) having a concentration of 3 to 10 moles / 1 in metal or silicon atoms.
  • a particular form of the invention consists in doping the ground (I), (II) or (lu) as defined above, by addition of a dopant in aqueous or organic solution, suitable for the intended application and compatible in the aqueous medium of the soil (I), aqueous or organic of the soil (II) or the organic medium of the soil (III). After doping, the resulting solution is concentrated, if necessary, by distillation under primary vacuum, so as to obtain an aqueous or organic doped sol (IV) having a concentration of 3 to 10 moles / 1 in metal or silicon atoms.
  • the dopants used in accordance with the present invention are active organic compounds such as laser dyes, biological systems such as enzymes and / or aggregates, for example semiconductor or magnetic clusters.
  • alkoxide precursors are used according to the invention on which are grafted both optically active molecules and / or basic functions (amines), which makes it possible to significantly increase the concentration of dopants in avoiding phase separation.
  • the dopants are preferably used in concentrations of between 0.01 and 1% by weight relative to the total weight of the final glass.
  • the aqueous or organic soils (I), (II), (lu) or (IV) obtained according to the methods defined above, can be stored before their shaping for several weeks at low temperature, for example in a freezer.
  • soils are then shaped at the time of use according to the intended application. They can be cast in a suitable mold of determined shape, for example in Teflon or in polypropylene, for obtaining monoblocks.
  • the centrifugation technique is preferably used to obtain transparent films of small thickness or transparent thin layers of high density which can be used in many industrial applications, in particular the optics industry, in particular the manufacture of ophthalmic lenses.
  • the dense glasses obtained according to the process of the present invention have a "closed" porosity.
  • closed porosity is meant a porosity characterized by a pore size sufficiently small to prevent the penetration of helium molecules.
  • the density values on the mercury pychnometer and the helium pychnometer are identical.
  • the dense glasses according to the invention also have possibilities of polishing without cracking the glass.
  • the surface roughness is less than 10 nm. After polishing, the transparency is greater than 94% at 632 nm for undoped glasses 1 cm thick. It is for example greater than 98% for vinyltriethoxysilane glasses (VTEOS).
  • VTEOS vinyltriethoxysilane glasses
  • the invention can in particular be applied for obtaining thin layers in anti-reflection coatings.
  • the floors can be reduced in the form of fibers by extrusion or spinning for the manufacture of glass fibers.
  • the starting reagents are as follows:
  • NMR of silicon 29 is a technique adapted to the study of chemical species containing silicon.
  • the chemical species are classified according to the number of oxygen atoms in the first neighbor.
  • the Si ⁇ 4 tetrahedra are represented by the letter Q with by exposing the number i of bridging oxygen (Si-O-Si bond).
  • the TEOS NMR spectrum shows only a resonance peak at -82 ppm characteristic of the Q monomer.
  • the substitution OR by OH during the hydrolysis causes a small displacement towards the weak fields (+2 ppm) and the substitution of OH by a siloxane bridge in the condensation causes, whatever the precursor, a displacement towards the strong fields from -9 ppm.
  • distillation is carried out under primary vacuum (10 " - mm Hg or 10" Torr) of a solution rich in alcohol (under a pressure of 95 mm Hg, the boiling point of the water-ethanol azeotrope is 33.4 ° C.
  • the azeotropic composition is 99.5% ethanol by mass).
  • the volume of the solution is identical to the volume of the starting alkoxide (approximately 22 cm- *).
  • the concentration is approximately 5 mol / l of silicon.
  • a syrupy liquid is obtained, the NMR spectrum of which (FIG. 1) indicates the presence of a mixture with the respective proportions of 12.9%, 59.1% and 28%.
  • the syrup is poured into a polypropylene container and gelation is observed after a few hours. Air drying for a few days makes it possible to obtain a transparent glass whose density is 1.86, or approximately 85% of the theoretical density of silica.
  • a calorimetric analysis diagram is performed in the open air at a temperature rise rate of 10 ° C / min. We only observe a weak endothe ⁇ nic peak (around 150 ° C) due to a water departure. The exothermic peak due to the combustion of organic products is not observed in the range 280-520 ° C, confirming the absence of organic residues.
  • the glass obtained has a closed porosity; the specific surface measured by the method of
  • BET is 0.5 m 2 / g instead of several tens of m 2 / g for conventional xerogels with open porosity.
  • Example 2 The procedure is as in Example 1, but using only 17.06 cm- * of ethanol and 5.4 cm- of water at pH 2.5. After drying, a transparent glass is obtained, the density of which is 1.88, or approximately 86% of the theoretical density of silica.
  • Example 2 The procedure is as in Example 1, but replacing the 35 cm- * of ethanol with the same volume of acetone.
  • the syrup with a concentration of 5 mol / l of silicon is obtained after 15 minutes of distillation under primary vacuum (10 " - * mm of Hg or 10 " - * Torr) of a solution rich in acetone (under normal pressure, the boiling point of the azeotrope water-acetone is 56 ° C instead of 78 ° C for the water-ethanol system). After drying, a transparent glass is obtained, the density of which is 1.67, or approximately 76% of the theoretical density of silica.
  • Example 2 The procedure is as in Example 1 until the syrup is obtained. 0.06 cm- * of an aqueous IM potassium solution is added to neutralize the acid necessary for the hydrolysis. After gelling and drying, the gel obtained has a density of 1.60.
  • the starting reagents are as follows:
  • Example 1 Hg of a solution rich in alcohol. After 1 hour of distillation, the volume of the solution is identical to the volume of the starting titanium alkoxide (approximately 15 cm 3 ). The concentration is approximately 3 mol / l of titanium. We then operate as in Example 1.
  • Example 8 The procedure is as in Example 1, but replacing the 0.1 mol of silicon ethoxide Si (OC 2 H ⁇ 5) 4 with 0.05 mol of methyltriethoxy-silane (MTEOS) MSi (OEt) 3 and 0.05 mole of 3-aminopropylmethyldiethoxysilane H 2 NCH 2 CH 2 CH 2 SiMe (OEt) 2 (APMDEOS).
  • MTEOS methyltriethoxy-silane
  • APMDEOS 3-aminopropylmethyldiethoxysilane H 2 NCH 2 CH 2 CH 2 SiMe
  • the NMR spectrum (FIG. 4) of the syrupy liquid indicates: - the presence of a Q 2 / Q 3 mixture derived from MTEOS with the respective proportions of 14% and 86%.
  • the degree of condensation of the silicon atoms is 0.95.
  • the syrup is then deposited in a thin layer on a glass substrate, using the centrifugation technique.
  • the thickness is 5 ⁇ m.
  • Example 2 The procedure is as in Example 2, but replacing the 0.1 mole of silicon ethoxide Si (OC 2 H5) 4 with 0.1 mole of 3-aminopropyl-triethoxysilane (APTEOS).
  • APTEOS 3-aminopropyl-triethoxysilane
  • the syrup is then deposited in a thin layer on a glass substrate, using the centrifugation technique.
  • the thickness is 3 ⁇ m and the optical index of 1.4876
  • the syrup is then deposited in a thin layer on a glass substrate, using the centrifugation technique (or spin coating).
  • the thickness is 6 ⁇ m.
  • Example 6 The procedure is as in Example 1. After doping with Rhodamine 6G so as to obtain a final concentration of 10 ⁇ 4 mol / l by coloring, the syrup diluted in acetone is deposited in a thin layer on a glass substrate, using the centrifugation technique (or spin coating) The optical spectra are shown in Figure 6. The film thickness is 0.5 ⁇ m.
  • Example 2 The procedure is as in Example 1 until the syrup is obtained. At 20 cm 3 of syrup having a concentration of approximately 5 moles / 1 of silicon, the same volume of acetic buffer is added. The solution is then concentrated by vacuum distillation to a volume of 3 cm 3 . After gelling and drying, the gel obtained has a density of 1.76, or approximately 80% of the theoretical density of silica.
  • Example 13 The procedure is as in Example 6 until the syrup is obtained. At 20 cm 3 of syrup, the concentration of which is approximately 5 mol / l of silicon, the same volume of pyridine is added. The solution is then concentrated by distillation under primary vacuum (10 "3 mm Hg) until a final volume of 20 cm 3 is obtained. 0.2 cm 3 of a solution of the pyrromethene dye 567 is added [ l, 3,5,7,8-pentamethyl-2,6- diethylpyrromethene - BF 2 complex] so as to obtain a final concentration of 10 "4 mole ⁇ by coloring. After gelling and drying, the gel obtained has a density of 1.27.
  • a solution B of 3- (2-imidazolin-1-yl) propyl-triethoxysilane in ethanol (0.1 mol / l) is prepared.
  • 2.2 cm 3 of solution A and 0.25 cm 3 of solution B are introduced into 24 cm 3 of one of the VTEOS or MTEOS syrups prepared as in Examples 14 and 6. Extraction is carried out under primary vacuum 11 cm 3 solvent and poured into a polypropylene jar.
  • a solution A of pyrromethene 567 is prepared in solution in acetone (1.5 ⁇ 10 ⁇ 2 mole / 1).
  • a solution B of one of the basic alkoxide precursors in ethanol (0.1 mole / 1) is prepared.
  • a grafted rhodamine solution A is prepared (synthesis scheme below) dissolved in ethanol (2.10 "2 mole / 1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Silicon Polymers (AREA)

Abstract

La présente invention concerne un procédé de fabrication de verres denses transparents à base d'alcoxydes métalliques par voie sol-gel, comprenant les étapes suivantes: A) on réalise une hydrolyse complète d'une solution contenant un ou plusieurs alcoxydes métalliques particuliers, dans un solvant ou un mélange de solvants organiques du ou des alcoxydes par une solution aqueuse acide de pH inférieur à 3; le milieu réactionnel ne contenant pas d'agent complexant du métal présent dans le ou les alcoxydes; B) on élimine le ou les solvant(s) organique(s) et les alcools résiduels, et on concentre la solution obtenue par distillation sous vide primaire de façon a obtenir un sol sirupeux ayant une concentration de 3 à 10 moles/l en atomes métalliques ou de silicium; C) on met le sol sous une forme appropriée pour l'application envisagée; D) on effectue la gélification et le séchage à l'air ou sous atmosphère inerte à une température inférieure à 70 °C; E) le verre peut être recuit à l'air ou sous atmosphère inerte à une température inférieure à 500 °C.

Description

Procédé de fabrication de verres denses transparents obtenus à partir d'alcoxydes de silicium ou de métal par voie sol-gel, et verres obtenus selon ce procédé.
La présente invention concerne un procédé de fabrication de verres denses transparents obtenus à partir d'alcoxydes de silicium ou de métal par voie sol-gel, ainsi que les verres obtenus directement par ce procédé. La technique sol-gel est déjà utilisée pour la fabrication des verres denses transparents à base d'oxydes métalliques ou de silicium, sous différentes formes telles que les monoblocs, les couches minces ou les fibres de verre.
La synthèse par voie sol-gel des matériaux à base d'oxydes tels que les céramiques ou les verres, permet généralement d'obtenir dans les conditions normales de température et de pression, en phase liquide, des solutions colloïdales de grande homogénéité, particulièrement adaptées aux techniques usuelles de mise en forme. Après réaction et passage à l'état solide (gel), puis traitement thermique, on obtient des matériaux de très grande densité. Dans le cadre de la fabrication des verres optiques, en particulier pour les applications en optique non linéaire, on piège dans les systèmes sol- gel des dopants tels que des molécules organiques fonctionnelles, des systèmes biologiques ou des agrégats tels que des amas semi- conducteurs, afin d'améliorer les propriétés mécaniques et/ou optiques des verres obtenus à partir de ces systèmes.
Les synthèses par voie sol-gel comprennent deux étapes réactionnelles. On hydrolyse dans un premier temps des alcoxydes métalliques ou de silicium tels que ceux du type M-(OR)x, où R est une chaîne carbonée et M un ion métallique ou le silicium; les alcoxydes mixtes du type (RO)j-Al-0-Si-(OR')3 ou des alcoxydes présentant des groupes organiques inertes tels que CH3-Si-(OR')3 où R et R' sont également des chaînes carbonées. Cette réaction est effectuée dans une solution aqueuse en présence d'un solvant organique des alcoxydes utilisés. Son mécanisme peut être activé par catalyse acide ou basique et peut être représenté par le schéma suivant :
(α) ≡ SiOR + H20 • ≡Si-OH + ROH
La réaction d'hydrolyse est suivie d'une réaction de condensation représentée par le schéma suivant :
(β) ≡ SiOH + HO-Si≡ ^ ≡ Si-O-Si ≡ + H20
L'étape de condensation conduit à la formation d'une solution colloïdale de particules d'oxydes métalliques ou de silicium denses en suspension. Ces dernières se polymérisent et forment un réseau tridimensionnel solide. Le gel ainsi obtenu est transparent d'aspect vitreux.
On connaît dans l'état de la technique, la synthèse des gels par hydrolyse rapide des alcoxydes de départ par un excès d'eau avec catalyse acide ou basique en présence de solvants organiques spécifiques aux alcoxydes métalliques.
Cette méthode a fait l'objet d'études commentées dans les articles de F. DEVREUX, J.P. BOILOT, F. CHAPUT, Phys. Rev. A, 41, 1990, p. 6901-6909 et de CJ. BRINHER, G.W. SCHERER, sol-gel Science, Académie. Press (1990).
Cette technique se caractérise par une hydrolyse rapide des alcoxydes de départ et une condensation conduisant à des phénomènes importants de croissance par agrégation d'amas. Ce procédé a pour inconvénients de produire des xerogels poreux de surface spécifique élevée, fragiles et instables, renfermant des quantités importantes de. solvants et de résidus alcooliques dont l'élimination nécessaire par séchage en étuve et/ou en autoclave est difficile à maîtriser. Les matériaux finaux présentent en outre des propriétés mécaniques et optiques peu satisfaisantes. On connaît également des procédés de fabrication de gels mieux adaptés à l'obtention de verres denses et transparents. Il s'agit de procéder par hydrolyse lente des alcoxydes de départ par l'humidité de l'air. Ils ont été notamment décrits dans les demandes de brevets français n°s 91.112.77 et 83.069.34. Des gels transparents sont ainsi obtenus avec de meilleures propriétés mécaniques par rapport à la méthode précédente.
Cependant, lors de l'évaporation du solvant et des résidus alcooliques, on observe des phénomènes de contraction de gel très importants qui rendent sa mise en forme difficile. D'autre part, le gel obtenu renferme des résidus organiques réactifs, nuisibles au vieillissement du gel et qui résultent de l'hydrolyse incomplète.
La demanderesse a découvert un procédé de fabrication de verres denses transparents à base d'alcoxydes de silicium ou de métal par voie sol-gel, permettant d'obtenir dans un premier temps un sol sirupeux conduisant après condensation rapide à un gel stable, de haute densité, de faible surface spécifique et exempt de solvant et des alcools obtenus au cours de l'hydrolyse. En outre, le sol sirupeux présente des propriétés rhéologiques satisfaisantes pour la mise en forme des produits finaux et permet d'obtenir, à des températures relativement basses, des verres denses et transparents dont les propriétés mécaniques et optiques sont excellentes.
La présente invention concerne donc un procédé de fabrication des verres denses transparents par voie sol-gel.
Un autre objet de l'invention concerne les verres directement obtenus par ce procédé.
D'autres objets apparaîtront à la lumière de la description des exemples qui suivent.
Le procédé de la présente invention est caractérisé essentiellement par le fait qu'il comprend les étapes suivantes :
A/ On réalise une hydrolyse complète d'une solution contenant un ou plusieurs alcoxydes de métal ou de silicium, dans un solvant ou un mélange de solvants organiques du ou des alcoxydes par une solution aqueuse acide de pH inférieur ou égal à 3; le milieu réactionnel ne contenant pas d'agent complexant du métal présent dans le ou les alcoxydes;
B/ On élimine le ou les solvant(s) organique(s) et les alcools résiduels, et on concentre la solution obtenue par distillation sous vide primaire de façon à obtenir un sol (I) sirupeux ayant une concentration de 3 à 10 moles/1 en atomes métalliques ou de silicium;
C/ On met le sol sous une forme appropriée pour l'application envisagée;
D/ On effectue la gélification et le séchage à l'air ou sous atmosphère inerte à une température inférieure à 70°C;
E/ Le verre peut être éventuellement recuit à l'air ou en atmosphère inerte à une température inférieure à 500°C.
Les alcoxydes de métal ou de silicium utilisés selon la présente invention sont choisis de préférence parmi :
(i) les alcoxydes de formule :
M - (ORj)x (1) dans laquelle M désigne le silicium ou un métal choisi parmi le zirconium IV, le titane IV, raluminium, l'hafriium IV; R désigne un alkyle ayant 1 à 7 atomes de carbone et x vaut 3 ou 4;
(ii) l'alcoxyde de formule :
(R20)3 - Si-O-Al - (OR3)2 (2) dans laquelle R2 et R3 désignent, indépendamment l'un de l'autre, un radical alkyle ayant 1 à 7 atomes de carbone;
(iϋ) les alcoxydes de formule :
(R4)z - Si - (OR5)4.z (3) dans laquelle R5 désigne un alkyle ayant 1 à 7 atomes de carbone, z vaut 1 ou 2, R4 désigne une chaîne carbonée non hydrolysable, substituée ou non par un ou plusieurs groupes fonctionnels;
(iv) ou leurs mélanges.
Parmi les alcoxydes métalliques de départ de formule (1), utilisés selon la présente invention, on peut citer l'éthoxyde de silicium ou le tétraéthoxysilane Si(OC2H5)4 ou le n-propoxyde de titane Ti(OC3H"7) .
Parmi les alcoxydes de départ de formule (2), on peut mentionner le (dibutyloxyalumino-oxy)-triéthoxysilane de structure suivante :
Figure imgf000006_0001
Dans la formule (3) telle que définie ci-dessus, le radical R4 désigne une chaîne carbonée non hydrolysable telle qu'un radical alkyle en Cj-Cγ, un radical alcényle en C2-C"7 tel que vinyle ou un radical aryle tel que phényle, pouvant comporter un ou plusieurs groupes fonctionnels tels que les groupements hydroxyle, amino, thiol, acide carboxylique, ester, halogéno, isocyanate. Parmi les alcoxydes de formule (3) utilisés selon l'invention, on peut citer par exemple les composés suivants :
- 3-aminopropyltriéthoxysilane H2NCH2CH2CH2Si(OEt)3 (APTEOS)
- 3-isocyanatopropyltriéthoxysilane OCNCH2CH2CH2Si(OEt)3 (IPTEOS) - 3-Mercaptopropyltriéthoxysilane HSCH2CH2CH2Si(OEt)3
(MPTEOS)
- Aminophényltriméthoxysilane H2NφSi(OMe)3 (AφTEOS)
- 3-aminopropylméthyldiéthoxysilane H2NCH2CH2CH2SiMe(OEt)2 (APMDEOS) - (Mercaptométhyl)méthyldiéthoxysilane HSCH2SiMe(OEt)2
(3MDEOS)
- Tridécafluoro- 1 , 1 ,2,2,-tétrahydrooctyl- 1-triéthoxysilane C6F13CH2CH2Si(OEt)3 (TDFTHOTEOS)
- Chloropropyltriéthoxysilane ClCH2CH2CH2Si(OEt)3 (CPTEOS) - Amyltriéthoxysilane C5HnSi(OEt)3 (ATEOS)
- Méthyltriéthoxysilane MeSi(OEt)3 (MTEOS)
- Vinyltriéthoxysilane CH2CHSi(OEt)3 (VTEOS)
- Phényltriéthoxysilane φSi(OEt)3 (φTEOS)
- Diméthyldiéthoxysilane (Me)2Si(OEt)2 (DMDEOS). Les solvants organiques utilisés selon l'invention pour les solutions d'alcoxydes métalliques de départ, sont choisis de préférence parmi les alcools inférieurs tels que l'éthanol ou les cétones inférieures telles que l'acétone.
Les solutions aqueuses acides utilisées pour l'étape d'hydrolyse contiennent des acides inorganiques ou organiques courants dans des quantités nécessaires pour obtenir un pH inférieur ou égal à 3. On utilise par exemple à titre d'acide inorganique, l'acide chlorhydrique, nitrique ou sulfurique et à titre d'acide organique l'acide acétique. Les acides organiques présentant des propriétés complexantes vis-à-vis des métaux de transition ne sont utilisés que pour les alcoxydes de silicium de formule (1) ou (3).
Lorsque les produits de départ sont des alcoxydes métalliques, le pH de la solution aqueuse acide pour l'hydrolyse est de préférence négatif. La quantité d'eau utilisée pour l'étape d'hydrolyse est de préférence comprise entre 0,75 et 4 moles d'eau/mole de fonction hydrolysable.
L'étape (B) d'élimination des solvants et des alcools résiduels et de concentration, s'effectue de façon préférentielle par distillation azéotropique sous vide primaire.
On entend par distillation sous vide primaire, un tirage au vide par exemple par une pompe mécanique, moléculaire ou une cryopompe, dans des conditions qui conduiraient à un vide statique compris entre 10-2 et 10"4 mm de Hg. On effectue ainsi l'élimination des solvants à température inférieure à la température ambiante, et il est alors possible de limiter les réactions de condensation et d'éliminer une forte quantité de solvants et en particulier le solvant organique, sans gélification de la solution. Le sol (I) obtenu à la fin de cette étape présente une concentration de 3 à 10 moles/1 en atomes métalliques ou de silicium, de préférence entre 4 et 10 moles/1 et plus particulièrement entre 5 et 10 moles/1 en atomes métalliques ou de silicium.
Afin de mieux maîtriser l'évolution du sol (I) pendant la condensation, avant l'étape de mise en forme, il est possible de diminuer l'acidité du sol (I) en neutralisant partiellement ou totalement l'acide nécessaire à l'hydrolyse par addition de tampon ou de base en solution aqueuse ou organique. On concentre si nécessaire la solution dans les mêmes conditions que l'étape (B) pour obtenir un sol (II) aqueux ou organique ayant une concentration de 3 à 10 moles/1 en atomes métalliques ou de silicium.
On peut diminuer l'acidité du sol (I) par l'addition d'alcoxydes fonctionnalisés basiques afin d'accélérer la condensation, d'améliorer les propriétés mécaniques et de piéger les dopants sensibles aux protons. Parmi les alcoxydes utilisables, on peut citer par exemple :
- le 2-(triméthoxysilyl)éthyl-2-pyridine,
- le tri-méthoxysilylpropyldiéthylènetria-mine,
- le N-(2-aminoéthyl)-3-aminopropyltriméthoxysilane, - le 3-aminopropylméthyldiéthoxysilane,
- le 3-aminopropyltriéthoxysilane,
- le 3-isocyanatopropyltriéthoxysilane,
- le 3-thiocyanatopropyltriéthoxysilane,
- ra-minophényltriméthoxysilane, - le N-méthyla-minopropyltriméthoxysilane,
- le 3-(2-imidazolin-l-yl)propyltriéthoxysilane.
On peut également diluer le sol (I) dans un solvant organique, de préférence l'acétone, l'acétonitrile ou la pyridine. L'eau résiduelle présente dans la solution est évacuée par distillation sous vide primaire, de façon à obtenir un sol organique (lu) ayant une concentration de 3 à 10 moles/1 en atomes métalliques ou de silicium.
Afin d'apporter aux verres denses transparents obtenus par le procédé tel que défini ci-dessus, des propriétés mécaniques (élasticité, rigidité, dureté) ou optiques (indice optique, couleur), une forme particulière de l'invention consiste à doper le sol (I), (II) ou (lu) tel que défini précédemment, par addition d'un dopant en solution aqueuse ou organique, approprié pour l'application envisagée et compatible dans le milieu aqueux du sol (I), aqueux ou organique du sol (II) ou le milieu organique du sol (III). Après dopage, la solution résultante est concentrée, le cas échéant, par distillation sous vide primaire, de façon à obtenir un sol dopé aqueux ou organique (IV) ayant une concentration de 3 à 10 moles/1 en atomes métalliques ou de silicium.
Les dopants utilisés conformément à la présente invention, sont des composés organiques actifs tels que les colorants laser, des systèmes biologiques tels que des enzymes et/ou des agrégats, par exemple des amas semi-conducteurs ou magnétiques.
A titre de dopants particuliers, on utilise selon l'invention des précurseurs alcoxydes sur lesquels sont greffées à la fois des molécules actives optiquement et/ou des fonctions basiques (aminés), ce qui permet d'augmenter sensiblement la concentration en dopants en évitant une séparation de phase.
Les dopants sont utilisés de préférence dans des concentrations comprises entre 0,01 et 1% en poids par rapport au poids total du verre final. Les sols aqueux ou organiques (I), (II), (lu) ou (IV) obtenus selon les procédés définis précédemment, peuvent être stockés avant leur mise en forme pendant plusieurs semaines à basse température, par exemple dans un congélateur.
Ces sols sont ensuite mis en forme au moment de l'emploi selon l'application envisagée. us peuvent être coulés dans un moule approprié de forme déterminée, par exemple en téflon ou en polypropylène, pour l'obtention de monoblocs.
Ils peuvent également être déposés en couche mince sur un substrat tel que le verre, le silicium, la silice amorphe ou un métal. On utilise de préférence la technique de centrifugation (ou spin-coating) pour obtenir des films transparents de faible épaisseur ou des couches minces transparentes de haute densité pouvant être utilisés dans de nombreuses applications industrielles, notamment l'industrie de l'optique, en particulier la fabrication des lentilles ophtalmiques.
Les verres denses obtenus selon le procédé de la présente invention présentent une porosité "fermée". On entend par porosité fermée, une porosité caractérisée par une taille des pores suffisamment petite pour empêcher la pénétration de molécules d'hélium. Les valeurs de la densité au pychnomètre à mercure et au pychnomètre à hélium sont identiques.
A titre d'exemple, un verre dense à base de tétraéthoxysilane (TEOS) présente les densités suivantes : dHg = 1,66 et dHe = 1,68. Un verre dense à base de méthyltriéthoxysilane (MTEOS) présente les densités suivantes : dHg = 1,50 et dHe = 1 ,48.
Les verres denses selon l'invention présentent en outre des possibilités de polissage sans fissuration du verre.
La rugosité de surface est inférieure à 10 nm. Après polissage, la transparence est supérieure à 94% à 632 nm pour les verres non dopés de 1 cm d'épaisseur. Elle est par exemple supérieure à 98% pour des verres en vinyltriéthoxysilane (VTEOS).
L'invention peut être en particulier appliquée pour l'obtention de couches minces dans des revêtements anti-reflets.
Les sols peuvent être réduits sous forme de fibres par extrusion ou filage pour la fabrication des fibres de verre.
Les exemples qui suivent servent à illustrer l'invention sans toutefois présenter un caractère limitatif.
EXEMPLES Exemple 1
Les réactifs de départ sont les suivants :
- 22,3 cm- d'éthoxyde de silicium Si(OC2H5)4 ou tétraéthoxysilane (TEOS), soit 0,1 mole.
- 18 cm-* d'eau, soit 1 mole, dont le pH est ajusté à 2,5 par addition d'acide chlorhydrique.
- 35 cm- d'éthanol, soit 0,6 mole. Les différents constituants sont versés, à l'air libre, dans un flacon, avec agitation magnétique. L'évolution du mélange est suivie par Résonance Magnétique Nucléaire. La RMN du silicium 29 est une technique adaptée à l'étude des espèces chimiques contenant du silicium. On classe les espèces chimiques suivant le nombre d'atomes d'oxygène en premier voisin. Par exemple, les tétraèdres Siθ4 sont représentés par la lettre Q avec en exposant le nombre i d'oxygènes pontants (liaison Si-O-Si). Le spectre RMN du TEOS ne présente qu'un pic de résonance à -82 ppm caractéristique du monomère Q . La substitution OR par OH au cours de l'hydrolyse provoque un petit déplacement vers les champs faibles (+2 ppm) et la substitution de OH par un pont siloxane dans la condensation provoque, quel que soit le précurseur, un déplacement vers les champs forts de -9 ppm.
Après 30 minutes, les spectres montrent que l'hydrolyse du TEOS est pratiquement complète. L'hydrolyse et la condensation ont été bien séparées malgré un démarrage rapide de la condensation.
On réalise ensuite une distillation sous vide primaire (10"- mm de Hg ou 10" Torr) d'une solution riche en alcool (sous une pression de 95 mm Hg, le point d'ébullition de l'azéotrope eau-éthanol est de 33,4°C. La composition azéotropique est de 99,5% d'éthanol en masse). Après 2 heures de distillation, le volume de la solution est identique au volume de l'alcoxyde de départ (environ 22 cm-*). La concentration est d'environ 5 moles/1 en silicium. On obtient un liquide sirupeux dont le spectre RMN (figure 1) indique la présence d'un mélange
Figure imgf000012_0001
avec les proportions respectives de 12,9%, 59,1% et 28%. Le pourcentage d'oxygène pontant ou degré de condensation des atomes de silicium C = [-0-]/4[Si] est de 0,54. Le sirop est coulé dans un récipient en polypropylène et la gélification est observée après quelques heures. Un séchage de quelques jours à l'air permet d'obtenir un verre transparent dont la densité est de 1 ,86, soit environ 85% de la densité théorique de la silice. Un diagramme d'analyse calorimétrique est effectué à l'air libre en prenant une vitesse de montée en température de 10°C/min. On observe seulement un faible pic endotheπnique (au voisinage de 150°C) dû à un départ d'eau. Le pic exothermique dû à la combustion des produits organiques n'est pas observé dans le domaine 280-520°C, confirmant l'absence de résidus organiques. Le verre obtenu présente une porosité fermée; la surface spécifique mesurée par la méthode du
BET est de 0,5 m2/g au lieu de plusieurs dizaines de m2/g pour les xérogels classiques à porosité ouverte.
Exemple 2 On opère comme à l'exemple 1, mais en utilisant seulement 17,06 cm-* d'éthanol et 5,4 cm- d'eau à pH 2,5. Après séchage, on obtient un verre transparent dont la densité est de 1,88, soit environ 86% de la densité théorique de la silice.
Exemple 3
On opère comme à l'exemple 1, mais en remplaçant les 35 cm-* d'éthanol par le même volume d'acétone. Le sirop de concentration 5 moles/1 en silicium est obtenu après 15 minutes d'une distillation sous vide primaire (10"-* mm de Hg ou 10"-* Torr) d'une solution riche en acétone (sous une pression normale, le point d'ébullition de l'azéotrope eau-acétone est de 56°C au lieu de 78°C pour le système eau-éthanol). Après séchage, on obtient un verre transparent dont la densité est de 1,67, soit environ 76% de la densité théorique de la silice.
Exemple 4
On opère comme dans l'exemple 1 jusqu'à l'obtention du sirop. On ajoute 0,06 cm-* d'une solution aqueuse de potasse IM pour neutraliser l'acide nécessaire à l'hydrolyse. Après gélification et séchage, le gel obtenu a une densité de 1 ,60.
Exemple 5
Les réactifs de départ sont les suivants :
- 14,213 g de n-propoxyde de titane
Figure imgf000013_0001
- 1,6 cπv* d'acide chlorhydrique 10 M - 1,8 cm3 d'eau
- 20 cm3 d'isopropanol.
On réalise ensuite une distillation sous vide primaire (10"-* mm de
Hg) d'une solution riche en alcool. Après 1 heure de distillation, le volume de la solution est identique au volume de l'alcoxyde de titane de départ (environ 15 cm3). La concentration est d'environ 3 moles/1 en titane. On opère ensuite comme à l'exemple 1.
Exemple 6
On opère comme à l'exemple 1, mais en remplaçant les 0,1 mole d'éthoxyde de silicium Si(OC2H5) par 0,1 mole de méthyltriéthoxy- silane (MTEOS) MeSi(OEt)3. Le spectre RMN (figure 2) du liquide sirupeux indique la présence d'un mélange Q2/Q3 avec les proportions respectives de 57,7% et 42,3%. Le pourcentage d'oxygène pontant ou degré de condensation des atomes de silicium C = [-0-]/3[Si] est de 0,86. Après gélification et séchage, le gel obtenu a une densité de
1,25.
Exemple 7
On opère comme à l'exemple 1, mais en remplaçant les 0,1 mole d'éthoxyde de silicium Si(OC2H5)4 par 0,1 mole de phényltriéthoxy- silane (φ TEOS) φSi(OEt)3. Le spectre RMN (figure 3) du liquide sirupeux indique la présence d'un mélange Q /Q /Q avec les proportions respectives de 25,2%, 60,2% et 14,6%. Le pourcentage d'oxygène pontant ou degré de condensation des atomes de silicium C = [-0-]/3[Si] est de 0,63. Après gélification et séchage, le gel obtenu a une densité de 1,25.
Exemple 8 On opère comme à l'exemple 1, mais en remplaçant les 0,1 mole d'éthoxyde de silicium Si(OC2H<5)4 par 0,05 mole de méthyltriéthoxy- silane (MTEOS) MSi(OEt)3 et 0,05 mole de 3-aminopropylméthyl- diéthoxysilane H2NCH2CH2CH2SiMe(OEt)2 (APMDEOS). Le spectre RMN (figure 4) du liquide sirupeux indique : - la présence d'un mélange Q2/Q3 dérivant de MTEOS avec les proportions respectives de 14% et 86%. Le degré de condensation des atomes de silicium est de 0,95.
- la présence d'un mélange D*/D2 dérivant de APMDEOS avec les proportions respectives de 9,2% et 90,8%. Le degré de condensation des atomes de silicium est de 0,95.
Le sirop est ensuite déposé en couche mince sur un substrat de verre, en utilisant la technique de centrifugation. L'épaisseur est de 5 μm.
Exemple 9
On opère comme à l'exemple 2, mais en remplaçant les 0,1 mole d'éthoxyde de silicium Si(OC2H5)4 par 0,1 mole de 3-aminopropyl- triéthoxysilane (APTEOS). Le sirop est ensuite déposé en couche mince sur un substrat de verre, en utilisant la technique de la centrifugation. L'épaisseur est de 3 μm et l'indice optique de 1 ,4876
(mesurée à 633 nm).
Exemple 10
On opère comme à l'exemple 1, mais en remplaçant 0,05 mole d'éthoxyde de silicium Si OC2H5)4 par 0,05 mole de (mercapto- méthyl)méthyldiéthoxysilane HSCH2SiMe(OEt)2 (3MDEOS). Le spectre RMN (figure 5) du liquide sirupeux indique :
- la présence d'un mélange Q /Q3/Q dérivant de TEOS avec les proportions respectives de 17%, 63,4% et 19,6%. Le degré de condensation des atomes de silicium est de 0,75.
- la présence d'un mélange D*/D2 dérivant de 3MDEOS avec les proportions respectives de 15,5% et 84,5%. Le degré de condensation des atomes de silicium est de 0,92.
Le sirop est ensuite déposé en couche mince sur un substrat de verre, en utilisant la technique de centrifugation (ou spin coating).
L'épaisseur est de 6 μm.
Exemple 11
On opère comme dans l'exemple 1. Après dopage avec la Rhodamine 6G de façon à obtenir une concentration finale de 10"4 mole/1 en colorant, le sirop dilué dans l'acétone est déposé en couche mince sur un substrat de verre, en utilisant la technique de centrifugation (ou spin coating). Les spectres optiques sont présentés figure 6. L'épaisseur du film est de 0,5 μm.
Exemple 12
On opère comme dans l'exemple 1 jusqu'à l'obtention du sirop. A 20 cm3 de sirop ayant une concentration d'environ 5 moles/1 de silicium, on ajoute le même volume de tampon acétique. La solution est ensuite concentrée par distillation sous vide jusqu'au volume de 3 cm3. Après gélification et séchage, le gel obtenu a une densité de 1,76, soit environ 80% de la densité théorique de la silice.
Exemple 13 On opère comme à l'exemple 6 jusqu'à l'obtention du sirop. A 20 cm3 de sirop dont la concentration est d'environ 5 moles/1 en silicium, on ajoute le même volume de pyridine. La solution est ensuite concentrée par distillation sous vide primaire (10"3 mm de Hg) jusqu'à l'obtention d'un volume final de 20 cm3. On ajoute 0,2 cm3 d'une solution du colorant pyrrométhéne 567 [ l,3,5,7,8-pentaméthyl-2,6- diéthylpyrrométhéne - BF2 complexe] de façon à obtenir une concentration finale de 10"4 moleΛ en colorant. Après gélification et séchage, le gel obtenu a une densité de 1 ,27.
Exemple 14
On opère comme à l'exemple 1 , mais en remplaçant les 0,1 mole d'éthoxyde de silicium Si(OC2H5)4 par 0,1 mole de vinyltriéthoxy- silane (VTEOS) CH2=CH-Si(OEt)3. Le liquide sirupeux est dopé avec la Rhodamine 6G [0-(6-éthylamino-3-éthylimino-2,7-diméthyl-3H- xanthen-9-yl éthy lester d'acide benzoïque] de façon à obtenir une concentration finale de 10"4 mole/1 en colorant. Après gélification et séchage à 60°C, le gel obtenu a une densité de 1 ,31.
Exemple 15 On prépare une solution A de rouge fluorescent ou d'europium
(El) thénoyltrifluoroacétonate en solution dans l'acétone (6.10"3 mole/1).
On prépare une solution B de 3-(2-imidazolin-l-yl)propyl- triéthoxysilane dans l'éthanol (0,1 mole/1). On introduit 2,2 cm3 de la solution A et 0,25 cm3 de la solution B dans 24 cm3 d'un des sirops VTEOS ou MTEOS préparés comme dans les exemples 14 et 6. On extrait sous vide primaire 11 cm3 de solvant et on coule dans un pot en polypropylène.
Après séchage à 60°C pendant 2 semaines, on obtient un verre qui, après polissage, présente une rugosité de surface de 5 nm.
Exemple 16
On prépare une solution A de pyrrométhéne 567 en solution dans l'acétone (1,5.10"2 mole/1). On prépare une solution B d'un des précurseurs alcoxydes basiques dans l'éthanol (0,1 mole/1).
On introduit dans 24 cm3 d'un des sirops VTEOS, MTEOS ou φTEOS préparés comme dans les exemples 14, 6 et 7 :
1) 1,5 cm3 de la solution A. On extrait sous vide primaire 3 cm de solvant. 2) 0,25 cm3 de la solution B. On extrait sous vide primaire 1 cm3 de solvant et on coule dans un pot en polypropylene. Après séchage à 60°C pendant 1 à 4 semaines, on obtient un verre qui, après polissage, présente une rugosité de surface de 4 nm.
Exemple 17
On prépare une solution A de rhodamine greffée (schéma de synthèse ci-dessous) en solution dans l'éthanol (2.10"2 mole/1).
On introduit 7,2 cm3 de la solution A dans 24 cm3 d'un sirop de VTEOS préparé comme dans l'exemple 14. On extrait sous vide primaire 15 cm3 de solvant.
Après séchage à 60°C pendant 1 à 4 semaines, on obtient un verre qui, après polissage, présente une rugosité de surface de 2 nm.
S=C=N
Figure imgf000018_0001
H SH
Figure imgf000018_0002

Claims

REVENDICATIONS 1. Procédé de fabrication de verres denses transparents obtenus à partir d'alcoxydes de silicium ou de métal par voie sol-gel, caractérisé par le fait qu'il comprend les étapes suivantes :
A/ On réalise une hydrolyse complète d'une solution contenant un ou plusieurs alcoxydes de métal ou de silicium, dans un solvant ou un mélange de solvants organiques du ou des alcoxydes par une solution aqueuse acide de pH inférieur ou égal à 3; le milieu réactionnel ne contenant pas d'agent complexant du métal présent dans le ou les alcoxydes;
B/ On élimine le ou les solvant(s) organique(s) et les alcools résiduels, et on concentre la solution obtenue par distillation sous vide primaire de façon à obtenir un sol (I) sirupeux ayant une concentration de 3 à 10 moles/1 en atomes métalliques ou de silicium;
C/ On met le sol sous une forme appropriée pour l'application envisagée;
D/ On effectue la gélification et le séchage à l'air ou sous atmosphère inerte à une température inférieure à 70°C;
E/ Le verre peut être éventuellement recuit à l'air ou en atmosphère inerte à une température inférieure à 500° C.
2. Procédé selon la revendication 1, caractérisé par le fait que l'alcoxyde de silicium ou de métal est choisi parmi :
(i) les alcoxydes de formule :
M - (OR!)χ (1) dans laquelle M désigne le silicium ou un métal choisi parmi le silicium, le zirconium IV, le titane IV, l'aluminium, l'hafhium IV; R désigne un alkyle ayant 1 à 7 atomes de carbone et x vaut 3 ou 4; (ii) l'alcoxyde de formule :
(R20)3 - Si-O-Al - (OR3)2 (2) dans laquelle R2 et R3, indépendamment l'un de l'autre, désignent un radical alkyle ayant 1 à 7 atomes de carbone; (iϋ) les alcoxydes de formule :
(R4)z - Si - (OR5)4.z (3) dans laquelle R5 désigne un alkyle ayant 1 à 7 atomes de carbone, z vaut 1 ou 2, R4 désigne une chaîne carbonée non hydrolysable, substituée ou non par un ou plusieurs groupes fonctionnels;
(iv) ou leurs mélanges.
3. Procédé selon la revendication 1 ou 2, caractérisé par le fait que les solvants organiques des alcoxydes sont choisis parmi les alcools inférieurs ou les cétones inférieures.
4. Procédé selon la revendication 2, caractérisé par le fait que dans la formule (3), le radical R4 désigne une chaîne carbonée non hydrolysable choisie parmi un alkyle en Cj-Cy, un groupe alcényle en OJ-C7 ou un groupe aryle pouvant comporter un ou plusieurs groupements hydroxyle, amino, thiol, carboxylique, ester, halogéno, isocyanate.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé par le fait que les alcoxydes métalliques sont choisis parmi : l'éthoxyde de silicium, le n-propoxyde de titane, le (dibutyl- oxyaluminooxy)-triéthoxysilane, le 3-aminopropyltriéthoxysilane, le 3-isocyanatopropyltriéthoxysilane, le 3-mercaptopropyltriéthoxy- silane, aminophényltriéthoxysilane, le (mercaptométhyl)méthyl- diéthoxysilane, le tridécafluoro 1,1,2,2-tétrahydrooctyl-l triéthoxy- silane, le chloropropyltriéthoxysilane, l'amyltriéthoxysilane, le méthyltriéthoxysilane, le vinyltriéthoxysilane, le phényltriéthoxy- silane ou le diméthyldiéthoxysilane, ainsi que leurs mélanges.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé par le fait que lorsque les alcoxydes de départ sont du type alcoxyde métallique, le pH de la solution aqueuse acide d'hydrolyse est négatif.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé par le fait que la quantité d'eau utilisée pour l'étape d'hydrolyse est comprise entre 0,75 et 4 moles d'eau par mole de fonction hydrolysable.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé par le fait que l'on effectue dans l'étape (B) une distillation azéotropique sous vide primaire.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé par le fait que le sol (I) obtenu dans l'étape (B) présente une concentration de 4 à 10 moles/1, et de préférence 5 à 10 moles/1 en atomes métalliques ou de silicium.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé par le fait qu'avant l'étape de mise en forme (C), on diminue l'acidité du sol (I) obtenu dans l'étape (B), en neutralisant partiellement ou totalement l'acide nécessaire à l'hydrolyse par addition de tampon ou de base en solution aqueuse ou organique, puis on concentre si nécessaire la solution résultante selon les conditions de l'étape (B) pour obtenir un sol aqueux ou organique (II) ayant une concentration de 3 à 10 moles/1 en atomes métalliques ou de silicium. 11. Procédé selon la revendication 10, caractérisé par le fait qu'on additionne des alcoxydes fonctionnalisés basiques.
12. Procédé selon la revendication 11, caractérisé par le fait que les alcoxydes fonctionnalisés sont choisis parmi :
- le 2-(triméthoxysilyl)éthyl-2-pyridine, <- - le triméthoxysilylpropyldiéthylènetriamine,
- le N-(2-aminoéthyl)-3-aminopropyltriméthoxysilane,
- le 3-aminopropylméthyldiéthoxysilane,
- le 3-aminopropyltriéthoxysilane,
- le 3-isocyanatopropyltriéthoxysilane, - le 3-thiocyanatopropyltriéthoxysilane,
- aminophényltriméthoxysilane,
- le N-méthylaminopropyltriméthoxysilane,
- le 3-(2-imidazolin-l-yl)propyltriéthoxysilane.
13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé par le fait qu'avant l'étape de mise en forme (C), on dilue le sol (I) obtenu dans l'étape (B), dans un solvant organique, puis on élimine l'eau résiduelle par distillation sous vide primaire jusqu'à l'obtention d'un sol organique (lu) ayant une concentration de 3 à 10 molesΛ en atomes métalliques ou de silicium. 14. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé par le fait qu'avant l'étape de mise en forme (C), on dope le sol aqueux (I), le sol aqueux ou organique (II) selon la revendication 10 ou le sol organique (III) selon la revendication 13, par addition d'un dopant en solution, approprié pour l'application envisagée et compatible avec le milieu du sol (I), (H) ou (lu), puis on effectue une distillation sous vide primaire de la solution résultante jusqu'à obtention d'un sol aqueux ou organique dopé (IV) ayant une concentration de 3 à 10 moles/1 en atomes métalliques ou de silicium.
15. Procédé selon la revendication 14, caractérisé par le fait que les dopants sont choisis parmi les colorants laser, les systèmes biologiques, les précurseurs alcoxydes greffés par des molécules actives optiquement et/ou des fonctions basiques.
16. Procédé selon la revendication 14 ou 15, caractérisé par le fait que le dopant est présent dans des concentrations comprises entre 0,01 et 1% en poids par rapport au poids total du verre final.
17. Procédé selon l'une quelconque des revendications 1 à 16, caractérisé par le fait que le sol (I), (II), (lu) ou (IV) est stocké pendant plusieurs semaines à basse température avant sa mise en forme. 18. Procédé selon l'une quelconque des revendications 1 à 17, caractérisé par le fait que le sol (I), (H), (III) ou (IV) est coulé dans un récipient puis soumis aux conditions de l'étape (D) définies dans la revendication 1.
19. Procédé selon l'une quelconque des revendications 1 à 17, caractérisé par le fait que le sol (I), (II), (III) ou (IV) est déposé en couche mince sur un substrat puis soumis aux conditions de l'étape (D) définies selon la revendication 1.
20. Procédé selon la revendication 18, caractérisé par le fait que le dépôt en couche mince est réalisé selon la technique de centrifugation (spin-coating).
21. Procédé selon l'une quelconque des revendications 1 à 17, caractérisé par le fait que le sol (I), (II), (DI) ou (IV) est réduit en fibres par extrusion ou filage, puis soumis aux conditions de l'étape (D) définies selon la revendication 1. 22. Verre dense transparent susceptible d'être obtenu selon le procédé tel que défini dans l'une quelconque des revendications 1 à
21.
23. Film ou couche mince transparent susceptible d'être obtenu selon le procédé défini dans la revendication 19. 24. Utilisation du film ou couche mince selon la revendication 23, pour la fabrication des verres optiques, en particulier des lentilles ophtalmiques.
25. Utilisation des sols (I), (II), (UT) ou (IV) obtenus selon le procédé défini selon l'une quelconque des revendications 1 à 17, pour la fabrication de films ou couches minces transparents ou de fibres de verres.
PCT/FR1994/000513 1993-05-04 1994-05-04 Procede de fabrication de verres denses transparents obtenus a partir d'alcoxydes de silicium ou de metal par voie sol-gel, et verres obtenus selon ce procede WO1994025406A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR93/05301 1993-05-04
FR9305301A FR2704851B1 (fr) 1993-05-04 1993-05-04 Procédé de fabrication de verres denses transparents obtenus à partir d'alcoxydes de silicium ou de métal par voie sol-gel, et verres obtenus selon ce procédé.

Publications (1)

Publication Number Publication Date
WO1994025406A1 true WO1994025406A1 (fr) 1994-11-10

Family

ID=9446729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1994/000513 WO1994025406A1 (fr) 1993-05-04 1994-05-04 Procede de fabrication de verres denses transparents obtenus a partir d'alcoxydes de silicium ou de metal par voie sol-gel, et verres obtenus selon ce procede

Country Status (2)

Country Link
FR (1) FR2704851B1 (fr)
WO (1) WO1994025406A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5777032A (en) * 1996-03-04 1998-07-07 Menicon Co., Ltd. Ocular lens and a method for its production
FR2774998A1 (fr) * 1998-02-19 1999-08-20 Ecole Polytech Materiau photochromique a variation stable d'indice de refraction et/ou de birefringence
FR2787100A1 (fr) * 1998-12-15 2000-06-16 Essilor Int Procede de preparation d'un sol organosilicie et materiaux obtenus a partir d'un tel sol
US7867577B2 (en) 2008-05-15 2011-01-11 Essilor International (Compagnie Generale D'optique) Sulfur modified silanes for the elaboration of high refractive index materials
WO2011128338A1 (fr) 2010-04-12 2011-10-20 Universite Claude Bernard Lyon I Méthode de préparation de matériaux composites obtenus par condensation rapide d'un sol organosilicone
EP3945360A1 (fr) 2020-07-29 2022-02-02 Cristal Laser Dispositif électro-optique à deux cristaux électro-optiques et procédé de fabrication
CN117303736A (zh) * 2023-09-18 2023-12-29 哈尔滨理工大学 一种含有机硅组份的生物活性玻璃及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITNO20020009A1 (it) 2002-07-12 2004-01-12 Novara Technology Srl "processo sol-gel per la preparazione di film vetrosi con elevate proprieta' di adesione e soluzioni colloidali stabili adatte alla loro rea

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2086367A (en) * 1980-10-30 1982-05-12 Central Glass Co Ltd Producing glass from silicon alkoxide solution
JPS58181735A (ja) * 1982-04-19 1983-10-24 Seiko Epson Corp 石英ガラスの製造法
US4680049A (en) * 1986-08-15 1987-07-14 Gte Laboratories Incorporated Process for molding optical components of silicate glass to a near net shape optical precision
JPS63134525A (ja) * 1986-11-20 1988-06-07 Seiko Epson Corp ガラスの製造方法
JPH01278413A (ja) * 1988-04-28 1989-11-08 Seiko Epson Corp シリカゾルの製造方法
US5019146A (en) * 1989-04-28 1991-05-28 Hoya Corporation Method for producing glass
US5068208A (en) * 1991-04-05 1991-11-26 The University Of Rochester Sol-gel method for making gradient index optical elements

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2086367A (en) * 1980-10-30 1982-05-12 Central Glass Co Ltd Producing glass from silicon alkoxide solution
JPS58181735A (ja) * 1982-04-19 1983-10-24 Seiko Epson Corp 石英ガラスの製造法
US4680049A (en) * 1986-08-15 1987-07-14 Gte Laboratories Incorporated Process for molding optical components of silicate glass to a near net shape optical precision
JPS63134525A (ja) * 1986-11-20 1988-06-07 Seiko Epson Corp ガラスの製造方法
JPH01278413A (ja) * 1988-04-28 1989-11-08 Seiko Epson Corp シリカゾルの製造方法
US5019146A (en) * 1989-04-28 1991-05-28 Hoya Corporation Method for producing glass
US5068208A (en) * 1991-04-05 1991-11-26 The University Of Rochester Sol-gel method for making gradient index optical elements

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 8348, Derwent World Patents Index; AN 83-830481 *
DATABASE WPI Week 8828, Derwent World Patents Index; AN 88-195466 *
DATABASE WPI Week 8951, Derwent World Patents Index; AN 89-373412 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5777032A (en) * 1996-03-04 1998-07-07 Menicon Co., Ltd. Ocular lens and a method for its production
FR2774998A1 (fr) * 1998-02-19 1999-08-20 Ecole Polytech Materiau photochromique a variation stable d'indice de refraction et/ou de birefringence
FR2787100A1 (fr) * 1998-12-15 2000-06-16 Essilor Int Procede de preparation d'un sol organosilicie et materiaux obtenus a partir d'un tel sol
WO2000035818A1 (fr) * 1998-12-15 2000-06-22 Essilor International - Compagnie Generale D'optique Procede de preparation d'un sol organosilicie et materiaux obtenus a partir d'un tel sol
US6624237B2 (en) 1998-12-15 2003-09-23 Essilor International Compagnie Generale D'optique Method for preparing an organo-silicon sol and materials obtained from such sol
US7157518B2 (en) 1998-12-15 2007-01-02 Essilor International Compagnie Generale D'optique Method for preparing an organo-silicon sol and materials obtained from such a sol
US7867577B2 (en) 2008-05-15 2011-01-11 Essilor International (Compagnie Generale D'optique) Sulfur modified silanes for the elaboration of high refractive index materials
US8063237B2 (en) 2008-05-15 2011-11-22 Essilor International (Compagnie Generale D'optique) Sulfur modified silanes for the elaboration of high refractive index materials
WO2011128338A1 (fr) 2010-04-12 2011-10-20 Universite Claude Bernard Lyon I Méthode de préparation de matériaux composites obtenus par condensation rapide d'un sol organosilicone
US8901185B2 (en) 2010-04-12 2014-12-02 Universite Claude Bernard Lyon I Hybrid organic-inorganic material constituted by a silica network having photochromic agents and optical power limiting agents as a doping agent in the material
EP3945360A1 (fr) 2020-07-29 2022-02-02 Cristal Laser Dispositif électro-optique à deux cristaux électro-optiques et procédé de fabrication
FR3113147A1 (fr) 2020-07-29 2022-02-04 Cristal Laser dispositif électro-optique à deux cristaux électro-optiques et procédé de fabrication
CN117303736A (zh) * 2023-09-18 2023-12-29 哈尔滨理工大学 一种含有机硅组份的生物活性玻璃及其制备方法

Also Published As

Publication number Publication date
FR2704851B1 (fr) 1995-06-30
FR2704851A1 (fr) 1994-11-10

Similar Documents

Publication Publication Date Title
CA2714279C (fr) Materiau hybride organique-inorganique, couche mince optique de ce materiau, materiau optique les comprenant, et leur procede de fabrication
EP1140716B1 (fr) Procede de preparation d&#39;un sol organosilicie et materiaux obtenus a partir d&#39;un tel sol
EP0927144B1 (fr) Substrat a proprietes hydrophiles ou hydrophobes ameliorees, comportant des irregularites
EP1789508B1 (fr) Procede de fabrication d&#39;un substrat revetu d&#39;une couche mesoporeuse et son application en optique ophtalmique
EP0970025B1 (fr) Procede de preparation d&#39;un materiau optique multicouches avec reticulation-densification par insolation aux rayons ultraviolets et materiau optique ainsi prepare
EP0961756B1 (fr) Materiau polymerique inorganique a base d&#39;oxyde de tantale, notamment a indice de refraction eleve, mecaniquement resistant a l&#39;abrasion, son procede de fabrication, et materiau optique comprenant ce materiau
EP0429325A1 (fr) Procédé de préparation d&#39;une composition de revêtement à indice de réfraction élevé à base de polysiloxanes et de titanates et composition obtenue
EP0708929A1 (fr) Materiau composite a indice de refraction eleve, procede de fabrication de ce materiau composite et materiau optiquement actif comprenant ce materiau composite
FR2571356A1 (fr) Procede de preparation de verre de silice dopee
AU8000398A (en) Process for depositing optical layers
EP1204621A1 (fr) Procede de traitement de materiau architectural
EP0998534B1 (fr) Dispersion de particules de titane comprenant un liant a base d&#39;un polyorganosiloxane
WO1994025406A1 (fr) Procede de fabrication de verres denses transparents obtenus a partir d&#39;alcoxydes de silicium ou de metal par voie sol-gel, et verres obtenus selon ce procede
FR2738836A1 (fr) Substrat a proprietes photocatalytiques a base de dioxyde de titane et dispersions organiques a base de dioxyde de titane
EP0693186B1 (fr) Procede de fabrication de couches minces presentant des proprietes optiques et des proprietes de resistance a l&#39;abrasion
CA2894232A1 (fr) Substrat transparent, notamment substrat verrier, revetu par au moins une couche poreuse au moins bifonctionnelle, procede de fabrication et applications
FR2789070A1 (fr) Composition pour la production d&#39;un verre de silice au moyen d&#39;un procede sol-gel
JPH06299091A (ja) 反射防止膜形成用コーティング組成物
EP1153001B1 (fr) Procede de traitement d&#39;un substrat par des particules photocatalytiques de maniere a rendre ledit substrat autonettoyant
EP2582622A1 (fr) Utilisation de nanoparticules pour le stockage &#34;sec&#34; longue duree de radicaux peroxydes
WO2003002572A1 (fr) Composition et procede de traitement de surface
FR2767808A1 (fr) Procede de fabrication de verre de silice
EP2643270B1 (fr) Preparation de sols d&#39;oxydes metalliques stables, utiles notamment pour la fabrication de films minces a proprietes optiques et resistants a l&#39;abrasion
CN1113044C (zh) 石英玻璃组合物
FR2946638A1 (fr) Nouveau procede de preparation de nanoparticules cristallines a partir d&#39;une vitroceramique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase