WO1994024043A1 - Method and apparatus for ozone decomposition by stimulated emission of electromagnetic wave - Google Patents

Method and apparatus for ozone decomposition by stimulated emission of electromagnetic wave Download PDF

Info

Publication number
WO1994024043A1
WO1994024043A1 PCT/JP1994/000580 JP9400580W WO9424043A1 WO 1994024043 A1 WO1994024043 A1 WO 1994024043A1 JP 9400580 W JP9400580 W JP 9400580W WO 9424043 A1 WO9424043 A1 WO 9424043A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
air
wavelength
oxygen
singlet oxygen
Prior art date
Application number
PCT/JP1994/000580
Other languages
French (fr)
Japanese (ja)
Inventor
Tadashi Mochizai
Makoto Minamidate
Original Assignee
Wada, Tetsuro
Kabushiki Kaisha Humanecology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11092993A external-priority patent/JP3255488B2/en
Priority claimed from JP13269493A external-priority patent/JP3428069B2/en
Priority claimed from JP13269593A external-priority patent/JP3365819B2/en
Application filed by Wada, Tetsuro, Kabushiki Kaisha Humanecology filed Critical Wada, Tetsuro
Priority to AU64369/94A priority Critical patent/AU6436994A/en
Publication of WO1994024043A1 publication Critical patent/WO1994024043A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • A61L2/202Ozone
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds

Definitions

  • the present invention converts high-concentration ozone to ground state oxygen via singlet oxygen, utilizes transition energy and decomposes residual ozone, thereby disinfecting air and water for environmental conservation. Or about deodorization of air or water.
  • the present invention increases the dissolved oxygen in water such as clean water, medium water, sewage, well water, rivers, lakes, marshes, oceans, and wastewater, and purifies the dissolved oxygen in water for purification and sterilization.
  • water such as clean water, medium water, sewage, well water, rivers, lakes, marshes, oceans, and wastewater.
  • Known methods for decomposing residual ozone include an activated carbon adsorption method in which ozone is adsorbed on activated carbon, a thermal decomposition method in which ozone is decomposed by heat, and a decomposition method using a catalyst.
  • the method of treating residual ozone generated by ultraviolet rays irradiated when sterilizing air, disinfecting water, or activating a certain substance using high-concentration ozone is as described above.
  • the use of activated carbon adsorption, thermal decomposition and catalytic decomposition methods is inappropriate for decomposing large volumes of ozone, and the lack of appropriate treatment methods still poses a major barrier to the advanced use of ozone. Had become.
  • An object of the present invention is to solve the above-mentioned problems.
  • An object of the present invention is to ozone decompose regardless of a gaseous phase or a liquid phase to reduce to basal oxygen and sterilize the ozone.
  • An object of the present invention is to provide a method for dissolving air and water by the method and a method for decomposing ozone, which can supply sterile water with high dissolved oxygen. Disclosure of the invention
  • the method for decomposing ozone of the present invention does not achieve the above-mentioned object.
  • the means is to irradiate the ozone with ultraviolet or ultraviolet laser light having a wavelength of 240 nm to 360 nm to generate singlet oxygen, and then to generate a singlet oxygen having a wavelength of 600 nm to 65 nm.
  • ultraviolet or ultraviolet laser light having a wavelength of 240 nm to 360 nm to generate singlet oxygen
  • a singlet oxygen having a wavelength of 600 nm to 65 nm.
  • the method of sterilizing, deodorizing, and purifying air is ultraviolet light with a wavelength of 200 nm or less.
  • Irradiation with ultraviolet laser light, or air containing ozone generated by a discharge-type ozonizer, is applied to a wavelength of 240 to 36
  • Irradiation with ultraviolet light or ultraviolet laser light of 0 nm generates singlet oxygen, and the singlet oxygen is exposed to visible light or a visible light laser having a wavelength of 600 to 65 nm—wavelength 1
  • Irradiation of near-infrared or near-infrared laser light of 200 to 130 nm is performed individually, simultaneously or sequentially, and transitions to ground state oxygen by stimulated emission of singlet oxygen electromagnetic waves.
  • Ionizing means such as air for electrostatic electrostatic precipitators that collect and ionize air obtained by blowing or sucking air into ducts and casings, and irradiating ultraviolet rays and ultraviolet laser light with a wavelength of 200 nm or less
  • the ozone may be decomposed by using an ozone generating means for generating ozone in the ionized air by a discharge type ozonizer.
  • the present invention also enables the generation of dissolved oxygen in water, by means of blowing ozone or a mixture of ozone and air into water to form air bubbles, and to generate ultraviolet rays 24 Irradiate at 0-360 nm to generate ozone into singlet oxygen, then visible light at 600-650 nm, near-infrared light at 1200-130 nm or laser light Are irradiated individually or simultaneously or sequentially to generate dissolved oxygen in water by utilizing the transition of excited singlet oxygen to ground state oxygen by stimulated emission of electromagnetic waves.
  • ozone ozone
  • ozone After irradiating ultraviolet rays 240 to 360 nm to one of the gaseous phases of mixed gas and air to generate ozone to singlet oxygen, visible light 600 to 65 nm or near infrared
  • the gas phase may be dissolved in water by showering the gas phase or by increasing the contact area between the gas phase and water by a fountain.
  • the above-described ozone can be expressed by the following equation.
  • the singlet oxygen molecule excited by the absorption of ultraviolet light has a wavelength of 600 ⁇ ⁇ !
  • visible light ⁇ 650 nm
  • the state transits to the ground oxygen state atom u ⁇ g and decomposes.
  • singlet oxygen Upon transition to such decomposed ground state oxygen, singlet oxygen is in an excited state with a high decomposition energy of 22.5 K ca 1 / o 1, and exhibits a strong bactericidal action, Sterilization, deodorization, and purification.
  • ozone or a mixed gas of ozone and air is blown into water, and ozone or ozone and air is introduced into raw water to be purified and sterilized.
  • ozone or ozone and air is introduced into raw water to be purified and sterilized.
  • the singlet oxygen is in a higher energy excited state of 22.5 Kca 1 / mo 1 than stable ground state oxygen, so that it exhibits a dehydrating action of hydrogen atoms in bacteria, that is, an oxidizing action, and Strongly sterilizes contained pollutants. Decomposes and purifies, and basal oxygen in bubbles dissolves in water to become dissolved oxygen in water.
  • singlet oxygen reacts with water in water to form a hydroxyl radical.
  • R H Organic matter or bacteria
  • singlet oxygen reacts with water to form a hydroxyl radical as shown in equation (4), deprives organic matter of hydrogen in water as shown in equation (5), and exhibits a bactericidal action. It dissolves ground state oxygen in water by dissolving in water.
  • FIG. 1 is a sectional view of an apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a sectional view of an apparatus according to a second embodiment of the present invention.
  • FIG. 3 is a perspective view of a third embodiment of the present invention.
  • FIG. 4 is a sectional view of the above.
  • FIG. 5 is a longitudinal sectional view of a fourth embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of the same.
  • FIG. 7 is a longitudinal sectional view of a fifth embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of the same. BEST MODE FOR CARRYING OUT THE INVENTION
  • the first embodiment of the present invention will be described below with reference to an ozone decomposing method for decomposing a mixed gas of ozone and air and an apparatus therefor.
  • a mixture of ozone and air is artificially generated in advance, and this is mixed with ultraviolet light of 254 nm, visible light of 633 nm, and It passes through a room having a light band irradiated with near infrared light of 127 nm.
  • the air sent from the air blower 1 is sent into the upper part of the ozone generating cylinder 2, and in the ozone generating chamber 2, the sent air is irradiated with a beam of an ozone generating lamp 3, and the sent air is When the gas reaches the lower part of the ozone generation chamber 2, a part of it reaches ozone 4.
  • the ozone 4 is sent to the singlet oxygen generation cylinder 6 through the lower communication pipe 5 and is irradiated with ultraviolet light having a wavelength of 253.7 nm by the ultraviolet irradiation pipe 7 so that the ozone 4 becomes singlet oxygen 8 Generate
  • the singlet oxygen 8 is further sent to the stimulated emission decomposition tube 10 through the upper communication pipe 9, and the stimulated emission decomposition tube 10 has a mirror 11 on the inner surface and a wavelength 6 3
  • An optical film 14 formed by guiding a 3 nm visible light He-Ne laser 12 through an optical fiber and irradiating it through a prism 13 is formed.
  • near-infrared light from a laser beam 15 irradiating near-infrared light with a wavelength of 127 nm is guided by an optical fiber and passed through a prism 16 to a mirror 11 1
  • the optical film 16 formed by irradiating the light is formed.
  • the singlet oxygen 8 sent to the stimulated emission decomposing cylinder 10 decomposes to ground state oxygen by performing stimulated emission of electromagnetic waves when passing through the first optical film 14,
  • the excited oxygen becomes completely stable ground state oxygen 17 and is discharged from the lower discharge port 18 o
  • an ozone concentration meter 21, 22, 23 is inserted into each communication pipe 5, 9, 18, and the ozone concentration is monitored by the monitor 20. Measurements were taken.
  • the passage amount in each of the communication pipes 5, 9, and 18 was 2 liters Z at room temperature of 18 ° C, and OZM manufactured by Octronics Co., Ltd. was used as the ozone concentration meter.
  • a type of gas phase of -2 1 1 2 to 2000 was used.
  • a mirror 34 extending inside 32 is extended and irradiated by a prism 36 to form a light film 37.
  • a light film 38 of visible light having a wavelength of 633 nm is formed above the light film 37 in the same manner as described above, and further, on the light film 38, The optical film 39 is formed in the same manner as described above by using near-infrared light having a wavelength of 127 nm which emits near-infrared light.
  • the dissolved ozone water 31 sent into the cylinder 32 from the lower entrance 33 of the cylinder 32 sequentially passes through the optical films 37, 38, and 39, and overflows from the upper part of the cylinder 32.
  • the same action as in the previous embodiment is performed, and the oxygen becomes stable ground state via singlet state oxygen. Things.
  • a dissolved ozone sensor 41 was installed at the top 40 of the cylinder 32, and the dissolved ozone sensor 41 was captured. Monitor the amount of dissolved ozone did.
  • the amount of passing water was 1 liter Z
  • the water temperature was 16 ° C
  • the dissolved ozone meter was a diaphragm port type graph model manufactured by Bionics Instruments Co., Ltd./Model 0C-110.
  • the measurement results are shown in the following table. Ozone concentration of dissolved ozone water before passing 7 P P M
  • the invention of the second embodiment is characterized in that the ultraviolet irradiation tube 7 for irradiating ultraviolet light having a wavelength of nm to 360 nm ultraviolet laser, 633 nm wavelength visible light He — Ne laser 12 to visible light laser, and 1270 nm laser light 1 5 is replaced with a near-infrared laser, which produces the same operation and effects as those of the above embodiments.
  • a duct fan 104 is installed in the duct 101 on the side of the air outlet 103 opposite to the air intake port 102 in the duct 101. Then, air is sucked from the air inlet 102.
  • a rough pre-filter 105 that adsorbs relatively large dust in the air is installed in the duct 101 on the side of the air intake 102.
  • the suction air from which the large particles have been removed by the pre-filter 105 passes through the ionizer 106, which is installed next to the pre-filter 105, so that the fine particles can be removed. Positively charged.
  • a negatively charged dust collecting plate 107 is provided, and the finely charged fine dust particles electrostatically adhere to the dust collecting plate 107.
  • the intake air is negatively charged, and is in a state easily oxidized.
  • an ultraviolet lamp 108 emits ultraviolet light with a wavelength of 185 nm, and further behind the ultraviolet lamp 108 emits ultraviolet light with a wavelength of 254 nm.
  • a second ultraviolet lamp 109 is installed, and a part of the intake air which is easily ozonized after passing through the dust collecting plate 107 is a part of the ultraviolet light from the ultraviolet lamp 108. Generated into ozone by irradiation. Further, ozone contained in the intake air is generated into singlet oxygen by ultraviolet light having a wavelength of 254 nm which is irradiated by the next ultraviolet lamp 109.
  • the duct 101 emits a visible light lamp 110 emitting visible light having a wavelength of 633 nm, and then emits near-infrared light having a wavelength of 12878 nm.
  • the near-infrared lamp 111 is installed, and the visible ray lamp 110 and the duct 101 where the near-infrared lamp 111 is installed reflect these rays.
  • the mirrors 112 and 113 are stretched, and the light beams are reflected by the mirrors 112 and 113 to form a visible light film and a near-infrared light film.
  • the above-mentioned intake air generated by converting ozone into singlet oxygen passes through the optical film of visible light and the optical film of near-infrared light sequentially. Irradiation with 3 nm visible light causes singlet oxygen molecules to transition to ground state oxygen molecules with stimulated emission of electromagnetic waves. The inhaled air that has passed through the visible light optical film then passes through the near infrared light film with a wavelength of 12878 nm. At this time, the ozone that has not been transitioned to the ground state oxygen molecule is Irradiation with near-infrared light of this wavelength causes singlet oxygen atoms to transition to ground state oxygen atoms.
  • irradiation of visible light and irradiation of near-infrared light are performed one after another.
  • the sirocco fan also has a means for blowing air to the duct. There is no need to install it if provided separately.
  • an inlet 202 for feeding raw water to be purified is provided at a lower part of the purifier 201, and the inlet 220 has a temperature of, for example, 19 ° C. and 30 liters min.
  • the purification column 201 Of raw water is sent into the purification column 201, and the supplied raw water flows upward in the purification column 201.
  • an air supply pipe 203 of an ozone for feeding air containing ozone is provided at a lower portion of the purification pipe 201, and a tip of the air supply pipe 203 is provided with a large number of air in the purification pipe 201.
  • a diffuser pipe 204 with perforations is provided, and the air containing ozone sent from the air supply pipe 203 passes through the pores of the diffuser pipe 204 into ozone bubbles in raw water. It floats in the purification column 201 together with the raw water while diffusing as 5, and for example, air containing ozone of 40 liters Z min is sent from the air supply pipe 203.
  • the diffuser tube 204 there are three UV lamps 206 that emit ultraviolet light with a wavelength of 254 nm.
  • the ozone in the ozone bubbles 205 is obtained.
  • a singlet oxygen molecule and a singlet oxygen atom are generated, and the bubble 205 becomes a bubble 205 containing the singlet oxygen molecule and the singlet oxygen atom.
  • This singlet oxygen atom reacts with water in water to form a hydroxyl radical as shown in equation (4), and as shown in equation (5), deprives the bacteria of the raw water of hydrogen and strongly exerts a bactericidal action on the raw water.
  • a high-power sodium lamp 208 having a power of 500 W and emitting visible light having a wavelength of 600 to 65 nm is installed.
  • the visible light emitted from the um lamp 208 irradiates the bubbles 210 containing the singlet oxygen molecules and the singlet oxygen atoms and floating with the raw water.
  • singlet oxygen molecules are transited to basal oxygen molecules with stimulated emission of electromagnetic waves as in the above equation (2).
  • an infrared lamp 209 with an output of 500 W that emits near-infrared light having a wavelength of 1200 nm is installed. After the visible light of the lithium lamp 208 is irradiated, near-infrared light is applied to the bubbles 207 floating with the raw water. Then, the singlet oxygen atom contained in the bubble is transited to the ground state oxygen atom with stimulated emission of the electromagnetic wave as in the above equation (3).
  • Irradiation with visible light at a wavelength of 600 nm and near-infrared light at a wavelength of 1200 nm causes the transition of the generated singlet oxygen to stable ground state oxygen as described above, so that it is contained in the bubbles.
  • the ozone that was released does not remain as residual ozone, but dissolves in the raw water as dissolved oxygen, and: 1: the dissolved oxygen in the raw water is strongly increased.
  • singlet oxygen is in an excited state with a higher energy of 22.5 Kca1 / mo1 than ground state oxygen, so that it exhibits a dehydrating action of hydrogen atoms in bacteria, that is, an oxidizing action, and sterilization and purification Will be performed.
  • the raw water that has been sterilized and purified and the amount of dissolved oxygen has been increased is discharged from the discharge port 210 provided at the upper part of the purification column 201. Although it is discharged in one flow, the ozone bubbles remaining in the raw water become airborne with a small amount of ozone remaining above the raw water, and the exhaust pipe 2 1 1 From the atmosphere.
  • the dissolved oxygen content in the raw water flowing in from the inflow port 202 was 7.2 ppm, but when it is discharged from the discharge port 210, the dissolved oxygen content should be 8.
  • the dissolved oxygen content should be 8.
  • an ozone-containing air blowing port 222 is provided at the upper part of the purification cylinder 222 having an inner diameter of 25 O mm, for example, a gas phase ozone concentration of 200 pPm. 40 liters of air containing air is blown downward.
  • a shower head 23 for spraying raw water downward into the purifier 22 in the form of a shower is provided at the upper part of the purifier 221, and for example, the number of E. coli 920 Zmg, Raw water containing the number of general bacteria 1 2 O Zmg is sprayed downward from the shower head 2 23 in the form of a mist and mixed with the air containing the ozone. Fall.
  • This excited and activated singlet oxygen is in an excited state with a higher energy of 22.5 Kca 1 / o 1 than stable basal oxygen, and this singlet oxygen atom is When it reacts with water and falls as hydroxyl radical-containing water as shown in equation (4), it deprives the raw water of the water as shown in equation (5), dehydrating hydrogen atoms in bacteria, It has an oxidizing effect and has a strong bactericidal effect against Escherichia coli and general bacteria contained in raw water.
  • a high-pressure sodium lamp 225 emitting a wavelength of 600 nm as in the previous embodiment, and further below the near infrared ray having a wavelength of 130 nm
  • An infrared lamp 222 that emits water is installed, and sterilization is performed as described above, and raw water falling in a spray state is irradiated in the order of visible light and near-infrared light.
  • This irradiation causes some singlet oxygen to transition to stable ground state oxygen, releasing the high energy, disinfecting Escherichia coli and general bacteria in raw water, and dissolving in water to dissolve in water. It becomes dissolved oxygen and becomes water with a large amount of dissolved oxygen.
  • the dissolved oxygen is high, and the water that has been sterilized and purified is collected in the bottom portion 227 of the purification cylinder 221.
  • the communication pipe 228 provided in the bottom portion 227 is provided. Is stored in the storage section 229 through the outlet, overflows and flows out from the discharge port 230, and is used as treated aseptic water, which contains active oxygen that could not be dissolved in the water Is discharged into the atmosphere from an exhaust pipe 231, which is provided on the lower side surface of the purifier 22.
  • the numbers of Escherichia coli and general viable bacteria contained in the treated water taken out from the discharge port 230 are all sterilized to 0, and the exhaust gas discharged from the exhaust pipe 231
  • the concentration of gaseous ozone in water is reduced to 0.08 ppm, and the concentration of liquid ozone is also 0. From 6.2 ppm before treatment to 8.4 ppm (industrial availability
  • the decomposition method of the present invention unlike the conventional thermal decomposition method, the decomposition method using a catalyst, the activated carbon adsorption method, and the like, oxygen is revived to decompose to ground state oxygen via singlet oxygen in the decomposition process, and air is recovered. Is sterilized by the decomposition energy at the same time as it is sterilized, and therefore, by incorporating it as an air conditioning duct or air purifier, not only hospital infections, which are currently a problem, but also air in buildings Is achieved.
  • Dissolved ozone water is also decomposed in the same way, eliminating the harm caused by dissolved ozone. This has the effect that it becomes possible.
  • the sterilization / deodorization / purification device has no resistance to the passage of air in the process of treating contaminated air, and can instantaneously sterilize and deodorize a large volume of air, and also has a process of decomposing ozone. Since the singlet oxygen generated in the above, ie, active oxygen, is changed to ground state oxygen, it can be purified while reviving the oxygen.
  • ozone is converted to ground state oxygen and sent out from the duct, conventional ozonation of air by irradiation with ultraviolet rays, sterilization with a germicidal lamp of ultraviolet rays, or a combination of both. In this way, ozone is released into the atmosphere as residual ozone before it is decomposed, causing no adverse effects on the human body or difficulties in handling.
  • this air sterilizing, deodorizing, and purifying device is used as a blowing means, it will not only prevent hospital-acquired infection (MRSA), which is currently a problem, but also asepticize the air in buildings and transportation living spaces. Deodorization has been achieved, and it is applied to places requiring aseptic space such as food processing, kitchens, medical institutions, etc., and exerts its effects.
  • MRSA hospital-acquired infection
  • the present invention is also capable of purifying Escherichia coli and general bacteria in contaminated raw water by sterilizing them and increasing the amount of dissolved oxygen dissolved in the water. It is optimal for use in water purification equipment. Also, by using the method shown in the fifth embodiment, it is possible to decompose contaminants due to the production of hydroxyradicals, and in particular, to decompose organic chlorine compounds such as trihalomethane and trichlorethylene. Prevention of hospital-acquired infections (MRSA) and prevention of cocoa and mold in water reservoirs.
  • MRSA hospital-acquired infections

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Water Treatments (AREA)

Abstract

This invention relates to a method of ozone decomposition, which comprises the steps of irradiating ozone with ultraviolet rays having a wavelength of 240 nm to 360 nm to generate singlet oxygen, and irradiating it with visible light having a wavelength of 600 nm to 650 nm and near infrared rays having a wavelength of 1,200 nm to 1,300 nm, wherein ozone is converted to ground-state oxygen through singlet oxygen by stimulated emission of electromagnetic waves. The transition energy obtained from the processing of concentrated ozone is utilized, whereas residual ozone is decomposed so as to effect sterilization of air and water for preserving environment, or deodorization and purification of water or air.

Description

明 糸田  Akira Itoda
電磁波の誘導放出によるオゾンの分解方法およびその装置 Method and apparatus for decomposing ozone by stimulated emission of electromagnetic waves
ά 分 ϊτ ά minute ϊτ
本発明は高濃度のオゾンを一重項酸素を経て、 基底状態酸素に遷移さ せ、 遷移エネルギーを利用するとともに残留オゾンを分解することによ つて、 環境保全のための空気の殺菌、 水の殺菌あるいは空気や水の脱臭 • 浄化等に関するものである。  The present invention converts high-concentration ozone to ground state oxygen via singlet oxygen, utilizes transition energy and decomposes residual ozone, thereby disinfecting air and water for environmental conservation. Or about deodorization of air or water.
さ らに本発明は、 上水、 中水、 下水、 井戸水、 河川、 湖沼、 海洋、 排 水等の水に、 溶存する酸素を増加させ、 水の浄化、 殺菌を行う水中への 溶存酸素の生成方法に関する。  In addition, the present invention increases the dissolved oxygen in water such as clean water, medium water, sewage, well water, rivers, lakes, marshes, oceans, and wastewater, and purifies the dissolved oxygen in water for purification and sterilization. Related to generation method.
背景技術 Background art
従来の空気の殺菌には、 波長 1 8 5 n mの紫外線を照射してオゾンを 発生させる方法と、 波長 2 5 4 n mの殺菌灯により紫外線を照射して殺 菌を行う方法の何れか、 或いはこれらを併用した方法が用いられてきた, 又、 水の浄化を行う方法と して、 高濃度のオゾンを水中に曝気する方 法と、 オゾンと紫外線を用いた複合酸化法の 2つの水処理方法が知られ ている。  Conventional sterilization of air is performed by irradiating ultraviolet light with a wavelength of 185 nm to generate ozone, or by irradiating ultraviolet light with a germicidal lamp of a wavelength of 254 nm to sterilize the air, or Two methods have been used to purify water: a method of aerating high-concentration ozone into water and a combined oxidation method using ozone and ultraviolet light. The method is known.
そして残留するオゾンの分解方法と しては、 オゾンを活性炭に吸着さ せる活性炭吸着方法、 熱によってオゾンを分解する熱分解方法および触 媒による分解方法が知られていた。  Known methods for decomposing residual ozone include an activated carbon adsorption method in which ozone is adsorbed on activated carbon, a thermal decomposition method in which ozone is decomposed by heat, and a decomposition method using a catalyst.
しかし、 波長 1 8 5 n mの紫外線によってオゾンを発生させる方法は オゾンが充分に分解されないうちに、 残留オゾンと して大気中に放出す るのを余儀なく され、 人体に大きな影響を及ぼすばかりでなく、 取扱も 困難な問題点があつた。 殺菌灯による紫外線の照射が単独で行われる 場合には、 波長 2 5 4 n mの紫外線が主体であり、 励起された一重項酸 素はそのまま拡散して、 殺菌が瞬間的に行われる効果を期待するこ とは できない問題点があつた。 However, the method of generating ozone by ultraviolet light with a wavelength of 185 nm is forced to release ozone as residual ozone into the atmosphere before ozone is sufficiently decomposed, which not only has a significant effect on the human body but also , Handling There were difficult problems. When UV irradiation by a germicidal lamp is performed alone, UV light with a wavelength of 254 nm is the main component, and the excited singlet oxygen diffuses as it is, and the effect of instantaneous sterilization is expected. There was a problem that could not be done.
そして、 高濃度のオゾンを利用して、 空気の殺菌、 水の殺菌あるいは或 る物質の表面活性化を行う際に照射される紫外線によって発生する残留 オゾンの処理方法と しては、 前記した従来の活性炭吸着方法、 熱分解方 法および触媒による分解方法を用いるのは大容量のオゾンを分解するの には不適切であり、 未だ適切な処理方法がないためにオゾンの高度利用 の大きな障壁となっていた。 The method of treating residual ozone generated by ultraviolet rays irradiated when sterilizing air, disinfecting water, or activating a certain substance using high-concentration ozone is as described above. The use of activated carbon adsorption, thermal decomposition and catalytic decomposition methods is inappropriate for decomposing large volumes of ozone, and the lack of appropriate treatment methods still poses a major barrier to the advanced use of ozone. Had become.
又、 前記の高濃度のオゾンを水中に曝気する方法と、 オゾン気泡に紫 外線を照射する複合酸化法の何れにおいても、 オゾンの分解が不充分で あり、 残留オゾンと して水中に残留し、 或いはオゾンが大気中に放出さ れてしま うので、 生物に悪影響を及ぼす恐れが多かつた。  In both the method of aerating high-concentration ozone into water and the combined oxidation method of irradiating ozone bubbles with ultraviolet light, the decomposition of ozone is insufficient, and ozone remains in water as residual ozone. Or, ozone would be released into the atmosphere, often causing harm to living organisms.
そのため、 水中の残留オゾン、 大気中に放出されるオゾンの量を減じ るような後処理と、 安全対策が課題とされており、 又これを解決する後 処理の設備費は非常に高価なものとなり、 オゾンの高度利用に対する大 きな障壁となっているのが現状である。  Therefore, post-treatment to reduce the amount of residual ozone in water and ozone released into the atmosphere and safety measures are issues, and the post-treatment equipment cost to solve this is extremely expensive. At present, it is a major barrier to the advanced use of ozone.
本発明は前記した問題点を解決せんとするもので、 その目的とすると ころは、 オゾンが気相、 液相の如何を問わず分解して基底伏態酸素に還 元すると共に殺菌を行う ことによる空気や水の無菌化と、 溶存酸素の高 い無菌の水を供給することができるオゾンの分解方法を提供するもので ある。 発明の開示  An object of the present invention is to solve the above-mentioned problems. An object of the present invention is to ozone decompose regardless of a gaseous phase or a liquid phase to reduce to basal oxygen and sterilize the ozone. An object of the present invention is to provide a method for dissolving air and water by the method and a method for decomposing ozone, which can supply sterile water with high dissolved oxygen. Disclosure of the invention
本発明のオゾンの分解方法は前記した目的を達成せんとするものであ り、 その手段は、 ォゾンに波長 2 4 0 n m〜 3 6 0 n mの紫外線あるい は紫外線レーザ光を照射して一重項酸素を生成させた後、 波長 6 0 0 n m〜 6 5 0 n mの可視光線あるいは可視光レーザ光と波長 1 2 0 0 n m 〜 1 3 0 0 n mの近赤外線あるいは赤外線レーザ光を照射して、 オゾン がー重項酸素を経て電磁波の誘導放出を行いながら、 基底状態酸素に遷 移させることを特徴とする。 The method for decomposing ozone of the present invention does not achieve the above-mentioned object. The means is to irradiate the ozone with ultraviolet or ultraviolet laser light having a wavelength of 240 nm to 360 nm to generate singlet oxygen, and then to generate a singlet oxygen having a wavelength of 600 nm to 65 nm. By irradiating visible light or visible light laser light and near-infrared or infrared laser light with a wavelength of 1200 nm to 1300 nm, ozone emits electromagnetic waves via-oxygen and stimulated emission of the ground state. It is characterized by transition to oxygen.
そして空気の殺菌 , 脱臭 , 浄化方法は、 波長 2 0 0 n m以下の紫外線. 紫外線レーザー光の照射するか、 あるいは放電式ォゾナイザ一によって 発生させたオゾンを含む空気を、 波長 2 4 0〜 3 6 0 n mの紫外線ある いは紫外線レーザー光を照射して一重項酸素を生成させ、 この一重項酸 素に波長 6 0 0〜 6 5 0 n mの可視光線若しく は可視光線レーザ—光、 波長 1 2 0 0〜 1 3 0 0 n mの近赤外線若しく は近赤外線レーザー光を 各々単独、 同時あるいは順次照射して、 一重項酸素の電磁波の誘導放出 による基底状態酸素へ遷移させるものである。  The method of sterilizing, deodorizing, and purifying air is ultraviolet light with a wavelength of 200 nm or less. Irradiation with ultraviolet laser light, or air containing ozone generated by a discharge-type ozonizer, is applied to a wavelength of 240 to 36 Irradiation with ultraviolet light or ultraviolet laser light of 0 nm generates singlet oxygen, and the singlet oxygen is exposed to visible light or a visible light laser having a wavelength of 600 to 65 nm—wavelength 1 Irradiation of near-infrared or near-infrared laser light of 200 to 130 nm is performed individually, simultaneously or sequentially, and transitions to ground state oxygen by stimulated emission of singlet oxygen electromagnetic waves.
ダク トおよびケーシング内に送風若しく は吸引して得られる空気を集 塵してイオン化する静電式電気集塵機空気等のイオン化手段と、 波長 2 0 0 n m以下の紫外線、 紫外線レーザー光の照射するか、 あるいは放電 式ォゾナイザーによつて前記ィォン化された空気にオゾンを発生させる オゾン発生手段を用いてそのオゾンを分解してもよい。  Ionizing means such as air for electrostatic electrostatic precipitators that collect and ionize air obtained by blowing or sucking air into ducts and casings, and irradiating ultraviolet rays and ultraviolet laser light with a wavelength of 200 nm or less Alternatively, the ozone may be decomposed by using an ozone generating means for generating ozone in the ionized air by a discharge type ozonizer.
さ らに本発明は水中への溶存酸素の生成も可能と し、 その手段は、 水 中にオゾン、 オゾンと空気の混合気体の何れかを吹き込んで気泡を形成 し、 この気泡に紫外線 2 4 0〜 3 6 0 n mを照射してォゾンをを一重項 酸素に生成し、 次に可視光線 6 0 0〜 6 5 0 n m、 近赤外線 1 2 0 0〜 1 3 0 0 n m若しく はレーザ光を各々単独あるいは同時あるいは順次照 射し励起された一重項酸素の電磁波の誘導放出による基底状態酸素への 遷移を利用し、 水中への溶存酸素を生成する。 また、 オゾン、 オゾン と空気の混合気相の何れかに紫外線 2 4 0〜 3 6 0 n mを照射してォゾ ンを一重項酸素に生成した後に、 可視光線 6 0 0〜 6 5 0 n m若しく は 近赤外線 1 2 0 0 - 1 3 0 0 n mを各々単独あるいは同時あるいは順次 照射して生成されている一重項酸素の電磁波の誘導放出による基底伏態 酸素への遷移する 2過程中の気相に、 水をシャ ワーリ ングして気相を通 過させるか、 若しく は噴水によつて気相と水の接触面積を増大させて前 記気相を水中に溶存させるようにしてもよい。 Furthermore, the present invention also enables the generation of dissolved oxygen in water, by means of blowing ozone or a mixture of ozone and air into water to form air bubbles, and to generate ultraviolet rays 24 Irradiate at 0-360 nm to generate ozone into singlet oxygen, then visible light at 600-650 nm, near-infrared light at 1200-130 nm or laser light Are irradiated individually or simultaneously or sequentially to generate dissolved oxygen in water by utilizing the transition of excited singlet oxygen to ground state oxygen by stimulated emission of electromagnetic waves. Also, ozone, ozone After irradiating ultraviolet rays 240 to 360 nm to one of the gaseous phases of mixed gas and air to generate ozone to singlet oxygen, visible light 600 to 65 nm or near infrared The singlet oxygen generated by irradiating 1 200-1300 nm individually or simultaneously or sequentially changes to basal-state oxygen by stimulated emission of electromagnetic waves. The gas phase may be dissolved in water by showering the gas phase or by increasing the contact area between the gas phase and water by a fountain.
本発明の作用を空気の殺菌 · 脱臭 · 浄化装置を例にとつて示すと、 空 調用のダク ト内にシロ ッ コフ ァ ンによって吸入された空気がィオナイザ —を通過することによって、 微細な塵埃が静電集塵されると共に、 ィォ ン化によってオゾン化され易い状態と した後に、 ダク ト内に設けた波長 2 0 0 n m以下の紫外線、 もしく は紫外線レーザ—光の照射、 或いは放 電式のォゾナイザーを通過させることにより、 吸入空気にオゾンを発生 させる。  The operation of the present invention will be described by taking an air sterilization / deodorization / purification device as an example. When air sucked by a sirocco fan in an air conditioning duct passes through an ionizer, fine dust is generated. After the dust is electrostatically collected and turned into a state that can be easily ozonized by ionization, irradiation or emission of ultraviolet light having a wavelength of 200 nm or less or an ultraviolet laser provided in the duct is performed. Ozone is generated in the intake air by passing through an electric ozonizer.
この吸入された空気中に発生したオゾンに対し、 波長 2 4 0〜 3 6 0 n mの紫外線、 も し く は紫外線レーザー光を照射するこ とによって、 前 記のオゾンを次式のように  By irradiating the ozone generated in the inhaled air with ultraviolet light or ultraviolet laser light having a wavelength of 240 to 360 nm, the above-described ozone can be expressed by the following equation.
03 + h リ A O n n^ S S O n n —S 1 Δ g + 1 D 0 3 + h AO nn ^ SSO nn —S 1 Δg + 1 D
と し、 即ち 1重項酸素分子 21 と 1重項酸素原子 1Dとを生成させ る And then, namely Ru to produce a singlet oxygen molecule 2 1 and the singlet oxygen 1 D
そして、 紫外線の吸収によって励起された 1重項酸素分子は、 次に波 長 6 0 0 η π!〜 6 5 0 n mの可視光線が照射された塲合には、  Then, the singlet oxygen molecule excited by the absorption of ultraviolet light has a wavelength of 600 η π! When irradiated with visible light of ~ 650 nm,
21 Δ g + h ( 6 0 0 n m~ 6 5 0 n m) → 2 3∑ g 2 1 Δ g + h (6 0 0 nm ~ 6 5 0 nm) → 2 3 Σ g
となり、 即ち光子の誘導放出と共に基底酸素状態分子 23 ∑ gへと遷移 する。 Next, i.e. a transition to the ground-oxygen state molecules 2 3 sigma g with stimulated emission of photons.
又、 前記の可視光線の照射に代えて、 一重項酸素原子 に波長 1 2 0 0 n m〜 l 3 0 0 n mの近赤外線を照射した場合には、 In addition, instead of the above-described irradiation with visible light, a wavelength of 1 2 When irradiating near-infrared light of 100 nm to l300 nm,
1 Ό + V ( 1 2 0 0 η π!〜 1 3 0 0 n m) → ∑ g 1 Ό + V (1 2 0 0 η π! ~ 1 3 0 0 nm) → ∑ g
となり、 即ち基底酸素状態原子 u∑ gに遷移し、 分解するものである。 前記の可視光線と近赤外線の照射が順次に、 或いは同時に行われた場 合にも、 これらによって In other words, the state transits to the ground oxygen state atom u 、 g and decomposes. Even when the above-mentioned irradiation of visible light and near-infrared light is performed sequentially or simultaneously,
2 1 ά g + V ( 6 0 0 n m~ 6 5 0 n m) → 2 3∑ g 2 1 ά g + V (6 0 0 nm ~ 6 5 0 nm) → 2 3 Σ g
1 D + h y ( 1 2 0 0 n m〜 1 3 0 0 n m) → 3∑ g 1 D + hy (1 200 nm to 1300 nm) → 3 ∑ g
となり、 何れの状態でも 2 3∑ gの基底状態酸素の分子、 もし く は 3∑ gの基底状態酸素の原子に遷移する。 Next, the molecules of 2 3 sigma g of ground state oxygen in any state, if Ku transitions to the ground state atoms oxygen 3 sigma g.
このような分解された基底状態酸素への遷移に際し、 一重項酸素は 2 2. 5 K c a 1 / o 1 の高い分解エネルギーの励起状態にあるため、 強力な殺菌作用を呈し、 吸入空気に対しての殺菌、 脱臭、 浄化が行われ るものである。  Upon transition to such decomposed ground state oxygen, singlet oxygen is in an excited state with a high decomposition energy of 22.5 K ca 1 / o 1, and exhibits a strong bactericidal action, Sterilization, deodorization, and purification.
本発明の水の浄化および殺菌についての応用を例示すれば、 先ずォゾ ン、 或いはオゾンと空気の混合気体を水中に吹き込んで、 浄化、 殺菌し よう とする原水中にオゾン、 或いはオゾンと空気の混合気体の気泡を形 成し、 この気泡に波長 2 4 0〜 3 6 0 n mの紫外線を照射すると、  To illustrate the application of the present invention to water purification and sterilization, first, ozone or a mixed gas of ozone and air is blown into water, and ozone or ozone and air is introduced into raw water to be purified and sterilized. When a bubble of the mixed gas is formed, and this bubble is irradiated with ultraviolet light having a wavelength of 240 to 360 nm,
0 + h y ( 2 4 0〜 3 6 0 n m) → 2 1厶 g + 1 D ( 1 )0 + hy (2 4 0~ 3 6 0 nm) → 2 1厶g + 1 D (1)
0 ォゾン 0 ozon
h v 紫外線 2 4 0〜 3 6 0 n m  hv Ultraviolet light 24 0 ~ 360 nm
2 lA g 一重項酸素分子 2 l Ag Singlet oxygen molecule
D 一重項酸素原子  D singlet oxygen atom
となり、 気泡中のオゾンを一重項酸素に生成する。 Then, ozone in the bubbles is generated into singlet oxygen.
この紫外線の照射によって励起状態の一重項酸素分子が生成されてい る気泡に波長 6 0 0〜 6 5 O n mの可視光線を照射すると、  By irradiating visible light with a wavelength of 600 to 65 Onm to a bubble in which singlet oxygen molecules in the excited state are generated by irradiation with this ultraviolet light,
2 ^ g + h v ( 6 0 0〜 6 5 0 n m) → 2。 ∑ g ( 2 ) h v : 可視光線 6 0 0 6 5 0 n m 2 ^ g + hv (600-650 nm)-> 2. ∑ g (2) hv: visible light 600 nm
2 3 ΰ ∑ g : 基底状態酸素分子 2 3 ΰ ∑ g: Ground state oxygen molecule
となる。 Becomes
又、 前記の紫外線の照射によって励起状態の一重項酸素分子が生成さ れている気泡に波長 1 2 0 0 1 3 0 0 n mの近赤外線を照射すると、 + h リ ( 1 2 0 0 1 3 0 0 n m) → 3∑ g ( 3 ) h v : 近赤外線 1 2 0 0 3 0 0 n m In addition, when near-infrared light having a wavelength of 1200 nm is irradiated to a bubble in which singlet oxygen molecules in an excited state are generated by irradiation of the ultraviolet light, + h 0 0 nm) → 3 ∑ g (3) hv: Near infrared 1 2 0 0 3 0 0 nm
3∑ g : 基底状態酸素原子  3∑ g: ground state oxygen atom
となる。 Becomes
これらの可視光線、 近赤外線の何れか 1つを、 或いはこれらを短い波 長から順次に、 又は同時に照射して、 一重項酸素に電磁波の誘導放出を 伴いながら分解させて、 安定した基底状態酸素に遷移させる。  By irradiating any one of these visible rays or near infrared rays or sequentially or simultaneously from short wavelengths, singlet oxygen is decomposed with induced emission of electromagnetic waves, and stable ground state oxygen is obtained. Transition to.
前記の一重項酸素は安定した基底状態酸素より も 2 2. 5 K c a 1 / m o 1 の高エネルギーの励起状態にあるため、 細菌中の水素原子の脱水 作用、 即ち酸化作用を呈し、 水中に含まれている汚染物質を強力に殺菌. 分解して浄化すると共に、 気泡中の基底伏態酸素は水に溶解して、 水中 の溶存酸素となるものである。  The singlet oxygen is in a higher energy excited state of 22.5 Kca 1 / mo 1 than stable ground state oxygen, so that it exhibits a dehydrating action of hydrogen atoms in bacteria, that is, an oxidizing action, and Strongly sterilizes contained pollutants. Decomposes and purifies, and basal oxygen in bubbles dissolves in water to become dissolved oxygen in water.
又、 一重項酸素は水中において水と反応してヒ ドロキシラジカルとな 、  In addition, singlet oxygen reacts with water in water to form a hydroxyl radical.
^ + H 2 0 - 2 · 0 H ( 4 ) ^ + H 2 0-2 · 0 H (4)
0 H : ヒ ドロキシラジカル  0 H: Hydroxy radical
水中の有機物の水素を奪って Stealing the hydrogen of organic matter in the water
O H + R H→R + H 2 0 ·"· ( 5 ) OH + RH → R + H 2 0 · "· (5)
R H : 有機物もしく は細菌  R H: Organic matter or bacteria
となることにより、 水の殺菌を強力に行う。 By virtue of this, water sterilization is performed strongly.
この一重項酸素の生成過程、 基底状態酸素への遷移過程中の気相中に シャ ワーリ ング、 或いは噴水等の気相と水の接触面積を増大させる手段 によって、 この気相を水中に溶解させ、 前記の一重項酸素の持つ 2 2 . 5 K c a 1 / m o 1 の高エネルギーの励起状態によって、 細菌中の水素 原子の脱水作用、 即ち酸化作用でさ らに強力な殺菌を行わせる。 In the process of singlet oxygen generation, the transition to ground state oxygen, This gas phase is dissolved in water by means of showering or a means for increasing the contact area of water with the gas phase such as a fountain, and the high energy of 22.5 Kca 1 / mo 1 of the singlet oxygen contained in the singlet oxygen Depending on the excited state, more powerful sterilization is performed by the dehydration action, that is, the oxidation action of hydrogen atoms in bacteria.
更に一重項酸素は ( 4 ) 式に示すように、 水と反応してヒ ドロキシラ ジカルとなり、 ( 5 ) 式のように水中の有機物の水素を奪って殺菌作用 を呈し、 且つ気相は前記の水中への溶解により、 基底状態酸素を水中に 溶存させるものである。 図面の簡単な説明  Further, singlet oxygen reacts with water to form a hydroxyl radical as shown in equation (4), deprives organic matter of hydrogen in water as shown in equation (5), and exhibits a bactericidal action. It dissolves ground state oxygen in water by dissolving in water. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明の第 1実施例の装置の断面図である ものである。 第 2図は本発明の第 2実施例の装置の断面図である。  FIG. 1 is a sectional view of an apparatus according to a first embodiment of the present invention. FIG. 2 is a sectional view of an apparatus according to a second embodiment of the present invention.
第 3図は本発明の第 3実施例の斜面図である。  FIG. 3 is a perspective view of a third embodiment of the present invention.
第 4図は同上の断面図である。  FIG. 4 is a sectional view of the above.
第 5図は本発明の第 4実施例の縦断面図である。  FIG. 5 is a longitudinal sectional view of a fourth embodiment of the present invention.
第 6図は同上の横断面図である。  FIG. 6 is a cross-sectional view of the same.
第 7図は本発明の第 5実施例の縦断面図である。  FIG. 7 is a longitudinal sectional view of a fifth embodiment of the present invention.
第 8図は同上の横断面図である。 発明を実施するための最良の形態  FIG. 8 is a cross-sectional view of the same. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の第 1の実施例をオゾンと空気の混合気体を分解するオゾン分 解方法とその装置について、 以下に説明する。  The first embodiment of the present invention will be described below with reference to an ozone decomposing method for decomposing a mixed gas of ozone and air and an apparatus therefor.
この方法および装置 (図 1 ) においては、 予めオゾンと空気の混合気 体を人為的に生成しておいて、 これに 2 5 4 n mの紫外線、 6 3 3 n m の可視光線、 さ らには 1 2 7 0 n mの近赤外線が照射されている光帯を 有する室内を通過させるものである。 この装置は、 エアーブロア 1から送り込まれた空気はオゾン発生筒 2 の上部内に送り込まれるが、 このオゾン発生室 2においては送り込まれ た空気にオゾン発生ランプ 3の光線を照射し、 送り込まれた空気がォゾ ン発生室 2の下部に到達した場合には、 その一部がオゾン 4 となる。 このオゾン 4は、 下部連通管 5を通って 1重項酸素発生筒 6に送り込 まれ、 紫外線照射管 7により波長 2 5 3. 7 n mの紫外線が照射されて オゾン 4は 1重項酸素 8を生成する。 In this method and apparatus (Fig. 1), a mixture of ozone and air is artificially generated in advance, and this is mixed with ultraviolet light of 254 nm, visible light of 633 nm, and It passes through a room having a light band irradiated with near infrared light of 127 nm. In this device, the air sent from the air blower 1 is sent into the upper part of the ozone generating cylinder 2, and in the ozone generating chamber 2, the sent air is irradiated with a beam of an ozone generating lamp 3, and the sent air is When the gas reaches the lower part of the ozone generation chamber 2, a part of it reaches ozone 4. The ozone 4 is sent to the singlet oxygen generation cylinder 6 through the lower communication pipe 5 and is irradiated with ultraviolet light having a wavelength of 253.7 nm by the ultraviolet irradiation pipe 7 so that the ozone 4 becomes singlet oxygen 8 Generate
この 1重項酸素 8は、 さ らに上部連通管 9を通って誘導放出分解筒 1 0に送り込まれるが、 この誘導放出分解筒 1 0は内面に鏡 1 1が張られ ると共に波長 6 3 3 n mの可視光 H e - N e レーザ 1 2を光ファイバで 導いて、 プリズム 1 3を通して照射するこ とによつて生ずる光膜 1 4が 形成されている。  The singlet oxygen 8 is further sent to the stimulated emission decomposition tube 10 through the upper communication pipe 9, and the stimulated emission decomposition tube 10 has a mirror 11 on the inner surface and a wavelength 6 3 An optical film 14 formed by guiding a 3 nm visible light He-Ne laser 12 through an optical fiber and irradiating it through a prism 13 is formed.
さ らに、 この誘導放出分解筒 1 0の下部には、 波長 1 2 7 0 n mの近 赤外線を照射する レーザ光 1 5からの近赤外線を光ファイバで導いて、 プリズム 1 6を通して鏡 1 1に照射することによつて生じる光膜 1 6が 形成されている。  In addition, near the bottom of the stimulated emission decomposition tube 10, near-infrared light from a laser beam 15 irradiating near-infrared light with a wavelength of 127 nm is guided by an optical fiber and passed through a prism 16 to a mirror 11 1 The optical film 16 formed by irradiating the light is formed.
従って、 前記の誘導放出分解筒 1 0に送り込まれた 1重項酸素 8は、 最初の光膜 1 4を通過する際に電磁波の誘導放出をを行って基底状態酸 素に分解した後、 その下側に設けられた光膜 1 6を通過する際に励起酸 素は完全に安定な基底状態の酸素 1 7となって、 下部吐出口 1 8から放 出 れる o  Therefore, the singlet oxygen 8 sent to the stimulated emission decomposing cylinder 10 decomposes to ground state oxygen by performing stimulated emission of electromagnetic waves when passing through the first optical film 14, When passing through the optical film 16 provided on the lower side, the excited oxygen becomes completely stable ground state oxygen 17 and is discharged from the lower discharge port 18 o
このオゾンの基底状態の酸素 1 7への遷移を監視するために、 各連通 管 5 , 9 , 1 8にオゾン濃度計 2 1 , 2 2 , 2 3を挿入し、 モニタ 2 0 でオゾン濃度の測定を行つた。  In order to monitor the transition of the ground state of ozone to oxygen 17, an ozone concentration meter 21, 22, 23 is inserted into each communication pipe 5, 9, 18, and the ozone concentration is monitored by the monitor 20. Measurements were taken.
この時の室温 1 8 ° C、 各連通管 5 , 9, 1 8における通過量は 2 リ ッ トル Z分、 オゾン濃度計と してはォク トロニクス株式会社製の O Z M - 2 1 一 2〜 2 0 0型の気相用を用いた。 At this time, the passage amount in each of the communication pipes 5, 9, and 18 was 2 liters Z at room temperature of 18 ° C, and OZM manufactured by Octronics Co., Ltd. was used as the ozone concentration meter. A type of gas phase of -2 1 1 2 to 2000 was used.
この時の各オゾン濃度計 2 1 , 2 2 , 2 3における濃度の測定値は下 表の通りである。 濃度計 2 1 2 2 2 3 測定値 1 6 0 p p M 1 8 p p M 0. 0 2 >  At this time, the measured values of the concentration in each ozone concentration meter 21, 22, and 23 are as shown in the table below. Densitometer 2 1 2 2 2 3 Measured value 1 60 p p M 18 p p M 0.0 2>
さ らに、 水中に溶存しているオゾン、 も しく は水中に微細気泡となつ て存在するオゾンを分解するオゾンの分解方法と、 その装置 (図 2 ) を 第 2実施例と して次に説明する。 Furthermore, a method for decomposing ozone dissolved in water or ozone present as microbubbles in water and a device for decomposing ozone (Fig. 2) as a second embodiment will be described next. explain.
予め溶存するォゾンの濃度が判つている溶存ォゾン水 3 1が下部入り 口 3 3から送り込まれる円筒形の筒 3 2は、 光ファイバ一 3 5によって 導かれた波長 2 5 4 n mの紫外線を筒 3 2の内側に張ってある鏡 3 4に, プリズム 3 6によって拡張して照射して光膜 3 7を形成する。  The cylindrical tube 3 2 into which the dissolved ozone water 3 1 whose concentration of dissolved ozone is known in advance is sent from the lower entrance 3 3, emits ultraviolet light with a wavelength of 25.4 nm guided by the optical fiber 135. A mirror 34 extending inside 32 is extended and irradiated by a prism 36 to form a light film 37.
筒 3 2には、 この光膜 3 7の上側に、 前記と同様にして波長 6 3 3 n mの可視光線の光膜 3 8を形成し、 さ らに、 この光膜 3 8の上側に、 近 赤外線を放出する レーザ光の波長 1 2 7 0 n mの近赤外線により、 前記 と同様にして光膜 3 9を形成する。  On the cylinder 32, a light film 38 of visible light having a wavelength of 633 nm is formed above the light film 37 in the same manner as described above, and further, on the light film 38, The optical film 39 is formed in the same manner as described above by using near-infrared light having a wavelength of 127 nm which emits near-infrared light.
従って、 筒 3 2の下部の入り口 3 3から筒 3 2内に送り込まれた溶存 オゾン水 3 1 は光膜 3 7, 3 8 , 3 9を順次に通過して、 筒 3 2の上部 からオーバーフローさせるものであるが、 これらの光膜 3 7 , 3 8 , 3 9を通過する際に、 前実施例と同様な作用を受け、 1重項状態の酸素を 経て安定した基底状態の酸素となるものである。  Therefore, the dissolved ozone water 31 sent into the cylinder 32 from the lower entrance 33 of the cylinder 32 sequentially passes through the optical films 37, 38, and 39, and overflows from the upper part of the cylinder 32. However, when passing through these optical films 37, 38, and 39, the same action as in the previous embodiment is performed, and the oxygen becomes stable ground state via singlet state oxygen. Things.
この時の筒 3 2の上部でオーバーフローする際の残留オゾンの量を測 定するために、 筒 3 2の上部 4 0に溶存オゾンセンサ 4 1を設置し、 こ の溶存オゾンセンサ 4 1が捕らえた溶存オゾンの量をモニタ 4 2で測定 した。 In order to measure the amount of residual ozone when overflowing at the top of the cylinder 32 at this time, a dissolved ozone sensor 41 was installed at the top 40 of the cylinder 32, and the dissolved ozone sensor 41 was captured. Monitor the amount of dissolved ozone did.
この時の通過水量は 1 リ ッ トル Z分、 水温は 1 6 ° C、 溶存オゾン計 はバイオニクス機器株式会社製の隔膜ポー口ラグラ フ方式/モデル 0 C 一 1 0 0である。 この測定結果を次表に示す。 通過前の溶存オゾン水のオゾン濃度 7 P P M  At this time, the amount of passing water was 1 liter Z, the water temperature was 16 ° C, and the dissolved ozone meter was a diaphragm port type graph model manufactured by Bionics Instruments Co., Ltd./Model 0C-110. The measurement results are shown in the following table. Ozone concentration of dissolved ozone water before passing 7 P P M
上部オーバ一フロー水の溶存オゾン濃度 0. 0 1 〉 前記第 2実施例の発明は、 前記各実施例の波長 2 5 3. 6 n mの紫外 線を照射する紫外線照射管 7を、 2 4 0 n m〜 3 6 0 n mの紫外線レー ザに、 また、 波長 6 3 3 n mの可視光 H e — N e レーザ 1 2を可視光線 レーザに、 さ らに、 波長 1 2 7 O n mのレーザ光 1 5を近赤外線レーザ に替えるもので、 これにより前記各実施例と同様な作用効果を生ずるも のである。  The dissolved ozone concentration of the upper overflow water 0.01> The invention of the second embodiment is characterized in that the ultraviolet irradiation tube 7 for irradiating ultraviolet light having a wavelength of nm to 360 nm ultraviolet laser, 633 nm wavelength visible light He — Ne laser 12 to visible light laser, and 1270 nm laser light 1 5 is replaced with a near-infrared laser, which produces the same operation and effects as those of the above embodiments.
なお、 前記した 2つの実施例にあっては、 可視光線照射と近赤外線照 射の 2つを順次行う ものについて説明したが、 いずれか一方のみの照射 を行っても溶存オゾンを分解することができる。 もちろん、 この場合、 可視光線照射と近赤外線照射の 2つを行つた方が、 分解効率は高いもの である。  In the two embodiments described above, the case of sequentially performing visible light irradiation and near-infrared irradiation has been described.However, it is possible to decompose dissolved ozone by performing irradiation of only one of them. it can. Of course, in this case, two methods, irradiation with visible light and irradiation with near-infrared light, have higher decomposition efficiency.
次に、 本発明の第 3の実施例を、 図面について以下に説明する。  Next, a third embodiment of the present invention will be described below with reference to the drawings.
この方法および装置を示す図 3、 図 4において、 ダク ト 1 0 1内には 空気吸入口 1 0 2 とは反対側の空気送出口 1 0 3側にシロ ッ コフ ァ ン 1 0 4が設置され、 空気吸入口 1 0 2から空気の吸入を行うようになって いる。  In Fig. 3 and Fig. 4 showing this method and device, a duct fan 104 is installed in the duct 101 on the side of the air outlet 103 opposite to the air intake port 102 in the duct 101. Then, air is sucked from the air inlet 102.
この空気吸入口 1 0 2側のダク 卜 1 0 1内には、 空気中の比較的大き い塵埃を吸着させる荒目のプレフィ ルター 1 0 5が設置されており、 こ のプレフィ ルター 1 0 5によって粒子の大きい塵埃を除去された吸入空 気は、 プレフィ ルター 1 0 5の次に設置されたィオナイザ一 1 0 6を通 過するこ とによって、 微細な粒子の塵埃はプラスに電荷される。 A rough pre-filter 105 that adsorbs relatively large dust in the air is installed in the duct 101 on the side of the air intake 102. The suction air from which the large particles have been removed by the pre-filter 105 passes through the ionizer 106, which is installed next to the pre-filter 105, so that the fine particles can be removed. Positively charged.
このィォナイザー 1 0 6の次には、 マイナスに荷電された集塵板 1 0 7が設けられており、 前記のプラスに荷電された微細な塵埃粒子は集塵 板 1 0 7に静電付着するもので、 この集塵板 1 0 7の通過により吸入空 気はマイナスに荷電され、 オゾン化され易い状態となっている。  Next to the ionizer 106, a negatively charged dust collecting plate 107 is provided, and the finely charged fine dust particles electrostatically adhere to the dust collecting plate 107. By passing through the dust collecting plate 107, the intake air is negatively charged, and is in a state easily oxidized.
この集塵板 1 0 7の背後には波長 1 8 5 n mの紫外線を放出する紫外 線ラ ンプ 1 0 8、 更に紫外線ラ ンプ 1 0 8の後方には波長 2 5 4 n mの 紫外線を放出する第 2 の紫外線ラ ンプ 1 0 9が設置されており、 前記集 塵板 1 0 7を通過してオゾン化され易く なつている吸入空気の一部は、 紫外線ラ ンプ 1 0 8からの紫外線の照射によってオゾンに生成される。 更に、 この吸入空気に含まれているオゾンは、 次の紫外線ランプ 1 0 9によって照射される波長 2 5 4 n mの紫外線によって一重項酸素に生 成される。  Behind the dust collecting plate 107, an ultraviolet lamp 108 emits ultraviolet light with a wavelength of 185 nm, and further behind the ultraviolet lamp 108 emits ultraviolet light with a wavelength of 254 nm. A second ultraviolet lamp 109 is installed, and a part of the intake air which is easily ozonized after passing through the dust collecting plate 107 is a part of the ultraviolet light from the ultraviolet lamp 108. Generated into ozone by irradiation. Further, ozone contained in the intake air is generated into singlet oxygen by ultraviolet light having a wavelength of 254 nm which is irradiated by the next ultraviolet lamp 109.
前記紫外線ラ ンプ 1 0 9の後方にダク ト 1 0 1内には、 波長 6 3 3 n mの可視光線を放出する可視光線ランプ 1 1 0、 次いで波長 1 2 7 8 n mの近赤外線を放出す近赤外線ラ ンプ 1 1 1が設置されると共に、 この 可視光線ランプ 1 1 0、 近赤外線ラ ンプ 1 1 1が設置されている部分の ダク ト 1 0 1内には、 これらの光線を反射する鏡 1 1 2、 1 1 3が張ら れ、 前記の光線を鏡 1 1 2、 1 1 3で反射するこ とによ って可視光線の 光膜、 近赤外線の光膜が形成される。  Behind the ultraviolet lamp 109, the duct 101 emits a visible light lamp 110 emitting visible light having a wavelength of 633 nm, and then emits near-infrared light having a wavelength of 12878 nm. The near-infrared lamp 111 is installed, and the visible ray lamp 110 and the duct 101 where the near-infrared lamp 111 is installed reflect these rays. The mirrors 112 and 113 are stretched, and the light beams are reflected by the mirrors 112 and 113 to form a visible light film and a near-infrared light film.
前記のオゾンを一重項酸素に生成された吸入空気は、 この可視光線の 光膜と近赤外線の光膜を順次に通過するものであるが、 可視光線の光膜 を通過する際の波長 6 3 3 n mの可視光線の照射によって電磁波の誘導 放出を伴って、 一重項酸素分子は基底状態酸素分子に遷移する。 この可視光線の光膜を通過した吸入空気は、 次に波長 1 2 7 8 n mの 近赤外線の光膜を通過するものであるが、 この際に基底状態酸素分子に 遷移されなかったオゾンは、 この波長の近赤外線の照射によって一重項 酸素原子は基底状態酸素原子に遷移する。 The above-mentioned intake air generated by converting ozone into singlet oxygen passes through the optical film of visible light and the optical film of near-infrared light sequentially. Irradiation with 3 nm visible light causes singlet oxygen molecules to transition to ground state oxygen molecules with stimulated emission of electromagnetic waves. The inhaled air that has passed through the visible light optical film then passes through the near infrared light film with a wavelength of 12878 nm. At this time, the ozone that has not been transitioned to the ground state oxygen molecule is Irradiation with near-infrared light of this wavelength causes singlet oxygen atoms to transition to ground state oxygen atoms.
これらの基底状態酸素への遷移の際に、 一重項酸素が発生するェネル ギ一は 2 2. S K c a l Zm o l にも達するので、 このエネルギーによ つて吸入空気中に含まれている細菌類の殺菌が行われ、 この殺菌と前記 塵埃の除去とが相まって、 吸入空気に対する殺菌、 脱臭、 浄化が行われ o  The energy at which singlet oxygen is generated during these transitions to ground state oxygen reaches 22.SK cal Zmol, and this energy allows the bacteria contained in the inhaled air to be reduced. Sterilization is performed, and this sterilization is combined with the removal of the dust to sterilize, deodorize, and purify the intake air.
上記の実施例により、 室内に浮遊する一般の細菌の殺菌試験を行った が、 その条件と しては、 次の通りである。  According to the above example, a sterilization test was performed on general bacteria floating in the room. The conditions were as follows.
室内温度 2 2 ° C  Indoor temperature 22 ° C
部屋の床面積 6 0 m 2 処理風量 4. 2 m 3" / m i n  Room floor area 60 m 2 Processing air volume 4.2 m 3 "/ m i n
紫外線 1 8 4 n m, 4 0 W  Ultraviolet light 1 8 4 nm, 40 W
紫外線 2 5 4 n m, 7 5 W  UV 2 5 4 nm, 75 W
/ヽロゲンラ ンプ 可視光線 6 0 0 n m、 近赤外線 1 3 0 0 n m, 5 0 0 W 試験方法 : R S Cサンプラー法 (採取量 4 0 1 ) 培養条件 3 5 ° C, 4 8時間培養 経過時間 4 0 1 中の浮遊菌の数  / Perogen lamp Visible light 600 nm, near infrared 1300 nm, 500 W Test method: RSC sampler method (collection amount 401) Culture conditions 35 ° C, 48 hours Culture elapsed time 4 0 Number of airborne bacteria in 1
0 4 5  0 4 5
1 2 1  1 2 1
2 1 5  2 1 5
3 8  3 8
4 2 1 > 前記実施例においては、 可視光線の照射と近赤外線の照射が相次いで 行われるようにしたが、 その何れかのみでも差し支えなく 、 又シロッ コ フ ァ ンもダク トに対して送風手段が別に設けられていれば、 これを設置 する必要はない。 4 2 1> In the above-described embodiment, irradiation of visible light and irradiation of near-infrared light are performed one after another. However, any one of them can be used, and the sirocco fan also has a means for blowing air to the duct. There is no need to install it if provided separately.
次に本発明の第 4の実施例を実施するための装置を図 5、 図 6 と共に 説明する。 この実施例においては、 浄化筒 2 0 1の下部に浄化しょう とする原水を送り込む流入口 2 0 2が設けられ、 この流入口 2 0 2から 例えば温度 1 9 ° C、 3 0 リ ッ トル m i nの量の原水が浄化筒 2 0 1 内に送り込まれるもので、 この送り込まれた原水は浄化筒 2 0 1内を上 方に向かって流動する。  Next, an apparatus for carrying out the fourth embodiment of the present invention will be described with reference to FIGS. In this embodiment, an inlet 202 for feeding raw water to be purified is provided at a lower part of the purifier 201, and the inlet 220 has a temperature of, for example, 19 ° C. and 30 liters min. Of raw water is sent into the purification column 201, and the supplied raw water flows upward in the purification column 201.
又、 この浄化筒 2 0 1の下部にはオゾンを含有する空気を送り込むォ ゾンの送気管 2 0 3が設けられ、 該送気管 2 0 3の先端は浄化筒 2 0 1 内において、 多数の小孔が穿設されている散気管 2 0 4 となっており、 送気管 2 0 3から送り込まれたオゾンを含有する空気は、 散気管 2 0 4 の小孔から原水中にオゾン気泡 2 0 5 となつて拡散しながら、 浄化筒 2 0 1内を原水と一緒に浮上するもので、 例えば送気管 2 0 3から 4 0 リ ッ 卜ル Z m i nのォゾンを含有する空気が送り込まれる。  Further, an air supply pipe 203 of an ozone for feeding air containing ozone is provided at a lower portion of the purification pipe 201, and a tip of the air supply pipe 203 is provided with a large number of air in the purification pipe 201. A diffuser pipe 204 with perforations is provided, and the air containing ozone sent from the air supply pipe 203 passes through the pores of the diffuser pipe 204 into ozone bubbles in raw water. It floats in the purification column 201 together with the raw water while diffusing as 5, and for example, air containing ozone of 40 liters Z min is sent from the air supply pipe 203.
浄化筒 2 0 1 の内部には、 この散気管 2 0 4の上方に波長 2 5 4 n m の紫外線を放出する 3本の出力 1 5 W、 計 4 5 Wの紫外線ランプ 2 0 6 が設置されており、 この紫外線ラ ンプ 2 0 6からの紫外線が前記のォゾ ン気泡 2 0 5に照射されることによって、 前記の ( 1 ) 式に示したよう に、 ォゾン気泡 2 0 5内のオゾンに一重項酸素分子、 並びに一重項酸素 原子を生成し、 前記の気泡 2 0 5 はこの一重項酸素分子並びに一重項酸 素原子を含んだ気泡 2 0 7 となる。 この一重項酸素原子は水中において水と反応し、 ( 4 ) 式のようにヒ ドロキシラジカルとなり、 ( 5 ) 式のように原水中の細菌の水素を奪つ て原水に対する殺菌作用を強力に行う。 Above the diffuser tube 204, there are three UV lamps 206 that emit ultraviolet light with a wavelength of 254 nm. By irradiating the ozone bubbles 205 with the ultraviolet light from the ultraviolet lamp 206, as shown in the above-mentioned formula (1), the ozone in the ozone bubbles 205 is obtained. Then, a singlet oxygen molecule and a singlet oxygen atom are generated, and the bubble 205 becomes a bubble 205 containing the singlet oxygen molecule and the singlet oxygen atom. This singlet oxygen atom reacts with water in water to form a hydroxyl radical as shown in equation (4), and as shown in equation (5), deprives the bacteria of the raw water of hydrogen and strongly exerts a bactericidal action on the raw water. Do.
前記紫外線ラ ンプ 2 0 6の上方には、 波長 6 0 0〜 6 5 0 n mの可視 光線を放出する出力 5 0 0 Wの高圧ナ 卜 リ ゥムランプ 2 0 8が設置され、 この高圧ナ ト リ ウムラ ンプ 2 0 8から放出された可視光線は前記の一重 項酸素分子並びに一重項酸素原子を含んで原水と一緒に浮上してく る気 泡 2 0 7を照射する。 これによつて、 前記の ( 2 ) 式のように電磁波の 誘導放出を伴いながら一重項酸素分子を基底伏態酸素分子へと遷移させ る o  Above the ultraviolet lamp 206, a high-power sodium lamp 208 having a power of 500 W and emitting visible light having a wavelength of 600 to 65 nm is installed. The visible light emitted from the um lamp 208 irradiates the bubbles 210 containing the singlet oxygen molecules and the singlet oxygen atoms and floating with the raw water. As a result, singlet oxygen molecules are transited to basal oxygen molecules with stimulated emission of electromagnetic waves as in the above equation (2).
前記の高圧ナ ト リ ゥムラ ンプ 2 0 8の上方には、 波長 1 2 0 0 n mの 近赤外線を放出する出力 5 0 0 Wの赤外線ラ ンプ 2 0 9が設置され、 前 記の高圧ナ ト リ ウムラ ンプ 2 0 8の可視光線が照射された後に原水と一 緒に浮上してく る気泡 2 0 7に近赤外線を照射する。 すると、 前記 ( 3 ) 式のように気泡中に含まれる一重項酸素原子が、 電磁波の誘導放出を伴 いながら基底状態酸素原子に遷移される。  Above the high-pressure satellite lamp 208, an infrared lamp 209 with an output of 500 W that emits near-infrared light having a wavelength of 1200 nm is installed. After the visible light of the lithium lamp 208 is irradiated, near-infrared light is applied to the bubbles 207 floating with the raw water. Then, the singlet oxygen atom contained in the bubble is transited to the ground state oxygen atom with stimulated emission of the electromagnetic wave as in the above equation (3).
これらの波長 6 0 0 n mの可視光線、 波長 1 2 0 0 n mの近赤外線の 照射によって、 生成されている一重項酸素を前記のように安定した基底 状態酸素に遷移するので、 気泡中に含まれていたオゾンが残留オゾンと して残存せず、 溶存酸素と して原水中に溶け込み、 原水中の溶存酸素の :1:力く高められる。  Irradiation with visible light at a wavelength of 600 nm and near-infrared light at a wavelength of 1200 nm causes the transition of the generated singlet oxygen to stable ground state oxygen as described above, so that it is contained in the bubbles. The ozone that was released does not remain as residual ozone, but dissolves in the raw water as dissolved oxygen, and: 1: the dissolved oxygen in the raw water is strongly increased.
又、 一重項酸素は基底状態酸素より も 2 2. 5 K c a 1 /m o 1 の高 いエネルギーの励起状態にあるため、 細菌中の水素原子の脱水作用、 即 ち酸化作用を呈し、 殺菌浄化が行われることになる。  In addition, singlet oxygen is in an excited state with a higher energy of 22.5 Kca1 / mo1 than ground state oxygen, so that it exhibits a dehydrating action of hydrogen atoms in bacteria, that is, an oxidizing action, and sterilization and purification Will be performed.
このよ うにして、 殺菌、 浄化が行われると共に溶存酸素の量が高めら れた原水は、 浄化筒 2 0 1の上部に設けられた吐出口 2 1 0からオーバ 一フローして吐出されるものであるが、 原水中に残存していたオゾンの 気泡は、 原水の上部に残存オゾンを僅かに含有している空気の伏態とな り、 排気管 2 1 1から大気中に排気されるものである。 In this way, the raw water that has been sterilized and purified and the amount of dissolved oxygen has been increased is discharged from the discharge port 210 provided at the upper part of the purification column 201. Although it is discharged in one flow, the ozone bubbles remaining in the raw water become airborne with a small amount of ozone remaining above the raw water, and the exhaust pipe 2 1 1 From the atmosphere.
この実施例の浄化、 殺菌装置において、 大腸菌の数が 1 9 0 Zm g、 一般生菌の数が 1 2 O Zm g含まれている原水が送り込まれた場合、 浄 化、 殺菌後の大腸菌、 一般生菌の数は何れも 0であり、 送気管 2 0 3か ら送入される気相オゾン濃度 2 0 0 p p mを含有する空気は、 浄化筒 2 In the purification and sterilization apparatus of this embodiment, if raw water containing 190 E.g.m. of E. coli and 12 O.m.g. of general viable bacteria is sent in, the E. coli after purification and sterilization, The number of general viable bacteria is 0, and the air containing gaseous phase ozone concentration of 200 ppm sent from the air pipe 203
0 1の上部の排気管 2 1 1から大気中に排出される時には 0. 0 0 2 p p mにまで下げることができた。 When it was discharged into the atmosphere from the exhaust pipe 2 1 1 at the top of 0 1, it could be reduced to 0.02 ppm.
又、 流入口 2 0 2から流入される原水中に含有される溶存酸素量 7. 2 p p mであったのが、 吐出口 2 1 0から吐出される場合には、 溶存酸 素量を 8. 7 p p mにまで高めることができた。  Also, if the dissolved oxygen content in the raw water flowing in from the inflow port 202 was 7.2 ppm, but when it is discharged from the discharge port 210, the dissolved oxygen content should be 8. Could be increased to 7 ppm.
次に本発明の第 5の実施例を実施するための装置を図 7、 図 8 と共に 説明する。 この実施例においては、 内径 2 5 O mmの浄化筒 2 2 1の 上部には、 オゾンを含有する空気の吹き込み口 2 2 2が設けらて、 例え ば気相ォゾン濃度 2 0 0 p P mを含有する空気 4 0 リ ッ トル m i nが 下方に向かつて吹き込まれる。  Next, an apparatus for carrying out the fifth embodiment of the present invention will be described with reference to FIGS. In this embodiment, an ozone-containing air blowing port 222 is provided at the upper part of the purification cylinder 222 having an inner diameter of 25 O mm, for example, a gas phase ozone concentration of 200 pPm. 40 liters of air containing air is blown downward.
又、 原水を浄化筒 2 2 1内に下方に向かってシャ ワー状に噴霧する シ ャ ヮーヘッ ド 2 2 3が浄化筒 2 2 1の上部に設けられ、 例えば大腸菌の 数 9 2 0 Zm g、 一般細菌の数 1 2 O Zm gを含有する原水がシャ ワー ヘッ ド 2 2 3から霧状に下方に向かつて噴霧され、 前記のォゾンを含有 する空気と混じり合いながら浄化筒 2 2 1内を落下する。  Further, a shower head 23 for spraying raw water downward into the purifier 22 in the form of a shower is provided at the upper part of the purifier 221, and for example, the number of E. coli 920 Zmg, Raw water containing the number of general bacteria 1 2 O Zmg is sprayed downward from the shower head 2 23 in the form of a mist and mixed with the air containing the ozone. Fall.
このシャ ヮ一へッ ド 2 2 3の下方には波長 2 5 4 n mの紫外線を放出 する出力 1 5 Wの紫外線照射管 2 2 4が 3本、 計 4 5 W設置されており 前記の浄化筒 2 2 1内を落下する原水とオゾンを含有する空気にこの紫 外線が照射され、 ( 1 ) 式のように原水と混じり合って落下する空気中 に含まれるオゾンは一重項酸素に励起され、 活性化された状態となる。 この励起されて活性化されている一重項酸素は安定した基底伏態酸素 より も 2 2 . 5 K c a 1 / o 1 の高エネルギーの励起状態にあり、 且 つこの一重項酸素原子は水中において水と反応し、 ( 4 ) 式のようにヒ ドロキシラジカル含有水となって落下する際に、 ( 5 ) 式のように原水 中の水素を奪い、 細菌中の水素原子の脱水作用、 即ち酸化作用を呈して 原水に含まれる大腸菌、 一般細菌に対する殺菌作用を強力に行う。 Below this shade head 23, there are three 15W ultraviolet irradiation tubes 222 that emit ultraviolet light with a wavelength of 254 nm, and a total of 45 W is installed. This ultraviolet ray is applied to the raw water and ozone-containing air that falls inside the cylinder 221, and mixed with the raw water as shown in equation (1). The ozone contained in is excited by singlet oxygen and becomes activated. This excited and activated singlet oxygen is in an excited state with a higher energy of 22.5 Kca 1 / o 1 than stable basal oxygen, and this singlet oxygen atom is When it reacts with water and falls as hydroxyl radical-containing water as shown in equation (4), it deprives the raw water of the water as shown in equation (5), dehydrating hydrogen atoms in bacteria, It has an oxidizing effect and has a strong bactericidal effect against Escherichia coli and general bacteria contained in raw water.
前記の紫外線照射管 2 2 4の下方には、 前実施例と同様に波長 6 0 0 n mを放出する高圧ナ ト リ ウムラ ンプ 2 2 5、 更にその下方に波長 1 3 0 0 n mの近赤外線を放出する赤外線ラ ンプ 2 2 6が設置されており、 前述のようにして殺菌が行われて噴霧状態で落下する原水に対して可視 光線、 近赤外線の順で照射が行われる。  Below the ultraviolet irradiation tube 224, a high-pressure sodium lamp 225 emitting a wavelength of 600 nm as in the previous embodiment, and further below the near infrared ray having a wavelength of 130 nm An infrared lamp 222 that emits water is installed, and sterilization is performed as described above, and raw water falling in a spray state is irradiated in the order of visible light and near-infrared light.
この照射によつて一部の一重項酸素は安定した基底状態酸素に遷移し て、 前記の高エネルギーを放出し、 原水中の大腸菌、 一般生菌の殺菌を 行う と共に、 水中に溶け込んで水中の溶存酸素となり、 溶存酸素の量の 多い水となる。  This irradiation causes some singlet oxygen to transition to stable ground state oxygen, releasing the high energy, disinfecting Escherichia coli and general bacteria in raw water, and dissolving in water to dissolve in water. It becomes dissolved oxygen and becomes water with a large amount of dissolved oxygen.
このよ うにして溶存酸素が多く、 殺菌が行われて浄化された水は、 浄 化筒 2 2 1の底部 2 2 7に溜まるが、 この底部 2 2 7に設けられた連通 管 2 2 8を通って貯溜部 2 2 9に貯溜されて、 吐出口 2 3 0からオーバ 一フローして流れ出し、 これを処理された無菌水と して利用し、 水中に 溶けきれなかった活性酸素を含む空気は、 浄化筒 2 2 1 の下部側面に設 けられた排気管 2 3 1から大気中に排出される。  In this way, the dissolved oxygen is high, and the water that has been sterilized and purified is collected in the bottom portion 227 of the purification cylinder 221. The communication pipe 228 provided in the bottom portion 227 is provided. Is stored in the storage section 229 through the outlet, overflows and flows out from the discharge port 230, and is used as treated aseptic water, which contains active oxygen that could not be dissolved in the water Is discharged into the atmosphere from an exhaust pipe 231, which is provided on the lower side surface of the purifier 22.
この実施例においては、 吐出口 2 3 0から取り出される処理の完了し た水中に含まれる大腸菌、 一般生菌の数は何れも 0にまで殺菌され、 排 気管 2 3 1から排出される排気中に含まれる気相オゾン濃度は 0 . 0 8 p p mにまで減少されると共に、 液相オゾン濃度も 0であり、 溶存酸素 が処理前は 6 . 2 p p mであったのが、 8 . 4 p p mにまで高められた ( 産業上の利用可能性 In this embodiment, the numbers of Escherichia coli and general viable bacteria contained in the treated water taken out from the discharge port 230 are all sterilized to 0, and the exhaust gas discharged from the exhaust pipe 231 The concentration of gaseous ozone in water is reduced to 0.08 ppm, and the concentration of liquid ozone is also 0. From 6.2 ppm before treatment to 8.4 ppm ( industrial availability
本発明の分解方法においては、 従来の熱分解方法、 触媒による分解方 法および活性炭吸着方法等とは異なり、 分解過程において一重項酸素を 経て基底状態酸素に分解するために、 酸素が蘇り、 空気が無菌化される と同時に分解エネルギーによって殺菌され、 従って、 空調のダク ト、 も し く は空気清浄器と して組み込むことにより、 現在問題となっている病 院内感染はもとより、 ビル内の空気の無菌化が達成される。  In the decomposition method of the present invention, unlike the conventional thermal decomposition method, the decomposition method using a catalyst, the activated carbon adsorption method, and the like, oxygen is revived to decompose to ground state oxygen via singlet oxygen in the decomposition process, and air is recovered. Is sterilized by the decomposition energy at the same time as it is sterilized, and therefore, by incorporating it as an air conditioning duct or air purifier, not only hospital infections, which are currently a problem, but also air in buildings Is achieved.
また、 溶存オゾン水も同様に分解し、 溶存オゾンによる弊害がなく な り、 養殖魚介はもとより、 病院の手洗い水、 食品加工水、 飲料水、 井戸 水等を安全な水に変えて供給するこ とが可能になる等の効果を有するも のである。  Dissolved ozone water is also decomposed in the same way, eliminating the harm caused by dissolved ozone. This has the effect that it becomes possible.
従って本発明に係る殺菌 · 脱臭 · 浄化装置は、 汚染空気の処理の過程 において空気の通過に対する抵抗がなく 、 大容量の空気を瞬時に殺菌、 脱臭することが可能であり、 又オゾンの分解過程において生成された一 重項酸素、 即ち活性酸素を基底状態酸素に遷移させるため、 酸素を蘇ら せながら浄化するこ とができる。  Therefore, the sterilization / deodorization / purification device according to the present invention has no resistance to the passage of air in the process of treating contaminated air, and can instantaneously sterilize and deodorize a large volume of air, and also has a process of decomposing ozone. Since the singlet oxygen generated in the above, ie, active oxygen, is changed to ground state oxygen, it can be purified while reviving the oxygen.
このようにオゾンを基底状態酸素に遷移させてダク ト内から送出する ものであるから、 従来の紫外線の照射による空気のオゾン化、 及び紫外 線の殺菌灯による殺菌、 或いは両者を併用する場合のように、 オゾンが 分解されないうちに残留オゾンと して大気中に放出され、 人体に悪影響 を与えたり、 取扱が困難である等の問題を生じない。  As described above, since ozone is converted to ground state oxygen and sent out from the duct, conventional ozonation of air by irradiation with ultraviolet rays, sterilization with a germicidal lamp of ultraviolet rays, or a combination of both. In this way, ozone is released into the atmosphere as residual ozone before it is decomposed, causing no adverse effects on the human body or difficulties in handling.
又、 紫外線殺菌灯の単独使用の場合には波長 2 5 4 n mの紫外線が主 体であり、 励起された一重項酸素はそのまま拡散して行き、 瞬発的な殺 菌効果を期待できなかったが、 本発明においては一重項酸素の基底伏態 酸素への遷移エネルギーによって殺菌等を行うので、 瞬発的な殺菌効果 を期待できる ものである。 In addition, when an ultraviolet germicidal lamp is used alone, ultraviolet light having a wavelength of 254 nm is mainly used, and the excited singlet oxygen diffuses as it is, so that no instantaneous bactericidal effect can be expected. In the present invention, basal state of singlet oxygen Since sterilization is performed by the transition energy to oxygen, an instantaneous sterilization effect can be expected.
そのために、 この空気の殺菌 · 脱臭 · 浄化装置を送風手段と して用い れば、 現在問題となっている院内感染 (M R S A ) の予防はもとより、 ビル内、 交通機関の居住空間の空気の無菌、 脱臭化が達成され、 その他 食品加工、 厨房、 医療機関等の無菌空間が要求される場所に適用し、 そ の効果を発揮する ものである。  Therefore, if this air sterilizing, deodorizing, and purifying device is used as a blowing means, it will not only prevent hospital-acquired infection (MRSA), which is currently a problem, but also asepticize the air in buildings and transportation living spaces. Deodorization has been achieved, and it is applied to places requiring aseptic space such as food processing, kitchens, medical institutions, etc., and exerts its effects.
本発明は又、 汚染されている原水中の大腸菌、 一般生菌の殺菌を行つ て浄化すると共に、 水中に溶け込んでいる溶存酸素を多く するこ とがで きるので、 魚介類の養殖用の水浄化装置に用いて最適なものとなる。 又、 第 5実施例に示した方法を用いることによって、 ヒ ドロキシラジ カルの生成による汚染物質の分解、 特に ト リハロメ タ ン、 ト リ ク ロール エチ レ ン等の有機塩素化合物の分解も可能となり、 院内感染 (M R S A ) の予防、 上水池で発生するァォコ、 カ ビの発生が予防される。  The present invention is also capable of purifying Escherichia coli and general bacteria in contaminated raw water by sterilizing them and increasing the amount of dissolved oxygen dissolved in the water. It is optimal for use in water purification equipment. Also, by using the method shown in the fifth embodiment, it is possible to decompose contaminants due to the production of hydroxyradicals, and in particular, to decompose organic chlorine compounds such as trihalomethane and trichlorethylene. Prevention of hospital-acquired infections (MRSA) and prevention of cocoa and mold in water reservoirs.
さ らには、 下水の無菌化、 或いは下水を中水に浄化し、 更に中水を上 水に浄化すること も可能となり、 水資源確保のための節水に寄与するこ とができる等の効果を有するものである。  Furthermore, it is possible to sterilize sewage, or purify sewage into sewage, and further purify sewage into clean water, thereby contributing to saving water for securing water resources. It has.

Claims

請求の範囲 The scope of the claims
1. ォゾンに波長 2 4 0 η π!〜 3 6 0 n mの紫外線を照射して一重 項酸素を生成させた後、 波長 6 0 0 n m〜 6 5 O n mの可視光線と 波長 1 2 0 0 n m〜 1 3 0 0 n mの近赤外線を照射して、 ォゾンが 一重項酸素を経て電磁波の誘導を行いながら、 基底状態酸素に遷移 させることを特徴とするオゾンの分解方法。  1. Wavelength 2400 η π! After generating singlet oxygen by irradiating ultraviolet light of up to 360 nm, visible light with a wavelength of 600 nm to 65 O nm and near-infrared light with a wavelength of 1200 nm to 1300 nm are emitted. A method for decomposing ozone, which comprises irradiating an ozone to induce electromagnetic waves via singlet oxygen and transit to ground state oxygen.
2. ォゾンに波長 2 4 0 n m〜 3 6 0 n mの紫外線レーザを照射し て一重項酸素を生成させた後、 波長 6 0 0 n m〜 6 5 0 n mの可視 光レーザ光および波長 1 2 0 0 n m〜 l 3 0 0 n mの赤外線レーザ 光を照射し、 オゾンが一重項酸素を経て電磁波の誘導放出を促進さ せながら、 基底状態酸素に遷移させるこ とを特徴とするオゾンの分 解方法。  2. After irradiating the ozone with an ultraviolet laser having a wavelength of 240 nm to 360 nm to generate singlet oxygen, a visible laser beam having a wavelength of 600 nm to 65 nm and a wavelength of 120 nm are generated. A method for decomposing ozone, characterized by irradiating an infrared laser beam of 0 nm to l300 nm and causing ozone to transition to ground state oxygen while promoting stimulated emission of electromagnetic waves via singlet oxygen. .
3. 前記オゾンが波長 2 0 0 n m以下の紫外線、 紫外線レーザー光 の照射あるいは放電式ォゾナイザーによって発生させた、 空気に含 まれているォゾンである請求項 1、 請求項 2記載のォゾンの分解方 法。  3. The method for decomposing ozone according to claim 1, wherein said ozone is ozone contained in air, which is generated by irradiation with ultraviolet light or ultraviolet laser light having a wavelength of 200 nm or less or a discharge type ozonizer. Law.
4. 前記オゾンがダク トおよびケーシング内に送風若しく は吸引し て得られる空気を集塵してィォン化する静電式電気集塵機空気等の イオン化手段と、 波長 2 0 0 n m以下の紫外線、 紫外線レーザ—光 の照射するか、 あるいは放電式ォゾナイザーによって前記イオン化 された空気にオゾンを発生させた、 空気に含まれているオゾンであ る請求項 1、 請求項 2記載のオゾンの分解方法。  4. Ionizing means such as electrostatic electrostatic precipitator air that collects and ionizes the air obtained by blowing or sucking the ozone into the duct and casing, ultraviolet rays with a wavelength of 200 nm or less, 3. The method for decomposing ozone according to claim 1, wherein the ozone is contained in air, wherein the ozone is generated in the ionized air by irradiating an ultraviolet laser or light or by a discharge type ozonizer.
5. 前記オゾンが、 水中にオゾンあるいはオゾンと空気の混合気体 の何れかを吹き込んでえられた気泡中に含まれたオゾンである請求 項 1、 請求項 2記載のオゾンの分解方法。  5. The method for decomposing ozone according to claim 1, wherein the ozone is ozone contained in bubbles obtained by blowing either ozone or a mixed gas of ozone and air into water.
6. 前記オゾンが一重項酸素の電磁波の誘導放出による基底状態酸 素へ遷移する際に生じる遷移エネルギーを利用して空気の殺菌 · 脱 臭 · 浄化を併せて行う こ とを特徴とする請求項 3、 請求項 4記載の オゾンの分解方法。 6. The ozone is ground state acid by stimulated emission of singlet oxygen electromagnetic wave 5. The method for decomposing ozone according to claim 3, wherein sterilization, deodorization, and purification of air are performed together by using transition energy generated at the time of transition to oxygen.
7 . 波長 2 0 0 n m以下の紫外線、 紫外線レーザー光の照射あるい は放電式ォゾナイザーによって発生させたオゾンを含む空気を、 波 長 2 4 0〜3 1 0 n mの紫外線あるいは紫外線レーザー光を照射し て一重項酸素を生成させ、 この一重項酸素に波長 6 0 0〜 6 5 0 n mの可視光線若し く は可視光線レーザー光、 波長 1 2 0 0〜1 3 0 O n mの近赤外線若しく は近赤外線レーザー光を各々単独、 同時あ るいは順次照射して、 一重項酸素の電磁波の誘導放出による基底状 態酸素への遷移エネルギーを利用した空気の殺菌 · 脱臭 · 浄化装置,7. Irradiation of ultraviolet or ultraviolet laser light with a wavelength of 200 nm or less or air containing ozone generated by a discharge-type ozonizer, or ultraviolet or ultraviolet laser light with a wavelength of 240 to 310 nm Then, singlet oxygen is generated, and this singlet oxygen is irradiated with visible light or visible light laser light having a wavelength of 600 to 600 nm or near infrared light having a wavelength of 1200 to 130 O nm. Or by irradiating near-infrared laser light individually, simultaneously or sequentially, and using the transition energy to basal oxygen by the stimulated emission of singlet oxygen electromagnetic waves to sterilize, deodorize, and purify air.
8 . ダク トおよびケーシング内に送風若しく は吸引して得られる空 気を集塵してィォン化する静電式電気集塵機空気等のィォン化手段 と、 波長 2 0 O n m以下の紫外線、 紫外線レーザ—光の照射するか. あるいは放電式ォゾナイザ一によって前記イオン化された空気にォ ゾンを発生させるォゾン発生手段と、 該オゾン発生手段によりォゾ ンが発生している空気に波長 2 4 0〜3 6 0 n mの紫外線あるいは 紫外線レーザー光の何れかを照射して一重項酸素を発生させる一重 項酸素発生手段と、 該一重項酸素発生手段により一重厚酸素が発生 している空気に、 波長 6 0 0〜6 5 0 n mの可視光線若しく は可視 光線レーザー光と、 波長 1 2 0 0〜 1 3 0 O n mの近赤外線若し く は近赤外線レーザ—光を各々単独、 同時あるいは順次照射して、 一 重項酸素の電磁波の誘導放出による基底状態酸素への遷移をさせる 基底状態酸素移行手段とを具備したことを特徵とする空気の殺菌 . 脱臭 · 浄化装置。 8. Means for ionizing air, such as an electrostatic electrostatic precipitator, that collects and ionizes air obtained by blowing or sucking air into the duct and casing, and ultraviolet rays and ultraviolet rays having a wavelength of 20 O nm or less. Laser-light irradiation; or ozone generating means for generating ozone in the ionized air by a discharge-type ozonizer; and a wavelength of 240 to 400 nm for air in which ozone is generated by the ozone generating means. A singlet oxygen generating means for generating singlet oxygen by irradiating either ultraviolet light or ultraviolet laser light of 360 nm, and air in which singlet oxygen is generated by the singlet oxygen generating means, have a wavelength of 6 nm. Visible light or visible light laser light of 0-650 nm and near-infrared light or near-infrared laser light of wavelength of 1200-130 nm are irradiated individually, simultaneously or sequentially. And the singlet oxygen electromagnetic An air disinfection / deodorization / purification device comprising: ground state oxygen transfer means for causing transition to ground state oxygen by stimulated emission of waves.
9 . 水中にオゾン、 オゾンと空気の混合気体の何れかを吹き込んで 気泡を形成し、 この気泡に紫外線 2 4 0〜 3 6 0 n mを照射してォ ゾンをを一重項酸素に生成し、 次に可視光線 6 0 0〜 6 5 0 n m、 近赤外線 1 2 0 0〜 1 3 0 0 n m若し く はレーザ光を各々単独ある いは同時あるいは順次照射し励起された一重項酸素の電磁波の誘導 放出による基底伏態酸素への遷移を利用した水中への溶存酸素生成 方法。 9. Inject either ozone or a mixture of ozone and air into water A bubble is formed, and this bubble is irradiated with ultraviolet rays 240 to 360 nm to generate ozone into singlet oxygen, and then visible rays 600 to 65 nm and near infrared rays 120 Dissolution in water using transition to basal oxygen by stimulated emission of electromagnetic waves of singlet oxygen excited by irradiating 0 to 130 nm or laser light individually or simultaneously or sequentially Oxygen generation method.
0. オゾン、 ォゾンと空気の混合気相の何れかに紫外線 2 4 0〜 3 6 O n mを照射してオゾンを一重項酸素に生成した後に、 可視光線 6 0 0 ~ 6 5 0 n m若しく は近赤外線 1 2 0 0〜 1 3 0 0 n mを各 々単独あるいは同時あるいは順次照射して生成されている一重項酸 素の電磁波の誘導放出による基底状態酸素への遷移する 2過程中の 気相に、 水をシャ ワーリ ングして気相を通過させるか、 若しく は噴 水によつて気相と水の接触面積を増大させて前記気相を水中に溶存 させる水中への溶存酸素生成方法。  0. Irradiate either ozone or a mixed gaseous phase of ozone and air with ultraviolet rays 240 to 36 O nm to generate ozone into singlet oxygen, and then apply visible light 600 to In the two processes, the transition to ground state oxygen by stimulated emission of singlet oxygen generated by irradiating near-infrared light of 1200 to 130 nm individually or simultaneously or sequentially is performed during two processes. The phase is allowed to pass through the gas phase by showering water, or the contact area between the gas phase and water is increased by a fountain to dissolve the gas phase in the water, thereby producing dissolved oxygen in the water. Method.
PCT/JP1994/000580 1993-04-14 1994-04-07 Method and apparatus for ozone decomposition by stimulated emission of electromagnetic wave WO1994024043A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU64369/94A AU6436994A (en) 1993-04-14 1994-04-07 Method and apparatus for ozone decomposition by stimulated emission of electromagnetic wave

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP11092993A JP3255488B2 (en) 1993-04-14 1993-04-14 Ozone decomposition method
JP5/110929 1993-04-14
JP5/132695 1993-05-10
JP5/132694 1993-05-10
JP13269493A JP3428069B2 (en) 1993-05-10 1993-05-10 Air sterilization / deodorization / purification method and device
JP13269593A JP3365819B2 (en) 1993-05-10 1993-05-10 Method for producing dissolved oxygen in water

Publications (1)

Publication Number Publication Date
WO1994024043A1 true WO1994024043A1 (en) 1994-10-27

Family

ID=27311841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000580 WO1994024043A1 (en) 1993-04-14 1994-04-07 Method and apparatus for ozone decomposition by stimulated emission of electromagnetic wave

Country Status (4)

Country Link
CN (1) CN1037426C (en)
AU (1) AU6436994A (en)
TW (1) TW290526B (en)
WO (1) WO1994024043A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9452379B2 (en) 2014-01-14 2016-09-27 International Business Machines Corporation Ozone abatement system for semiconductor manufacturing system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100346838C (en) * 2005-10-12 2007-11-07 张亚中 Two-band ultraviolet multifunctional sterilizing purifier
CN112225181A (en) * 2020-12-04 2021-01-15 陕西省石油化工研究设计院 Ultraviolet laser optical fiber ozone generator
CN115682270A (en) * 2022-10-27 2023-02-03 珠海格力电器股份有限公司 Method and device for controlling ozone concentration and air purifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171663A (en) * 1987-12-25 1989-07-06 Tokai Kogyo Kk Dust-collecting and deodorizing device
JPH02203992A (en) * 1989-02-03 1990-08-13 Satoe Yoshinaga Device for washing and purifying article
JPH04256414A (en) * 1990-12-28 1992-09-11 Ricoh Co Ltd Ozone decomposition removing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2980494A (en) * 1959-04-13 1961-04-18 Union Carbide Corp Method of decomposing ozone
SU1668288A1 (en) * 1989-03-27 1991-08-07 Физический институт им.П.Н.Лебедева Method for producing molecular singlet oxygen
ES2048028B1 (en) * 1991-06-25 1996-01-16 Saitra S A OZONIZED WATER GENERATOR FOR STERILIZATION AND OZONE THERAPY.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171663A (en) * 1987-12-25 1989-07-06 Tokai Kogyo Kk Dust-collecting and deodorizing device
JPH02203992A (en) * 1989-02-03 1990-08-13 Satoe Yoshinaga Device for washing and purifying article
JPH04256414A (en) * 1990-12-28 1992-09-11 Ricoh Co Ltd Ozone decomposition removing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9452379B2 (en) 2014-01-14 2016-09-27 International Business Machines Corporation Ozone abatement system for semiconductor manufacturing system
US10369510B2 (en) 2014-01-14 2019-08-06 International Business Machines Corporation Ozone abatement system for semiconductor manufacturing system
US10434455B2 (en) 2014-01-14 2019-10-08 International Business Machines Corporation Ozone abatement system for semiconductor manufacturing system
US10894229B2 (en) 2014-01-14 2021-01-19 International Business Machines Corporation Ozone abatement method for semiconductor manufacturing system

Also Published As

Publication number Publication date
CN1105177A (en) 1995-07-12
TW290526B (en) 1996-11-11
AU6436994A (en) 1994-11-08
CN1037426C (en) 1998-02-18

Similar Documents

Publication Publication Date Title
US8968576B2 (en) Nebulizing treatment method
CA2861278C (en) A mobile disinfection unit for disinfecting a given facility or equipment and a method of using said unit
EP1986703B1 (en) System for removal of airborne contaminants
JPH10511572A (en) Method and apparatus for treating a fluid
JP5700859B2 (en) Virus inactivation apparatus and virus inactivation method
KR102094915B1 (en) Air sterilizer
WO2020124706A1 (en) Device for cleaning and sterilizing air and object surface
JP2014506496A (en) Purification system using ozone and atomizing fluid
JPH1057749A (en) Method for deodorizing air by ozonized water and air deodorizer
KR20110004617A (en) Apparatus and method of high efficiency deodorization and air sterilization using advanced oxidation process
KR102107083B1 (en) Floating air and object surface cleaning and sterilization device
KR200422046Y1 (en) OH radical sterilizer
WO1994024043A1 (en) Method and apparatus for ozone decomposition by stimulated emission of electromagnetic wave
KR102033472B1 (en) Plasma odor and germ remover
KR20070111757A (en) Air cleaner and air purifier
JP3428069B2 (en) Air sterilization / deodorization / purification method and device
KR100348413B1 (en) Uv and ozone producing aop chamber and water-cleaning apparatus using same
KR200373329Y1 (en) Air disinfection purifier that generates hot and cold air
JP2005201586A (en) Air cleaning unit for air conditioner
KR20030027362A (en) Air cleaner
JP3936876B2 (en) Sterilization / deodorization equipment
JP2000217898A (en) Air cleaner
JP3602802B2 (en) Photo-oxidation reactor
JP3365819B2 (en) Method for producing dissolved oxygen in water
JP3255488B2 (en) Ozone decomposition method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA