WO1992021786A1 - Process for forming passive film on stainless steel, and stainless steel and gas- and liquid-contacting part - Google Patents

Process for forming passive film on stainless steel, and stainless steel and gas- and liquid-contacting part Download PDF

Info

Publication number
WO1992021786A1
WO1992021786A1 PCT/JP1992/000699 JP9200699W WO9221786A1 WO 1992021786 A1 WO1992021786 A1 WO 1992021786A1 JP 9200699 W JP9200699 W JP 9200699W WO 9221786 A1 WO9221786 A1 WO 9221786A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
stainless steel
passivation film
treatment
film
Prior art date
Application number
PCT/JP1992/000699
Other languages
French (fr)
Japanese (ja)
Inventor
Tadahiro Ohmi
Masakazu Nakamura
Original Assignee
Osaka Sanso Kogyo Kabushiki-Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Sanso Kogyo Kabushiki-Kaisha filed Critical Osaka Sanso Kogyo Kabushiki-Kaisha
Priority to EP19920917389 priority Critical patent/EP0596121A4/en
Priority to JP51015992A priority patent/JP3181053B2/en
Publication of WO1992021786A1 publication Critical patent/WO1992021786A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material

Definitions

  • the present invention relates to a method for forming a passive film of stainless steel, stainless steel, and gas-contact and liquid-contact parts, and is particularly suitable for ultra-high vacuum equipment, ultra-high cleaning equipment, ultra-pure water equipment, etc.
  • the present invention relates to a method for forming a passivation film of an oxidized passivated stainless steel, which can be applied to stainless steel, and stainless steel and gas-contact and liquid-contact parts.
  • the dimensions of unit elements are shrinking year by year as LSIs become more highly integrated, and semiconductors with dimensions of 1 / m to sub-micron and less than 0.5 ⁇ Research and development of devices are being actively pursued for practical use.
  • a step of forming a thin film, a step of etching the formed thin film into a predetermined circuit pattern, and the like are repeatedly performed. These processes are usually performed in an ultra-high vacuum state or a reduced-pressure atmosphere in which a predetermined gas is introduced. If impurities are mixed in these steps, problems such as deterioration of the film quality of the formed thin film and inability to obtain the precision of fine processing occur. This is why semiconductor manufacturing processes require ultra-high vacuum and ultra-high clean pressure reduction atmospheres.
  • FIG. 16 shows the relationship between the total system leakage (the sum of the amount of gas released from the piping system and the inner surface of the reaction chamber and the external leakage) of the system combined with the gas piping system and the reaction chamber in the conventional system, and the gas contamination. It is a graph shown. The multiple lines in the figure show the relationship between the impurity concentration in the atmosphere and the total leak amount of the system when the gas flow rate was changed to various values. -.
  • the present inventor has invented an ultra-clean gas Kyoawase system, successfully Mukoto come suppressing leakage amount from the outside of the system the detection limit of the current detector lx ⁇ 0- 11 below To rr ⁇ lZs ec ing.
  • leakage from the inside of the system that is, the release of gas from the surface of stainless steel as described above, could not reduce the impurity concentration in the reduced-pressure atmosphere as a result.
  • the minimum value of the current surface discharge gas amount obtained by the surface treatment in ultra high vacuum technology in the case of stainless steel, a 1 x 10- 11 T orr ⁇ 1 / sec ⁇ cm 2.
  • the surface area exposed to the inside of the chamber for example, even were the smallest observed Seki' and lm 2, 1 X 10 is total "'To rr - Ri Do the leakage amount of 1 / sec, the gas flow rate 10 In the case of cc / min, only gas with an impurity concentration of about 1 pm can be obtained, and if the gas flow rate is further reduced, it goes without saying that the purity is further reduced.
  • the stainless steel Degassing from the surface is required to be 1 X 1 0- 15 T orr ⁇ l Z sec ⁇ cm 2 or less. Therefore, there was a strong demand for a technology for treating the surface of stainless steel to reduce the amount of outgassing.
  • a relatively stable general gas (0 2, ⁇ 2, A r, H 9, H e) reactivity from a wide variety of gases are used to strong specialty gases corrosive and toxic You.
  • some specialty gases such as hydrogen chloride (HC 1), chlorine (C 1 2), boron trichloride (BC 1 3), as such as boron trifluoride (BF q), in the atmosphere If water is present ⁇
  • HC 1 hydrogen chloride
  • C 1 2 chlorine
  • BC 1 3 boron trichloride
  • BF q boron trifluoride
  • stainless steel is used for piping and chamber materials that handle these gases because of its corrosion resistance, high strength, ease of secondary workability, ease of welding, and ease of inner surface polishing. There are many.
  • stainless steel has excellent corrosion resistance in an ultra-high purity atmosphere with a trace amount of moisture, but easily corrodes in a chlorine or fluorine gas atmosphere where moisture is present. For this reason, corrosion-resistant treatment is indispensable after stainless steel surface polishing.
  • passivate film formation such as Ni-W-P coating (clean S-coating method) that coats stainless steel with highly corrosion-resistant metal or thin oxide film on metal surface in nitric acid solution
  • cleaning S-coating method cleaning method
  • an oxidized passivation film formed in a high-purity atmosphere having a water content of about 100 ppb is a passive film formed by a wet method as shown in FIG. b) Compared with), the degassing characteristics are improved. Power, degassing properties are still sufficient Rather, it has reached a point where it can be used as a material for ultra-high vacuum or ultra-high-clean decompression equipment.
  • Figure 17 shows the concentration profile of each component atom in the depth direction measured by XPS (X ⁇ photoelectron spectroscopy), and Fig. 18 shows a scanning electron micrograph of the film surface.
  • XPS X ⁇ photoelectron spectroscopy
  • electropolishing is performed to smooth the surface before the passivation film is formed.
  • the surface roughness that can be achieved by electropolishing is limited to Rmax O.05 to 0.1 m. A surface roughness of 0.5 m is used.
  • a passivation film is formed after electropolishing, the surface roughness during electropolishing is not maintained and the surface becomes rough. For example, even if the surface of the base material (bulk portion) is finished to Rmax O.05 to 0.1 / m before forming the passivation film, if the passivation film is formed, the surface roughness of the passivation film becomes Rmax It becomes coarser than 0.1. C and surface roughness A stainless ⁇ the passivation film is formed is not currently exist Rmax 0.
  • An object of the present invention is to provide a method of forming a passivation film of stainless steel, which achieves ultra-flatness and densification of a passivation film and is excellent in degassing characteristics and corrosion resistance, and a stainless steel and a gas contacting / wetting part.
  • a first gist of the present invention is characterized in that after a surface of stainless steel is electropolished, the surface is oxidized in an oxidizing atmosphere gas, and then the iron oxide on the surface is reduced and removed by hydrogen gas. Present in stainless steel passivation film forming method.
  • the second gist of the present invention is that the surface of stainless steel is electrolytically polished and then welded. After welding, the surface of the stainless steel is oxidized in an oxidizing atmosphere while heating the welded portion, and then the surface of the surface is oxidized with hydrogen gas.
  • a method for forming a passivation film of stainless steel which comprises reducing and removing iron oxide.
  • a third aspect of the present invention resides in a stainless steel having a passivation film having a surface roughness of Rmax 0.1 m or less.
  • the fourth gist of the present invention is to provide a stainless steel formed by subjecting a surface of stainless steel to electrolytic polishing, oxidizing in an oxidizing atmosphere gas, and subsequently reducing and removing iron oxide on the surface with hydrogen gas. It is present in gas contact parts and liquid contact parts characterized by having a steel passivation film on the surface. Function and example of embodiment
  • electropolishing is performed before forming a passivation film.
  • a composite electrolytic polishing method may be used.
  • the composite electrolytic polishing method is a method in which anodically polished metal to be polished is electrolytically eluted by electrolysis, and a passivated oxide film formed on the surface of the polished metal is mirror-finished by abrasion action of abrasive grains.
  • the thickness is 0.05 to 0.1 m.
  • Figure 2 shows the change in surface state due to electrolytic polishing.
  • Fig. 2 (a) shows the surface condition after polishing
  • Fig. 2 (b) shows the surface condition before polishing.
  • C As can be seen from Fig. 2, large irregularities in the crystal grains were observed before polishing. Yes, even if an oxidation passivation film is formed in this state, a continuous film cannot be obtained, resulting in a film having poor corrosion resistance. Further, since moisture and the like are absorbed and absorbed between the crystal grains, a film having good degassing properties cannot be obtained. By performing the electropolishing treatment, the surface becomes uneven and the surface becomes smooth. As a result, the surface area is reduced, and the amount of adsorbed and stored moisture is greatly reduced.
  • a passivation film forming process immediately preferable that said hot base one king before passivation film formation step t, 0 the hot base one King passivated If performed before the film formation treatment, the chromium concentration on the stainless steel surface side increases, and a dense, highly corrosion-resistant passivation film is formed.
  • Hot base one King preprocessing is performed, for example A r, H e, in an inert gas atmosphere such as X 9 gas.
  • the time is preferably 1 to 10 hours.
  • the processing temperature is preferably from 300 to 600 ° C, more preferably from 400 to 520 ° C. When performed within a temperature range of 400 to 52 ° C, surface roughness is further suppressed, and the formed oxide passivation film becomes denser than when performed at other temperature ranges, and degassed. The characteristics are further improved.
  • An oxidation passivation film is also formed in this high-temperature baking. Baking is performed in an inert gas atmosphere. Although the reason why the oxygen passivation film is formed on the surface in spite of baking in an inert gas atmosphere (ie, an atmosphere containing no oxygen) is not always clear, it is not clear by electropolishing. It is thought that an oxide layer formed on the surface of the stainless steel, and the oxygen in the layer is a source of oxygen for the formation of a passivation film. Also formed by high temperature baking The surface roughness of the passivation film after the electropolishing is maintained. The thickness of this passivation film varies depending on the baking temperature, which varies with time.For example, in the case of 500 ° C x 10 hours, the thickness becomes about 3 OA. It can be put to practical use in a state.
  • Oxidation Forms a passive film.
  • a layer containing a large amount of chromium oxide is formed on the stainless steel surface, and a layer containing a large amount of iron oxide is formed thereon.
  • the layer containing much iron oxide is a porous film having cracks and pinholes as described above. The degree of such cracks and pinholes varies depending on the amount of water in the oxidizing atmosphere, and the smaller the water content, the better.
  • the oxidizing gas is exhausted, and then hydrogen gas is introduced to reduce and remove the passivation outermost layer.
  • hydrogen gas is introduced to reduce and remove the passivation outermost layer.
  • the hydrogen concentration in the hydrogen processing gas is 0.1 p ⁇ ⁇ ! ⁇ 10% is preferred, and 0.5 ⁇ 100 ppm is more preferred. In the range of 0.5 to 100 ppm, a dense passivation film having better degassing properties is formed.
  • the temperature of the hydrogen treatment is preferably from 200 to 500 ° C, more preferably from 300 to 400 ° C. In this range, the hydrogen embrittlement of stainless steel is suppressed, and a passivation film containing chromium oxide as a main component and having good degassing properties can be obtained.
  • the surface roughness of the passivation film produced as described above is extremely smooth.For example, after finishing to 0.05 to 0.1 Zm by electrolytic polishing, Then, if hydrogen gas treatment is performed, a passivation film with a surface roughness of 0.01 zm or less can be obtained.
  • the concentration of oxide on the outermost surface of the thermally oxidized passivation film is further increased, and a stainless steel having a passivation film having more excellent corrosion resistance is obtained. can get.
  • Annealing is preferably performed at 200 to 500 ° C for 1 to 10 hours, and by performing annealing under these conditions, the surface state of the thermal oxidation passivation film becomes smoother and the chromium oxide concentration on the outermost surface is increased. The corrosion resistance is further improved.
  • the inert gas used for the annealing treatment is, for example, Ar, He, X. Isostatic, used.
  • a passivation film is formed in an oxidizing atmosphere gas.
  • the stainless steel or the stainless steel on which the passivation film is formed by performing the above-described high-temperature baking in an inert gas atmosphere after subjecting the surface of the stainless steel to the electrolytic polishing treatment the surface of the welded portion becomes However, it was found that the film was covered with a passivation film containing more Fe oxide than before welding (Fig. 4).
  • a passivation film containing a large amount of Cr oxide can be formed on the welded portion by forming and subsequently reducing and removing iron oxide on the surface with hydrogen gas.
  • the surface roughness of the passivation film of the weld formed by method 2 is less than RniaxO. 1 zm.
  • the surface roughness is R m . ..0. 1 or less
  • Stainless steel having a certain passivation film can be easily produced.
  • the method of (1) is a method of finishing the surface roughness to 0.05 to l ⁇ m by electrolytic polishing and performing the high-temperature baking described above.
  • the passivation film is formed even by high-temperature baking, and the surface roughness during electrolytic polishing is also maintained by high-temperature baking as described above. . Therefore, if high-temperature baking is performed after electrolytic polishing to a surface roughness of 0.05 to 0.1 / m, a passive film having a surface roughness of 0.05 to 0.1 zm can be obtained.
  • this passivation film is extremely rich in chromium and has not less than CrZFe; L. In addition, it has achieved CrZFe of nearly 7 (see Fig. 5). It is a dynamic membrane. -After all, this stainless steel has a surface roughness R m ⁇ . ⁇ It is extremely excellent in degassing because it is less than Y 0.lm and has a dense passive film.
  • Another method is a method in which the surface of stainless steel is finished to a surface roughness of RmaxO.05 to 0.0 by electrolytic polishing, and the above-described hydrogen gas treatment (high-temperature baking may be performed before hydrogen gas treatment) is performed. is there.
  • a stainless steel having a passivation film having a surface roughness of RmaxO.01 or less can also be produced.
  • the Cr / Fe on the passivated surface after the hydrogen gas treatment is larger than the CrZFe on the base metal (see Fig. 6, for example, CrZFe is 0.35 in Fig. 6 (a)). Therefore, stainless steel with excellent degassing properties and corrosion resistance can be obtained.
  • the stainless steel of the present invention is, for example, a Fe—Cr system or a Fe—Cr—Ni system.
  • the structure may be any of ferritic, martensite, and austenitic stainless steels. S US 316 is particularly preferred.
  • the passivated stainless steel produced by the above-described passivation film forming method of the present invention exhibits extremely good degassing characteristics and corrosion resistance, and is used as a constituent material of an ultra-vacuum device, an ultra-high clean pressure reducing device, and the like. It can be used.
  • Passivated stainless steel produced by the passivation film forming method of the present invention described above Shows extremely good degassing properties and corrosion resistance, and is suitably used for gas contact parts.
  • the stainless steel according to the present invention can be suitably used for liquid contact parts such as a liquid supply pipe and a liquid storage tank.
  • a gas supply line system that supplies gas from a gas cylinder to a gas use point such as a film forming apparatus generally has a configuration as shown in FIG.
  • 100 is a gas cylinder
  • 101 is a gas cylinder valve
  • 102 is a regulator
  • 110 is a valve
  • 104 is an integrated branch valve
  • 105 is a mass flow controller.
  • Reference numeral 106 denotes a film forming apparatus
  • 107 denotes a pipe
  • 108 denotes a filter.
  • Examples of c- contacting gas parts include a gas cylinder valve, a pressure gauge, a regulator, a lube, a lube, a mass flow controller, and a finole.
  • parts such as evening and reguriyu or components constituting these parts include, for example, a valve seat, a valve chamber, a valve body, a diaphragm, a seal ring, and a stem.
  • Fig. 8 As the cylinder valve, for example, one having a structure shown in Fig. 8 is exemplified (Japanese Utility Model Laid-Open No. 1-178281).
  • Fig. 9 shows a pressure gauge
  • Fig. 10 shows a regular valve
  • Fig. 11 shows a valve
  • Fig. 12 shows a masuff unit controller.
  • the surface roughness of the diaphragm is preferably small from the viewpoint of sealing properties.
  • elasticity is required to provide deflection.
  • the surface roughness is Rmax O. 1 m or less, the sealing property is extremely good.
  • a metal having a passivation film is inferior in elasticity to a metal having no passivation film.
  • a conventional passivation film was formed in a fatigue test. Excellent fatigue strength compared to stainless steel. Further, in the case of the stainless steel in which the conventional passivation film was formed, a force in which small cracks were observed on the surface was observed.In the case of the stainless steel according to the present invention, a force in which such cracks were not observed, I got it.
  • valves such as gas cylinder cylinder valves
  • good sealing performance is required.
  • the valve of the present invention has better sealing performance than a conventional valve having a passivation film on the gas contact surface, and has a leak.
  • the volume has dropped sharply, making it possible to supply ultra-high purity gas.
  • a pure water supply pipe was made from the stainless steel according to the present invention, ultrapure water having a specific resistance of about 18 ⁇ cm was supplied into the pipe, and the specific resistance at the outlet was measured. Had not changed.
  • Figure 1 shows the degassing characteristics of the oxidized passivated stainless steel tubes manufactured by various methods. rough.
  • Fig. 2 is a scanning electron microscope showing the inner surface condition of the stainless steel tube before and after the electrolytic polishing treatment.
  • Fig. 3 is a scanning electron microscope photograph showing the inner surface condition of the stainless steel tube after the electrolytic polishing.
  • Figure 4 is a graph showing the depth profile in XPS after the weld.
  • Fig. 5 is a graph showing XPS depth profile of the electropolished surface after baking in an Ar gas atmosphere.
  • Figure 6 shows the depth profile of XPS on the thermal oxidation passivation film surface after hydrogen reduction treatment.
  • FIG. 7 is a conceptual diagram showing a gas supply line system.
  • FIG. 8 is a sectional view of a cylinder valve according to one embodiment of the present invention.
  • FIG. 9 is a sectional view of a pressure gauge according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of one embodiment of the present invention.
  • FIG. 11 is a sectional view of a valve according to one embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of a mass flow controller according to one embodiment of the present invention.
  • C FIG. 13 shows an inner surface state of a stainless steel tube after baking in an Ar gas atmosphere.
  • Figure 14a shows the surface state of the thermal oxidation passivation film after hydrogen reduction treatment for 10 minutes.
  • Figure 14b shows the surface state of the thermal oxidation passivation film after hydrogen reduction treatment for 30 minutes.
  • Figure I5 shows the XPS depth profile of the thermal oxidation passivation film surface after Ar annealing treatment. The graph shown.
  • Figure 16 shows impurities in atmospheric gas at various gas flow rates in the conventional device.
  • 5 is a graph showing a relationship between a concentration and a system leak amount.
  • Fig. 17 shows the concentration profile in the depth direction by XPS of the surface of a thermally oxidized passivation film produced by a conventional thermal oxidation method.
  • Fig. 18 shows a scanning electron microscope showing the surface state of a thermally oxidized passivation film fabricated by the conventional method.
  • a 2m 3/8 "diameter SUS 316L stainless steel tube is electrolytically polished and the surface is a mirror surface with a maximum difference of unevenness (R mnv ) of 0.05 ⁇ m within a circumference of 5m radius.
  • This surface state is a smooth surface with grain boundaries as shown in Fig. 3.
  • FIG. 13 shows the state of the stainless steel inner surface after heat treatment at various temperatures. As can be seen from Fig. 13, the stainless steel surface remains The mirror surface after polishing was maintained. That, R max 0. 05 was maintained.
  • Figure 5 shows the results of XPS measurement of the inner surface of a stainless steel tube baked at 500 ° C. By the above baking treatment, chromium atoms increased on the surface side and iron atoms decreased, and the composition ratio of chromium and iron was reversed from that in the bulk.
  • the intersection of the Fe line and the 0 line is the interface between the bulk (base material) and the passivation film.
  • the thickness of the passivation film shown in Fig. 5 is about 3 OA.
  • about 22 A from the surface (the left end of the graph in Fig. 5) has more chromium oxide than iron oxide. . ..
  • FIG. 14 (a) shows the case of hydrogen gas treatment time of 10 minutes
  • Fig. 14 (b) Fig. 14 shows the case where the hydrogen gas treatment time is 30 minutes
  • the surface of the passive film subjected to the hydrogen reduction treatment has an acid. No cracks and pinholes were observed after the treatment, and the surface became flat, while a high concentration of chromium oxide was present in the passivation film, as shown in Fig. 6, and chromium atoms with respect to iron The ratio was much larger than that in the base metal.
  • the thickness of the passivation film shown in FIGS. 6 (a) and 6 (b) was about 6 OA.
  • the surface roughness of the passivation film was measured and found to be R maY 0.01 m.
  • the hydrogen reduction treatment time is not adversely is little influence on the surface condition and the depth direction of the concentration Brophy Le passivation film, then c was found that the reduction reaction in about 10 minutes is finished, more passivating Test the degassing characteristics of the treated stainless steel tube. Test was carried out. After leaving the stainless steel tube in a clean room at a relative humidity of 50% and a temperature of 20 ° C for one week, Ar gas was flowed at a flow rate of 1.21 / min, and the amount of water contained in the Ar gas was measured at the pipe outlet. (Atmospheric pressure ion mass spectrometer). The results are shown in Fig. 1 (d). After 20 minutes, the water content in the Ar gas was reduced to 1 Oppb, and after 30 minutes it was below the background level of 3 ppb.
  • Example 1 an oxidized passivated stainless steel tube was prepared in the same manner as in Example 1 except that the baking treatment in an Ar atmosphere was omitted, and the degassing characteristics were evaluated. The results are shown in Fig. 1 (e).
  • the temperature of the hydrogen reduction treatment was set to 600 ° C, and the other treatment conditions were the same as in Example 1, an oxidation passivation film was formed on the inner surface of the stainless steel tube, and the same evaluation was performed.
  • the hydrogen reduction treatment gas was 20% hydrogen-containing Ar gas, and other treatment conditions were the same as in Example 1, an oxidation passivation film was formed on the inner surface of the stainless steel tube, and the same evaluation was performed.
  • the results are shown in Fig. 1 (g).
  • the surface of the passivation film is slightly roughened, and the degassing characteristics are inferior to those of Examples 1 and 2.
  • the water content is reduced to 3 ppb in about 70 minutes after gas passage, and is clearly improved compared to the conventional example. Was done.
  • the oxidizing atmosphere is an ultra-high-purity atmosphere with a water concentration of 5 ppb.
  • An acid-passivated stainless steel tube was prepared in the same manner as in Example 1, and its degassing properties were evaluated. The result is as shown in h) of Fig. 1. After 10 minutes of gas flow, the water content in the Ar gas was below the background level of 3 ppb, and even with the current highest level membrane, the treatment in this example could improve the gas performance. Do you get it.
  • Figures 15 (a) to 15 (f) show the depth concentration profile of XPS on the surface of the thermal oxidation passivation film.
  • the oxidation passivation film of this example has improved corrosion resistance due to an increase in the chromium concentration on the outermost surface, and exhibits extremely good corrosion resistance even with a strongly corrosive solution of 36% HC ⁇ .
  • the present invention it is possible to form a passivation film having extremely excellent degassing properties and corrosion resistance, and to provide an oxidized passivated stainless steel applicable to an ultra-high vacuum, ultra-high clean pressure reducing device, and the like. It is possible to do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

A process for forming a passive film excellent in degasifiability and corrosion resistance by making the film extremely flat and dense. The process comprises subjecting the surface of stainless steel to electrolytic polishing, oxidation in an oxidative atmosphere and removal of iron oxide formed thereon by reduction with hydrogen.

Description

ステンレス鋼の不動態膜形成方法並びにステンレス鋼及び接ガス ·接液部□  Method for forming passivation film of stainless steel, stainless steel and gas contacting parts
贿分野 ' ' . 本発明は、 ステンレス鋼の不動態膜形成方法並びにステンレス鋼及び接ガス · 接液部品に係わり、 特に、 超高真空装置、 超高清浄装置及び超純水装置等に好適 _ に適用される得る酸化不動態ステンレス鋼の不動態膜形成方法並びにステンレス 鋼及び接ガス ·接液部品に関する。 背景技術 Field of the Invention The present invention relates to a method for forming a passive film of stainless steel, stainless steel, and gas-contact and liquid-contact parts, and is particularly suitable for ultra-high vacuum equipment, ultra-high cleaning equipment, ultra-pure water equipment, etc. The present invention relates to a method for forming a passivation film of an oxidized passivated stainless steel, which can be applied to stainless steel, and stainless steel and gas-contact and liquid-contact parts. Background art
近年、 超高真空を実現する技術、 あるいは、 真空チャンバ内に所定のガスを小 流量流し込み超高清浄な減圧雰囲気をつくり出す技術が非常に重要となってきて いる。 これらの技術は、 材料特性の研究、 各種薄膜の形成、 半導体デバイスの製 造等に広く用いられており、 その結果益々高 、真空度が実現されてきているが、 さらに、 不純物の混入を極限まで減少させた減圧雰囲気を実現することが非常に 強く望まれている。 '  In recent years, a technology for realizing an ultra-high vacuum or a technology for flowing a predetermined gas into a vacuum chamber at a small flow rate to create an ultra-high-purity reduced-pressure atmosphere has become very important. These technologies are widely used in research on material properties, formation of various thin films, and manufacture of semiconductor devices.As a result, higher and higher degrees of vacuum have been realized, but furthermore, contamination of impurities has been extremely limited. It is very strongly desired to realize a reduced-pressure atmosphere with reduced pressure. '
例えば、 半導体デバイスを例にとれば、 L S Iの高集積化に伴い、 単位素子の 寸法は年々小さくなつており、 1 / mからサブミクロン、 さらに、 0 . 5〃πι以 下の寸法を持つ半導体デバイスの研究開発が実用化に向けて盛んに行われてい る。  For example, taking a semiconductor device as an example, the dimensions of unit elements are shrinking year by year as LSIs become more highly integrated, and semiconductors with dimensions of 1 / m to sub-micron and less than 0.5〃πι Research and development of devices are being actively pursued for practical use.
このような半導体デバイスの製造では、 薄膜を形成する工程や、 形成された薄 膜を所定の回路パターンにエッチングする工程等がくり返し行われる。 そしてこ れらプロセスは、 超高真空状態、 あるいは所定のガスを導入した減圧雰囲気で行 われるのが普通である。 これらの工程に、 もし不純物が混入すれば、 例えば形成 される薄膜の膜質が劣化したり、 微細加工の精度が得られなくなるなどの問題を 生じる。 これが、 半導体製造プロセスで、 超高真空や超高清浄な減圧雰囲気が要 求される理由である。  In the manufacture of such a semiconductor device, a step of forming a thin film, a step of etching the formed thin film into a predetermined circuit pattern, and the like are repeatedly performed. These processes are usually performed in an ultra-high vacuum state or a reduced-pressure atmosphere in which a predetermined gas is introduced. If impurities are mixed in these steps, problems such as deterioration of the film quality of the formed thin film and inability to obtain the precision of fine processing occur. This is why semiconductor manufacturing processes require ultra-high vacuum and ultra-high clean pressure reduction atmospheres.
超高真空や超高清浄な減圧雰囲気の実現をこれまで阻んで L、た最大の原因の一 つとして、 チヤンバゃガス配管などに広く用いられているステンレス鋼の表面か ら放出されるガスがあげられる。 特に、 真空あるいは減圧雰囲気中において脱離 してくるステンレス表面に吸着した水分が最も大きな汚染源となって t、た。 図 16は、 従来装置におけるガス配管系および反応チャンバを合わせたシスチ ムのトータルリーク量 (配管系および反応チャンバ内表面からの放出ガス量と外 部リークとの和) とガスの汚染の関係を示したグラフである。 図中の複数の線 は、 ガスの流量を様々な値に変化させた場合について、 雰囲気中の不純物濃度と システムの卜一タルリーク量の関係を示している。 -. Lack of realization of ultra-high vacuum and ultra-high-purity decompression atmosphere has been one of the biggest causes. One example is gas released from the surface of stainless steel, which is widely used for chamber gas piping. In particular, moisture adsorbed on the stainless steel surface that was desorbed in a vacuum or reduced-pressure atmosphere was the largest source of contamination. Figure 16 shows the relationship between the total system leakage (the sum of the amount of gas released from the piping system and the inner surface of the reaction chamber and the external leakage) of the system combined with the gas piping system and the reaction chamber in the conventional system, and the gas contamination. It is a graph shown. The multiple lines in the figure show the relationship between the impurity concentration in the atmosphere and the total leak amount of the system when the gas flow rate was changed to various values. -.
半導体プロセスは、 より精度の高 t、プロセスを実現するためガスの流量を益々 少なくする傾向にあり、 例えば】 0 c cZmi nやそれ以下の流量を用いるのが 普通となっている。 図 16から分かるように、 I 0 c cZmi nの流量を用いた 場台 ("7印) 、 現在広く用いられている装置のように I 0_3〜 1 0—6 T 0 r r♦ 1 /s e c程度のシスタムトータルリークがあると、 ガス中の不純物 濃度は 10 p p m〜 1 %になり、 高清浄プ口セスとは程遠 t、ものになってしま ラ。 Semiconductor processes tend to use increasingly lower gas flow rates to achieve higher accuracy and process, for example, it is common to use flow rates of 0 c cZmin or less. As can be seen from Fig. 16, the platform using the flow rate of I 0 c cZmin (marked with “7”) has I 0 _3 to 10 — 6 T 0 rr ♦ 1 / sec as in the devices widely used today. If there is a certain amount of total leakage, the impurity concentration in the gas will be 10 ppm to 1%, which is far from the high cleaning process.
本発明者は超高清浄ガス供袷システムを発明し、 システムの外部からのリーク 量を現状の検出器の検出限界の l x〗 0— 11 To r r · lZs e c以下に抑えこ むことに成功している。 し力、し、 システム内部からのリーク、 すなわち、 前 ¾の ステンレス鋼の表面からのガスの放出があるため、 結果として減圧雰囲気の不純 物濃荧を下げることができなかった。 The present inventor has invented an ultra-clean gas Kyoawase system, successfully Mukoto come suppressing leakage amount from the outside of the system the detection limit of the current detector lx〗 0- 11 below To rr · lZs ec ing. As a result, leakage from the inside of the system, that is, the release of gas from the surface of stainless steel as described above, could not reduce the impurity concentration in the reduced-pressure atmosphere as a result.
現在の超高真空技術における表面処理により得られる表面放出ガス量の最小値 は、 ステンレス鋼の場合、 1 x 10— 11 T o r r · 1 /s e c · cm2である。 ここで、 チャンバの内部に露出している表面積を、 例えば lm2と最も小さく見 積ったとしても、 トータルでは 1 X 10"'To r r - 1 /s e cのリーク量とな り、 ガス流量 10 c c /m i nの場合、 不純物濃度 1 p m程度の純度のガスし か得られないことになる。 ガス流量をさらに小さくすると、 さらに純度が落ちる ことは言うまでもない。 The minimum value of the current surface discharge gas amount obtained by the surface treatment in ultra high vacuum technology, in the case of stainless steel, a 1 x 10- 11 T orr · 1 / sec · cm 2. Here, the surface area exposed to the inside of the chamber, for example, even were the smallest observed Seki' and lm 2, 1 X 10 is total "'To rr - Ri Do the leakage amount of 1 / sec, the gas flow rate 10 In the case of cc / min, only gas with an impurity concentration of about 1 pm can be obtained, and if the gas flow rate is further reduced, it goes without saying that the purity is further reduced.
従って、 チャンバ内表面からの脱ガス成分を、 システムの外部リーク量と同じ 1 X 1 0-11T o r r · 1 /s e cと同程度まで下げるには、 ステンレス鋼の表 面からの脱ガスを 1 X 1 0— 15 T o r r · l Z s e c · c m2以下とする必要が ある。 そのために、 ガス放出量を少なくするステンレス鋼の表面の処理技術が強 く求められていた。 Therefore, in order to reduce the outgassing components from the chamber inner surface to the same level as 1 X 10 -11 Torr · 1 / sec, which is the same as the external leak rate of the system, the stainless steel Degassing from the surface is required to be 1 X 1 0- 15 T orr · l Z sec · cm 2 or less. Therefore, there was a strong demand for a technology for treating the surface of stainless steel to reduce the amount of outgassing.
また一方、 半導体製造プロセスでは、 比較的安定な一般ガス (02 , Ν2 , A r , H9 , H e ) から反応性、 腐食性および毒性の強い特殊ガスまで多種多様 なガスが使用される。 特に、 特殊ガスの中には、 例えば塩化水素 (H C 1 ) 、 塩 素 (C 1 2) 、 三塩化ホウ素 (B C 1 3) 、 三フッ化ホウ素 (B Fq) 等のよう に、 雰囲気中に水分が存在すると ぃ腐食性を示す塩酸やフッ酸を生成するガ スがある。 通常これらのガスを扱う配管やチャンバ材料には耐腐食性、 高強度、 2次加工性の容易さ、 溶接の容易さ、 そして内表面の研磨処理の容易さからステ ンレス鋼が使用されることが多い。 On the other hand, in the semiconductor manufacturing process, a relatively stable general gas (0 2, Ν 2, A r, H 9, H e) reactivity from a wide variety of gases are used to strong specialty gases corrosive and toxic You. In particular, some specialty gases, such as hydrogen chloride (HC 1), chlorine (C 1 2), boron trichloride (BC 1 3), as such as boron trifluoride (BF q), in the atmosphere If water is present ぃ There is a gas that produces corrosive hydrochloric acid and hydrofluoric acid. Normally, stainless steel is used for piping and chamber materials that handle these gases because of its corrosion resistance, high strength, ease of secondary workability, ease of welding, and ease of inner surface polishing. There are many.
しかしながら、 ステンレス鋼は、 極微量水分の超高純度雰囲気中では耐食性に 優れているが、 水分の存在する塩素系またはフッ素系ガス雰囲気中では容易に腐 食されてしまう。 このため、 ステンレス鋼の表面研磨後には耐腐食性処理が不可 欠となる。 - 処理方法としてはステンレス鋼に耐食性の強い金属を被覆する N i 一 W— P コーティング (クリーンエスコーティング法) または硝酸溶液中で金属表面に薄 t、酸化物皮膜を作る等の不動態膜形成法があるが、 これらは湿式法であるために 膜表面、 膜中及び膜とステンレスの界面に水分や処理溶液の残留分が多く存在 し、 超高真空装置や超高清浄装置等に適用できるには至っていない。  However, stainless steel has excellent corrosion resistance in an ultra-high purity atmosphere with a trace amount of moisture, but easily corrodes in a chlorine or fluorine gas atmosphere where moisture is present. For this reason, corrosion-resistant treatment is indispensable after stainless steel surface polishing. -As a treatment method, passivate film formation such as Ni-W-P coating (clean S-coating method) that coats stainless steel with highly corrosion-resistant metal or thin oxide film on metal surface in nitric acid solution These are wet methods, and because of the wet method, a large amount of moisture and processing solution residues are present on the film surface, in the film, and at the interface between the film and stainless steel, and can be applied to ultra-high vacuum equipment and ultra-high cleaning equipment. Has not been reached.
そこで、 ステンレス鋼を気相中で酸化し、 不動態膜形成する方法が提案されて いる。  Therefore, a method has been proposed in which stainless steel is oxidized in the gas phase to form a passive film.
本発明者は、 酸化不動態膜の脱ガス特性とその形成条件の関係について研究を 重ねた結果、 不動態膜形成時における酸化雰囲気中の水分が不動態膜の表面状態 及び脱ガス特性に大きく影響することを解明し、 これらに関し以下の知見を得 た。  As a result of repeated studies on the relationship between the degassing characteristics of the oxidized passivation film and the formation conditions, the moisture in the oxidizing atmosphere during the formation of the passivation film greatly affects the surface state and degassing characteristics of the passivated film. The effects were clarified, and the following findings were obtained for these.
水分含有量が、 例えば、 1 0 0 p p b程度の高純度雰囲気中で形成した酸化不 動態膜は、 図 1の (a ) に示すように、 湿式法で形成した不動態膜 (図 1の ( b ) ) に比べると、 脱ガス特性は改善される。 し力、し、 脱ガス特性は未だ十分 ではなく、 超高真空あるいは超高清浄減圧装置用の材料として用いることができ るまでには至らな力、つた。 For example, an oxidized passivation film formed in a high-purity atmosphere having a water content of about 100 ppb is a passive film formed by a wet method as shown in FIG. b) Compared with), the degassing characteristics are improved. Power, degassing properties are still sufficient Rather, it has reached a point where it can be used as a material for ultra-high vacuum or ultra-high-clean decompression equipment.
この不動態を X P S (X錄光電子分光法) で測定した深さ方向の各成分原子の 濃度プロフィ一ルを図 1 7に、 膜表面の走査型電子顕微鏡写真を図 1 8に示す。 図 1 8の電子顕微鏡写真に見られるように、 不動態膜表面には多数のクラック、 ピンホールが観察され、 平滑で緻密な膜は得られていない。 また、 図 1 6に示す ように、 不動態膜の最表面には耐食性の高いクロム酸ィヒ物は少なく、 鉄酸化物を 主成分とする層が形成されていること力分かった。  Figure 17 shows the concentration profile of each component atom in the depth direction measured by XPS (X 錄 photoelectron spectroscopy), and Fig. 18 shows a scanning electron micrograph of the film surface. As seen in the electron micrograph of Fig. 18, a number of cracks and pinholes were observed on the surface of the passivation film, and a smooth and dense film was not obtained. In addition, as shown in Fig. 16, it was found that there was little chromic acid with high corrosion resistance on the outermost surface of the passivation film, and that a layer mainly composed of iron oxide was formed.
以上述べたように、 水分を含む酸化性雰囲気で酸化不動態膜を形成すると、 極 微量な水分であっても、 雰囲気中の水分濃度に応じて得られる不動態膜の平滑 性 '緻密性は影響を受け、 不動態膜にクラックやピンホールが発生する。 また、 X P Sによる解析から、 このクラック、 ピンホール等は最表面の酸化鉄を多く含 む層に存在し、 水分がこれらクラック、 ピンホール等に吸着、 吸蔵されるため脱 ガス特性が悪化することが分かった。  As described above, when an oxidation passivation film is formed in an oxidizing atmosphere containing moisture, even if the amount of moisture is extremely small, the passivity of the passivation film obtained according to the concentration of moisture in the atmosphere is low. Affected, cracks and pinholes in the passive film. According to XPS analysis, these cracks and pinholes are present in the outermost layer containing a large amount of iron oxide, and the moisture is adsorbed and occluded by these cracks and pinholes, deteriorating the degassing properties. I understood.
一方、 水分量 1 O p p b以下の超高純度雰囲気中でステンレス鋼表面に酸化不 動態膜を形成すると、 図 1の (c ) に示すように脱ガス特性に優れた不動態膜が 得られ、 超高真空あるいは超高清浄減圧装置用の材料として用いることが可能で はあるが、 この不動態膜も表面の凹凸を完全に無視できるまでには至っていな 、:  On the other hand, when an oxidation passivation film is formed on the stainless steel surface in an ultra-high purity atmosphere with a water content of 1 O ppb or less, a passivation film with excellent degassing properties is obtained as shown in Fig. 1 (c). Although it is possible to use it as a material for ultra-high vacuum or ultra-high-clean decompression equipment, this passivation film has not reached the point where surface irregularities can be completely ignored.
すなわち、 不動態膜の形成前に表面を平滑化すべく電解研磨が行われるが、 現 在電解研磨により達成できる表面粗度は Rmax O . 0 5〜0 . 1 mが限度であ り、 通常は、 0 . 5 mの表面粗度が用いられている。 しかるに、 電解研磨後不 動態膜の形成を行うと、 電解研磨時の表面粗度は維持されず、 表面は荒れてしま う。 例えば、 仮に、 不動態膜形成前に母材 (バルク部) の表面を Rmax O . 0 5 〜0 . 1 / mに仕上げたとしても不動態膜を形成すると不動態膜の表面粗度は Rmax 0 . 1よりも粗くなつてしまう。 結局不動態膜が形成されたステンレス鈮 で あって表面粗度が Rmax 0. 1以下のものは現在存在していない c そして、 不 動態膜の表面粗度は脱ガス特性に大きく影響し、 表面粗度が粗ければ粗いほど ガス放出量は多くなることを本発明者は解明している。 本発明は、 酸化不動態膜について以上の問題点の発見を基になされたものであ る In other words, electropolishing is performed to smooth the surface before the passivation film is formed.Currently, however, the surface roughness that can be achieved by electropolishing is limited to Rmax O.05 to 0.1 m. A surface roughness of 0.5 m is used. However, if a passivation film is formed after electropolishing, the surface roughness during electropolishing is not maintained and the surface becomes rough. For example, even if the surface of the base material (bulk portion) is finished to Rmax O.05 to 0.1 / m before forming the passivation film, if the passivation film is formed, the surface roughness of the passivation film becomes Rmax It becomes coarser than 0.1. C and surface roughness A stainless鈮the passivation film is formed is not currently exist Rmax 0. 1 following are eventually surface roughness of the passivation film greatly influences the degassing properties, surface The inventor has clarified that the greater the roughness, the greater the amount of outgassing. The present invention has been made based on the discovery of the above problems with respect to the oxidation passivation film.
本発明は、 不動態膜の超平坦化及び緻密化を達成し、 脱ガス特性や耐食性に優 れたステンレス鋼の不動態膜形成方 並びにステンレス鋼及び接ガス ·接液部品 ' を提供することを目的とする。 発明の開示 .  An object of the present invention is to provide a method of forming a passivation film of stainless steel, which achieves ultra-flatness and densification of a passivation film and is excellent in degassing characteristics and corrosion resistance, and a stainless steel and a gas contacting / wetting part. With the goal. DISCLOSURE OF THE INVENTION.
本発明の第 1の要旨は、 ステンレス鋼の表面を電解研磨処理した後、 酸化性雰 囲気ガス中で酸化処理し、 続いて水素ガスにより表面の鉄酸化物を還元除去する ことを特徵とするステンレス鋼不動態膜形成方法に存在する。  A first gist of the present invention is characterized in that after a surface of stainless steel is electropolished, the surface is oxidized in an oxidizing atmosphere gas, and then the iron oxide on the surface is reduced and removed by hydrogen gas. Present in stainless steel passivation film forming method.
本発明の第 2の要旨は、 ステンレス鋼の表面を電解研磨処理した後溶接を行 い、 溶接後、 溶接部を加熱しながら酸化性雰囲気ガス中で酸化処理し、 次いで水 素ガスにより表面の鉄酸化物を還元除去することを特徴とするステンレス鋼不動 態膜形成方法に存在する。  The second gist of the present invention is that the surface of stainless steel is electrolytically polished and then welded. After welding, the surface of the stainless steel is oxidized in an oxidizing atmosphere while heating the welded portion, and then the surface of the surface is oxidized with hydrogen gas. A method for forming a passivation film of stainless steel, which comprises reducing and removing iron oxide.
本発明の第 3の要旨は、 表面粗度が Rmax O . 1 m以下である不動態膜を有 することを特徴とするステンレス鋼に存在する。  A third aspect of the present invention resides in a stainless steel having a passivation film having a surface roughness of Rmax 0.1 m or less.
本発明の第 4の要旨は、 ステンレス鋼の表面を電解研磨処理した後、 酸化性雰 囲気ガス中で酸化処理し、 続いて水素ガスにより表面の鉄酸化物を還元除去する ことにより形成したステンレス鋼不動態膜を表面に有することを特徴とする接ガ ス部品及び接液部品に存在する。 作用及び実施態様例  The fourth gist of the present invention is to provide a stainless steel formed by subjecting a surface of stainless steel to electrolytic polishing, oxidizing in an oxidizing atmosphere gas, and subsequently reducing and removing iron oxide on the surface with hydrogen gas. It is present in gas contact parts and liquid contact parts characterized by having a steel passivation film on the surface. Function and example of embodiment
以下に、 本発明の作用を実施態様例とともに説明する。  Hereinafter, the operation of the present invention will be described together with embodiments.
(電解研磨) '  (Electropolishing) ''
本発明では、 不動態膜形成前に電解研磨を行う。 電解研磨法としては、 例え ば、 複合電解研磨法を用いてもよい。 複合電解研磨法とは、 電解により陽極性の 被研磨金属を電解溶出させるとともに、 被研磨金属の表面に生成された不動態酸 化膜を研磨砥粒による擦過作用で鏡面に加工する方法である (例えば、 特公昭  In the present invention, electropolishing is performed before forming a passivation film. As the electrolytic polishing method, for example, a composite electrolytic polishing method may be used. The composite electrolytic polishing method is a method in which anodically polished metal to be polished is electrolytically eluted by electrolysis, and a passivated oxide film formed on the surface of the polished metal is mirror-finished by abrasion action of abrasive grains. (For example,
5 7— 4 7 7 5 9号公報) 。 ステンレス鋼を電解研磨することにより、 表面の加工変質層は除去される。 ま た、 表面粗度を R ΙmΠα。、Λ. 1 m以下とすることができる。 電解研磨後の表面粗度は5 7—4 7 7 5 9 publication). By electropolishing stainless steel, the affected layer on the surface is removed. The surface roughness is R Ι m Πα. , Λ. 1 m or less. Surface roughness after electrolytic polishing
、 細かければ細力、いほど好ましく、 従って、 0. 0 5〜0. 1 mとすること 力好ましい。 The finer the finer, the more preferable. Therefore, it is preferable to set the thickness to 0.05 to 0.1 m.
図 2に電解研磨による表面状態の変化を示す。 図 2中、 図 2 ( a ) は研磨後の 表面状態を示し、 図 2 ( b ) は研磨前の表面状態を示す c 図 2から明らかなよう に、 研磨前は、 結晶粒の大きな凹凸があり、 この状態で酸化不動態膜を形成して も連铳した膜は得られず、 耐食性に劣る膜となる。 更に、 結晶粒の間に水分等が 吸蔵、 吸着されるため、 脱ガス特性の良好な膜は得られない。 電解研磨処理を施 すことにより、 表面の凹凸はなくなり平滑な面となる、 その結果表面積は減少し 水分の吸着及び吸蔵量は大きく減少する。 Figure 2 shows the change in surface state due to electrolytic polishing. In Fig. 2, Fig. 2 (a) shows the surface condition after polishing, and Fig. 2 (b) shows the surface condition before polishing. C As can be seen from Fig. 2, large irregularities in the crystal grains were observed before polishing. Yes, even if an oxidation passivation film is formed in this state, a continuous film cannot be obtained, resulting in a film having poor corrosion resistance. Further, since moisture and the like are absorbed and absorbed between the crystal grains, a film having good degassing properties cannot be obtained. By performing the electropolishing treatment, the surface becomes uneven and the surface becomes smooth. As a result, the surface area is reduced, and the amount of adsorbed and stored moisture is greatly reduced.
なお、 電解研磨後は、 ウェハ洗浄と同様な精密洗浄、 乾燥を行うこと力 子まし い。  After electropolishing, it is necessary to perform precision cleaning and drying in the same way as wafer cleaning.
(高温べ一キング前処理)  (High temperature baking pretreatment)
本発明では、 電解研磨後、 直ちに不動態膜形成処理を行ってもよいが、 不動態 膜形成処理前に高温べ一キングを行うことが好まし t、0 この高温べ一キング処理 を不動態膜形成処理前に行うと、 ステンレス表面側のクロム濃度力増加し、 緻密 で、 耐腐食性に優れた不動態膜が形成される。 In the present invention, after the electrolytic polishing, it may be performed a passivation film forming process immediately preferable that said hot base one king before passivation film formation step t, 0 the hot base one King passivated If performed before the film formation treatment, the chromium concentration on the stainless steel surface side increases, and a dense, highly corrosion-resistant passivation film is formed.
高温べ一キング前処理は、 例えば A r、 H e、 X9ガス等の不活性ガス雰囲気 中で行う。 時間は 1〜1 0時間力好ましい。 処理温度は 3 0 0〜6 0 0 °Cが好ま しく、 4 0 0 ~ 5 2 0 °Cがより好ましい。 4 0 0〜5 2 0 °Cの温度範囲内で行う と表面荒れはより抑制され、 形成される酸化不動態膜は、 他の温度範囲で行う場 合に比べより緻密な膜となり、 脱ガス特性はより向上する。 Hot base one King preprocessing is performed, for example A r, H e, in an inert gas atmosphere such as X 9 gas. The time is preferably 1 to 10 hours. The processing temperature is preferably from 300 to 600 ° C, more preferably from 400 to 520 ° C. When performed within a temperature range of 400 to 52 ° C, surface roughness is further suppressed, and the formed oxide passivation film becomes denser than when performed at other temperature ranges, and degassed. The characteristics are further improved.
なお、 この高温べ一キングにおいても酸化不動態膜が形成される。 ベーキング は不活性ガス雰囲気中で行う。 不活性ガス雰囲気 (すなわち、 酸素を含有してい ない雰囲気) でべ一キングを行うにもかかわらず表面に酸ィヒ不動態膜力く形成され る理由は必ずしも明確ではないが、 電解研磨によりポーラスな酸化物層がステン レス鋼表面に形成され、 その層中の酸素が不動態膜形成のための酸素の供給源に なっているのではないかと考えられる。 また、 高温べ一キングによって形成され る不動態膜の表面粗度は、 電解研磨後の表面粗度が維持されている。 この不動態 膜の厚さはべ一キング温度.時間によっても変化するが、 例えば、. 5 0 0 °C x 1 0時間の場合約 3 O A厚となるため、.高温べ一キングしたそのままの状態で実 用に供することもできる。 An oxidation passivation film is also formed in this high-temperature baking. Baking is performed in an inert gas atmosphere. Although the reason why the oxygen passivation film is formed on the surface in spite of baking in an inert gas atmosphere (ie, an atmosphere containing no oxygen) is not always clear, it is not clear by electropolishing. It is thought that an oxide layer formed on the surface of the stainless steel, and the oxygen in the layer is a source of oxygen for the formation of a passivation film. Also formed by high temperature baking The surface roughness of the passivation film after the electropolishing is maintained. The thickness of this passivation film varies depending on the baking temperature, which varies with time.For example, in the case of 500 ° C x 10 hours, the thickness becomes about 3 OA. It can be put to practical use in a state.
(酸化処理…不動態膜形成処理) · .  (Oxidation treatment ... passive film formation treatment)
高温べ一キング処理後、 酸化性ガス (例えば A r /〇。= 4 / l (モル比) の 混合ガス) を導入し、 例えば 3 5 0〜4 5 0 °Cに加熱してステンレス表面に酸化 不動態膜を形成する。 この酸化処理により、 ステンレス表面にクロム酸化物を多 - く含む層、 その上に鉄酸化を多く含む層が形成される。 鉄酸化物の多く含む層 は、 先に述べたようにクラック、 ピンホールを有するポーラスな膜である。 これ らクラックやピンホール等の程度は酸化性雰囲気の水分量によつて変わり、 水分 含有量は微量なほど好ましい。  After the high-temperature baking treatment, an oxidizing gas (for example, a mixed gas of Ar / 〇 = 4 / l (molar ratio)) is introduced, and heated to, for example, 350 to 450 ° C, and the surface of the stainless steel is heated. Oxidation Forms a passive film. By this oxidation treatment, a layer containing a large amount of chromium oxide is formed on the stainless steel surface, and a layer containing a large amount of iron oxide is formed thereon. The layer containing much iron oxide is a porous film having cracks and pinholes as described above. The degree of such cracks and pinholes varies depending on the amount of water in the oxidizing atmosphere, and the smaller the water content, the better.
(水素ガス処理)  (Hydrogen gas treatment)
不動態膜形成処理後、 酸化性ガスを排気し、 続いて水素ガスを導入して不動態 最表面の層を還元除去する。 この水素処理により不動態膜最表面は清浄で平坦な 面となる。 これは、 ピンホールやクラックが存在する鉄酸化物を多く含む層が水 素により還元除去され、 クロム酸化物が多く含まれ'る緻密な層が現れた結果と考 えられる。  After the passivation film formation process, the oxidizing gas is exhausted, and then hydrogen gas is introduced to reduce and remove the passivation outermost layer. By this hydrogen treatment, the outermost surface of the passivation film becomes a clean and flat surface. This is thought to be the result of the reduction of the layer containing a large amount of iron oxide containing pinholes and cracks by hydrogen, and the appearance of a dense layer containing a large amount of chromium oxide.
一般に水素分子は 7 0 0 °C以上の温度でラジカル化し、 還元反応を起こすと云 われており、 3 0 0 °C程度の低温で還元反応が起こる理由はまだ確認されていな いが、 ステンレス中に含まれる N iが触媒として働いているためと推測される。 水素処理ガス中の水素濃度は、 0 . 1 p ρ π!〜 1 0 %が好ましく、 0 . 5〜 1 0 0 p p mがより好ましい。 0. 5〜1 0 0 p p mの範囲で、 脱ガス特性のよ り優れた緻密な不動態膜が形成される。 また水素処理の温度は、 2 0 0〜5 0 0 °Cが好ましく、 3 0 0〜4 0 0 °Cがより好ましい。 この範囲でステンレスの水素 脆性は抑えられ、 脱ガス特性の良好な緻密なクロム酸化物を主成分とする不動態 膜が得られる。  It is generally said that hydrogen molecules are radicalized at a temperature of 700 ° C or more and cause a reduction reaction.The reason why the reduction reaction occurs at a low temperature of about 300 ° C has not yet been confirmed, but stainless steel has been identified. It is presumed that Ni contained in it works as a catalyst. The hydrogen concentration in the hydrogen processing gas is 0.1 p ρ π! 〜10% is preferred, and 0.5〜100 ppm is more preferred. In the range of 0.5 to 100 ppm, a dense passivation film having better degassing properties is formed. The temperature of the hydrogen treatment is preferably from 200 to 500 ° C, more preferably from 300 to 400 ° C. In this range, the hydrogen embrittlement of stainless steel is suppressed, and a passivation film containing chromium oxide as a main component and having good degassing properties can be obtained.
以上のようにして作製される不動態膜の表面粗度は極めて平滑であり、 例え ば、 電解研磨により 0. 0 5〜 0. 1 Z mに仕上げた後上記不動態膜形成処理を 行い、 さらに水素ガス処理を行うと、 表面粗度が 0. 01 zm以下である不動態 膜が得られる。 The surface roughness of the passivation film produced as described above is extremely smooth.For example, after finishing to 0.05 to 0.1 Zm by electrolytic polishing, Then, if hydrogen gas treatment is performed, a passivation film with a surface roughness of 0.01 zm or less can be obtained.
(ァニール処理)  (Anneal processing)
水素ガス処理後に、 更に不活性ガス中でァニールを行うことにより、 熱酸化不 動態膜最表面のク口ム酸化物濃度は一層増加し、 耐食性がより一層優れた不動態 膜を有するステンレス鑭が得られる。 ァニールは 200〜500°Cで 1〜10時 間行うのが好ましく、 この範囲の条件でァニールを行うことで熱酸化不動態膜の 表面状態はより平滑となり、.また最表面のクロム酸化物濃度はよ.り一層増加し、 ■ 耐食性はより一層向上する。 ァニール処理に用いる不活性ガスとしては、 例え ば、 Ar、 He、 X。等力、'用いられる。  By performing annealing in an inert gas after the hydrogen gas treatment, the concentration of oxide on the outermost surface of the thermally oxidized passivation film is further increased, and a stainless steel having a passivation film having more excellent corrosion resistance is obtained. can get. Annealing is preferably performed at 200 to 500 ° C for 1 to 10 hours, and by performing annealing under these conditions, the surface state of the thermal oxidation passivation film becomes smoother and the chromium oxide concentration on the outermost surface is increased. The corrosion resistance is further improved. The inert gas used for the annealing treatment is, for example, Ar, He, X. Isostatic, used.
(溶接部の不動態化処理)  (Passivation treatment of the weld)
ステンレス鋼の表面を電解研磨処理した後、 酸化性雰囲気ガス中で不動態膜形 成処理を行 t、、 続 t、て水素ガスにより表面の鉄酸化物を還元除去して不動態膜を 形成したステンレス鋼、 あるいは、 ステンレス鋼の表面を電解研磨処理した後不 活性ガス雰囲気中で、 前述した高温べ一キングを行って不動態膜を形成したステ ンレス鋼を溶接すると、 溶接部の表面は、 溶接前に比べ Fe酸化物の量が多い不 動態膜で被覆されることがわかった (図 4)。  After the surface of stainless steel is electropolished, a passivation film is formed in an oxidizing atmosphere gas. When the stainless steel or the stainless steel on which the passivation film is formed by performing the above-described high-temperature baking in an inert gas atmosphere after subjecting the surface of the stainless steel to the electrolytic polishing treatment, the surface of the welded portion becomes However, it was found that the film was covered with a passivation film containing more Fe oxide than before welding (Fig. 4).
そこで、 溶接後、 溶接部を加熱して、 再度、 不活性ガス雰囲気中で高温べ一 キング (300〜600°〇ズ 1〜1 0時間) を行うか、 酸化性雰囲気ガス中で 不動態膜形成処理し、 続いて水素ガスにより表面の鉄酸化物を還元除去するかす れば、 C r酸化物を多く含む不動態膜を溶接部に形成することができる。 なお、 ②の方法により形成した溶接部の不動態膜の表面粗度は RniaxO. 1 zm以下と なる。  Therefore, after welding, heat the welded part and perform high-temperature baking (300 to 600 ° Z for 1 to 10 hours) again in an inert gas atmosphere, or use a passive film in an oxidizing atmosphere gas. A passivation film containing a large amount of Cr oxide can be formed on the welded portion by forming and subsequently reducing and removing iron oxide on the surface with hydrogen gas. In addition, the surface roughness of the passivation film of the weld formed by method ② is less than RniaxO. 1 zm.
(ステンレス鋼)  (Stainless steel)
発明の背景の項で述べたとおり、 従来は、 表面粗度が R JmJlaAY0. 1 以下で あ る不動態膜を有するステンレス鋼は存在しなかった c それは、 従来の技術に おいては、 電解研磨により表面粗度を微細化しても、 その後熱酸化により不動態 膜を形成すると表面が荒れてしまうことに起因して(、る c As mentioned in the Background of the Invention Conventionally, stainless steel the surface roughness has an RJ m Jl a A Y 0. 1 Ah Ru passivation film below it c that did not exist, our in the prior art information, even if fine surface roughness by electrolytic polishing, due to the resulting rough surface to form a passivating film by subsequent thermal oxidation (, Ru c
しかるに、 上記した本発明方法によれば、 表面粗度が Rm。..0. 1 以下で ある不動態膜を有するステンレス鋼を容易に作製することができる。 However, according to the above-described method of the present invention, the surface roughness is R m . ..0. 1 or less Stainless steel having a certain passivation film can be easily produced.
すなわち、 ぴとつは、 電解研磨により表面粗度を 0. 05〜 l ^mに仕上 げておき、 前記した高温べ一キングを行う方法で る。 高温べ一キングによって も不動態膜が形成されることは前述した通り'であり、 また、 高温べ一キングによ つても電解研磨時の表面粗度は維持されることも前述した通りである。 従って、 0. 05〜0. 1 /mの表面粗度に電解研磨後高温べ一キングを行えば、 表面粗 度が 0. 05〜0. 1 zmの不動態膜が得られる。 なお、 この不動態膜は、 表面 が極めてクロムに富み、 C rZF e ; L.以上であることはもちろん、 C rZFe は 7近くのものも達成されており (図 5参照) 、 極めて緻密な不動態膜である。 - 結局、 このステンレス鋼は、 表面粗度が Rm ΙΙΙα。ΛY0. l m以下であり、 かつ、 緻密な不動態膜を有しているため、 極めて脱ガス性に優れている。 That is, the method of (1) is a method of finishing the surface roughness to 0.05 to l ^ m by electrolytic polishing and performing the high-temperature baking described above. As described above, the passivation film is formed even by high-temperature baking, and the surface roughness during electrolytic polishing is also maintained by high-temperature baking as described above. . Therefore, if high-temperature baking is performed after electrolytic polishing to a surface roughness of 0.05 to 0.1 / m, a passive film having a surface roughness of 0.05 to 0.1 zm can be obtained. In addition, this passivation film is extremely rich in chromium and has not less than CrZFe; L. In addition, it has achieved CrZFe of nearly 7 (see Fig. 5). It is a dynamic membrane. -After all, this stainless steel has a surface roughness R m ΙΙΙα. Λ It is extremely excellent in degassing because it is less than Y 0.lm and has a dense passive film.
表面粗度が RmaY0. 1 //m以下である不動態膜を有するステンレス鋼を得る Obtain stainless steel with passivation film whose surface roughness is less than R maY 0.1 // m
ΙΙΙαΛ  ΙΙΙαΛ
他の方法は、 電解研磨によりステンレス鋼の表面を表面粗度 RmaxO. 05〜 0. に仕上げ、 前記した水素ガス処理 (水素ガス処理前に高温べ一キング を行ってもよい) を行う方法である。 この方法二よつても、 RmaxO. 01以下 の表面粗度を有する不動態膜を有するステンレス鋼をも作製することができる。 なお、 この水素ガス処理後における不動態の表面における C r/F eは母材にお ける C rZFeより大となる (図 6参照、 例えば、 図 6 (a) では C rZFeは 0. 35) ため、 脱ガス特性、 耐腐食性にも優れたステンレス鋼が得られる。 Another method is a method in which the surface of stainless steel is finished to a surface roughness of RmaxO.05 to 0.0 by electrolytic polishing, and the above-described hydrogen gas treatment (high-temperature baking may be performed before hydrogen gas treatment) is performed. is there. According to these two methods, a stainless steel having a passivation film having a surface roughness of RmaxO.01 or less can also be produced. The Cr / Fe on the passivated surface after the hydrogen gas treatment is larger than the CrZFe on the base metal (see Fig. 6, for example, CrZFe is 0.35 in Fig. 6 (a)). Therefore, stainless steel with excellent degassing properties and corrosion resistance can be obtained.
(対象ステンレス鋼)  (Applicable stainless steel)
また、 本発明のステンレス鋼とは、 例えば F e— C r系、 Fe— C r— Ni系 のものである。 また、 組織としても、 フェライト系、 マルテンサイ ト系、 オース テナイト系のいずれのステンレス鋼であってもよい。 特に S US 316が好まし い。  The stainless steel of the present invention is, for example, a Fe—Cr system or a Fe—Cr—Ni system. The structure may be any of ferritic, martensite, and austenitic stainless steels. S US 316 is particularly preferred.
以上に述べた本発明の不動態膜形成方法により作製した不動態化ステンレス鋼 は、 極めて良好な脱ガス特性及び耐腐食性を示し、 超真空装置、 超高清浄な減圧 装置等の構成材として用いることが可能となる。  The passivated stainless steel produced by the above-described passivation film forming method of the present invention exhibits extremely good degassing characteristics and corrosion resistance, and is used as a constituent material of an ultra-vacuum device, an ultra-high clean pressure reducing device, and the like. It can be used.
(接ガス部品及び接液部品)  (Gas contact parts and liquid contact parts)
以上に述べた本発明の不動態膜形成方法により作製した不動態化ステンレス鋼 は、極めて良好な脱ガス特性及び耐腐食性を示し、 接ガス部品にも好適に用いら れる。 Passivated stainless steel produced by the passivation film forming method of the present invention described above Shows extremely good degassing properties and corrosion resistance, and is suitably used for gas contact parts.
また、 このステンレス綱を、 純水に接触せしめた場合、 ステンレス鋼から純水 への不純物の溶出はなく、 また、 腐 ¾性の薬液に対する耐腐食性にも優れている ことがわかった。 従って、 本発明に係るステンレス鋼は、 液供給管、 貯液槽等の 接液部品にも好適に用 、ることができる。  In addition, when the stainless steel was brought into contact with pure water, no impurities were eluted from the stainless steel into the pure water, and the stainless steel was found to be excellent in corrosion resistance to corrosive chemicals. Therefore, the stainless steel according to the present invention can be suitably used for liquid contact parts such as a liquid supply pipe and a liquid storage tank.
次に接ガス部品の具体的例を説明する。  Next, specific examples of the gas contact parts will be described.
ガスボンベから成膜装置等のガスのユースボイン卜へガスを供給するガス供給 ラインのシステムは、 一般には、 図 7に示すような構成をとつている。 図 7にお いて、 1 0 0はガスボンベ、 1 0 1はガスボンベバルブ、 1 0 2はレギユレ一 夕、 1 0 3はバルブ、 1 0 4は集積化した分岐バルブ、 1 0 5はマスフローコン トロ一ラ、 1 0 6は成膜装置、 1 0 7は配管、 1 0 8はフィルタ一である c 接ガス部品としては、 例えば、 ガスボンベバルブ、 圧力計、 レギユレ一夕、 ルブ、 マスフローコントローラ、 フィノレ夕、 レギユレ一夕等の部品、 あるいは、 これらの部品を構成する、 例えば、 弁座、 弁室、 弁本体、 ダイアフラム、 シール リング、 ステム等があげられる。 A gas supply line system that supplies gas from a gas cylinder to a gas use point such as a film forming apparatus generally has a configuration as shown in FIG. In FIG. 7, 100 is a gas cylinder, 101 is a gas cylinder valve, 102 is a regulator, 110 is a valve, 104 is an integrated branch valve, and 105 is a mass flow controller. Reference numeral 106 denotes a film forming apparatus, 107 denotes a pipe, and 108 denotes a filter. Examples of c- contacting gas parts include a gas cylinder valve, a pressure gauge, a regulator, a lube, a lube, a mass flow controller, and a finole. For example, parts such as evening and reguriyu or components constituting these parts include, for example, a valve seat, a valve chamber, a valve body, a diaphragm, a seal ring, and a stem.
ボンべバルブとしては、 例えば、 図 8に示す構造のものが例示される (実開平 1 - 1 7 8 2 8 1号公報) 。 また、 圧力計としては図 9、 レギュレー夕としては 図 1 0、 バルブとしては図 1 1、 マスフ口一コントローラとしては図 1 2にそれ ぞれ示すものがー例としてあげられる。  As the cylinder valve, for example, one having a structure shown in Fig. 8 is exemplified (Japanese Utility Model Laid-Open No. 1-178281). Fig. 9 shows a pressure gauge, Fig. 10 shows a regular valve, Fig. 11 shows a valve, and Fig. 12 shows a masuff unit controller.
例えば、 図 8、 図 9、 図 1 1に例示されるダイヤフラムの場合には以下のよう な効果をも生ずる。 ダイヤフラムはシール性という観点からその表面粗度は小さ い方が好ましい。 また、 たわみを与えるためには、 弾力性が要求される。 さら に、 長期にわたる良好なシール性を確保するためには耐疲労特性に優れているこ と力要求される。 しかるに、 本発明においては、 その表面粗度は Rmax O . 1 m以下であるため、 極めてシール性が良好である。 また、 一般的には、 不動態膜 を有する金属は不動態膜を有していない金属に比べ弾力性が劣ると考えられる 、 本発明においては、 不動態膜を有していないステンレスと何ら変わらない弾 力性を示した。 さらに、 疲労試験を行ったところ、 従来の不動態膜が形成された ステンレス鋼に比べて優れた限界疲労強度を示した。 また、 従来の不動態膜が形 成されたステンレスの場合は、 その表面に小さなクラックの発生が認められた 力 本発明に係るステンレスの場合にはそのようなクラックの発生は認められな 力、つた。 For example, in the case of the diaphragm illustrated in FIGS. 8, 9, and 11, the following effects are also obtained. The surface roughness of the diaphragm is preferably small from the viewpoint of sealing properties. In addition, elasticity is required to provide deflection. Furthermore, in order to ensure good sealing properties over a long period of time, it is necessary to have excellent fatigue resistance. However, in the present invention, since the surface roughness is Rmax O. 1 m or less, the sealing property is extremely good. In general, it is considered that a metal having a passivation film is inferior in elasticity to a metal having no passivation film. In the present invention, unlike a stainless steel having no passivation film, Showed no elasticity. Furthermore, a conventional passivation film was formed in a fatigue test. Excellent fatigue strength compared to stainless steel. Further, in the case of the stainless steel in which the conventional passivation film was formed, a force in which small cracks were observed on the surface was observed.In the case of the stainless steel according to the present invention, a force in which such cracks were not observed, I got it.
また、 ガスボンベのボンべバルブ等のバルブの場合にも良好なシール性が要求 される力 本発明のバルブは従来の不動態膜を接ガス表面に有するバルブに比べ シール性が良好であり、 リーク量は激減し、 超高純度のガスの供給が可能となつ た。  Also, in the case of valves such as gas cylinder cylinder valves, good sealing performance is required. The valve of the present invention has better sealing performance than a conventional valve having a passivation film on the gas contact surface, and has a leak. The volume has dropped sharply, making it possible to supply ultra-high purity gas.
さらに、 本発明に係るステンレス鋼により純水供給管を作製し、 管内に比抵抗 力約 1 8 ΜΩ · c mの超純水を供給し、 出口における比抵抗を測定したところ、 比抵抗値はほとんど変化していなかった。  Furthermore, a pure water supply pipe was made from the stainless steel according to the present invention, ultrapure water having a specific resistance of about 18ΜΩcm was supplied into the pipe, and the specific resistance at the outlet was measured. Had not changed.
また、 H C 1溶液に本発明のステンレス鋼を浸漬後、 表面を顕微鏡写真にて観 察したところ表面における腐食は認められなかった。 図面の簡単な説明  After the stainless steel of the present invention was immersed in the HCl solution, the surface was observed with a micrograph, and no corrosion was observed on the surface. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 種々の方法で作製した酸化不動態ステンレス管の脱ガス特性を示すグ 。ラフ。  Figure 1 shows the degassing characteristics of the oxidized passivated stainless steel tubes manufactured by various methods. rough.
( a ) 従来法により作製した熱酸化不動態膜。  (a) Thermal oxidation passivation film prepared by conventional method.
( b ) 湿式法で作製した酸化不動態膜。  (b) Oxidation passivation film prepared by the wet method.
( c ) 水分含有量 1 O p p b以下の超高純度酸化性雰囲気中で作製した 熱酸化不動態膜。  (c) A thermally oxidized passivation film prepared in an ultra-high purity oxidizing atmosphere with a water content of 1 O p b or less.
( d ) 実施例 1の熱酸化不動態膜。  (d) The thermal oxidation passivation film of Example 1.
( e ) 実施例 2の熱酸化不動態膜。  (e) Thermal oxidation passivation film of Example 2.
( f ) 実施例 3の熱酸化不動態膜。 '  (f) Thermal oxidation passivation film of Example 3. '
( g) 実施例 4の熱酸化不動態膜。  (g) Thermal oxidation passivation film of Example 4.
( h ) 実施例 5の熱酸化不動態膜。  (h) Thermal oxidation passivation film of Example 5.
図 2は、 電解研磨処理前後のステンレス管の内表面状態を示す走査型電子顕微 図 3は、 電解研磨後のステンレス管の内表面状態を示す走査型電子顕微鏡写 図 4は、 溶接部後の X P Sによる深さ方向濃度プロフィ一ルを示すグラフであ る。 Fig. 2 is a scanning electron microscope showing the inner surface condition of the stainless steel tube before and after the electrolytic polishing treatment. Fig. 3 is a scanning electron microscope photograph showing the inner surface condition of the stainless steel tube after the electrolytic polishing. Figure 4 is a graph showing the depth profile in XPS after the weld.
図 5は、 A rガス雰囲気でのべ キング後の電解研磨表面の XP Sによる深さ 方向濃度プロフィールを示すグラフ。  Fig. 5 is a graph showing XPS depth profile of the electropolished surface after baking in an Ar gas atmosphere.
図 6は、 水素還元処理後における熱酸化不動態膜表面の X P Sによる深さ方向 濃度プロフィールを示すダラフ。  Figure 6 shows the depth profile of XPS on the thermal oxidation passivation film surface after hydrogen reduction treatment.
( a ) 処理時間 10分 ( b ) 処理時間 30分 図 7は、 ガス供給ラインのシステムを示す概念図である。  (a) Processing time 10 minutes (b) Processing time 30 minutes Figure 7 is a conceptual diagram showing a gas supply line system.
図 8は、 本発明の一実施例に係るボンべバルブの断面図である。  FIG. 8 is a sectional view of a cylinder valve according to one embodiment of the present invention.
図 9は、 本発明の一実施例に係る圧力計の断面図である。  FIG. 9 is a sectional view of a pressure gauge according to one embodiment of the present invention.
図 10は、 本発明の一実施例に係るレギユレ一夕の断面図である。  FIG. 10 is a cross-sectional view of one embodiment of the present invention.
図 1 1は、 本発明の一実施例に係るバルブの断面図である。  FIG. 11 is a sectional view of a valve according to one embodiment of the present invention.
図 12は、 本発明の一実施例に係るマスフローコントローラの断面図である c 図 13は、 A rガス雰囲気でのベーキング後のステンレス管の内表面状態を示  FIG. 12 is a cross-sectional view of a mass flow controller according to one embodiment of the present invention. C FIG. 13 shows an inner surface state of a stainless steel tube after baking in an Ar gas atmosphere.
図 14 aは、 10分間の水素還元処理後の熱酸化不動態膜の表面状態を示す走 Figure 14a shows the surface state of the thermal oxidation passivation film after hydrogen reduction treatment for 10 minutes.
図 14 bは、 30分間の水素還元処理後の熱酸化不動態膜の表面状態を示す走 図 I 5は、 A rァニール処理後の熱酸化不動態膜表面の X P Sによる深さ方向 濃度プロフィールを示すグラフ。 Figure 14b shows the surface state of the thermal oxidation passivation film after hydrogen reduction treatment for 30 minutes.Figure I5 shows the XPS depth profile of the thermal oxidation passivation film surface after Ar annealing treatment. The graph shown.
(a) ァニール温度 375°C  (a) Anneal temperature 375 ° C
(b) ァニール温度 400°C  (b) Anneal temperature 400 ° C
(c) ァニール温度 425°C  (c) Anil temperature 425 ° C
(d) ァニール温度 450°C  (d) Anneal temperature 450 ° C
( e) ァニール温度 475°C  (e) Anil temperature 475 ° C
(f ) ァニール温度 500°C  (f) Anneal temperature 500 ° C
図 16は、 従来装置における、 種々のガス流量における雰囲気ガス中の不純物 濃度とシステムリーク量の関係を示すグラフ。 Figure 16 shows impurities in atmospheric gas at various gas flow rates in the conventional device. 5 is a graph showing a relationship between a concentration and a system leak amount.
図 17は、 従来の熱酸化方法により作製した熱酸化不動態膜表面の XPSによ る深さ方向濃度プロフィールを示すク:ラフ。  Fig. 17 shows the concentration profile in the depth direction by XPS of the surface of a thermally oxidized passivation film produced by a conventional thermal oxidation method.
図 18は、 従来法により作製した熱酸化不動態膜の表面状態を示す走査型電子  Fig. 18 shows a scanning electron microscope showing the surface state of a thermally oxidized passivation film fabricated by the conventional method.
(符号の説明) (Explanation of code)
100 ボンべ、  100 cylinders,
101 ガスボンベバルブ、  101 gas cylinder valve,
102 圧力計 レギユレ一タ、  102 Pressure gauge Regulator,
103 バルブ、  103 valve,
104 分岐 〈ルブ、  104 Branch <Lub,
105 マスフローコントローラ、  105 Mass flow controller,
106 成膜装置、  106 film forming equipment,
107 配管、  107 plumbing,
108 フィルタ一。  108 Filter one.
発明を実施するための最良の形態 '  BEST MODE FOR CARRYING OUT THE INVENTION ''
以下に本発明の実施例を説明する。  Hereinafter, embodiments of the present invention will be described.
(実施例 1 ) ·  (Example 1)
長さ 2m 3/8" 径の SUS 316 Lステンレス管を電解研磨し、 表面を半 径 5 mの円周内で凹凸の差の最大値 (Rmnv) を 0. 05〃mの鏡面とした。 この表面状態は図 3に示すように、 結晶粒界の見られる平滑な面である。 A 2m 3/8 "diameter SUS 316L stainless steel tube is electrolytically polished and the surface is a mirror surface with a maximum difference of unevenness (R mnv ) of 0.05〃m within a circumference of 5m radius. This surface state is a smooth surface with grain boundaries as shown in Fig. 3.
次に、 このステンレス管をウェハの洗浄プロセスと同じ方法で、 即ちアンモニ ァ過水 (NH4OH: Hり 09: H20= 1 : 4 : 20, 90°C) 、 湯洗 (90 °CJ 、 超純水の順に洗浄し、 イソプロピルアルコールで乾燥した。 Then, the stainless steel tube in the same manner as the cleaning process of the wafer, i.e. ammonia § peroxide (NH 4 OH: H Ri 0 9: H 2 0 = 1 : 4: 20, 90 ° C), washed with warm water (90 Washed in order of ° CJ and ultrapure water, and dried with isopropyl alcohol.
このステンレス管を酸化炉に設置し、 Arガスを 1 lZmi n流し、 常温で 1 時間 ジした後、 温度を 450 550 °Cにあげ、 10時間べ一キング処理し た。 種々の温度で熱処理した後のステンレス内表面の状態を図 13に示す。 図 13から明らかなように、 高温で長時間の熱処理後も、 ステンレス表面は電解研 磨後の鏡面が維持されていた。 すなわち、 R max 0. 05が維持されていた。 ま た、 500 °Cでべ一キングしたステンレス管の内表面を X P Sで測定した結果を 図 5に示す。 上記べ一キング処理により、 表面側でクロム原子が増加し、 逆に鉄 原子は減少し、 クロム Z鉄組成比はバルク中と逆転した。 The stainless steel tube was placed in an oxidation furnace, Ar gas was flowed at 1 lZmin, and the temperature was raised to 450 550 ° C for 1 hour at room temperature, followed by baking for 10 hours. Figure 13 shows the state of the stainless steel inner surface after heat treatment at various temperatures. As can be seen from Fig. 13, the stainless steel surface remains The mirror surface after polishing was maintained. That, R max 0. 05 was maintained. Figure 5 shows the results of XPS measurement of the inner surface of a stainless steel tube baked at 500 ° C. By the above baking treatment, chromium atoms increased on the surface side and iron atoms decreased, and the composition ratio of chromium and iron was reversed from that in the bulk.
図 5において Feの線と 0の線が交差するところがバルク (母材) と不動態膜 との界面であり、 図 5に示す不動態膜の膜厚は約 3 OAである。 この不動態膜に おいては表面 (図 5のグラフの左端) から約 22 Aがクロム酸化物が鉄酸化物よ り多くなつている。 . ..  In Fig. 5, the intersection of the Fe line and the 0 line is the interface between the bulk (base material) and the passivation film. The thickness of the passivation film shown in Fig. 5 is about 3 OA. In this passivation film, about 22 A from the surface (the left end of the graph in Fig. 5) has more chromium oxide than iron oxide. . ..
続(、て酸化炉内を 400 °Cに下げた後. A rガスを 100 p p bの水分を含む Arと 09の混合ガス (ArZOり =4 : 1) で置換し、 ステンレス管内表面を酸 化処理した。 酸化後の表面状態を図 18の電子顕微鏡写真に示されるものとほほ 同様の表面状態であり、 膜表面に多数のクラックゃピンホールが観察された。 次に、 酸化性ガスを A rガスでパージした後、 1 p p mの H2を含む A rガス をステンレス管に導入し、 400°Cで 10分間あるいは 30分間、 酸化膜の水素 還元処理行った。 処理後の表面状態を図 14 (a) (10分間の場合) と図 14 (b) (30分間の場合) にそれぞれ示す。 図 14 (a) は、 水素ガス処理時間 力 10分の場合を示し、 図 14 (b) は、 水素ガス処理時間が 30分の場合を示 す。 図 14が示すように、 水素還元処理 (水素ガス処理) した不動態膜の表面に は酸化処理後に存在したクラック、 ピンホールが観測されず、 平坦な表面状態に なった。 一方、 図 6に示すように不動態膜中には、 高濃度のクロム酸化物が存在 し、 鉄に対するクロム原子比は母材中に比べはるかに大きくなつた。 なお、 図 6 (a) 、 図 6 (b) に示す不動態膜の厚さは、 約 6 OAであった。 (After lowering the inside of the oxidation furnace to 400 ° C.) Replace the Ar gas with a mixed gas of Ar and 09 containing 100 ppb of water (ArZO = 4: 1), and acidify the inner surface of the stainless steel tube with acid. The surface condition after oxidation was almost the same as that shown in the electron micrograph of Fig. 18. Many cracks and pinholes were observed on the film surface. after purging with r gas, a r gas containing 1 ppm of H 2 were introduced into a stainless tube, 10 minutes or 30 minutes at 400 ° C, the hydrogen reduction process was carried out. surface state after the processing of the oxide film Fig. Fig. 14 (a) (for 10 minutes) and Fig. 14 (b) (for 30 minutes) Fig. 14 (a) shows the case of hydrogen gas treatment time of 10 minutes, Fig. 14 (b) Fig. 14 shows the case where the hydrogen gas treatment time is 30 minutes As shown in Fig. 14, the surface of the passive film subjected to the hydrogen reduction treatment (hydrogen gas treatment) has an acid. No cracks and pinholes were observed after the treatment, and the surface became flat, while a high concentration of chromium oxide was present in the passivation film, as shown in Fig. 6, and chromium atoms with respect to iron The ratio was much larger than that in the base metal.The thickness of the passivation film shown in FIGS. 6 (a) and 6 (b) was about 6 OA.
この不動態膜の表面粗度を測定したところ RmaY 0. 01〃 mであつた。 The surface roughness of the passivation film was measured and found to be R maY 0.01 m.
以上のことから、 水素還元処理により、 ピンホールやクラックが多数存在する 鉄酸化物の層が除去され、 クロム酸化物を多量に含む緻密な層が現れ、 表面が清 浄、 平坦になったものと考えられる。  From the above, the iron reduction layer containing many pinholes and cracks was removed by the hydrogen reduction treatment, and a dense layer containing a large amount of chromium oxide appeared, and the surface became clean and flat. it is conceivable that.
また、 水素還元処理時間は不動態膜の表面状態及び深さ方向の濃度ブロフィー ルに殆ど影響は及ぼさず、 10分程度で還元反応が終了することが分かった c 次に、 以上の不動態化処理を行つたステンレス管につ t、て脱ガス特性の評価試 験を行った。 ステンレス管を相対湿度 50%、 温度 20 °Cのクリーンルームに 1 週間放置した後, A rガスを 1. 21 /m i nの流量で流し、 管出口で A rガス 中に含まれる水分量を AP IMS (大気圧イオンィヒ質量分析計) で測定した。 結 果を図 1の (d) に示す。 通ガス 20分後、 A rガス中の水分量は 1 Oppbに 減少し、 30分後にはバックグラウンドレベルの 3 ppb以下になった。 The hydrogen reduction treatment time is not adversely is little influence on the surface condition and the depth direction of the concentration Brophy Le passivation film, then c was found that the reduction reaction in about 10 minutes is finished, more passivating Test the degassing characteristics of the treated stainless steel tube. Test was carried out. After leaving the stainless steel tube in a clean room at a relative humidity of 50% and a temperature of 20 ° C for one week, Ar gas was flowed at a flow rate of 1.21 / min, and the amount of water contained in the Ar gas was measured at the pipe outlet. (Atmospheric pressure ion mass spectrometer). The results are shown in Fig. 1 (d). After 20 minutes, the water content in the Ar gas was reduced to 1 Oppb, and after 30 minutes it was below the background level of 3 ppb.
図 1の (a) に示した従来法で作製し'た酸化不動態膜に比べ、 脱ガス特性は大 きく改善され、 本実施例に従い作製される酸化不動態膜ステンレス鋼が超高真空 装置や超高清浄減圧装置に適用でき!)こ,とを示した。  The outgassing characteristics are greatly improved as compared with the oxidation passivation film prepared by the conventional method shown in Fig. 1 (a). And ultra-high clean decompression equipment! This was shown.
(実施例 2)  (Example 2)
実施例 1において, A r雰囲気でのベーキング処理を省略し、 その他は実施例 1と同様にして酸化不動態ステンレス管を作製し、 その脱ガス特性を評価した。 結果を図 1の (e) に示す。  In Example 1, an oxidized passivated stainless steel tube was prepared in the same manner as in Example 1 except that the baking treatment in an Ar atmosphere was omitted, and the degassing characteristics were evaluated. The results are shown in Fig. 1 (e).
図 1から明らかなように、 通ガス後約 40分後に水分量は 3 ppbとなり、 脱 ガス特性は実施例 1の酸化不動態膜に比べると劣るものの、 従来の酸化不動態膜 に対して大きく改善された。 ·  As is clear from Fig. 1, the water content became 3 ppb about 40 minutes after passing the gas, and the degassing property was inferior to that of the oxidation passivation film of Example 1, but larger than that of the conventional oxidation passivation film. Improved. ·
(実施例 3 )  (Example 3)
水素還元処理の温度を 600°Cとし、 他の処理条件は実施例 1と同じにしてス テンレス管内面に酸化不動態膜を形成し、 同様な評価を行った。  The temperature of the hydrogen reduction treatment was set to 600 ° C, and the other treatment conditions were the same as in Example 1, an oxidation passivation film was formed on the inner surface of the stainless steel tube, and the same evaluation was performed.
結果を図 1の (f) に示す。 ここで作製した不動態膜の表面には、 若干荒れが みられ、 脱ガス特性も実施例 1及び 2よりは劣る力 水分量は通ガス後約 70分 で 3 p p bに減少し、 従来例に比べて明らかに改善された。  The results are shown in Fig. 1 (f). The surface of the passivation film fabricated here was slightly rough, and the degassing characteristics were inferior to those of Examples 1 and 2.The water content decreased to 3 ppb in about 70 minutes after passing the gas, and the It is clearly improved.
(実施例 4 )  (Example 4)
水素還元処理ガスを 20 %水素含有 A rガスとし、 他の処理条件は実施例 1と 同じにしてステンレス管内面に酸化不動態膜を形成し、 同様な評価を行った。 結果を図 1の (g) に示す。 不動態膜の表面には若干荒れがみられ、 脱ガス特 性も実施例 1及び 2よりは劣る力 水分量は通ガス後約 70分で 3ppbに減少 し、 従来例に比べて明らかに改善された。  The hydrogen reduction treatment gas was 20% hydrogen-containing Ar gas, and other treatment conditions were the same as in Example 1, an oxidation passivation film was formed on the inner surface of the stainless steel tube, and the same evaluation was performed. The results are shown in Fig. 1 (g). The surface of the passivation film is slightly roughened, and the degassing characteristics are inferior to those of Examples 1 and 2.The water content is reduced to 3 ppb in about 70 minutes after gas passage, and is clearly improved compared to the conventional example. Was done.
(実施例 5)  (Example 5)
酸化性雰囲気を水分濃度 5 ppbの超高純度雰囲気とし、 その他の処理条件は 実施例 1と同様にして酸ィヒ不動態ステンレス管を作製し、 その脱ガス特性を評価 した。 結果は図 1の h) の通りである。 通ガス 10分後には、 A rガス中の水 分量はバックグラウンドレベルの 3 p p b以下になり、 現状の最高レベルの膜で あっても本実施例の処理により脍ガ 特性が改善されることが分かった。 The oxidizing atmosphere is an ultra-high-purity atmosphere with a water concentration of 5 ppb. An acid-passivated stainless steel tube was prepared in the same manner as in Example 1, and its degassing properties were evaluated. The result is as shown in h) of Fig. 1. After 10 minutes of gas flow, the water content in the Ar gas was below the background level of 3 ppb, and even with the current highest level membrane, the treatment in this example could improve the gas performance. Do you get it.
(実施例 6)  (Example 6)
実施例 1と同様にして水素還元処理した後、 更に種々の温度で 10時間、 Ar ガス中でァニール処理を行った。 熱酸化不動態膜表面の XP Sによる深さ方向濃. 度ブロフィールを図 15 (a) 〜図 15 (f) に示す。  After hydrogen reduction treatment in the same manner as in Example 1, anneal treatment was further performed at various temperatures for 10 hours in Ar gas. Figures 15 (a) to 15 (f) show the depth concentration profile of XPS on the surface of the thermal oxidation passivation film.
図 8から明らかなように、 A rァニールにより最表面層では耐腐食性の高 t、ク ロムの濃度が増加した。 しかも処理温度の上昇に伴いクロム濃度はますます増加 し、 475°C以上でクロムと鉄の濃度は逆転することが分かった。 なお、 図 8 (a) 〜図 8 (f ) に示す不動態膜の厚さは、 約 7 OAであった。  As is evident from Fig. 8, Ar anneal increased the corrosion-resistant high t and chromium concentration in the outermost surface layer. In addition, it was found that the chromium concentration increased with the increase of the treatment temperature, and that the concentration of chromium and iron reversed at 475 ° C or higher. The thickness of the passivation film shown in FIGS. 8A to 8F was about 7 OA.
また、 本実施例の酸化不動態膜は最表面のクロム濃度の増加により耐腐食性は 向上し、 36%HC〗の強腐食性溶液に対しても極めて良好な耐腐食性を示し 産業上の利用可能性  In addition, the oxidation passivation film of this example has improved corrosion resistance due to an increase in the chromium concentration on the outermost surface, and exhibits extremely good corrosion resistance even with a strongly corrosive solution of 36% HC〗. Availability
本発明により、 脱ガス特性及び耐腐食性に極めて優れた不動態膜を形成するこ と力可能となり、 超高真空、 超高清浄減圧装置等に適用可能な酸化不動態ステン レス鋼を供辁することが可能となる。  According to the present invention, it is possible to form a passivation film having extremely excellent degassing properties and corrosion resistance, and to provide an oxidized passivated stainless steel applicable to an ultra-high vacuum, ultra-high clean pressure reducing device, and the like. It is possible to do.

Claims

請求の範囲 . ステンレス鋼の表面を電解研磨処理した後、 酸化性雰囲気ガス中で酸化処理 し、 続いて水素ガスにより表面の鉄.酸化物を還元除去することを特徴とするス テンレス鋼不動態膜形成方法。 . 前記電解研磨処理後、 前記酸化膜形成の前に 3 0 0〜6 0 0 °Cの不活性ガス 雰囲気中で熱処理することを特徴とする請求項 1記載のステンレス鋼の酸化不 動態膜形成方法。 . . 前記水素ガス処理にお L、て、 ガス雰囲気の水素濃度が 0 . 1 p p m〜 1 0 % であることを特徴とする請求項 1または 2記載のステンレスの鋼酸ィヒ不動態膜 形成方法。. 前記水素ガス処理において、 処理温度が 2 0 0〜5 0 0 °Cであることを特徴 とする請求項 1乃至 3のいずれか 1項記載のステンレス鋼の酸化不動態膜形成 方法。. 前記水素ガス処理後、 不活性ガス中でァニール処理を行うことを特徵とする 請求項 1及至 4のいずれか 1項記載のステンレス鋼の酸化不動態膜形成方法。 . 前記不活性ガスァニール処理の条件は 2 0 0〜 5 0 0 °Cで 1〜 1 0時間であ ることを特徴とする請求項 5記載のステンレス鋼の酸化不動態膜形成方法。. 前記不活性ガスァニール処理の条件は 4 7 5 °C以上であることを特徴とする 請求項 6記載のステンレス鋼の酸化不動態膜形成法。. 表面を電解研磨処理した後、 酸化性雰囲気ガス中で酸化処理し、 続いて水素 ガスにより表面の鉄酸化物を還元除去したステンレス鋼同士を溶接し、 次 L、で 、 溶接部を加熱しながら、 酸化性雰囲気ガス中で酸化処理し、 続いて水素ガス により表面の鉄酸化物を還元除去することを特徼とするステンレス鋼不動態膜 形成方法。. 表面粗度が Rmax O . 1 z m以下である不動態膜を有するこ とを特徴とする ステンレス鋼。0 · 表面粗度が Rmax O . 0 1 m以下である不動態膜を有する ことを特徴と する請求項 9記載のステンレス鋼。 1 1 . 不動態膜の表面における C r ZF e (原子比、 以下同じ) が、 母材部に おける C rZF eよりも大であることを特徴とする請求項 9または請求項 1 0記載のステンレス鋼。 1 2. 不動態膜の表面における C r ZF eが 1以上であることを特徴とする請求 項 9記載のステンレス鋼。 1 3. ステンレス鋼の表面を電解研磨処理した後、 酸化性雰囲気ガス中で酸化処 理し、 続いて水素ガスにより表面の鉄酸化物を還元除去することにより形成 したステンレス鋼不動態膜を表面に有する接ガス部品及び接液部品。 ·1 4. 前記電解研磨処理後、 前記酸化膜形成の前に 3 0 0〜6 0 0 °Cの不活性ガ ス雰囲気中で熱処理したことを特徴とする請求項 1 3記載のステンレス鋼不 動態膜を少なくとも接ガス表面及び接液表面に有することを特徴とする接ガ ス部品及び接液部品。 1 5. 前記水素ガス処理において、 ガス雰囲気の水素濃度を 0. 1 p p m〜l 0 %としたことを特徴とする請求項 1 3または 1 4記載のステンレス鋼不動態 膜を表面に有する接ガス部品及び接液部品。 1 6. 前記水素ガス処理において、 処理温度が 2 0 0〜5 0 0 °Cをとしたことを 特徴とする請求項 1 3乃至 I 5のいずれか 1項記載のステンレス鋼不動態膜 を表面に有する接ガス部品及び接液部品。 1丁. 前記水素ガス処理後、 不活性ガス中でァニール処理を行ったことを特徴と する請求項 1 3乃至 1 6のいずれか 1項記載のステンレス鋼不動態膜を表面 に有する接ガス部品及び接液部 Π口 o 1 8. 前記不活性ガスァニール処理の条件は 2 0 0〜5 0 0 °Cで 1〜 1 0時間と したことを特徴とする請求項 1 7記載のステンレス鋼不動態膜を表面に有す る接ガス部品及び接液部 ΠΡο 1 9. 前記不活性ガスァニール処理の条件は 4 7 5 °C以上としたことを特徴とす る請求項 1 8記載のステンレス鐧不動態膜を表面に有する接ガス部品及び接 液部品。 2 0. 表面粗度が Rmax O . 1 z m以下である不動態膜を有することを特徴とす るステンレス鐧不動態膜を表面に有する接ガス部品及び接液部品 c Claims. Passivation of stainless steel characterized by electrolytically polishing the surface of stainless steel, oxidizing in an oxidizing atmosphere gas, and subsequently reducing and removing iron and oxides on the surface with hydrogen gas. Film formation method. 2. The oxidation passivation film formation of stainless steel according to claim 1, wherein heat treatment is performed in an inert gas atmosphere at 300 to 600 ° C. after the electrolytic polishing treatment and before the oxide film formation. Method. 3. The stainless steel passivation film according to claim 1, wherein the hydrogen gas treatment has a hydrogen concentration in a gas atmosphere of 0.1 ppm to 10%. Method. The method for forming an oxidation-passive film on stainless steel according to any one of claims 1 to 3, wherein a treatment temperature in the hydrogen gas treatment is 200 to 500 ° C. The method for forming a passivation film of stainless steel according to any one of claims 1 to 4, wherein an annealing treatment is performed in an inert gas after the hydrogen gas treatment. 6. The method of claim 5, wherein the inert gas annealing treatment is performed at 200 to 500 ° C. for 1 to 10 hours. 7. The method for forming an oxidized passivation film on stainless steel according to claim 6, wherein the condition of the inert gas annealing treatment is 475 ° C. or more. After the surface is electropolished, the surface is oxidized in an oxidizing atmosphere gas, then the stainless steels whose iron oxides are reduced and removed by hydrogen gas are welded together, and the weld is heated by the following method. A method for forming a stainless steel passivation film, which is characterized by performing oxidation treatment in an oxidizing atmosphere gas, and then reducing and removing iron oxide on the surface with hydrogen gas. A stainless steel having a passivation film having a surface roughness of Rmax O .1 zm or less. 10. The stainless steel according to claim 9, wherein the stainless steel has a passivation film having a surface roughness of not more than Rmax 0.01 m. 11. The method according to claim 9, wherein C r ZF e (atomic ratio, the same applies hereinafter) on the surface of the passivation film is larger than C rZF e in the base material portion. Stainless steel. 1 2. The stainless steel according to claim 9, wherein Cr ZFe at the surface of the passivation film is 1 or more. 1 3. After the surface of stainless steel is electropolished, the surface is oxidized in an oxidizing atmosphere gas, and then the passivation film of stainless steel formed by reducing and removing iron oxide on the surface with hydrogen gas is removed. Gas contact parts and liquid contact parts. 14. The stainless steel alloy according to claim 13, wherein after the electrolytic polishing treatment, a heat treatment is performed in an inert gas atmosphere at 300 to 600 ° C. before forming the oxide film. Gas contact parts and liquid contact parts characterized by having a dynamic film on at least a gas contact surface and a liquid contact surface. 15. The passivated gas having a stainless steel passivation film on the surface thereof according to claim 13 or 14, wherein in the hydrogen gas treatment, the hydrogen concentration in the gas atmosphere is 0.1 ppm to 10%. Parts and wetted parts. 1 6. The stainless steel passivation film according to any one of claims 13 to I5, wherein in the hydrogen gas treatment, a treatment temperature is set to 200 to 500 ° C. Gas contact parts and liquid contact parts. 17. A gas contact part having a stainless steel passivation film on its surface according to any one of claims 13 to 16, wherein an annealing treatment is performed in an inert gas after the hydrogen gas treatment. The stainless steel passivation according to claim 17, wherein the inert gas annealing treatment is performed at 200 to 500 ° C for 1 to 10 hours. The stainless steel passivation according to claim 18, characterized in that the gas contacting parts and the liquid contacting parts having a film on the surface 1ο1 9. The condition of the inert gas annealing treatment is set at 475 ° C or more. Gas contact parts and liquid contact parts having a film on the surface. 20. Stainless steel characterized by having a passivation film with a surface roughness of Rmax O.1 zm or less. Gas contact parts and liquid contact parts having a passivation film on the surface c.
1 . 表面粗度が Rmax O . 0 1 以下である不動態膜を有ずる ことを特徴と する請求項 2 0記載のステンレス鋼不動態膜を表面に有する接ガス部品及び 接液部品。 21. The gas-contact part and the liquid-contact part having a stainless steel passivation film on the surface thereof according to claim 20, characterized by having a passivation film having a surface roughness of not more than Rmax 0.01.
2. 不動態膜の表面における C r /F e (原子比、 以下同じ) 、 母材部にお ける C r Z F eよりも大であることを特徴とする請求項 9または請求項 2 1 記載のステンレス鋼不動態膜を表面に有する接ガス部品及び接液部品。 2. The method according to claim 9 or claim 21, wherein Cr / Fe (atomic ratio, the same applies hereinafter) on the surface of the passivation film is larger than CrZFe on the base material. Gas contact parts and liquid contact parts having a stainless steel passivation film on the surface.
3. 不動態膜の表面における C r ZF eが 1以上であることを特徴とする請求 項 2 0記載のステンレス鋼不動態膜を表面に有する接ガス部品及び接液部品3. The gas-contact part and the liquid-contact part having a surface of the stainless steel passivation film according to claim 20, wherein Cr ZFe on the surface of the passivation film is 1 or more.
4 . 前記接ガス部品及び接液部品はレギユレ一夕又はバルブ中のダイアフラム であることを特徴とする請求項 2 0乃至 2 3のいずれか 1項に記載のステン レス鋼不動態膜を表面に有する接ガス部品及び接液部品。 4. The stainless steel passivation film according to any one of claims 20 to 23, wherein the gas contacting part and the liquid contacting part are a diaphragm or a diaphragm in a valve. Gas contact parts and liquid contact parts.
5. 前記接ガス部品はガスボンベのボンべノくルブであり、 該ボンべノ レブは、 ボンべバルブの弁本体内で、 ガス入口にガス入口路 ·ガス供給用弁室及びガ ス出口路を介してガス出口を連通し、 5. The gas contacting part is a cylinder of a gas cylinder. The cylinder is connected to a gas inlet, a gas supply valve chamber, and a gas outlet in a valve body of the cylinder valve. Through the gas outlet via
ガス供給用弁室にガス供給用弁体を設け、 このガス供給用弁体をガス供給 用弁操作装置でガス供給用弁室の弁座に対して開閉操作可能に構成したガス ボンベのボンべノ 'ルブであつて、  A gas supply valve body is provided in the gas supply valve chamber, and the gas supply valve body can be opened and closed with respect to a valve seat of the gas supply valve chamber by a gas supply valve operating device. In Norbub,
ボンべバルブの弁本体内でガス出口路に保護用弁室を介在させ、 保護用弁 室に保護用弁体を設け、 保護用弁体を保護用弁操作装置で保護用弁室の弁座 に対して開閉操作可能に構成したガスボンベのボンべバルブ出あることを特 徴とする請求項 2 0乃至 2 3のいずれか 1項に記載の接ガス部品及び接液部 A protective valve chamber is interposed in the gas outlet path in the valve body of the cylinder valve, a protective valve element is provided in the protective valve chamber, and the protective valve element is seated in the protective valve chamber with the protective valve operating device. The gas contact part and the liquid contact part according to any one of claims 20 to 23, characterized in that there is a cylinder valve of a gas cylinder configured to be openable and closable with respect to the gas cylinder.
DPo  DPo
PCT/JP1992/000699 1991-05-28 1992-05-28 Process for forming passive film on stainless steel, and stainless steel and gas- and liquid-contacting part WO1992021786A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19920917389 EP0596121A4 (en) 1991-05-28 1992-05-28 Process for forming passive film on stainless steel, and stainless steel and gas- and liquid-contacting part.
JP51015992A JP3181053B2 (en) 1991-05-28 1992-05-28 Method for forming passive film on stainless steel, and stainless steel and fluid contact parts

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP15246691 1991-05-28
JP3/152466 1991-05-28
JP3/198718 1991-07-12
JP19871891 1991-07-12
JP3/212592 1991-07-30
JP3212592A JP3045576B2 (en) 1991-05-28 1991-07-30 Method of forming passive film on stainless steel and stainless steel

Publications (1)

Publication Number Publication Date
WO1992021786A1 true WO1992021786A1 (en) 1992-12-10

Family

ID=27320281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000699 WO1992021786A1 (en) 1991-05-28 1992-05-28 Process for forming passive film on stainless steel, and stainless steel and gas- and liquid-contacting part

Country Status (3)

Country Link
EP (1) EP0596121A4 (en)
JP (2) JP3045576B2 (en)
WO (1) WO1992021786A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023816A1 (en) 1993-04-14 1994-10-27 Nippon Sanso Corporation Dissolved oxygen reducing apparatus
WO1995018246A1 (en) * 1993-12-30 1995-07-06 Tadahiro Ohmi Stainless steel and piping system
JPWO2017188209A1 (en) * 2016-04-28 2019-02-14 富士フイルム株式会社 Purification apparatus, purification method, manufacturing apparatus, chemical manufacturing method, container, and chemical container

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3379070B2 (en) * 1992-10-05 2003-02-17 忠弘 大見 Method of forming oxidation passivation film having chromium oxide layer on surface
JP2000208431A (en) * 1999-01-13 2000-07-28 Tadahiro Omi Metallic material wherein chromium oxide passivation film is formed, its manufacture and corrosive fluid contacting part and fluid supply/discharge system
US6228445B1 (en) * 1999-04-06 2001-05-08 Crucible Materials Corp. Austenitic stainless steel article having a passivated surface layer
JP2001135237A (en) * 1999-08-26 2001-05-18 Toray Ind Inc Discharge-type display, and manufacturing method and apparatus thereof
JP2005152955A (en) * 2003-11-26 2005-06-16 Tadahiro Omi Welding method and welding system
US20080315201A1 (en) * 2005-09-16 2008-12-25 Tadahiro Ohmi Apparatus for Producing Electronic Device Such as Display Device, Method of Producing Electronic Device Such as Display Device, and Electronic Device Such as Display Device
KR20080089418A (en) 2005-12-21 2008-10-06 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 Corrosion resistant material for reduced fouling, heat transfer component with improved corrosion and fouling resistance, and method for reducing fouling
JP5873231B2 (en) * 2009-10-23 2016-03-01 大陽日酸株式会社 Supply device and supply method of hydrogen selenide mixed gas for solar cell
JP5615026B2 (en) * 2010-04-21 2014-10-29 オルガノ株式会社 Stainless steel for ultrapure water production apparatus, method for producing the same, and ultrapure water production apparatus
JP5609668B2 (en) * 2011-01-20 2014-10-22 Jfeスチール株式会社 Stainless clad steel with excellent seawater pitting resistance
JP5527228B2 (en) * 2011-01-20 2014-06-18 Jfeスチール株式会社 Stainless steel clad steel with excellent chemical resistance
US20150030883A1 (en) * 2012-03-08 2015-01-29 Jfe Steel Corporation Seawater-resistant stainless clad steel
WO2013132838A1 (en) * 2012-03-08 2013-09-12 Jfeスチール株式会社 Stainless clad steel
JP6502225B2 (en) * 2015-09-30 2019-04-17 日本特殊陶業株式会社 Ceramic heater and method of manufacturing the same
WO2020009225A1 (en) * 2018-07-06 2020-01-09 富士フイルム株式会社 Member, container, medicinal-solution-accommodating body, reaction vessel, distillation column, filter unit, reservoir tank, piping, and method for producing medicinal solution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431956A (en) * 1987-07-25 1989-02-02 Tadahiro Omi Manufacture of stainless steel member for semiconductor-manufacturing equipment
JPH0243353A (en) * 1988-08-04 1990-02-13 Tadahiro Omi Device and method for metal oxidation treatment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345218A (en) * 1964-04-02 1967-10-03 Owens Illinois Inc Preoxidation of stainless steel for glass-to-metal sealing
US4078949A (en) * 1976-09-02 1978-03-14 United States Steel Corporation Method for improving the surface quality of stainless steels and other chromium-bearing iron alloys
US4661171A (en) * 1984-08-29 1987-04-28 Shinko-Pfaudler Company, Ltd. Method for treating the surface of stainless steel by high temperature oxidation
JPH0192389A (en) * 1987-09-30 1989-04-11 Aichi Steel Works Ltd Method for preventing surface roughening of stainless steel wire rod during pickling
DE3804359C1 (en) * 1988-02-12 1988-11-24 Thyssen Edelstahlwerke Ag, 4000 Duesseldorf, De
JP2862546B2 (en) * 1988-11-21 1999-03-03 神鋼パンテック株式会社 Equipment piping materials for ultrapure water production and supply equipment
US5051140A (en) * 1989-03-23 1991-09-24 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Surface treatment method for titanium or titanium alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431956A (en) * 1987-07-25 1989-02-02 Tadahiro Omi Manufacture of stainless steel member for semiconductor-manufacturing equipment
JPH0243353A (en) * 1988-08-04 1990-02-13 Tadahiro Omi Device and method for metal oxidation treatment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0596121A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023816A1 (en) 1993-04-14 1994-10-27 Nippon Sanso Corporation Dissolved oxygen reducing apparatus
EP0646400A4 (en) * 1993-04-14 1997-05-07 Nippon Oxygen Co Ltd Dissolved oxygen reducing apparatus.
WO1995018246A1 (en) * 1993-12-30 1995-07-06 Tadahiro Ohmi Stainless steel and piping system
JPWO2017188209A1 (en) * 2016-04-28 2019-02-14 富士フイルム株式会社 Purification apparatus, purification method, manufacturing apparatus, chemical manufacturing method, container, and chemical container

Also Published As

Publication number Publication date
JP3181053B2 (en) 2001-07-03
EP0596121A4 (en) 1994-11-23
EP0596121A1 (en) 1994-05-11
JPH10204526A (en) 1998-08-04
JP3045576B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
WO1992021786A1 (en) Process for forming passive film on stainless steel, and stainless steel and gas- and liquid-contacting part
Ohmi et al. Formation of chromium oxide on 316L austenitic stainless steel
US6612898B1 (en) Method for forming oxidation-passive layer, fluid-contacting part, and fluid feed/discharge system
JPH02270964A (en) Device for forming tungsten film
AU648165B2 (en) Stainless steel surface passivation treatment
WO1995018247A1 (en) Method of forming oxidized passive film, ferrite system stainless steel, fluid feed system and fluid contact component
US5789086A (en) Stainless steel surface having passivation film
JPH0285358A (en) Pressure reducing device
JP2018107438A (en) Method for surface treatment of metal member, and method for manufacturing semiconductor element
JP2987754B2 (en) Passivation treatment method for high purity gas in piping
JP2976333B2 (en) Stainless steel, its manufacturing method and pressure reducing device
WO1995018240A1 (en) Austenitic stainless steel, piping system and fluid-contacting parts
JPH0254751A (en) Metallic oxidation treatment apparatus
KR20040098601A (en) Cleaning apparatus
JPH05125518A (en) Formation of passivated film
EP0512113B1 (en) Oxidation treatment apparatus for metal pipes
US5906688A (en) Method of forming a passivation film
JP3037928B2 (en) Stainless steel, its manufacturing method and pressure reducing device
WO1994015749A1 (en) Welding method and welded structure for forming passivated chromium oxide film on weld
JPH02179867A (en) Process gas supply system
JP3030351B2 (en) Stainless steel on which fluorinated passivation film is formed, method for producing the same, and apparatus using the stainless steel
JPH10280123A (en) Stainless steel member for ozone-containing ultrapure water and its production
JP4016073B2 (en) Method for forming aluminum oxide passive film, welding method, fluid contact member and fluid supply / exhaust system
JP3434857B2 (en) Ultra-vacuum material and manufacturing method thereof
US8250966B2 (en) Method of manufacturing bellows

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1992917389

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1994 150055

Date of ref document: 19940204

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1992917389

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1992917389

Country of ref document: EP