WO1990007593A1 - Process for producing carbon fiber having oval cross-section - Google Patents

Process for producing carbon fiber having oval cross-section Download PDF

Info

Publication number
WO1990007593A1
WO1990007593A1 PCT/JP1987/000040 JP8700040W WO9007593A1 WO 1990007593 A1 WO1990007593 A1 WO 1990007593A1 JP 8700040 W JP8700040 W JP 8700040W WO 9007593 A1 WO9007593 A1 WO 9007593A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
pitch
nozzle
cross
spinning
Prior art date
Application number
PCT/JP1987/000040
Other languages
French (fr)
Japanese (ja)
Inventor
Kazutoshi Haraguchi
Eiji Tanigawa
Kenji Nukina
Hiroaki Morita
Toyohiro Maeda
Original Assignee
Kazutoshi Haraguchi
Eiji Tanigawa
Kenji Nukina
Hiroaki Morita
Toyohiro Maeda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kazutoshi Haraguchi, Eiji Tanigawa, Kenji Nukina, Hiroaki Morita, Toyohiro Maeda filed Critical Kazutoshi Haraguchi
Priority to US07/105,427 priority Critical patent/US4859382A/en
Publication of WO1990007593A1 publication Critical patent/WO1990007593A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor

Definitions

  • the present invention relates to a method for producing a carbon fiber having an elliptical cross section.
  • carbon fiber is mainly manufactured using polyacrylonitrile (PAN) and pitch as starting materials.
  • PAN polyacrylonitrile
  • PAN-based carbon fibers having a tensile strength of 3 ⁇ 0 kgZ niiii 2 or more are commercially available, and are widely used as materials for various high-performance composite materials.
  • PAN-based carbon fiber has a relatively low elastic modulus, which is an important property as a material for high-performance composite materials, and is 20 to 30 ton in many commercially available products. is a ⁇ 2 about, has not been obtained can this a 4 0 ton ⁇ dragon 2.
  • the limit in the elastic modulus is derived from the starting material of the PAN-based carbon fiber, and is necessarily limited by the crystal growth and orientation inside the carbon fiber.
  • PAN-based carbon fiber has a high cost due to the low carbonization yield of about 50% of the starting material and the necessity of strain treatment in the process after infusibility. There are also disadvantages.
  • pitch-based carbon fiber does not have the above-mentioned problems of PAN-based carbon fiber, and is expected to be a cheaper and higher-performance material. That is, particularly when pitch having optical anisotropy is used as a raw material, the temperature rise during the carbonization process of the precursor steel (hereinafter referred to as pitch steel).
  • the higher-order cross-sectional structure When the cross section of the pitch-based carbon fiber is observed, the aggregation state of the molecules (hereinafter referred to as the higher-order cross-sectional structure) is different. That is, the molecules may form crystals in the concentric direction of the fiber (so-called onion type), or may form crystals in the radial direction from the center of the fiber (radial type), and may be distributed without indicating directionality. (Random type) or the inner layer is random and the outer layer is radial. In addition, micro defects such as cracks and voids are apt to occur in pitch-type dake. Such higher-order cross-sectional structures and defects greatly affect the mechanical properties of carbon fibers, and the presence of defects significantly reduces tensile strength and elongation.
  • the present inventor has conducted intensive studies in view of the state of the art as described above, and as a result, extruded a spinning pitch from a nozzle having a specific opening shape, and sufficiently released the pitch molecules oriented by the nozzle immediately after discharging from the nozzle.
  • the pitch material of the elliptical surface obtained by successively winding this is made infusible and then carbonized
  • the problems of the conventional technology as described above are substantially solved.
  • a spinning pitch is extruded from a rectangular cross-section nozzle or a modified cross-section nozzle in which the width Z height ratio of the opening is greater than 1 and the bit molecules oriented by the nozzle are sufficiently discharged immediately after the nozzle.
  • the present invention relates to a method for manufacturing a carbon fiber having an elliptical cross section, which is characterized in that a pitch fiber having an elliptical cross section is obtained by intermittently winding and then infused and carbonized.
  • carbonization is used as a concept including graphitization
  • carbon fiber is used as a concept including graphite arrowheads.
  • the pitch for spinning used in the present invention can be obtained by subjecting a pitch-like substance to thermal polycondensation under an inert gas flow.
  • the pitch-like substance may be any of petroleum-based pitch, coal-based pitch, and pyrolysis residue pitch from organic compounds, and has a softening point (measured by a softening point measuring device of Mettler, Switzerland). 0-32.5. C is preferred.
  • coal-based pitch such as coal tar or coal tar pitch is used as a raw material, it is described in JP-A-57-88016 prior to thermal polycondensation.
  • the pitch for spinning is not particularly limited as long as spinning is possible.
  • FIGS. 6 and 7 show cross-sectional shapes of carbon steel cones obtained in the embodiment of the present invention. It is a scanning electron microscope photograph.
  • the production of pitch fibers having an elliptical cross section is performed at a temperature at which the spinning pitch exhibits good spinnability (which can be easily determined experimentally according to the type of pitch).
  • a temperature at which the spinning pitch exhibits good spinnability which can be easily determined experimentally according to the type of pitch.
  • the punch is extruded, and the pitch molecules oriented by the nozzle are sufficiently relaxed immediately after the nozzle is discharged, and then are wound intermittently.
  • FIGS. 1 to 4 show a specific example of the opening shape of the nozzle used in the present invention. .
  • FIG. 1 shows a nozzle having a rectangular surface having a ratio (WZH) of width (W) to height (H) of 1
  • FIG. 2 shows two long sides of the rectangle of FIG.
  • FIG. 3 shows a modified cross-section nozzle which is curved and bulged in a curved manner
  • FIG. 3 shows a modified cross-section nozzle in which two long sides of the rectangle in FIG.
  • FIG. 4 shows an irregular cross-section nozzle having an irregular Y-shaped cross section satisfying W / H>
  • FIG. 5 shows an irregular cross-section nozzle having an irregular cross-shaped cross section satisfying WZH> 1.
  • the ratio WZH of the width (W) to the height (H) of the opening is larger than 1, preferably above 1 and up to 10 more preferably. Is more than 1 and up to 5.
  • the shape of the nozzle opening does not need to be elliptical.
  • the width and height of the opening indicate the maximum width and length, respectively.
  • the cross-sectional area of the nozzle opening is not particularly limited. the defects from the viewpoint of prevention 5 X 10 one 1 ⁇ 5 X 10 -3 2, more favorable or properly 1 0 - 1 ⁇ 1 0 - 2 mni 2 about is appropriate.
  • “relaxation of oriented pitch molecules in the spinning pitch” means that the discharged pitch melt becomes thin and solidified during the spinning process while maintaining a cross-sectional shape similar to the shape of the nozzle opening. This is a phenomenon in which the origin of the nozzle shape is lost due to the thermal motion of the pitch molecules and the surface tension of the yarn between the time immediately after the discharge of the nozzle and the time when the fiber is thinned and / or solidified. Relaxation in the present invention is sufficiently performed until the cross-sectional shape of the mountain cone becomes an elliptical shape having a long / short axis based on W / H> 1 of the nozzle used.
  • Relaxation of oriented molecules in the spinning pitch immediately after ejection from the nozzle is performed in principle by increasing the spinning temperature, particularly the temperature of the pitch melt at the time of ejection from the nozzle.
  • simply raising the temperature of the pitch melt to increase the spinning temperature often makes stable discontinuous spinning difficult due to gas generation, poor spinnability, and the like. Therefore, for example, the pitch melt is heated locally just before the nozzle opening or locally at the nozzle opening and then spun, or the pitch melt immediately after the nozzle discharge can be heated locally. It is preferable to devise a nozzle structure.
  • the method is not limited as long as the above-mentioned pitch molecules can be relaxed.
  • the spun body having sufficiently relaxed the pitch molecules is continuously wound into a pitch fiber having an elliptical cross section.
  • the cross-sectional area of the elliptical cross-section pitch fiber is not particularly limited. From the viewpoint, it is preferable to set it to about 3 ⁇ 10 15 to 3 ⁇ 10 fflffl 2 .
  • the pitch iron having an elliptical cross section obtained as described above was then infusibilized in a conventional manner, for example, in an oxygen-containing atmosphere at a temperature of 280 to 450. Later, in the case of carbonization, it is about 1000 to 2000 in an atmosphere of nitrogen, carbon dioxide, argon, etc., and in the case of graphitization, it is 200 to 300 in an atmosphere of argon, etc. 0. By heating at about C, a carbon steel with an elliptical cross section is obtained.
  • the tensile strength of the elliptical cross-section carbon fiber of the present invention is remarkably higher than that of carbon having the same cross-sectional area and a circular cross-section.
  • the tensile strength of pitch-based carbon steel fibers is determined by the properties of spinning pitch, spinning conditions, high-order cross section, steel break Although the degree differs depending on the surface shape, etc., it gradually or rapidly decreases as the fiber cross-sectional area increases. Therefore, the fact that the elliptical cross-section carbon fiber of the present invention has excellent strength characteristics is inexpensive because it is not necessary to make the fiber cross-sectional area particularly small when comparing with the same tensile strength.
  • C means that the specified continuous spinnability is easily achieved
  • the carbon fiber of the present invention having an elliptical cross section has a large surface area per unit area, the excellent mechanical properties of the carbon fiber itself are sufficiently exhibited in a composite state with other materials. . Therefore, it is particularly suitable as a material for composite materials.
  • the physical properties of the obtained pitch were as follows: softening point 3 13 ° C (using a softening point measuring device manufactured by METRA) Insoluble content: 38%> optically isotropic component: 5, 1% by volume.
  • the pitch is discharged from a rectangular cross-section nozzle having predetermined H and W in Fig. 1 under the nozzle temperature condition of drinking point + 55 Then, by heating uniformly under the nozzle so that the fiber is thinned (solidified) at 7 points from the nozzle surface, the oriented pitch molecules in the spinning pitch are relaxed, and then the predetermined collar is cut. It was wound up to have an area, and a pitch iron having an oval cross section was obtained. Next, the obtained bituminous fiber was placed in the air at 310. The mixture was insolubilized with C and heated at 1200 ° C. in N 2 gas for 10 minutes to obtain a carbon fiber having an elliptical cross section.
  • Table 1 shows the surface area, crack content, crack content and other properties of the obtained carbon steel.
  • the pitch was changed to a softening point +70 immediately before the nozzle from the modified cross-section nozzle shown in FIGS. 3 to 5 (retained at the softening point +50). C was discharged in a state of being heated, and immediately after the discharge, the film was relaxed and wound to obtain a pitch iron having an elliptical cross section. The resulting pitch ⁇ insolubilized by 3 1 0 e C in air, N 2 gas
  • Carbonization treatment was performed at 1200 at 10 minutes to obtain carbon steel having an elliptical cross section. .
  • Table 2 shows the cross-sectional area, defect content and physical properties of the obtained carbon fiber.
  • a softening point + 40 ° C (Sample No. 8) and a softening point + 55 eC (Sample No. 9) were obtained from a nozzle with a circular cross section of 0.25 mm in diameter. After spinning at a different nozzle temperature, winding was performed in the same manner as in Example 1, followed by infusibilization and carbonization to obtain a carbon fiber having a circular cross section.
  • Table 3 shows the cross-sectional area, defect content and physical properties of the obtained carbon fiber. .
  • FIGS. 6 The scanning electron micrographs of the carbon fibers obtained with the sample No. 3 of Example 1 and the sample No. of Example 2 are shown in FIGS. 6 (approximately 3 ⁇ 0 ⁇ ) and FIG. 0 ⁇ times).

Abstract

A process for producing carbon fiber having an oval cross-section, which comprises extruding a spinning pitch through a nozzle having a rectangular cross-section of 1 or more in the width/height ratio of the opening or an odd-shaped nozzle, sufficiently loosening the nozzle-oriented pitch molecules immediately after extrusion thereof, continuously rereeling it to obtain pitch fiber having an oval cross-section, then making it infusible and carbonizing it.

Description

明 細 書  Specification
楕円形断面を有する炭素繊維の製造方法  Method for producing carbon fiber having elliptical cross section
技 術 分 野  Technical field
本発明は、 楕円形断面を有する炭素織維の製造方法に 関する。  The present invention relates to a method for producing a carbon fiber having an elliptical cross section.
背 景 技 術  Background technology
炭素鐵維は、 現在主にポ リアク リ ロニ ト リル (以下 P A Nという) 及びピッチを出発原料と して製造されて いる。  Currently, carbon fiber is mainly manufactured using polyacrylonitrile (PAN) and pitch as starting materials.
P A N系の炭素繊維は、 引っ張り強度 3 ◦ 0 kgZ niiii2 以上のものが市販されており、 各種の高性能複合材料用 素材と して広く使用されている。 し力、しな力 ら、 P A N 系炭素織維は、 高性能複合材料用素材しての重要な性能 である弾性率が比詨的低く 、 市販品の多く においては 2 0〜 3 0 ton Ζ ιηιπ2 程度であり、 4 0 ton Ζ龍2 をこ えるものは得られていない。 この弾性率における限界は、 公知の如く P A N系炭素繊維の出発原料に由来するもの で、 炭素鐵維内部の結晶成長及び配向によって必然的に 制約される ものである。 また、 P A N系炭素識維は、 そ の炭化収率が出発原料の約 5 0 %と低いことや、 不融化 以後の工程において緊張処理を必要とする等の理由によ り、 コス ト高となる欠点もある。 —方、 ピッチ系炭素繊維は、 上述の ; P A N系炭素織維 の有する問題点を有しておらず、 より安価で高性能の素 材となり得るものと期待されている。 即ち、 特に光学的 異方性を示すピッチを原料とする場合には、 前駆体鐵維 (以下ピッチ鐡維という) の炭化過程中の温度上昇PAN-based carbon fibers having a tensile strength of 3 ◦ 0 kgZ niiii 2 or more are commercially available, and are widely used as materials for various high-performance composite materials. PAN-based carbon fiber has a relatively low elastic modulus, which is an important property as a material for high-performance composite materials, and is 20 to 30 ton in many commercially available products. is a ιηιπ 2 about, has not been obtained can this a 4 0 ton Ζ dragon 2. As is well known, the limit in the elastic modulus is derived from the starting material of the PAN-based carbon fiber, and is necessarily limited by the crystal growth and orientation inside the carbon fiber. In addition, PAN-based carbon fiber has a high cost due to the low carbonization yield of about 50% of the starting material and the necessity of strain treatment in the process after infusibility. There are also disadvantages. — On the other hand, pitch-based carbon fiber does not have the above-mentioned problems of PAN-based carbon fiber, and is expected to be a cheaper and higher-performance material. That is, particularly when pitch having optical anisotropy is used as a raw material, the temperature rise during the carbonization process of the precursor steel (hereinafter referred to as pitch steel).
( 1 0 0 0〜 3 0 0 0。C ) に伴って結晶の成長及び配向 が良好に進行するので、 4 0 ton / rani2 以上の高弾性を 有する炭素籙維が容易に得られる。 また、 出発原料が、 他用途に使用される 用物の残渣であることから、 安 fffi に入手可能であり、 また炭化収率がピッチ籙 重量の約 9 0 %にも達するので、 製造コス トが低いという利点を 有している。 し力、しながら、 ピッチ系炭素.嶽垂を製造す る際の紡糸用原料であるピッチ (以下紡糸用ピッチとい う) は、 (ィ) 一般の有機高分子と比較して極端に分子 量が小さい、 (口) 分子量及び分子構造が極めて多種多 用である、 (ハ) 溶解温度即ち紡糸温度が 3 0 0 °C以上 と高い等の特異な性質を有しているので、 炭素鐵維の製 造に際しては、 一般の有機高分子とは異なった問題点が 存在する。 例えば、 (100 to 300.C), the growth and orientation of the crystal proceed well, so that a carbon fiber having a high elasticity of 40 ton / rani 2 or more can be easily obtained. In addition, since the starting material is a residue of materials used for other purposes, it can be obtained at a low cost, and the carbonization yield can be as high as about 90% of the weight of the pitch. Is low. However, pitch-based carbon. Pitch, which is a raw material for spinning when manufacturing dake (hereinafter referred to as spinning pitch), has an extremely high molecular weight compared to general organic polymers. (C) It has unique properties such as extremely high molecular weight and molecular structure, and (c) high melting temperature, ie, spinning temperature of 300 ° C or more. However, there are problems in the production of the polymer, which are different from those of general organic polymers. For example,
( i ) 溶融ピッチの紡糸温度が高い、 温度による粘度 変化が大きい、 ピッチ鐡維の強度が P A Nを含む一般 の有機織維より も極めて低い等の理由により、 他の有 機高分子に比して安定した連続紡糸性に劣る。 (i) Other factors such as high spinning temperature of the molten pitch, large change in viscosity with temperature, and the strength of pitch steel are much lower than those of general organic fibers including PAN. It is inferior in stable continuous spinnability as compared with the high polymer.
( ϋ ) ピッチ系炭素繊維の断面を観察した場合に、 分 子の凝集状態 (以下断面高次構造という) が種々異な つている。 即ち、 分子が鐵維の同心円方向に結晶を構 成したり (いわゆるオニオン型) 、 繊維の中心から放 射状方向に結晶を構成したり (ラ ジアル型) 、 方向性 を示すことなく分布したり (ラ ンダ厶型) 或いは内層 部分がラ ンダム型で外層部分がラジアル型となったり する。 また、 ピッチ系嶽維内にクラック、 ボイ ド等の ミ クロな欠陥を生じやすい。 この様な高次断面構造及 び欠陥は、 炭素繊維の力学的物性にも大き く影響し、 特に欠陥の存在は、 引張り強度や伸びを大き く低下さ せる。 この様な高次断面搆造及び欠陥の出現頻度ほ、 紡糸温度、 溶融ピッチの受ける剪断応力、 ピッチ繊維 の ドラフ ト比 (巻取速度 吐出速度) 、 吐出後の緩和 部及び延伸固化部の雰囲気温度等の通常の紡糸条件並 びに紡糸用ピッチの物性により変化するので、 炭素嶽 維の品質を一定とするためには、 これ等の多数のパラ メ一ターを厳密に制御する必要がある。  (ii) When the cross section of the pitch-based carbon fiber is observed, the aggregation state of the molecules (hereinafter referred to as the higher-order cross-sectional structure) is different. That is, the molecules may form crystals in the concentric direction of the fiber (so-called onion type), or may form crystals in the radial direction from the center of the fiber (radial type), and may be distributed without indicating directionality. (Random type) or the inner layer is random and the outer layer is radial. In addition, micro defects such as cracks and voids are apt to occur in pitch-type dake. Such higher-order cross-sectional structures and defects greatly affect the mechanical properties of carbon fibers, and the presence of defects significantly reduces tensile strength and elongation. The frequency of appearance of such high-order cross sections and defects, spinning temperature, shear stress applied to the molten pitch, draft ratio of the pitch fiber (winding speed and discharge speed), atmosphere in the relaxation part after drawing and the solidified part in the drawing Since it changes depending on the ordinary spinning conditions such as temperature and the physical properties of the spinning pitch, it is necessary to strictly control many of these parameters in order to keep the quality of carbon gazing constant.
従って、 高性能のピッチ系炭素織維を安定して製造す るには、.上記の如き品質変動要因を出来るだけ除去する 必要があり、 これを可能とする新たな技術の出現が切望 されている。 Therefore, in order to stably produce high-performance pitch-based carbon fibers, it is necessary to remove the above-mentioned factors of quality fluctuation as much as possible. Have been.
発明の開示  Disclosure of the invention
本発明者は、 上記の如き技術の現状に鑑みて鋭意研究 を重ねた結果、 特定の開口形状を有する ズルから紡糸 用ピッチを押出し、 ノズルにより配向されたピッチ分子 をノズルからの吐出直後に充分に緩和させ、 これを連镜 的に巻き取って得られた楕円形靳面のピッチ錢維を不融 化し、 次いで炭化処理する場合には、 上記の如き従来の 技術の問題点を実質的に解消し得ることを見出した。 即 ち、 本発明は、 開口部の幅 Z高さ比が 1より も大きい長 方形断面ノズル又は異型断面ノズルから紡糸用ピッチを 押し出し、 ノズルにより配向されたビツチ分子をノズル からの吐出直後に充分に緩和させた後、 違続的に巻き取 つて楕円形断面を有する ピッチ鈸維を得、 これを不融化 及び炭化することを特徵とする楕円形断面を有する炭素 鐡維の製造方法に係る。  The present inventor has conducted intensive studies in view of the state of the art as described above, and as a result, extruded a spinning pitch from a nozzle having a specific opening shape, and sufficiently released the pitch molecules oriented by the nozzle immediately after discharging from the nozzle. In the case where the pitch material of the elliptical surface obtained by successively winding this is made infusible and then carbonized, the problems of the conventional technology as described above are substantially solved. We found that it could be resolved. That is, according to the present invention, a spinning pitch is extruded from a rectangular cross-section nozzle or a modified cross-section nozzle in which the width Z height ratio of the opening is greater than 1 and the bit molecules oriented by the nozzle are sufficiently discharged immediately after the nozzle. The present invention relates to a method for manufacturing a carbon fiber having an elliptical cross section, which is characterized in that a pitch fiber having an elliptical cross section is obtained by intermittently winding and then infused and carbonized.
本発明においては、 上記炭化工程で黒鉛化すれば、 黒 鉛鐵維が得られるので、 本願明細書において、 炭化は黒 鉛化を含み、 炭素繊維は黒鉛鏃維を含む概念として用い る。  In the present invention, if graphite is formed in the carbonization step, graphite iron is obtained. Therefore, in the present specification, carbonization is used as a concept including graphitization, and carbon fiber is used as a concept including graphite arrowheads.
本発明で使用する-紡糸用ピッチは、 ピッチ状物質を不 活性ガス流通下に熱重縮合させることにより得ることが 好ま しい。 ピッチ状物質としては、 石油系ピッチ、 石炭 系ピッチ及び有機化合物からの熱分解残渣ピッチのいず れであっても良く 、 軟化点 (スイス国メ トラー社の軟化 点測定装置で測定) 2 8 0〜 3 2 5。Cのものが好ま しい 特にコールタールやコールタールピッチの様な石炭系ピ ツチを原料とする場合には、 熱重縮合に先立って、 特開 昭 5 7 - 8 8 0 1 6号公報に記載の方法に従って、 予め 原料ピッチを芳香族還元性溶剤により 3 5 0〜 5 0 0 °C で熱処理しておく ことにより、 紡糸性をより一層改善す ることができる。 紡糸用ピッチと しては、 紡糸可能であ れば特に限定されない。 The pitch for spinning used in the present invention can be obtained by subjecting a pitch-like substance to thermal polycondensation under an inert gas flow. I like it. The pitch-like substance may be any of petroleum-based pitch, coal-based pitch, and pyrolysis residue pitch from organic compounds, and has a softening point (measured by a softening point measuring device of Mettler, Switzerland). 0-32.5. C is preferred. Particularly when coal-based pitch such as coal tar or coal tar pitch is used as a raw material, it is described in JP-A-57-88016 prior to thermal polycondensation. By subjecting the raw material pitch to a heat treatment at 350 to 500 ° C. in advance with an aromatic reducing solvent according to the method described above, spinnability can be further improved. The pitch for spinning is not particularly limited as long as spinning is possible.
第 1図乃至第 5図は、 本発明で使用するノ ズルの代表 例を示す模式図であり、 第 6図及び第 7図は、 本願実施 例で得られた炭素鐡錐の断面形状を示す走査型電子顕微 鏡写真である。  1 to 5 are schematic views showing typical examples of nozzles used in the present invention, and FIGS. 6 and 7 show cross-sectional shapes of carbon steel cones obtained in the embodiment of the present invention. It is a scanning electron microscope photograph.
以下、 図面を参照しつつ、 本発明方法を詳細に説明す 0  Hereinafter, the method of the present invention will be described in detail with reference to the drawings.
先ず、 楕円形断面を有する ピッチ繊維の製造は、 紡糸 用ピッチが良好な曳糸性を示す温度 (これはピッチの種 類に応じて実験的に容易に定めることができる) におい て、 開口部の幅ノ高さ比が 1 より もの大きい長方形又は スリ ッ ト状断面ノズル或いは異型断面ノズルから紡糸ピ ツチを押し出し、 ノズルにより配向されたピッチ分子を ノズル吐出直後に充分に緩和させた後、 違続的に卷取る ことにより行なう。 First, the production of pitch fibers having an elliptical cross section is performed at a temperature at which the spinning pitch exhibits good spinnability (which can be easily determined experimentally according to the type of pitch). From a rectangular or slit-shaped cross-section nozzle or a modified cross-section nozzle with a width-to-height ratio greater than 1 The punch is extruded, and the pitch molecules oriented by the nozzle are sufficiently relaxed immediately after the nozzle is discharged, and then are wound intermittently.
本発明で使用するノズルの具体的な開口形状の若干洌 を第 1図乃至第 4図に示す。.  FIGS. 1 to 4 show a specific example of the opening shape of the nozzle used in the present invention. .
第 1図は、 幅 (W) と高さ (H) との比 WZH〉 1で ある長方形靳面を有するノズルを示し、 第 2図は、 第 1 図の長方形の 2長辺を外側に連続的に湾曲膨出させた異 型断面ノズルを示し、 第 3図は、 第 1図の長方形の 2長 辺を内側に湾 ¾させた異型断面ノズルを示す。 第 4図は, W/H > 1である変則 Y字型断面を有する異型断面ノズ ルを示し、 第 5図は、 WZH〉 1である変則十字型靳面 を有する異型断面ノズルを示す。 本発明においては、 ノ ズルの形状と しては、 開口部の幅 (W) と高さ (H) と の比 WZHが 1より も大きく、 好ま しく は 1を上回って 1 0まで、 より好ましく は 1を上回って 5までであり、 特にノズル開口部の形状が楕円である必要はない。 かか る開口部の幅と高さは、 それぞれ最大の幅と長さを指す < またノズル開口部の断面積も特に限定されないが、 最終 的に得られる炭素織維の縦割れ、 クラック等の欠陥を防 止する観点からは 5 X 10一1〜 5 X 10ー3 2 、 より好 ま しく は 1 0 -1〜 1 0 -2mni2 程度が適切である。 ' 本発明において "紡糸ピッチ中の配向されたピッチ分 子の緩和" とは、 吐出されたピッチ融液が、 ノズル開口 部形状と相似の断面形状を保ったまま紡糸過程で細く な り固化して繊維化するのではなく 、 ノズル吐出直後より 細化及び 又は固化する迄の間にピツチ分子の熱運動と 糸の表面張力の為ノズル形状の由来をなく していく現象 をいう。 本発明における緩和は、 嶽錐断面形状が用いた ノ ズルの W / H 〉 1 に基づく長 ♦ 短軸を有する楕円形状 となる程度迄充分に行なう。 ノズルからの吐出直後の紡 糸ピッチ内の配向分子の緩和は、 原理的には、 紡糸温度 特にノズル吐出時にピッチ融液の温度を上昇させること により行なわれる。 但し、 単钝にピッチ融液の温度を上 げて紡糸温度を高めるのでは、 ガス発生、 曳糸性の低下 等により安定した違続紡糸が困難となる場合が多い。 従 つて、 例えば、 ピッチ融液をノズル開口部直前で若しく はノズル開口部で局所的に加熱した後紡糸したり、 或い はノズル吐出直後のピッチ融液を局所的に加熱し得る様 にノズルの構造を工夫することが好ま しい。 しかしなが ら、 上記のピッチ分子の緩和が可能である限り、 その手 段は限定されない。 FIG. 1 shows a nozzle having a rectangular surface having a ratio (WZH) of width (W) to height (H) of 1, and FIG. 2 shows two long sides of the rectangle of FIG. FIG. 3 shows a modified cross-section nozzle which is curved and bulged in a curved manner, and FIG. 3 shows a modified cross-section nozzle in which two long sides of the rectangle in FIG. FIG. 4 shows an irregular cross-section nozzle having an irregular Y-shaped cross section satisfying W / H> 1, and FIG. 5 shows an irregular cross-section nozzle having an irregular cross-shaped cross section satisfying WZH> 1. In the present invention, as the shape of the nozzle, the ratio WZH of the width (W) to the height (H) of the opening is larger than 1, preferably above 1 and up to 10 more preferably. Is more than 1 and up to 5. In particular, the shape of the nozzle opening does not need to be elliptical. The width and height of the opening indicate the maximum width and length, respectively. <The cross-sectional area of the nozzle opening is not particularly limited. the defects from the viewpoint of prevention 5 X 10 one 1 ~ 5 X 10 -3 2, more favorable or properly 1 0 - 1 ~ 1 0 - 2 mni 2 about is appropriate. '' In the present invention, "relaxation of oriented pitch molecules in the spinning pitch" means that the discharged pitch melt becomes thin and solidified during the spinning process while maintaining a cross-sectional shape similar to the shape of the nozzle opening. This is a phenomenon in which the origin of the nozzle shape is lost due to the thermal motion of the pitch molecules and the surface tension of the yarn between the time immediately after the discharge of the nozzle and the time when the fiber is thinned and / or solidified. Relaxation in the present invention is sufficiently performed until the cross-sectional shape of the mountain cone becomes an elliptical shape having a long / short axis based on W / H> 1 of the nozzle used. Relaxation of oriented molecules in the spinning pitch immediately after ejection from the nozzle is performed in principle by increasing the spinning temperature, particularly the temperature of the pitch melt at the time of ejection from the nozzle. However, simply raising the temperature of the pitch melt to increase the spinning temperature often makes stable discontinuous spinning difficult due to gas generation, poor spinnability, and the like. Therefore, for example, the pitch melt is heated locally just before the nozzle opening or locally at the nozzle opening and then spun, or the pitch melt immediately after the nozzle discharge can be heated locally. It is preferable to devise a nozzle structure. However, the method is not limited as long as the above-mentioned pitch molecules can be relaxed.
ピッチ.分子の緩和を充分に行なつた紡糸体は、 連続的 に巻き取られて楕円形断面を有する ピッチ繊維となる。 楕円形断面ピッチ織維の断面積は特に限定されないが、 安定した巻取りを行ない、 鐵維断面形状を楕円形とし、 且つ最終的に得られる炭素繊維の縦割れ、 クラック等の 欠陥を防止する観点からは、 3 X 1 0一5〜 3 X 1 0 fflffl2 程度とすることが好ま しい。 The spun body having sufficiently relaxed the pitch molecules is continuously wound into a pitch fiber having an elliptical cross section. The cross-sectional area of the elliptical cross-section pitch fiber is not particularly limited. From the viewpoint, it is preferable to set it to about 3 × 10 15 to 3 × 10 fflffl 2 .
本発明においては、 次いで上記の様にして得られた楕 円形断面を有する ピッチ鐵鍇を常法に従って、 例えば酸 素含有雰囲気中 2 8 0〜4 4 0ての温度で不融化^理し た後、 炭素化の場合.は、 窒素、 二酸化炭素、 アルゴン等 の雰囲気中で 1 0 0 0〜 2 0 0 0で程度、 黒鉛化の場合 はアルゴン等の雰囲気中 2 0 0 0〜 3 0 0 0。C程度で加 熱することにより楕円形断面を有する炭素錢镜を得る。  In the present invention, the pitch iron having an elliptical cross section obtained as described above was then infusibilized in a conventional manner, for example, in an oxygen-containing atmosphere at a temperature of 280 to 450. Later, in the case of carbonization, it is about 1000 to 2000 in an atmosphere of nitrogen, carbon dioxide, argon, etc., and in the case of graphitization, it is 200 to 300 in an atmosphere of argon, etc. 0. By heating at about C, a carbon steel with an elliptical cross section is obtained.
発明の効杲  Effect of invention
本発明によれば以下の如き顕著な効果が達成される。 ( i ) 最終的に得られる楕円形断面炭素錄鐯は、 その 内部にクラック、 縦割れ等のミ ク口な欠陥をほとんど 有しない。  According to the present invention, the following remarkable effects are achieved. (i) The finally obtained oval cross-section carbon I hardly has cracks, vertical cracks and other small defects inside.
( ϋ ) 同一断面積を有する円形断面の炭素.鎮維に比し て、 本発明楕円形断面炭素繊維の引張り強度は、 著る しく大きい。  (iii) The tensile strength of the elliptical cross-section carbon fiber of the present invention is remarkably higher than that of carbon having the same cross-sectional area and a circular cross-section.
( iii ) · 一般に、 ピッチ系炭素鐡維の引張り強度は、 紡 糸用ピッチの特性、 紡糸条件、 断面高次搆造、 鐵維断 面形状等によってその度合は異なるものの、 繊維断面 積の増加により徐々に若しく は急激に低下する。 従つ て、 本発明楕円形断面炭素繊維が俊れた強度特性を有 しているという ことは、 同一引張り強度で比較する場 合、 繊維断面積を特に小さ く する必要はないので、 安. 定した連続紡糸性が容易に達成されることを意味する c (iii) · Generally, the tensile strength of pitch-based carbon steel fibers is determined by the properties of spinning pitch, spinning conditions, high-order cross section, steel break Although the degree differs depending on the surface shape, etc., it gradually or rapidly decreases as the fiber cross-sectional area increases. Therefore, the fact that the elliptical cross-section carbon fiber of the present invention has excellent strength characteristics is inexpensive because it is not necessary to make the fiber cross-sectional area particularly small when comparing with the same tensile strength. C means that the specified continuous spinnability is easily achieved
( iv ) 楕円形断面を有する本発明炭素籙維は、 単位 ί本 積当りの表面積がより大きいので、 他の材料との複合 状態において炭素辯維自体の優れた力学物性が充分に 発揮される。 従って、 複合材用素材と して特に好適で める 0 (iv) Since the carbon fiber of the present invention having an elliptical cross section has a large surface area per unit area, the excellent mechanical properties of the carbon fiber itself are sufficiently exhibited in a composite state with other materials. . Therefore, it is particularly suitable as a material for composite materials.
実 施 例  Example
以下に参考例及び比詨例とともに実施例を示し、 本癸 明の特徵とするところをより一層明らかにする。  Examples are shown below together with Reference Examples and Comparative Examples to further clarify the features of the present invention.
参考例 1 Reference example 1
軟化点 1 2 0て、 キノ リ ン不溶分 0 . 2 0重量%、 ベ ンゼン不溶分 3 7重量%のコールタールピッチ 1重量部 と水素化重ァン トラセン油 2重量部との混合溶液をォー トク レーブ中で 4 3 0 で 6 0分間攪拌下加熱した後、 加圧式フィルタ一で熱時 過し、 更に減圧下 3 ◦ 0 で 水素化重ァン トラセン油を除去して、 還元ピッチを得た。  A mixed solution of 1 part by weight of coal tar pitch having a softening point of 120%, 0.2% by weight of a quinoline-insoluble matter, and 37% by weight of a benzene-insoluble matter and 2 parts by weight of hydrogenated heavy triacene oil. After heating with stirring at 430 in an autoclave for 60 minutes, the mixture was heated with a pressurized filter, and the hydrogenated heavy anthracene oil was removed at 3 ◦ 0 under reduced pressure to reduce the reduced pitch. I got
ガス導入管、 熱電対、 攪拌檨及び留出分除去管を備え た反応器に上記で得られた還元ピッチ 5 0 kgを入れ、 攪 拌下窒素ガスを導入しつつ、 4 1 0〜4 8 0。Cで 4時間 にわたり、 低分子量成分の除去及び熱重縮合を行なった < 得られたピッチの物性は、 軟化点 3 1 3 °C (メ トラ一 社製軟化点測定装置による) 、 キノ リ ン不溶分 3 8重量 > 光学的等方性成分 5 , 1容量%であった。 Equipped with gas inlet tube, thermocouple, stirrer and distillate removal tube 50 kg of the reduced pitch obtained above was placed in the reactor, and the mixture was stirred at 410 to 480 while introducing nitrogen gas. The removal of low molecular weight components and thermal polycondensation were performed at 4 ° C for 4 hours. <The physical properties of the obtained pitch were as follows: softening point 3 13 ° C (using a softening point measuring device manufactured by METRA) Insoluble content: 38%> optically isotropic component: 5, 1% by volume.
実施冽 1 Implementation cold 1
参考例 1で得た熱重縮会ピッチを使用して、 第 1図に おいて所定の Hと Wを有する長方形断面ノズルから飮化 点 + 5 5でなるノズル温度条件下にてピッチを吐出し、 ノズル表面から 7 の所で繊維が細化 (固化) するよう にノズル下を均質に加熱することにより、 紡糸ピッチ内 の配向されたピツチ分子の緩和を行なった後、 所定の襟 綞断面積になる用に卷取って、 楕円形断面のピッチ鐵锥 を得た。 次いで、 得られたビツチ鑤維を空気中 3 1 0。C で不溶化し、 N 2 ガス中 1 2 0 0 °Cで 1 0分間加熱して. 楕円形断面を有する炭素織維を得た。 Using the hot compaction pitch obtained in Reference Example 1, the pitch is discharged from a rectangular cross-section nozzle having predetermined H and W in Fig. 1 under the nozzle temperature condition of drinking point + 55 Then, by heating uniformly under the nozzle so that the fiber is thinned (solidified) at 7 points from the nozzle surface, the oriented pitch molecules in the spinning pitch are relaxed, and then the predetermined collar is cut. It was wound up to have an area, and a pitch iron having an oval cross section was obtained. Next, the obtained bituminous fiber was placed in the air at 310. The mixture was insolubilized with C and heated at 1200 ° C. in N 2 gas for 10 minutes to obtain a carbon fiber having an elliptical cross section.
得られた炭素鐵維の靳面積、 クラック、 縦割れ等の欠 陥含有率及び物性を第 1表に示す。 Table 1 shows the surface area, crack content, crack content and other properties of the obtained carbon steel.
試料 ノズル形状(闘) 断 面 積 欠陥含有率 強 度 弾 性 率 ノズルの断面積 No. W H 深 さ (删2 ) (%) (kgZ画2 ) (ton/删 2 ) (翻2 )Specimen Nozzle shape (fight) Cross-sectional area Defect content rate Elasticity modulus Nozzle cross-sectional area No. WH Depth (删2 ) (%) (kgZ image 2 ) (ton / 删2 ) (translation 2 )
1 0. 5 0. 07 0, 4 85X 10" 6 0 304 18. 1 3. 5X10一 2 1 0.5 0.07 0, 4 85X 10 " 6 0 304 18.1 3.5 X10 1-2
2 0. 5 0. 07 0. 4 129X10 -8 0 296 17. 5 3. 5x 10" 2 2 0. 5 0. 07 0. 4 129X10 - 8 0 296 17. 5 3. 5x 10 "2
3 0. 3 0. 11 0. 4 88x10一 6. 0 288 17. 3 3. 3X103 0. 3 0. 11 0. 4 88x10 one 6. 0 288 17. 3 3. 3X10
4 0. 3 0. 11 0. 4 141x10一 6 0 279 16. 8 3. 3X10一 2 4 0.3 0. 11 0. 4 141x10-1 6 0 279 16.8 3.3 X10 1-2
実施例 2 Example 2
参考例 1で調製した熱重縮合ピッチを使用して、 第 3 図乃至第 5図に示す異型断面ノズル (軟化点 + 5 0 に 保持) から該ピッチをノズル直前で軟化点 + 7 0。Cに加 熱した状態で吐出し、 吐出直後に緩和を生じさせた後卷 取って、 楕円形断面のピッチ鐡維を得た。 得られたピッ チ籙綞を空気中 3 1 0 eCで不溶化し、 N 2 ガス中 Using the hot polycondensation pitch prepared in Reference Example 1, the pitch was changed to a softening point +70 immediately before the nozzle from the modified cross-section nozzle shown in FIGS. 3 to 5 (retained at the softening point +50). C was discharged in a state of being heated, and immediately after the discharge, the film was relaxed and wound to obtain a pitch iron having an elliptical cross section. The resulting pitch籙綞insolubilized by 3 1 0 e C in air, N 2 gas
1 2 0 0でで 1 0分間炭化処理して、 楕円形断面を有す る炭素鐡維を得た。 . Carbonization treatment was performed at 1200 at 10 minutes to obtain carbon steel having an elliptical cross section. .
得られた炭素繊維の断面積、 欠陥含有率及び物性を第 2表に示す。 Table 2 shows the cross-sectional area, defect content and physical properties of the obtained carbon fiber.
2 Two
試料 ノ ズ ル 断 面 積 欠陥含有率 強 度 弾 性 率 ノズルの断面積 No. 形 式 W (關) H (删) (翻 ) ( ) (kgZ隨 2 ) (ton/πιπι2 ) (mm2 )Sample Nozzle Le sectional surface product defect content strength of bullet resistant rate sectional area of the nozzle No. format W (Jour) H (删) (Translation) () (KGZ隨 2) (ton / πιπι 2) (mm 2 )
5 第 3図 0. 30 0. 14 96x 10" 6 0 302 18. 1 3. 3X10一2 5 Figure 3 0. 30 0. 14 96x 10 "6 0 302 18. 1 3. 3X10 one 2
6 第 4図 0. 30 0. 15 102x 10" 6 0 287 17. 2 3. 4X106 Fig. 4 0.30 0.15 102x10 " 6 0 287 17.23.4X10
7 第 5図 0. 25 0. 25 95 X 10~ 6 0 293 17. 5 1. 4X10 7 Fig. 5 0.25 0.25 95 X 10 ~ 6 0 293 17.5 1.4 X10
比較例 1 Comparative Example 1
参考例 1で調製した熱重縮合ピッチを使用して、 直径 0. 2 5 mmの円形断面ノズルから軟化点 + 40 °C (試料 No.8) 及び軟化点 + 55eC (試料 No.9 ) なるノズル 温度で紡糸した後、 実施例 1 と同様にして卷取.り、 続い て不融化及び炭化を行なって、 円形断面を有する炭素織 維を得た。 Using the hot polycondensation pitch prepared in Reference Example 1, a softening point + 40 ° C (Sample No. 8) and a softening point + 55 eC (Sample No. 9) were obtained from a nozzle with a circular cross section of 0.25 mm in diameter. After spinning at a different nozzle temperature, winding was performed in the same manner as in Example 1, followed by infusibilization and carbonization to obtain a carbon fiber having a circular cross section.
得られた炭素鐵維の断面積、 欠陥含有率及び物性を第 3表に示す。 . Table 3 shows the cross-sectional area, defect content and physical properties of the obtained carbon fiber. .
3 3 表 試料 No. 断画 (關 2 ) 欠陥含有率 (%) 強度(kg /闘2 ) W (ton/mm2 )3 3 Table Sample No. Danga (Jour 2) defect content (%) Strength (kg / fighting 2) W (ton / mm 2)
8 95X10"8 35% (クラック) 185 14. 88 95X10 " 8 35% (crack) 185 14.8
9 131 10" 6 15% (ボイ ド) 226 16. 2 9 131 10 " 6 15% (void) 226 16.2
紡糸後のピッチ分子の配向緩和を行なわない場合には 欠陥のために強度及び弾性率が低いことが明らかである 参考例 2 If the orientation of the pitch molecules after spinning is not relaxed, it is clear that the strength and elastic modulus are low due to defects. Reference Example 2
実施例 1の試料 No.3及び実施例 2の試料 No.で得ら れた炭素織維の走査型電子顕微鏡写真を第 6図 (約 3 〇 0 〇倍) 及び第 7図 (約 1 2 0 ◦倍) として夫々示す。  The scanning electron micrographs of the carbon fibers obtained with the sample No. 3 of Example 1 and the sample No. of Example 2 are shown in FIGS. 6 (approximately 3 × 0 ×) and FIG. 0 ◦ times).

Claims

請求の範囲 The scope of the claims
① 開口部の幅ノ高さが 1 より も大きい長方形断面ノズ ル又は異型断面ノズルから紡糸用ピッチを押し出し、 ノ ズルにより配向されたピッチ分子をノズルからの吐 出直後に充分に緩和させた後、 連続的に巻き取って楕 円形断面を有する ピッチ織維を得、 これを不融化及び 炭化することを特徵とする楕円形断面を有する炭素镊 維の製造方法。  ① After the spinning pitch is extruded from a rectangular cross-section nozzle or a modified cross-section nozzle whose opening has a width greater than 1, the pitch molecules oriented by the nozzle are sufficiently relaxed immediately after ejection from the nozzle. A method for producing a carbon fiber having an elliptical cross section, which comprises continuously winding and obtaining a pitch fiber having an elliptical cross section, and infusing and carbonizing the pitch fiber.
② 長方形断面ノズル又は異型断面ノズルの開口部の幅 ノ高さが 1を上回って 1 0以下であることを特徵とす る請求の範囲第 1項に記載の製造方法。  (2) The method according to claim 1, wherein the width of the opening of the rectangular cross-section nozzle or the irregular cross-section nozzle is not less than 1 and not more than 10.
③ 長方形断面ノズル又は異型断面ノズルの開口部の断 面積が 5 x 1 0一1〜 5 x 1 0 "3 ιππι2 である ことを特徵 とする請求の範囲第 1項に記載の製造方法。 . ③ rectangular cross-section method according to claim 1, the cross-sectional area of the opening of the nozzle or modified cross-section nozzle and Toku徵to be a 5 x 1 0 one 1 ~ 5 x 1 0 "3 ιππι 2..
④ 紡糸用ピッチの軟化点が 2 8 0〜 3 2 5。Cであるこ とを特徵とする請求の範囲第 1項に記載の製造方法。 ⑤ 不融化を酸素含有雰囲気中 2 8 0〜 4 4 0 で行な う ことを特徵とする請求の範囲第 1項に記載の製造方 法 o ピ ッ チ The softening point of the pitch for spinning is 280-325. 2. The method according to claim 1, wherein the method is C.製造 The production method according to claim 1, wherein the infusibilization is performed in an oxygen-containing atmosphere at 280 to 450.
⑥ 炭化を不活性ガス雰囲気中 1 0 ◦ 0〜 2 0 ◦ 0 °Cで 行なう.ことを特徴とする請求の範囲第 1項に記載の製 造方法。 ⑦ 開口部の幅 高さが 1より も大きい長方形断面ノズ ル又は異型断面ノズルから紡糸用ピッチを押し出し、 ノズルにより配向されたピッチ分子をノズルからの吐 出直後に充分に緩和させた後、 連銃的に巻き取って楕 円形断面を有するピッチ織維を得、 これを不融化及び 黒鉛化することを特徵とする楕円形断面を有する黒鉛 繊維の製造方法。 。 The method according to claim 1, wherein carbonization is performed in an inert gas atmosphere at 10 ° C to 20 ° C at 0 ° C. 幅 The spinning pitch is extruded from a rectangular cross-section nozzle or irregular cross-section nozzle whose opening height is greater than 1 and the pitch molecules oriented by the nozzle are sufficiently relaxed immediately after ejection from the nozzle. A method for producing graphite fibers having an elliptical cross-section, characterized in that a pitch fiber having an elliptical cross-section is obtained by gun-winding, and the pitch fiber is infusible and graphitized.
⑧ 黒鉛化をアルゴン中 2 0 0 0〜 3 0 0 0 °Cで行なう ことを特徵とする請求の範囲第 7項に記載の製造方法, 製造 The method according to claim 7, wherein the graphitization is performed in argon at 200 ° C. to 300 ° C.,
⑨ 請求の範囲第 1項に記載の方法で製造された楕円形 断面を有する炭素織綞。 A carbon woven fabric having an elliptical cross-section manufactured by the method according to claim 1.
⑩ 請求の範囲第 7項に記載の方法で製造された楕円形 断面を有する黒鉛鐵維。  黒 Graphite steel having an elliptical cross section manufactured by the method according to claim 7.
PCT/JP1987/000040 1986-01-22 1987-01-22 Process for producing carbon fiber having oval cross-section WO1990007593A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/105,427 US4859382A (en) 1986-01-22 1987-01-22 Process for preparing carbon fibers elliptical in section

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61012847A JPS62170526A (en) 1986-01-22 1986-01-22 Production of carbon fiber having elliptic cross-section
JP61/12847 1986-01-22

Publications (1)

Publication Number Publication Date
WO1990007593A1 true WO1990007593A1 (en) 1990-07-12

Family

ID=11816785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1987/000040 WO1990007593A1 (en) 1986-01-22 1987-01-22 Process for producing carbon fiber having oval cross-section

Country Status (2)

Country Link
JP (1) JPS62170526A (en)
WO (1) WO1990007593A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110578187A (en) * 2019-09-23 2019-12-17 陕西天策新材料科技有限公司 Graphite fiber with laminated cross-section structure and melt spinning method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168126A (en) * 1983-03-14 1984-09-21 Toray Ind Inc Production of pitch based carbon fiber
JPS60173121A (en) * 1984-02-16 1985-09-06 Toa Nenryo Kogyo Kk Production of carbon yarn and graphite yarn
JPS616316A (en) * 1984-11-02 1986-01-13 Teijin Ltd Graphite fiber
JPS616314A (en) * 1984-06-20 1986-01-13 Teijin Ltd Pitch carbon fiber
JPS6147826A (en) * 1984-08-15 1986-03-08 Teijin Ltd Manufacture of pitch-based carbon fiber
JPS61108725A (en) * 1984-10-30 1986-05-27 Teijin Ltd Production of pitch carbon yarn having novel structure
JPS61113828A (en) * 1984-11-09 1986-05-31 Teijin Ltd Pitch-based carbon fiber
JPS61113827A (en) * 1984-11-06 1986-05-31 Teijin Ltd Production of high-performance pitch-based carbon fiber
JPS61275426A (en) * 1985-05-30 1986-12-05 Mitsui Cokes Kogyo Kk Pitch-based carbon fiber and production thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163424A (en) * 1983-03-09 1984-09-14 Kashima Sekiyu Kk Spinning of petroleum mesophase

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168126A (en) * 1983-03-14 1984-09-21 Toray Ind Inc Production of pitch based carbon fiber
JPS60173121A (en) * 1984-02-16 1985-09-06 Toa Nenryo Kogyo Kk Production of carbon yarn and graphite yarn
JPS616314A (en) * 1984-06-20 1986-01-13 Teijin Ltd Pitch carbon fiber
JPS6147826A (en) * 1984-08-15 1986-03-08 Teijin Ltd Manufacture of pitch-based carbon fiber
JPS61108725A (en) * 1984-10-30 1986-05-27 Teijin Ltd Production of pitch carbon yarn having novel structure
JPS616316A (en) * 1984-11-02 1986-01-13 Teijin Ltd Graphite fiber
JPS61113827A (en) * 1984-11-06 1986-05-31 Teijin Ltd Production of high-performance pitch-based carbon fiber
JPS61113828A (en) * 1984-11-09 1986-05-31 Teijin Ltd Pitch-based carbon fiber
JPS61275426A (en) * 1985-05-30 1986-12-05 Mitsui Cokes Kogyo Kk Pitch-based carbon fiber and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110578187A (en) * 2019-09-23 2019-12-17 陕西天策新材料科技有限公司 Graphite fiber with laminated cross-section structure and melt spinning method thereof
CN110578187B (en) * 2019-09-23 2021-10-08 陕西天策新材料科技有限公司 Graphite fiber with laminated cross-section structure and melt spinning method thereof

Also Published As

Publication number Publication date
JPS62170526A (en) 1987-07-27

Similar Documents

Publication Publication Date Title
WO1984003722A1 (en) Process for producing carbon fibers
JPS6246644B2 (en)
US5037590A (en) Method for the preparation of carbon fibers
US4356158A (en) Process for producing carbon fibers
WO1990007593A1 (en) Process for producing carbon fiber having oval cross-section
US4859382A (en) Process for preparing carbon fibers elliptical in section
CA1227005A (en) Process for producing carbon fibers
JPH0545685B2 (en)
US4859381A (en) Process for preparing pitch-type carbon fibers
JPH0718057B2 (en) Pitch-based fiber manufacturing method
JP2849156B2 (en) Method for producing hollow carbon fiber
JPS60104524A (en) Preparation of carbon fiber
JP2837299B2 (en) Method for producing pitch-based ultrafine carbon fiber
WO1990007594A1 (en) Process for producing pitch-base carbon fiber
JPS6175821A (en) Production of pitch carbon fiber
Lavin Carbon fibres
JPS59164386A (en) Preparation of precursor pitch for carbon fiber
JPS6278220A (en) Production of ribbon-like carbon fiber
JP2894880B2 (en) Spinnerets for pitch-based carbon fiber spinning
JPH0364525A (en) Production of pitch-based carbon yarn
JPS60259631A (en) Production of pitch carbon fiber
JP4601875B2 (en) Carbon fiber manufacturing method
JPH0437167B2 (en)
JPH0788604B2 (en) Method for manufacturing pitch-based carbon fiber
JP2680183B2 (en) Method for producing pitch-based carbon fiber

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US