WO1989004447A1 - Heat-exchange tube - Google Patents

Heat-exchange tube Download PDF

Info

Publication number
WO1989004447A1
WO1989004447A1 PCT/DE1988/000678 DE8800678W WO8904447A1 WO 1989004447 A1 WO1989004447 A1 WO 1989004447A1 DE 8800678 W DE8800678 W DE 8800678W WO 8904447 A1 WO8904447 A1 WO 8904447A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbulators
heat exchanger
exchanger tube
tube according
fluid flow
Prior art date
Application number
PCT/DE1988/000678
Other languages
English (en)
French (fr)
Inventor
Heinrich Schulze
Paul Paikert
Original Assignee
Gea Luftkühlergesellschaft Happel Gmbh & Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gea Luftkühlergesellschaft Happel Gmbh & Co. filed Critical Gea Luftkühlergesellschaft Happel Gmbh & Co.
Publication of WO1989004447A1 publication Critical patent/WO1989004447A1/de
Priority to SU894614451A priority Critical patent/RU2007683C1/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation

Definitions

  • the invention is directed to a heat exchanger tube with flat transverse ribs evenly spaced apart in the longitudinal direction according to the features in the preamble of claim 1
  • turbulators In order to improve the heat exchange conditions on the transverse ribs, turbulators (vortex feet) projecting at right angles from the surfaces of the transverse ribs and projecting into the fluid flow have been provided. These turbulators have a rectangular cross section. They are punched out of the material of the cross ribs and then bent over. Their direction of extension runs parallel to the direction of fluid flow.
  • the invention has for its object to take measures that help avoid a disproportionate increase in pressure losses with improved heat transfer conditions. This object is achieved according to the invention in the features listed in the characterizing part of claim 1.
  • the fluid is swirled behind the turbulators in the flow direction, in such a way that longitudinal vortices are created there.
  • the boundary layer near the rib which essentially represents the thermal resistance, can be circulated to a certain extent with relatively little energy expenditure.
  • the generated strong rotation of the flow perpendicular to the fluid flow direction continuously replaces the hot or cold fluid layers near the ribs by the cold or warm fluid layers remote from the ribs.
  • the extremely low-friction longitudinal vortices cause areas with locally significantly improved heat transfer conditions behind the turbulators, so that overall the heat transfer coefficient is significantly increased without simultaneously increasing the pressure loss.
  • the turbulators according to the invention develop their advantageous effect on all cross sections of heat exchanger tubes. That means they can be used with round, elliptical or wedge-shaped finned tubes.
  • the features of claim 2 produce a particularly intensive longitudinal vortex behind each turbulator, which extends far into the fluid flow.
  • a further improvement of the basic idea of the invention embodies the features of claim 3.
  • the displacement is such that the longitudinal vertebrae do not adversely affect one another.
  • the features of claim 4 help to improve the heat transfer between the fluid flowing in the tube and the fluid flowing into the finned tube.
  • a preferred embodiment of the turbulators is seen in the features of claim 6. This also determines the corresponding punched holes in the cross ribs. This form of punching is regarded as an optimal compromise between the following, sometimes contradicting, demands:
  • the undercut design of the turbulators according to the features of claim 8 is associated with the advantage that the turbulators can be used directly for spacing two adjacent transverse ribs. It is sufficient if only some of the turbulators are undercut with respect to their front edges.
  • the turbulators can only be angled on one side or on both sides from a transverse rib.
  • favorable pressure differences are achieved, which result in suction and blow-out effects, which have a positive effect on the boundary layer formation, i. H. reduce the boundary layer thicknesses.
  • turbulators In the case of heat exchanger tubes which can be flowed against from two diametrically opposite directions, there is the possibility of arranging the turbulators in mirror image with respect to the vertical longitudinal plane in order to create optimal heat transfer conditions on the side to which the flow is directed, in particular in the case of round or oval heat exchanger tubes.
  • the turbulators can then be designed as equilateral or non-equilateral triangles.
  • FIG. 1 shows a .Length section of a finned wedge-shaped heat exchanger tube in perspective
  • Figure 2 is an end view of the heat exchanger tube of Figure 1;
  • Figure 3 shows an enlarged perspective view of a surface area of a transverse rib with a turbulator
  • FIG. 4 shows the area between three adjacent transverse ribs with turbulators according to a further embodiment.
  • FIGS. 1 and 2 1 denotes a wedge-shaped heat exchanger tube which is charged with a vaporous fluid on the inside and a colder gaseous fluid on the outside in accordance with the arrows FSR.
  • the heat exchanger tube 1 is equipped with a plurality of flat transverse ribs 2 arranged next to one another at a distance A.
  • the transverse ribs 2 are rectangular.
  • the transverse ribs 2 are fixed on the heat exchanger tube 1 by dip galvanizing.
  • Cross ribs 2 ( Figures 1 to 3) angled turbulators 3.
  • the turbulators 3 have an essentially triangular, isosceles cross section and are formed by punching out and angling them out from the plane of the ribs by about 90 °. They extend at an angle ⁇ of 15 ° to the longitudinal pipe plane RLE running through the pipe axis RA and parallel to the fluid flow direction FSR. They also have ridge edges 4 rising in the direction of fluid flow FSR and in the direction of the pipe surface 11.
  • the length L of the. Turbulators 3 are dimensioned to their maximum height H as 3: 1.75.
  • the maximum height H corresponds approximately to the rib spacing A.
  • the turbulators 3 are arranged offset from one another both in and transversely to the fluid flow direction FSR.
  • FIG. 2 also shows that the turbulators 3 are arranged symmetrically on both sides with respect to the longitudinal pipe plane RLE.
  • Low-friction longitudinal vortices 5 are formed by the turbulators 3, which ensure a locally high heat transfer in the areas behind the turbulators 3. They tear through their strong swirl the boundary layers on the Querrip pen 2 and roll them around, the hot or cold fluid layers near the ribs being constantly replaced by the cold or warm fluid layers away from the ribs.
  • FIG. 4 shows an embodiment in which the end edges 7 of the turbulators 3 'form an angle ⁇ ⁇ 90 ° with the surfaces 8 of the transverse ribs 2. This embodiment allows the turbulators 3 'to be used for the spacing of adjacent transverse ribs 2, since the tips 9 of the turbulators 3' come to rest outside the punched-out area 10 due to the undercuts on the adjacent transverse rib 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Wärmeaustauscherröhr
Die Erfindung richtet sich auf ein Wärmeaustauscherrohr mit in Längsrichtung zueinander gleichmäßig distanzierten ebenen Querrippen gemäß den Merkmalen im Oberbegriff des Anspruchs 1
Um die Wärmeaustauschbedingungen an den Querrippen zu verbessern, hat man rechtwinklig von den Oberflächen der Querrippen abstehende Turbulatoren (Wirbelfüße) vorgesehen, die in die Fluidströmung ragen. Diese Turbulatoren haben einen rechteckigen Querschnitt. Sie werden aus dem Material der Querrippen gestanzt und anschließend umgebogen. Ihre Erstreckungsrichtung verläuft parallel zur Fluidströmungsrichtung.
Mit Hilfe derartiger Turbulatoren konnten die Wärmeaustausch bedingungen im Vergleich zu vorsprungslosen Querrippen deutlich verbessert werden. Als Nachteil ist jedoch ein im Vergleich zu dem verbesserten Wärmeübergang überproportionaler Druckverlust vorhanden.
Ausgehend von den im Oberbegriff des Anspruchs 1 beschriebenen Merkmalen liegt der Erfindung die Aufgabe zugrunde, Maßnahmen zu treffen, die einen überproportionalen Anstieg der Druckverluste bei verbesserten Wärmeübergangsbedingungen vermeiden helfen. Die Lösung dieser Aufgabe besteht nach der Erfindung in den im kennzeichnenden Teil des Anspruchs 1 aufgeführten Merkmalen.
Aufgrund einer solchen speziellen Ausbildung und Anordnung der Turbulatoren wird in Strömungsrichtung gesehen hinter den Turbulatoren das Fluid verdrallt, und zwar derart, daß dort Längswirbel entstehen. Mit Hilfe dieser Längswirbel kann nun die rippennahe Grenzschicht, die im wesentlichen den thermischen Widerstand darstellt, mit relativ geringem Energieaufwand gewissermaßen umgewälzt werden. Dabei werden durch die erzeugte starke Rotation der Strömung senkrecht zur Fluidströmungsrichtung die rippennahen warmen oder kalten Fluidschichten laufend durch die rippenfernen kalten bzw. warmen Fluidschichten ersetzt. Die extrem reibungsarmen Längswirbel bewirken hinter den Turbulatoren Bereiche mit örtlich erheblich verbesserten Wärraeübergangsbedingungen, so daß insgesamt der Wärmeübergangskoeffizient ohne gleichzeitige Erhöhung des Druckverlusts deutlich heraufgesetzt wird.
Die erfindungsgemäßen Turbulatoren entfalten ihre vorteilhafte Wirkung bei sämtlichen Querschnitten von Wärmeaustauscherrohren. Das heißt, sie können bei runden, elliptischen oder keilförmigen Rippenrohren eingesetzt werden.
Durch die Merkmale des Anspruchs 2 wird ein besonders intensiver Längswirbel hinter jedem Turbulator erzeugt, der sich weit in die Fluidströmung erstreckt.
Eine weitere Verbesserung des erfindungsgemäßen Grundgedankens verkörpern die Merkmale des Anspruchs 3.
Die Versetzung ist hierbei so getroffen, daß die Längswirbel sich gegenseitig nicht nachteilig beeinflussen. Die Merkmale des Anspruchs 4 tragen mit dazu bei, den Wärmedurchgang zwischen dem im Rohr strömenden Fluid und dem das Rippenrohr anströmenden Fluid zu verbessern.
In diesem Zusammenhang hat sich bei internen Versuchen ge- zeigt, daß der Wärmeübergang mit den Merkmalen des Anspruchs 5 noch mehr gesteigert werden kann.
Eine bevorzugte Ausgestaltung der Turbulatoren wird in den Merkmalen des Anspruchs 6 gesehen. Hierdurch werden auch die entsprechenden Ausstanzungen in den Querrippen bestimmt. Diese Form der Ausstanzungen wird als optimaler Kompromiß zwischen folgenden zum Teil gegenläufigen Forderungen betrachtet:
a) hohe örtliche Wärmeübergangskoeffizienten,
b) minimale Beeinträchtigung des Wärmeflusses innerhalb einer Querrippe,
c) geringe Druckverluste,
d) einfache Herstellung,
e) problemlose Tauchverzinkung,
Bei Anwendung der Merkmale des Anspruchs 7 wird ein Eindrin- gen der Turbulatoren in die Grenzschicht der benachbarten Querrippe ermöglicht. Neben dem Aufreißen der Grenzschicht wird als weiterer Vorteil erzielt, daß bei der in der Regel durchgeführten Tauchverzinkung eine feste Verbindung der Turbulatoren mit der benachbarten Querrippe gewährleistet werden kann. Außerdem werden hierdurch die wärmetechniBchen Eigenschaften der Austauschfläche an den Turbulatoren durch den nunmehr günstigeren Rippenwirkungsgrad (1/2 Höhe) ver bessert. Hiermit ist gemeint, daß die Wärme aus den Turbula- torflachen in Richtung auf beide benachbarte Rippen bzw. umgekehrt fließen kann.
Die hinterschnittene Gestaltung der Turbulatoren entsprechend den Merkmalen des Anspruchs 8 ist mit dem Vorteil verbunden, daß die Turbulatoren unmittelbar zur Distanzierung von zwei benachbarten Querrippen herangezogen werden können. Hierbei genügt es, wenn nur ein Teil der Turbulatoren bezüglich ihrer Stirnkanten hinterschnitten ist.
Die Ausbildung und Anordnung der Turbulatoren gemäß den Merkmalen des Anspruchs 9 erleichtert ihre Herstellung.
Die Turbulatoren können nur einseitig oder zu beiden Seiten aus einer Querrippe abgewinkelt sein. Bei Anwendung der Merkmale des Anspruchs 10 werden günstige Druckdifferenzen erzielt, die Absaug- und Ausblaseffekte ergeben, welche sich positiv auf die Grenzschichtausbildung auswirken, d. h. die Grenzschichtdicken reduzieren.
Bei Wärmeaustauscherrohren, die aus zwei einander diametral gegenüberliegenden Richtungen angeströmt werden können, besteht die Möglichkeit, die Turbulatoren bezüglich der vertikalen Längsebene spiegelbildlich anzuordnen, um auf der jeweils angeströmten Seite, insbesondere bei runden oder ovalen Wärmeaustauscherrohren, optimale Wärmeübergangsbedingungen zu schaffen. Die Turbulatoren können dann als gleichseitige oder ungleichseitige Dreiecke ausgebildet sein.
Die Erfindung ist nachfolgend anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Es zeigen: Figur 1 einen .Längenabschnitt eines berippten keilförmigen Wärmeaustauscherrohrs in der Perspektive;
Figur 2 eine Stirnansicht auf das Wärmeaustauscherrohr der Figur 1;
Figur 3 in vergrößerter perspektivischer Darstellung einen Oberflächenbereich einer Querrippe mit einem Turbulator und
Figur 4 den Bereich zwischen drei benachbarten Querrippen mit Turbulatoren gemäß einer weiteren Ausführungs- form.
In den Figuren 1 und 2 ist mit 1 ein keilförmiges Wärmeaustauscherrohr bezeichnet, das innenseitig mit einem dampfförmigen Fluid und außenseitig entsprechend den Pfeilen FSR mit einem kälteren gasförmigen Fluid beaufschlagt wird.
Das Wärmeaustauscherrohr 1 ist mit einer Vielzahl von im Abstand A nebeneinander angeordneten ebenen Querrippen 2 bestückt. Die Querrippen 2 sind rechteckig ausgebildet.
Die Festlegung der Querrippen 2 auf dem Wärmeaustauscherrohr 1 erfolgt auf dem Wege des Tauchverzinkens.
Zur Erhöhung der Wärmeübergangsbedingungen sind aus den
Querrippen 2 (Figuren 1 bis 3) Turbulatoren 3 abgewinkelt. Die Turbulatoren 3 haben einen im wesentlichen dreieckförmigen ungleichschenkligen Querschnitt und werden durch Ausstanzen und Abwinkein um etwa 90º aus den Rippenebenen ge- bildet. Sie erstrecken sich in einem Winkel α von 15° zu der durch die Rohrachse RA sowie parallel zur Fluidströmungsrichtung FSR verlaufenden Rohrlängsebene RLE. Außerdem weisen sie in Fluidströmungsrichtung FSR sowie in Richtung auf die Rohroberfläche 11 ansteigende Gratkanten 4 auf. Die Länge L der. Turbulatoren 3 ist zu ihrer maximalen Höhe H wie 3 : 1,75 bemessen. Die maximale Höhe H entspricht etwa dem Rippenabstand A.
Wie insbesondere die Figur 2 erkennen läßt, sind die Turbu- latoren 3 sowohl in als auch quer zur Fluidströmungsrichtung FSR zueinander versetzt angeordnet. Auch zeigt die Figur 2. daß die Turbulatoren 3, bezogen auf die Rohrlängsebene RLE, zu beiden Seiten symmetrisch angeordnet sind.
Durch die Turbulatoren 3 werden reibungsarme Längswirbel 5 gebildet, die in den Bereichen hinter den Turbulatoren 3 einen örtlich hohen Wärmeübergang gewährleisten. Sie reißen durch ihren starken Drall die Grenzschichten an den Querrip pen 2 auf und wälzen sie um, wobei die rippennahen warmen oder kalten Fluidschichten ständig durch die rippenfernen kalten bzw. warmen Fluidschichten ersetzt werden.
Mit 6 sind die durch die Anlaufkanten 12 der ausgestanzten Bereiche 10 gebildeten verdünnten Grenzschichtbereiche bezeichnet .
In der Figur 4 ist eine Ausführungsform veranschaulicht, bei welcher die Stirnkanten 7 der Turbulatoren 3' mit den Oberflächen 8 der Querrippen 2 einen Winkel ß < 90° einschließen. Diese Ausführungsform gestattet es, die Turbulatoren 3' zur Distanzierung von benachbarten Querrippen 2 heranzuziehen, da die Spitzen 9 der Turbulatoren 3' aufgrund der Hinterschneidungen an der benachbarten Querrippe 2 außerhalb des ausgestanzten Bereichs 10 zur Anlage gelangen.

Claims

Patentansprüche:
1. Wärmeaustauscherrohr mit in Längsrichtung zueinander gleichmäßig distanzierten ebenen Querrippen, welche aus den Rippenebenen in verteilter Anordnung um etwa 90° abgewinkelte Turbulatoren aufweisen, d a d u r c h g e k e n n z e i c h n e t , daß die Turbulatoren (3, 3') im wesentlichen dreieckförmig gestaltet sind und sich im Winkel (α) zu der durch die Rohrachse (RA) sowie parallel zur Fluidströmungsrichtung (FSR) verlaufenden Rohrlängsebene (RLE) erstrecken.
2. Wärmeaustauscherrohr nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Turbulatoren (3, 3') in Fluidströmungsrichtung (FSR) ansteigende Gratkanten (4) aufweisen.
3. Wärmeaustauscherrohr nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß die Turbulatoren (3, 3') sowohl in als auch quer zur Fluidströmungsrichtung (FSR) zueinander versetzt angeordnet sind.
4. Wärmeaustauscherrohr nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß die Gratkanten (4) in Richtung zur Rohroberfläche (11) ansteigen.
5. Wärmeaustauscherrohr nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß der Winkel (α) zwischen den Turbulatoren (3, 3') und der Rohrlängsebene (RLE) 10° bis 30º, vorzugsweise etwa 15° beträgt.
6. Wärmeaustauscherrohr nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß die Länge (L) der Turbulatoren (3, 3') zu ihrer maximalen Höhe (H) etwa wie 3 : 2 bis 3 : 1, bevorzugt 3 : 1,75 bemessen ist.
7. Wärmeaustauscherrohr nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , daß die maximale Höhe (H) etwa dem Rippenabstand (A) entspricht.
8. Wärmeaustauscherrohr nach einem der Ansprüche 1 bis 7. d a d u r c h g e k e n n z e i c h n e t , daß die Stirnkanten (7) der Turbulatoren (3') mit den Oberflächen (8) der Querrippen (2) einen Winkel (ß) < 90° einschließen.
9. Wärmeaustauscherrohr nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , daß bezogen auf die Rohrlängsebene (RLE) die Turbulatoren (3, 3') zu beiden Seiten symmetrisch angeordnet sind.
10. Wärmeaustauscherrohr nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t , daß die Turbulatoren (3, 3') paarweise wechselseitig zu beiden Seiten einer Querrippe (2) abgewinkelt sind.
PCT/DE1988/000678 1987-11-03 1988-11-02 Heat-exchange tube WO1989004447A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU894614451A RU2007683C1 (ru) 1987-11-03 1989-06-30 Труба-теплообменник

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3737217A DE3737217C3 (de) 1987-11-03 1987-11-03 Wärmeaustauscherrohr
DEP3737217.3 1987-11-03

Publications (1)

Publication Number Publication Date
WO1989004447A1 true WO1989004447A1 (en) 1989-05-18

Family

ID=6339649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1988/000678 WO1989004447A1 (en) 1987-11-03 1988-11-02 Heat-exchange tube

Country Status (10)

Country Link
US (1) US4997036A (de)
CN (1) CN1012993B (de)
BR (1) BR8805657A (de)
DE (1) DE3737217C3 (de)
ES (1) ES2011391A6 (de)
FR (1) FR2622686B1 (de)
IN (1) IN170720B (de)
RU (1) RU2007683C1 (de)
WO (1) WO1989004447A1 (de)
ZA (1) ZA888258B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2314973A1 (de) * 2008-05-27 2011-04-27 Daikin Industries, Ltd. Rippenrohr-wärmetauscher
FR3098579A1 (fr) * 2019-07-08 2021-01-15 Renaults S.A.S. Conduit de guidage de l’écoulement d’un flux de gaz comportant une ailette de perturbation de l’écoulement

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5467816A (en) * 1993-02-08 1995-11-21 Larinoff; Michael W. Finned tubes for air-cooled steam condensers
US5361828A (en) * 1993-02-17 1994-11-08 General Electric Company Scaled heat transfer surface with protruding ramp surface turbulators
DE19654366B4 (de) * 1996-12-24 2005-10-20 Behr Gmbh & Co Kg Strömungskanal, insbesondere für einen Abgaswärmeübertrager
BR9801850A (pt) * 1998-03-30 2000-03-21 Multibras Eletrodomesticos Sa Trocador de calor tubo-aleta.
JP3417310B2 (ja) * 1998-08-31 2003-06-16 株式会社デンソー プレートフィン型熱交換器及びその製造方法
US20070175124A1 (en) * 2000-05-31 2007-08-02 Gary Webster Radiator with Cover and Mounting Board and Method of Installation
KR100382523B1 (ko) * 2000-12-01 2003-05-09 엘지전자 주식회사 마이크로 멀티채널 열교환기의 튜브 구조
US7337831B2 (en) * 2001-08-10 2008-03-04 Yokohama Tlo Company Ltd. Heat transfer device
US6578627B1 (en) * 2001-12-28 2003-06-17 Industrial Technology Research Institute Pattern with ribbed vortex generator
US6789317B1 (en) * 2003-06-17 2004-09-14 Bechtel Bwxt Idaho, Llc Finned tube with vortex generators for a heat exchanger
US20060169019A1 (en) * 2003-07-10 2006-08-03 Kutscher Charles F Tabbed transfer fins for air-cooled heat exchanger
TW200503608A (en) * 2003-07-15 2005-01-16 Ind Tech Res Inst Cooling plate having vortices generator
DE202004013882U1 (de) * 2004-09-03 2006-01-12 Autokühler GmbH & Co. KG Wärmeübertragungsbauteil und damit hergestellter Wärmeaustauscher
WO2006055916A2 (en) * 2004-11-18 2006-05-26 Allan Stikeleather Heat exchanger tube and method of making
JP2007010279A (ja) * 2005-07-01 2007-01-18 Daikin Ind Ltd フィンチューブ型熱交換器
US8381802B2 (en) * 2005-12-28 2013-02-26 National University Corporation Yokohama National University Heat transfer device
KR100775013B1 (ko) * 2006-04-18 2007-11-09 (주)셀시아테크놀러지스한국 판형 열전달 장치
US8505618B2 (en) * 2006-04-21 2013-08-13 Panasonic Corporation Heat transfer fin and fin-tube heat exchanger
FR2902505B1 (fr) * 2006-06-19 2008-08-29 Valeo Systemes Thermiques Ailette a deflecteur de flux ameliore et echangeur de chaleur muni d'une telle ailette
US20080017350A1 (en) * 2006-07-21 2008-01-24 Foxconn Technology Co., Ltd. Heat sink
JP4169079B2 (ja) * 2006-10-02 2008-10-22 ダイキン工業株式会社 フィンチューブ型熱交換器
CN102109282A (zh) * 2011-03-25 2011-06-29 兰州交通大学 每扁管四个平面涡产生器式扁管管翅换热器
US20170336153A1 (en) * 2016-05-12 2017-11-23 Price Industries Limited Gas turbulator for an indirect gas-fired air handling unit
US10184728B2 (en) * 2017-02-28 2019-01-22 General Electric Company Additively manufactured heat exchanger including flow turbulators defining internal fluid passageways
EP3608618B1 (de) * 2017-04-04 2021-05-26 Mitsubishi Electric Corporation Wärmetauscher und kühlzyklusvorrichtung
DE102018115791B4 (de) * 2018-06-29 2022-05-05 Webasto SE Temperierungselement zum Temperieren eines elektrischen Energiespeichers
US10739832B2 (en) * 2018-10-12 2020-08-11 International Business Machines Corporation Airflow projection for heat transfer device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1775041A (en) * 1925-02-21 1930-09-02 Karmazin John Radiator
GB561026A (en) * 1942-10-29 1944-05-02 Edwin James Bowman Improvements in radiators for cooling liquids
FR1386229A (fr) * 1963-06-28 1965-01-22 Chausson Usines Sa Ailette de refroidissement de radiateurs et radiateurs en faisant application
FR1526315A (fr) * 1967-04-14 1968-05-24 Chausson Usines Sa élément dissipateur pour échangeur thermique et radiateur en faisant application
DE3739619A1 (de) * 1987-11-23 1988-04-07 Martin Prof Dr Ing Fiebig Tuetenwirbelgeneratoren und waermeuebertragungsflaechen fuer waermeaustauscher
JPH06191493A (ja) * 1992-12-24 1994-07-12 Mitsubishi Heavy Ind Ltd 航空機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR329582A (fr) * 1903-02-20 1903-08-03 Henri Larrieu Système de radiateur
US1416570A (en) * 1918-01-22 1922-05-16 Arthur B Modine Radiator core
DE417271C (de) * 1924-06-17 1925-08-08 Franz Goeke Bandfoermige Mischlamellen
US1743861A (en) * 1925-09-25 1930-01-14 Arthur B Modine Radiator construction
GB321820A (en) * 1928-11-10 1929-11-21 Louis Garratt Improvements in or relating to cooling-radiators and to gills therefor
FR715051A (fr) * 1930-10-08 1931-11-25 Tube à ailettes pour échangeurs de chaleur
DE596871C (de) * 1930-10-09 1934-05-11 Otto Happel Rippenrohr fuer Waermeaustauscher mit aus der Rippenebene herausgedrueckten Flaechen
US2047207A (en) * 1933-05-10 1936-07-14 Oscar Wolff Method of constructing radiator fins
GB842475A (en) * 1957-10-04 1960-07-27 Dennis Raymond Aldridge Heat exchanger
US3976126A (en) * 1973-12-26 1976-08-24 Gea Luftkuhlergesellschaft Happel Gmbh & Co. Kg Air cooled surface condenser
HU181538B (en) * 1980-03-11 1983-10-28 Energiagazdalkodasi Intezet Turbulent heat exchanger
DE3347828A1 (de) * 1983-07-18 1985-02-28 Dieter Prof. Dr.-Ing. 7500 Karlsruhe Wurz Rippenrohranordnung
JPS6191493A (ja) * 1984-10-11 1986-05-09 Matsushita Electric Ind Co Ltd フイン付熱交換器
JPS61272593A (ja) * 1985-05-27 1986-12-02 Matsushita Refrig Co 熱交換器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1775041A (en) * 1925-02-21 1930-09-02 Karmazin John Radiator
GB561026A (en) * 1942-10-29 1944-05-02 Edwin James Bowman Improvements in radiators for cooling liquids
FR1386229A (fr) * 1963-06-28 1965-01-22 Chausson Usines Sa Ailette de refroidissement de radiateurs et radiateurs en faisant application
FR1526315A (fr) * 1967-04-14 1968-05-24 Chausson Usines Sa élément dissipateur pour échangeur thermique et radiateur en faisant application
DE3739619A1 (de) * 1987-11-23 1988-04-07 Martin Prof Dr Ing Fiebig Tuetenwirbelgeneratoren und waermeuebertragungsflaechen fuer waermeaustauscher
JPH06191493A (ja) * 1992-12-24 1994-07-12 Mitsubishi Heavy Ind Ltd 航空機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan, Band 10, Nr. 267 (M-516)(2323) 11. September 1986; & JP-A-6191493 (MATSUSHITA ELECTRIC CO. LTD) 9. Mai 1986 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2314973A1 (de) * 2008-05-27 2011-04-27 Daikin Industries, Ltd. Rippenrohr-wärmetauscher
EP2314973A4 (de) * 2008-05-27 2014-04-02 Daikin Ind Ltd Rippenrohr-wärmetauscher
FR3098579A1 (fr) * 2019-07-08 2021-01-15 Renaults S.A.S. Conduit de guidage de l’écoulement d’un flux de gaz comportant une ailette de perturbation de l’écoulement

Also Published As

Publication number Publication date
CN1035352A (zh) 1989-09-06
ZA888258B (en) 1989-07-26
CN1012993B (zh) 1991-06-26
DE3737217C3 (de) 1994-09-01
IN170720B (de) 1992-05-09
FR2622686A1 (fr) 1989-05-05
US4997036A (en) 1991-03-05
ES2011391A6 (es) 1990-01-01
DE3737217A1 (de) 1989-05-24
FR2622686B1 (fr) 1991-01-25
BR8805657A (pt) 1989-07-18
DE3737217C2 (de) 1990-07-26
RU2007683C1 (ru) 1994-02-15

Similar Documents

Publication Publication Date Title
WO1989004447A1 (en) Heat-exchange tube
DE10038624C2 (de) Wärmeübertragungsrohr mit gedrallten Innenrippen
DE60219538T2 (de) Wärmetauscher
DE2728971C3 (de) Einsatz für ein Wärmetauscherrohr
DE202005009948U1 (de) Wärmeaustauschelement und damit hergestellter Wärmeaustauscher
DE102004033459B4 (de) Wärmetauscherrippe für eine Fahrzeug-Klimaanlage mit paralleler Schichtung von flachen Wärmeübertragerrohren
DE112006001071B4 (de) Wärmetauscher mit Turbulizern mit Windungen variierter Höhe
DE2705027A1 (de) Turbulator zum einsetzen in eine waermetauscherleitung
WO1995023949A1 (de) Rippenrohr-wärmeaustauscher
DE3022270A1 (de) Rippenartige vorrichtung, insbesondere in rohren von waermetauschern
DE112014001374T5 (de) Wärmeübertragungsfläche mit vorstehenden Zungen
CH664213A5 (de) Rippenrohranordnung.
EP0201665B1 (de) Wärmeübertrager mit mehreren parallelen Rohren und auf diesen angebrachten Rippen
EP1357345B1 (de) Gewellter Wärmetauschkörper
DE69007709T2 (de) Stapelverdampfer.
DE1957742U (de) Mit rippen versehener waermeaustauscher.
DE4220823C2 (de) Heizungswärmetauscher für Personenkraftwagen mit mindestens zwei Teilwärmetauschern
EP3523590A1 (de) Wärmetauscher
DE3126618C2 (de) Wärmeaustauscher aus Hohlfäden
DE3214453C2 (de)
DE202007017501U1 (de) Wärmeaustauschelement und damit hergestellter Wärmeaustauscher
DE3231640C2 (de) Wärmetauscher
DE202004020294U1 (de) Wärmeaustauschelement und damit hergestellter Wärmeaustauscher
DE2953738C2 (de) Plattenwärmeaustauscher
DE3510277C2 (de) Kondensator für Dämpfe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): SU US