WO1989008945A1 - Supersonic motor with magnetic encoder - Google Patents

Supersonic motor with magnetic encoder Download PDF

Info

Publication number
WO1989008945A1
WO1989008945A1 PCT/JP1989/000273 JP8900273W WO8908945A1 WO 1989008945 A1 WO1989008945 A1 WO 1989008945A1 JP 8900273 W JP8900273 W JP 8900273W WO 8908945 A1 WO8908945 A1 WO 8908945A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
track
rotating body
encoder device
magnetic encoder
Prior art date
Application number
PCT/JP1989/000273
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromi Tanoue
Noriyuki Harao
Kenichiroh Takahashi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to DE19893990206 priority Critical patent/DE3990206C2/en
Publication of WO1989008945A1 publication Critical patent/WO1989008945A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to an ultrasonic motor provided with a magnetic encoder device capable of detecting the rotational state of the rotor.
  • Ultrasonic motors use almost any conventional motor, such as office equipment, household equipment, factory equipment, audio-visual equipment, cameras, and automotive electronics. It is possible to respond in the field of (1), and the demands for advanced control technology and small, lightweight, and thin structures are increasing.
  • FIG. 3 shows the configuration of a conventional ultrasonic motor equipped with a magnetic encoder device.
  • 103 is a disk-shaped rotation having a central axis of 10 la.
  • a ring-shaped liner that converts the vibrations of the body 1 'and the stay into rotational force. It is a disk-shaped rotor composed of a ring material 102.
  • Reference numeral 107 denotes a disk-shaped elastic body 104 having a 20-ring comb-shaped protruding portion 104 a on the upper surface and two disk-shaped piezoelectric bodies 105, 1.
  • This is a stay that is constructed by layering 06 in the thickness direction and joining it to the elastic body 104.
  • Reference numeral 108 denotes a disk-shaped fixed base that supports the rotor 103 and the stay 107, which is mounted on the mounting base 109.
  • 11 1 is a spring
  • 11 is a nut
  • a ring provided on the upper surface of the lining material 102 and the elastic body 104.
  • the structure is designed so that the protruding projections 104a contact each other with an appropriate load and are pressed.
  • 1 16 is a permanent magnet mounted on the outer periphery of the rotating body 101 at three locations
  • 117 is a mounting base that faces the permanent magnet 111. It is a magnetic sensitive element such as a hall element or a magnetoresistive element provided in the device. :.
  • the two piezoelectric members 105 and 106 joined to the elastic member 104 mechanically shifted 90 ° from each other have a time difference of 90 from each other.
  • the two piezoelectric bodies 105 and 106 When an AC voltage with a phase shift is applied, the two piezoelectric bodies 105 and 106 generate standing wave vibrations, and a wave line that combines the two standing waves.
  • the vibration of the elastic body 104 becomes a traveling wave that advances with time. Therefore, the rotor 103, which is in pressure contact with the protrusion 104a of the elastic body 104, makes contact only at the top of the wave, and is in the opposite direction to the traveling direction of the traveling wave. It is moved in the direction, and the rotation occurs.
  • the permanent magnet 111 mounted on the outer periphery of the rotor 101 also rotates, and the magnetic flux to the magnetic sensing element 111 changes intermittently. Then, this is detected by the magnetically sensitive element 117, and the processing is performed by the control circuit unit.
  • the ni ac voltage applied to the piezoelectric bodies 105 and 106 is cut off in a circuit manner, and the elastic body 104 is cut off.
  • the traveling material is no longer generated, and the lining material 102 and the ring-shaped projections 104a come into contact over the entire surface, A large frictional force is generated and the rotor 103 stops instantaneously.
  • the motor is not affected by the magnetic flux for driving.
  • the encoder section was installed outside in the direction of the motor's output shaft, so the overall thickness of the drive unit including the motor section and the encoder section was increased. It was difficult to reduce the size, and the use was limited. Disclosure of invention
  • the main purpose of the present invention is to improve the accuracy of position control and speed control of the ultrasonic motor and to reduce the thickness in the axial direction,
  • An object of the present invention is to provide a small, light, and thin ultrasonic motor with a magnetic encoder device.
  • An object of the present invention is to provide a stay in which a piezoelectric body is joined to an elastic body, and a lining material for converting the vibration of the stator into a rotating force on a rotating body.
  • the magnetic poles are alternately and continuously magnetized, with the first track and at least one magnetic pole at one location.
  • a second track, which is magnetized, is provided via a non-magnetized portion
  • -A magnetic encoder device comprising a magnetically sensitive element for detecting the rotational position and speed of the rotor, facing the second track.
  • the first and second tracks are provided along the outer peripheral surface of the surface of the rolling element having a wall surface protruding in a direction perpendicular to the magnetic element, and the magnetic element is formed of the magnetically sensitive element. It is equipped with a coder device.
  • the magnetically sensitive element detects changes in the first track and the second track magnetic flux generated by the rotation of the rotor, and detects the position control circuit section and the speed control circuit section.
  • the accuracy of the position and speed control of the ultrasonic motor can be improved by the command signal output from the angle control circuit.
  • the structure of the ultrasonic motor is small, lightweight, and thin.
  • a speed control circuit for inputting a signal from the magnetically sensitive element to detect the rotation speed of the rotating body, and a signal for inputting the signal from the magnetically sensitive element to the rotating body.
  • a position control circuit that detects the rotational position of the motor, and a drive circuit that receives signals from the speed control circuit and the position control circuit, and controls power supply to the piezoelectric body based on the signals. It has the following.
  • FIG. 1 (a) is a plan view of an ultrasonic motor with a magnetic encoder device according to an embodiment of the present invention
  • FIG. 1 (b) is a sectional view of the configuration of the ultrasonic motor
  • Fig. 2 (a) is a perspective view of the rotor and the magnetically sensitive element of the ultrasonic motor
  • Fig. 2 (b) is a schematic circuit diagram of a drive circuit of the ultrasonic motor
  • 2 (c) is a partial output signal diagram from the magnetically sensitive element of the ultrasonic motor
  • FIG. 3 (a) is a plane view of a conventional ultrasonic motor with a magnetic encoder device
  • Fig. 3 (b) is a sectional view of the structure. • Best mode for carrying out the invention
  • FIG. 1 is a cross-sectional view showing the configuration of an ultrasonic motor according to an embodiment of the present invention
  • FIG. 2 is a perspective view showing the rotor and a magnetically sensitive element. It is.
  • reference numeral 3 denotes a disk-shaped rotating body 1 having a central axis 1a and a wall protruding in the direction perpendicular to the radial direction on the outer periphery and vibration of the stator.
  • This is a disk-shaped rotor composed of a ring-shaped lining material 2 that converts torque into rotational force.
  • Numeral 7 shows a disc-shaped elastic body 4 having a ring-shaped comb-shaped projection 4a on the upper surface and two disc-shaped piezoelectric bodies 5, 6 superimposed in the thickness direction.
  • This is a stator that is configured by joining to FIG.
  • Reference numeral 8 denotes a disk-shaped fixed base that supports the rotor 3 and the stay 7 and is installed on the mounting base 9.
  • Numeral 10 denotes a bearing provided at the center of the stator 7 so that the shaft 1a of the rotating body 1 fits into the bearing.
  • 11 1 is a spring
  • 15 12 is a nut, which is a ring-shaped projection provided on the upper surface of the lining material 2 and the elastic body 4. 4a is designed to be tightened so that it contacts and presses with an appropriate load.
  • Reference numeral 15 denotes a magnetically responsive element mounting base which is set on the mounting base 9 with an appropriate gap from the outer periphery of the rotor.
  • reference numeral 2013 denotes a first track 13b formed by changing the magnetic poles alternately and continuously at the outer peripheral portion of the wall surface of the rotor, and magnetizing the rotor.
  • a non-magnetized portion 13a in which a second track 13c formed by magnetizing magnetic poles different from each other at one location in a concave groove shape is integrated. It is a resin-formed magnet formed in the above manner.
  • Reference numeral 14 denotes a frequency power generation unit mounted on the magnetically sensitive element mounting base 15 for detecting a change in magnetic flux in the 251st track 13b. • (FG section) An index section sensor 14b for detecting a change in magnetic flux in the sensor 14a and the second track 13c, and each sensor. It is a magnetically sensitive element consisting of a human output lead wire 14c that inputs and outputs the circuit.
  • the signals from the magnetically sensitive element 14 are input to the position control circuit 16 and the speed control circuit 17.
  • the signals of the position control circuit 16 and the speed control circuit 17 are input to the drive circuit 18.
  • the driving circuit 18 supplies electric power to the piezoelectric bodies 5 and 6 of the ultrasonic motor 19.
  • a control signal is output to the drive circuit 18 and the power supply to the piezoelectric bodies 5 and 6 is controlled based on the control signal to obtain a desired position for driving the ultrasonic motor 19.
  • the speed is controlled.
  • the basic output shown in Fig. 2c is obtained from the FG section sensor 14a.
  • Constant phase difference between waveform signal A and basic output waveform signal A (Usually 90 °) is output as the output waveform signal B.
  • the index section sensor 14b outputs an output signal of one wavelength due to one valley and valley for one rotation of the rotor 3.
  • a rotating body having a center axis and a wall protruding in a direction perpendicular to the radial direction on the outer peripheral portion and a ring-shaped rolling material are provided.
  • the first track which is magnetized by alternately and continuously changing the magnetic poles on the outer periphery of the wall of the ⁇ -ta that is composed of
  • a second track is formed by integrally forming a non-magnetized portion with a handle, and the magnetic track is provided to face the first and second tracks.
  • the first track in which the magnetic poles are alternately and continuously magnetized on the outer peripheral portion of the rotating body, and at least one magnetic pole is attached to one location.
  • the second track which is magnetized, is set up with a non-magnetized part and the magnetically sensitive element installed opposite to the first and second tracks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

A supersonic motor provided at the outer periphery or the upper surface or the lower surface of the outer peripheral portion of a rotary member (1) with a first track (13b) on which magnetic poles are continuously alternately magnetized and a second track (13c) on which at least one magnetic pole is magnetized at one place, the first and second tracks being disposed through a not-magnetized member (13a); and with a magnetic encoder opposite to the first and second tracks (13b and 13c) for detecting a rotational position and the speed of a rotor (13); so that the magnetic sensitive element (14) detects variation in the magnetic flux of the first track (13b) and second track (13c) caused by rotation of the rotor (13) and sends a signal to a position control circuit (16) and a speed control circuit, resulting in that a command signal generated from the respective control circuits (16 and 17) can improve accuracy for the position and speed control of the supersonic motor (19). Also, the above construction makes the supersonic motor (19) compact, lightweight and smaller in thickness.

Description

• 明 細 書  • Specification
発明 の 名称  Title of invention
' 磁気式 ヱ ン コ ー ダ装置付き 超音波 モ ー タ  '' Ultrasonic motor with magnetic encoder
- 技術分野  - Technical field
5 本発明 は、 ロ ー タ の回転伏態を検出で き る 磁気式ヱ ン コ ー ダ 装置付 き 超音波モ ー タ に関す る も の で あ る 。  5 The present invention relates to an ultrasonic motor provided with a magnetic encoder device capable of detecting the rotational state of the rotor.
背景技術  Background art
超音波モ ー タ は、 事務機器, 家庭用機器, 工場用機器, 音響 映像機器, カ メ ラ 及び 自動車用電装品な ど従 の モ ー タ が使用 10 さ れて い る ほ と ん どすべての分野で の対応が可能で あ り 、 高度 な制御技術や構造の小形, 軽量, 薄形化な ど の要望が一段 と 高 ま っ て き て い る 。  Ultrasonic motors use almost any conventional motor, such as office equipment, household equipment, factory equipment, audio-visual equipment, cameras, and automotive electronics. It is possible to respond in the field of (1), and the demands for advanced control technology and small, lightweight, and thin structures are increasing.
以下 に従来の磁気式ヱ ン コ ー ダ装置付 き 超音波 モ ー タ に つ い て説明す る 。  Hereinafter, a conventional ultrasonic motor with a magnetic encoder device will be described.
15 第 3 図は従来の磁気式エ ン コ ー ダ装置付 き 超音波モ ー タ の構 成を示す も の で あ る 。  15 Fig. 3 shows the configuration of a conventional ultrasonic motor equipped with a magnetic encoder device.
第 3 図に お い て、 1 0 3 は 中心軸 1 0 l a を有す る 円盤型の 回転.体 1 ' と ス テ 一 夕 の振動を回転力 に換え る リ ン グ形の ラ イ ニ ン グ材 1 0 2 で構成 さ れ る 円盤型の ロ ー タ で あ る 。 1 0 7 は 20 リ ン グ状に く し歯を な ら ベた突起部 1 0 4 a を上面に持つ 円盤 型の弾性体 1 0 4 と 二枚の 円盤型の圧電体 1 0 5 , 1 0 6 を厚 ' み方向 に重ね て弾性体 1 0 4 に接合 し て構成 さ れ る ス テ 一 夕 で , あ る 。 1 0 8 は ロ ー タ 1 0 3 , ス テ 一 夕 1 0 7 を支持す る 円盤 型の固定台 で あ り 、 取付台 1 0 9 に設置 さ れて い る 。 1 1 0 は 25 ス テ ー タ 1 0 7 の中心部に設け ら れたベ ア リ ン グで回転体 1 0 1 の軸 1 0 1 a がは ま り 込むよ う に な っ て い る 。 1 1 1 は ス プ リ ン グ ヮ ッ シ ャ 、 1 1 2 は ナ ッ ト で あ り 、 ラ イ ニ ン グ材 1 0 2 と 弾性体 1 0 4 の上面に設け ら れた リ ン グ状の突起部 1 0 4 a が 適当 な荷重で接触 し加圧さ れ る よ う 締めつ け る構造にな っ て い る 。 1 1 6 は回転体 1 0 1 の外周部 に 3 ケ 所取 り つ け ら れた永 久磁石であ り 、 1 1 7 は永久磁石 1 1 6 と 対向す る よ う 取付台 1 0 9 に設 gさ れた ホ ー ル素子又は磁気抵抗素子の よ う な磁気 感応素子であ る 。 :. In Fig. 3, 103 is a disk-shaped rotation having a central axis of 10 la. A ring-shaped liner that converts the vibrations of the body 1 'and the stay into rotational force. It is a disk-shaped rotor composed of a ring material 102. Reference numeral 107 denotes a disk-shaped elastic body 104 having a 20-ring comb-shaped protruding portion 104 a on the upper surface and two disk-shaped piezoelectric bodies 105, 1. This is a stay that is constructed by layering 06 in the thickness direction and joining it to the elastic body 104. Reference numeral 108 denotes a disk-shaped fixed base that supports the rotor 103 and the stay 107, which is mounted on the mounting base 109. 110 is a bearing provided at the center of the 25-stater 107 and is a rotating body. The axis 101a of this is set in. 11 1 is a spring, 11 is a nut, and a ring provided on the upper surface of the lining material 102 and the elastic body 104. The structure is designed so that the protruding projections 104a contact each other with an appropriate load and are pressed. 1 16 is a permanent magnet mounted on the outer periphery of the rotating body 101 at three locations, and 117 is a mounting base that faces the permanent magnet 111. It is a magnetic sensitive element such as a hall element or a magnetoresistive element provided in the device. :.
以上の よ う に構成 さ れ fこ磁気式 ヱ ン コ ー ダ装置付 き 超音波 モ ー タ につ いて、 以下そ の動作につ いて説明する 。  The operation of the ultrasonic motor configured as described above and equipped with the magnetic encoder device will be described below.
ま ず、 機械的に互い に 9 0 ° ず ら し て弾性体 1 0 4 に接合さ れた 2 枚の圧電体 1 0 5, 1 0 6 にそ れぞれ時間的に 9 0 。 位 相のずれた交流電圧を印加す.る と 2 枚の圧電体 1 0 5 , 1 0 6 は定在波振動を起 こ し、 そ の 2 つ の定在波を合成 し た波すなわ ち 弾性体 1 0 4 の振動 は時間 と 共に進 む進行波 と な る 。 従 つ て、 弾性体 1 0 4 の突起部 1 0 4 a と加圧接触 し て い る ロ ー タ 1 0 3 は、 波の頂点での み接触 し、 進行波の進む方向 と は逆の 方向 に動か さ れ、 回転方が発生する 。 ロ ー タ 1 0 3 が回転運動 を始め る と回転体 1 0 1 の外周部に取り付け られた永久磁石 1 1 6 も 回転 し 、 磁気感応素子 1 1 7 に対す る 磁束が違続的 に変化 し、 そ れを磁気感応素子 1 1 7 が検出 し て、 制御回路部で処理 を行 う 。 そ の結果、 停止命令が制御回路部か ら 出 さ れ る と 圧電 体 1 0 5 及び 1 0 6 に印加 さ れてい るニ柜交流電圧は回路的 に 遮断さ れ、 弾性体 1 0 4 に進行波が発生 し な く な り ラ イ ニ ン グ 材 1 0 2 と リ ン グ状の突起部 1 0 4 a は全面に渡 っ て接触 し、 . 大 き な摩擦力 を発生 し て、 ロ ー タ 1 0 3 を 瞬時 に 停止 す る 。 First, the two piezoelectric members 105 and 106 joined to the elastic member 104 mechanically shifted 90 ° from each other have a time difference of 90 from each other. When an AC voltage with a phase shift is applied, the two piezoelectric bodies 105 and 106 generate standing wave vibrations, and a wave line that combines the two standing waves. The vibration of the elastic body 104 becomes a traveling wave that advances with time. Therefore, the rotor 103, which is in pressure contact with the protrusion 104a of the elastic body 104, makes contact only at the top of the wave, and is in the opposite direction to the traveling direction of the traveling wave. It is moved in the direction, and the rotation occurs. When the rotor 103 starts rotating, the permanent magnet 111 mounted on the outer periphery of the rotor 101 also rotates, and the magnetic flux to the magnetic sensing element 111 changes intermittently. Then, this is detected by the magnetically sensitive element 117, and the processing is performed by the control circuit unit. As a result, when a stop command is issued from the control circuit section, the ni ac voltage applied to the piezoelectric bodies 105 and 106 is cut off in a circuit manner, and the elastic body 104 is cut off. The traveling material is no longer generated, and the lining material 102 and the ring-shaped projections 104a come into contact over the entire surface, A large frictional force is generated and the rotor 103 stops instantaneously.
し か し な が ら 、 上記従来 の 磁気式 エ ン コ ー ダ装置付 き 超音波 ' モ ー タ で は 、 回転体 の 外周部 に永久磁石が所定間隔毎 に 設 け ら - れ て い る た め 、 ロ ー タ の 1 回転当 た り の 磁気感応素子か ら 得 ら 5 れ る 出力変化 が少 な く 、 精密 な位置制御、 速度制御を行 う 上で あ ま り 適 し て い な か っ た 。  However, in the above-described conventional ultrasonic motor with a magnetic encoder device, permanent magnets are provided at predetermined intervals on the outer peripheral portion of the rotating body. Therefore, the output change obtained from the magnetic sensing element per rotation of the rotor is small, and it is not suitable for precise position control and speed control. won .
ま た 、 従来 か ら 各種 モ ー タ に速度 · 位置検出 を行 う 磁気式 ェ ン コ ー ダ装置 を備 え た い も の は あ っ た が、 駆動用 磁束 の 影響 を 受 け な い よ う に モ ー タ の 出力軸方向 に エ ン コ ー ダ部 を外部 に 設 10 け て い た た め に 、 モ ー タ 部及 び ヱ ン コ ー ダ部を 含 む駆動装置全 体の厚 み を小 さ く す る こ と が難 し く 、 用 途 に 限 り が あ っ た 。 発明 の 開示  Also, although there has been a conventional desire to provide a magnetic encoder device for detecting the speed and position of various motors, the motor is not affected by the magnetic flux for driving. As described above, the encoder section was installed outside in the direction of the motor's output shaft, so the overall thickness of the drive unit including the motor section and the encoder section was increased. It was difficult to reduce the size, and the use was limited. Disclosure of invention
そ こ で本発明 の主 た る 目 的 は 、 超音波 モ ー タ の 位置制'御及 び 速度制御の精度を 向上 さ せ、 かつ軸方向 の厚み を小 さ く し て、 Therefore, the main purpose of the present invention is to improve the accuracy of position control and speed control of the ultrasonic motor and to reduce the thickness in the axial direction,
15 小形, 軽量, 薄形の 磁気式 エ ン コ ー ダ装置付 き 超音波 モ ー タ を 提供す る こ と に あ る 。 15 An object of the present invention is to provide a small, light, and thin ultrasonic motor with a magnetic encoder device.
上記本発明 の 目 的 は 、 弾性体 に圧電体が接合 さ れた ス テ 一 夕 と 、 回転体 に 前記 ス テ ー タ の 振動 を 回転力 に 換え る ラ イ ニ ン グ 材が貼 ら れ た ロ ー タ と 、 前記回転体 の 外周 部又 は 、 外周 近辺 の An object of the present invention is to provide a stay in which a piezoelectric body is joined to an elastic body, and a lining material for converting the vibration of the stator into a rotating force on a rotating body. The rotor and the outer peripheral portion of the rotating body or the outer peripheral portion thereof.
20 上面 あ る い は 下面の 円周部 に 沿 っ て 、 磁極 を交互 に連続的 に着 磁 し て な る 第一 の ト ラ ッ ク と 少 な く と も 一個 の 磁極を一箇所 に20 Along the circumference of the upper or lower surface, the magnetic poles are alternately and continuously magnetized, with the first track and at least one magnetic pole at one location.
■ 着磁 し て な る 第二の ト ラ ッ ク を無着磁部 を介 し て設 け 、 前記第■ A second track, which is magnetized, is provided via a non-magnetized portion, and
. ―, 第二の ト ラ ッ ク に対向 し て、 前記 ロ ー タ の 回転位置及 び速 度を検 出 す る 磁気感応素子 と か ら な る 磁気式 ェ ン コ ー ダ装置 を-A magnetic encoder device comprising a magnetically sensitive element for detecting the rotational position and speed of the rotor, facing the second track.
25 備 え る こ と に よ っ て達成で き る 。 具体的 に は外周 部 に半径方向 と 垂直な方向 へ突出 す る 壁面を設 けた面転体の壁面外周 部に 沿 っ て、 前記第一、 第二の ト ラ ッ ク を設け、 前記磁気感応素子 か ら な る 磁気式エ ン コ ー ダ装置を備えた も の で あ る 。 It can be achieved by having 25 provisions. Specifically, in the radial direction on the outer periphery The first and second tracks are provided along the outer peripheral surface of the surface of the rolling element having a wall surface protruding in a direction perpendicular to the magnetic element, and the magnetic element is formed of the magnetically sensitive element. It is equipped with a coder device.
こ の構成に よ っ て磁気感応素子は ロ ー タ の回転に よ り 生ずる 第 1 の ト ラ ッ ク 及び第 2 の ラ ッ ク 磁束の変化を検出 し位置制 御回路部及び速度制御回路部へ信号を送 り そ の結果、 角制御回 路部か ら 出 さ れ る指令信号に よ り 、 超音波モ ー タ の位置 · 速度 制御の精度向上を図 る こ と がで き る 。  With this configuration, the magnetically sensitive element detects changes in the first track and the second track magnetic flux generated by the rotation of the rotor, and detects the position control circuit section and the speed control circuit section. As a result, the accuracy of the position and speed control of the ultrasonic motor can be improved by the command signal output from the angle control circuit.
ま た、 前記構成に よ り 、 超音波モ ー タ の構造が小形で軽量、 薄形化 と な る 。  In addition, with the above configuration, the structure of the ultrasonic motor is small, lightweight, and thin.
よ り 具体的 に は、 上記構成において、 磁気感応素子か ら の信 号を入力 し て回転体の回転速度を検出する 速度制御回路 と 、 磁 気感応素子か ら の信号を入力 して回転体の回 .転位置を検出す る 位置制御回路 と 、 前記速度制御回路及び位置制御回路か ら の信 号を入力 し、 こ の信号に よ っ て圧電体への電力供給を制御す る 駆動回路を備え た も のであ る 。  More specifically, in the above configuration, a speed control circuit for inputting a signal from the magnetically sensitive element to detect the rotation speed of the rotating body, and a signal for inputting the signal from the magnetically sensitive element to the rotating body. A position control circuit that detects the rotational position of the motor, and a drive circuit that receives signals from the speed control circuit and the position control circuit, and controls power supply to the piezoelectric body based on the signals. It has the following.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1 図 ( a ) は本発明 の実施例に おけ る磁気式エ ン コ ー ダ装 置付き超音波モ ー タ の平面図、 第 1 図 ( b ) は前記超音波モ ー タ の構成断面図、 第 2 図 ( a ) は前記超音波モ ー タ の ロ ー タ と 磁気感応素子の斜視図、 第 2 図 ( b ) は前記超音波モ ー タ の駆 動回路の概略回路図、 第 2 図 ( c ) は前記超音波モ ー タ の磁気 感応素子か ら の一部の 出力信号図、 第 3 図 ( a ) は従来の磁気 式エ ン コ ー ダ装置付き超音波モ ー タ 平面図、 第 3 図 ( b ) は そ の構成断面図であ る 。 • 発明 を実施す る た め の最良の形態 FIG. 1 (a) is a plan view of an ultrasonic motor with a magnetic encoder device according to an embodiment of the present invention, and FIG. 1 (b) is a sectional view of the configuration of the ultrasonic motor. Fig. 2 (a) is a perspective view of the rotor and the magnetically sensitive element of the ultrasonic motor, Fig. 2 (b) is a schematic circuit diagram of a drive circuit of the ultrasonic motor, and 2 (c) is a partial output signal diagram from the magnetically sensitive element of the ultrasonic motor, and FIG. 3 (a) is a plane view of a conventional ultrasonic motor with a magnetic encoder device. Fig. 3 (b) is a sectional view of the structure. • Best mode for carrying out the invention
第 1 図は本発明 の実施例に お け る 超音波 モ ー タ の構成断面図 ' を示す も の で あ り 、 第 2 図は ロ ー タ と 磁気感応素子の斜視図を ' 示す も の で あ る 。  FIG. 1 is a cross-sectional view showing the configuration of an ultrasonic motor according to an embodiment of the present invention, and FIG. 2 is a perspective view showing the rotor and a magnetically sensitive element. It is.
5 第 1 図 に お い て、 3 は 中心軸 1 a を有 し 、 外周部 に半径方向 と 垂直 な 方向 へ突出 す る 壁面を設 け た 円盤型 の 回転体 1 と ス テ ー タ の振動を回転力 に換え る リ ン グ形の ラ イ ニ ン グ材 2 で構 成 さ れ る 円盤型の ロ ー タ で あ る 。 7 は リ ン グ状に く し歯を な ら ベた突起部 4 a を上面に持つ 円盤型の弾性体 4 と 二枚の 円盤型 10 の圧電体 5 , 6 を厚み方向 に重ね て弾性体 4 に接合 し て構成 さ れ る ス テ 一 タ で あ る 。 8 は ロ ー タ 3 , ス テ 一 夕 7 を支持す る 円 盤型 の 固定台 で あ り 、 取付台 9 に 設置 さ れ て い る 。 1 0 は ス テ ー タ 7 の 中心部に設け ら れた ベ ア リ ン グで回転体 1 の軸 1 a がは ま り 込む よ う に な っ て い る 。 1 1 は ス プ リ ン グ ヮ ッ シ ャ 、 15 1 2 は ナ ッ ト で あ り 、 ラ イ ニ ン グ材 2 と 弾性体 4 の上面 に設 け ら れた リ ン グ状の突起部 4 a が適当 な荷重で接触 し加圧 さ れ る よ う 締めつ け る 構造に な っ て い る 。  5 In Fig. 1, reference numeral 3 denotes a disk-shaped rotating body 1 having a central axis 1a and a wall protruding in the direction perpendicular to the radial direction on the outer periphery and vibration of the stator. This is a disk-shaped rotor composed of a ring-shaped lining material 2 that converts torque into rotational force. Numeral 7 shows a disc-shaped elastic body 4 having a ring-shaped comb-shaped projection 4a on the upper surface and two disc-shaped piezoelectric bodies 5, 6 superimposed in the thickness direction. This is a stator that is configured by joining to FIG. Reference numeral 8 denotes a disk-shaped fixed base that supports the rotor 3 and the stay 7 and is installed on the mounting base 9. Numeral 10 denotes a bearing provided at the center of the stator 7 so that the shaft 1a of the rotating body 1 fits into the bearing. 11 1 is a spring, and 15 12 is a nut, which is a ring-shaped projection provided on the upper surface of the lining material 2 and the elastic body 4. 4a is designed to be tightened so that it contacts and presses with an appropriate load.
1 5 は前記 ロ ー タ の外周部 と 適当 な間隙を設 け て取付台 9 に 設置 さ れた磁気感応素子取付台で あ る 。 次 に第 2 図 に お い て、 20 1 3 は 前記 ロ ー タ の壁面外周 部 に 磁極 を交互 に 連続的 に 変 え て、 着磁 し て な る第 1 の ト ラ ッ ク 1 3 b と 互い に相異な る 磁極 を一箇所に着磁 し て な る第 2 の ト ラ ッ ク 1 3 c を凹溝状 に形成 し た無着磁部 1 3 a を は さ ん で、 一体的 に形成 し て な る 樹脂成 形磁石で あ る 。 1 4 は磁気感応素子取付台 1 5 に設 け ら れ、 第 25 1 の ト ラ ッ ク 1 3 b に お け る 磁束変化を検出 す る 周波数発電部 • ( F G部) セ ン サ 1 4 a と 第 2 の ト ラ ッ ク 1 3 c に おけ る磁束 変化を検出す る ィ ン デ ッ ク ス部セ ン サ 1 4 b 及び各セ ン サ と 回 路部の入出力 を行う 人出カ リ 一 ド線 1 4 c か ら な る磁気感応素 子で あ る 。 Reference numeral 15 denotes a magnetically responsive element mounting base which is set on the mounting base 9 with an appropriate gap from the outer periphery of the rotor. Next, in FIG. 2, reference numeral 2013 denotes a first track 13b formed by changing the magnetic poles alternately and continuously at the outer peripheral portion of the wall surface of the rotor, and magnetizing the rotor. And a non-magnetized portion 13a in which a second track 13c formed by magnetizing magnetic poles different from each other at one location in a concave groove shape is integrated. It is a resin-formed magnet formed in the above manner. Reference numeral 14 denotes a frequency power generation unit mounted on the magnetically sensitive element mounting base 15 for detecting a change in magnetic flux in the 251st track 13b. • (FG section) An index section sensor 14b for detecting a change in magnetic flux in the sensor 14a and the second track 13c, and each sensor. It is a magnetically sensitive element consisting of a human output lead wire 14c that inputs and outputs the circuit.
5 こ の磁気感応素子 1 4 か ら の信号は位置制御回路 1 6 及び速 度制御回路 1 7 に入力する よ う に し て い る 。 こ れ ら の位置制御 回路 1 6 と速度制御回路 1 7 の信号は駆動回路 1 8 に入力す る よ う に し て い る 。 駆.勤回路 1 8 は超音波モ ー タ 1 9 の 圧電体 5 , 6 に電力を供给す る よ う に し て い る 。 5 The signals from the magnetically sensitive element 14 are input to the position control circuit 16 and the speed control circuit 17. The signals of the position control circuit 16 and the speed control circuit 17 are input to the drive circuit 18. The driving circuit 18 supplies electric power to the piezoelectric bodies 5 and 6 of the ultrasonic motor 19.
0 以上の よ う- に構成 さ れた超音波モ ー タ につ い て 、 以下そ の動 作を説明す る 。 ただ し、 超音波モ ー タ の動作原理につ いて は、 従来例 と 同 じ であ る た め省略 し、 位置 。 速度制御動作について 説明す る 。 . ま ず ロ ー タ 3 の回転運動が始ま る と 磁気感応素子 1 4 に対す 5 る第 1 の ト ラ ッ ク 1 3 b 及び第 2 の ト ラ ッ ク 1 3 c に設け ら れ た磁極か ら発す る磁束が変化 し、 そ の磁束の変化は磁気感応素 子 1 4 に設け ら れた F G部セ ン サ 1 4 a と ィ ン デ ッ ク ス部セ ン サ 1 4 b に よ り 検出 さ れ、 検出 さ れた信号は フ ィ ー ドパ ッ ク 信 号 と し て位置制御回路部 1 6 及び速度制御回路部 1 7 へ入出力 ひ リ ー ド線 1 4 c を介して送られる。 その結果、 各制御回路部 1 6 ,  The operation of the ultrasonic motor configured as described above will be described below. However, the operating principle of the ultrasonic motor is the same as that of the conventional example, and therefore is omitted and the position is omitted. The speed control operation will be described. First, when the rotational movement of the rotor 3 starts, the magnetic poles provided on the first track 13 b and the second track 13 c corresponding to the magnetic sensing element 14 are provided. The magnetic flux emanating from the sensor changes, and the change in the magnetic flux depends on the FG sensor 14a and the index sensor 14b provided on the magnetic sensitive element 14. The detected signal is fed to the position control circuit section 16 and speed control circuit section 17 as a feed back signal via the input / output head line 14c. Sent. As a result, each control circuit section 16,
1 了 か ら駆動回路 1 8 へ制御信号を出 し、 この制御信号に基づ い て圧電体 5 , 6 へ の電力供給を制御 して超音波モー タ 1 9 の 駆動を所望す る位置 · 速度に制御 し てい る 。  After that, a control signal is output to the drive circuit 18 and the power supply to the piezoelectric bodies 5 and 6 is controlled based on the control signal to obtain a desired position for driving the ultrasonic motor 19. The speed is controlled.
な お、 F G部部セ ン サ 1 4 a か ら は第 2 図 c に示す基本出力 The basic output shown in Fig. 2c is obtained from the FG section sensor 14a.
25 波形信号 A と、 前記基本出力波形信号 A に対 し て一定の位相差 (通常 で は 9 0 ° ) を も っ た 出力波形信号 B が出力 さ れ る 。 ま た 、 ィ ン デ ッ ク ス 部 セ ン サ 1 4 b か ら は ロ ー タ 3 の 1 回転 に対 し て 1 回 の 山谷 に よ る 1 波長の 出力信号が 出力 さ れ る 。 25 Constant phase difference between waveform signal A and basic output waveform signal A (Usually 90 °) is output as the output waveform signal B. In addition, the index section sensor 14b outputs an output signal of one wavelength due to one valley and valley for one rotation of the rotor 3.
以上 の よ う に本実施例 に よ れば中心軸 を有 し 、 外周 部 に半径 方向 と 垂直 な 方向 へ突出 す る 壁面を 設 け た 回転体 と リ ン グ形 の ラ イ 二 ン グ材で構成 さ れ る π — タ の 壁面外周 部 に 磁極を交互 に 連続的 に変え て着磁 し て な る 第 1 の 卜 ラ ッ ク と 互 い に 相異 な る 磁極を一箇所 に着磁 し て な る 第 2 の ト ラ 'ソ ク を無着磁部 を は さ ん で一体形成 し て設 け、 こ の第 1 , 第 2 の ト ラ ッ ク に 対 向 し て 設 け た磁気感応素子か ら 構成 さ れ る 磁気式 ヱ ン コ ー ダ装置を超 音波 モ ー タ に 利用 す る こ と で 、 位置 · 速度制御 の 精度を 向上 さ せ る こ と がで き 、 かつ従来の ェ ン コ ー ダ部 を 出力軸方向 に別 に 設 け て い た の と 比べ、 構造が小形で軽量、 薄形化 に な る た め 、 幅広 い 用途の 超音波 モ ー タ が実現可能 と な る 。  As described above, according to the present embodiment, a rotating body having a center axis and a wall protruding in a direction perpendicular to the radial direction on the outer peripheral portion and a ring-shaped rolling material are provided. The first track, which is magnetized by alternately and continuously changing the magnetic poles on the outer periphery of the wall of the π-ta that is composed of A second track is formed by integrally forming a non-magnetized portion with a handle, and the magnetic track is provided to face the first and second tracks. By using a magnetic encoder device composed of sensitive elements for an ultrasonic motor, it is possible to improve the accuracy of position and speed control, and to improve the accuracy of conventional systems. The structure is smaller, lighter, and thinner than when the encoder was separately installed in the output shaft direction. Ultrasonic motors of the wide range of applications that Do not be realized.
産業上 の利用 可能性 Industrial applicability
以上詳述 し た様 に 、 回転体の外周 部 に磁極 を交互 に連続的 に 着磁 し て な る 第 1 の ト ラ ッ ク と 、 少 な く と も 一個 の磁極 を一箇 所 に着磁 し て な る 第 2 の ト ラ ッ ク を無着磁部を は さ ん.で設 け、 こ の第 1 , 第 2 の ト ラ ッ ク に対向 し て設 け た磁気感応素子か ら 構成 さ れ る 磁気式 ヱ ン コ ー ダ装置を備 え た こ と に よ り 、 位置 ' 速度制御の精度を 向上 さ せ る こ と が で き 、 構造が小形で軽量、 薄形 と な る た め 、 プ リ ン タ , 電子 タ イ プ ラ イ タ , 複写機, フ ァ ク シ ミ リ , カ ー ド リ ー ダ等の 事務機器 は も ち ろ ん 、 家庭用 機器 分野及 び音響 · 映像機器を含 め た各種分野 への利用 が可能 と な る 優れ た磁気式 エ ン コ ー ダ装置付 き 超音波 モ ー タ を実現 で き る 32 As described in detail above, the first track in which the magnetic poles are alternately and continuously magnetized on the outer peripheral portion of the rotating body, and at least one magnetic pole is attached to one location. The second track, which is magnetized, is set up with a non-magnetized part and the magnetically sensitive element installed opposite to the first and second tracks. With the provision of the magnetic encoder device configured, the accuracy of position and speed control can be improved, and the structure becomes compact, lightweight and thin. Therefore, not only office equipment such as printers, electronic typewriters, copiers, fax machines, card readers, etc., but also household equipment and acoustics It is possible to realize an ultrasonic motor with an excellent magnetic encoder that can be used in various fields including video equipment. 32
02 02
ST ST
: ? 2J ^ :? 2J ^
8  8
£LZ00l6Bd£JlDd S 0/68 OM £ LZ00l6Bd £ JlDd S 0/68 OM

Claims

• 請 求 の 範 囲 • The scope of the claims
1 . 弾性体に進行波を発生 さ せ る 圧電体が接合 さ れた ス テ 一 夕 と 、 円形の外周 を有す る 回転体に前記 ス テ 一 タ の振動を回転力 に換え る ラ イ ニ ン グ材が貼 ら れた ロ ー タ と 、 前記回転体の外周 5 部に沿 っ て、 磁極を交互に連続的 に着磁 し て な る 第一の ト ラ ッ ク と 少 な く と も 一個 の 磁極 を一箇所 に 着磁 し て な る 第二 の ト ラ ッ ク を無着磁部を介 し て設 け、 前記第一, 第二の ト ラ ッ ク に 対向 し て前記 口 一 タ の回転位置及び速度を検出す る 磁気感応素 子か ら な る 磁気式ェ ン コ ー ダ装置を備え た磁気式ヱ ン コ 一 ダ装0 置付 き 超音波モ ー タ 。  1. A stage in which a piezoelectric body that generates a traveling wave is bonded to an elastic body, and a line that converts the vibration of the stator into a rotating force in a rotating body having a circular outer periphery. The rotor on which the ling material is affixed, and the first track formed by magnetizing the magnetic poles alternately and continuously along the outer periphery of the rotating body at least five times, and at least a little. Also, a second track formed by magnetizing one magnetic pole at one position is provided via a non-magnetized portion, and the second track is opposed to the first and second tracks. An ultrasonic motor equipped with a magnetic encoder device provided with a magnetic encoder device comprising a magnetic sensitive element for detecting the rotational position and speed of the mouth.
2 . 請求の範囲第 1 項に おい て、 外周部 に半径方向 と 垂直な方 向へ突出 す る 壁面を設けた回転体の壁面外周部に沿 つ て、 磁極 を交互に連続的に着磁 し てな る第一の ト ラ ッ ク と 少な く と も 一 個の磁極を一箇所に着磁 し て な る 第二の ト ラ ッ ク を設 け、 前記5 第一, 第二の ト ラ ッ ク に対向 し て、 前記 ロ ー タ の 回転位置及び 速度を検出す る磁気感応素子か ら な る 磁気式ェ ン コ ー ダ装置を 備え た磁気式エ ン コ ー ダ装置付 き 超音波モ ー タ 。  2. According to claim 1, the magnetic poles are alternately and continuously magnetized along the outer peripheral portion of the wall of the rotating body having the outer peripheral portion provided with a wall surface protruding in a direction perpendicular to the radial direction. And a second track having at least one magnetic pole magnetized at one location is provided, and the first and second tracks are provided. A magnetic encoder device comprising a magnetic encoder device consisting of a magnetically sensitive element for detecting the rotational position and speed of the rotor facing the rack; Sonic motor.
3 . 弾性体に進行波を発生 さ せ る 圧電体が接合 さ れた ス テ 一 夕 と 、 円形の外周 を有す る 回転体に前記ス テ 一 夕 の振動を 回転力0 に換え る ラ イ ニ ン グ材が貼 ら れた ロ ー タ と 、 前記回転体の外周 部に沿 っ て、 磁極を交互に連続的 に着磁 し て な る 第一の ト ラ ッ ク と 少 な く と も 一個 の 磁極 を一箇所 に 着磁 し て な る 第二 の ト ラ ッ ク を無着磁部を介 し て設 け、 前記第一, 第二の ト ラ ッ ク に 対向 し て前記 口 一 タ の回転位置及び速度を検出す る 磁気感応素 子か ら な る 磁気式エ ン コ ー ダ装置 と 、 前記磁気感応素子か ら の 信号を入力 し て前記回転体の回転体の回転速度を検出す る速度 制御回路 と 、 前記磁気感応素子か ら の信号を入力 し て回転体の 回転位置を検出す る 位置制御回路と 、 前記速度制御回路及び位 置制御回路か ら の信号を入力 し、 こ の信号に よ つ て圧電体への 電力供給を制御す る 駆動回路 と か ら な る磁気式ェ ン コ ー ダ装置 付き超音波モー タ 。 3. A stage in which a piezoelectric body that generates a traveling wave is bonded to an elastic body, and a rotating body having a circular outer circumference converts the vibration of the stay into zero rotational force. A rotor on which an inking material is adhered and a first track formed by magnetizing the magnetic poles alternately and continuously along the outer periphery of the rotating body, and at least a little. Also, a second track formed by magnetizing one magnetic pole at one position is provided via a non-magnetized portion, and the second track is opposed to the first and second tracks. A magnetic encoder device comprising a magnetic sensing element for detecting the rotational position and speed of the mouth, and a magnetic encoder device comprising the magnetic sensing element. A speed control circuit for receiving a signal to detect a rotation speed of the rotating body of the rotating body; a position control circuit for receiving a signal from the magnetically sensitive element to detect a rotating position of the rotating body; Ultra-compact with a magnetic encoder device consisting of a drive circuit that receives signals from the speed control circuit and the position control circuit and controls the power supply to the piezoelectric body by these signals Sonic motor.
4 . 請求の範囲第 3 項に おいて、 外周部に半径方向 と 垂直な方 向 へ突出す る 壁面を設けた回転体の壁面外周部に沿 つ て、 磁極 を交互に違続的 に着磁 し てな る第一の- 卜 ラ ッ ク と少な く と も一 値の磁極を一箇所に着磁して な る第二の ト ラ ッ ク を設け、 前記 第一, 第二の ト ラ ッ ク に対向 して、 前記 ロ ー タ の回転位置及び 速度を検出する磁気感応素子か ら な る磁気式ェ ン コ ー ダ装置を 備え た磁気式ェ ン コ ー ダ装置付き超音波モ ー タ 。.  4. According to Claim 3, the magnetic poles are alternately and intermittently attached along the outer peripheral portion of the wall of the rotating body having the outer peripheral portion provided with a wall surface projecting in a direction perpendicular to the radial direction. A first track, which is magnetized, and a second track, which is formed by magnetizing at least one magnetic pole at one position, are provided, and the first and second tracks are provided. An ultrasonic motor with a magnetic encoder device including a magnetic encoder device comprising a magnetically sensitive element for detecting the rotational position and speed of the rotor facing the rack. Data. .
PCT/JP1989/000273 1988-03-15 1989-03-14 Supersonic motor with magnetic encoder WO1989008945A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19893990206 DE3990206C2 (en) 1988-03-15 1989-03-14 Ultrasonic motor with magnetic coding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63/60997 1988-03-15
JP63060997A JPH01234071A (en) 1988-03-15 1988-03-15 Ultrasonic motor provided with magnetic encoder

Publications (1)

Publication Number Publication Date
WO1989008945A1 true WO1989008945A1 (en) 1989-09-21

Family

ID=13158579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/000273 WO1989008945A1 (en) 1988-03-15 1989-03-14 Supersonic motor with magnetic encoder

Country Status (3)

Country Link
JP (1) JPH01234071A (en)
DE (2) DE3990206T1 (en)
WO (1) WO1989008945A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0419778A1 (en) * 1989-09-28 1991-04-03 Rockwell International Corporation Piezoelectric actuator
EP0424609A1 (en) * 1989-09-28 1991-05-02 Rockwell International Corporation Piezoelectric actuator
CN103354432A (en) * 2013-06-28 2013-10-16 南京航空航天大学 Miniature ultrasonic motor positioning control device directly driving load

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10385934B2 (en) * 2012-11-22 2019-08-20 Schaeffler Technologies AG & Co. KG Method for determining and/or controlling a position of an electric motor
DE102015226666A1 (en) 2015-12-23 2017-06-29 Frankl & Kirchner GmbH & Co KG Fabrik für Elektromotoren u. elektrische Apparate Magnetic encoder system for a servomotor of a sewing machine
HUE061421T2 (en) 2017-10-13 2023-07-28 Frankl & Kirchner Gmbh & Co Kg Fabrik Fuer Elektromotoren U Elektrische Apparate Sewing machine drive

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48110602U (en) * 1972-03-25 1973-12-19
JPS59111475U (en) * 1983-01-19 1984-07-27 株式会社日立製作所 Motor with rotating magnetic sensor
JPS62196082A (en) * 1986-02-20 1987-08-29 Matsushita Electric Ind Co Ltd Ultrasonic motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197518A (en) * 1984-10-19 1986-05-16 Matsushita Electric Ind Co Ltd Magnetic drum for magnetic type rotary encoder
KR900005759B1 (en) * 1985-04-30 1990-08-09 마쯔시다덴기산교 가부시기가이샤 Electrical motor with improved tachometer generator
JPS62181682A (en) * 1986-01-31 1987-08-10 Matsushita Electric Ind Co Ltd Ultrasonic motor
US4794294A (en) * 1986-06-12 1988-12-27 Canon Kabushiki Kaisha Vibration wave motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48110602U (en) * 1972-03-25 1973-12-19
JPS59111475U (en) * 1983-01-19 1984-07-27 株式会社日立製作所 Motor with rotating magnetic sensor
JPS62196082A (en) * 1986-02-20 1987-08-29 Matsushita Electric Ind Co Ltd Ultrasonic motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0419778A1 (en) * 1989-09-28 1991-04-03 Rockwell International Corporation Piezoelectric actuator
EP0424609A1 (en) * 1989-09-28 1991-05-02 Rockwell International Corporation Piezoelectric actuator
CN103354432A (en) * 2013-06-28 2013-10-16 南京航空航天大学 Miniature ultrasonic motor positioning control device directly driving load

Also Published As

Publication number Publication date
JPH01234071A (en) 1989-09-19
DE3990206T1 (en) 1990-04-05
DE3990206C2 (en) 1992-01-23

Similar Documents

Publication Publication Date Title
US4562373A (en) Piezoelectric motor
WO1989008945A1 (en) Supersonic motor with magnetic encoder
IE54754B1 (en) Capacitive sensor motor control system
JP2002101678A (en) Ultrasonic motor
JPS6028760A (en) Reversible brushless motor without position detector with magnetic encoder
JP2001333560A (en) Magnetic pole position detector
JP3395147B2 (en) Magnetic pole position detector
JPS60190178A (en) Piezoelectric motor
JP5229098B2 (en) Ultrasonic actuator
JPH0799787A (en) Driving circuit for ultrasonic motor
JPS63290173A (en) Supersonic servo motor
JPS63294274A (en) Ultrasonic wave servo-motor of shaft-directional contact type
JPH0681523B2 (en) Vibration wave motor
JPS63294275A (en) Ultrasonic wave servo-motor of rotary-magnetic-encoder-integral type
JPS59217269A (en) Brushless motor device applicable to digital audio disk or the like
JPS6142262A (en) Brushless motor
Kanda et al. A micro ultrasonic motor controlled by using a built-in micro magnetic encoder
JP3533321B2 (en) Ultrasonic motor drive circuit
JPH11191979A (en) Drive cirucit of ultrasonic motor
JPH0469073A (en) Ultrasonic motor provided with rotational
JPH08191576A (en) Ultrasonic motor
JPH0579806A (en) Motor-position detecting device
JP2000069772A (en) Ultrasonic motor
JPH0471371A (en) Ultrasonic motor
JPH03285576A (en) Ultrasonic servomotor having rotary magnetic encoder integrated therewith

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

RET De translation (de og part 6b)

Ref document number: 3990206

Country of ref document: DE

Date of ref document: 19900405

WWE Wipo information: entry into national phase

Ref document number: 3990206

Country of ref document: DE