WO1992018323A1 - Fabrication informatisee de macro-ensembles - Google Patents

Fabrication informatisee de macro-ensembles Download PDF

Info

Publication number
WO1992018323A1
WO1992018323A1 PCT/AU1992/000155 AU9200155W WO9218323A1 WO 1992018323 A1 WO1992018323 A1 WO 1992018323A1 AU 9200155 W AU9200155 W AU 9200155W WO 9218323 A1 WO9218323 A1 WO 9218323A1
Authority
WO
WIPO (PCT)
Prior art keywords
head
shape
excreted
deposited
walls
Prior art date
Application number
PCT/AU1992/000155
Other languages
English (en)
Inventor
Michael B. Haber
Original Assignee
Haber Michael B
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haber Michael B filed Critical Haber Michael B
Priority to JP4507594A priority Critical patent/JPH06509523A/ja
Publication of WO1992018323A1 publication Critical patent/WO1992018323A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0002Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49015Wire, strang laying, deposit fluid, welding, adhesive, hardening, solidification, fuse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a manufacturing method where, items are made similarly the way a variety of insects build up their habitats.
  • Machines which allow this kind of manufacture of matter consists generally of either: a) robot arms with at least 5 axis of freedom of movement, b) light framed numerically controlled machine which would have a head or a number of heads which would have 3 to 5 axis of freedom of movement.
  • Each head or robot arm have specially designed head allowing excretion or projection of particles or fibres of matter on a small to microscopic scale in such a controlled fashion so as to allow buildup of the material and retention of shape.
  • Material needs to solidify sufficiently straight after deposition (pre-cure) and then full curing could be induced consequently.
  • additional layers could be applied in similar fashion or by any other means, like laminating thin layers consisting of carbon fibres & epoxy.
  • F1g. 1(a) Is a perspective view of a computer numerically controlled (CNC) machine with a ceramic material excretion (CME) head mounted thereon,
  • Fig. Kb 1s a detailed side view of the CME head as seen In F1g. Kb),
  • Fig. 2 1s a cross sectional view of a thermoplastic material excretion head for use with the machine as Illustrated in F1g. Ka), Fig. 3(a) 1s a perspective view of a 3D shaped object, Fig. 3(b) Is a bottom view of the object of Fig. 3(a), Fig. 3(c) 1s a top view of the object of Fig. 3(b), Fig. 3(d) 1s a detailed view of a typical basic cell, Fig. 4(a) 1s an example of an aircraft wing using the manufacturing method of the present invention,
  • Fig. 4(b) 1s an example of a mast of a yacht using the manufacturing method of the present Invention
  • Page 8 1 s a sample of numerical data
  • Page 9 1s a sample algorithm for a simple cell macrostructure.
  • CM-AM Computerised Macro-Assembly Manufacture 1s not the robot or NE machine alone which allows computer programmed movements, but 1s this unique usage of CNC machines or robots in combination with: a) special heads designed for material deposition b) a particular type of material with suitable properties, c) computer software which allows various methods of bulldlng-up walls of objects by having defined cell macrostructure.
  • CM-AM was first tried with type of head where material deposited was clay. Schematic of this 1s shown 1n F1g. 1 and actual example of shape created 1s shown in F1g. 3. Its wall macrostructure 1s shown and this can be represented by a simple algorithm as shown 1n Page 9. Next trial was with thermoplastic material as made by the container as shown in Fig. 2. There are many types of materials with suitable designed heads possible for this type of manufacture, some of which are listed below with brief description of applications.
  • WME Head (Wax Material Excretion) for CM-AM b) CME Head (Ceramic Material Excretion) for CM-AM c) PME Head (Polymerising Material Excretion) for CM-AM d) EME head (Epoxy Material Excretion) for CM-AM e) MME Head (Metal Material Excretion) for CM-AM f) TME Head (Thermoplastic material Excretion) for CM-AM Brief .description with applications of each is given below. WME Head for CM-AM
  • Wax material is the first material when one looks at analogies of this method of manufacture in nature. Bees are making their beehives in this fashion.
  • This material has also wide application in engineering, for example in modeling of 3D components, but particularly in manufacture of strong metal components by method of "investment casting".
  • a model of the component is made out of wax, by standard machining methods, then this component is covered with slurry of ceramic material which eventually dries into a high temperature resisting shell. After melting away the wax core, a cavity remains into which molten metal is cast to a required shape. Shell is consequently broken away. Because of the low melting temperature of wax, it is relatively simple method of designing a head for excreting wax, under pressure, with controlled flow, and with such ambient conditions at the entrance nozzle so that the material solidifies soon after it leaves the nozzle. Variations in design of the head can be due to a particular application, from simple 3 axis head for making simple thin shell 3D models to 5 or more axis head where characteristics like surface texture or wall thickness could be controlled as well.
  • Clay was first material to try CM-AM. Motorised syringe was mounted on the CNC machine as illustrated in Fig. 1. This was filled with clay of sufficient plasicity. The machine was programmed to produce shape as shown in Fig. 3. There are many software packages to simplify this kind of programming, so called CAM (Computer Aided Manufacturer). The particular CAM used in this case is Smartcam Advanced 3D. Sample (start and end) of the code generated is also shown in Page 8. Simple algorithm was also created to allow automatic generation of the cell structure as shown in Fig. 3. Essential aspects of this algorithm are shown in Page 9. With some infringements the type of head with appropriate material would allow making directly for example:
  • CM-AM with this materials is the possibility of exotic shapes out of refractory, high temperature materials, without need for expensive machining of hard materials. Full utilisation of hi-tech, expensive materials without any wastage. Low tooling-up cost and fast flexible designs. PME Head for CM-AM
  • the present invention differs completely, in that material being excreted from a nozzle of a special head and is illuminated by the focussed laser beam as it is leaving the nozzle, thus causing polymerisation and therefore solidification right after it was deposited onto already existing structure.
  • SUBSTITUTESHEET complex shapes for deposited layers do not have to be in horizontal planes (given by the surface of fluid -in the existing method), but could be gradually assuming any orientation because only minute portion at the end of the excretion nozzle is in fluid form.
  • filing and reinforcing materials could be added to improve the physical properties of finished components.
  • glass or carbon fibres or particles For example glass or carbon fibres or particles.
  • this could be used not only for 3D modelling, but for making finished products with desired strength variation of this head is where continuous fibre of, for example, glass or carbon is fed together with polymerising material which bonds fibres together. The process would become similar to weaving basket or cloth, or simply laying layer by layer first in one direction, and then if necessary in other direction. In this fashion it is possible to create strong, tnin shell structures, or of more complex wall (like honeycomb) structures.
  • Epoxy. is mixed with catalyst prior to leaving the nozzle, and is further assisted in fast pre-cure by appropriate ambient conditions and further accelerated by, for example focused laser beam, full curing is achieved in given time. This can be accelerated by post-cure low temperature baking.
  • Variant of this design is a composite head where two different types of materials are being deposited simultaneously. For example head creates tube with thin wall, middle of which is filled with low specific gravity material core. This tube is deposited layer by layer, with variable width or at an angle.
  • Metal deposition with CM-AM is proposed to be used in two basic variations: a) Molten metal is deposited or sprayed or sputtered. b) Solid wire is fed from the head and at the some time it is welded to already existing structure, this also softens the wire allowing it to assume required shape more readily.
  • Second or more layers can be deposited consequently at different angles to give the structure required strength in different directions, or a process similar to basket weaving could be used, where more intricate, multiple head design would be required.
  • Composite head or a number of heads can be also used where a layer of metal is covered with another layer of different material, say of epoxy. This would give the structure for example imperviousness, protecting the core ⁇ .c_tal material from external elements.
  • Thermoplastic material is the first material which we tried to produce practical and strong components by this method of manufacture. (Clay samples on page 3 above served purpose but were too brittle to be of any practical use.)
  • thermoplastic materials for example Polypropylene at 200-300°C
  • head for excreting this, under pressure, wit h controlled flow, and with such ambient conditions at the entrance nozzle so that the material solidifies soon after it leaves the nozzle.
  • Fig. 2 shows typical head design. Variations in design of the head can be due to a particular application, from simple 3 axis head for making simple thin shell 3D models with simple 3 axis head for making simple thin shell 3D models with simple macrostructure to 5 or more axis head where head can be aligned with direction and inclination of the surface, and this way for example preheating of existing surface, each wall of individual cells from which walls are made.
  • thermoplastic components for example prototypes of exotic shapes can be made without making expensive tooling for injection moulding. In many applications where small quantities and very exotic shapes are required this could be sufficient, and if required components could be finished by applying lamination on its external surfaces.
  • SUBSTITUTESHEET Speed of manufacture can be substantially improved with multiple head machine design, in cases where additional complexity would be justified by increased rates of production.
  • This method of manufacture would be ideal for manufacturing out in 5 space, because of special requirements and also because of the special conditions of zero gravity and vacuum. a) One universal lightweight machine could be used to manufac ⁇ ture any object. b) 100% utilisation of available resources of raw materials.
  • Each facet represents external side of a cell as shown in Fig. 3(b) or Fig. 3(c).
  • a triangle On each of these facets is constructed a triangle, with the two other sides of equal length, and where the height of this triangle represents the wall thickness.
  • Corresponding internal cells are created by joining aspects of these triangles, length of these is therefore related to curvature of the shape.
  • Walls can be build-up by having the same structure applied a number of times, if necessary of finer cell size then external smoothness of walls would call for.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)

Abstract

On décrit un procédé de fabrication permettant de réaliser des articles d'une manière semblable à celle utilisée par les insectes pour construire leurs nids. Il s'agit d'assembler d'une manière ordonnée prédéterminée et à l'aide d'un liant de minuscules particules ou brins de matière pour créer un objet de la forme souhaitée. Selon l'invention cette opération est réalisée par un robot ou une machine à commande numérique qui commande la position d'une tête spécialement conçue et dont la fonction est de distribuer une matière spéciale. Ladite matière se solidifie rapidement et conserve ainsi sa forme programmée.
PCT/AU1992/000155 1991-04-09 1992-04-09 Fabrication informatisee de macro-ensembles WO1992018323A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4507594A JPH06509523A (ja) 1991-04-09 1992-04-09 コンピユータによるマクロ構体製造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPK5488 1991-04-09
AUPK548891 1991-04-09

Publications (1)

Publication Number Publication Date
WO1992018323A1 true WO1992018323A1 (fr) 1992-10-29

Family

ID=3775325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU1992/000155 WO1992018323A1 (fr) 1991-04-09 1992-04-09 Fabrication informatisee de macro-ensembles

Country Status (2)

Country Link
JP (1) JPH06509523A (fr)
WO (1) WO1992018323A1 (fr)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1008128A3 (nl) * 1994-03-10 1996-01-23 Materialise Nv Werkwijze voor het ondersteunen van een voorwerp vervaardigd door stereolithografie of een andere snelle prototypevervaardigingswerkwijze en voor het vervaardigen van de daarbij gebruikte steunkonstruktie.
WO1996012608A2 (fr) * 1994-10-19 1996-05-02 Bpm Technology, Inc. Appareil et procedes de fabrication d'un article tridimensionnel
EP0715573A1 (fr) * 1993-08-26 1996-06-12 Solidscape, Inc. Realisateur de modeles en trois dimensions
EP0729824A1 (fr) * 1995-03-03 1996-09-04 General Motors Corporation Procédé de fabrication rapide d'un prototype ou d'un moule en utilisant un modèle stéréolithigraphique
US5555176A (en) * 1994-10-19 1996-09-10 Bpm Technology, Inc. Apparatus and method for making three-dimensional articles using bursts of droplets
US5572431A (en) * 1994-10-19 1996-11-05 Bpm Technology, Inc. Apparatus and method for thermal normalization in three-dimensional article manufacturing
GB2302836A (en) * 1994-06-02 1997-02-05 Stratasys Inc Forming three dimensional objects with unsupported overhangs
WO1997028955A2 (fr) * 1996-02-09 1997-08-14 Bpm Technology, Inc. Appareil et procede comportant des detecteurs d'ecarts et des moyens de retablissement servant a fabriquer des articles tridimensionnels
US5700406A (en) * 1996-04-26 1997-12-23 Bpm Technology, Inc. Process of and apparatus for making a three-dimensional article
US5717599A (en) * 1994-10-19 1998-02-10 Bpm Technology, Inc. Apparatus and method for dispensing build material to make a three-dimensional article
US5740051A (en) * 1991-01-25 1998-04-14 Sanders Prototypes, Inc. 3-D model making
US5784279A (en) * 1995-09-29 1998-07-21 Bpm Technology, Inc. Apparatus for making three-dimensional articles including moving build material reservoir and associated method
EP0895850A1 (fr) * 1997-08-03 1999-02-10 Micromod R.P. Ltd. Procédé rapide de fabrication de prototypes
DE19963948A1 (de) * 1999-12-31 2001-07-26 Zsolt Herbak Verfahren zum Modellbau
WO2001085386A2 (fr) * 2000-05-09 2001-11-15 Optomec Design Company Formation de structures a partir de modeles solides de conception assistee par ordinateur
WO2002073325A2 (fr) * 2001-03-13 2002-09-19 Milling Systems And Concepts Pte. Ltd. Procede et appareil de fabrication d'un prototype
US6656409B1 (en) 1999-07-07 2003-12-02 Optomec Design Company Manufacturable geometries for thermal management of complex three-dimensional shapes
WO2004022319A1 (fr) * 2002-09-06 2004-03-18 The Boeing Company Materiaux en nid d'abeilles ameliores destines a des applications aerospatiales
US6811744B2 (en) 1999-07-07 2004-11-02 Optomec Design Company Forming structures from CAD solid models
DE102005022308A1 (de) * 2005-05-13 2006-11-23 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts mit einem beheizten Beschichter für pulverförmiges Aufbaumaterial
US7879394B1 (en) 2006-06-02 2011-02-01 Optomec, Inc. Deep deposition head
WO2013019876A3 (fr) * 2011-08-02 2013-04-18 The Aerospace Corporation Systèmes et procédés de fabrication de blocs de poudre combustible pour moteur de fusée hybride
CN103212689A (zh) * 2013-04-22 2013-07-24 中国科学院力学研究所 金属构件移动微压铸成型方法
US8936601B2 (en) 2000-03-17 2015-01-20 Kinamed, Inc. Marking template for installing a custom replacement device for resurfacing a femur and associated installation method
US9607889B2 (en) 2004-12-13 2017-03-28 Optomec, Inc. Forming structures using aerosol jet® deposition
US10632746B2 (en) 2017-11-13 2020-04-28 Optomec, Inc. Shuttering of aerosol streams
US10994473B2 (en) 2015-02-10 2021-05-04 Optomec, Inc. Fabrication of three dimensional structures by in-flight curing of aerosols

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103722171B (zh) * 2013-12-25 2016-06-01 合肥工业大学 一种用于选择性激光烧结的蜂窝式激光扫描方法
JP2016033365A (ja) * 2014-07-31 2016-03-10 株式会社東芝 ロータブレード及びロータブレードの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE893526A (fr) * 1982-06-15 1982-12-15 Agip Nucleare Spa Methode pour l'application automatique et programmee de couches de materiau, et equipement pour la realisation de cette methode
JPS5870313A (ja) * 1981-10-21 1983-04-26 Daisan Giken Kogyo Kk 自動彫刻装置システム
JPS58211413A (ja) * 1982-06-03 1983-12-08 Agency Of Ind Science & Technol 立体模型製造装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870313A (ja) * 1981-10-21 1983-04-26 Daisan Giken Kogyo Kk 自動彫刻装置システム
JPS58211413A (ja) * 1982-06-03 1983-12-08 Agency Of Ind Science & Technol 立体模型製造装置
BE893526A (fr) * 1982-06-15 1982-12-15 Agip Nucleare Spa Methode pour l'application automatique et programmee de couches de materiau, et equipement pour la realisation de cette methode

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DERWENT ABSTRACT, Accession No. 00007k/01, class X24; & BE,A,893 526 (AGIP NUCLEARE SPA), 15 December 1982. *
PATENT ABSTRACTS OF JAPAN, M 284, page 14; & JP,A,58 211 413 (KOGYO GIJUTSUIN (JAPAN)), 8 December 1983. *
PATENT ABSTRACTS OF JAPAN, P 210, page 163; & JP,A,58 070 313 (DAISAN GIKEN KOGYO K.K.), 26 April 1983. *

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5740051A (en) * 1991-01-25 1998-04-14 Sanders Prototypes, Inc. 3-D model making
EP0715573A1 (fr) * 1993-08-26 1996-06-12 Solidscape, Inc. Realisateur de modeles en trois dimensions
EP0715573A4 (fr) * 1993-08-26 1997-05-07 Sanders Prototypes Inc Realisateur de modeles en trois dimensions
US5595703A (en) * 1994-03-10 1997-01-21 Materialise, Naamloze Vennootschap Method for supporting an object made by means of stereolithography or another rapid prototype production method
BE1008128A3 (nl) * 1994-03-10 1996-01-23 Materialise Nv Werkwijze voor het ondersteunen van een voorwerp vervaardigd door stereolithografie of een andere snelle prototypevervaardigingswerkwijze en voor het vervaardigen van de daarbij gebruikte steunkonstruktie.
GB2302836B (en) * 1994-06-02 1998-10-07 Stratasys Inc Process of support removal for three-dimensional modeling
GB2302836A (en) * 1994-06-02 1997-02-05 Stratasys Inc Forming three dimensional objects with unsupported overhangs
US5572431A (en) * 1994-10-19 1996-11-05 Bpm Technology, Inc. Apparatus and method for thermal normalization in three-dimensional article manufacturing
WO1996012608A3 (fr) * 1994-10-19 1996-07-07 Bpm Tech Inc Appareil et procedes de fabrication d'un article tridimensionnel
US5555176A (en) * 1994-10-19 1996-09-10 Bpm Technology, Inc. Apparatus and method for making three-dimensional articles using bursts of droplets
US5633021A (en) * 1994-10-19 1997-05-27 Bpm Technology, Inc. Apparatus for making a three-dimensional article
WO1996012608A2 (fr) * 1994-10-19 1996-05-02 Bpm Technology, Inc. Appareil et procedes de fabrication d'un article tridimensionnel
US5969971A (en) * 1994-10-19 1999-10-19 Bpm Technology, Inc. Apparatus and method for thermal normalization in three-dimensional article manufacturing
US5859775A (en) * 1994-10-19 1999-01-12 Bpm Technology, Inc. Apparatus and method including deviation sensing and recovery features for making three-dimensional articles
US5717599A (en) * 1994-10-19 1998-02-10 Bpm Technology, Inc. Apparatus and method for dispensing build material to make a three-dimensional article
US5616293A (en) * 1995-03-03 1997-04-01 General Motors Corporation Rapid making of a prototype part or mold using stereolithography model
EP0729824A1 (fr) * 1995-03-03 1996-09-04 General Motors Corporation Procédé de fabrication rapide d'un prototype ou d'un moule en utilisant un modèle stéréolithigraphique
US5784279A (en) * 1995-09-29 1998-07-21 Bpm Technology, Inc. Apparatus for making three-dimensional articles including moving build material reservoir and associated method
WO1997028955A2 (fr) * 1996-02-09 1997-08-14 Bpm Technology, Inc. Appareil et procede comportant des detecteurs d'ecarts et des moyens de retablissement servant a fabriquer des articles tridimensionnels
WO1997028955A3 (fr) * 1996-02-09 1997-12-18 Bpm Tech Inc Appareil et procede comportant des detecteurs d'ecarts et des moyens de retablissement servant a fabriquer des articles tridimensionnels
US5700406A (en) * 1996-04-26 1997-12-23 Bpm Technology, Inc. Process of and apparatus for making a three-dimensional article
EP0895850A1 (fr) * 1997-08-03 1999-02-10 Micromod R.P. Ltd. Procédé rapide de fabrication de prototypes
US6391251B1 (en) 1999-07-07 2002-05-21 Optomec Design Company Forming structures from CAD solid models
US6811744B2 (en) 1999-07-07 2004-11-02 Optomec Design Company Forming structures from CAD solid models
US6656409B1 (en) 1999-07-07 2003-12-02 Optomec Design Company Manufacturable geometries for thermal management of complex three-dimensional shapes
DE19963948A1 (de) * 1999-12-31 2001-07-26 Zsolt Herbak Verfahren zum Modellbau
US8936601B2 (en) 2000-03-17 2015-01-20 Kinamed, Inc. Marking template for installing a custom replacement device for resurfacing a femur and associated installation method
US9393032B2 (en) 2000-03-17 2016-07-19 Kinamed, Inc. Marking template for installing a custom replacement device for resurfacing a femur and associated installation method
US8961529B2 (en) 2000-03-17 2015-02-24 Kinamed, Inc. Marking template for installing a custom replacement device for resurfacing a femur and associated installation method
US8936602B2 (en) 2000-03-17 2015-01-20 Kinamed, Inc. Marking template for installing a custom replacement device for resurfacing a femur and associated installation method
WO2001085386A3 (fr) * 2000-05-09 2002-05-16 Optomec Design Formation de structures a partir de modeles solides de conception assistee par ordinateur
WO2001085386A2 (fr) * 2000-05-09 2001-11-15 Optomec Design Company Formation de structures a partir de modeles solides de conception assistee par ordinateur
WO2002073325A3 (fr) * 2001-03-13 2003-05-30 Milling Systems And Concepts P Procede et appareil de fabrication d'un prototype
WO2002073325A2 (fr) * 2001-03-13 2002-09-19 Milling Systems And Concepts Pte. Ltd. Procede et appareil de fabrication d'un prototype
WO2004022319A1 (fr) * 2002-09-06 2004-03-18 The Boeing Company Materiaux en nid d'abeilles ameliores destines a des applications aerospatiales
US9607889B2 (en) 2004-12-13 2017-03-28 Optomec, Inc. Forming structures using aerosol jet® deposition
DE102005022308A1 (de) * 2005-05-13 2006-11-23 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts mit einem beheizten Beschichter für pulverförmiges Aufbaumaterial
US7850885B2 (en) 2005-05-13 2010-12-14 Eos Gmbh Optical Systems Device and method for manufacturing a three-dimensional object with a heated recoater for a building material in powder form
DE102005022308B4 (de) * 2005-05-13 2007-03-22 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts mit einem beheizten Beschichter für pulverförmiges Aufbaumaterial
US7879394B1 (en) 2006-06-02 2011-02-01 Optomec, Inc. Deep deposition head
WO2013019876A3 (fr) * 2011-08-02 2013-04-18 The Aerospace Corporation Systèmes et procédés de fabrication de blocs de poudre combustible pour moteur de fusée hybride
CN103212689A (zh) * 2013-04-22 2013-07-24 中国科学院力学研究所 金属构件移动微压铸成型方法
CN103212689B (zh) * 2013-04-22 2016-04-13 中国科学院力学研究所 金属构件移动微压铸成型方法
US10994473B2 (en) 2015-02-10 2021-05-04 Optomec, Inc. Fabrication of three dimensional structures by in-flight curing of aerosols
US10632746B2 (en) 2017-11-13 2020-04-28 Optomec, Inc. Shuttering of aerosol streams
US10850510B2 (en) 2017-11-13 2020-12-01 Optomec, Inc. Shuttering of aerosol streams

Also Published As

Publication number Publication date
JPH06509523A (ja) 1994-10-27

Similar Documents

Publication Publication Date Title
WO1992018323A1 (fr) Fabrication informatisee de macro-ensembles
KR100291953B1 (ko) 가변 용착 적층식 쾌속조형방법 및 쾌속조형장치
US6076324A (en) Truss structure design
KR100271208B1 (ko) 선택적 용침공정을 이용한 쾌속조형방법및 쾌속조형장치
EP0431924B1 (fr) Techniques d'impression tri-dimensionnelle
US5590454A (en) Method and apparatus for producing parts by layered subtractive machine tool techniques
Kruth et al. Progress in additive manufacturing and rapid prototyping
Kruth Material incress manufacturing by rapid prototyping techniques
Dickens Research developments in rapid prototyping
US5614075A (en) Method of incremental object fabrication
US5622216A (en) Method and apparatus for metal solid freeform fabrication utilizing partially solidified metal slurry
JP3699359B2 (ja) 線形熱切断システムを用いた可変積層高速造形方法及び高速造形装置
US20020129485A1 (en) Method and apparatus for producing a prototype
EP3589477B1 (fr) Impression 3d à l'aide d'une mise en forme par pulvérisation
US11667072B2 (en) Liquid metal printing
EP3482914A1 (fr) Procede de determination de l'inclinaison des axes d'une machine a cinq axes ou plus pour la production d'objets par fabrication additive, systeme de production d'objets par ce procede
US20210354369A1 (en) Shell and fill fabrication for three-dimensional (3d) printing
CN112805406A (zh) 喷射成型的结构接头
KR100383880B1 (ko) 절삭과 충전 공정을 이용한 3차원 제품의 쾌속 제조방법및 제조장치
Velu et al. Design and robotic fabrication of 3D printed moulds for composites
KR100362738B1 (ko) 초음파 장치를 이용한 용착 적층식 쾌속조형방법 및쾌속조형장치
Pham et al. Rapid prototyping processes
Weiss Processes overview
JP7123356B2 (ja) 立体物造形装置および立体物造形方法
TWI816163B (zh) 一種製造3d物件的系統及其方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase