WO1994003032A1 - Organic el device - Google Patents

Organic el device Download PDF

Info

Publication number
WO1994003032A1
WO1994003032A1 PCT/JP1993/001020 JP9301020W WO9403032A1 WO 1994003032 A1 WO1994003032 A1 WO 1994003032A1 JP 9301020 W JP9301020 W JP 9301020W WO 9403032 A1 WO9403032 A1 WO 9403032A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
organic
metal
composition
deposition rate
Prior art date
Application number
PCT/JP1993/001020
Other languages
English (en)
French (fr)
Inventor
Hiroaki Nakamura
Tadashi Kusumoto
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP4197272A external-priority patent/JPH0645073A/ja
Priority claimed from JP4270573A external-priority patent/JPH06124786A/ja
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to EP19930916203 priority Critical patent/EP0605739A4/en
Priority to US08/199,255 priority patent/US5500568A/en
Publication of WO1994003032A1 publication Critical patent/WO1994003032A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes

Definitions

  • the present invention relates to an organic EL element (elect-opening luminescence element) used as a display element, a light-emitting element, or the like.
  • the organic EL element is configured by interposing at least a thin film (light emitting layer) of an organic light emitting body between a pair of electrodes facing each other.
  • a thin film (light emitting layer) of an organic light emitting body between a pair of electrodes facing each other.
  • the luminous power is generated by the recombination in the layer.
  • US Pat. Nos. 3,173,050 and 3,382,394 disclose an organic EL device using an alkali metal, for example, a Na—K alloy for a cathode.
  • the organic EL devices disclosed in these specifications are powerful in terms of high quantum efficiency (RCA Review vol.30, P322), and alloys of alkali metals and aluminum alloys have high activity. Not practical due to high chemical instability.
  • U.S. Pat. No. 4,539,507 discloses an organic EL device using In for a cathode
  • JP-A-3-231970 discloses Mg-based organic EL device.
  • An organic EL device using 1 n metal as a cathode is disclosed.
  • European Patent No. 2 78757 discloses that a layer containing a plurality of metals other than Al-Li metal is used, and the work function of at least one of these metals is 4 eV.
  • An organic material provided with a cathode composed of the following layers (specifically, an Mg-based electrode composed of Mg and one of Ag, In, Sn, Sb, Te, and Mn, such as an Mg-Ag electrode)
  • An EL device is disclosed.
  • a cathode is formed by mixing at least 11 at.% Of metals such as Li, Na, Ca, and Sr with good electron injectability with relatively stable metals such as Mg, Al, In, and Sn.
  • metals such as Li, Na, Ca, and Sr
  • relatively stable metals such as Mg, Al, In, and Sn.
  • organic EL devices have been announced at the Fall Meeting of Polymers in 1991 (Proceedings of the Society of Polymer Science, Vol. 40, No. 10, p. 3582). However, the efficiency (power conversion efficiency) of the organic EL devices presented here was not as high as that of organic EL devices with a Mg-Ag electrode as the cathode.
  • An object of the present invention is to provide a new organic EL device having a cathode with high aging stability and improved electron conversion efficiency.
  • the organic EL device of the present invention that achieves the above object includes, as a cathode, a vapor-deposited film containing at least one metal A selected from Pb, Sn, and Bi and a metal B having a work function of 4.2 eV or less. It is characterized by having.
  • the cathode in the organic EL device of the present invention is formed of a vapor-deposited film containing at least one metal A selected from Pb, Sn, and Bi and a metal B having a work function of 4.2 eV or less.
  • a metal B having a work function of 4.2 eV or less.
  • metals having a work function of 4.0 eV or less are particularly preferable from the viewpoint of improving electron injection properties, and specific examples thereof are listed above.
  • One kind of metal B may be used, or a plurality of kinds may be used.
  • the method for forming the deposited film containing metal A and metal B is not particularly limited, but specific examples include resistance heating deposition, electron beam deposition, high-frequency induction heating, molecular beam epitaxy, and hot spot deposition.
  • Wall evaporation, ion plating, cluster-one-on-beam, two-pole snow, Examples of such methods include direct evaporation of alloys using multiple methods, such as two-pole magnetron sputtering, three- and four-electrode plasma sputtering, and ion beam sputtering, and multiple simultaneous evaporation. From the viewpoint of efficiently producing a cathode having a desired composition, it is particularly preferable to apply a multiple simultaneous vapor deposition method.
  • the cathode formed as described above may contain the metal A and the metal B, but the ratio of the metal A in the cathode is preferably 90 to 99.999 at.%. The reason is that if the proportion of metal A is 90 to 99.999 at.%, Metal A becomes a base of the cathode and the chemical stability over time of the cathode is improved. A particularly desirable ratio of metal A is 95 to 99.99 at.%.
  • the composition of the cathode can be controlled, for example, by appropriately setting the ratio between the deposition rate of metal A and the deposition rate of metal B when the film is formed by the multiple simultaneous vapor deposition method.
  • the preferable deposition rate is 2 nmZsec or more, particularly 4 nmZsec or more for metal A, and 0.5 nmZsec or less, particularly 0.1 SnmZsec or less for metal B.
  • the sum of the deposition rates of the substances constituting metal A is preferably 2 nmZsec or more, and 4 nm / sec or more. It is even more preferred.
  • the sum of the deposition rates of the substances constituting the metal B is preferably not more than 0.5 nm / sec. More preferably, it is not more than 2 nm / sec.
  • the thickness of the cathode thus obtained is not particularly limited as long as there is conduction in the film, but is preferably 10 to 40 Onm, particularly preferably 30 to 2 ° nm.
  • the configuration of the organic EL device of the present invention is not particularly limited except that the above-described cathode is provided.
  • the configuration of the organic EL device includes (1) an anode Z light-emitting layer, a cathode, and (2) an anode hole injection layer. There are a light-emitting layer, a negative electrode, a 3 anode, a Z layer, an electron injection layer, a cathode, a positive electrode, a hole injection layer, a Z layer, an electron injection layer, a Z cathode, and the like.
  • the organic EL device of the present invention may have any configuration.
  • the material or forming method of the constituent elements other than the cathode is not particularly limited, and may be formed by various methods using various materials as described later. Can be.
  • the organic EL device of the present invention provided with the deposited film containing metal A and metal B as a cathode obtained in this manner not only has a high chemical stability over time of the cathode, but also has the advantage of a conventional organic EL device. It has power conversion efficiency equal to or higher than that of organic EL devices using Mg-based cathodes, which are considered to have high power conversion efficiency among them.
  • the organic compound that can be used as the material of the light emitting layer is not particularly limited, but a benzothiazole-based, benzimidazole-based, benzoxazole-based fluorescent whitening agent, a metal chelated oxinoide compound, and styrylbenzene And the like.
  • Typical examples are tris (8-quinolinol) aluminum, bis (8-quinolinol) magnesium, bis (benzo [f] -8-quinolinol) zinc, bis (2-methyl-8-quinolinolate) aluminum oxide , Tris (8-quinolinol) indium, tris (5-methyl-8-quinolinol) aluminum, 8-quinolinol lithium, tris (5-chloro-1-8-quinolinol) gallium, bis (5-chloro-8) —Quinolinol) Calcium, poly [zinc (II) —bis (8-hydroxy-15-quinolinonyl) methane] and other 8-hydroxyquinoline-based metal complexes such as dilithium muepintridion.
  • styrylbenzene-based compound for example, those disclosed in European Patent No. 319881 and European Patent No. 373582 can be used.
  • Typical examples are 1,4-bis (2-methylstyryl) benzene, 1,4-bis (3-methylstyryl) benzene, 1,4-bis (4-methylstyryl) benzene, distyrinobenzene 1,4-bis (2-ethylstyryl) benzene, 1,4-bis (3-ethylstyryl) benzene, 1,4-bis (2-methylstyryl) 1,2-methylbenzene, 1,4-bis (2 —Methylstyryl) 1-2-ethylbenzene and the like.
  • a distyryl virazine derivative disclosed in JP-A-2-252793 can also be used as a material for the light emitting layer.
  • Typical examples are 2,5-bis (4-methylstyryl) pyrazine, 2,5-bis (4-ethylstyryl) pyrazine, 2,5-bis [2- (1-naphthyl) vinyl] pyrazine, 2,5- Screw (4-Methoxystyryl) pyrazine, 2,5-bis [2- (4-biphenyl) vinyl] pyrazine, 2,5-bis [2- (1-pyrenyl) vinyl] pyrazine and the like.
  • a polyphenyl compound disclosed in European Patent No. 0387715 can also be used as a material for the light emitting layer.
  • metal chelated oxoxide compound for example, 12-phthal-perinone (J. Appl. Phys., Vol. 27, L713 (1988)) 1,4-diphenyl-1,3-butane, 1,1,4,4-tetraphenyl-1,3-butadiene (Appl. Phys. Lett., Vol.
  • an aromatic dimethylidin compound (disclosed in European Patent No. 0388768 (Japanese Patent Application Laid-Open No. 3-231970)).
  • Specific examples are 1,4-phenylenedimethylidin, 4,4'-phenylenedimethylidin, 2,5-xylylenedimethylidin, 2,6-naphthylenedimethylidin, 1 , 4-biphenyl methylidin, 1,4-p-tereylene methylidin, 9,10-anthracenyldimethylidin, 4,4'-bis (2,2-di-t-butyl) Diphenyl vinyl) biphenyl (hereinafter abbreviated as DTB P VB i), 4,4′-bis (2,2-diphenylvinyl) biphenyl (hereinafter abbreviated as DPVB i), and the derivatives thereof.
  • DTB P VB i 4,4′-bis (2,2-diphenylvinyl) biphen
  • the light emitting layer is particularly preferably a molecular deposition film.
  • the molecular deposition film is a thin film formed by deposition from a material compound in a gas phase or a film formed by solidification from a material compound in a solution or liquid phase. Films can be distinguished from thin films (molecule accumulation films) formed by the LB method by differences in the cohesive structure and higher-order structure, and the resulting functional differences.
  • a binder such as a resin and a material compound are dissolved in a solvent to form a solution, which is then subjected to a spin coating method.
  • the light emitting layer can also be formed by making the film thinner.
  • the layer in the organic EL element has an injection function capable of injecting holes from an anode or a hole injection layer and injecting electrons from a cathode or an electron injection layer when an electric field is applied. It has a transport function to move electrons and holes) by the force of an electric field, a light-emitting function to provide a field for recombination of electrons and holes, and to link this to light emission. Note that there may be a difference between the ease of injecting holes and the ease of injecting electrons. In addition, it is preferable to move at least one of the forces that may be large or small in the transport function represented by the mobility of holes and electrons.
  • a metal, an alloy, an electrically conductive compound or a mixture thereof having a large work function (4 eV or more) is preferably used.
  • metals such as A u, C ul, like IT O. S n 0 2, Z n dielectric transparent materials O and the like.
  • the positive electrode can be manufactured by forming a thin film of the above material by a method such as a vapor deposition method or a sputtering method.
  • the transmittance of the anode should be greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / b or less.
  • the thickness of the anode is selected depending on the material, usually from 1 nm to lm, and preferably from 10 to 200 nm.
  • the material of the hole injection layer provided as necessary may be selected from materials conventionally used as hole injection materials in the photoconductor family and known materials used in the hole injection layer of organic EL devices. Any one can be selected and used.
  • the material of the hole injection layer has either hole injection or electron barrier properties, and may be an organic substance or an inorganic substance.
  • JP-A-57-148749, JP-A-2-311591, etc. stilbene derivatives (JP-A-61-210363, JP-A-61-228451, JP-A-61-14642, JP-A-61-214) No. 72255, No. 62-47646, No. 62-36674, No. 62-10652, No. 62-3 ⁇ 255, No. 60-93445, No. 60-94462, No. Nos. 60-174749 and 60-175052), silazane derivatives (U.S. Pat. No. 4,950,950), polysilanes (Japanese Patent Application Laid-Open No.
  • the above-mentioned materials can be used, and porphyrin compounds (those disclosed in JP-A-63-2956965, etc.), aromatic tertiary amine compounds and styrylamine compounds (US Patent Nos. 4,127,412, JP-A-53-27033, JP-A-54-58445, JP-A-54-149634, JP-A-54-64299, JP-A-55-79450, Nos. 55-14425 ⁇ , 56-11913-2, 61-295555, 61-98353, 63-295695), especially aromatic tertiary amine compounds.
  • porphyrin compounds include porphyrin, 1,10,15,20-tetraphenyl 21H, 23H-porphyrin copper (11), 1,10,15,20-tetraphenyl 21H, 23H —Zinc porphin (11), 5,10,15,20—Tetrakis (pentafluorophenyl) 21H, 23H—porphin, silicon phthalocyanine oxide, aluminum phthalocyanine chloride, phthalocyanine (metal-free), dilithium Phthalocyanine, copper tetramethyl fu Cyanine, copper phthalocyanine, chromium phthalocyanine, zinc phthalocyanine, lead phthalocyanine, titanium phthalocyanine oxide, Mg phthalocyanine, copper octamethylphthalocyanine, and the like.
  • aromatic tertiary amine compound and styrylamine compound include N, N, N ', N'-tetraphenyl, 4,4'-diaminophenyl, and N, ⁇ '-diphenyl. , N'-bis- (3-methylphenyl) -1- [1 ,,-biphenyl] —4, .4'-diamin (hereinafter abbreviated as TPD), 2,2-bis (4-zy ⁇ -tolylaminophenyl) Proha.
  • TPD 2,2-bis (4-zy ⁇ -tolylaminophenyl
  • aromatic dimethylidin-based compound shown as a material for the light emitting layer can also be used as a material for the hole injection layer.
  • the hole injection layer can be formed by thinning the above-mentioned compound by a known method such as a vacuum evaporation method, a spin coating method, a casting method, and an L ⁇ method.
  • the thickness of the hole injection layer is not particularly limited, but is usually 5 nm to 5 m.
  • the hole injection layer may have a single-layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • the electron injection layer which is provided as necessary, transmits electrons injected from the cathode to the light emitting layer.
  • Any material can be used as long as it has a function that can be achieved, and any material can be selected from conventionally known compounds and used.
  • JP-A-61-225151 and JP-A-61-233750, etc. 11 ⁇ 5 ⁇ 6., 55, 15, 1489 ⁇ Oxa disclosed by Hamada et al.
  • JP-A-59-194393 the electron-transporting compound is used as a material for a light-emitting layer.
  • the present inventors have made it clear that it can be used as a material for the electron injection layer.
  • Metal complexes of 8-quinolinol derivatives specifically, tris (8-quinolinol) aluminum, tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo) 8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, and metal complexes in which the center metal of these metal complexes is replaced by In, Mg Cu, Ca, Sn, or Pb It can be used as a material for an electron injection layer.
  • metal-free or metal phthalocyanine or those whose terminal is substituted with an alkyl group, a sulfone group, or the like is also desirable.
  • the distyryl virazine derivative exemplified as the material of the light emitting layer can be used as the material of the electron injection layer.
  • the electron injection layer can be formed by thinning the above-mentioned compound by a known method such as a vacuum evaporation method, a spin coating method, a casting method, and an LB method. You.
  • the thickness of the electron injection layer is not particularly limited, but is usually 5 n rr! ⁇ 5 rn.
  • the electron injection layer may have a single-layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • a hole injection transport material made of an inorganic compound such as p-type Si or p-type SiC can be used as a material for the hole injection layer.
  • An electron injecting / transporting material composed of an inorganic compound such as type-Si, n-type-SiC can also be used.
  • Specific examples of the inorganic material for the hole injection layer and the inorganic material for the electron injection layer include an inorganic semiconductor disclosed in International Publication WO90 / 05988.
  • a light emitting layer, an anode, a hole injection layer as needed, and an electron injection layer as needed are formed by the materials and methods exemplified above, and a negative electrode is formed by the method described above.
  • the organic EL device of the present invention which can be formed may have any configuration as described above. An example of a stage for manufacturing an organic EL device will be briefly described. First, a thin film made of an anode material is formed on an appropriate substrate by a method such as vapor deposition or sputtering so as to have a thickness of 1 m or less, preferably in a range of 10 to 200 nm, thereby producing an anode. . Next, a hole injection layer is provided on the anode.
  • the hole injection layer can be formed by a method such as a vacuum evaporation method, a spin coating method, a casting method, or an LB method. It is preferable to form by a vacuum evaporation method from the viewpoint of difficulty in forming.
  • the deposition conditions are different depending on the compound to be used (the material of the hole injection layer), the crystal structure of the desired hole injection layer, and the structure of the table.
  • the evaporation source temperature is from 50 to 450. ⁇ , vacuum 1 ⁇ one 5 ⁇ 1 ⁇ one 3 P a, deposition rate ⁇ . 0 1 ⁇ 5 0 nm sec, the substrate temperature one 5 0 ⁇ 3 0 0 ° C, range of thickness 5 nm ⁇ 5 ⁇ m It is preferable to select as appropriate with ffl. '
  • the light-emitting layer can be formed by thinning the organic light-emitting material using a desired organic light-emitting material by a vacuum evaporation method, a spin coating method, a casting method, or the like. pin Po, Luka ⁇ Because it is difficult to generate, etc., the ability to form by vacuum evaporation ⁇ desirable.
  • the deposition conditions vary depending on the compound used, but can be generally selected from the same condition ranges as those of the hole injection layer.
  • a metal A and a metal B are simultaneously vapor-deposited on this light emitting layer to form a cathode.
  • the desired organic EL element power is obtained.
  • the deposition conditions for forming a cathode by simultaneously vapor-depositing both metal A and metal B using a vacuum deposition method vary depending on the type of metal A and metal B used, but generally the vapor deposition temperature is 100 to 5000 ° C. It is preferable that the pressure is appropriately selected in the range of lx10 to 12 Pa or less and the substrate temperature is in the range of 200 to 500 ° C.
  • the deposition rate of metal A is 2 nmZsec or more, particularly 4 nmZsec or more, and metal B is 0.5 nm / sec or less, particularly 0.2 nm / sec or less.
  • the thickness of the cathode is preferably 10 to 40 nm, particularly preferably 30 to 200 nm. In the production of this organic EL device, it is possible to produce the negative electrode, the light-emitting layer, the hole injection layer, and the anode on the substrate in the reverse order.
  • Example 1 Organic EL device having Pb-Mg cathode
  • a transparent support substrate was prepared by forming an ITO film (corresponding to an anode) with a thickness of 100 nm on a glass substrate of 25 ⁇ 75 ⁇ 1.1 mm.
  • the transparent support substrate was subjected to ultrasonic cleaning with isopropyl alcohol for 5 minutes, followed by pure water for 5 minutes, and finally ultrasonic cleaning again with isopropyl alcohol for 5 minutes.
  • the transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation system [manufactured by Nippon Vacuum Engineering Co., Ltd.], and the molybdenum resistance heating boat is ⁇ , ⁇ '-diphenyl- ⁇ , N'-bis-1 (3-Methylphenyl) one (1, 1'-biphenyl) one 4, 4 ' ⁇
  • TPD diamine
  • DP VBi 4,4'-bis (2,2-diphenylvinyl) biphenyl
  • the resistance heating boat containing the TPD was heated to 215 to 220, and the TPD was deposited on the ITO film of the transparent support substrate at a deposition rate of 0.1 to 0.3 nmZsec. A ⁇ nm hole injection layer was formed.
  • the substrate temperature at this time was room temperature.
  • the above-mentioned molybdenum resistance heating boat containing DP VB i was heated to 220 ° C, and DPVB i was holed at a deposition rate of ⁇ .1 to ⁇ .2 nm / sec.
  • the light emitting layer having a thickness of 4 nm was deposited on the injection layer.
  • the substrate temperature at this time was also room temperature.
  • the substrate on which the anode, the hole injection layer, and the light emitting layer are sequentially formed is taken out of the vacuum chamber, a stainless steel mask is placed on the light emitting layer, and the substrate is fixed to the substrate holder again. did.
  • 20 Omg of tris (8-quinolinol) aluminum (A1q.) was placed in a molybdenum resistance heating boat and mounted in a vacuum chamber.
  • 8 g of Pb ingot was placed in an alumina-coated tungsten basket, and another 1 g of Mg (work function 3.68 eV) ribbon was placed in another molybdenum boat.
  • an organic EL device was obtained by providing an anode, a hole injection layer, a light emitting layer, an electron injection layer, and a cathode on a glass substrate.
  • the composition ratio of Pb and Mg in the cathode is calculated from the ratio
  • Example 2 Organic EL device having Pb—Ca cathode
  • Example 1 Except that C a (work function 2.9) was used as metal B, the deposition rate was 0.2 nmZ sec, and the deposition rate of Pb of metal A was 8.8 nm / sec. An organic EL device was obtained in exactly the same manner as described above.
  • the composition of the cathode in the obtained organic EL device was calculated, the composition of Pb in the negative electrode was 98.4 at.%, And the composition of 3 was 1.6%.
  • Example 3 Organic EL device having Pb-L i cathode
  • Example 1 was the same as Example 1 except that Li (work function 2.93) was used as metal B, the deposition rate was 0.04 nm / sec, and the deposition rate of Pb on gold A was 10 nmZsec. An organic EL device was obtained in exactly the same manner.
  • Example 4 Organic EL device with Pb—Mg cathode
  • Example 2 Exactly the same as Example 1 except that Mg (work function 3.68) was used as metal B, the deposition rate was 2 nm / sec, and the Pb deposition rate of metal A was 5 nmZsec. Thus, an organic EL device was obtained.
  • the composition of the cathode in the obtained organic EL device was calculated, the composition of Pb in this cathode was 95 at.%, And the composition of Mg was 5 at.%.
  • a 7 V DC voltage (current density: 1. ImA / cm 2 ) was applied by setting the cathode of the obtained organic EL element to one polarity and the anode (ITO film) to + polarity, and Blue uniformity of 20 cdm ⁇ was observed.
  • the power conversion efficiency at this time was as high as 0.82 lumens (lm) W, as shown in Table 1.
  • the cathode had excellent chemical stability over time.
  • the composition of the cathode in the obtained organic EL device was calculated, the composition of Pb in the cathode was 99.3 at.%, And the composition of Au was 0.7 at.%.
  • the cathode of the obtained organic EL device was set to the negative polarity
  • the anode (ITO film) was set to the positive polarity
  • a DC voltage of 12 V current density: 6.3 mA / cm 2
  • the power conversion efficiency was 0.0083 lumen as shown in Table 1.
  • the composition of the cathode in the obtained organic EL device was calculated, the composition of Pb in the cathode was 98.8 at.%, And the composition of 1 ⁇ 1 was 1.2 at.%.
  • the cathode of the obtained organic EL device was set to one polarity
  • the anode (ITO film) was set to ten polarity
  • a DC voltage of 15 V current density: 49 mA / cm 2
  • the power conversion efficiency was extremely low at 0.0047 lumen (lm) as shown in Table 1.
  • An organic EL device was obtained in the same manner as in Example 1, except that only Pb of metal A was deposited at a deposition rate of 13 nmZsec without using metal B.
  • Example 1 Except that Mg was used instead of Pb of metal A, In contained in metal B was used, and the deposition rate of Mg was 8 nmZsec and the deposition rate of In was 0.06 nmZsec. An organic EL device was obtained in the same manner as described above.
  • the composition of the cathode in the obtained organic EL device was calculated, the composition of Mg in the cathode was 99.3 at.%, And the composition of 111 was ⁇ 0.7 at.%.
  • the cathode of the obtained organic EL device was made to have one polarity
  • the anode (ITO film) was made to be a positive polarity
  • a 7 V DC voltage current density: 2. ImA / cm 2
  • the power conversion efficiency at this time was 0.45 lumen (lm) as shown in Table 1.
  • this organic EL device was left in the air for 6 months, and as the cathode became oxidized and became transparent, it was confirmed that the cathode had poor chemical stability over time.
  • Table 1 shows that this organic EL device was left in the air for 6 months, and as the cathode became oxidized and became transparent, it was confirmed that the cathode had poor chemical stability over time.
  • Example 2 In the same manner as in Example 1, an anode, a hole injection layer, a light emitting layer, and an electron injection layer were sequentially formed on a substrate.
  • an organic EL element was obtained by providing the anode, the hole injection layer, the light emitting layer, the electron injection layer, and the cathode on the glass substrate.
  • the composition ratio of Sn and Mg in the cathode was calculated from the ratio of the deposition rates according to the calculation formula shown in Example 1. As a result, the composition of Sn was 99.5%, and the composition of Mg was ⁇ .5%.
  • a 7 V DC voltage current density: 2.5 mA / cm 2
  • ITO film anode
  • Blue uniform light emission of cd / m 2 was observed.
  • the power conversion efficiency at this time was as high as 0.75 lumen (lm), as shown in Table 2.
  • Table 2 In addition, when the state of the cathode after being left in air for 6 months was examined, as shown in Table 2, there was no change and the chemical stability over time was excellent.
  • Example 6 Organic EL device having Sn-Ca cathode
  • the composition of the cathode in the obtained organic EL device was measured, the composition of Sn in the negative electrode was 98.6 at.%, And the composition of J & & was 1.4%.
  • Example 7 Organic EL device having Sn-Li cathode
  • the composition of the cathode in the obtained organic EL device was calculated, the composition of Sn in this cathode was 99.4 at.%, And the composition of 1 ⁇ was 0.6 at.%.
  • a 7 V DC voltage (current density: 4.9 ⁇ ) was applied with the cathode of the obtained organic EL element having a negative polarity and the anode (ITO film) having a polarity of 10 °. cd / m 2 blue uniform force ⁇ observed.
  • the power conversion efficiency at this time was 0.73 lumen (lm), which was high.
  • the cathode had excellent chemical stability over time.
  • Example 8 Organic EL device having Sn-Mg cathode
  • Example 5 Exactly the same as Example 5 except that Mg (work function 3.68) was used as metal B, the deposition rate of Mg was 2 nm / sec, and the deposition rate of Sn of metal A was 5 nmZsec. Thus, an organic EL device was obtained.
  • Mg work function 3.68
  • the composition of the cathode in the obtained organic EL device was calculated, the composition of Sn in the cathode was 95.5 at.%, And the composition of Mg was 4.5 at.%.
  • the cathode of the obtained organic EL device was set to the negative polarity and the anode (ITO film) was set to the positive polarity, and a 7 V DC voltage (current density: 1.3 mA / cm 2 ) was applied, Blue uniform light emission of cd / m 2 was observed.
  • the power conversion efficiency at this time was as high as 0.86 lumen (lm) / W.
  • the cathode had excellent chemical stability over time.
  • the composition of the cathode in the obtained organic EL device was calculated, the composition of Sn in the cathode was 99.2 at.%, And the composition of Au was 0.8 at.%.
  • the cathode of the obtained organic EL device was made to have one polarity
  • the anode (ITO film) was made to have a positive polarity
  • a DC voltage of 13 V current density: 7. OmA / cn ⁇
  • the power conversion efficiency at this time is 0.01 lumen (lm) as shown in Table 2. It was extremely low.
  • the composition of the cathode in the obtained organic EL device was calculated, the composition of Sn in the cathode was 98.9 at.%, And the composition of Ni was 1.1 at.%.
  • the cathode of the obtained organic EL device was set to one polarity, the anode (ITO film) was set to the positive polarity, and a 15 V DC voltage (current density: 50 mA / cm 2 ) was applied to observe the light emission. Measured. As shown in Table 2, the power conversion efficiency at this time was extremely low at 0.005 lumen (lm).
  • An organic EL device was obtained in the same manner as in Example 5, except that only Sn of metal A was deposited at a deposition rate of 13 nmZsec without using metal B.
  • Example 5 was the same as Example 5 except that Mg was used instead of Sn for metal A, In was used for metal B, the deposition rate of Mg was 8 nmZsec, and the deposition rate of In was ⁇ .06 nmZsec. Similarly, an organic EL device was obtained.
  • the composition of the cathode in the obtained organic EL device was calculated, the composition of Mg in the cathode was 99.3 at.%, And the composition of In was ⁇ .7 at.%.
  • the cathode of the obtained organic EL device was set to the negative polarity
  • the anode (ITO film) was set to the positive polarity
  • a 7 V DC voltage current density: 2. ImA / cm "
  • the power conversion efficiency at this time was 0.45 lumen (lm) / W as shown in Table 2.
  • this organic EL device was stored in air for 6 months. Since the cathode was left standing and oxidized by the cathode and became transparent, it was confirmed that the cathode had poor chemical stability over time. Table 2
  • Example 9 Organic EL device having Bi-Mg cathode
  • Example 2 In the same manner as in Example 1, an anode, a hole injection layer, m, and an electron injection layer were sequentially formed on a substrate.
  • the composition ratio of Bi and Mg of the cathode was calculated from the ratio of the deposition rates according to the calculation formula shown in Example 1. As a result, the composition of Bi was 99.3%, and the composition of Mg was 0.7%.
  • a 7 V DC voltage current density: 2.6 mA / cm 2
  • ITO film anode having ten polarities
  • 45 Blue uniform light emission of cd / m 2 was observed.
  • the power conversion efficiency at this time was 0.78 lumen (lm) ZW, which was high.
  • Table 3 there was no change and the chemical stability over time was excellent.
  • Example 10 Organic EL device having Bi-Ca cathode
  • the one polarity of the cathode of the obtained organic EL device was the polarity of the + and 7 V DC voltage (current density: 2. 2mA / / cm 2) was applied to Blue uniform emission of 50 cd / m 2 was observed.
  • the power conversion efficiency at this time was as high as 1.00 lumen (lm) as shown in Table 3.
  • the cathode had excellent chemical stability over time.
  • Example 11 Organic EL device having Bi-Li cathode
  • the composition of the cathode in the obtained organic EL device was calculated, the composition of Bi in the cathode was 99.2 at.%, And the composition of 1 ⁇ was ⁇ .8 at.%.
  • Example 12 Organic EL device with Bi-Mg cathode
  • Example 9 was completely different from Example 9 except that Mg (work function 3.68) was used as metal B, the deposition rate of Mg was 0.2 nm / sec, and the deposition rate of Bi of metal A was 5 nm / sec. Similarly, an organic EL device was obtained.
  • Mg work function 3.68
  • the deposition rate of Mg was 0.2 nm / sec
  • the deposition rate of Bi of metal A was 5 nm / sec.
  • an organic EL device was obtained.
  • the composition of the cathode in the obtained organic EL device was calculated, the composition of Bi in the cathode was 94.2 at.%, And the composition of Mg was 5.8 at.%.
  • the cathode of the obtained organic EL device was set to one polarity and the anode (ITO film) was set to ten polarity, a 7 V DC (current density: 1.4 mA / cm i ') was applied. A uniform blue color of 22 cdm "was observed. At this time, the power conversion efficiency was as high as 0.71 lumen (lm) ZW as shown in Table 3. Also, as shown in Table 3, the cathode was Had excellent chemical stability over time.
  • the composition of the cathode in the obtained organic EL device was calculated, the composition of Bi in the cathode was 99.0 at.%, And the composition of Au was 1. Oat.%.
  • the cathode of the obtained organic EL device was set to the negative polarity
  • the anode (ITO film) was set to the negative polarity
  • a 13 V DC voltage current density: 7. OmA / cm 2
  • the power conversion efficiency at this time was extremely low, 0.017 lumens (lm) / W. J: 10
  • the composition of the cathode in the obtained organic EL device was calculated, the composition of Bi in the cathode was 98.5 at.% And the composition of Ni was 1.5 at.%.
  • the cathode of the obtained EL device was set to the negative polarity
  • the anode (ITO film) was set to the positive polarity
  • a DC voltage of 15 V current density: 50 mA / cm 2
  • the power conversion efficiency at this time was extremely low at 0.0046 lumens (lm) _W.
  • An organic EL device was obtained in the same manner as in Example 9 except that only Bi of metal A was deposited at a deposition rate of 13 nmZsec without using metal B.
  • Example 9 was the same as Example 9 except that Mg was used instead of B i of metal A, In was used as metal B, and the deposition rate of Mg was 8 nmZsec and the deposition rate of In was ⁇ .06 n mZsec. Similarly, an organic EL device was obtained.
  • the composition of the cathode in the obtained organic EL device was calculated, the composition of Mg in the cathode was 99.3 at.%, And the composition of In was 0.7 at.%.
  • the cathode of the obtained organic EL device was set to the negative polarity
  • the anode (ITO film) was set to the positive polarity
  • a 7 V DC voltage current density: 1 OmA / cm Z
  • the power conversion efficiency at this time was 0.45 lumen (lm) ZW as shown in Table 3.
  • this organic EL device was left standing in air for 6 months, and the cathode was oxidized and became transparent. Thus, it was confirmed that the cathode had poor chemical stability over time.
  • a novel organic EL device having a cathode having high chemical stability over time and having improved power exchange efficiency is provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

明 細 書 有機 E L素子 技 術 分 野
本発明は、 表示素子や発光素子等として利用される有機 EL素子 (エレクト口 ルミネッセンス素子) に関する。
背 技 術
有機 EL素子は、 互いに対向する一対の電極の間に有機発光体の薄膜 (発光層) を少なくとも介在させることにより構成される。 この有機 E L素子においては、 陰極から直接または電子注入層を介して発光層へ注入された電子と、 陽極から直 接または正孔注入層を介して発光層へ注入された正孔とカ《発光層内で再結台する ことにより発光力《生じる。
このような発光機構に基づく有機 E L素子の発光特性を向上させるための手段 としては、有機発光体材料の選択あるいは改良、発光層の膜質の改良、 陰極材料 の選択あるいは改良等が知られている。 これらのうち、 陰極材料の選択あるいは 改良によるものは、 一般には発光層への電子注入効率を高めて発光特性を向上さ せようとするものである。 そして、 このために、 仕事関数の小さい電気伝導性の 種々の金属、 合金あるいは金属間化合物等を陰極材料として用いることが試みら れている。
例えば、 米国特許第 3, 173, 050号明細書や同第 3, 382, 394号 明細書には、 アルカリ金属、 例えば N a— K合金を陰極に用いた有機 EL素子が 開示されている。 これらの明細書に開示されている有機 EL素子は、 量子効率が 高い (RCA Review vol.30,P322) という点では好ましいものである力く、 アルカリ 金属やアル力リ金属同士の合金は活性が高く化学的に不安定であるために実用的 でない。
このため、 アル力リ金属以外の金属を用いて陰極を形成する種々の提案がなさ れている。 例えば、 米国特許第 4, 539, 507号明細書には陰極に I nを用 いた有機 E L素子が開示されており、 特開平 3 -231970号公報には Mg— 1 n台金を陰極に用いた有機 EL素子が開示されている。 また、 欧州特許第 ϋ 2 78757号明細書には、 アル力リ金属以外の複数の金属を含有する層からなり、 力、つこれらの金属のうちの少なくとも 1種の金属の仕事関数が 4 eV以下である 層からなる陰極 (具体的には、 Mg— Ag電極のように、 Mgと、 Ag、 I n、 Sn、 Sb、 Te、 Mnのいずれかとからなる Mg系電極等) を備えた有機 E L 素子が開示されている。
さらに、 Mg、 A l、 I n、 S n等の比較的安定な金属に、 電子注入性の良い L i、 Na、 Ca、 S r等の金属を 11 at. %以上混合させて陰極を形成した種 々の有機 E L素子が 1991年秋の高分子討論会において発表されている (高分 子学会予稿集 40巻 10号 P. 3582) 。 しかし、 ここで発表された有機 EL 素子の効率 (電力変換効率) は、 いずれも Mg— A g電極を陰極として備えた有 機 EL素子に及ばなかった。
上述したように、 電子注入性の金属を用いて陰極を形成する種々の提案がなさ れているが、 これらの陰極は経時的化学安定性が低く、 またこのような陰極から なる有機 E L素子の電力変換効率も不十分であった。
本発明の目的は、 経時安定性の高い陰極を備え、 かつ電子変換効率の向上した 新たな有機 E L素子を提供することにある。
発 明 の 開 示
上記目的を達成する本発明の有機 E L素子は、 P b, S nおよび B iから選ば れる少なくとも 1種の金属 Aと仕事関数 4. 2 eV以下の金属 Bとを含む蒸着膜 を陰極として備えたことを特徴とするものである。
発明を実施するための最良の形態
以下、本発明を詳細に説明する。
本発明の有機 EL素子における陰極は、 上述したように、 Pb, S nおよび B iから選ばれる少なくとも 1種の金属 Aと仕事関数 4. 2 e V以下の金属 Bとを 含む蒸着膜からなる。 ここで :、仕事関数 4. 2 e V以下の金属 Bの具体例として は、 I n、 Cd、 Mn、 T i、 Ta、 Z r、 La、 Ca、 L i、 B a、 Na、 M g、 Cd、 K、 Y、 Ybなど力 <挙げられる。 また、電子注入性向上の面から特に 仕事関数 4. 0 e V以下の金属が好ましく、 その具体例としては、 上で列挙した La、 Ca、 L i、 B a、 Na、 Mg、 Gd、 K、 Y、 Yb等が挙げられる。 金 属 Bは、 1種用いても良く、 また複数種用いても良い。
金属 Aと金属 Bとを含む蒸着膜の成膜方法は特に限定されるものではないが、 具体例としては、 抵抗加熱蒸着法、 電子ビーム蒸着法、 高周波誘導加熱法、 分子 線エピタキシー法、 ホッ トウォール蒸着法、 イオンプレーティ ング法、 クラスタ 一^ Tオンビーム法、 2極スノ、。ッ夕法、 2極マグネトロンスパッ夕法、 3極および 4極プラズマスパッ夕法、 イオンビームスパッ夕法等の方法を用いた合金の直接 蒸着法や多元同時蒸着法が挙げられる。 所望の組成の陰極を効率良く製造するう えからは、 多元同時蒸着法を適用することが特に好ましい。
上述のようにして成膜される陰極は、 金属 Aと金属 Bを含有していればよいが、 陰極における金属 Aの割合は 90~99. 999 at. %であることが好ましい。 その理由は、 金属 Aの割合が 90〜99. 999 at. %であると、 金属 Aが陰極 の母体となり、 陰極の経時的化学安定性カ垧上するからである。 特に好ましい金 属 Aの割合は、 95〜99. 99 at.%である。
陰極の組成の制御は、 例えば多元同時蒸着法により成膜する場合は、 金属 Aの 蒸着速度と金属 Bの蒸着速度との比を適宜設定することにより行なうことができ る。 好ましい蒸着速度は、 金属 Aの場合 2nmZsec以上、 特に 4nmZsec以上で あり、 金属 Bの場合、 0. 5nmZsec以下、 特に 0. SnmZsec以下である。 な お、 金属 Aとして、 2種類以上の金属 A (例えば Pbと Sn) を用いる場台は、 金属 Aを構成する物質の蒸着速度の和が 2nmZsec以上であることが好ましく、 4nm/sec以上であることが更に好ましい。 また金属 Bとして、 2種類以上の金 属 B (例えば Mgと Ca) を用いる場合、 金属 Bを構成する物質の蒸着速度の和 力く〇 . 5 nm/sec以下であることが好ましく、 特に 0. 2 nm/sec以下であるこ とが更に好ましい。 このように金属 Aの蒸着速度を金属 Bの蒸着速度よりも大き くすることにより、 多割合の金属 Aと少割合の金属 B力、らなる蒸着膜を得ること ができる。 そしてこのようにして金属 Aと金属 Bを組合わせることにより、 電子 注入性に優れた陰極を得ること力'できる。 このようにして得られた陰極の膜厚は、 膜内の導通があれば特に制限はないが、 10〜40 Onm、 特に 30~2◦◦ nm であるのが好ましい。 本発明の有機 E L素子の構成は、上述した陰極を備えた点以外は特に限定され るものではなく、 例えば、 有機 E L素子の構成としては、①陽極 Z発光層 陰極、 ②陽極 正孔注入層 発光層ノ陰極、③陽極 Z¾¾層 電子注入層 陰極、④陽 極 Z正孔注入層 Z 層 電子注入層 Z陰極、 などがあるが、 本発明の有機 E L 素子はいかなる構成であってもよい。 また、 本発明の有機 E L素子を製造する場 合、 陰極以外構成要素の材料または形成方法は特に限定されるものではなく、 後 記するように種々の材料を用いて種々の方法により形成することができる。
このようにして得られた、 金属 Aと金属 Bとを含む蒸着膜を陰極として備えた 本発明の有機 E L素子は、 陰極の経時的化学安定性力高いだけでなく、 従来の有 機 E L素子の中で電力変換効率が高いとされている M g系陰極を用いた有機 E L 素子と同等またはそれ以上の電力変換効率を有する。
ここで本発明の有機 E L素子における陰極以外の構成要素の材料および形成方 法について述べる。
例えば、 発光層の材料として使用可能な有機化合物としては、 特に限定はない が、 ベンゾチアゾ一ル系、 ベンゾイミダゾール系、 ベンゾォキサゾ一ル系等の蛍 光増白剤、 金属キレート化ォキシノィド化合物、 スチリルベンゼン系化合物等を 挙げることができる。
具体的に化合物名を示せば、 例えば、 特開昭 5 9 - 1 94 3 9 3号公報に開示 されているもの力《挙げられる。 その代表例としては、 2, 5—ビス (5, 7—ジ 一 t —ペンチルー 2—ベンゾォキサゾリル) —1 , 3, 4—チアジアゾール、 4 , 4' 一ビス (5, 7— t 一ペンチルー 2—ベンゾォキサゾリル) スチルベン、 4 , 4' —ビス [ 5, 7—ジー (2—メチルー 2—ブチル) 一 2—ベンゾォキサゾリ ル] スチルベン、 2, 5—ビス (5, 7—ジ一 t —ペンチルー 2—べンゾォキサ ゾリル) チォフェン、 2, 5—ビス [ 5—ひ, α—ジメチルベンジルー 2—ベン ゾォキサゾリル] チォフェン、 2, 5—ビス [ 5, 7—ジー (2—メチルー 2— プチル) 一 2—ベンゾォキサゾリル] 一 3, 4一ジフヱ二ルチオフヱン、 2, 5 一ビス (5—メチルー 2—べンゾォキサゾリル) チォフェン、 4 , 4 ' 一ビス ( 2—べンゾォキサゾリル) ビフヱニル、 5—メチルー 2— [2— [4— ( 5 - メチルー 2—べンゾォキサゾリル) フエニル] ビニル] ベンゾォキサゾール、 2 -' L2- (4—クロ口フエニル) ビニル] ナフト [1, 2— d] ォキサゾール等 のべンゾォキサゾール系、 2, 2' - (p—フエ二レンジビニレン) 一ビスベン ゾチアゾール等のベンゾチアゾール系、 2— [2- [4一 (2—ベンゾイミダゾ リル) フエニル] ビニル] ベンゾイミダゾ一ル、 2— [2— (4一カルボキシフ ェニル) ビニル] ベンゾイミダゾーノレ等のベンゾイミダゾ—ノレ系等の里光増白剤 が挙げられる。 さらに、 他の有用な化合物は、 ケミストリー *ォブ* シンセティ ック♦ダィズ 1971, 628〜637頁および 640頁に列挙されている。 前記キレート化ォキシノィド化合物としては、 例えば特開昭 63-29569 5号公報に開示されているものを用いることができる。 その代表例としては、 ト リス (8—キノリノール) アルミニウム、 ビス (8—キノリノール) マグネシゥ ム、 ビス (ベンゾ [f] —8—キノリノール) 亜鉛、 ビス (2—メチルー 8—キ ノリノラート) アルミニウムォキシド、 卜リス (8—キノリノール) インジウム、 トリス (5—メチルー 8—キノリノール) アルミニウム、 8—キノリノールリチ ゥム、 、 トリス (5—クロ口一 8—キノリノール) ガリウム、 ビス (5—クロ口 —8—キノリノール) カルシウム、 ポリ [亜鉛 (II) —ビス (8—ヒドロキシ一 5—キノリノニル) メタン] 等の 8—ヒドロキシキノリン系金属錯体ゃジリチウ ムェピントリジオン等力《挙げられる。
また、 前記スチリルベンゼン系化合物としては、 例えば欧州特許第◦ 3198 81号明細書や欧州特許第◦ 373582号明細書に開示されているものを用い ることができる。 その代表例としては、 1, 4一ビス (2—メチルスチリル) ベ ンゼン、 1, 4—ビス (3—メチルスチリル) ベンゼン、 1, 4一ビス (4ーメ チルスチリル) ベンゼン、 ジスチリノレベンゼン、 1, 4一ビス (2—ェチルスチ リル) ベンゼン、 1, 4一ビス (3—ェチルスチリル) ベンゼン、 1, 4一ビス (2—メチルスチリル) 一 2—メチルベンゼン、 1, 4—ビス (2—メチルスチ リル) 一 2—ェチルベンゼン等が挙げられる。
また、 特開平 2— 252793号公報に開示されているジスチリルビラジン誘 導体も発光層の材料として用いることができる。 その代表例としては、 2, 5— ビス (4ーメチルスチリル) ピラジン、 2, 5—ビス (4ーェチルスチリル) ピ ラジン、 2, 5—ビス [2— (1一ナフチル) ビニル] ピラジン、 2, 5—ビス (4ーメ トキシスチリル) ピラジン、 2, 5—ビス [2— (4—ビフエニル) ビ ニル] ピラジン、 2, 5—ビス [2— (1—ピレニル) ビニル] ピラジン等が挙 げられる。
その他のものとして、 例えば欧州特許第 0387715号明細書に開示されて いるポリフェニル系化合物も発光層の材料として用いることもできる。
さらに、 上述した蛍光增白剤、 金属キレート化ォキシノィ ド化合物、 およびス チリルベンゼン系化合物等以外に、 例えば 12—フタ口ペリノン (J.Appl.Phys. , 第 27巻, L 713 (1988年) ) 、 1, 4—ジフユ二ルー 1, 3—ブ夕ジ ェン、 1, 1, 4, 4ーテトラフヱ二ルー 1, 3—ブタジエン (以上、 Appl.Phy s.Lett.,第 56巻, 799 (1990年) ) 、 ナフタルイミ ド誘導体 (特開平 2 — 305886号公報) 、 ペリレン誘導体 (特開平 2— 189890号公報) 、 ォキサジァゾ一ル誘導体 (特開平 2— 216791号公報、 または第 38回応用 物理学関係連合講演会で浜田らによつて開示されたォキサジ了ゾール誘導体) 、 アルダジン誘導体 (特開平 2— 220393号公報)、 ビラジリン誘導体 (特開 平 2— 220394号公報)、 シクロペンタジェン誘導体 (特開平 2— 2896 75号公報)、 ピロ口ピロール誘導体 (特開平 2 -296891号公報)、 スチ リルアミ ン誘導体 (八 1 1^丄6 .,第56卷, 799 (1990年) ) 、 クマ リン系化合物 (特開平 2— 191694号公報) 、 国際公開公報 WO 90/13 148や Appl.Phys丄 ett.'vol 58, 18,P1982(1991) に記載されているような高分 子化合物等も、 発光層の材料として用いることができる。
発光層の材料としては、 特に芳香族ジメチリディン系化合物 (欧州特許第 03 88768号明細書ゃ特開平 3— 231970号公報に開示のもの) を用いるこ と力く好ましい。 具体例としては、 1, 4—フエ二レンジメチリディン、 4, 4' 一フエ二レンジメチリディ ン、 2, 5—キシリレンジメチリディ ン、 2, 6—ナ フチレンジメチリディ ン、 1, 4—ビフヱ二レンジメチリディ ン、 1, 4— p— テレフヱ二レンジメチリディ ン、 9, 10—アントラセンジィルジメチリディ ン、 4, 4 ' 一ビス ( 2 , 2—ジ一 t—プチルフヱニルビニル) ビフェニル (以下、 DTB P VB iと略記する) 、 4, 4' —ビス (2, 2—ジフエ二ルビニル) ビ フエニル (以下、 DPVB iと略記する) 等、 およびそれらの誘導体が挙げられ る。
上記材料を用いて発光層を形成する方法としては、 例えば蒸着法、 スピンコー ト法、 キャスト法、 L B法等の公知の方法を適用することができる。 発光層は、 特に分子堆積膜であることが好ましい。 ここで分子堆積膜とは、 気相状態の材料 化合物から沈着され形成された薄膜や、 溶液状態または液相状態の材料化合物か ら固体化され形成された膜のことであり、 通常この分子堆積膜は、 L B法により 形成された薄膜 (分子累積膜) とは凝集構造、 高次構造の相違や、 それに起因す る機能的な相違により区分することができる。
また、 特開昭 5 7— 5 1 7 8 1号公報等に開示されているように、 樹脂等の結 着剤と材料化合物とを溶剤に溶かして溶液とした後、 これをスピンコ一卜法等に より薄膜化することによつても、 発光層を形成することができる。
このようにして形成される発光層の膜厚については特に制限はなく、 状況に応 じて適宜選択することができる力 通常 5 η π!〜 5〃 mの範囲が好まし L、。 有機 E L素子における 層は、 電界印加時に、 陽極または正孔注入層から正 孔を注入することができ、 かつ陰極または電子注入層から電子を注入することが できる注入機能、 注入された電荷 (電子と正孔) を電界の力で移動させる輸送機 能、 電子と正孔の再結合の場を提供し、 これを発光につなげる発光機能等を有し ている。 なお、 正孔の注入されやすさと電子の注入されやすさとの間には違いが あっても構わない。 また、 正孔と電子の移動度で表される輪送機能に大小があつ てもよい力 少なくともどちらか一方を移動させることが好ましい。
陽極の材料としては、 仕事関数の大きい (4 e V以上) 金属、 合金、 電気伝導 性化合物またはこれらの混合物が好ましく用いられる。 具体例としては A u等の 金属、 C u l、 I T O. S n 02 、 Z n O等の誘電性透明材料が挙げられる。 陽 極は、 蒸着法ゃスパッ夕法等の方法で上記材料の薄膜を形成することにより作製 することができる。
発光層からの発光を陽極より取り出す場合、 陽極の透過率は 1 0 %より大きい こと力 <望ましい。 また、 陽極のシート抵抗は数百 Ω/ロ以下が好ましい。 陽極の 膜厚は材料にもよる力 通常 1〇n m〜l m、 好ましくは 1 0〜2 0 0 n mの 範囲で選択される。 必 に応じて設けられる正孔注入層の材料としては、 従来より光導 ォ科の止 孔注入材料として慣用されているものや有機 E L素子の正孔注入層に使用されて いる公知のものの中から任意のものを選択して用いることができる。 正孔注入層 の材料は、 正孔の注入、 電子の障壁性のいづれかを有するものであり、 有機物あ る 、は無機物のどちらでもよい。
具体例としては、 例えばトリアゾ一ル誘導体 (米国特許第 3, 112, 197 号明細書等参照) 、 ォキサジァゾ一ル誘導体 (米国特許第 3, 189, 447号 明細書等参照) 、 ィミダゾール誘導体 (特公昭 37-16096号公報等参照) 、 ポリアリールアルカン誘導体 (米国特許第 3, 615, 402号明細書、 同第 3, 820, 989号明細書、 同第 3, 542, 544号明細書、 特公昭 45 - 55 5号公報、 同 51— 10983号公報、 特開昭 51-93224号公報、 同 55 —17105号公報、 同 56— 4148号公報、 同 55— 108667号公報、 同 55— 156953号公報、 同 56— 36656号公報等参照) 、 ピラゾリン 誘導体およびビラゾ口ン誘導体 (米国特許第 3, 180, 729号明細書、 同第 4, 278, 746号明細書、 特開昭 55— 88064号公報、 同 55— 880 65号公報、 同 49一 105537号公報、 同 55— 51086号公報、 同 56 一 80051号公報、 同 56 - 88141号公報、 同 57— 45545号公報、 同 54— 112637号公報、 同 55— 74546号公報等参照)、 フヱニレン ジァミン誘導体 (米国特許第 3, 615, 404号明細書、 特公昭 51-101 05号公報、 同 46 - 3712号公報、 同 47 - 25336号公報、 特開昭 54 一 53435号公報、 同 54— 110536号公報、 同 54— 119925号公 報等参照) 、 ァリールアミン誘導体 (米国特許第 3, 567, 450号明細書、 同第 3, 180, 703号明細書、 同第 3, 240, 597号明細書、 同第 3, 658, 520号明細書、 同第 4, 232, 103号明細書、 同第 4, 175, 961号明細書、 同第 4, 012, 376号明細書、 特公昭 49一 35702号 公報、 同 39 - 27577号公報、 特開昭 55 - 14425◦号公報、 同 56 - 119132号公報、 同 56— 22437号公報、 ***特許第 1, 110, 51 8号明細書等参照) 、 ァミノ置換カルコン誘導体 (米国特許第 3, 526, 50 1号明細書等参照) 、 ォキサゾール誘導体 (米国特許第 3, 257, 203号明 細著寺に開示のもの) 、 スチリルアン卜ラセン誘導体 (特開昭 56— 46234 号公報等参照) 、 フルォレノン誘導体 (特開昭 54— 110837号公報等参照) 、 ヒドラゾン誘導体 (米国特許第 3, 717, 462号明細書、 特開昭 54— 5 9143号公報、 同 55— 52063号公報、 同 55— 52064号公報、 同 5 5 - 46760号公報、 同 55 - 85495号公報、 同 57— 11350号公報、 同 57— 148749号公報、 特開平 2— 311591号公報等参照) 、 スチル ベン誘導体 (特開昭 61-210363号公報、 同 61— 228451号公報、 同 61-14642号公報、 同 61 - 72255号公報、 同 62 - 47646号 公報、 同 62— 36674号公報、 同 62— 10652号公報、 同 62 - 3〇 2 55号公報、 同 60— 93445号公報、 同 60— 94462号公報、 同 60— 174749号公報、 同 60— 175052号公報等参照) 、 シラザン誘導体 (米国特許第 4, 950, 950号明細書) 、 ポリシラン系 (特開平 2— 2〇4 996号公報) 、 ァニリン系共重合体 (特開平 2— 282263号公報) 、 特開 平 1— 211399号公報に開示されている導電性高分子ォリゴマー (特にチォ フェンオリゴマー) 等を挙げることができる。
正孔注入層の材料としては上記のものを使用することができるが、 ボルフィリ ン化合物 (特開昭 63-2956965号公報等に開示のもの) 、 芳香族第三級 ァミン化合物およびスチリルァミン化合物 (米国特許第 4, 127, 412号明 細書、 特開昭 53 - 27033号公報、 同 54 - 58445号公報、 同 54 - 1 49634号公報、 同 54 - 64299号公報、 同 55 - 79450号公報、 同 55-14425◦号公報、 同 56— 11913- 2号公報、 同 61 - 29555 8号公報、 同 61 - 98353号公報、 同 63— 295695号公報等参照) 、 特に芳香族第三級ァミン化合物を用いること力《好ましい。
上記ポルフィリン化合物の代表例としては、 ポルフィ ン、 1, 10, 15, 2 0—テトラフヱ二ルー 21 H, 23H—ポルフィ ン銅 (11) 、 1, 10, 15, 20—テトラフエ二ルー 21H, 23H—ポルフィ ン亜鉛 (11) 、 5, 10, 1 5, 20—テトラキス (ペン夕フルオロフェニル) 一21H, 23H—ポルフィ ン、 シリコンフタロシアニンォキシド、 アルミニウムフタロシアニンクロリ ド、 フタロシアニン (無金属) 、 ジリチウムフタロシアニン、 銅テトラメチルフ夕口 シァニン、 銅フタロシアニン、 クロムフタロシアニン、 亜鉛フタロシアニン、 鉛 フタロシアニン、 チタニウムフタロシアニンォキシド、 Mgフタロシアニン、 銅 ォクタメチルフ夕ロシア二ン等があげられる。
また、 前記芳香族第三級ァミン化合物およびスチリルアミン化合物の代表例と しては、 N, N, N' , N' ーテトラフエ二ルー 4, 4' —ジアミノフヱニル、 N, Ν' —ジフエ二ルー Ν, N' —ビス一 (3—メチルフエニル) 一 [1, —ビフエニル] —4, .4' —ジァミ ン (以下、 TPDと略記する) 、 2, 2—ビ ス (4ージー ρ—トリルァミノフエ二ル) プロハ。ン、 1, 1一ビス (4ージー ρ 一トリルァミノフエ二ル) シクロへキサン、 Ν, Ν, Ν' , Ν' —テトラー ρ— トリル一 4, 4' ージアミノビフヱニル、 1, 1—ビス (4ージ一 ρ—トリルァ ミノフエニル) ー4一フエニルシクロへキサン、 ビス (4ージメチルアミノー 2 一メチルフエニル) フエニルメタン、 ビス (4—ジー ρ—トリルァミノフエ二ル) フエニルメタン、 Ν, Ν' —ジフエ二ルー Ν, Ν' ージ (4ーメ 卜キシフヱニル) —4, 4' ージアミノビフヱニル、 Ν, Ν, Ν' , N' —テトラフエ二ルー 4, 4' ージアミノジフエニルエーテル、 4, 4' 一ビス (ジフエニルァミノ) クオ 一ドリフエニル、 Ν, Ν, Ν—トリ (ρ—トリノレ) ァミン、 4一 (ジ一ρ— トリ ルァミノ) 一 4' ― [4 (ジ一 ρ—トリルァミノ) スチリル] スチルベン、 4一 Ν, Ν—ジフエニルアミノー (2—ジフエ二ルビニル) ベンゼン、 3—メ トキシ -4' -Ν, Ν—ジフエニルアミノスチルベンゼン、 Ν—フエ二ルカルバゾール 等が挙げられる。
また、 発光層の材料として示した前述の芳香族ジメチリディン系化合物も、 正 孔注入層の材料として使用することができる。
正孔注入層は、 上述した化合物を、 例えば真空蒸着法、 スピンコート法、 キヤ スト法、 L Β法等の公知の方法により薄膜化することにより形成することができ る。 正孔注入層としての膜厚は特に制限されないが、 通常は 5nm~5 mであ る。 この正孔注入層は、 上述した材料の 1種または 2種以上からなる一層構造で あってもよいし、 同一組成または異種組成の複数層からなる複層構造であつても よい。
必要に応じて設けられる電子注入層は、 陰極より注入された電子を発光層に伝 達する機能を有していればよく、 その材料としては従来公知の化合物の中から任 意のものを選択して用いることができる。
具体例としては、 二ト口置換フルォレノン誘導体、 特開昭 57-149259 号公報、 同 58— 55450号公報、 同 63— 104061号公報等に開示され ているアントラキノジメタン誘導体、 Polymer Preprints, Japan Vol .37, No.3(19 88〉p.681等に記載されているジフヱ二ルキノン誘導体、 チォピランジオキシド誘 導体、 ナフタレンペリレン等の複素環テトラ力ルポン酸無水物、 力ルポジィミ ド、 Japanese Journal of Applied Physics, 27, L 269(1988)、 特開昭 60-6965 7号公報、 同 61— 143764号公報、 同 61— 148159号公報等に開示 されているフレオレニリデンメ夕ン誘導体、 特開昭 61-225151号公報、 同 61— 233750号公報等に開示されているアントラキノジメタン誘導体お よびアントロン誘導体、 1 1^5丄6 .,55,15,1489ゃ前述の第38回応用物理 学関係連合講演会で浜田らによつて開示されたォキサジァゾール誘導体、 特開昭 59-194393号公報に開示されている一連の電子伝達性化合物等が挙げら れる。 なお、 特開昭 59— 194393号公報では前記電子伝達性化合物を発光 層の材料として開示しているが、 本発明者らの検討によれば、 電子注入層の材料 としても用いることができることが明らかとなった。
また、 8—キノリノール誘導体の金属錯体、 具体的にはトリス (8—キノリノ ール) アルミニウム、 トリス (5, 7—ジクロロー 8—キノリノ一ル) アルミ二 ゥム、 トリス (5, 7—ジブロモ— 8—キノリノール) アルミニウム、 卜リス (2—メチル—8—キノリノール) アルミニウム等や、 これらの金属錯体の中心 金属が I n、 Mg Cu、 Ca、 Sn、 または P bに置き代わった金属錯体等も 電子注入層の材料として用いることができる。
その他に、 メタルフリーあるいはメタルフタロシアニン、 またはそれらの末端 がアルキル基、 スルホン基等で置換されているものも望ましい。 また、 発光層の 材料として例示したジスチリルビラジン誘導体も、 電子注入層の材料として用い ることができる。
電子注入層は、 上述した化合物を、 例えば真空蒸着法、 スピンコート法、 キヤ スト法、 L B法等の公知の方法により薄膜化することにより形成することができ る。 電子注入層としての膜厚は特に制限されないが、 通常は 5 n rr!〜 5 rnであ る。 この電子注入層は、 上述した材料の 1種または 2種以上からなる一層構造で あってもよいし、 同一組成または異種組成の複数層からなる複層構造であつても よい。
なお正孔注入層の材料としては、 p型— S i、 p型—S i C等の無機化合物か らなる正孔注入輪送材料を用いることもでき、 電子注入層の材料としては、 n型 - S i , n型一 S i C等の無機化合物からなる電子注入輸送材料を用いることも できる。 正孔注入層用の無機材料および電子注入層用の無機材料の具体例として は、 国際公開公報 WO 9 0 / 0 5 9 9 8に開示されている無機半導体が挙げられ 。
以上例示した材料および方法により発光層、 陽極、 必要に応じての正孔注入層、 および必要に応じての電子注入層を形成し、 前述した方法により陰電極を形成す ることにより製造することができる本発明の有機 E L素子は、 前述したようにい かなる構成であってもよいが、 以下に、 基板上に陽極 Z正孔注入層ノ発光層/陰 極が順次設けられた構成の有機 E L素子を製造する場台の一例を簡単に説明する。 まず適当な基板上に、 陽極材料からなる薄膜を 1 m以下、 好ましくは 1 0〜 2 0 0 n mの範囲の膜厚になるように蒸着やスパッタリング等の方法により形成 して、 陽極を作製する。 次に、 この陽極上に正孔注入層を設ける。 正孔注入層の 形成は、 前述したように真空蒸着法、 スピンコート法、 キャスト法、 L B法等の 方法により行うこと力《できる力 均質な膜が得られやすく、 力、つピンホールが生 成しにくい等の点から、 真空蒸着法により形成することが好ましい。 真空蒸着法 により正孔注入層を形成する場合、 その蒸着条件は、 使用する化合物 (正孔注入 層の材料) 、 目的とする正孔注入層の結晶構造や会台構造等により異なる力 ― 般に蒸着源温度5 0 ~4 5 0。〇、 真空度 1◦一5〜 1◦一3 P a、 蒸着速度〇. 0 1 〜5 0 n m sec、 基板温度一 5 0〜3 0 0 °C、 膜厚 5 n m ~ 5〃 mの範 fflで適 宜選択することが好ましい。'
次にこの正孔注入層上に、 発光層を設ける。 発光層の形成も、 所望の有機発光 材料を用いて真空蒸着法、 スピンコート法、 キャスト法等の方法により有機発光 材料を薄膜化することにより形成できる力 \ 均質な膜が得られやすく、 かつピン ポ、—ルカ《生成しにくい等の点から、 真空蒸着法により形成すること力 <望ましい。 真空蒸着法により発光層を形成する場合その蒸着条件は、 使用する化合物により 異なるが一般に上記正孔注入層と同じような条件範囲の中から選択することがで さる。
次に発光層を形成した後、 この発光層上に金属 Aと金属 Bとを多元同時蒸着し て、 陰極を形成する。 これにより目的とする有機 EL素子力《得られる。 金属 Aと 金属 Bとを共に真空蒸着法により多元同時蒸着して陰極を形成する場合の蒸着条 件は、 使用する金属 Aおよび金属 Bの種類等により異なるが、 一般に蒸着 温度 100〜5000°C、 真空度 l x 10一2 Pa以下、 基板温度一 200〜500°C の範囲で適宜選択することが好ましい。 蒸着速度は上述のように金属 Aが 2nmZ sec以上、 特に 4nmZsec以上であり、 金属 Bが 0. 5nm/sec以下、 特に 0. 2nm/sec以下である。 陰極の膜厚は上述のように 10〜40〇 n m、 特に 30 〜200 nmであるのが好ましい。 なお、 この有機 E L素子の製造においては、 製造順を逆にして、 基板上に陰電極 発光層 Z正孔注入層ノ陽極の順に製造する ことも可能である。
なお、 本発明の有機 EL素子に直流電圧を印加する場合、 陽極を十、 陰極を一 の極性にして 5〜40Vの電圧を印加すると、 発光が観測できる。 また、 逆の極 性で電圧を印加しても電流は流れず、 発光は全く生じない。 さらに、 交流電圧を 印加した場合には、 陽極が十、 陰極が一の極性になったときにのみ均一な発光が 観測される。 印加する交流の波形は任意でよ 、。
以下、 本発明の実施例について説明する。
実施例 1 (Pb-Mg陰極を有する有機 E L素子)
25 X 75 X 1. 1mmのサイズのガラス基板上に I TO膜 (陽極に相当) を 1 OOnmの厚さで成膜したものを透明支持基板とした。 この透明支持基板をィ ソプロピルアルコールで 5分間超音波洗浄した後、 純水で 5分間洗浄し、 最後に 再びィソプロピルアルコールで 5分間超音波洗净した。
洗净後の透明支持基板を市販の真空蒸着装置 [日本真空技術 (株) 製] の基板 ホルダーに固定し、 モリブデン製抵抗加熱ボートに Ν, Ν' —ジフエ二ルー Ν, N' —ビス一 (3—メチルフエニル) 一 (1, 1' ービフエニル) 一 4, 4' ― ジァミン (以下、 TPDという) を 200mg入れ、 また別のモリブデン製抵抗 加熱ボートに 4, 4' 一ビス (2, 2—ジフエ二ルビニル) ビフエニル (以下、 DP VB iという) を 20 Omg入れて、 真空チヤンバー内を 1 x 10— 4P aま で減圧した。
次に、 T P Dを入れた前記抵抗加熱ボートを 21 5〜 220 まで加熱して、 TPDを蒸着速度 0. 1-0. 3 nmZsecで透明支持基板の I TO膜上に堆積 させて、 膜厚 6〇nmの正孔注入層を成膜した。 このときの基板温度は室温であ つた。 これを真空チャンバ一から取り出すことなく、 DP VB iを入れた前述の モリブデン製抵抗加熱ボートを 220 °Cに加熱し、 DPVB iを〇. 1〜〇. 2 n m/sec の蒸着速度で正孔注入層上に堆積させて、 膜厚 4〇nmの発光層を成 膜した。 このときの基板温度も室温であった。
上述のように、 陽極、 正孔注入層、 発光層を順次成膜した基板を真空チャンバ 一から取り出して、 上記発光層の上にステンレススチ一ル製のマスクを設置し、 再び基板ホルダーに固定した。 次に、 モリブデン製抵抗加熱ボートにトリス (8 一キノリノール) アルミニウム (A 1 q. ) を 20 Omg入れて真空チヤンバ一 内に装着した。 さらに、 アルミナ被覆タングステン製バスケッ トに P bのインゴ ッ トを 8g入れ、 また別のモリブデン製ボートに Mg (仕事関数 3. 68 e V) のリボンを 1 gを入れた。
その後真空チャンバ一内を 2 X 10一4 P aまで減圧して、 まず A l q. の入つ たボートを 280 Vに通電加熱して A l q. を 0. 3 nm /sec の蒸着速度で 2 O nm蒸着して、 電子注入層を成膜した。
次に金属 Aとして P bを 9 nmZsec の蒸着速度で、 そして、 金属 Bとして M gを 0, 04 nm/sec の蒸着速度で同時蒸着させて膜厚 200 nmの P b - M g蒸着膜からなる陰極を得た。 このようにしてガラス基板上に陽極、 正孔注入層、 発光層、 電子注入層および陰極を設けたことにより有機 E L素子が得られた。 陰極の P bと Mgの組成比は、 蒸着速度の比から下式
Vi p 1 . Vz pi
Mi ∑ Vi 金属 Aの蒸着速度 (体積分率)
V2 金属 Bの蒸着速度 (体積分率)
P 1 金属 Aの密度
P I 金属 Bの密度
Mi 金属 Aの原子量
M? 金属 Bの原子量
により算出した。
また、 得られた有機 EL素子の陰極を一の極性に、 陽極 (I TO膜) を +の極 性にして 7Vの直流電圧 (電流密度: 2. 5mA/cm2 ) を印加したところ、 44 c d/m2 の青色の均一発光が観測された。 このときの電力変換効率は、 表 1に示すように 0. 78ル一メン (lm) /Wと高効率であった。 また空気中で 6 ヶ月放置後の陰極の状態を調べたところ、 表 1に示すように変化がなく経時的化 学安定性に優れていた。
実施例 2 (Pb— C a陰極を有する有機 EL素子)
金属 Bとして C a (仕事関数 2. 9) を用い、 その蒸着速度を 0. 2nmZ sec としたこと、 および金属 Aの P bの蒸着速度を 8. 8nm/sec としたこと 以外は実施例 1と全く同様にして、 有機 E L素子を得た。
得られた有機 E L素子における陰極の組成を計算すると、 この陰電極における Pbの組成は 98. 4 at. %であり、 じ3の組成は1. 6%であった。
また、 得られた有機 EL素子の陰極を一の極性に、 陽極 (I TO膜) を十の極 性にして 7Vの直流電圧 (電流密度: 2. ImA/cm2 ) を印加したところ、 44 c d/m2 の青色の均一発光が観測された。 このときの電力変換効率は、 表 1に示すように 0. 91ルーメン (lm) /Wと高効率であった。 また表 1に示す ように陰極は経時的化学安定性に優れていた。
実施例 3 (Pb-L i陰極を有する有機 E L素子)
金属 Bとして L i (仕事関数 2. 93) を用い、 その蒸着速度を 0. 04nm /sec としたこと、 および金厲 Aの P bの蒸着速度を 10 nmZsec としたこと 以外は実施例 1と全く同様にして、有機 E L素子を得た。
得られた有機 EL素子における陰極の組成を計算すると、 この陰極における P bの組成は 99. 4 at. %であり、 1の組成は0. 6 at. %であった。
また、 得られた有機 EL素子の陰電極を一の極性に、 陽電極 (I TO膜) を + の極性にして 7 Vの直流電圧 (電流密度: 4. 9mA/cm2 ) を印加したとこ ろ、 84 c dZrr^ の青色の均一発光が観測された。 このときの電力変換効率は、 表 1に示すように 0. 77ル一メン (lm) ZWと高効率であった。 また表 1に示 すように陰極は経時的化学安定性に優れていた。
実施例 4 (P b— Mg陰極を有する有機 E L素子)
金属 Bとして Mg (仕事関数 3. 68) を用い、 かつその蒸着速度を◦. 2n m/sec としたことおよび金属 Aの Pbの蒸着速度を 5nmZsec としたこと以 外は実施例 1と全く同様にして、有機 E L素子を得た。
得られた有機 E L素子における陰極の組成を計算すると、 この陰極における P bの組成は 95 at. %であり、 Mgの組成は 5 at. %であった。
また、 得られた有機 EL素子の陰極を一の極性に、 陽極 (I TO膜) を +の極 性にして 7 Vの直流電圧 (電流密度: 1. ImA/cm2 ) を印加したところ、 20 c d m^ の青色の均一 が観測された。 このときの電力変換効率は表 1 に示すように 0. 82ル一メン.(lm) Wと高効率であった。 また表 1に示すよ うに陰極は経時的化学安定性に優れていた。
比較例 1
金属 Bの代りに Au (仕事関数 5. 1) を用い、 その蒸着速度を 0. 04nm /sec としたこと、 Pbの蒸着速度を 1 OnmZsec としたこと以外は実施例 1 と全く同様にして、 有機 EL素子を得た。
得られた有機 EL素子における陰極の組成を計算すると、 この陰極における P bの組成は 99. 3 at. %であり、 Auの組成は 0. 7at. %であった。
また、 得られた有機 EL素子の陰極を—の極性に、 陽極 (I TO膜) を +の極 性にして 12 Vの直流電圧 (電流密度: 6. 3mA/cm2 ) を印加して発光を 観測した。 このときの電力変換効率は表 1に示すように 0. 0083ルーメン
(lm) と極めて低かった。
比較例 2
金属 Bの代りに N i (仕事関数 5. 15) を用い、 その蒸着速度を 0. 04η m/sec としたことおよび P bの蒸着速度を 8. 3 n m/sec としたこと以外は 実施例 1と全く同様にして、有機 EL素子を得た。
得られた有機 E L素子における陰極の組成を計算すると、 この陰極における P bの組成は 98. 8 at.%であり、 1^ 1の組成は1. 2 at. %であった。
また、 得られた有機 EL素子の陰極を一の極性に、 陽極 (I TO膜) を十の極 性にして 15 Vの直流電圧 (電流密度: 49mA/cm2 ) を印加して発光を観 測した。 このときの電力変換効率は表 1に示すように 0. 0047ルーメン (lm) と極めて低かった。
比較例 3
金属 Bを用いずに金属 Aの P bのみを 13nmZsecの蒸着速度で蒸着した以 外は実施例 1と同様にして有機 E L素子を得た。
得られた有機 EL素子の陰極を—の極性に、 陽極 (I TO膜) を十に極性にし て 15Vの直流電圧 (電流密度: 16. 8mA/cm2 ) を印加して発光を観測 した。 このときの電力変換効率は表 1に示すように 0. 0088ルーメン (lm) ZWと極めて低かった。
比較例 4
金属 Aの P bの代りに Mgを用い、 金属 Bに含まれる I nを用いたことおよび Mgの蒸着速度を 8 nmZsec、 I nの蒸着速度を 0. 06nmZsec としたこ と以外は実施例 1と同様にして有機 E L素子を得た。
得られた有機 E L素子における陰極の組成を計算すると、 この陰極における M gの組成は 99. 3at. %であり、 1 11の組成は〇. 7at. %であった。
また、得られた有機 EL素子の陰極を一の極性に、 陽極 (I TO膜) を +の極 性にして 7 Vの直流電圧 (電流密度: 2. ImA/cm2 ) を印加して発光を観 測した。 このときの電力変換効率は、 表 1に示すようにに 0. 45ルーメン (lm) であった。 表 1に示すように、 この有機 EL素子は、 空気中で 6ヶ月放置し、 陰極が酸化し透明になったごとから、 陰極の経時的化学安定性に劣ることが確認 された。 表 1
00
Figure imgf000020_0001
*経時的化学安定性は空気中、 6ヶ月放置後の電極 (陰極) の状態を観察することにより評価した c
笑她 1?ϋ5 (S η— Mg陰極を有する有機 Ε L素子)
実施例 1同様にして基板上に陽極、 正孔注入層、 発光層、 電子注入層を順次成 膜した。
次に金属 Αとして S ηを 9 nmZsecの蒸着速度で、 そして、 金属 Bとして M g (仕事関数 3. 68eV) を 0. 04n m/secの蒸着速度で同時蒸着させて 膜厚 200nmの S n— Mg蒸着膜からなる陰極を得た。 このようにしてガラス 基板上に陽極、 正孔注入層、発光層、 電子注入層および陰極を設けたことにより 有機 EL素子が得られた。
陰極の S nと Mgの組成比は、蒸着速度の比から実施例 1に示した計算式によ り算出した。 その結果 Snの組成は 99. 5%、 Mgの組成は◦. 5%であった。 また、 得られた有機 EL素子の陰極を一の極性に、 陽極 (I TO膜) を +の極 性にして 7Vの直流電圧 (電流密度: 2. 5mA/cm2 ) を印加したところ、 42 c d/m2 の青色の均一発光が観測された。 このときの電力変換効率は、 表 2に示すように 0. 75ルーメン (lm) と高効率であった。 また空気中で 6 ヶ月放置後の陰極の状態を調べたところ、 表 2に示すように変化がなく経時的化 学安定性に優れていた。
実施例 6 (S n-C a陰極を有する有機 E L素子)
金属 Bとして C a (仕事関数 2. 9) を用いて、 これを蒸着速度 0. 2nm/s で蒸着し、 かつ金属 Aの S nを蒸着速度 8. 8 n m/secで蒸着した以外は実施 例 5と全く同様にして、 有機 EL素子を得た。
得られた有機 E L素子における陰極の組成を計 すると、 この陰電極における Snの組成は 98. 6 at. %であり、 じ&の組成は1. 4%であった。
また、 得られた有機 EL素子の陰極を一の極性に、 陽極 (I TO膜) を +の極 性にして 7 Vの直流電圧 (電流密度: 2. OmA/cm2 ) を印加したところ、 44 c d/m2 の青色の均一 力観測された。 このときの電力変換効率は、 表 2に示すように 0. 98ルーメン (lm) と高効率であった。 また表 2に示す ように陰極は経時的化学安定性に優れていた。
実施例 7 (S n-L i陰極を有する有機 E L素子)
金属 Bとして L i (仕事関数 2. 93) を用いて、 これを蒸着速度◦. 05nm / sで蒸着し、 かつ金属 Aの S nを蒸着速度 10 n m/secで蒸着した以外は実 施例 5と全く同様にして、 有機 EL素子を得た。
得られた有機 E L素子における陰極の組成を計算すると、 この陰極における S nの組成は 99. 4 at. %であり、 1^の組成は0. 6 at. %であった。
また、 得られた有機 EL素子の陰極を—の極性に、 陽極 (I TO膜) を十の極 性にして 7 Vの直流電圧 (電流密度: 4. 9ΓηΑ οηιώ ) を印加したところ、 80 c d/m2 の青色の均一 力 <観測された。 このときの電力変換効率は、 表 2に示すように 0. 73ルーメン (lm) と高効率であった。 また表 2に示 すように陰極は経時的化学安定性に優れていた。
実施例 8 (S n— Mg陰極を有する有機 E L素子)
金属 Bとして Mg (仕事関数 3. 68) を用い、 かつ Mgの蒸着速度を◦. 2 nm/sec、 金属 Aの S nの蒸着速度を 5 n mZsec とした以外は実施例 5と全 く同様にして、 有機 E L素子を得た。
得られた有機 E L素子における陰極の組成を計算すると、 この陰極における S nの組成は 95. 5 at. %であり、 Mgの組成は 4. 5 at. %であった。
また、 得られた有機 EL素子の陰極を—の極性に、 陽極 (I TO膜) を +の極 性にして 7Vの直流電圧 (電流密度: 1. 3mA/cm2 ) を印加したところ、 25 c d/m2 の青色の均一発光が観測された。 このときの電力変換効率は表 2 に示すように 0. 86ルーメン (lm) /Wと高効率であった。 また表 2に示すよ うに陰極は経時的化学安定性に優れていた。
比較例 5
金属 Bの代りに Au (仕事関数 5. 1) を用いて、 これを蒸着速度 0. 05nm / sで蒸着し、 力、つ金属 Aの S nを蒸着速度 10 n m/secで蒸着した以外は実 施例 5と全く同様にして、有機 EL素子を得た。
得られた有機 E L素子における陰極の組成を計算すると、 この陰極における S nの組成は 99. 2 at. %であり、 Auの組成は 0. 8at. %であった。
また、得られた有機 EL素子の陰極を一の極性に、 陽極 (I TO膜) を +の極 性にして 13Vの直流電圧 (電流密度: 7. OmA/cn^ ) を印加して発光を 観測した。 このときの電力変換効率は表 2に示すように 0. 01ルーメン (lm) と極めて低かった。
比較例 6
金属 Bの代りに N i (仕事関数 5. 15) を用いて、 これを蒸着速度 0. 04 nm/ sで蒸着し、 かつ金属 Aの S nを蒸着速度 8. 5 n m/secで蒸着した以外 は実施例 5と全く同様にして、 有機 EL素子を得た。
得られた有機 EL素子における陰極の組成を計算すると、 この陰極における S nの組成は 98. 9 at . %であり、 N iの組成は 1. 1 at . %であった。
また、 得られた有機 EL素子の陰極を一の極性に、 陽極 (I TO膜) を +の極 性にして 15 Vの直流電圧 (電流密度: 50mA/cm2 ) を印加して発光を観 測した。 このときの電力変換効率は表 2に示すように 0. 005ルーメン (lm) と極めて低かった。
比較例 7
金属 Bを用いずに金属 Aの S nのみを 13nmZsecの蒸着速度で蒸着した以 外は実施例 5と同様にして有機 E L素子を得た。
得られた有機 EL素子の陰極を—の極性に、 陽極 (I TO膜) を +に極性にし て 15 Vの直流電圧 (電流密度: 16mA/cm2 ) を印加して発光を観測した。 このときの電力変換効率は表 2に示すように 0. 0092ルーメン (lm) /Wと 極めて低かった。
比較例 8
金属 Aの S nの代りに Mgを用い、 金属 Bとして I nを用いたことおよび Mg の蒸着速度を 8nmZsec、 I nの蒸着速度を〇. 06 n mZsec としたこと以 外は実施例 5と同様にして有機 E L素子を得た。
得られた有機 E L素子における陰極の組成を計算すると、 この陰極における M gの組成は 99. 3at. %であり、 I nの組成は◦. 7at. %であった。
また、 得られた有機 EL素子の陰極を-の極性に、 陽極 (I TO膜) を +の極 性にして 7Vの直流電圧 (電流密度: 2. ImA/cm" ) を印加して発光を観 測した。 このときの電力変換効率は、 表 2に示すようにに 0. 45ルーメン (lm) /Wであった。 表 2に示すように、 この有機 EL素子は、 空気中で 6ヶ月放置し、 陰極力酸化し透明になったことから、 陰極の経時的化学安定性に劣ることが確認 された。 表 2
t
t
Figure imgf000024_0001
*経時的化学安定性は空気中、 6ヶ月放置後の電極 (陰極) の状態を観察することにより評価した。
実施例 9 (B i—Mg陰極を有する有機 E L素子)
実施例 l同様にして基板上に陽極、 正孔注入層、 m,電子注入層を順次成 膜した。
次に金属 Aの B iを 9nmZsecの蒸着速度で、 そして、 金属 Bの Mgを〇. 04n m/secの蒸着速度で同時蒸着させて膜厚 200 n mの B i— M g蒸着膜 からなる陰極を得た。 このようにしてガラス基板上に陽極、 正孔注入層、 m, 電子注入層および陰極を設けたことにより有機 E L素子が得られた。
陰極の B iと Mgの組成比は、蒸着速度の比から実施例 1に示した計算式によ り算出した。 その結果 B iの組成は 99. 3%、 Mgの組成は 0. 7%であった。 また、 得られた有機 EL素子の陰極を一の極性に、 陽極 (I TO膜) を十の極 性にして 7Vの直流電圧 (電流密度: 2. 6mA/cm2 ) を印加したところ、 45 c d/m2 の青色の均一発光が観測された。 このときの電力変換効率は、 表 3に示すように 0. 78ルーメン (lm) ZWと高効率であった。 また空気中で 6 ケ月放置後の陰極の状態を調べたところ、表 3に示すように変化がなく経時的化 学安定性に優れていた。
実施例 10 (B i -C a陰極を有する有機 E L素子)
金属 Bとして Ca (仕事関数 2. 9) を用いて、 これを蒸着速度〇. 2nm/s で蒸着し、 かつ金厲 Aの B iを蒸着速度 8. 8 n m/secで蒸着した以外は実施 例 9と全く同様にして、 有機 E L素子を得た。
得られた有機 EL素子おける陰極の組成を計算すると、 この陰極における B i の組成は 98. 1 at. %であり、 じ3の組成は1. 9%であった。
また、 得られた有機 EL素子の陰極を一の極性に、 陽極 (I TO膜) を +の極 性にして 7 Vの直流電圧 (電流密度: 2. 2mA//cm2 ) を印加したところ、 50 c d/m2 の青色の均一発光が観測された。 このときの電力変換効率は、 表 3に示すように 1. 00ルーメン (lm) と高効率であった。 また表 3に示す ように陰極は経時的化学安定性に優れていた。
実施例 11 (B i— L i陰極を有する有機 E L素子)
金属 Bとして L i (仕事関数 2. 93) を用いて、 これを蒸着速度◦. 05nm /sで蒸着し、 かつ金属 Aの B iを蒸着速度 1 On m/secで蒸着した以外は実 施例 9と全く同様にして、 有機 EL素子を得た。
得られた有機 E L素子における陰極の組成を計算すると、 この陰極における B iの組成は 99. 2 at. %であり、 1^の組成は〇. 8 at. %であった。
また、得られた有機 EL素子の陰電極を一の極性に、 陽電極 (I TO膜) を + の極性にして 7 Vの直流電圧 (電流密度: 5. OmA/cm" ) を印加したとこ ろ、 100c dZm2 の青色の均一 が観測された。 このときの電力変換効率 は、 表 3に示すように 0. 90ルーメン (lm) Wと高効率であった。 また表 3 に示すように陰極は経時的化学安定性に優れていた。
実施例 12 (B i— Mg陰極を有する有機 E L素子)
金属 Bとして Mg (仕事関数 3. 68) を用い、 かつ Mgの蒸着速度を 0. 2 n m/sec、 金属 Aの B iの蒸着速度を 5 n m/sec とした以外は実施例 9と全 く同様にして、 有機 E L素子を得た。
得られた有機 E L素子におけ 陰極の組成を計算すると、 この陰極における B iの組成は 94. 2 at. %であり、 Mgの組成は 5. 8 at.%であった。
また、得られた有機 EL素子の陰極を一の極性に、 陽極 (I TO膜) を十の極 性にして 7Vの直流 ¾ΐ (電流密度: 1. 4mA/cmi' ) を印加したところ、 22c d m" の青色の均一 が観測された。 このときの電力変換効率は表 3 に示すように 0. 71ル一メン (lm) ZWと高効率であった。 また表 3に示すよ うに陰極は経時的化学安定性に優れていた。
比較例 9
金属 Bの代りに A u (仕事関数 5. 1) を用いて、 これを蒸着速度〇. 05nm Zsで蒸着し、 かつ金属 Aの B iを蒸着速度 10 nm/secで蒸着した以外は実 施例 9と全ぐ同様にして、有機 EL素子を得た。
得られた有機 E L素子における陰極の組成を計算すると、 この陰極における B iの組成は 99. 0 at. %であり、 Auの組成は 1. Oat. %であった。
また、 得られた有機 EL素子の陰極を—の極性に、 陽極 (I TO膜) を十の極 性にして 13 Vの直流電圧 (電流密度: 7. OmA/cm2 ) を印加して発光を 観測した。 このときの電力変換効率は表 3に示すように 0. 017ル一メン (lm) /Wと極めて低かった。 J:じ謂 10
金属 Bの代りに N i (仕事関数 5. 15) を用いて、 これを蒸着速度 0. 04 nm/ sで蒸着し、 力、つ金属 Aの B iを蒸着速度 8. 5nm /secで蒸着した以外 は実施例 9と全く同様にして、有機 EL素子を得た。
得られた有機 E L素子における陰極の組成を計算すると、 この陰極における B iの組成は 98. 5 at.%であり、 N iの組成は 1. 5at. %であった。
また、 得られた有 EL素子の陰極を—の極性に、 陽極 (I TO膜) を +の極 性にして 15 Vの直流電圧 (電流密度: 50mA/cm2 ) を印加して発光を観 測した。 このときの電力変換効率は表 3に示すように 0. 0046ル一メン (lm) _ Wと極めて低かった。
比較例 11
金属 Bを用いずに金属 Aの B iのみを 13nmZsecの蒸着速度で蒸着した以 外は実施例 9と同様にして有機 E L素子を得た。
得られた有機 EL素子の陰極を—の極性に、 陽極 (I TO膜) を +に極性にし て 15 Vの直流電圧 (電流密度: 16mA/cm2 ) を印加して発光を観測した。 このときの電力変換効率は表 3に示すように 0. 01ルーメン (lm) ZWと極め て低かった。
比較例 12
金属 Aの B iの代りに Mgを用い、 金属 Bとして I nを用いたことおよび Mg の蒸着速度を 8nmZsec、 I nの蒸着速度を〇. 06 n mZsec としたこと以 外は実施例 9と同様にして有機 E L素子を得た。
得られた有機 E L素子における陰極の組成を計算すると、 この陰極における M gの組成は 99. 3at. %であり、 I nの組成は 0. 7at. %であった。
また、 得られた有機 EL素子の陰極を—の極性に、 陽極 (I TO膜) を +の極 性にして 7 Vの直流電圧 (電流密度: 1 OmA/cmZ ) を印加して発光を観測 した。 このときの電力変換効率は、 表 3に示すようにに 0. 45ルーメン (lm) ZWであった。 表 3に示すように、 この有機 EL素子は、空気中で 6ヶ月放置し、 陰極が酸化し透明になったことから、 陰極の経時的化学安定性に劣ることが確認 された。 表 3
電 極 有 機 E L 素 子
材 料 蒸 着 速 度 B i以外の金 印加電圧 電流密度 輝 度 電力変換効率 経時的化
2
(組成比: at/at) (n m/sec ) 属の仕事関数 (V) UnA/cnr ) (cdZ m 2 ) (lm/W) 学安定性 実施例 9 Bi-Mg (99.3/0.7) 9:0.04 3.68 7 2.6 45 0.78 変化なし 実施例 10 Bi-Ca (98.1/1.9) 8.8:0.2 2.9 7 2.2 50 1.00 変化なし 実施 11 Bi-Li (99.2/0.8) 10:0.05 2.93 7 5.0 100 0.90 変化なし 実施例 12 Bi-Mg (94.2/5.8) 5:0.2 3.68 7 1.4 22 0.71 変化なし 比較例 9 Bi-Au (99.0/1.0) 10:0.05 5.1 13 7.0 5 0.017 変化なし to
比較例 10 Bi-Ni (98.5/1.5) 8.5:0.04 5.15 15 50 11 0.0046 変化なし 比較例 11 Bi 13 15 16 8 0.01 変化なし 比較例 12 Mg-In (99.3/0.7) 8:0.06 7 10 100 0.45 誦化し 透明になった
*経時的化学安定性は空気中、 6ヶ月放置後の電極 (陰極) の状態を観察することにより評価した。
以上説明したように、 本発明によれば、 経時的化学安定性の高い陰極を備え、 かつ電力交換効率の向上した新規な有機 E L素子が提供された。

Claims

' 請 求 の 範 囲
1. Pb, S nおよび B i力、ら選ばれる金属少なくとも 1種の金属 Aと仕事関数 4. 2 e V以下の金属 Bとを含む蒸着膜を陰極として備えたことを特徴とする有 機 EL素子。
2. 金属 Bが、 I n、 Cd、 Mn、 Ti、 Ta、 Z r、 La、 Ca、 L i、 Ba、 Na、 Mg、 Cd、 K、 Yおよび Ybからなる群から選ばれた少なくとも 1種で ある、請求の範囲 1に記載の有機 E L素子。
3. 金属 Bが 4. 0 eV以下の仕事関数を有する、 請求の範囲 1に記載の有機 E L素子。
4. 陰極における金属 Aの割合が、 9〇〜99. 999at. %である、 請求の範 囲 1に記載の有機 EL素子。
5. 陰極における金属 Aの割合が、 95〜99. 99at. %である、 請求の範囲 4に記載の有機 EL素子。
6. 陰極を構成する蒸着膜が、 金属 Aを 4nmZsec以上の蒸着速度で、 金属 B を〇. 5 nmZsec以下の蒸着速度で多元同時蒸着することにより得られたもの である、 請求の範囲 1に記載の有機 E L素子。
PCT/JP1993/001020 1992-07-23 1993-07-22 Organic el device WO1994003032A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19930916203 EP0605739A4 (en) 1992-07-23 1993-07-22 ORGANIC ELECTROLUMINESCENT DEVICE.
US08/199,255 US5500568A (en) 1992-07-23 1993-07-22 Organic El device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP4197272A JPH0645073A (ja) 1992-07-23 1992-07-23 有機el素子
JP4/197272 1992-07-23
JP4270573A JPH06124786A (ja) 1992-10-08 1992-10-08 有機el素子
JP4/270573 1992-10-08

Publications (1)

Publication Number Publication Date
WO1994003032A1 true WO1994003032A1 (en) 1994-02-03

Family

ID=26510274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001020 WO1994003032A1 (en) 1992-07-23 1993-07-22 Organic el device

Country Status (3)

Country Link
US (1) US5500568A (ja)
EP (1) EP0605739A4 (ja)
WO (1) WO1994003032A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3529543B2 (ja) * 1995-04-27 2004-05-24 パイオニア株式会社 有機エレクトロルミネッセンス素子
US5719467A (en) * 1995-07-27 1998-02-17 Hewlett-Packard Company Organic electroluminescent device
DE19532064A1 (de) * 1995-08-31 1997-03-06 Bosch Gmbh Robert Elektrolumineszierendes Schichtsystem
WO1998010473A1 (en) 1996-09-04 1998-03-12 Cambridge Display Technology Limited Electrode deposition for organic light-emitting devices
EP0925709B1 (en) 1996-09-04 2003-08-13 Cambridge Display Technology Limited Organic light-emitting devices with improved cathode
US6781305B1 (en) * 1998-12-25 2004-08-24 Sanyo Electric Co., Ltd. Organic electroluminescent device having negative electrode containing a selective combination of elements
US7233026B2 (en) * 2000-03-23 2007-06-19 Emagin Corporation Light extraction from color changing medium layers in organic light emitting diode devices
KR100700000B1 (ko) * 2004-10-19 2007-03-26 삼성에스디아이 주식회사 표시장치와 그 제조방법
KR100611673B1 (ko) * 2005-01-31 2006-08-10 삼성에스디아이 주식회사 박막 형성 방법 및 유기전계발광소자의 제조 방법
CN106654030A (zh) * 2016-12-14 2017-05-10 上海天马有机发光显示技术有限公司 一种有机发光显示面板及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454692A (en) * 1987-08-25 1989-03-02 Kansai Nippon Electric Thin film el element
JPH0215595A (ja) * 1987-02-11 1990-01-19 Eastman Kodak Co カソードを改善した電界発光デバイス

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL99369C (ja) * 1956-06-04
BE558630A (ja) * 1956-06-27
US3180729A (en) * 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
BE581861A (ja) * 1958-08-20
US3240597A (en) * 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
US3173050A (en) * 1962-09-19 1965-03-09 Dow Chemical Co Electroluminescent cell
US3180703A (en) * 1963-01-15 1965-04-27 Kerr Mc Gee Oil Ind Inc Recovery process
US3382394A (en) * 1965-03-24 1968-05-07 American Cyanamid Co Electroluminescent process including injection of negative carriers into a crystal of an organic compound
US3526501A (en) * 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) * 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
US3658520A (en) * 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
US3567450A (en) * 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615404A (en) * 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US3717462A (en) * 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
BE756375A (fr) * 1969-09-30 1971-03-01 Eastman Kodak Co Nouvelle composition photoconductrice et produit la contenant utilisables en electrophotographie
BE756943A (fr) * 1969-10-01 1971-03-16 Eastman Kodak Co Nouvelles compositions photoconductrices et produits les contenant, utilisables notamment en electrophotographie
US4127412A (en) * 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
US4012376A (en) * 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
US4175961A (en) * 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
JPS6028342B2 (ja) * 1978-06-21 1985-07-04 コニカ株式会社 電子写真感光体
US4232103A (en) * 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
US4539507A (en) * 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
JP2665788B2 (ja) * 1989-01-17 1997-10-22 旭化成工業株式会社 有機エレクトロルミネセンス素子
JP2673261B2 (ja) * 1989-01-23 1997-11-05 旭化成工業株式会社 有機のエレクトロルミネセンス素子
US4950950A (en) * 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JP2554771B2 (ja) * 1989-12-28 1996-11-13 出光興産株式会社 芳香族ジメチリディン化合物
JPH0428197A (ja) * 1990-05-22 1992-01-30 Ricoh Co Ltd 端面発光型電界発光素子およびその駆動方法
JPH04212287A (ja) * 1990-05-29 1992-08-03 Toppan Printing Co Ltd 有機薄膜el素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215595A (ja) * 1987-02-11 1990-01-19 Eastman Kodak Co カソードを改善した電界発光デバイス
JPS6454692A (en) * 1987-08-25 1989-03-02 Kansai Nippon Electric Thin film el element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0605739A4 *

Also Published As

Publication number Publication date
EP0605739A4 (en) 1994-11-30
EP0605739A1 (en) 1994-07-13
US5500568A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
JP3366401B2 (ja) 白色有機エレクトロルミネッセンス素子
JP2846571B2 (ja) 有機エレクトロルミネッセンス素子
JP2651237B2 (ja) 薄膜エレクトロルミネッセンス素子
JP2651233B2 (ja) 薄膜有機el素子
JP2793383B2 (ja) 有機エレクトロルミネッセンス素子
JP3093796B2 (ja) 電荷注入補助材及びそれを含有する有機エレクトロルミネッセンス素子
JPH02247278A (ja) エレクトロルミネッセンス素子
JP2838063B2 (ja) 有機エレクトロルミネッセンス素子
JPH0688072A (ja) 有機エレクトロルミネッセンス素子
JP2846503B2 (ja) 素子用薄膜電極及びそれを有するエレクトロルミネッセンス素子並びにそれらの製造方法
JPH06100857A (ja) 有機エレクトロルミネッセンス素子
JPH09241629A (ja) 有機エレクトロルミネッセンス素子
JPH08333569A (ja) 有機エレクトロルミネッセンス素子
JP2554771B2 (ja) 芳香族ジメチリディン化合物
WO1994003032A1 (en) Organic el device
JPH05159882A (ja) 電子注入性電極の製造方法およびこの方法を用いた有機el素子の製造方法
JPH02252793A (ja) 有機エレクトロルミネッセンス素子
JPH08333283A (ja) ジスチリルアリーレン誘導体
JPH09296166A (ja) ポルフィリン誘導体を含有する有機エレクトロルミネッセンス素子
JP3045799B2 (ja) 有機エレクトロルミネッセンス素子
JP2809473B2 (ja) 有機エレクトロルミネッセンス素子
JPH06313168A (ja) 有機エレクトロルミネッセンス素子
JP2003303689A (ja) トリアジン誘導体を用いた電界発光素子
JP2774654B2 (ja) 有機エレクトロルミネッセンス素子
JP3086272B2 (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08199255

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1993916203

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993916203

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1993916203

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993916203

Country of ref document: EP