WO1993002472A1 - Semiconductor device and production thereof - Google Patents

Semiconductor device and production thereof Download PDF

Info

Publication number
WO1993002472A1
WO1993002472A1 PCT/JP1992/000904 JP9200904W WO9302472A1 WO 1993002472 A1 WO1993002472 A1 WO 1993002472A1 JP 9200904 W JP9200904 W JP 9200904W WO 9302472 A1 WO9302472 A1 WO 9302472A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysilazane
insulating film
weight
semiconductor device
atoms
Prior art date
Application number
PCT/JP1992/000904
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Nakashima
Michio Komatsu
Original Assignee
Catalysts & Chemicals Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts & Chemicals Industries Co., Ltd. filed Critical Catalysts & Chemicals Industries Co., Ltd.
Priority to JP04511573A priority Critical patent/JP3015104B2/en
Publication of WO1993002472A1 publication Critical patent/WO1993002472A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating

Definitions

  • the present invention relates to a semiconductor device having a silicon-based insulating film and a method for manufacturing the same. More specifically, the present invention relates to a semiconductor device having a small number of voids and pinholes, and a small shrinkage stress at the time of film formation and no cracks. The present invention also relates to a semiconductor device having a flat silicon-based insulating film and a method for manufacturing such a semiconductor device.
  • An insulating film for a semiconductor device is provided between a polycrystalline silicon wiring layer and an aluminum wiring layer provided on a semiconductor substrate, or between aluminum wiring layers, to insulate them from each other. It is provided on the surface of the semiconductor substrate to protect the element surface and the like.
  • a vapor phase growth method such as a CVD method is usually performed.
  • the method of forming an insulating film by such a vapor phase growth method is troublesome and requires large facilities.
  • the semiconductor substrate has irregularities, it is difficult to form the insulating film. There is a problem that the unevenness appears on the insulating film.
  • a flat insulating film can be formed on a semiconductor substrate even if the semiconductor substrate to which the coating liquid is applied has irregularities.
  • a coating liquid containing a silanol Z siloxane-based polymer obtained by partially hydrolyzing an alkoxysilane in the presence of water and an acid is coated on a semiconductor substrate, and then fired.
  • a method of forming a silica-based insulating film is known.
  • the silanol Z siloxane-based polymer contains many unreacted alkoxy groups, and the alkoxy groups are decomposed during firing, the silica-based insulating film obtained by the above method has many pores and pinholes. Therefore, the film tends to be porous, and the film shrinkage due to baking becomes large, so that the shrinkage stress becomes strong.
  • Japanese Patent Application Laid-Open No. 62-888, 327 discloses that
  • R 2 are hydrogen or an aliphatic group having 1 to .l 2 carbon atoms or an aryl group having 6 to 15 carbon atoms, and n is 3 or 4).
  • R 2 and R 3 are each independently a hydrogen atom or a hydrocarbon group), having a repeating unit represented by the following formula: 1 0 0-5 0 0 0 0, with three or more S i H 3 group in the molecule, or one element ratio is S i: 5 9 ⁇ 6 9 wt%, N: 2 4
  • a coating composition containing polysilazane in an amount of about 34 to 34% by weight and H: 5 to 8% by weight is disclosed.
  • the present inventors have conducted intensive studies to obtain a dense insulating film free from voids, pinholes, cracks, etc., and found that an insulating film formed from a coating solution containing a specific polysilazane has voids, pinholes, cracks, etc. It was found that there was no such thing and that the present invention was completed.
  • the present invention is intended to solve the above-mentioned problems in the prior art.
  • the present invention has a small number of defects such as voids and pinholes, has a small shrinkage stress at the time of film formation, and has a small crack.
  • a semiconductor consisting of a semiconductor substrate covered with a flat silicon-based insulating film
  • New paper It is an object of the present invention to provide a device and a method for manufacturing a semiconductor device having such excellent properties.
  • the semiconductor device according to the present invention has the following general formula (I) ... (I)
  • R i, R 2 and R 3 are each independently a hydrogen atom or 'is an alkyl group having 1 to 8 carbon atoms.
  • a coating solution containing at least one polysilazane having at least a repeating unit represented by, and having a molecular weight of 1,000 or less in an amount of 10 to 40% by weight is heated and cured in an oxidizing atmosphere to have a silicide-based insulating film in which all or most of the skeletal structure is a Si 10 bond.
  • the semiconductor device according to the present invention may be a semiconductor device including a polycrystalline silicon wiring layer provided on a semiconductor substrate and an aluminum wiring layer, an aluminum wiring layer or the like, between layers, or a PN junction semiconductor, a capacitor, or the like.
  • a specific silicon-based insulating film is provided on the surface of a semiconductor substrate having seed elements.
  • the semiconductor substrate referred to in the present invention means not only a semiconductor substrate such as a silicon wafer but also a semiconductor substrate provided thereon with various elements such as an aluminum wiring layer, a PN junction semiconductor, and a capacitor.
  • a semiconductor device is characterized in that a coating film formed from a coating solution containing at least one kind of polysilazane having at least one repeating unit represented by the above formula (I) is prepared in an oxidizing atmosphere. It is manufactured including the step of forming a silicon-based insulating film on a semiconductor substrate by heat curing at a temperature of ⁇ 800 ° C.
  • the polysilazane used in the present invention has the following general formula (I) ... (I)
  • R!, R 2 and R 3 are each independently or a hydrogen atom an alkyl group having 1-8 carbon atoms.
  • the alkyl group one selected from a methyl group, an ethyl group, and a propyl group is preferable.
  • R 5 -zane also has a linking group of one S i—, one S i— or one N—
  • R 5 is a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. That is, a polysilazane having a repeating unit represented by the above formula (I) is a straight-chain policy.
  • the low-molecular-weight polysilazane having a molecular weight of 1,000 or less is desirably 10 to 40% by weight, preferably 15 to 40% by weight of the whole polysilazane.
  • the content of the low molecular weight polysilazane is less than 10% by weight, the fluidity of the coating solution is slightly reduced, and the surface smoothness of the obtained silicic-based insulating film may be reduced.
  • the low-molecular-weight polysilazane exceeds 40% by weight, the volatile components increase, the film shrinks during the heat curing process of the film, and the surface smoothness of the obtained silicon-based insulating film may decrease. is there.
  • the weight average molecular weight of such a polysilazane is desirably in the range of 500 to 100,000, preferably in the range of 1,000 to 4,000. If the weight average molecular weight is less than 500, low molecular weight polysilazane volatilizes during heat curing, and the film shrinks greatly during firing. If the molecular weight exceeds 100,000, the fluidity of the coating solution decreases. In any case, when a film is formed on the uneven surface, the film tends to lack the ability to flatten the uneven surface.
  • R 2 and R 3 are all hydrogen atoms, and more than 55 to 65 weight of Si atoms in one molecule. %, 20 to 30% by weight of N atoms and 10 to 15% by weight of H atoms. Furthermore, the weight average molecular weight of polysilazane and the low molecular weight policy contained in polysilazane
  • the ratio of the lazan is preferably in the above range, and the terminal group of the inorganic polysilazane is —
  • inorganic polysilazane which is preferable as such a component for forming a film
  • a silica-based insulating film which is less likely to generate defects such as voids and pinholes during firing and has excellent surface smoothness can be obtained.
  • the alkyl group is not decomposed at the time of heating and curing, and voids and pinholes are not generated due to the decomposition of the alkyl group. can get.
  • film shrinkage during heat curing is suppressed by volume expansion when the Si—H bond at the molecular end changes to a Si—0 bond, reducing shrinkage stress, and in particular, a thick silica-based insulating film. Also when cracks are formed, generation of cracks can be suppressed.
  • such an inorganic polysilazane can provide a dense silicic insulating film by heat curing at a lower temperature than an organic polysilazane having an alkyl group. Further, in this case, if an inorganic polysilazane having an S i / N (atomic ratio) of 1.20 or more obtained by reducing the Si—N cross-linking portion in the polysilazane is used, it is possible to easily form S The i—N bond becomes a Si 10 bond, and a dense silicic insulating film can be obtained by heating at a lower temperature.
  • Such a polysilazane can be produced, for example, by utilizing the method disclosed in Japanese Patent Publication No. 63-16,325.
  • ammonium nitrate which is a nitrogen source, is added at about 5 mol times or more with respect to the Si atom and reacted to obtain polysilazane having many terminal groups of NH 2 .
  • the coating liquid for forming an insulating film used in the present invention usually contains polysilazane dissolved in an organic solvent.
  • Such an organic solvent is not particularly limited as long as it dissolves polysilazane and imparts fluidity to the coating solution.
  • Specific examples thereof include hydrocarbons such as siloxane, toluene, xylene, and hexylene.
  • halogenated hydrocarbons such as methylene chloride, ethylene chloride and trichloroethane, and ethers such as ethyl butyl ether, dibutyl ether, dioxane and tetrahydrofuran.
  • the solid concentration of polysilazane in such a solution is desirably 3 to 35% by weight.
  • the coating liquid may cover various elements such as a polycrystalline silicon wiring layer, an aluminum wiring layer, a PN junction semiconductor, and a capacitor provided on a semiconductor substrate with the coating liquid. Is applied on a semiconductor substrate, and the resulting coating film is cured by heating in an oxidizing atmosphere to form a silica-based insulating film in which all or most of the skeleton structure is composed of Si-0 bonds.
  • a silicon-based insulating film such as between a polycrystalline silicon wiring layer and an aluminum wiring layer, or between an aluminum wiring layer and an aluminum wiring layer, as described above. Further on the silicon-based insulating film
  • a layer such as a luminance wiring layer is formed.
  • a coating method such as a spray method, a sub coating method, a dip coating method, a roll coating method, a screen printing method, and a transfer printing method is used. The method is adopted.
  • the heating of the coating film for forming the silicon-based insulating film is usually performed at a temperature of 150 to 800 ° C., preferably 350 to 800 ° C., in an oxidizing atmosphere, oxygen, ozone, air containing component having an oxidation potential such as water vapor, is performed in such a N 2 stream. Most of the polysilazane bonds are caused by this thermal oxidation.
  • a silicon-based insulating film was formed from a conventional alkoxysilane-based coating solution
  • the coating shrinks due to dehydration condensation between the SiOH groups of the alkoxysilane during heat curing.However, in a coating solution composed of a polysilazane solution, only the Si-1N bond changes to a Si-10 bond. Little shrinkage occurs structurally.
  • the silica-based insulating film formed as described above has a smaller shrinkage stress during the formation of voids, pinholes, and films than the conventional silicic-based insulating film formed from an alkoxysilane-based coating solution. It is small, crack-free, dense, and has the property that when a film is formed on an uneven surface, the uneven surface is highly flattened.
  • a semiconductor device comprising a semiconductor substrate having a flat Si-based insulating film is provided.
  • Polysilazane was produced by the following production method according to the production method described in JP-B-63-16,325.
  • the inorganic polysilazane B of Production Example 2 was dissolved in pyridine, and a polymerization reaction was performed at 80 ° C. for 10 hours in an N 2 atmosphere. Pyridine was distilled off under reduced pressure to obtain inorganic polysilazane C.
  • Polysilazane E was obtained.
  • inorganic polysilazane B and inorganic polysilazane D were mixed with BZD-30 / 70 to obtain inorganic polysilazane H.
  • the pyridine solution of the inorganic polysilazane B obtained in Production Example 2 was cooled and reacted with 5.0 g of dichlorosilane in an N 2 atmosphere. After removing the precipitate by filtration, the solvent was removed from the filtrate by distillation under reduced pressure to obtain inorganic polysilazane I.
  • Production Example 12 Organic polysilazane L was obtained in the same manner as in Production Example 1 except that 34.2 g of methisoresyl chlorosilane was used in place of 30.0 g of dichlorosilane.
  • Organic polysilazane M was obtained in the same manner as in Production Example 1, except that 38.4 g of dimethyldichlorosilane was used instead of 30.0 g of dichlorosilane.
  • Organic polysilazane N was obtained in the same manner as in Production Example 1 except that methylamine was used instead of NH 3 .
  • Polysilazane A was dissolved in xylene to prepare a coating solution containing polysilazane A having a solid content of 20% by weight.
  • This coating solution was applied on a 4-inch silicon wafer by spin coating.
  • the obtained coating film was dried at 150 ° C. for 2 minutes, and then fired in air at 450 ° C. for 1 hour to form a silica-based insulating film.
  • Table 2 shows the results of elemental analysis of the formed silicon-based insulating film by ESC A.
  • this coating solution was applied by a spin-coat method on a 4-inch silicon semiconductor substrate on which wiring was formed model-wise with a line and space of 0.5 m steps.
  • the resulting was a film 1 5 0 ° to ⁇ dry '2 minutes in C, and a semiconductor having a sheet re force based insulating film was baked for 1 hour at 4 5 0 ° C in N 2 (moisture concentration 1%) A substrate was obtained.
  • the cross section of the Si-based insulating film was observed with a scanning electron microscope to determine whether or not cracks had occurred.
  • etching rate was calculated from the film thickness before and after immersing the semiconductor substrate in a 0.5 wt% HF solution for 5 minutes.
  • a semiconductor substrate having a silica-based insulating film was obtained in the same manner as in Example 1 except that polysilazane B was used instead of polysilazane A.
  • a semiconductor substrate having a silica-based insulating film was obtained in the same manner as in Example 1, except that polysilazane C was used instead of polysilazane A.
  • a semiconductor substrate having a silicide-based insulating film was obtained in the same manner as in Example 1 except that polysilazane D was used instead of polysilazane A.
  • a semiconductor substrate having a silicide-based insulating film was obtained in the same manner as in Example 1 except that polysilazane E was used instead of polysilazane A.
  • a semiconductor substrate having a silicide-based insulating film was obtained in the same manner as in Example 1, except that polysilazane F was used instead of polysilazane A.
  • a body substrate was obtained.
  • a semiconductor substrate having a silica-based insulating film was obtained in the same manner as in Example 1, except that polysilazane H was used instead of polysilazane A.
  • a semiconductor substrate having a silica-based insulating film was obtained in the same manner as in Example 1, except that polysilazane I was used in place of polysilazane A.
  • a semiconductor substrate having a silica-based insulating film was obtained in the same manner as in Example 1, except that polysilazane J was used instead of polysilazane A.
  • a semiconductor substrate having a silica-based insulating film was obtained in the same manner as in Example 1, except that polysilazane K was used instead of polysilazane A.
  • polysilazane L was used instead of polysilazane A.
  • a semiconductor substrate having a silicide-based insulating film was obtained in the same manner as in Example 1, except that polysilazane M was used instead of polysilazane A.
  • a semiconductor substrate having a silica-based insulating film was obtained in the same manner as in Example 1 except that polysilazane N was used instead of polysilazane A.
  • a coating solution containing polysilazane was applied to a silicon semiconductor substrate by spin coating in the same manner as in Example 1.
  • the obtained coating film was 150. After drying at C for 2 minutes, 800 in wet N 2 (1% oxygen concentration). Bake for 1 hour with C
  • a conductor substrate was obtained.
  • Example 9 was the same as Example 9 except that polysilazane L was used instead of polysilazane A.
  • Example 9 was the same as Example 9 except that polysilazane M was used instead of polysilazane A.
  • Example 9 was the same as Example 9 except that polysilazane N was used instead of polysilazane A.
  • Coating liquids D and E containing borosilazane having a weight-average molecular weight of more than 10,000 have a molecular weight ratio of 1,000 or less, both of which are 10% by weight or less.
  • the insulating film is a step
  • the silicic insulating film formed from the coating solution B containing the low molecular weight polysilazane having a weight average molecular weight of less than 1,000 in an amount of 84% by weight has poor flatness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Paints Or Removers (AREA)

Abstract

A semiconductor device having an insulating silica coating prepared by heat curing in an oxidizing atmosphere a coating film prepared from a coating fluid containing at least one polysilazane which contains at least a repeating unit represented by general formula (I) and wherein the content of the molecules with a molecular weight of 1,000 or less ranges from 10 to 40 wt.%, wherein R1, R2 and R3 represent each independently hydrogen or C1 to C8 alkyl.

Description

明 糸田 書 半導体装置およびその製造方法 技 術 分 野  Akira Itoda Semiconductor device and its manufacturing method
本発明は、 シリ力系絶縁膜を有する半導体装置およびその製造方 法に関し、 さらに詳しくは、 ボイ ド、 ピンホールが少なく緻密であ り、 かつ膜形成時の収縮ストレスが小さく クラックの発生がなく、 しかも平坦なシリ力系絶縁膜を有する半導体装置、 およびこのよう な半導体装置の製造方法に関する。  The present invention relates to a semiconductor device having a silicon-based insulating film and a method for manufacturing the same. More specifically, the present invention relates to a semiconductor device having a small number of voids and pinholes, and a small shrinkage stress at the time of film formation and no cracks. The present invention also relates to a semiconductor device having a flat silicon-based insulating film and a method for manufacturing such a semiconductor device.
背 景 技 術  Background technology
半導体装置用絶縁膜は、 半導体基板上に設けられた多結晶シリコ ン配線層とアルミニウム配線層との間、 あるいはアルミニウム配線 層間に、 これらを絶縁するために設けられたり、 また P N接合部お よび素子表面などを保護するために半導体基板の表面に設けられて いる。  An insulating film for a semiconductor device is provided between a polycrystalline silicon wiring layer and an aluminum wiring layer provided on a semiconductor substrate, or between aluminum wiring layers, to insulate them from each other. It is provided on the surface of the semiconductor substrate to protect the element surface and the like.
このような半導体装置用絶縁膜を形成する方法としては、 通常、 C V D法などの気相成長法が実施されている。 ところがこのような 気相成長法によつて絶縁膜を形成する方法は、 手間がかかるととも に大きな設備が必要であり、 また半導体基板に凹凸がある場合には、 絶縁膜を形成した場合にその凹凸が絶縁膜上にも表われてしまうと いう問題点があった。  As a method for forming such an insulating film for a semiconductor device, a vapor phase growth method such as a CVD method is usually performed. However, the method of forming an insulating film by such a vapor phase growth method is troublesome and requires large facilities.In addition, when the semiconductor substrate has irregularities, it is difficult to form the insulating film. There is a problem that the unevenness appears on the insulating film.
このような問題点を解決するため、 近年、 絶縁膜形成用塗布液を 用いる塗布法によって、 絶縁膜を半導体基板上に形成する試みがな  In order to solve such problems, in recent years, there has been no attempt to form an insulating film on a semiconductor substrate by a coating method using a coating solution for forming an insulating film.
tff 7^ CO ^ されている。 このような塗布法によれば、 塗布液が塗布される半導 体基板に凹凸があつても、 半導体基板上に平坦な絶縁膜を形成する ことができる。 tff 7 ^ CO ^ Have been. According to such a coating method, a flat insulating film can be formed on a semiconductor substrate even if the semiconductor substrate to which the coating liquid is applied has irregularities.
このような従来の塗布法としては、 半導体基板上にアルコキシシ ランを水と酸の存在下で部分加水分解して得られるシラノール Zシ ロキサン系のポリマーを含有する塗布液を塗布し、 次いで焼成する ことによりシリカ系絶縁膜を形成する方法が知られている。  As such a conventional coating method, a coating liquid containing a silanol Z siloxane-based polymer obtained by partially hydrolyzing an alkoxysilane in the presence of water and an acid is coated on a semiconductor substrate, and then fired. Thus, a method of forming a silica-based insulating film is known.
しかしながら、 シラノール Zシロキサン系ポリマーは未反応のァ ル キシ基を多く含み、 焼成時にこのアルコキシ基が分解するため、 前記方法で得られたシリカ系絶縁膜は、 ポイ ドやピンホールが多く、 このため多孔質になりやすく、 また焼成による膜収縮が大きくなつ て収縮ストレスが強くなるため、 クラックが生じやすいといった問 題点があつた。  However, since the silanol Z siloxane-based polymer contains many unreacted alkoxy groups, and the alkoxy groups are decomposed during firing, the silica-based insulating film obtained by the above method has many pores and pinholes. Therefore, the film tends to be porous, and the film shrinkage due to baking becomes large, so that the shrinkage stress becomes strong.
また特開昭 6 2— 8 8, 3 2 7号公報には、  Also, Japanese Patent Application Laid-Open No. 62-888, 327 discloses that
式 (R i R 2 S ϊ Ν Η ) π Equation (R i R 2 S ϊ Ν Η) π
(式中、 および R 2 は水素または炭素原子数 l〜.l 2の脂肪族 基または炭素原子数 6〜 1 5のァリール基であり、 nは 3または 4 である) で示されるシクロシラザン溶液を塗布し、 4 0 0〜 5 0 0 °Cに加熱して誘電体膜を形成したのち、 酸素または水蒸気雰囲気中 で約 9 0 0 °Cに加熱して S i 0 2 膜を形成する方法が記載されてい o (Wherein, and R 2 are hydrogen or an aliphatic group having 1 to .l 2 carbon atoms or an aryl group having 6 to 15 carbon atoms, and n is 3 or 4). was applied, 4 0 0~ 5 0 0 ° after forming the dielectric film is heated and C, a method of forming a S i 0 2 film was heated to about 9 0 0 ° C in an oxygen or water vapor atmosphere Is listed o
さらに特開平 1— 2 0 3 , 4 7 6号公報には、  Furthermore, Japanese Patent Application Laid-Open No. 1-2034,476 discloses that
iff た な 用羝 iff
Figure imgf000005_0001
Figure imgf000005_0001
(式中、 、 R 2 および R 3 は、 それぞれ独立に水素原子または 炭化水素基である) で示される繰り返し単位を有する直鎖状構造、 環状構造またはこれらの混合構造を含み、 数平均分子量が 1 0 0〜 5 0 , 0 0 0であり、 1分子中に 3個以上の S i H 3 基を有し、 か つ元素比率が S i : 5 9〜 6 9重量%、 N : 2 4〜 3 4重量%、 H : 5〜 8重量%であるポリシラザンを含有するコーティ ング用組成物 が開示されている。 (Wherein,, R 2 and R 3 are each independently a hydrogen atom or a hydrocarbon group), having a repeating unit represented by the following formula: 1 0 0-5 0 0 0 0, with three or more S i H 3 group in the molecule, or one element ratio is S i: 5 9~ 6 9 wt%, N: 2 4 A coating composition containing polysilazane in an amount of about 34 to 34% by weight and H: 5 to 8% by weight is disclosed.
これらの公報に開示されたコーティ ング用組成物 (塗布液) を用 いて、 S i一 N結合の大部分が S i一 0結合に変化したシリ力系絶 縁膜を得るためには、 約 9 0 0 °Cもの高温で加熱しなければならな かったり、 また半導体基板上に絶縁膜を形成すると、 ボイ ド、 ピン ホールやクラックが絶縁膜に生ずる場合があることが、 本発明者ら によって見出された。  Using the coating composition (coating solution) disclosed in these publications, in order to obtain a silicide-based insulating film in which most of Si—N bonds are changed to Si—10 bonds, approximately The present inventors have found that if heating must be performed at a high temperature of 900 ° C., or if an insulating film is formed on a semiconductor substrate, voids, pinholes, and cracks may occur in the insulating film. Was found by
本発明者らは、 ボイ ド、 ピンホールやクラックなどがない緻密な 絶縁膜を得るべく鋭意検討したところ、 特定のポリシラザンを含む 塗布液から形成された絶縁膜は、 ボイ ド、 ピンホールやクラックな どがなく緻密であることを見出して、 本発明を完成するに至つた。 本発明は、 上記のような従来技術における問題点を解決しょうと するものであって、 ボイ ド、 ピンホールなどの欠陥が少なく緻密で あり、 かつ膜形成時の収縮ストレスが小さく クラックの発生がなく、 しかも平坦なシリ力系絶縁膜で覆われた半導体基板からなる半導体  The present inventors have conducted intensive studies to obtain a dense insulating film free from voids, pinholes, cracks, etc., and found that an insulating film formed from a coating solution containing a specific polysilazane has voids, pinholes, cracks, etc. It was found that there was no such thing and that the present invention was completed. The present invention is intended to solve the above-mentioned problems in the prior art. The present invention has a small number of defects such as voids and pinholes, has a small shrinkage stress at the time of film formation, and has a small crack. And a semiconductor consisting of a semiconductor substrate covered with a flat silicon-based insulating film
新た な用紙 装置、 およびこのような優れた性質を有する半導体装置の製造方法 を提供することを目的としている。 New paper It is an object of the present invention to provide a device and a method for manufacturing a semiconductor device having such excellent properties.
発明の開示  Disclosure of the invention
本発明に係る半導体装置は、 下記一般式 (I ) … (I )
Figure imgf000006_0001
The semiconductor device according to the present invention has the following general formula (I) ... (I)
Figure imgf000006_0001
(ただし、 R i 、 R 2 および R 3 は、 それぞれ独立して水素原子ま た'は炭素原子数 1〜 8のアルキル基である。 ) (However, R i, R 2 and R 3 are each independently a hydrogen atom or 'is an alkyl group having 1 to 8 carbon atoms.)
で表わされる繰り返し単位を少なく とも有し、 分子量 1 , 0 0 0以 下の分子が 1 0〜4 0重量%の量で存在しているポリシラザンの 1 種または 2種以上を含む塗布液から形成された塗膜を、 酸化雰囲気 中で加熱硬化して、 骨格構造のすべてまたは大部分が S i一 0結合 であるようなシリ力系絶縁膜を有することを特徵としている。  Formed from a coating solution containing at least one polysilazane having at least a repeating unit represented by, and having a molecular weight of 1,000 or less in an amount of 10 to 40% by weight. The coating film thus formed is heated and cured in an oxidizing atmosphere to have a silicide-based insulating film in which all or most of the skeletal structure is a Si 10 bond.
またこのような半導体装置は、 前記塗布液を半導体基板上に塗布 した後、 酸化雰囲気中で 1 5 0〜8 0 0 °Cの温度で加熱硬化してシ リ力系絶縁膜を形成する工程を含んで製造される。  Further, in such a semiconductor device, a step of forming the silicon-based insulating film by applying the coating solution on a semiconductor substrate, and then heating and curing the coating solution at a temperature of 150 to 800 ° C. in an oxidizing atmosphere. It is manufactured including.
発明を実施するための最良の形態 以下本発明に係る半導体装置およびその製造方法について具体的 に説明する。  BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a semiconductor device according to the present invention and a method for manufacturing the same will be specifically described.
本発明に係る半導体装置は、 半導体基板上に設けられた多結晶シ リコン配線層とアルミニウム配線層との間、 アルミニウム配線層間 など、 層と層の間、 あるいは P N接合半導体、 コンデンサ一等の各 種素子を具備する半導体基板の表面に特定のシリ力系絶縁膜が設け  The semiconductor device according to the present invention may be a semiconductor device including a polycrystalline silicon wiring layer provided on a semiconductor substrate and an aluminum wiring layer, an aluminum wiring layer or the like, between layers, or a PN junction semiconductor, a capacitor, or the like. A specific silicon-based insulating film is provided on the surface of a semiconductor substrate having seed elements.
趼だな用紙 —―ゥ— 趼 paper —— ゥ —
られている。 Have been.
本発明で言う半導体基板とは、 シリコンウェハのような半導体基 板のみにならず、 この上にアルミニウム配線層、 PN接合半導体、 コンデンサ一等の各種素子を具備する半導体基板をも意味する。 またこのような半導体装置は、 前記式 (I) で表わされる繰り返 し単位を少なく とも有するポリシラザンの 1種または 2種以上を含 む塗布液から形成された塗膜を、 酸化雰囲気中で 150〜800°C の温度で加熱硬化してシリ力系絶縁膜を半導体基板上に形成するェ 程を含んで製造される。  The semiconductor substrate referred to in the present invention means not only a semiconductor substrate such as a silicon wafer but also a semiconductor substrate provided thereon with various elements such as an aluminum wiring layer, a PN junction semiconductor, and a capacitor. In addition, such a semiconductor device is characterized in that a coating film formed from a coating solution containing at least one kind of polysilazane having at least one repeating unit represented by the above formula (I) is prepared in an oxidizing atmosphere. It is manufactured including the step of forming a silicon-based insulating film on a semiconductor substrate by heat curing at a temperature of ~ 800 ° C.
本発明において用いられるポリシラザンは、 下記一般式 (I) … ( I )
Figure imgf000007_0001
The polysilazane used in the present invention has the following general formula (I) ... (I)
Figure imgf000007_0001
で表わされる繰り返し単位を少なく とも有している。 At least a repeating unit represented by
但し、 R! 、 R2 および R3 は、 それぞれ独立して水素原子また は炭素原子数 1〜 8のアルキル基である。 アルキル基としてはメチ ル基、 ェチル基、 プロピル基から選ばれる 1種が好ましい。 However, R!, R 2 and R 3 are each independently or a hydrogen atom an alkyl group having 1-8 carbon atoms. As the alkyl group, one selected from a methyl group, an ethyl group, and a propyl group is preferable.
また、 上記式 (I.) で表わされる繰り返し単位を有するポリシラ  Further, a polysila having a repeating unit represented by the above formula (I.)
. R5 - ザンは、 さらに結合基 一S i—、 一 S i— または 一 N— R 5 -zane also has a linking group of one S i—, one S i— or one N—
(ただし、 R5 は、 水素原子または炭素原子数 1〜8のアルキル基 である。 ) を含んで架橋していてもよい。 すなわち、 上記式 (I) で表わされる繰り返し単位を有するポリシラザンは、 直鎖のポリシ (However, R 5 is a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.). That is, a polysilazane having a repeating unit represented by the above formula (I) is a straight-chain policy.
¥trた な用 一らー ¥ tr Ichira
ラザンに限定されることはなく、 分岐鎖を有していてもよく、 また ポリシラザン分子中に環状部分があってもよい。 さらに直鎖状のポ リシラザンと環状のポリシラザンとが混合して含まれていてもよい。 このようなポリシラザンでは、 分子量 1, 0 0 0以下であるよう な低分子量ポリシラザンは、 ポリシラザン全体の 1 0〜4 0重量%、 好ましくは 1 5〜4 0重量%であることが望ましい。 低分子量ポリ シラザンが 1 0重量%未満となると、 塗布液の流動性が若干低下し、 得られるシリ力系絶縁膜の表面平滑性が低下することがある。 一方 低分子量ポリシラザンが 4 0重量%を越えると、 揮発成分が多くな り、 膜の加熱硬化過程での被膜の収縮が大きくなり、 得られるシリ 力系絶縁膜の表面平滑性が低下することがある。 It is not limited to lazan, and may have a branched chain, and may have a cyclic portion in the polysilazane molecule. Further, a mixture of linear polysilazane and cyclic polysilazane may be contained. In such a polysilazane, the low-molecular-weight polysilazane having a molecular weight of 1,000 or less is desirably 10 to 40% by weight, preferably 15 to 40% by weight of the whole polysilazane. When the content of the low molecular weight polysilazane is less than 10% by weight, the fluidity of the coating solution is slightly reduced, and the surface smoothness of the obtained silicic-based insulating film may be reduced. On the other hand, if the low-molecular-weight polysilazane exceeds 40% by weight, the volatile components increase, the film shrinks during the heat curing process of the film, and the surface smoothness of the obtained silicon-based insulating film may decrease. is there.
さらに、 このようなポリシラザンの重量平均分子量は、 5 0 0〜 1 0 , 0 0 0、 好ましくは 1, 0 0 0〜4, 0 0 0の範囲にあるこ とが望ましい。 重量平均分子量が 5 0 0未満では、 加熱硬化時に低 分子量のポリシラザンが揮発し、 焼成時に膜の収縮が大きくなり、 また、 分子量が 1 0 , 0 0 0を越えると、 塗布液の流 性が低下し、 いずれにしても凹凸面に膜を形成した際に、 この凹凸面を平坦化す る能力に欠けるという傾向がある。  Further, the weight average molecular weight of such a polysilazane is desirably in the range of 500 to 100,000, preferably in the range of 1,000 to 4,000. If the weight average molecular weight is less than 500, low molecular weight polysilazane volatilizes during heat curing, and the film shrinks greatly during firing.If the molecular weight exceeds 100,000, the fluidity of the coating solution decreases. In any case, when a film is formed on the uneven surface, the film tends to lack the ability to flatten the uneven surface.
本発明では、 塗布液中に含まれるポリシラザンは、 上記一般式 ( I ) において、 、 R 2 および R 3 がすべて水素原子であって、 しかも 1分子中に S i原子が 5 5〜6 5重量%、 N原子が 2 0〜 3 0重量%、 H原子が 1 0〜1 5重量%であるような量で存在して いる無機ポリシラザンであることが好ましい。 さらにポリシラザン の重量平均分子量およびポリシラザン中に含まれる低分子量ポリシ In the present invention, in the polysilazane contained in the coating solution, in the above general formula (I), R 2 and R 3 are all hydrogen atoms, and more than 55 to 65 weight of Si atoms in one molecule. %, 20 to 30% by weight of N atoms and 10 to 15% by weight of H atoms. Furthermore, the weight average molecular weight of polysilazane and the low molecular weight policy contained in polysilazane
¾/r な ¾ ラザンの割合は上記の範囲にあるものが好ましい, のような無機 ポリシラザンの末端基は、 —¾ / r ¾ The ratio of the lazan is preferably in the above range, and the terminal group of the inorganic polysilazane is —
Figure imgf000009_0001
Figure imgf000009_0001
のいずれかであることが好ましい。 It is preferable that it is either.
また、 このような被膜形成用成分として好ましい無機ポリシラザ ンからは、 焼成時にボイ ドゃピンホールなどの欠陥やクラックが発 生しにく く、 しかも表面平滑性に優れたシリカ系絶縁膜が得られる すなわち上記のような無機ポリシラザンからシリ力系絶縁膜を形 成すると、 加熱硬化時にアルキル基の分解がなく、 アルキル基の分 解に伴うボイ ドゃピンホールの発生がなく、 緻密な膜が得られる。 また加熱硬化時の膜収縮が、 分子末端の S i 一 H結合が S i— 0結 合に変化するときの体積膨脹により抑制されて収縮ストレスを少な く し、 特に厚膜のシリカ系絶縁膜を形成する場合にも、 クラックの 発生を抑制することができる。  In addition, from inorganic polysilazane, which is preferable as such a component for forming a film, a silica-based insulating film which is less likely to generate defects such as voids and pinholes during firing and has excellent surface smoothness can be obtained. In other words, when a silicic insulating film is formed from the above-mentioned inorganic polysilazane, the alkyl group is not decomposed at the time of heating and curing, and voids and pinholes are not generated due to the decomposition of the alkyl group. can get. In addition, film shrinkage during heat curing is suppressed by volume expansion when the Si—H bond at the molecular end changes to a Si—0 bond, reducing shrinkage stress, and in particular, a thick silica-based insulating film. Also when cracks are formed, generation of cracks can be suppressed.
またこのような無機ポリシラザンは、 アルキル基を有する有機ポ リシラザンと比較して、 より低温での加熱硬化によって緻密なシリ 力系絶縁膜が得られる。 さらにこの場合、 ポリシラザン中の S i— N架橋部分を少なくすることにより得られた S i /N (原子比) が 1 . 2 0以上である無機ポリシラザンを用いると、 加熱硬化時に容 易に S i— N結合が S i 一 0結合になり、 さらに低温での加熱によ つて緻密なシリ力系絶縁膜が得られる。  Further, such an inorganic polysilazane can provide a dense silicic insulating film by heat curing at a lower temperature than an organic polysilazane having an alkyl group. Further, in this case, if an inorganic polysilazane having an S i / N (atomic ratio) of 1.20 or more obtained by reducing the Si—N cross-linking portion in the polysilazane is used, it is possible to easily form S The i—N bond becomes a Si 10 bond, and a dense silicic insulating film can be obtained by heating at a lower temperature.
このようなポリシラザンは、 たとえば特公昭 6 3 - 1 6 , 3 2 5 号公報に開示された方法を利用することによって製造することがで  Such a polysilazane can be produced, for example, by utilizing the method disclosed in Japanese Patent Publication No. 63-16,325.
wた な & ー — w ー —
さる。 Monkey
この方法に従ってポリシラザンを合成する際に、 窒素源となるァ ンモニァを、 S i原子に対して約 5モル倍以上加えて反応させると、 多くの末端基が N H 2 であるポリシラザンが得られる。 When synthesizing polysilazane according to this method, ammonium nitrate, which is a nitrogen source, is added at about 5 mol times or more with respect to the Si atom and reacted to obtain polysilazane having many terminal groups of NH 2 .
本発明において用いられる絶縁膜形成用塗布液は、 通常、 有機溶 媒中にポリシラザンを溶解して含んでいる。  The coating liquid for forming an insulating film used in the present invention usually contains polysilazane dissolved in an organic solvent.
このような有機溶媒としては、 ポリシラザンを溶解し、 塗布液に 流動性を付与するものであれば特に制限はなく、 具体的には、 シク 口べキサン、 トルエン、 キシレン、 へキシレン等の炭化水素、 塩化 メチレン、 塩化エチレン、 トリクロロェタン等のハロゲン化炭化水 素、 ェチルブチルエーテル、 ジブチルエーテル、 ジォキサン、 テト ラヒドロフラン等のエーテル類が挙げられる。 これらの有機溶媒は 単独でもしくは 2種以上を混合して用いられる。  Such an organic solvent is not particularly limited as long as it dissolves polysilazane and imparts fluidity to the coating solution. Specific examples thereof include hydrocarbons such as siloxane, toluene, xylene, and hexylene. And halogenated hydrocarbons such as methylene chloride, ethylene chloride and trichloroethane, and ethers such as ethyl butyl ether, dibutyl ether, dioxane and tetrahydrofuran. These organic solvents are used alone or in combination of two or more.
また、 このような溶液中のポリシラザンの固形分濃度は、 3〜 3 5重量%であることが望ましい。  Further, the solid concentration of polysilazane in such a solution is desirably 3 to 35% by weight.
本発明に係る半導体装置では、 上記塗布液で半導体基板上に設け られた多結晶シリコン配線層、 アルミニウム配線層、 P N接合半導 体、 あるいはコンデンサ一等の各種素子が覆われるように上記塗布 液を半導体基板上に塗布し、 得られた塗膜を酸化雰囲気中で加熱す ることにより硬化し、 骨格構造のすべてまたはほとんどが S i - 0 結合からなるシリカ系絶縁膜が形成される。 なお、 多結晶シリコン 配線層とアルミニウム配線層との間、 アルミニウム配線層とアルミ ニゥム配線層との間など、 層と層の間をシリ力系絶縁膜で絶縁する 場合には、 上記のようにして形成したシリ力系絶縁膜上にさらにァ  In the semiconductor device according to the present invention, the coating liquid may cover various elements such as a polycrystalline silicon wiring layer, an aluminum wiring layer, a PN junction semiconductor, and a capacitor provided on a semiconductor substrate with the coating liquid. Is applied on a semiconductor substrate, and the resulting coating film is cured by heating in an oxidizing atmosphere to form a silica-based insulating film in which all or most of the skeleton structure is composed of Si-0 bonds. When insulating between layers with a silicon-based insulating film, such as between a polycrystalline silicon wiring layer and an aluminum wiring layer, or between an aluminum wiring layer and an aluminum wiring layer, as described above. Further on the silicon-based insulating film
に ΰ ¾ — q— Ϋ́ ΰ ¾ — Q—
ルミニゥム配線層などの層が形成される。 A layer such as a luminance wiring layer is formed.
ここで塗布液を半導体基板上に塗布して塗膜を形成する際には、 スプレー法、 スビンコ一ト法、 ディ ップコ一ト法、 ロールコ一ト法、 スクリーン印刷法、 転写印刷法などの塗布方法が採用される。  Here, when a coating solution is applied to a semiconductor substrate to form a coating film, a coating method such as a spray method, a sub coating method, a dip coating method, a roll coating method, a screen printing method, and a transfer printing method is used. The method is adopted.
またシリ力系絶縁膜を形成するための塗膜の加熱は、 通常、 1 5 0〜8 0 0°C、 好ましくは 3 5 0〜 8 0 0 °Cの温度で、 酸化雰 囲気中、 すなわち酸素、 オゾン、 水蒸気などの酸化能を有する成分 を含む空気、 N2 気流中などで行われる。 この加熱酸化によりほと んどのポリシラザン結合 Further, the heating of the coating film for forming the silicon-based insulating film is usually performed at a temperature of 150 to 800 ° C., preferably 350 to 800 ° C., in an oxidizing atmosphere, oxygen, ozone, air containing component having an oxidation potential such as water vapor, is performed in such a N 2 stream. Most of the polysilazane bonds are caused by this thermal oxidation.
Figure imgf000011_0001
Figure imgf000011_0001
は、 酸化されてシロキサン結合 S i - 0 - S i Is oxidized to form a siloxane bond S i-0-S i
XV 2 J¾ 2  XV 2 J¾ 2
に変化する。 なお塗膜を加熱するに際して、 紫外線、 電子線または プラズマなどの電磁波の照射による硬化処理を併用することもでき な ο Changes to When the coating film is heated, curing treatment by irradiation with electromagnetic waves such as ultraviolet rays, electron beams or plasma cannot be used together.
特に上記 、 R2 および R3 にアルキル基を含まない無機ポリ シラザンを用いると、 4 0 0〜4 5 0°Cの加熱温度でほとんどすべ ての S i一 N結合が S i一 0結合に変化し、 強固なシリカ系絶縁膜 力得られる。 In particular, when an inorganic polysilazane containing no alkyl group is used for R 2 and R 3 , almost all Si-N bonds become Si-O bonds at a heating temperature of 400 to 450 ° C. It changes and a strong silica-based insulating film is obtained.
従来のアルコキシシラン系塗布液からシリ力系絶縁膜を形成した  A silicon-based insulating film was formed from a conventional alkoxysilane-based coating solution
靳た な用紙 場合、 加熱硬化時にアルコキシシランの S i O H基同士の脱水縮合 により被膜の収縮が生じるが、 ポリシラザン溶液からなる塗布液で は、 S i一 N結合が S i一 0結合に変化するだけで分子構造的に収 縮がほとんど起こらない。 Pita paper In this case, the coating shrinks due to dehydration condensation between the SiOH groups of the alkoxysilane during heat curing.However, in a coating solution composed of a polysilazane solution, only the Si-1N bond changes to a Si-10 bond. Little shrinkage occurs structurally.
したがって、 上記のようにして形成されたシリカ系絶縁膜は、 従 来のアルコキシシラン系塗布液から形成されたシリ力系絶縁膜に比 較してボイ ド、 ピンホールおよび膜形成時に収縮ストレスが小さく、 クラックがなく、 緻密で、 しかも凹凸面に膜を形成すると、 この凹 凸面が高度に平坦化されるという性質を有する。  Therefore, the silica-based insulating film formed as described above has a smaller shrinkage stress during the formation of voids, pinholes, and films than the conventional silicic-based insulating film formed from an alkoxysilane-based coating solution. It is small, crack-free, dense, and has the property that when a film is formed on an uneven surface, the uneven surface is highly flattened.
発明の効果  The invention's effect
以上説明したように、 本発明によれば、 ボイ ド、 ピンホールなど の欠陥が少なく緻密であり、 かつ膜形成時の収縮ストレスが小さく クラックの発生がなく、 しかも半導体基板に凹凸があつても平坦な シリ力系絶縁膜を有する半導体基板からなる半導体装置が提供され る。  As described above, according to the present invention, voids, pinholes, and other defects are small and dense, shrinkage stress during film formation is small, cracks are not generated, and even if the semiconductor substrate has irregularities. A semiconductor device comprising a semiconductor substrate having a flat Si-based insulating film is provided.
以下本発明を実施例により説明するが、 本発明はこれら実施例に 限定されるものではない。  Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
ポリシラザンの合成  Synthesis of polysilazane
製造例 1 Production Example 1
1 リ ッ トルの四つ口フラスコ内に塩化メチレン 3 0 0 mlを入 れ、 一 5 °Cに冷却した。 次いでこのフラスコ内にジクロロシラン 3 0 . 0 gを加え、 攪拌しながらさらに N H 3 がジクロロシランの 1 0モル倍になるまで N H 3 ガスを 2時間で吹き込んでジクロロシ ランと N H 3 との反応生成物を含む溶液を得た。 得られた溶液から 300 ml of methylene chloride was placed in a 1 liter four-neck flask and cooled to 15 ° C. Then dichlorosilane 3 0 to the flask. 0 g was added, reaction of generating further NH 3 while stirring the Jikuroroshi run and NH 3 was bubbled in for 2 hours, NH 3 gas until 1 0 mol times of dichlorosilane Was obtained. From the resulting solution
新たな用 ¾ 沈殿を濾過して除去した後、 濾液を減圧して濾液から溶媒を除去す ることにより、 樹脂状の無機ポリシラザン A (分子量 2700) を 得た。 New use ¾ After removing the precipitate by filtration, the filtrate was depressurized and the solvent was removed from the filtrate to obtain resinous inorganic polysilazane A (molecular weight: 2700).
製造例 2 Production Example 2
特公昭 63— 16, 325号公報記載の製造法に準じて、 ポリシ ラザンを次のような製造法で製造した。  Polysilazane was produced by the following production method according to the production method described in JP-B-63-16,325.
温度が 0 °Cに保たれた恒温槽内に設置した反応器内にピリ ジン 600 mlを入れ、 攪拌しながらジクロロシラン 28. 3 gを加えて 錯体 (ピリジンァダクッ) を形成させた。 これに NH3 がジクロロ シランの 15モル倍になるまで NH 3 ガスを 2時間で吹き込み、 反 応生成物を含む溶液を得た。 600 ml of pyridine was placed in a reactor placed in a thermostat maintained at 0 ° C, and 28.3 g of dichlorosilane was added with stirring to form a complex (pyridine adak). This NH 3 is bubbled in for 2 hours, NH 3 gas until 15 mol times of dichlorosilane to obtain a solution containing a reaction product.
得られた沈殿を濾過して除去した後、 濾液を減圧して溶媒を除去 することにより無機ポリシラザン Bを得た。  After the obtained precipitate was removed by filtration, the filtrate was depressurized and the solvent was removed to obtain inorganic polysilazane B.
製造例 3 Production Example 3
製造例 2の無機ポリシラザン Bをピリジンに溶解し、 N2 雰囲気 中、 80°Cで 10時間重合反応を行なった。 ピリジンを減圧下蒸留 して除去し、 無機ポリシラザン Cを得た。 The inorganic polysilazane B of Production Example 2 was dissolved in pyridine, and a polymerization reaction was performed at 80 ° C. for 10 hours in an N 2 atmosphere. Pyridine was distilled off under reduced pressure to obtain inorganic polysilazane C.
製造例 4 Production Example 4
製造例 3と同様に無機ポリシラザン Bの重合を 80°Cで 24時間 行なった。 ピリジンを減圧下蒸留して除去し、 無機ポリシラザン D を得た。  Polymerization of the inorganic polysilazane B was carried out at 80 ° C. for 24 hours in the same manner as in Production Example 3. Pyridine was removed by distillation under reduced pressure to obtain inorganic polysilazane D.
製造例 5 Production Example 5
製造例 2で得られた無機ポリシラザン Bと製造例 4で得られた無 機ポリシラザン Dとを、 重量比で BZD = 5Z95で混合して無機 ポリシラザン Eを得た。 The inorganic polysilazane B obtained in Production Example 2 and the inorganic polysilazane D obtained in Production Example 4 were mixed at a weight ratio of BZD = 5Z95 to obtain an inorganic polysilazane B. Polysilazane E was obtained.
製造例 6  Production Example 6
製造例 5と同様に無機ポリシラザン Bと無機ポリシラザン Dとを、 B/D = l 0X90で混合して無機ポリシラザン Fを得た。  As in Production Example 5, inorganic polysilazane B and inorganic polysilazane D were mixed at B / D = 10 × 90 to obtain inorganic polysilazane F.
製造例 7  Production Example 7
製造例 5と同様に無機ポリシラザン Bと無機ポリシラザン Dとを、 BZD = 20Z80で混合して無機ポリシラザン Gを得た。  As in Production Example 5, inorganic polysilazane B and inorganic polysilazane D were mixed at BZD = 20Z80 to obtain inorganic polysilazane G.
製造例 8  Production Example 8
製造例 5と同様に無機ポリシラザン Bと無機ポリシラザン Dとを、 BZD- 30/70で混合して無機ポリシラザン Hを得た。  As in Production Example 5, inorganic polysilazane B and inorganic polysilazane D were mixed with BZD-30 / 70 to obtain inorganic polysilazane H.
製造例 9 Production Example 9
製造例 2で得られた無機ポリシラザン Bのピリジン溶液を冷却し、 N2 雰囲気中でジクロロシラン 5. 0 gを反応させた。 沈殿を濾過 して除去した後、 濾液から溶媒を減圧蒸留して除去し、 無機ポリシ ラザン Iを得た。 The pyridine solution of the inorganic polysilazane B obtained in Production Example 2 was cooled and reacted with 5.0 g of dichlorosilane in an N 2 atmosphere. After removing the precipitate by filtration, the solvent was removed from the filtrate by distillation under reduced pressure to obtain inorganic polysilazane I.
製造例 10 Production Example 10
製造例 9と同様に無機ボリシラザン Bのピリジン溶液にジクロロ シラン 7. 5 gを反応させて、 無機ポリシラザン Jを得た。  In the same manner as in Production Example 9, 7.5 g of dichlorosilane was reacted with a pyridine solution of inorganic borosilazane B to obtain inorganic polysilazane J.
製造例 11 Production Example 11
製造例 2で得られた無機ポリシラザン Bのピリジン溶液にへキサ メチルジシラザン 2. 0 gを添加し、 N2 雰囲気中 80°Cで 12時 間反応させた。 ピリジンを減圧下蒸留して除去し、 有機ポリシラザ ン Kを得た。 2.0 g of hexamethyldisilazane was added to the pyridine solution of inorganic polysilazane B obtained in Production Example 2, and the mixture was reacted at 80 ° C. for 12 hours in a N 2 atmosphere. Pyridine was distilled off under reduced pressure to obtain organic polysilazane K.
製造例 12 ジク ロ ロ シラ ン 3 0. 0 gに代えてメ チソレジク ロ ロ シラ ン 34. 2 gを用いた以外は、 製造例 1と同様にして有機ポリシラザ ン Lを得た。 Production Example 12 Organic polysilazane L was obtained in the same manner as in Production Example 1 except that 34.2 g of methisoresyl chlorosilane was used in place of 30.0 g of dichlorosilane.
製造例 13 Production Example 13
ジク ロロシラ ン 3 0. 0 gに代えてジメ チルジク ロロシラン 38. 4 gを用いた以外は、 製造例 1と同様にして有機ポリシラザ ン Mを得た。  Organic polysilazane M was obtained in the same manner as in Production Example 1, except that 38.4 g of dimethyldichlorosilane was used instead of 30.0 g of dichlorosilane.
製造例 14 Production Example 14
NH3 に代えてメチルアミ ンを用いた以外は、 製造例 1と同様に して有機ポリシラザン Nを得た。 Organic polysilazane N was obtained in the same manner as in Production Example 1 except that methylamine was used instead of NH 3 .
製造例 1〜14で得られたポリシラザンの元素分析結果および重 量平均分子量を測定した。  Elemental analysis results and weight average molecular weights of the polysilazanes obtained in Production Examples 1 to 14 were measured.
結果を表 1に示す。  Table 1 shows the results.
靳た な用紙 S i N H C S i /N M w Mw≤10Q0の成分 (%) ポリ シラザン A 61.8 26.2 12.0 0, 0 1. 18 2700 21 Pita paper S i NHCS i / NM w Ingredient of Mw≤10Q0 (%) Polysilazane A 61.8 26.2 12.0 0, 0 1.18 2700 21
〃 B 60.7 26.4 12.8 0.1 1. 15 900 84  〃 B 60.7 26.4 12.8 0.1 1.15 900 84
〃 C 61.5 21.2 11.3 0.0 1, 13 3400 26  〃 C 61.5 21.2 11.3 0.0 1, 13 3400 26
〃 D 58.4 25.0 16.4 0.2 1, 17 11800 4  〃 D 58.4 25.0 16.4 0.2 1, 17 11 800 4
〃 E 60.1 27.6 U.9 0.4 1. 09 10400 9  〃 E 60.1 27.6 U.9 0.4 1.09 10400 9
〃 F 59.5 27.0 13.4 0.1 1, 10 8700 15  〃 F 59.5 27.0 13.4 0.1 1, 10 8 700 15
G 59, 8 26.0 14.2 0.0 1. 15 7800 21  G 59, 8 26.0 14.2 0.0 1.15 7800 21
H 60, 3 26.0 13.5 0.2 1. 16 7100 33  H 60, 3 26.0 13.5 0.2 1.16 7100 33
〃 I 62, 4 25.4 11.8 0.4 1, 23 3800 26  〃 I 62, 4 25.4 11.8 0.4 1, 23 3800 26
〃 J U.8 24.0 10.9 0.3 1. 35 4100 23  〃 J U.8 24.0 10.9 0.3 1.35 4100 23
〃 K 56, i 27.9 12.2 3.8 1. 01 2700 22  〃 K 56, i 27.9 12.2 3.8 1.01 2700 22
〃 L 47.5 23.1 8.5 20.3 1. 00 1200 28  〃 L 47.5 23.1 8.5 20.3 1.00 1200 28
〃 M 38.4 18.1 8.7 34.8 1. 06 1000 ΊΟ  〃 M 38.4 18.1 8.7 34.8 1.06 1000 ΊΟ
〃 N 46.8 20.7 11.9 20.6 1. 13 3200 17 〃 N 46.8 20.7 11.9 20.6 1.13 3200 17
一 \ B- One \ B-
膜の評価 Evaluation of membrane
実施例 1 Example 1
ポリシラザン Aをキシレンに溶解して固形分濃度 2 0重量%であ るポリシラザン Aを含む塗布液を調製した。  Polysilazane A was dissolved in xylene to prepare a coating solution containing polysilazane A having a solid content of 20% by weight.
この塗布液を 4インチ シリコンゥヱハ一上にスピンコート法で 塗布した。 得られた塗膜を 1 5 0 °Cで 2分間乾燥後、 空気中で 4 5 0 °Cで 1時間焼成してシリカ系絶縁膜を形成した。 形成された シリ力系絶縁膜の E S C Aによる元素分析結果を表 2に示す。  This coating solution was applied on a 4-inch silicon wafer by spin coating. The obtained coating film was dried at 150 ° C. for 2 minutes, and then fired in air at 450 ° C. for 1 hour to form a silica-based insulating film. Table 2 shows the results of elemental analysis of the formed silicon-based insulating film by ESC A.
'さらに、 この塗布液を 0 . 5 m段差のライン アンド スぺー スでモデル的に 配線を形成した 4インチシリコン半導体基板上 にスピンコ一ト法で塗布した。 得られた塗膜を 1 5 0 °Cで' 2分間乾 燥した後、 N 2 (水分濃度 1 %) 中で 4 5 0 °Cで 1時間焼成してシ リ力系絶縁膜を有する半導体基板を得た。 'Furthermore, this coating solution was applied by a spin-coat method on a 4-inch silicon semiconductor substrate on which wiring was formed model-wise with a line and space of 0.5 m steps. The resulting was a film 1 5 0 ° to燥dry '2 minutes in C, and a semiconductor having a sheet re force based insulating film was baked for 1 hour at 4 5 0 ° C in N 2 (moisture concentration 1%) A substrate was obtained.
これらの半導体基板に形成されたシリ力系絶縁膜表面の段差を測 定した。  The steps on the surface of the silicon-based insulating film formed on these semiconductor substrates were measured.
またこのシリ力系絶縁膜にクラックが生じているか否かを同膜の 断面を走査電子顕微鏡で観察した。  The cross section of the Si-based insulating film was observed with a scanning electron microscope to determine whether or not cracks had occurred.
さらにこの半導体基板を 0 . 5重量%H F溶液に 5分間浸漬した 前後の膜厚からエッチングレートを算出した。  Further, the etching rate was calculated from the film thickness before and after immersing the semiconductor substrate in a 0.5 wt% HF solution for 5 minutes.
結果を表 3に示す。  Table 3 shows the results.
比較例 1 Comparative Example 1
実施例 1において、 ポリ シラザン Aの代わりにポリシラザン Bを 用いた以外は、 実施例 1と同様にしてシリカ系絶縁膜を有する半導 体基板を得た。  A semiconductor substrate having a silica-based insulating film was obtained in the same manner as in Example 1 except that polysilazane B was used instead of polysilazane A.
«ff た 一 i — «Ff One i —
結果を表 2および表 3に示す。 The results are shown in Tables 2 and 3.
実施例 2  Example 2
実施例 1において、 ポリシラザン Aの代わりにポリシラザン Cを 用いた以外は、 実施例 1と同様にしてシリカ系絶縁膜を有する半導 体基板を得た。  A semiconductor substrate having a silica-based insulating film was obtained in the same manner as in Example 1, except that polysilazane C was used instead of polysilazane A.
結果を表 2および表 3に示す。  The results are shown in Tables 2 and 3.
比較例 2  Comparative Example 2
実施例 1において、 ポリシラザン Aの代わりにポリシラザン Dを 用いた以外は、 実施例 1と同様にしてシリ力系絶縁膜を有する半導 体基板を得た。  A semiconductor substrate having a silicide-based insulating film was obtained in the same manner as in Example 1 except that polysilazane D was used instead of polysilazane A.
結果を表 2および表 3に示す。  The results are shown in Tables 2 and 3.
比較例 3  Comparative Example 3
実施例 1において、 ポリシラザン Aの代わりにポリシラザン Eを 用いた以外は、 実施例 1と同様にしてシリ力系絶縁膜を有する半導 体基板を得た。  A semiconductor substrate having a silicide-based insulating film was obtained in the same manner as in Example 1 except that polysilazane E was used instead of polysilazane A.
結果を表 2および表 3に示す。  The results are shown in Tables 2 and 3.
実施例 3 Example 3
実施例 1において、 ポリシラザン Aの代わりにポリシラザン Fを 用いた以外は、 実施例 1と同様にしてシリ力系絶縁膜を有する半導 体基板を得た。  A semiconductor substrate having a silicide-based insulating film was obtained in the same manner as in Example 1, except that polysilazane F was used instead of polysilazane A.
結果を表 2および表 3に示す。  The results are shown in Tables 2 and 3.
実施例 4 Example 4
実施例 1において、 ポリシラザン Aの代わりにポリシラザン Gを 用いた以外は、 実施例 1と同様にしてシリ力系絶縁膜を有する半導 体基板を得た。 A semiconductor device having a silicon-based insulating film in the same manner as in Example 1 except that polysilazane G was used instead of polysilazane A in Example 1. A body substrate was obtained.
結果を表 2および表 3に示す。  The results are shown in Tables 2 and 3.
実施例 5 Example 5
実施例 1において、 ポリシラザン Aの代わりにポリシラザン Hを 用いた以外は、 実施例 1と同様にしてシリカ系絶縁膜を有する半導 体基板を得た。  A semiconductor substrate having a silica-based insulating film was obtained in the same manner as in Example 1, except that polysilazane H was used instead of polysilazane A.
結果を表 2および表 3に示す。  The results are shown in Tables 2 and 3.
実施例 6 Example 6
実施例 1において、 ポリシラザン Aの代わりにポリ シラザン Iを 用いた以外は、 実施例 1と同様にしてシリカ系絶縁膜を有する半導 体基板を得た。  A semiconductor substrate having a silica-based insulating film was obtained in the same manner as in Example 1, except that polysilazane I was used in place of polysilazane A.
結果を表 2および表 3に示す。  The results are shown in Tables 2 and 3.
実施例 7 Example 7
実施例 1において、 ポリシラザン Aの代わりにポリ シラザン Jを 用いた以外は、 実施例 1と同様にしてシリカ系絶縁膜を有する半導 体基板を得た。  A semiconductor substrate having a silica-based insulating film was obtained in the same manner as in Example 1, except that polysilazane J was used instead of polysilazane A.
結果を表 2および表 3に示す。  The results are shown in Tables 2 and 3.
実施例 8 Example 8
実施例 1において、 ポリシラザン Aの代わりにポリ シラザン Kを 用いた以外は、 実施例 1と同様にしてシリカ系絶縁膜を有する半導 体基板を得た。  A semiconductor substrate having a silica-based insulating film was obtained in the same manner as in Example 1, except that polysilazane K was used instead of polysilazane A.
結果を表 2および表 3に示す。  The results are shown in Tables 2 and 3.
比較例 4 Comparative Example 4
実施例 1において、 ポリシラザン Aの代わりにポリ シラザン Lを  In Example 1, polysilazane L was used instead of polysilazane A.
斩たな用粃 用いた以外は、 実施例 1と同様にしてシリ力系絶縁膜を有する半導 体基板を得た。 Pita pity A semiconductor substrate having a silicide-based insulating film was obtained in the same manner as in Example 1 except that the semiconductor substrate was used.
結果を表 2および表 3に示す。  The results are shown in Tables 2 and 3.
比較例 5 Comparative Example 5
実施例 1において、 ポリシラザン Aの代わりにポリシラザン Mを 用いた以外は、 実施例 1と同様にしてシリ力系絶縁膜を有する半導 体基板を得た。  A semiconductor substrate having a silicide-based insulating film was obtained in the same manner as in Example 1, except that polysilazane M was used instead of polysilazane A.
結果を表 2および表 3に示す。  The results are shown in Tables 2 and 3.
比 '較例 6 Comparative Example 6
実施例 1において、 ポリシラザン Aの代わりにポリシラザン Nを 用いた以外は、 実施例 1と同様にしてシリカ系絶縁膜を有する半導 体基板を得た。  A semiconductor substrate having a silica-based insulating film was obtained in the same manner as in Example 1 except that polysilazane N was used instead of polysilazane A.
結果を表 2および表 3に示す。 The results are shown in Tables 2 and 3.
一 I ー I
表 2 Table 2
Figure imgf000021_0001
Figure imgf000021_0001
新た な用舭 2.Q - New business 2.Q-
表 3Table 3
Figure imgf000022_0001
Figure imgf000022_0001
20 実施例 9  20 Example 9
ポリシラザン Αを含む塗布液を、 実施例 1と同様にしてシリコン 半導体基板上にスピンコート法で塗布した。  A coating solution containing polysilazane was applied to a silicon semiconductor substrate by spin coating in the same manner as in Example 1.
得られた塗膜を 1 5 0。Cで 2分間乾燥した後、 湿潤 N 2 (酸素濃 度 1 %) 中で 8 0 0。Cで 1時間焼成してシリ力系絶縁膜を有する半  The obtained coating film was 150. After drying at C for 2 minutes, 800 in wet N 2 (1% oxygen concentration). Bake for 1 hour with C
新たな用紙 - 2 ) - New paper -2)-
導体基板を得た。 A conductor substrate was obtained.
得られた半導体基板について、 実施例 1と同様にして、 段差、 ク ラックの有無およびェッチングレートを測定した。  About the obtained semiconductor substrate, a step, presence or absence of a crack, and an etching rate were measured in the same manner as in Example 1.
結果を表 4に示す。  Table 4 shows the results.
比較例 7 Comparative Example 7
実施例 9において、 ポリシラザン Aの代わりにポリシラザン Lを 用いた以外は実施例 9と同様にした。  Example 9 was the same as Example 9 except that polysilazane L was used instead of polysilazane A.
結果を表 4に示す。  Table 4 shows the results.
比較例 8 Comparative Example 8
実施例 9において、 ポリシラザン Aの代わりにポリシラザン Mを 用いた以外は実施例 9と同様にした。  Example 9 was the same as Example 9 except that polysilazane M was used instead of polysilazane A.
結果を表 4に示す。  Table 4 shows the results.
比較例 9 Comparative Example 9
実施例 9において、 ポリシラザン Aの代わりにポリシラザン Nを 用いた以外は実施例 9と同様にした。  Example 9 was the same as Example 9 except that polysilazane N was used instead of polysilazane A.
結果を表 4に示す。  Table 4 shows the results.
新た な用紙 表 4 New paper Table 4
Figure imgf000024_0001
これらの結果より、 以下のことがわかる。
Figure imgf000024_0001
From these results, the following can be understood.
(1) 重量平均分子量が 10, 000を越すボリシラザンを含む塗 布液 D、 Eは、 1, 000以下の分子量の割合がいずれも 10重量 %以下であり、 この塗布液から形成されるシリカ系絶縁膜は、 段差 (1) Coating liquids D and E containing borosilazane having a weight-average molecular weight of more than 10,000 have a molecular weight ratio of 1,000 or less, both of which are 10% by weight or less. The insulating film is a step
15 が大きくなり、 平坦性に劣る。 15 is large and the flatness is poor.
また、 重量平均分子量が 1, 000未満である低分子量ポリシラ ザンを 84重量%の量で含む塗布液 Bから形成されるシリ力系絶縁 膜も、 平坦性に劣る。  Also, the silicic insulating film formed from the coating solution B containing the low molecular weight polysilazane having a weight average molecular weight of less than 1,000 in an amount of 84% by weight has poor flatness.
(2) 、 R2、 R3 にアルキル基を含まない無機ポリシラザン 20 を含む塗布液 A〜 Jと、 、 R2 、 R3 の少なく とも 1つがアル キル基である有機ポリシラザンを含む塗布液 K〜Nとを比較すると (表一 3) 、 塗布液 A〜Jから得られるシリカ系絶縁膜は、 エッチ ングレートが塗布液 K〜Nから得られるシリ力系絶縁膜よりも小さ い。 すなわち塗布液 A〜 Jから得られるシリ力系絶縁膜の方がボイ (2) Coating solutions A to J containing inorganic polysilazane 20 containing no alkyl group in R 2 and R 3 , and coating solution K containing organic polysilazane in which at least one of R 2 and R 3 is an alkyl group Comparing with Nos. To N (Table 1-3), the silica-based insulating films obtained from coating solutions A to J have smaller etching rates than the silicic acid-based insulating films obtained from coating solutions K to N. That is, the silicon-based insulating film obtained from coating solutions A to J
靳たな用紙 ドが少なく緻密である。 Pita paper There are few and precise.
(3) 加熱硬化温度を 800°Cにすれば有機ポリシラザンも無機ポ リシラザンと同様に緻密な膜が得られる (表一 4) 。 しかし 450 °C程度の温度では無機ポリシラザンから得られるシリカ系絶縁膜の 方が緻密性に優れている。  (3) If the heat curing temperature is 800 ° C, a dense film can be obtained for organic polysilazane as well as inorganic polysilazane (Table 14). However, at a temperature of about 450 ° C, a silica-based insulating film obtained from inorganic polysilazane has better denseness.
(4) ポリシラザンの S iZN比が 1. 20以上である塗布液 (1、 J ) から得られるシリ力系絶縁膜の OZS 1比は、 ほぼ 2である (4) The OZS 1 ratio of a silicic insulating film obtained from a coating solution (1, J) with a polysilazane SiZN ratio of 1.20 or more is almost 2.
(表一 2) 。 これは、 シリカ系絶縁膜では、 S iはほとんど一 0— S i一 0—結合の形態で存在しており、 一 N— S i— N—、 または 一 N— S i一 0—結合はほとんど存在してないことを示している。 このようなシリカ系絶縁膜は、 エッチングレートが小さく、 緻密 性に優れている (表一 3) 。 (Table 1 2). This is because, in a silica-based insulating film, Si is almost present in the form of 10-Si-10-bond, and one N-Si-N- or one N-Si-10-bond is It indicates that there is almost no presence. Such a silica-based insulating film has a low etching rate and excellent denseness (Table 13).
靳た な ^舭 舭 ^^

Claims

72 72
請求の範囲 The scope of the claims
Figure imgf000026_0001
Figure imgf000026_0001
(ただし、 、 R 2 および R 3 は、 それぞれ独立して水素原子ま たは炭素原子数 1〜8のアルキル基である。 ) (However, R 2 and R 3 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.)
で示される繰り返し単位を少なくとも有し、 分子量 1, 0 0 0以下 の'分子が 1 0〜4 0重量%の量で存在しているポリシラザンの 1種 または 2種以上を含む塗布液を用いて形成されたシリ力系絶縁膜を 有することを特徵とする半導体装置。  A coating liquid containing at least one kind of polysilazane having at least a repeating unit represented by and having a molecular weight of 1,000 or less in an amount of 10 to 40% by weight is used. A semiconductor device having a formed silicon-based insulating film.
2. ポリシラザンの重量平均分子量が、 5 0 0〜1 0 , 0 0 0であ る請求の範囲第 1項に記載の半導体装置。  2. The semiconductor device according to claim 1, wherein the weight average molecular weight of the polysilazane is from 500 to 100,000.
3 . ポリシラザン力く、 前記一般式 (I ) において、 、 R 2 およ び R 3 がすべて水素原子であって、 1分子中に S i原子が 5 5〜63. Due to the polysilazane, in the above general formula (I), R 2 and R 3 are all hydrogen atoms, and the number of Si atoms in one molecule is 55 to 6
5重量%、 N原子が 2 0〜3 0重量%、 H原子が 1 0〜1 5重量% であるような量で存在しているポリシラザンである請求の範囲第 1 項ないし第 2項に記載の半導体装置。 3. A polysilazane which is present in an amount such that 5% by weight, 20 to 30% by weight of N atoms and 10 to 15% by weight of H atoms. Semiconductor device.
4. ポリシラザンの末端基が  4. The end group of polysilazane is
H H  H H
H— S i — および または 〉N— である請求の範囲 H H  Claims H—S i — and / or〉 N—
第 3項に記載の半導体装置。 4. The semiconductor device according to item 3.
5. 下記一般式 (I )  5. The following general formula (I)
¾rた な ffi 472 た r nana ffi 472
- 2S- -2S-
Figure imgf000027_0001
Figure imgf000027_0001
(ただし、 、 R2 および R3 は、...それぞれ独立して水素原子ま たは炭素原子数 1〜8のアルキル基である。 ) (However, R 2 and R 3 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.)
で表わされる繰り返し単位を少なく とも有し、 分子量 1, 000以 下の分子が 10〜40重量%の量で存在しているポリシラザンの 1 種または 2種以上を含む塗布液から形成された塗膜を、 酸化雰囲気 中で 150〜800°Cの温度で加熱硬化してシリ力系絶縁膜を形成 する工程を含むことを特徵とする半導体装置の製造方法。 A coating film formed from a coating solution containing at least one polysilazane having at least a repeating unit represented by the formula and having a molecular weight of 1,000 or less in an amount of 10 to 40% by weight. A step of heating and curing at a temperature of 150 to 800 ° C. in an oxidizing atmosphere to form a silicon-based insulating film.
6. ポリシラザンの重量平均分子量が、 500〜10, 000であ る請求の範囲第 5項に記載の半導体装置の製造法。  6. The method for manufacturing a semiconductor device according to claim 5, wherein the polysilazane has a weight average molecular weight of 500 to 10,000.
7. ポリシラザンが、 前記一般式 (I) において、 、 R2 およ び R3 がすべて水素原子であって、 1分子中に S i原子が 55〜 65重量%、 N原子が 20〜30重量%、 H原子が 10〜 15重量 %であるような量で存在しているポリシラザンである請求の範囲第 5項ないし第 6項に記載の半導体装置の製造方法。 7. Polysilazane is represented by the above general formula (I), wherein R 2 and R 3 are all hydrogen atoms, and 55 to 65% by weight of Si atoms and 20 to 30% by weight of N atoms in one molecule. 7. The method for manufacturing a semiconductor device according to claim 5, wherein the polysilazane is present in an amount such that the amount of H atoms is 10 to 15% by weight.
8. ポリシラザンの末端基が  8. The end group of polysilazane is
H— - である請求の範囲
Figure imgf000027_0002
Claims that are H—-
Figure imgf000027_0002
第 7項に記載の半導体装置の製造方法。 8. The method for manufacturing a semiconductor device according to claim 7.
新 7こ な Ha New 7 Kana Ha
PCT/JP1992/000904 1991-07-16 1992-07-15 Semiconductor device and production thereof WO1993002472A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04511573A JP3015104B2 (en) 1991-07-16 1992-07-15 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17548091 1991-07-16
JP3/175480 1991-07-16

Publications (1)

Publication Number Publication Date
WO1993002472A1 true WO1993002472A1 (en) 1993-02-04

Family

ID=15996781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000904 WO1993002472A1 (en) 1991-07-16 1992-07-15 Semiconductor device and production thereof

Country Status (2)

Country Link
JP (1) JP3015104B2 (en)
WO (1) WO1993002472A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358739A (en) * 1993-02-05 1994-10-25 Dow Corning Corporation Coating electronic substrates with silica derived from silazane polymers
US5436083A (en) * 1994-04-01 1995-07-25 Dow Corning Corporation Protective electronic coatings using filled polysilazanes
US5436084A (en) * 1994-04-05 1995-07-25 Dow Corning Corporation Electronic coatings using filled borosilazanes
JPH0947722A (en) * 1995-08-11 1997-02-18 Tokyo Ohka Kogyo Co Ltd Formation of silica based coating film
US5635240A (en) * 1995-06-19 1997-06-03 Dow Corning Corporation Electronic coating materials using mixed polymers
US5976618A (en) * 1993-07-29 1999-11-02 Fujitsu Limited Process for forming silicon dioxide film
JP2005150702A (en) * 2003-11-11 2005-06-09 Samsung Electronics Co Ltd Spin-on glass composite and method of forming silicone oxide film using the same
JP2011142207A (en) * 2010-01-07 2011-07-21 Az Electronic Materials Kk Coating composition including polysilazane
WO2013118642A1 (en) * 2012-02-08 2013-08-15 アーゼット・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ Inorganic polysilazane resin
US9096726B2 (en) 2011-01-07 2015-08-04 Cheil Industries, Inc. Composition for forming silica based insulating layer, method for manufacturing composition for forming silica based insulating layer, silica based insulating layer and method for manufacturing silica based insulating layer
JP2021170641A (en) * 2020-04-16 2021-10-28 三星エスディアイ株式会社Samsung SDI Co., Ltd. Composition for forming silica film, silica film produced using composition, and electronic element containing silica film
JP2022064372A (en) * 2020-10-14 2022-04-26 信越化学工業株式会社 Coating agent for protecting electronic material
CN115613013A (en) * 2022-10-31 2023-01-17 中国科学院化学研究所 Composite insulating layer and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288327A (en) * 1985-10-11 1987-04-22 アライド・コ−ポレ−シヨン Cyclosilazane as dielectric film in ic manufacturing technology
JPH01203476A (en) * 1988-02-08 1989-08-16 Toa Nenryo Kogyo Kk Coating composition and coating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288327A (en) * 1985-10-11 1987-04-22 アライド・コ−ポレ−シヨン Cyclosilazane as dielectric film in ic manufacturing technology
JPH01203476A (en) * 1988-02-08 1989-08-16 Toa Nenryo Kogyo Kk Coating composition and coating method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358739A (en) * 1993-02-05 1994-10-25 Dow Corning Corporation Coating electronic substrates with silica derived from silazane polymers
US5976618A (en) * 1993-07-29 1999-11-02 Fujitsu Limited Process for forming silicon dioxide film
US5436083A (en) * 1994-04-01 1995-07-25 Dow Corning Corporation Protective electronic coatings using filled polysilazanes
US5436084A (en) * 1994-04-05 1995-07-25 Dow Corning Corporation Electronic coatings using filled borosilazanes
US5635240A (en) * 1995-06-19 1997-06-03 Dow Corning Corporation Electronic coating materials using mixed polymers
US5776599A (en) * 1995-06-19 1998-07-07 Dow Corning Corporation Electronic coating materials using mixed polymers
JPH0947722A (en) * 1995-08-11 1997-02-18 Tokyo Ohka Kogyo Co Ltd Formation of silica based coating film
JP4628743B2 (en) * 2003-11-11 2011-02-09 三星電子株式会社 Spin-on glass composition and silicon oxide film forming method using the same
JP2005150702A (en) * 2003-11-11 2005-06-09 Samsung Electronics Co Ltd Spin-on glass composite and method of forming silicone oxide film using the same
JP2011142207A (en) * 2010-01-07 2011-07-21 Az Electronic Materials Kk Coating composition including polysilazane
US9096726B2 (en) 2011-01-07 2015-08-04 Cheil Industries, Inc. Composition for forming silica based insulating layer, method for manufacturing composition for forming silica based insulating layer, silica based insulating layer and method for manufacturing silica based insulating layer
WO2013118642A1 (en) * 2012-02-08 2013-08-15 アーゼット・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ Inorganic polysilazane resin
JP2013162072A (en) * 2012-02-08 2013-08-19 Az Electronic Materials Mfg Co Ltd Inorganic polysilazane resin
EP2813467A4 (en) * 2012-02-08 2015-10-14 Az Electronic Materials Luxembourg S R L Inorganic polysilazane resin
TWI558658B (en) * 2012-02-08 2016-11-21 Az電子材料盧森堡有限公司 Inorganic polysilazane resin, its producing method and application thereof
US10494261B2 (en) 2012-02-08 2019-12-03 Ridgefield Acquisition Inorganic polysilazane resin
JP2021170641A (en) * 2020-04-16 2021-10-28 三星エスディアイ株式会社Samsung SDI Co., Ltd. Composition for forming silica film, silica film produced using composition, and electronic element containing silica film
JP2022064372A (en) * 2020-10-14 2022-04-26 信越化学工業株式会社 Coating agent for protecting electronic material
CN115613013A (en) * 2022-10-31 2023-01-17 中国科学院化学研究所 Composite insulating layer and preparation method thereof

Also Published As

Publication number Publication date
JP3015104B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
JP6104785B2 (en) Perhydropolysilazane, composition containing the same, and method for forming siliceous film using the same
JP2007070520A (en) Film-forming composition, insulating film and method for manufacturing the same
WO1993002472A1 (en) Semiconductor device and production thereof
JP2002075982A (en) Low dielectric constant porous silica film, semiconductor device and coating composition
JP2007070480A (en) Film-forming composition, insulating film and method for manufacturing the same
JP2006054353A (en) Siliceous film having little flat-band shift and its manufacturing method
JPH10194873A (en) Formation of thin silicon nitride film
JP3516815B2 (en) Coating solution for forming silica-based film and substrate with film
JP2014508709A (en) Polysilanesiloxane copolymer and method for converting to silicon dioxide
JP3919862B2 (en) Method for forming low dielectric constant siliceous film and siliceous film
JP3241823B2 (en) Coating solution for forming silica-based film and substrate with film
JP4101322B2 (en) Low dielectric constant ceramic material and manufacturing method thereof
JP3939408B2 (en) Low dielectric constant siliceous film
JP3208040B2 (en) Coating solution for forming silica-based film and substrate with film
JP7470794B2 (en) CURABLE FORMULATIONS FOR FORMING LOW-K DIELECTRIC SILICON-CONTAINING FILMS USING POLYCARBOSILAZANE - Patent application
US11760842B2 (en) Composition comprising block copolymer, and method for producing siliceous film using the same
JP3227359B2 (en) Semiconductor device
JP7423861B2 (en) Method for manufacturing silicon nitride film
JPH0532410A (en) Flattended film
EP4146725B1 (en) Polycarbosilazane, and composition comprising the same, and method for producing silicon-containing film using the same
JP2006241304A (en) Composition for film formation, insulating film and its manufacturing method
JP2006273845A (en) Composition, insulating film and method for producing the same
JP2006279027A (en) Composition, insulating film and method of producing the same
JPH1160957A (en) Precursor polymer composition and low dielectric constant insulating material
JP2007046010A (en) Composition for forming film, insulating film and method for producing the insulating film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase